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Abstract. The post-processing process for an industrial robot in milling
applications suffers from a redundancy problem when converting a 5-axis
tool path to the corresponding 6-axis robot trajectory. This paper pro-
poses a feed-direction stiffness based index to optimize the redundant
freedom of the robot after identifying its stiffness model. At each cut-
ter location point, the stiffness of the robot machining system along
the feed direction is maximized, and an optimal robot configuration is
obtained. The optimized robot trajectory via the proposed method has
an advantage of improving the machining stability and production effi-
ciency. Experiments verify the validity of the method.
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1 Introduction

The traditional application areas for industrial robot involve tasks that require
good repeatability but not necessarily good accuracy such as handling, assem-
bly, painting and welding. Compared with CNC machine tools, industrial robots
have the advantages of wider workspace, lower cost and greater flexibility, thus
can offer an efficient solution for large and complex shaped product manufactur-
ing in aerospace industry [1]. Robot machining has become a significant trend
in manufacturing industry, and many researches have been conducted in this
area [2].

However, industrial robots are still rarely used in milling applications in
industry. Except for the inherent low absolute accuracy and stiffness character-
istics of industrial robots, the lack of a standard post-processing software is the
main obstacle. This paper aims to solve this problem. In milling application,
the robot cutting trajectory is usually converted from cutter location (CL) data
generated by a 5-axis milling module in a commercial CAD/CAM software pack-
age [3]. Nevertheless, a milling task only requires five degrees of freedom (DOFs),
three of which are used to locate the tool center point (TCP) and the rest two

c© Springer International Publishing AG 2017
Y. Huang et al. (Eds.): ICIRA 2017, Part II, LNAI 10463, pp. 184–195, 2017.
DOI: 10.1007/978-3-319-65292-4 17



A Feed-Direction Stiffness Based Trajectory Optimization Method 185

are used to determine the tool axis direction, while a standard commercial indus-
trial robot usually has 6 DOFs. Using a 6-axis industrial robot to perform 5-axis
milling tasks will result in one redundant DOF, which is the rotation about the
milling spindle axis. This is a common situation because that the spindle axis is
often mounted not to be aligned with the last joint axis to improve the dexterity
and manipulability of the robot [4].

Until recently, a lot of researchers have been working on optimizing the redun-
dant DOF and introducing new methodologies into the post-processor of a cut-
ting robot. Xiao et al. [4] propose an optimization method which simultaneously
optimizes the robot singularity criteria, joint limit criteria and obstacle avoid-
ance criteria via one-dimensional search. Laurent et al. [5] and Huo et al. [6] use
the Moore-Penrose pseudo inverse with an optimization term to solve the redun-
dancy problem considering a set of performance criteria of the robot including
joint limits, singularity avoidance and so on. These researches mainly concen-
trate on the geometrical and kinematical constraints of the robot, while neglect
the machining performance in milling process. In milling operations, insufficient
stiffness of the robot will cause static deformation of the TCP and vibrations of
the robot structure [7], which will degrade the machining quality significantly.
Therefore, some stiffness-based performance indexes have been proposed to opti-
mize the redundant DOF in machining applications. Angeles [8] suggests the
norm of the Cartesian stiffness matrix would be a plausible candidate. While
Guo et al. [9] point out that the norm makes no physical sense as the Cartesian
stiffness matrix has entries with disparate physical units, and they propose a
performance index in terms of the determinant of the translational compliance
sub-matrix (TCSM). However, this performance index just describes the overall
stiffness of the robot at a certain posture, and doesn’t pay enough attention to
the anisotropy of the Cartesian stiffness [10]. In milling applications, the stiff-
ness of the TCP along certain directions is usually paid special attention. Peng
et al. [11] suggest that the feed-direction stiffness should be maximized in their
7-axis 5-linkage machine tool, which guarantees a high machining efficiency via
adopting a larger feed rate. This concept can be extended to robot milling, in
which the process parameters such as feed rate and cut of depth are always con-
servative due to the low stiffness of the robot [12]. In this paper, a feed-direction
stiffness based performance index is proposed to optimize the redundant DOF
for robot milling. This index takes the anisotropic force ellipsoid of the TCP
into account and will improve the production efficiency of the robot machining
system.

The remainder of this paper is organized as follows. In Sect. 2, the mathematic
formula of the redundant problem is derived. In Sect. 3, the stiffness model of a
MOTOMAN MH80 industrial robot is identified. In Sect. 4, a new performance
index for optimizing the redundant DOF is proposed. In Sect. 5, Experiments
have been done to verify the effectiveness of the proposed method. The paper is
concluded in Sect. 6.
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2 The Redundancy in Robot Milling

The most important part of post-processing for robot machining is to determine
the joint space, i.e. the set of revolute joint variables θi(i = 1, . . . , 6), from the
CL data CL(x, y, z, i, j, k), where (x, y, z) is the coordinate of the TCP, while
(i, j, k) is a unit vector representing the tool axis direction. Practically, the CL
data is generated in a standard CAD/CAM software such as NX, the positions
and orientations are all described in the workpiece frame. When the CL data
CL(x, y, z, i, j, k) is obtained, the posture of the end effector (EE) of the robot
with respect to the workpiece frame can be determined, and it can be represented
by a six-dimension vector, namely (x, y, z, α, β, γ), where α, β and γ are the z-y-z
type Euler angles. Knowing the posture of the EE, the robot joint angles can be
finally calculated via inverse kinematics.

Let a frame attached to the cutter with its origin at the TCP and its axis
along the tool axis is described by a six-dimension vector (x, y, z, α, β, γ) with
respect to the workpiece frame, and the corresponding homogeneous transfor-
mation matrix wTt will be

wTt = rot(z, α)rot(y, β)rot(z, γ)trans(x, y, z) (1)

where rot and trans are rotation and translation transformations. So to perform
a milling task, the CL data CL(x, y, z, i, j, k) and wTt have to satisfy

⎡
⎢⎢⎣

i x
j y
k z
0 1

⎤
⎥⎥⎦ = wTt

⎡
⎢⎢⎣

0 0
0 0

−1 0
0 1

⎤
⎥⎥⎦ (2)

It can be deduced from (1) and (2) that
[
i j k

]T =
[−cosαsinβ −sinβsinα cosβ

]T (3)

Equation (3) shows that given a CL point CL(x, y, z, i, j, k), five components
of the six-dimension vector (x, y, z, α, β, γ) can be determined, i.e. (x, y, z, α, β),
while the third Euler angle γ is arbitrary, so that infinite robot configurations
can be chosen to produce the specified CL. The redundant third Euler angle γ
should be optimized.

The post-processing problem can be finally formulated as

θ(CL, γ) = f(CL(x, y, z, i, j, k), γ) (4)

where θ = [θ1, . . . , θ6] represents the robot configuration, and f(·) denotes the
inverse kinematics of the robot. For a standard six revolute joints industrial robot
with the last three joint axis lines intersecting at a common point, analytical
inverse kinematic solutions can be easily deduced [13].

To conclude, the key of the post-processing problem for a milling robot is to
find a proper milling performance related index H to optimize the third Euler
angle γ, and determine a unique optimal set of θ, i.e. the robot configurations
along the milling path for a given set of CL data.
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3 Stiffness Model and Its Identification

A robot deforms under external forces because of insufficient stiffness, thus the
stiffness characteristic of the robot has a significant influence on the milling
performance. The optimizing index should consider the stiffness model of the
robot. Generally speaking, the robot stiffness mainly depends on the torsional
stiffness of the gearbox and the drive shaft of each joint, the links are assumed
to be infinitely stiff. Therefore, each joint of the robot is usually modeled as a
linear torsion spring, and a constant diagonal matrix with each diagonal term
defining the stiffness of a joint is used to represent the robot joint space stiffness
characteristic [14,15], i.e.

Kθ = diag([Kθ1 ,Kθ2 ,Kθ3 ,Kθ4 ,Kθ5 ,Kθ6 ]) (5)

The Cartesian Stiffness of the EE is

Kx = J−T
F (Kθ − Kc)J−1

x (6)

where Jx and JF are the Jacobian matrixes which satisfy dx = Jxdθ and
τ = JT

FF, F denotes the six-dimension wrench vector applied at a certain point
on the EE, τ denotes the torques on the joints caused by F, dθ denotes the elastic
deformations of the robot joints caused by τ , and dx denotes the six-dimension
Cartesian deformations of the EE and it is measured at a point different from
the force bearing point. Kc = [∂JT

∂θ1
F, ∂JT

∂θ2
F, ∂JT

∂θ3
F, ∂JT

∂θ4
F, ∂JT

∂θ5
F, ∂JT

∂θ6
F] is a com-

plementary term [16], and practically, the contribution of the complementary
term to the total robot deformation is very small under normal robot payload
[17], thus it can be omitted, i.e.

Kx ≈ J−T
F KθJ−1

x (7)

Finally, the relationship between dx and F can be formulated as

dx = K−1
x F = CF = JxK−1

θ JT
FF (8)

Equation (8) can be unfolded as

dx =

⎡
⎢⎢⎢⎢⎢⎣

Jx11
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⎤
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⎡
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1
Kθ1
...
1

Kθ6

⎤
⎥⎥⎦ = Ak (9)

where Fi is the ith component of F and Jxij or JFij denotes the ith row jth
column element of the matrix Jx or JF , i, j = 1, . . . , 6.

To identify the stiffness coefficients Kθ (i.e. k in (9)), it usually involves
measuring a set of Fi and dxi at several robot configurations, i = 1, . . . ,m, and
constructing the following equation systems:

[dx1, · · · , dxm]T = [A1, · · · ,Am]Tk (10)
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Equation (10) is simplified as
y = Mk (11)

Then the stiffness coefficients can be identified by the linear least square
method as

k = M+y (12)

The robot used in this paper is a Motoman MH80 industrial robot from
Yaskawa, it’s maximal payload is 80 kg and the repeated positioning accuracy
is ±0.07 mm. The schematic diagram of the robot is shown in Fig. 1, and the
D-H parameters are given in Table 1. To identify the stiffness model of the robot
via the above-mentioned method, an experiment sytem is etablished and shown
in Fig. 2.
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Fig. 1. Schematic diagram of Motoman MH80 industrial robot

Table 1. The D-H parameters of the Motoman MH80 industrial robot

i αi ai di θi

1 π/2 145 0 θ1

2 0 870 0 θ2 + π/2

3 π/2 210 0 θ3

4 −π/2 0 1025 θ4

5 π/2 0 0 θ5

6 0 0 175 θ6

In the experiment, 70 robot configurations are randomly generated. At each
configuration, the robot is loaded by a spring, and the force applied on the
EE is measured by an Omega160 force sensor. The EE frame posture and its
deformation are measured by a Leica AT906 Laser tracker via three magnetic
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holders and a spherically mounted reflector (SMR). The forces and deformations
are all transformed to the robot base frame. After the measurements, 50 config-
urations are randomly chosen for parameter identification, and the remaining 20
configurations are used for verification. The joint stiffness are finally identified
and listed in Table 2.

Flange
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SMR

Spring

Eyebolt

Fixed table

Motoman MH80 Omega160 Force Sensor

Leica AT906 Laser Tracker

Spring

Eyebolt

Magnetic Holder

Manipulator

Fig. 2. Experiment setup for stiffness model identification
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Fig. 3. Predicted deformations and the actual deformations of the EE

Figure 3 shows the model predicted deformations based on the identified joint
stiffness and the actual measured deformations for the 20 verification robot con-
figurations. In this figure, the subscript “a” denotes the actual deformation while
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the subscript “p” denotes the predicted deformation, dx, dy and dz represent
the displacements of the original point of the EE frame while δx, δy and δz

represent three rotations about x, y and z axis. It can be seen that the defor-
mation predicted via the identified parameters is fairly precise and the modeling
error is limited in a narrow band, which verifies the correctness of the parameter
identification process.

Table 2. The identified stiffness coefficients (Nm/rad)

Kθ1 Kθ2 Kθ3 Kθ4 Kθ5 Kθ6

481488.5 1394618.1 677034.5 64258.5 46653.6 22060.1

4 Feed-Direction Stiffness Index for Robot Machining

Considering that in milling applications, the diameter of the cutter, i.e. lever
arm, is relatively small, and the spindle speed is high, the moment exerted by the
workpiece on the EE and the corresponding rotation deformation are negligible
[18]. Thus Eq. (8) can be unfolded as

[
Δx
0

]
= CF =

[
Cxx Cxr

Cxr Crr

] [
f
0

]
(13)

From Eq. (13), it can be easily obtained that

Δx = Cxxf (14)

where f is a 3 × 1 vector representing the net force applied on the TCP and
Δx is the corresponding translational deformation, Cxx is the upper left 3 × 3
submatrix of the compliance matrix C.

Substituting Eq. (14) into ΔxT Δx = 1, i.e.

fTCT
xxCxxf = 1 (15)

Equation (15) represents a three dimensional force ellipsoid at a given manipula-
tor configuration, as shown in Fig. 4. The principal axes of the ellipsoid coincide
with the eigenvectors of CT

xxCxx, and their lengths are equal to the reciprocals
of the square roots of the eigenvalues of CT

xxCxx. Hence the maximum and min-
imum forces required to produce a unit deflection are given by 1/

√
λmin and

1/
√

λmax, respectively, where λmin and λmax are the minimum and maximum
eigenvalues of CT

xxCxx. A vector from the center of the force ellipsoid to any
point on the surface of the force ellipsoid reflects the stiffness performance of
robot machining system along the direction of the vector.

As mentioned before, in order to improve the production efficiency, the stiff-
ness along the cutting feed direction is required high enough to improve the feed
rate during the machining process. Figure 5 shows the force ellipsoid at a certain
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min
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1

Fig. 4. Three dimensional force ellipsoid
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Fig. 5. The force ellipsoid at a CL point

cutter location along a tool path, it is obvious that the length of the axis along
the tool feed direction r of the ellipsoid H reflects the stiffness of the machining
robot along the feed direction. H is determined by the feed direction r and the
robot configuration θ, thus H can be used as an optimizing index to eliminate
the redundant freedom of the milling robot, which will guarantee a higher pro-
duction efficiency. Therefore, a redundancy elimination method is proposed as
following:

max
γ

H(θ(CL, γ), r)

s.t. θmin ≤ θ ≤ θmax

(16)

where θmin and θmax are the lower and upper limits of the joint variables. Note
that γ is an arbitrary variable, and the nonlinear optimal problem (16) is defined
on R. The problem is numerically solvable by conventional optimization methods,
such as the optimization toolbox in MATLAB.

Therefore, the whole post-processing process for the robot milling can be
summarized as following: First, the CL data for the specified workpiece is gen-
erated by a commercial CAD/CAM software package. Then, five components
of the six-dimension vector that describe the posture of the cutting tool are
determined. Finally, the last component of the posture vector, i.e. the third
Euler angle γ, is optimized based on Eq. (16), and the corresponding optimal
robot configuration can be calculated by analytical kinematic inverse solution.
Through these steps, the redundancy is eliminated and a unique robot trajec-
tory will be generated. The robot trajectory will have the advantage of higher
machining efficiency.

5 Experiment

To verify the effectiveness of the proposed method, for simplicity, a face milling
tool path is first generated in the NX 8.5 software. Then the tool path is con-
verted to the robot trajectory via Eqs. (3) and (4). To show the influence of the
redundant third Euler angle γ on the feed-direction stiffness index, the H values
are calculated with different γ values at a CL point and along a tool path. As
shown in Fig. 6, the feed-direction stiffness of the robot varies with the redundant



192 G. Xiong et al.

Euler angle a lot, the maximal feed-direction stiffness is an order of magnitude
higher than the minimal one. As the workpiece is small and the tool path is
similar on this occasion, the best and the worst configurations of the robot on
the whole tool path vary little, thus three constant third Euler angles in repre-
sentation of the optimal, the suboptimal and the worst robot configuration are
chosen for milling experiment for comparison, i.e. the points labeled as A, B and
C in Fig. 6 (a), the corresponding Euler angles are γA = 1.531, γB = 1.216 and
γC = −0.2052 in radian. The robot configuration is determined by the specified
redundant Euler angle and the CL point.
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Fig. 6. Feed-direction stiffness varies with γ (a) at a CL point and (b) along a tool path
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Fig. 7. Robot configurations corresponding to the three specified third Euler angles

The experiment setup is shown in Fig. 7 Conf. A. Within the robot milling
system, a SECO milling cutter with a diameter of 10 mm is mounted on a CELL
EBS-120g-24000r spindle for cutting. The spindle has a rated power of 7.5 KW
and can provide a toque as much as 6 Nm, and it is mounted on the mounting
flange of the Motoman MH80 industrial robot. A 6061 aluminum block with a
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dimension of 260 mm × 110 mm×80 mm is used as the cutting workpiece and
it is fixed on a metallic workbench. The acceleration signal during the milling
process is monitored by a PCB 352A25 acceleration sensor attached on the spin-
dle. In the experiment, the robot is first commanded to mill the workpiece under
the feed rate of 150 mm/min, 300 mm/min and 600 mm/min with the three pre-
viously specified poses as shown in Fig. 7 (Conf. A, Conf. B and Conf. C are
corresponding to the three specified Euler angles γA, γB and γC ), the acceler-
ation signals are collected and they can help evaluate the machining stability.
By analysis of the acceleration signals some conclusions can be obtained. During
the whole experiment process, the axial depth of cut is 1.5 mm, the radial depth
of cut is 4 mm and the rotational speed of the cutter is 5000 r/min.
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Fig. 8. Accelerations with feedrate (a)150 mm/min (b)300 mm/min (c)600 mm/min

Figure 8 shows the acceleration signals during the machining process under
different robot configurations and different feed rates. By comparing the acceler-
ation signals under different feed rates and the same robot configuration, it can
be found that when the feed rate increases, the acceleration amplitude becomes
higher. For example, when machining with Conf. C, the acceleration amplitude
is in the range of ±1.5 g under feed rate 150 mm/min, and it becomes ±3 g and
±5 g under feed rate 300 mm/min and 600 mm/min. On the other hand, it can
be easily observed that when machining under the same feed rate, the accel-
eration amplitude decreases progressively when using robot configuration C, B
and A. That is to say, a higher feed-direction stiffness can efficiently improve the
machining stability, in other words, using the proposed optimization method
to generate the robot milling trajectory, a higher feed rate can be chosen and
the production efficiency can be improved, which verifies the effectiveness of the
proposed optimizing index and the redundancy elimination method.

To further verify the proposed method, three different areas of a plane are
machined with the three poses under the feed rate of 300 mm/min, and the
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machining quality is observed. The machined plane is shown in Fig. 9. It can
be easily found that the area machined via the optimized robot configuration
A has the best surface quality while the area machined via the worst robot
configuration C has the worst surface quality, which is caused by insufficient
feed-direction stiffness of the machining robot.

Fig. 9. Areas machined via different robot configurations

6 Conclusion

The post-processing of a milling robot involves converting the 5-axis CL data
from a commercial CAD/CAM software to the corresponding 6-axis robot tra-
jectory, which will result in a redundant freedom in the robot system. As the
stiffness characteristic of a robot is influenced by the robot configuration, a feed-
direction stiffness index is proposed to optimize the redundant freedom after
identifying the stiffness model of the robot. Via maximizing the feed-direction
stiffness of the robot, the redundant freedom of the robot is eliminated. Accord-
ing to the analysis of the acceleration signals and the machining quality in the
experiment, it can be concluded that stronger the stiffness of the robot machining
system along feed-direction is, better machining stability and quality is. Thus the
post-processing technique for a milling robot proposed in this paper is effective
and can enhance the machining performance.
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