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Abstract. Chessboard detection and corner extraction are imperative
during the camera calibration process, which is a fundamental work in
computer vision. This paper describes a new chessboard corner detection
algorithm using the amplitude spectrum feature of circular sampling at
each point as corner response function. A simple thresholding technique
is that only the points near a chessboard corner will get positive cor-
ner response. However, image noise will bring a lot of false positives.
The distribution of false positive response with respect to image noise is
given, this distribution also has a property like the three-sigma rule in
Gaussian distribution, that can be used as thresholding rule. The only
parameter needed is the standard deviation of image noise, which can
be measured using some patches of the image for once. Experiment is
presented showing the efficiency of the proposed method against noise,
compared with existing algorithm under simulated image.

Keywords: Chessboard detection · Discrete Fourier transform · Corner
response · Difference of Rayleigh distribution

1 Introduction

Chessboard pattern is commonly used in camera calibration, which is a neces-
sary step in many computer vision tasks. Since such pattern can provide simple
and clear corners with known geometrical parameters, it is also suitable for 3D
pose estimation and localization in robot vision. Thus extracting chessboard
corners fast, accurately and automatically is still a significant challenge. The
available methods for chessboard corner detection often require hand-tuning of
parameters under different image conditions to filter out false corners. Although
some methods give empirical parameters for corner filtering, they may still fail
due to different noise level or light condition. Therefore, methods need manual
intervention prohibit automated use.

In this paper, we will present a chessboard corner detection method which
only need a priori knowledge of the image noise variance. This can be estimated
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using a bright and uniform image patch, e.g. an image of a white paper or
some bright squares of the chessboard, taken from the same camera with fixed
exposure gain. This prerequisite is reasonable, and easy to operate for only one
time. Experiment with simulated images and real images shows the efficiency
and feasibility of the proposed method.

Following a review of published chessboard corner detection methods in
Sect. 2, in Sect. 3 we use circular sampling strategy proposed in [1] and rearrange
the sampled points into a 1D vector. We discuss the time-frequency characteristic
of the sampled vector at different location on the chessboard. Then we present
a chessboard corner response function. In Sect. 4, we reveal that image noise
will cause false positive response, and we show the distribution of undesired cor-
ner response caused by image noise. Surprisingly, this distribution is similar to
Gaussian distribution and has a property like the three-sigma rule, which can be
used to choose a threshold for false positive filtering. Experiment is conducted in
Sect. 5, we present both simulated and real-world image to verify the proposed
method’s efficiency and feasibility. This paper ends with some conclusions and
extensions.

2 Related Works

Several methods have been published for chessboard corner detection. These
methods usually consist two main steps, locate all corners roughly and select
the chessboard corners. General corner detector, such as the Harris [7], SUSAN
[14], or FAST [13] features, can be used to locate corners roughly. Harris corner
detector uses corner metric threshold to filter out most noise points, and it is
especially suitable for L corner. However, the chessboard corner is an X corner,
which will looks like two L corners when the image is blurred, thus applying
Harris corner detector to a blurred chessboard image may get two corners for each
chessboard vertex. FAST use an intensity difference threshold and the number
of contiguous disparate pixels to classify a point as or not corner. If the intensity
difference threshold is too small, there will be more than one FAST features near
a chessboard corner, and if the value is too large, some chessboard corners may
be missed due to nonuniform luminance. SUSAN detector only use non-maximal
suppression to select corners, but it should be pointed out that SUSAN will treat
a chessboard corner without any rotation or distortion as an edge point.

Although general corner detector always need proper threshold to get all
chessboards corners, several methods are based on this detector to roughly locate
all corners and use different techniques to select chessboard corners. Wang et al.
[16] uses Harris detector to select all corners and apply two rotating orthogonal
masks to filter out non X corners, then using line intersection to select chess-
board internal points. This method will be affected by lens distortion. Kassir
et al. [9] use multi-scale Harris detector and improved filtering method. Ha [6]
use Lucas-Kanade feature detector to track corners and use a radial accumu-
lator to select the chessboard corner. These two methods always need a lot of
computing resource. Zhu et al. [19] propose an improved SUSAN detector with
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predefined threshold. He et al. [8] adopt Hessian feature to detect points, and
propose an adaptive thresholding technique to extract X corners, then apply
a circular template to eliminate blobs. However, This method also use some
predefined threshold.

Besides general corner detector, several local feature based methods have
been proposed. Yu et al. [17] insert 5 double-triangle patterns as reference into
a chessboard and detect them using rotated templates, then recover chessboard
corners using the double-triangle patterns. The performance of their method
depends on the success of detecting the double-triangle patterns. Sun et al. [15]
rearrange points in a square window centered at a point into several 1D vec-
tors called layers, apply binarization and special morphology operation to select
chessboard corners. This method will produce false corners from noise and is
rather slow. Zhao and Wang [18] divide a window centered at a point into four
quadrants, the summed intensity difference of adjacent quadrant is larger than
the given threshold may contain a chessboard corner. This method needs hand-
tuning threshold and may have a lot of false corners. Geiger et al. [5] use four
pairs of convolution kernels to produce a corner response map, after non-maximal
suppression for candidates and apply windowed gradient histogram to each can-
didate, they generate a new template for that chessboard. This method can
detect multiple chessboard, but it needs several convolutions, which is quite slow.
Donné et al. [3] propose a method based on convolution neural networks, this
can be explained as using several weighted convolution kernels to detect chess-
board. This may be a generalized method for detecting every single object, but
it requires a lot of computing power. Bennett and Lasenby [1] advance a simple,
fast and efficient corner response function using only circular points around sam-
pling center. The main drawback is that the corner response function will trigger
a lot of false corners, although thresholding will eliminate those false positives,
it is nontrivial to give a threshold. Bok et al. [2] also use the features of circular
sampled points to discard candidates. This method include fraction coordinates
and needs a lot of interpolate intensities which will slow down the computation.

Accurate chessboard corner can also be obtained or selected by line inter-
section. de la Escalera and Maria [4] proposed a method which adopt Hough
line transform twice to obtain edge lines on chessboard. This method also suf-
fers from lens distortion. A complex technique, called ROCHADE proposed by
Placht et al. [12], combines both point and edge features. This method is stable
but very slow. This paper aims to offer a fast and minimal hand-tuning approach
for chessboard corner detection.

3 Chessboard Corner Response Function

Although conventional corner detector like Harris and FAST can be used to
extract chessboard corner roughly. It still needs further operation to exclude
outliers. Most published filtering methods take advantage of the local character-
istic of a chessboard corner, like a circular boundary centered at a corner [1,2,15].
The main benefit of circular sampling is rotationally invariant, also it can carry
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a lot of information to classify corners when samples enough points. Unlike most
methods mentioned above, we use circular sampling to roughly extract points,
which have similar local feature to chessboard corner, then filter out false corners.
The characteristic of circular sampled data should be discussed first. Sampler in
the following paragraphs refers to the circular sampler. Sampling center means
the center of circular sampler.

Consider an ideal chessboard image with no noise, good light condition and
only three gray levels which appears as a binary image. Apply a circular sampler
with resolution one point per degree to the ideal image, three main cases will
appear as listed below.

– When sampler moves to a chessboard corner, see Fig. 1a, the black circle
indicates the sampling path. Suppose start sampling counter clockwise from
the most right point, and put sampled intensities into a 1D vector in the
sampling order. The 1D vector, also a 1D signal, will contain two cycles of
square wave whose period is half the vector length, see Fig. 1b. If the sampling
center is near a chessboard corner, the sampled vector will be slightly different
from the one sampled at a corner, it will wrap two square waves with different
period.

– As sampler goes to a block edge on the chessboard, see Fig. 1c, if apply the
same sampling order mentioned above, we will obtain a wide, one cycle square
wave whose period is the vector length, see Fig. 1d. When the sampler is near
the block edge, the sampled vector is also square wave with a narrower or
wider rectangle.

– While the sampler is on a flat region, e.g. a bright block on chessboard, the
sampled vector will appear as straight line.

Fig. 1. Different sampling result
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It is obvious that the sampled 1D vector, which behaves as a two cycle
square wave, indicate the sampling center is on a chessboard corner. Thus, the
chessboard corner detection can be implemented by finding the two cycle square
wave in the sampled vectors, which can be solve by template matching. However,
the template matching may fail due to the circular shifting of the sampled vector
cause by chessboard rotation. So a circular shifting template matching methods
is needed, but this method is always time-consuming. Nevertheless, we realize
that the Fourier transform of the sampled vector is a reasonable solution to
the matching problem. One of the basic properties of Fourier transform is time
shifting does not change the magnitude of any frequency component, which
means that the magnitude of a frequency component in the amplitude spectrum
of the sampled vector will not change under circular shifting cause by chessboard
rotation.

For computational efficiency, we adopt the discrete circular sampling strategy
proposed by [1]. The sampled 1D vector is denoted as x = (x1, x2, . . . , xM )T ,
where T means transpose, xi is sampled intensity. The sampling point (ui, vi)
centered at (uc, vc), is defined as

ui = �r cos
(
2π i

M

)
+ uc� (1)

vi = �r sin
(
2π i

M

)
+ vc� (2)

where i = 1, 2, . . . ,M . M is the number of samples, r is the radius of the sampler,
and �x� return the rounded value of x, which ensures generating integer coordi-
nates. For a blurred image, r may need to be larger. In our case, r = 5 pixels.
The discrete Fourier transform of x is given as f = (f0, f1, . . . , fM−1)T , where
fk encodes both amplitude and phase of a complex sinusoid which frequency is
k cycles per M samples. |fk|/M is the amplitude of the sinusoid with frequency
k, a large |fk|/M means the source signal mainly depend on the sinusoid with
frequency k. This is the key idea of our method.

While dealing with an ideal image mentioned above, see Fig. 2a, apply the
circular sampler to each pixel in the ideal image, and perform discrete Fourier
transform for each sampled vector, it could be found out that the discrete ampli-
tude spectrum of the sampled vector behaves distinctively at different position.
Using only too frequency component, f1 and f2, we classify these behaviors into
four main cases as listed below.

– When sampling at a chessboard corner, the sampled vector is a two cycles
square wave, it is easy to verify that |f1| = 0 and |f2| is relative big, see the
center of Fig. 2b and c. The image center contains a chessboard corner.

– |f1| > |f2| when the sampling center is near a block edge, see Fig. 2b bright
vertical strip at the center.

– |f1| = |f2| = 0 when the sampling center is on a flat area, such as bright
block, check the for corner of Fig. 2b and c.

– Relation between |f1| and |f2| is complicated. 0 < |f1| < |f2| while the
sampling center is near a corner, see the points near the center of Fig. 2d.
When sampling center moves toward four corners or along a block edge, it
can be seen that |f2| < |f1|.
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Fig. 2. Amplitude spectrum analysis of ideal chessboard image

It is obvious that |f1| < |f2| only if sampling center is near the chessboard. So
we define a chessboard corner response function as

R = |f2| − |f1| (3)

One simple criteria for the point may be a chessboard corner is R > 0. And
local maximal of R indicate that it is a chessboard corner. However, R > 0 is
a necessary but not sufficient condition for a point to be a chessboard corner.
Consider the real-world image, there always be noise, which can cause R > 0 even
on a uniform region such as bright block on the chessboard. So it is necessary to
eliminate the influence of noise.

4 Corner Response Filtering

A straightforward way to filter out false positives caused by noise is image filter-
ing, such as Gaussian smoothing. But this can not eliminate all noise and will
blur the corners, which will affect corner detection mention in Sect. 3. Although
image noise may cause false positives, the corner response with respect to noise
has a limited range, which can be used as a threshold to filter out false pos-
itives. Assume the images have additive Gaussian noise with standard devia-
tion σ, denote a random variable x obeys Gaussian distribution as x ∼ N (μ, σ2),
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where μ is the expectation and σ represents standard deviation. The discrete
Fourier transform of the sampled vector x is defined as

fk =
M−1∑

m=0

xme−i2πkm/M (4)

where M is length of vector x, k is the frequency of sinusoid, substituting Euler’s
formula in Eq. 4 we get

fk =
M−1∑

m=0

xm cos
(
−2πk

m

M

)
+ ixm sin

(
−2πk

m

M

)
(5)

the real and imaginary part of fk is denoted as

Rk =
M−1∑

m=0

xm cos
(
−2πk

m

M

)
(6)

Ik =
M−1∑

m=0

xm sin
(
−2πk

m

M

)
(7)

It is worth to note that

M−1∑

m=0

cos
(
−2πk

m

M

)
=

M−1∑

m=0

sin
(
−2πk

m

M

)
= 0 (8)

M−1∑

m=0

cos2
(
−2πk

m

M

)
=

M−1∑

m=0

sin2
(
−2πk

m

M

)
=

M

2
(9)

Suppose the sampling center is on a uniform region with noise mention above,
then x is a random vector, its elements obey Gaussian distribution, denoted
as xi ∼ N (μ, σ2), where μ is intensity of the uniform region, σ is the stan-
dard deviation of image noise. It can be derived that Rk ∼ N (0, σ2M/2),
Ik ∼ N (0, σ2M/2). Both Rk and Ik obey Gaussian distribution. The magni-
tude of frequency k component is given by

|fk| =
√

R2
k + I2k (10)

Due to the fact that Rk and Ik both obey the same Gaussian distribution,
|fk| obeys Rayleigh distribution, it’s probability density function is given as

p(z) =
z

τ2
e− z2

2τ2 , x ≥ 0 (11)

where z = |fk| in our case, τ = σ2M/2 is a parameter of Rayleigh distribution,
it is also the standard deviation of Rk and Ik. Then the corner response func-
tion defined above, see Eq. 3, obeys distribution of difference of two variables
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Fig. 3. Rayleigh difference distribution and Gaussian distribution, the standard devi-
ation is 0.1

that obey Rayleigh distribution. We call this distribution as Rayleigh difference
distribution, its probability density function is derived as

γ(y) =
∫ +∞

−∞
p(y)p(t − y) d t (12)

=
e− y2

2τ2

8τ3

(
2|y|τ + e

y2

4τ2
√

π
(
2τ2 − y2

)
Erfc

( |y|
2τ

))
(13)

where y = |f2| − |f1| in this case, while |f1| and |f2| are random variables obey
a Rayleigh distribution with parameter τ as defined in Eq. 11, Erfc(y) is the
complementary error function defined as

Erfc(y) =
2√
π

∫ ∞

y

e−t2 d t (14)

This distribution is similar to Gaussian distribution, see Fig. 3, and it also
has the three-sigma rule, however the sigma mentioned here is not the standard
deviation as the one in Gaussian distribution, it is a parameter of the distrib-
ution, which is denoted as τ in our case mentioned above. Thus, we call this
property as the three-tau rule. Define the cumulative distribution function of
Rayleigh difference distribution as

P (y) =
∫ y

−∞
γ(t) d t (15)

where γ(t) is defined as Eq. 13.
Using numerical calculation, we can get that P (3τ) = 0.99919456. This means

that if we use 3τ as the threshold to filter out false positives, the ratio of filtered
out point to all false positives is about 99.919456%. It need to note that for a
VGA image, there are 640 × 480 points, if we choose the 3τ as threshold, there
will be about 247 points that may not be filtered out. However, we can use 5τ as
a threshold because of P (5τ) = 0.99999988, which means for VGA resolution,
all the false positives will be eliminated.
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It is worth noting that when the circular sampler move to a strip like place,
such as dark wire on white background, the sampled vector will also behave as
the one sampled at chessboard corner. In this case, we adopt the ChESS in [1]
to solve this problem.

5 Experiment

In our implementation, we use a circular sampler with radius 5 pixel and 16
sample points as mentioned in Sect. 3. We choose 5τ as the threshold for false
positive filtering, where τ = 2

√
2σ, and σ is the standard deviation of image

noise. Our method is compared with the ChESS algorithm proposed in [1] under
simulated image to demonstrate its feasibility and efficiency.

We generate a simulated grayscale image which is composed of 6 by 6 squares.
Each square is 30 pixels wide. The intensities of the bright and dark block are 0.8
and 0.2, while the intensity range is [0, 1]. Between bright and dark block we add
transition pixels, whose intensity is 0.5. To demonstrate the feasibility of elimi-
nating false positives, we add Gaussian noise to the image while the noise stan-
dard deviation σ is 0.05. Then we apply our method and ChESS to this image.

Figure 4 shows the corner response of our method and ChESS. The image is
cropped for recognizable, and it only contains 4 true chessboard corners. The
image is not smoothed and the corner response maps are not filtered. Notice that
the result of ChESS, see Fig. 4c, contains a lot of local maximum response caused
by image noise. Although these false positives can be eliminated by setting a
proper threshold, it will need hand-tuning, and may miss the true chessboard cor-
ner. However, the corner response of our method is quite clean, see Fig. 4b, only
points near the corner have positive response as analyzed in Sect. 3. Small local
maximum caused by noise are all filter out using the technique proposed in Sect. 4.

Figure 5 shows the detection result of our method under real-world, poor-lit
image. After calculating corner response, we use non-maximum suppression to
get the points with the highest local response to represent chessboard corners.

Fig. 4. Corner response comparison between ChESS and our method, the image is
cropped for recognizable
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Standard deviation σ of image noise is about 0.02, which is measured by choose
some black block on the chessboard from this image. It is important to notice
that some false positives still exist, see the red circle at the upper left corner of
the image. These false positives are not caused by image noise. The main reason
leads to this result is that we only use one circular sampler and the first simple
threshold strategy proposed in Sect. 3 is a necessary but not sufficient rule. Thus,
those points which have same circular sampling feature as the chessboard corner
but are even not corners will be detected by our method.

Fig. 5. Test our method using real-world image, red circles indicate chessboard corner,
the standard deviation of image noise is about 0.02 which is estimated using dark
blocks (Color figure online)

6 Conclusion

In this paper, we have proposed a chessboard corner detection algorithm based
the magnitude spectrum characteristic of the circular sampled data. Given the
standard deviation of image noise, we derived the distribution of the corner
response with respect to image noise, which we name it as Rayleigh difference
distribution. This distribution is similar to Gaussian distribution, and it has a
property like the three-sigma rule in Gaussian distribution, which we call it the
three-tau rule. However, we choose five taus to be the threshold due to fact that
the probability covered in five taus is nearly 1. Experiment showed our method
can efficiently eliminate false positives caused by noise, and is also robust against
poor light condition.

Due to the strip image may have the same circular sampling characteristic
as the chessboard corner. Our method can be used to extract strip center, such
as the center line of a black wire on a bright background.
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