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Abstract. Singularity analysis is an important problem in the field of parallel
mechanism, how to obtain a concise and analytical expression of the singularity
locus has been the focus of the study for a long time. This paper presents a new
method for the singularity analysis of the Stewart platform parallel mechanism.
Firstly, the rotation matrix is described by quaternion; utilizing length constraint
equations of the extensible limbs and properties of the quaternion, seven
equivalent equations are obtained, and the variables of position and orientation
are decoupled preliminarily. Secondly, by taking the derivative of seven the
equivalent equations with respect to time, a new kind of Jacobian matrix is
obtained, which reflects the mapping relationship between the change rate of the
lengths of extensible limbs and the change rate of variables of position and
orientation of the moving platform. Finally, the analytical expression of the
singularity locus is derived from calculating the determinant of the new Jacobian
matrix; when the quaternion are transformed into Rodriguez parameters, there
are only 258 items in the fully expanded analytical expression of the singularity
locus. Not only can this method be used to study the singularity problem of
Stewart platform parallel mechanism, but it can also be used to study the sin-
gularity free workspace of the mechanism.

Keywords: Stewart platform � Parallel mechanism � Singularity analysis �
Quaternion � Jacobian matrix

1 Introduction

It is well known that Stewart Platform parallel mechanism (also known as Gough
platform), the typical representative of the six degrees of freedom spatial mechanism, is
composed of a fixed base and a moving platform driven by six extensible limbs. Every
limb is connected to the fixed base by spherical joint and to the moving platform by a
universal joint. While working, the moving platform obtains three translational degrees
of freedom and three rotational degrees of freedom by changing the lengths of the six
extensible limbs, while the fixed base remains static [1]. Compared with the traditional
serial mechanism, parallel mechanism possesses many advantages, such as higher
precision of mobility, lower inertia, higher stiffness, larger payload capacity and better
dynamic performance etc. It has been widely applied in the field of airplane simulators,
parallel kinematic machines, parallel robots, micro displacement positioning devices,
and medical and entertainment equipment, etc. [2].
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Since the mid-20th century, parallel mechanism has become a hot research topic in
the field of mechanism. Many scholars at home and abroad have been studying the
Stewart Platform parallel mechanism from different aspects, such as kinematics anal-
ysis, singularity analysis, workspace and dexterity, dynamics and control. In both
theoretical research and engineering applications, great progress has been made in
Stewart Platform parallel mechanism. However, there are still a lot of problems having
not been solved to this day, especially forward kinematics, singularity and workspace,
which have been named as the three basic problems of parallel mechanism by Merlet
[1]. When singularity occurs, the moving platform would like to get or lose some extra
degrees of freedom in a certain direction. As a result of the moving platform getting
some extra degrees of freedom, the position and orientation of the moving platform
would be out of control; the driving forces of joint, which is used to balance the load
effects on the moving platform, will tend to infinity, parallel mechanism would not
work normally, it can even be damaged seriously [3]. Therefore, the singularity
analysis of Stewart parallel mechanism cannot be avoided, neither in theoretical
research nor engineering application.

There are some methods can be used to analyze the singularity of parallel mech-
anism, such as Jacobian matrix analysis, Grassman geometry and screw theory, etc.
Gosselin has divided the singularity of parallel mechanism into three categories by
using Jacobian matrix [4]. In addition, Gosselin studied the singularity representation
and the maximal singularity-free zones in the six-dimensional workspace of the general
Gough–Stewart platform [5, 6]. Huang obtained the analytical expression of singularity
locus, which can be used to analyze both position singularity locus and orientation
singularity locus of the 6-SPS parallel mechanism [7, 8]. Coste studied rational
parameterization of the singularity locus of Gough–Stewart platform which the fixed
base and the moving platform are both general planar hexagons [9]. Karimi studied
singularity-free workspace analysis of general 6-UPS parallel mechanisms via Jacobian
matrix and convex optimization [10]. Cao studied the position singularity characteri-
zation of a special class of the Stewart parallel mechanisms based on the Jacobian
matrix [11]. Hunt studied the singularity of parallel mechanism by using the screw
theory [12]. Huang analyzed the singularity of parallel mechanism by the method of
general linear bundles [13]. Merlet proposed the method of singularity analysis based
on Grassmann geometry [14]. Caro analyzed the singularity of a six-dof parallel
manipulator using grassmann-cayley algebra and Gröbner bases [15]. Doyon studied
the Gough–Stewart Platform with constant-orientation and obtained the singularity
locus by vector expression [16]. Based on screw theory, Liu studied two types of
singularity of 6-UCU parallel manipulator which are caused by both the active joints
and passive universal joints [17]. Shanker obtained singular manifold of the Stewart
platform [18]. Kaloorazi combined the study of maximal singularity-free sphere to the
workspace analysis [19]. Some scholars pointed out that singularity can be avoided by
kinematic redundancy [20], or by means of suitable control scheme [21], or by means
of reconfigurable mass parameters [22], or by means of trajectory optimization and
multi-model control law [23]. Some other scholars studied the singularity of different
kinds of lower mobility parallel mechanisms by using different methods [24–26].
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The existing research results cannot express singular locus concisely or yield higher
computational efficiency, especially they cannot distinguish the singularity of given
configurations quickly and easily.

The remainder of this paper is organized as follows: in Sect. 2, coordinate param-
eters of the hinge points and rotation matrix used in this paper are introduced; in Sect. 3,
seven equivalent equations are obtained by utilizing length constraint equations of the
extensible limbs and properties of the quaternion; in Sect. 4, a new kind of Jacobian
matrix is derived from the equivalent equations, and the analytical expression of the
singularity locus is derived from calculating the determinant of the new Jacobian matrix;
in Sect. 5, a numerical example is introduced to verify the method presented in this
paper. Finally, Sect. 6 draws the conclusions.

2 Coordinate Parameters and Rotation Matrix

As shown in Fig. 1, a spatial 6-dof mechanism known as the Stewart parallel mech-
anism. The hinge points ai for i = 1 to 6 are sketched on a circle symmetrically as the
moving platform; while the hinge points bi for i = 1 to 6 are sketched on a circle
symmetrically as the fixed base. Due to the symmetry, coordinates of hinge points,
neither on the fixed base nor on the moving platform can be described by four
parameters, namely, r1, r2, h1, h2, as shown in Table 1.

Fig. 1. Stewart Platform parallel mechanism. This mechanism consists of a moving platform, a
fixed base and six extendable links. The moving platform is driven by six extendable links
aibi(i = 1*6), and every one of them is connected to the moving platform by a spherical joint
and connected to the base by a universal joint. Static coordinate system O-xyz and moving
coordinate system O′-x′y′z′ are fixed to the base and the moving platform respectively.
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Therefore, coordinates of the hinge points on the moving platform can be expressed
in the moving coordinate system O′-x′y′z′ as:

ak ¼ ax;k ay;k 0
� �T ð1Þ

Coordinates of the hinge point on the fixed base can be expressed in the static
coordinate system O-xyz as:

bk ¼ bx;k by;k 0
� �T ð2Þ

The rotation matrix, which is described by quaternion [27], is shown as:

R ¼
e20 þ e21 � e22 � e23 2e1e2 � 2e0e3 2e1e3 þ 2e0e2
2e1e2 þ 2e0e3 e20 � e21 þ e22 � e23 2e2e3 � 2e0e1
2e1e3 � 2e0e2 2e2e3 þ 2e0e1 e20 � e21 � e22 þ e23

2
4

3
5 ð3Þ

where, e1, e2, e3, e02 R, i2 ¼ j2 ¼ k2 ¼ �1, and ij ¼ �ji ¼ k, jk ¼ �kj ¼ i,
ki ¼ �ik ¼ j. Similar to unit vectors, eTe ¼ 1.

The rotation matrix, which is described by the Rodriguez parameters, can be
expressed as follows:

R ¼ 1
D
�

U2 � V2 �W2 þ 1 2UV � 2W 2UW þ 2V
2UV þ 2W �U2 þV2 �W2 þ 1 2VW � 2U
2UW � 2V 2VW þ 2U �U2 � V2 þW2 þ 1

2
4

3
5 ð4Þ

where, D ¼ U2 þV2 þW2 þ 1, U, V , W are the Rodriguez parameters. It can be
proved that the transformation relationship between quaternion e ¼ e1; e2; e3; e0ð ÞT and
the Rodriguez parameters U;V ;Wð Þ can be expressed as follows:

e0 ¼ 1ffiffiffiffi
D

p ; e1 ¼ Uffiffiffiffi
D

p ; e2 ¼ Vffiffiffiffi
D

p ; e3 ¼ Wffiffiffiffi
D

p ð5Þ

The position of the origin of the moving coordinate system respect to the static

coordinate system can be described by a vector P ¼ Px Py Pz
� �T

. Then linkage
vector between a pair of hinge points is written as:

Table 1. Coordinate parameters of hinge points.

ax,k ay,k bx,k by,k
1 r2Cos[−p/6 − h2] r2Sin[−p/6 − h2] r1Cos[−p/6 − h1] r1Sin[−p/6 − h1]
2 r2Cos[−p/6 + h2] r2Sin[−p/6 + h2] r1Cos[−p/6 + h] r1Sin[−p/6 + h1]
3 r2Cos[−p/2 − h2] r2Sin[−p/2 − h2] r1Cos[p/2 − h1] r1Sin[p/2 − h1]
4 r2Cos[−p/2 + h2] r2Sin[−p/2 + h2] r1Cos[p/2 + h1] r1Sin[p/2 + h1]
5 r2Cos[−7p/6 − h2] r2Sin[−7p/6 − h2] r1Cos[7p/6 − h1] r1Sin[7p/6 − h1]
6 r2Cos[−7p/6 + h2] r2Sin[−7p/6 + h2] r1Cos[7p/6 + h1] r1Sin[7p/6 + h1]
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lkek ¼ PþR � ak � bk ðk ¼ 1� 6Þ ð6Þ

where, lk is the length of kth extensible limb, ek is the unit vector along the axis of kth
extensible limb, ak is the position vector of the hinge point of the moving platform in
the moving coordinate system, bk is the position vector of the hinge point of the fixed
base in the static coordinate system, P is the position vector of the reference point of the
moving platform in the static coordinate system, R is the rotation matrix.

3 Construction of Equivalent Equations

In order for the elements of the Jacobian matrix to have a simple form, the rotation
matrix is described by the quaternion as shown in Eq. (3). Substituting the position
vectors ak, bk and P, the length of kth extensible limb can be obtained by taking the dot
product of lkek with itself. After reorganizing, because the z component of ak and bk is
zero, square linkage length equation, it can be expressed as (for conciseness of
expression, omit the subscripts k):

l2 � r21 � r22 ¼ PP � 2bxPx � 2byPy þ 2axWx þ 2ayWy � 2ðe21 � e22Þðaxbx � aybyÞ
� 2ðe20 � e23Þðaxbx þ aybyÞþ 2ð2e0e3Þðaybx � axbyÞ � 2ð2e1e2Þðaybx þ axbyÞ

ð7Þ

where, PP ¼ P2
x þP2

y þP2
z , Wx ¼ Px e20 þ e21 � e22 � e23

� �þPy 2e1e2 þ 2e0e3ð ÞþPz

2e1e3 � 2e0e2ð Þ, Wy ¼ Px 2e1e2 � 2e0e3ð ÞþPy e20 � e21 þ e22 � e23
� �þPz 2e2e3 þ 2e0e1ð Þ.

It can be seen from Eq. (7) that PP, Px, Py,Wx,Wy, e20 � e23, e
2
1 � e22, 2e0e3 and 2e1e2 can

be regarded as nine new unknown variables. These nine unknown variables can be

arranged into two groups, namely g1 ¼ PP Px Py Wx Wy 2e0e3
� �T

and g2 ¼
e20 � e23 e21 � e22 2e1e2
� �T

. Equation (7) is equivalent to the expressions below:

PP ¼ PP0 þ k0 e20 � e23
� �

PX ¼ Px0 þ 2k1e1e2

PY ¼ Py0 þ k1 e21 � e22
� �

WX ¼ Wx0 þ 2k2e1e2

WY ¼ Wy0 þ k2 e21 � e22
� �

2e0e3 ¼ C0

ð8Þ

where parameters k0, k1, k2 are all constants, which are determined by parameters
r1; r2; h1; h2ð Þ of hinge points on both the fixed base and the moving platform; that is to
say, once the structural parameters of the mechanism are given, parameters k0, k1, k2
are all constants.
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k0 ¼ 2r1r2Cos½h1 � h2�; k1 ¼ �r2Csc½h1 � h2� Sin½h1 þ 2h2�;
k2 ¼ �r1Csc½h1 � h2� Sin½2h1 þ h2�

ð9Þ

where the six parameters PP0, Px0, Py0, Wx0, Wy0, C0, are determined by parameters
r1; r2; h1; h2ð Þ of hinge points and the lengths of extensible limbs li (for i = 1 to 6);
their specific expressions are shown as follows:

PP0 ¼ �6r21 � 6r22 þ l21 þ l22 þ l23 þ l24 þ l25 þ l26
6

Px0 ¼ Csc½h1 � h2�ððl21 � l22 � 2l23 þ 2l24 þ l25 � l26ÞCos½h2� þ
ffiffiffi
3

p ðl21 þ l22 � l25 � l26ÞSin½h2�Þ
12r1

Py0 ¼ Csc½h1 � h2�ð
ffiffiffi
3

p ðl21 � l22 � l25 þ l26ÞCos½h2� � ðl21 þ l22 � 2l23 � 2l24 þ l25 þ l26ÞSin½h2�Þ
12r1

Wx0 ¼ Csc½h1 � h2�ððl21 � l22 � 2l23 þ 2l24 þ l25 � l26ÞCos½h1� þ
ffiffiffi
3

p ðl21 þ l22 � l25 � l26ÞSin½h1�Þ
12r2

Wy0 ¼ Csc½h1 � h2�ð
ffiffiffi
3

p ðl21 � l22 � l25 þ l26ÞCos½h1� � ðl21 þ l22 � 2l23 � 2l24 þ l25 þ l26ÞSin½h1�Þ
12r2

C0 ¼ ðl21 � l22 þ l23 � l24 þ l25 � l26ÞCsc½h1 � h2�
12r1r2

ð10Þ

4 Establishment of Singular Locus Equation

When the Stewart platform parallel mechanism is working, the velocity and angular
velocity of the moving platform are obtained by controlling the telescopic speeds of the
six extensible limbs; the variables of input and output are connected by Jacobian matrix.
The singularity of the Stewart platform parallel mechanism can be analyzed by studying
the Jacobian matrix. The position and orientation of the moving platform is described by
the position vector and quaternion respectively; so the output variables of the moving
platform can be expressed with the derivative of the variables of position and orienta-
tion, it is _PX _PY _PZ _e0 _e1 _e2 _e3

� �
. That is to say, a mapping matrix can be

established between the input variables _li i ¼ 1� 6ð Þ and the output variables _PX _PY
�

_PZ _e0 _e1 _e2 _e3Þ. Actually, this mapping matrix is a new kind of Jacobian matrix.
For a specific Stewart platform parallel mechanism, there are only six variables in

PP0;Px0;Py0;Wx0;Wy0;C0, and the others are all constants; so Eq. (8) can be rewritten as:

PP0 ¼ P2
x þP2

y þP2
z � k0 e20 � e23

� �
Px0 ¼ PX � 2k1e1e2

Py0 ¼ PY � k1 e21 � e22
� �

Wx0 ¼ Px e20 þ e21 � e22 � e23
� �þPy 2e1e2 þ 2e0e3ð ÞþPz 2e1e3 � 2e0e2ð Þ � 2k2e1e2

Wy0 ¼ Px 2e1e2 � 2e0e3ð ÞþPy e20 � e21 þ e22 � e23
� �þPz 2e2e3 þ 2e0e1ð Þ � k2 e21 � e22

� �
C0 ¼ 2e0e3

ð11Þ
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And according to the nature of the quaternion, in order to maintain a unified form
with Eq. (11), that is:

1¼e20 þ e21 þ e22 þ e23 ð12Þ

In both Eqs. (11) and (12), there are a total of seven equations about seven vari-
ables, that is PX , PY , PZ , e0, e1, e2, e3, which are changing with time as well as the
length of the extensible limbs li i ¼ 1� 6ð Þ. Therefore, the mapping relationship
between the variables of input and output can be obtained by taking the derivative of
Eqs. (11) and (12) with respect to time yields:

Ml
~0

� �
_l1 _l2 _l3 _l4 _l5 _l6

� �T¼ MðP; eÞ � _PX _PY _PZ _e0 _e1 _e2 _e3
� �T

ð13Þ

where ~0 2 R1�6, Ml 2 R6�6, Ml i; jð Þ ¼ f ðljÞ is a constant when the length of the
extensible limbs are given.

MðP; eÞ ¼

PX PY PZ �k0e0 0 0 k0e3
1 0 0 0 �2k1e2 �2k1e1 0
0 1 0 0 �2k1e1 2k1e2 0
m41 m42 m43 m44 m45 m46 m47

m51 m52 m53 m54 m55 m56 m57

0 0 0 e3 0 0 e0
0 0 0 e0 e1 e2 e3

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

where,

m41 ¼ e20 þ e21 � e22 � e23 m51 ¼ 2e1e2 � 2e0e3
m42 ¼ 2e1e2 þ 2e0e3 m52 ¼ e20 � e21 þ e22 � e23
m43 ¼ �2e0e2 þ 2e1e3 m53 ¼ 2e0e1 þ 2e2e3
m44 ¼ 2PXe0 � 2PZe2 þ 2PYe3 m54 ¼ 2PYe0 þ 2PZe1 � 2PXe3
m45 ¼ 2PXe1 þ 2PY e2 � 2k2e2 þ 2PZe3 m55 ¼ 2PZe0 � 2PYe1 � 2k2e1 þ 2PXe2
m46 ¼ �2PZe0 þ 2PYe1 � 2k2e1 � 2PXe2 m56 ¼ 2PXe1 þ 2PYe2 þ 2k2e2 þ 2PZe3
m47 ¼ 2PYe0 þ 2PZe1 � 2PXe3 m57 ¼ �2PXe0 þ 2PZe2 � 2PYe3

Equation (13) states that MðP; eÞ is the mapping transformation matrix between the
driving speed and the change rate of position and orientation of the moving platform,
namely the Jacobian matrix. When singularity occurs, the determinant of Jacobian
matrix should be equal to zero, that is:

f ¼ Det MðP; eÞ½ � ¼ 0 ð15Þ

It can be seen from Eq. (13) that the elements of the Jacobian matrix are very
simple monomials; Except for the elements of the 4th and 5th rows, in which rows every
element is more complex. This feature of the new Jacobian matrix makes the
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calculation of the determinant faster, compared to the calculation of determinant of the
traditional Jacobian matrix; the terms of polynomial is much less after fully expanded.

There are four components in quaternion, without loss of generality, define e0 [ 0,
as a result, it can be obtained:

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21 � e22 � e23

q
ð16Þ

A new singular trajectory equation can be obtained by substituting Eq. (16) into
Eq. (15), it is shown as follows:

f ðe1; e2; e3;PX ;PY ;PZÞ ¼ 0 ð17Þ

Alternatively, Eq. (5) shows the transformation relationship between the quaternion
and the Rodriguez parameters. Another singular trajectory equation, which is expressed
of the Rodriguez parameter, can be obtained by substituting Eq. (5) into Eq. (15), it is
shown as follows:

f ðU;V ;W ;PX ;PY ;PZÞ ¼ 0 ð18Þ

In the case of any three variables of position and orientation are given, the variation
of singular locus with respect to the remaining three variables can be studied, through
neither Eq. (17) nor Eq. (18). When the variables of orientation are known, the singular
locus of position is solved, and vice versa. As for the set of specific parameters of
position and orientation, it can be determined whether the mechanism is in the singular
pose or not. The two singular locus equations are equivalent in nature. In addition to the
variables of position and orientation, there are only three parameters k0; k1; k2 in them.
The three parameters k0; k1; k2 are constants and depend on the mechanism parameters.
There are only 258 items in Eq. (18) when the symbolic expression is expanded
completely. If the singularity is analyzed in the case of the symbolic expression fac-
torized, the calculation speed will be further improved.

5 Numerical Example

As mentioned above, the structure parameters of the Stewart platform parallel mech-
anism can be described by h1, h2, r1, r2. The values of these four parameters are p=5,
p=9, 1, 0:618. It can be obtained that k0 = 1.18812, k1 = −2.17548, k2 = −3.62575.

(1) When the variables of orientation of the moving platform are determined, the
change of the singular locus with respect to position variables can be studied by
Eq. (17) or Eq. (18). The singular locus obtained by these two equations are
identical in theory. For example: the Rodriguez parameters (U = 0.7, V = 0.3,
W = 0.4)and the quaternion (e0 = 0.758098, e1 = 0.530669, e2 = 0.227429,
e3 = 0.303239) can be used to describe the same given pose. The computer
simulation shown that the singular locus equations are 3th polynomials with
respect to the variables of position, and in these two cases, the singular locus can
be expressed in in Fig. 2.
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Fig. 2. Singular locus about variables of position. Whether Rodriguez parameters or quaternion
can be used to describe the rotation matrix. The singular locus is identical.

Fig. 3. Singular locus about variables of orientation at the given position. The variables of
orientation are described by Rodriguez parameters.
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(2) When the variables of position of themoving platform are determined, the change of
the singular locus with respect to orientation variables can be researched by Eq. (17)
or Eq. (18). For example, the position vector is defined as P ¼ 2 2 4ð ÞT , the
rotation matrix is described by Rodriguez parameters; The singular locus equations
is 6 times polynomial about of Rodriguez parameters U, V , W , singular locus is
shown in Fig. 3. When the rotation matrix is described by quaternion; The singular
locus equations is 8 times polynomial about that of each component of quaternion
(e0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e21 � e22 � e23

p
) singular locus is shown in Fig. 4.

(3) When the variables of position and orientation of the moving platform are
determined, whether Stewart platform parallel mechanism is singular or not can be
researched by Eq. (17) or Eq. (18). For example, the position vector is defined as
P ¼ 0 0 5ð ÞT ; Rodriguez parameters are U = 0, V = 0 and W = 1 respec-
tively; singular locus equation is equal to zero, Stewart platform parallel mech-
anism occurs singular.

6 Conclusions

(1) In this paper, a new approach used to analyze the singularity of the Stewart
Platform parallel mechanism is studied. There are only 258 items in analytical
expression of the singular locus equation when it is expanded completely.

Fig. 4. Singular locus about variables of orientation at the given position. The variables of
orientation are described by quaternions.
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(2) The rotation matrix is described by quaternion, and the kinematics equation of the
Stewart Platform parallel mechanism is transformed into a new form in this paper.
In addition, normalization of quaternion is used and 7 equivalent equations are
obtained, which can be used to study the singularity and the forward kinematics of
the Stewart Platform parallel mechanism.

(3) Based on these equivalent equations, this paper presents a new Jacobian matrix,
which states the mapping relationship between the driving speed and the change
rate of position and orientation of the moving platform. Every component of the
Jacobian matrix is a rather simple monomial.

(4) Evaluating the determinant of Jacobian matrix, the analytical expression of the
singular locus equation can be derived. These singular trajectory equations can not
only be used to study the distribution of singular locus in the workspace, but can
also be used to judge whether a set of parameters of position and orientation
corresponds to a singularity pose. The singularity analysis approach presented in
this paper provides an important theoretical basis for studying the singularity free
workspace.
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