
A Fast 3D Object Recognition Pipeline
in Cluttered and Occluded Scenes

Liupo Zheng, Hesheng Wang(B), and Weidong Chen

Shanghai Jiao Tong University, Shanghai 200240, China
{wanghesheng,wdchen}@sjtu.edu.cn

Abstract. In this paper we propose a framework for instance recogni-
tion and object localization in cluttered and occluded household envi-
ronment for robot grasping task. The whole system bases on a coarse to
fine pipeline in combination with the state-of-the-art methods of RGBD-
based object detection. We build a sparse feature model by extracting
structure key points incorporating texture cues in the train procedure.
After that, the paper demonstrates how the algorithm decreases the time
complexity and simultaneously guarantees the accuracy of the recog-
nition and pose estimation. Quantitative experimental evaluations are
presented using both acknowledged ground truth dataset and real-world
robot perception system.
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1 Introduction

One of the essential challenges in robot perception field is the object recogni-
tion and localization in unstructured scenes. The robot in such environment
encounters many restrictions such as occlusions, clutters, illumination changes,
multiple objects,real-time limits and etc. The conservative recognition methods
using 2D image features like SIFT, SURF, ORB, HOG [1–3] are more and more
unable to satisfy the requirements with the improvement of system accuracy
and speed. Recently, the work based on RGBD images has been fostered thanks
to the availability of low-price and high-performance 3D sensors such as Intel
RealSence and Microsoft Kinect.

Different from general computer vision, robotic vision system has the particu-
lar characteristics [4]. We pay more attention to instance recognition rather than
at category levels [5] and we should identify the object and simultaneously esti-
mate 6-DOF pose for the robot grasping. Because the number of object instance
is usually huge, the real-time performance should also be considered mainly in
practical application. One way of solving these is to introduce hierarchy which
executes the recognition at different levels [6]. The other direction of the research
is trying to find more effective feature descriptors in local [7–9] or global [10,11]
aspect. The local approaches construct the correspondence model in a scene by
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extracting and matching feature points and afterwards these correspondences
are clustered under certain rules to generate a object hypothesis [12]. The global
algorithms on the other hand extract a single descriptor to describe the object
in sight [13]. There is also some work dealing with performance improvements
through combining multiple algorithms [14,15].

In this paper, we propose a coarse to fine object recognition and localization
framework for robot perception in the complex environment. The first step is
the off-line object modelling and training. We define a unique generalized eigen-
vector consisting of spatial and texture features to build a sparse model of the
object. In order to search more effectively, we organize the training data in a
specific structure and label each surface of the object. We conduct a novel search
strategy to deliver the candidates in coarse pipeline after training. Then, several
approaches are used to refine the initial result and estimate the 6-DOF pose of
each object hypotheses. The framework ends with the output of object identity
and transformation matrix with respect to camera frame.

The paper is structured as follows. The next section presents the steps
of sparse feature model building and object training. Sect. 3 introduces more
detailed components of the coarse to fine object recognition and pose estimation
framework, followed by experiment and result in Sect. 4. Finally, the result is
analysed and concluded in Sect. 5.

2 Object Modelling and Training

As the number of each point cloud data is huge, it is hard to guarantee the
system real-time performance if we take all of the cues into consideration. For
each object training process, we build a sparse model Ms including shape, size
and texture information of an object which mainly characterizes its local fea-
ture. We define a novel generalized eigenvector fs : f = [cloud corrdinates,
normals, feature descriptors] to describe these unique feature points. The item
of feature descriptors are extracted from two aspects: 3D points generated from
the cloud data and 2D points which are back-projected from 3D space. More con-
cretely, we use SHOT (Signature of Histograms of Orientations) [16] to describe
the original 3D feature points and SIFT (Scale-invariant feature transform) to
represent the 2D once.

The first step of our recognition pipeline is to build models Ms for each object.
To do this, we use an off-the-shelf Simultaneous Localisation and Mapping
approach [17,18] to merge the image data gathered by moving RGB-D camera
around table-top object. In each frame, a color and a depth image are taken
and the point cloud is generated through fusing both of information. The corre-
spondences between two frames are estimated in color images, and the projected
3D points corresponding key points in 2D space are used to compute the trans-
formation between two frames. The infinite points caused by the camera are
first filtered, followed by the points which are too far away from the camera. To
estimate the transformation, we use RANSAC (Random Sample Consensus) to
eliminate outliers and ICP (Iterative Closest Point) to get more accurate results.
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(a) key points and sparse model (b) structure of training database

Fig. 1. The sparse model building and data training

They are further optimized by the ParallaxBA (Parallax Bundle Adjustment)
proposed by Zhao [19]. Finally all the frames are transformed into one object
coordinate system. For each surface Si =

{
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}
of one object

Mi, we unify the formation of feature vector fi to describe them. These points
are stored in the training database Md = {Md

1 ,M
d
2 , . . . ,M

d
m}. In Fig. 1, the

sparse model building and data training are shown in detail.

3 Object Recognition and Pose Estimation

In order to fully exploit the occluded objects and simultaneously compute 6-
DOF pose for robot grasping, we propose a coarse to fine framework which
consists of three major parts, namely Off − line training, Coarse pipeline and
Fine pipeline. The structure of the proposed method is outlined in Fig. 2. The
output of the system is a cluster with recognized object label and its homoge-
neous transformation matrix with respect to the camera frame.

Fig. 2. Coarse to fine object recognition and pose estimation framework
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3.1 Coarse Recognition Pipeline

Segmentation. In the testing case, the input point cloud Pj is firstly segmented
into multiple object hypotheses Oj = {Oj

1, O
j
2, . . . , O

j
k}. We try to reduce the

computational cost by focusing on the point cloud within a certain range on the
supporting plane. Hence we use RANSAC to estimate the plane of the supporting
table and cut the rest data below the plane.

For the objects on the plane, we conduct a bottom-up segmentation method
proposed by Richtsfeld [20]. We over-segment the point cloud into supervox-
els and build up a supervoxel adjacency graph using Voxel Cloud Connectivity
Segmentation [21], followed by a pre-merging process, in which all the adjacent
supervoxels are merged into patches based on their normal similarity. The clus-
tered patches are fitted to a object hypotheses according to the local convexity
and sanity criterion and using noise filtering procedure to merge the small noisy
patches into the neighboring segment with the greatest size.

Local Naive Bayes Nearest Neighbor. The next step for coarse pipeline is
to search object hypothesis candidates in the train set Md = {Md

1 ,M
d
2 , . . . ,M

d
m}

for each segmented point clusters Ms = {Ms
1 ,M

s
2 , . . . ,M

s
k} which are the feature

models extracted from Oj = {Oj
1, O

j
2, . . . , O

j
k} using the same sparse expression

as training.
The naive Bayes Nearest Neighbor algorithm is widely used in the image

searching and classification [22]. The goal of the approach is to determine the
most probable class Ĉ of a query image Q according to

Ĉ = arg max P (C|Q) (1)

Refer to this thought, we define our problem as flows. Each train model Md is
essentially a set of generalized eigenvectors Md = {fi : fi = [cloud cor, normals,
feature descriptors], i = 1, 2, . . . , L}. In the on-line object recognition pipeline,
we extract feature descriptors from segmented object hypotheses and obtain
the sparse model Ms which contains N feature vectors {fj , j = 1, 2, . . . , N}.
Then the recognition issue is transformed into the maximization of posterior
probability shown in Eq. 2.

M̂d = arg max P (Md|Ms) (2)

Assuming a uniform prior probability over objects and independence of the
descriptors fj extracted from cluster Ms, applying Bayes’ rules:

P (Md|Ms) ∝ P (Md)P (Ms|Md) ∝
N∏

j=1

P (fj |Md) (3)

According to kernel density estimation and the descriptors fj are highly
dimensional, therefore distribute sparsely, the P (fj |Md) can be rewritten
approximately

P (fj |Md) =
1
L

L∑

i=1

K (fi − fj) ≈ 1
L
e−‖fj−fNN (fj)‖2

(4)
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where the K (·) is the Gaussian − Parzen kernel and fNN (fj) is the nearest
neighbor to fj in the train database Md = {fi : i = 1, 2, . . . , L}. Substituting
Formula 4 into 3 and taking logarithm both sides of 3, we can get

M̂d = arg min

N∑

j=1

‖fj − fNN (fj)‖2 (5)

We notice that the feature cluster Ms
m is actually one of the object surfaces,

in order to match more accurately and provided more refined cues later for the
pose estimation, we label each surface Sd in the train database, rewrite the
generalized eigenvector fs : f = [surface label, cloud corrdinates, normals,
feature descriptors] and search target in the category of Sd. Suppose the num-
ber of object is M , each object trains S surfaces and each surface has L features
averagely. We conduct KD (K-Demensional) search strategy in a single loop and
the complexity of the NBNN is O(M · S ·N · log(L)) and the time consumption
increases linearly with the number of train database elements. The real-time will
be influenced heavily with the object number increasing.

Considering the Gaussian − Parzen kernel K(fi − fj) = e− ‖fi−fj‖2

2σ2 ,
P (fj |Md) decreases exponentially with respect to ‖fi − fj‖2 and there is no
need to search every surface Sd in the database, we just care several nearest
neighbors of the fj . Under this point, we merge all of the trained surfaces Sd

into a new structure {fDB
k } = {fSd

1
k }⋃{fSd

2
k }⋃

. . .
⋃{fSd

M·S
k } and conduct the

KD search in the merged database {fDB
k }. Compare with the previous NBNN,

our method just search the nearest neighbors in one structure instead of every
object. We call this method Local Naive Bayes Nearest Neighbor (summa-
rized in Algorithm 1). The complexity of LNBNN is O(N · log(M · S · L)) and
the time consumption increases logarithmically with the number of objects.

Scene Synthesis. After LNBNN search, we get candidates CMs

candi = {CMs

1 ,
CMs

2 , . . . , CMs

t } of certain object cluster Ms. Since we have marked the cate-
gory and surface label for each candidate, it is easy to distinguish which can-
didate belongs to the same object. We conduct a voting scheme to synthesize
the coarse recognition result and select the final candidate set with the uniform
classification label.

3.2 Fine Recognition Pipeline

Match Number Check and Geometric Consistency. The coarse pipeline
output a set of most likely candidates of the object hypotheses, we next deter-
mine which is the best recognition result in the fine pipeline. Given the descrip-
tors of object hypotheses and an appropriate candidate, we first use FLANN
(Fast Library for Approximate Nearest Neighbors) strategy to discover the cor-
respondent points and define a matching threshold to discarded correspondences
with large distance. We then execute match number check stage to decide
whether it is meet the requirement or not. Afterwards geometric consistency
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Algorithm 1. Local Naive Bayes Nearest Neighbor
Input: Train dataset {fDB

k } and object hypotheses feature cluster Ms

Output: Candidates of object hypotheses {CMs

1 , CMs

2 , ..., CMs

t } ∈ {fDB
k }

1 Initialize distm = 0 (m = 1, 2, ...,M · S) where distm represents the distance

between object hypotheses Ms and trained surface Sd

2 for fj ∈ Ms do
3 search in {fDB

k } and get r + 1 nearest neighbors {fNN1, fNN2, ..., fNNr+1}
merge eigenvectors belong to one surface and obtain set {CMs

1 , CMs

2 , ...CMs

s }
set dist0 equal ‖fj − fNNr+1‖2

4 for Ci ∈ {CMs

1 , CMs

2 , ...CMs

s } do
5 distm = distm + ‖fj − fNNi‖2 − dist0
6 end

7 end

8 sort distm in ascending order and take the first t {CMs

i } (i = 1, 2, ..., t)
as candidates

9 return {CMs

i }

clustering algorithm will be conducted to enforce geometric constraints between
pairs of correspondences and remove the mismatching points.

Pose Estimation. Since the correspondences of the key points have been
extracted, we conduct SVD (singular value decomposition) to get the initial
transformation T c

m between the candidate surface Ci and object Ms. Because
we use nearest neighbors of the descriptors to generate point-to-point relation-
ships in 3D space, some of our correspondences are likely to be incorrect. We
account for this using RANSAC algorithm and through dozens of iteration to
get a better result which will be used in ICP stage as initial value to increase the
accuracy of the transformation by T c

m = TICP · T c
m. Therefore, the 6-DOF pose

of the object hypotheses Ms with respect to camera is Ts = Tm
cam · T c

m, where
the Tm

cam is the transformation matrix between object frame and camera frame.

Model to Scene Validation. For each object hypotheses Ms conducts these
steps above, all the scene objects have been recognized and we will get a cluster of
most likely candidates C : {C1, C2, . . . , Ck} correspond to the segmented point
cluster Ms : {Ms

1 ,M
s
2 , . . . ,M

s
k}. If more than one candidates Ci contain the

same label, two conditions probably lead to this. One is the over segmentation
and the other is false recognition. We distinguish this two situations by means
of checking whether object hypotheses bounding volumes with same label are
overlap. If so, we merge those hypotheses and estimate the pose again, otherwise
we discard this false result and restart the recognition pipeline.

After checking scene consistency, we project each candidate into the scene
using estimated pose matrix and conduct overlap ratio verification. We construct
a two-dimensional histogram of 20 · 20 bins to represent the distribution and
orientation of surface normals. Since the surface normals are normalized, the
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term nz is determined by nx and ny, there is no need to contain nz in the
histogram. A direct method to evaluate the similarity of two histograms is

D(A,B) =
∑

i,j

|aij − bij | (6)

Normalizing the histogram and utilizing the following equation

min(a, b) =
1
2
(a + b) − 1

2
|a − b| (7)

we can get a more effective way to compute the similarity of the histogram

S(A,B) = 1 − 1
2
D(A,B) =

∑

i,j

min(aij − bij) (8)

where S(A,B) is the metric which has a positive correlation between the value
and the similarity of histograms. Further more, it is also a indirect indication of
the overlap ratio between the candidate model and the scene object. The bigger
of the metric value, the more accurate of the recognition and pose estimation.

4 Experiment and Result

4.1 Recognition Experiment

We evaluated the efficiency of recognition framework on a famous household
dataset Willow Challenges from ICRA Perception Challenge 2011. This
dataset contained 35 rigid object instances and 39 scenes including both simple
and complex case, each object consisted of 37 frames from different views. Our
training pipeline built the sparse feature model using these point cloud instance
while recognition pipeline was implemented with the given ground truth scenes
using OpenCV and PCL.

After training all of the objects in dataset, we selected 14 scenes randomly
for testing and each scene contained 4 different view ports. The whole process
steps are shown in Fig. 3. After LNBNN searching and fine pipeline optimizing,
the final recognition precision is summarized in Table 1. We also analysed the
pose recovery of detected object with the benchmark, the statistics indicate the
average errors of translation and rotation are under 4 cm and 8◦. Figure 4 shows
the line chart of translation and rotation errors around X-axis, Y-axis and Z-axis.

4.2 Grasping Experiment

The proposed method was then tested on the real-world environment under the
ABB industrial manipulator with a calibrated Kinect sensor (shown in Fig. 5(a)).
The objects were placed on a plane table in clutter and the goal was to recognize
all instances in the scene and estimate the pose at the same time. For the robot-
grasp planning, we followed the work of Dogar [23], by means of NGR (negative
goal region) and relevant methods to deliver the motion trajectory and grasp
gesture.
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(a) scene (b) segmentation (c) LNBNN candi-
dates

(d) coarse match

(e) geometric consis-
tency

(f) histogram (g) model to scene (h) pose estimation

Fig. 3. Overview of object recognition and pose estimation pipeline

(a) translation error (b) roation error

Fig. 4. The errors of translation and rotation around X-axis, Y-axis and Z-axis

Table 1. Quantitative recognition precision

Item Value

True positive 96.76%

False positive 3.24%

False negative 2.18%

Recall 97.80%

Precision 96.76%

The experiment was designed as follows:

• Training the objects which are commonly used in household environment.
• Captured the original scene in clutter and conducted the segmentation stage

to deliver the object hypotheses {Ms
1 ,Ms

2 , . . ., M
s
k}.

• Applied LNBNN and scene synthesis to obtained candidates in coarse
pipeline.

• Conducted fine pipeline and iterated until all the hypotheses are recognized.
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(a) robot with Kinect (b) motion planning (c) grasp action

Fig. 5. Snapshots for grasping experiment of the robot

• Combined the output of the recognition framework, the robot executed the
motion planning under ROS (Robotic Operation System) and grasped objects
to verity the correctness of the result.

The Fig. 5(b) shows the robot motion planning in Rviz and Fig. 5(c) is a
snapshot of robot grasping. The experiment result illustrates that the recognition
and pose estimation satisfies the robot grasping requirement.

5 Conclusions

In this paper, we present a coarse to fine object recognition and pose estimation
framework for robot grasping in the cluttered and occluded household environ-
ment. Our system combines the texture and spatial cues constructing a gener-
alized eigenvector and it is robust for occlusion and illumination changes. We
exploit the segmented clusters by means of LNBNN to ensure the real time
performance and through fine recognition pipeline to improve the accuracy of
the pose estimation. The experiment illustrates the efficiency of the proposed
method. In the future, we aim to extend our algorithm to non-rigid objects and
a more effective segmentation approach is also need to explore deeply.
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