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Abstract. Biaxial tables are widely applied in high performance motion control
applications for high accuracy. Tracking error is one of the most significant
indicators of machining precision, and tracking control is an effective means to
eliminate the tracking error. In this paper, to attenuate the tracking error and
reduce the chattering phenomenon in the control input simultaneously, a
fractional-order integral sliding mode controller is proposed. Compared with the
existing sliding mode controller, the proposed control law not only maintains the
original robustness against variations but also reduces the tracking error effec-
tively. At the same time, the overshoot can be weakened and the reaching law
will converge to the sliding surface more rapidly. Experiments conducted on a
biaxial table demonstrate that the proposed control scheme is easy to apply, the
tracking error is smaller and the input chatter can be improved significantly
compared to the integer SMC.
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1 Introduction

Although biaxial tables are widely used in high performance motion control applica-
tions for high accuracy, there are still errors in machining. Tracking error is regarded as
one of the most significant indicators of machining precision. The effective approaches
to improve machining accuracy contain tracking control methods, trajectory planning
methods and so on.

To reduce the tracking error, there are a lot of researchers having developed several
control algorithms over past few decades. Tomizuka [1] firstly proposed a zero phase
error tracking controller (ZPETC) by canceling the stable dynamics of the servo drive
to improve tracking accuracy. The main drawback of ZPETC is sophisticated, then a
simple algorithm sliding mode control (SMC) was proposed by Altintas et al. [2],
which has practical advantages in rapid tuning and implementation, but with severe
chattering. Later, Sun [3] developed a new adaptive control approach to position
synchronization of multiple motion axes, this new method guarantees asymptotic
convergence to zero of both position and synchronization error. Barton and Alleyne [4]
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put forward a synthetic method for precision motion control by combining individual
axis iterative learning control and cross-coupled iterative learning control into a single
control input, which enhanced the precision motion control of the system through
performance improvements in individual axis tracking. Because the effect of
cross-coupled during high speed feed drives can not be ignored, a H∞ controller was
designed by Yong et al. [5] to minimize the tracking error, which was augmented with
integral action to achieve accurate tracking.

With the strong robustness against model uncertainties and disturbance rejection,
SMC is one of the popular controllers in industrial applications all the time. However,
because of the discontinuous nature of SMC, it will produce the chattering phe-
nomenon and high-frequency oscillations in practice [6]. To counteract the chattering
phenomenon in SMC, the fractional order sliding mode controller is received more and
more attention. Delavari et al. [7] presented a fuzzy fractional order sliding mode
controller for nonlinear systems to reduce the chattering phenomenon, and the fuzzy
logical controller is used to replace the signum function at the reaching phase in the
SMC. Zhang et al. [8] proposed a fractional order sliding-mode control for velocity
control of permanent magnet synchronous motor, in which a fuzzy logic inference
scheme is utilized to obtain the gain of switching control. Yin et al. [9] applied a
fractional order sliding mode controller (FOSMC) in nonlinear systems to achieve
extremum seeking. Tang et al. [10] designed a new fuzzy fractional order sliding mode
controller for antilock braking system (ABS), this strategy can not only deal with the
unsertainties but also track the desired slip faster than conventional SMC. In all of the
above methods, it is clear to see that the robustness and chattering phenomenon can be
effectively improved.

The original intention of this study is to maintain the robustness and decrease the
chatter of SMC simultaneously. Thus, a fractional order integral sliding mode con-
troller is proposed. The control law is tested on a biaxial table, and the performance of
the proposed strategy is compared against the traditional SMC. Experiment results
show that the tracking error is smaller and the chattering phenomenon is less than those
of integer SMC.

2 Definition of Fractional Order Calculus

Fractional order calculus is a classical mathematical idea which allows to arbitrary
order differentiation and integration, and it can be specified in terms of the fundamental
operator aDa

t known as differ-integration operator [11],

f tð Þ ¼ aD
a
t ¼

da
dta ; c[ 0
1; c ¼ 0R t
a dsð Þa; c\0

8<
: ð1Þ

where a and t are lower and upper limits, respectively, a 2 R is the order of the fractional
order operator. Among several basic definitions of arbitrary order differentiation and
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integration, the most popular two definitions are the Grunwald-Letnikov (G-L) and the
Riemann-Liouville (R-L) definitions.

The a th-order Riemann-Liouville (R-L) fractional-order integration of continuous
function f(t) is given by,

aI
a
t f tð Þ ¼ 1

C að Þ
Z t

a

f sð Þ
t � sð Þ1�ads ð2Þ

where a 2 (0, 1), Cð�Þ is the Gamma function and,

C að Þ ¼
Z 1

0
e�uua�1du ð3Þ

The ath-order Riemann-Liouville (R-L) fractional-order derivative of continuous
function f(t) is defined as,

aD
a
t f ðtÞ ¼

1
C m�að Þ

R t
a

f mð Þ sð Þ
t�sð Þa�mþ 1ds; m� 1\a\m

dmf tð Þ
dtm ; a ¼ m

(
ð4Þ

where m� 1\a�m; m 2 N, m is the minimum integer number in the value which are
larger than a.

3 Controller Design

3.1 Dynamics of Biaxial Table Feed Drive

The dynamics of a single feed drive system of biaxial table shown as Fig. 1, which can
be described as the following differential equation,

J
KaKtRg

€x tð Þþ B
KaKtRg

_x tð Þ ¼ u tð Þ � 1
KaKt

Td tð Þ ð5Þ
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Fig. 1. A single feed drive system of the biaxial table
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where J is the inertia and B is the viscous damping coefficient, both of them can be
identified in advance. Ka is the current amplifier and Kt is the motor constant, Rg is the
lead screw. xðtÞ, _xðtÞ and €xðtÞ are the position, velocity and acceleration of the actuator,
respectively. Td is the external disturbance torque, u is the control input.

For simplicity, the coefficients of the dynamics can be rewritten as,

M ¼ J
KaKtRg

;C ¼ B
KaKtRg

; ud ¼ 1
KaKt

Td tð Þ ð6Þ

So the dynamics differential equation can be expressed as,

M€xðtÞþC _xðtÞ ¼ uðtÞ � ud ð7Þ

In practice, our control objective is to drive the tracking error to zero asymptotically
under any initial conditions. Because the exact knowledge of M, C and ud are not
known, there is only nominal or identified model can be available to design the con-
troller, meanwhile these uncertainties would have a bad influence on robustness of
system. Conventional SMC belongs to a class of nonlinear control strategies, which is
robust to such uncertainties and time variations in the drive system [6]. So we can
believe that fractional-order integral sliding mode controller is also robust to these
uncertainties for it is a part of SMC essentially.

3.2 Design of Fractional Order Integral Sliding Mode Controller

The block diagram of fractional order sliding mode controller is shown in Fig. 2, the
actual position is measured from an encoder, and the actual velocity and acceleration is
estimated by utilizing the method of digital differentiation.

Like designing a traditional SMC, there are also two fundamental steps in
fractional-order sliding mode controller, one is the selection of a sliding surface and the
other is the control law.
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Fig. 2. Fractional-order sliding mode control scheme
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Since the oscillation induced by sliding surface may excite high frequency
unmodeled dynamics of the system and damage the performance of the system, it is
necessary to reduce the chattering phenomenon of the control input. To achieve such a
goal of tracking accuracy, the fractional-order integral sliding surface is selected as,

s ¼ _eþ k0D
�a
t _e tð Þ ð8Þ

where k is a positive gain and is the obtainable and desired tracking bandwidth of the
drive. 0D�a

t is the function of fractional-order integral operator ð0\a\1Þ, e and _e are
the position and velocity tracking error of the drive system, respectively,

e ¼ xr � xa ð9Þ

_e ¼ _xr � _xa ð10Þ

Taking the derivative of s with respect to time yields,

_s ¼ €eþ k 0D
�a
t _e tð Þ� �0 ð11Þ

where €e is the tracking error of acceleration,

€e ¼ €xr � €xa ¼ €xr � 1
M

u tð Þ � ud � C _xa tð Þð Þ ð12Þ

Here, the reaching law is selected as,

_s ¼ �k1s� k2sgn sð Þ ð13Þ

where k1; k2 2 Rþ are sliding mode coefficients, sgn (s) is the sign function of s, which
can be expressed as,

sgn sð Þ ¼
1; s[ 0
0; s ¼ 0
�1; s\0

8<
: ð14Þ

Combined Eqs. (11) and (12) with (13), the control law can be selected as,

u tð Þ ¼ M €xr tð Þþ k 0D
�a
t _e tð Þ� �0 þ k1sþ k2sgn sð Þ

� �
þ ud þC _xa tð Þ ð15Þ

After designing the control input, the second step is stability analysis. Stability analysis
has to satisfy the reaching condition of proposed fractional-order switching surface,
which means wherever or whatever initial conditions state, the control output could drive
initial states to switching surface. Here, the fundamental Lyapunov function is chosen as,

V ¼ 1
2
s2 ð16Þ
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According to Eq. (16), the derivative of V can be expressed as:

_V ¼ s_s ð17Þ

For stability of nonlinear systems, the derivative of the Lyapunov function must be
negative so as to fit the principle of conversation of energy.

By substituting s from Eq. (13) and sign function of s from (14), we can represent
Eq. (17) as,

_V ¼ �k1s2 � k2s sgn sð Þ ¼ 0; s ¼ 0
\0; s 6¼ 0

�
ð18Þ

It is obvious that the Eq. (18) guarantees the asymptotic stability. So, next we will
prove that the control law drives system to converge to switching surface in finite time.

When the initial state satisfies s(t0) > 0, we can represented Eq. (13) as,

_s ¼ �k1s� k2 ð19Þ

Solving the Eq. (19), we can gain the solution of s,

s ¼ �k2 þ k2 þ k1s t0ð Þ½ �e�k1 t�t0ð Þ

k1
ð20Þ

When the Eq. (20) equals to zero, the system can converge to switching manifold,
and the time can be expressed as,

t ¼ � 1
k1

ln
k1

k2 þ k1s t0ð Þ þ t0 ð21Þ

Similarly, when the initial state is s(t0) < 0, the system can also converge to
switching manifold when the time satisfies the following expression,

t ¼ � 1
k1

ln
k1

k2 � k1s t0ð Þ þ t0 ð22Þ

So, once the time is longer than the following expression,

t[ � 1
k1

ln
k1

k2 þ k1js t0ð Þj þ t0 ð23Þ

the system will converge to switching surface at any initial state. From the Eq. (23), we
can draw a conlusion that the converging time is associated with k1 and k2. What’s
more, we can also know that larger k1 and smaller k2 can make time shorter. In
experiment, the parameters k1 and k2 can be determined by gradually increasing its
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value from zero to satisfactory tracking accuracy, and then we get the parameter of k1 in
fractional-order sliding mode controller is larger than that in traditional SMC and k2 is
smaller. For the parameter a, the tracking error will increase when it tends to be large,
but when it becomes small, the chattering phenomenon will become serious, thus the
selection of a should be a compromise between tracking accuracy and chattering
elimination so as to get better performance.

4 Experiments Validation

The proposed fractional-order integral sliding mode controller is applied in a real time
platform of biaxial table as shown in Fig. 3. A computer with matlabR2013a is used to
achieve feedrate planing, interpolation and controller design, then the computer
transmits the real-time information to dSPACE DS1103 controller platform by hard-
ware fiber bus and software ControlDesk. Experiments are carried out in the
current-control loop of Yaskawa AC servo motor system. For translational axes, motors
will be coupled with a 10 mm/pitch lead screw, respectively. The dynamic parameters
shown in Table 1 are from [12], whose identification method was proposed by
Erkorkmaz [13].

Encoder
Feedback

Fiber 
bus

dSPACE dSPACE 

Real Time Controller   (1kHZ)
- Position Control (Lead Lag)
- Read ADC
- Quadrature Encoder Decoding
- Write DAC

Motor Current 
Command

Windows 7

MATLAB 
R2013a

Simulink8.1/RTW

VC++ 2012

Feedrate planning 
and interpolation

Reference trajectory 
information

X-axis

Y-axis

Fig. 3. Experimental platform of the biaxial table

Table 1. Dynamic parameters for biaxial table

Parameters X-axis Y-axis

m (Vs2/m or Vs2/rad) 0.1101 0.0271
c (Vs/m or Vs/rad) 0.4001 0.3871
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The actual position is obtained from the encoder, and the actual velocity and
acceleration are estimated by taking the derivative of the measured position from the
linear encoder, so there may be noisy in velocity and acceleration. In this paper, we
classify these uncertainties as external disturbance and give equivalent torque com-
pensation, the relevant plants are given in Table 2.

In experiment, the parameters of X-axis and Y-axis are tuned separately and
properly as shown in Table 3.

In order to facilitate the comparison of integer and fractional sliding mode con-
trollers, the SMC strategy proposed in [2] and the method proposed in this paper are
experimented simultaneously on biaxial table. The results of X-axis are shown in
Fig. 4.

For a comparative analysis of the performance of integer and fractional-order
controllers, we plot the control signals and tracking errors in the same picture in Fig. 5,
respectively. From Fig. 5(a), it can be seen that the initial overshoots and chattering
phenomenon of the proposed control signal are smaller than those of the integer SMC.
In addition, it can be also seen from Fig. 5(b) that the tracking error of the presented
method is smaller and smoother than that of the conventional SMC.

Machining accuracy includes tracking accuracy and contour accuracy, in this paper
we only discuss the tracking error. Considering the machining accuracy, we must take
contour error into account, contour error will be decoupled to each axis in joint space,
which is essentially the error control of single axis, so we conduct experiments on
Y axis, too. The results are shown in Figs. 6 and 7. From Fig. 7(a), we know that the
chattering phenomenon decreases on a degree but the overshoot is still more than
that of proposed controller, and the tracking error is more than that of integer SMC in

Table 2. Disturbance parameters for biaxial table

Parameters X-axis Y-axis

ud (if vel > 0) 0.11847 0.11881
ud (if vel < 0) −0.11466 −0.11151

Table 3. Controller paremeters for biaxial table

Parameters X-FOISMC X-SMC Y-FOISMC Y-SMC

a 0.85 1 0.85 1
k 55 55 75 65
k1 65 33 70 50
k2 0.01 0.05 0.01 0.05
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Fig. 7(b), we can make a conclusion that the fractional-order sliding mode controller
obtains better performance in reducing overshoot and decreasing tracking error at the
same time.

(c)                                                                      (d)

(e)                                                                   (f)

(a)                                                                      (b)

Fig. 4. Sinusoidal responses. (a), (c) and (e) Traditional SMC. (b), (d) and (f) Proposed FOISMC.
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(a)                                                                      (b)

Fig. 5. Experimental results. (a) Control signal comparsion. (b) Tracking error comparsion.

(a)                                                                      (b)

(c)                                                                      (d)

(e)                                                                      (f)

Fig. 6. Sinusoidal responses. (a), (c) and (e) Traditional SMC. (b), (d) and (f) Proposed FOISMC.
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5 Conclusion

A fractional-order integral sliding mode control scheme for biaxial motion system was
proposed in this paper. The theoretical analysis and experiments conducted on X-axis
and Y-axis shows that the tracking error of the proposed scheme is smaller and the
input chatter is improved efficiently compared with the traditional SMC, furthermore,
the proposed control law maintains the robustness against variations. So, we can
conclude that the fractional-order integral sliding mode controller can achieve better
tracking accuracy.
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