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Abstract. This paper presents the compliance modeling and error com-
pensation for an industrial robot in the application of ship hull welding.
The Cartesian stiffness matrix is derived using the virtual-spring app-
roach, which takes the actuation and structural stiffness, arm gravity
and external loads into account. Based on the developed stiffness model,
a method to compensate the compliance error is introduced, being illus-
trated with an industrial robot along a welding trajectory. The results
show that this compensation method can effectively improve the robot’s
operational accuracy, allowing the actual trajectory of the robot with
auxiliary loads to coincide with the target one approximately.
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1 Introduction

As an automatic manufacturing device, industrial robots have been widely used
and play an important role in many fields of industrial applications, thanks to
their high repeatability accuracy and operational stability. Amongst the indus-
trial applications, this type of serial manipulators are well adapted in welding
industry [3], such as auto industry. Besides, the robots can also be used in ship-
building industry, i.e., the large-scale hull welding, as displayed in Fig. 1. In this
procedure, the welding trajectory is firstly detected by the vision system, where
the data of the trajectory will be transferred to the control system for robot
programming to accomplish the welding procedure. This means that the robot
will conduct an off-line task.

The robots’ motions are usually generated via the robotic controllers by
virtue of the inverse kinematic model to compute the input signals for actuators
corresponding to the desired end-effector position, where the compliance errors
are ignored. On the other hand, as depicted in Fig. 1(c), under certain external
load, particularly, the arm gravity and dynamic inertial forces, the kinematic
control becomes non-applicable due to the elastic compliance errors caused by
the limited strength of the robot components [12], namely, the actual trajectory
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(a) (b)
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Fig. 1. The robot-based ship hull welding: (a) steel sheet on the supporter; (b) overall
scheme; (c) reaction forces onto the welding gun.

will shift away from the desired path, resulting in the decreased product quality
wherefrom high precision is needed in the applications.

The compliance error, i.e., geometric changes of the robot end-effector, can
be compensated through the calibration [7,21], whereas, this technique is some-
times expensive. An economic way to handle the problem of error compensation
is the modification of the robot control scheme [6,10] that defines the prescribed
trajectory in Cartesian space: based on the error model, the loaded input tra-
jectory is regenerated to achieve the coincidence between the output trajectory
and the desired one, while input trajectory differs from the target one. The mod-
ification of the input trajectory is to be based on the compliance error model
that calls for the computation of the stiffness matrix [8]. The stiffness matrix for
the serial robotics was first derived by Salisbury [15], where only the actuation
compliance described by one-dimensional linear springs was considered. In this
approach, the derivation of the stiffness is on the basis of the assumption that
the manipulator is in an unloaded equilibrium configuration. In practice, the
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external loads directly influence on the manipulator equilibrium configuration
and may modify the stiffness properties [2,4]. As a consequence, the structural
compliance and the robot geometry change due to external loads and gravity
should be considered [11,13,14]. Thus, this work focuses on the compliance error
modeling and compensation that is able to take into account the influence of the
external and internal wenches and robot gravity onto the stiffness matrix and
elastic deformations.

This paper deals with the stiffness modeling and compliance error compen-
sation of an industrial robot in ship hull welding. The Cartesian stiffness matrix
is computed in loaded configurations, where the actuation and structural stiff-
ness is considered as well as the influence of the arm gravity and external loads.
A method to modify the input trajectory is presented for error compensation.
This method is numerically illustrated with the welding robot along a trajectory
and the results show the effectiveness of the error compensation approach.

2 Industrial Welding Robot

Figure 2 shows the ABB IRB4600 60/205 robot [1] as the welding robot in this
project. IRB 4600 series is ABB Robotics pioneer of the new sharp generation
with enhanced and new capabilities, of which one industrial application is dedi-
cated to welding.

Fig. 2. The ABB IRB4600 60/205 robot and its coordinate systems.
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2.1 Kinematics of the Industrial Robot

Following the Denavit–Hartenberg (D–H) convention [5], the Cartesian coordi-
nate systems are established for each link of the robotic arm as shown in Fig. 2.
Hereafter, let i, j and k be the unit vectors along x-, y- and z-axis, respectively.
The transformation matrix in the forward kinematics of the end-effector in the
reference frame (x0, y0, z0) is expressed as

0A6 =
[
R q
0 1

]
=

6∏
i=1

i−1Ai where i−1Ai =
[

i−1Ri
i−1qi

0 1

]
(1)

with
i−1Ri = Rzi−1(θi)Rxi

(αi) (2a)
i−1qi =

[
ai cos αi ai sin αi di

]T (2b)

where the D–H parameters are listed in Table 1. The inverse geometry problem
of the six-axis robotics has been well documented in the literature [16].

Table 1. D-H parameters of the IRB4600 60/205 robot.

Joint i αi ai [m] di [m] θi

1 π/2 0.175 0.495 θ1

2 0 1.075 0 θ2

3 π/2 0.175 0 θ3

4 −π/2 0 0.960 θ4

5 π/2 0 0 θ5

6 π 0 0.135 θ6

2.2 Jacobian Matrix

The joint angular velocity can be calculated with the Jacobian matrix as below:

θ̇ = J−1ṫ (3)

where θ̇ =
[
θ̇1 θ̇2 . . . θ̇6

]T
denotes the vector of the joint angular velocities, and

ṫ =
[
ωT q̇T

]T stands for the end-effector twist, ω being the angular velocities.
Moreover, J is the Jacobian matrix of the robotic arm [17], namely,

J =
[
j1 j2 . . . j6

]
where ji =

[
zi−1

pi−1 × zi−1

]
(4)

with
zi−1 = Ri−1k; pi−1 = qi−1 − q (5)

where Ri−1 and qi−1 denote the rotation matrix and position vector of the trans-
formation matrix from the reference coordinate system to the (i−1)th coordinate
system, respectively, which can be extracted from

∏i−1
i=0

i−1Ai in Eq. (1).
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2.3 Robot Dynamics

The dynamic behavior of the robot under the load fe during the welding can be
described as

Mδẗ + Cδṫ + Kδt = fe (6)

where M is 6-dimensional mass matrix that represents the global behavior of the
robot in terms of natural frequencies, C is 6-dimensional damping matrix, and K
is 6-dimensional Cartesian stiffness matrix of the robot under the external load-
ing fe [18]. Moreover, δt, δṫ and δẗ are the instantaneous dynamic displacement,
velocity and acceleration of the tool end-point, respectively.

The mass matrix M in Eq. (6) can be solved based on the dynamic equation
of motion (EOM) [9] of a serial robot as below:

M(θ)θ̈ + v(θ, θ̇) + g(θ) = τ (7)

where θ, θ̇, θ̈ are 6-dimensional vectors of generalized joint angles, angular veloc-
ities, and angular accelerations, respectively. M(θ) is the 6 × 6 general inertial
matrix, v(θ, θ̇) is a 6-dimensional vector representing the Coriolis and centrifu-
gal forces, and g(θ) is a 6-dimensional vectors accounting for the force due to
gravity. Moreover, τ is the vector of general external forces applied at joints.

3 Compliance Error Modeling and Compensation

In order to compensate the positioning errors of the robot end-effector for high-
quality welding, the compliance errors caused by the external payloads and robot
gravity should be calculated precisely, which calls for the computation of the
stiffness matrix of the robot.

3.1 Elastostatic Modeling

In this work, the virtual spring approach [13] is adopted to derive the stiffness
matrix, based on the screw coordinates [19,20]. Figure 3 shows the VJM model of
the robotic arm, where gj , j = 1, 2, . . . , 8, stand for the gravity and fe denotes
the external loads.

Let θ, θ′ be the original and the deformed angular displacements of the joints,
respectively, in accordance with the principle of virtual work, the work of the
auxiliary loads is equal to the work of internal forces τθ [13], namely,

∑
(gT

j δtj) + fT
e δt = τT

θ (θ′ − θ) (8)

where the virtual displacements δtj and δt can be computed from the linearized
geometrical model derived from δtj = Jj(θ′−θ) and δt = Jθ(θ′−θ), respectively,
Jj and Jθ being the Jacobians, namely,

Jθ =
[
j1 j2 JU j3 j4 JF j5 j6

] ∈ R
6×18 (9)

Jj = Jθ(:, 1: k) (10)
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Fig. 3. Virtual-spring model of the industrial robot with auxiliary loads, where Ac and
EE stand for the actuator and end-effector, respectively.

where Jθ(:, 1: k) stands for the first k columns in Jθ and k stands for the number
of the mobilities of the virtual springs from the base to gj . Moreover, JU and
JF , respectively, relate the link deflections of the upper arm and forearm to the
end-effector, expressed as

JU =
[

x1 y1 z1 0 0 0
q2 × x1 q2 × y1 q2 × z1 x1 y1 z1

]
(11a)

JF =
[

z3 x3 y3 0 0 0
q4 × z3 q4 × x3 q4 × y3 z3 x3 y3

]
(11b)

Equation (8) is rewritten as
∑

(gT
j Jj(θ′ − θ)) + fT

e Jθ(θ′ − θ) = τT
θ (θ′ − θ) (12)

sequentially, the force equilibrium equation for the robotic arm is derived as

τθ =
∑

(JT
j gj) + JT

θ fe = JT
g G + JT

θ F (13)

with
JT

g =
[
J1 J2 . . . J8

] ∈ R
6×48; G =

[
gT
1 gT

2 . . . gT
8

]T ∈ R
48 (14)

With the linear force-deflection relation, the equilibrium condition is written as

JT
g G + JT

θ fe = Kθ(θ′
i − θi) (15)

with the stiffness matrix Kθ in the joint space expressed as

Kθ = diag
[
Kact,1 Kact,2 KU Kact,3 Kact,4 KF Kact,5 Kact,6

]
(16)
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where Kact,i is the actuation stiffness, and KU and KF , calculated by the Euler-
Bernoulli beam model, represent the 6 × 6 stiffness matrices of the upper arm
and forearm, respectively.

To compute the stiffness matrix of the loaded mode, let assume that a neigh-
borhood of the loaded configuration, where the external loads and the joint
displacement are supposed to be incremented by some small values δfe and δθ,
also satisfies the equilibrium conditions, leading to

(Jg + δJg)TG + (Jθ + δJθ)T (fe + δfe) = Kθ(θ′ − θ + δθ) (17)

with the linearized kinematic constraint:

δt = Jθδθ (18)

Upon the removal of the unchanged equilibrium condition of Eq. (15) from
Eq. (17), after linearization, one obtains

HT
g ⊗ Gδθ + JT

θ δfe + HT
θ ⊗ feδθ = Kθδθ (19)

where the symbol ⊗ represents the Kronecker product between matrices, and
Hg = ∂Jg/∂θ, Hθ = ∂Jθ/∂θ, namely, the Hessian matrices. Combing Eqs. (18)
and (19), the kineto-static model of the industrial robot is reduced to

[
0 Jθ

JT
θ KE − Kθ

] [
δfe
δθ

]
=

[
δt
0

]
(20)

with
KE = HT

g ⊗ G + HT
θ ⊗ F (21)

From the force-deformation equation δfe = Kδt of the end-efector, the Cartesian
stiffness matrix K of the robot is calculated as,

K =
(
Jθ (Kθ − KE)−1 JT

θ

)−1

(22)

3.2 Error Compensation Procedure

The motions of the industrial robots are usually generated according to the
inverse kinematics, from which the input signals of the actuators θ corresponding
to the desired end-effector position p are computed. However, with the exter-
nal loads fe exerted to the end-effector, the kinematic control becomes non-
applicable due to the compliance error δt of the end-effector, thus, the actual
position is computed from the stiffness model

p′ = p + δt where δt = K−1(fe + J−T τ ) (23)

here, fe + J−T τ stands for the combination of the force and inertial forces. In
order to make the end-effector be located in the desired position p, the compli-
ance error between p and p′, under the loads fe, should be compensated. Let
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Fig. 4. Error compensation procedure for the welding robot.

suppose the modified end-effector position to be pf = p − δt, under the same
loads fe, the actual position after compensation pc should be in the neighborhood
of the desired position, namely,

pc = pf + δtf ≈ p where δtf = K−1
f (fe + J−T

f τf ) (24)

where Kf is the stiffness matrix evaluated at the deflected position, and Jf and
τf are the Jacobian and joint torque at the actual positions, respectively. As a
consequence, the modified end-effector location pf can be calculated from the
following iterative procedure,

p′
c = p + λ(p − pc) (25)

where the prime term corresponds to the next iteration, and λ = Δt/‖p −
pc‖ is the scalar parameter to achieve the convergence, Δt being the maximum
magnitude among the elements in p − pc. This iterative method, presented in
Fig. 4, will stop until ‖p−pc‖ ≤ ε, where ε is an acceptable tolerance. Using this
procedure to modify the reference trajectory in the robotic control, it is possible
to compensate compliance errors to follow accurately the desired trajectory.

4 Case Study of Error Compensation

The previously presented stiffness modeling and error compensation procedure
are illustrated with the welding robot under study, namely, the ABB IRB 4600
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robot, along a trajectory as displayed in Fig. 5 together with the motion profiles
of the end-effector. Based upon the FEA based evaluation, the upper arm and
forearm can be treated as rigid links, compared to the actuation stiffness as listed
in Table 2. Other detailed technical parameters and specifications of the robot
can be found from the user manual [1], and the external wrench applied to the
robot end-effector is supposed to be pure forces fe =

[
200 −200 −200

]T , which
is considered to be constant. Here, the requirement on the welding accuracy is
higher than 0.5mm.

Table 2. Joint stiffness values of the welding robot (unit: [106 · Nm/rad]).

Kact,1 Kact,2 Kact,3 Kact,4 Kact,5 Kact,6

0.237 3.32 2.79 0.486 0.521 0.38
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Fig. 5. The motion profiles of the welding robot: (a) desired and actual trajectories
without error compensation; (b) end-effector velocities.

Figure 6 shows the comparison of the positioning errors and trajectories
before and after compensation. It is seen that the maximum positioning error
can be reduced to 0.01mm when the robot tracks the modified trajectory, mean-
ing that the positioning error after compensation can be ignored as it is much
smaller than the acceptable error. Compared to the positioning error without
compensation, the robot accuracy improves around 98%, which makes the actual
trajectory after compensation coincident with the desired trajectory approxi-
mately, as shown in Fig. 6(b). The comparison reveals that the approach of error
compensation can effectively improve the operational accuracy of the robot, also
applicable to other industrial applications, such as milling.
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Fig. 6. The positioning errors and trajectory after compensation: (a) positioning errors
(dashed line–before compensation; solid line–after compensation); (b) comparison of
target and actual trajectories.

5 Conclusions

This paper deals with the kinetostatic modeling and compliance error compen-
sation for an industrial robot in the ship hull welding. Besides the actuation
and structural stiffness, the Cartesian stiffness matrix of the robot is derived
with the consideration of the arm gravity and the external loads in the welding
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process as well as the inertial forces. An iterative error compensation method is
introduced and is numerically illustrated along a welding trajectory. The results
show that the error compensation procedure can effectively improve the oper-
ational precision to make the manipulator track the desired trajectory within
acceptable positioning errors. The proposed approach implies that the manip-
ulator accuracy can be effectively improved when the control strategy is based
on the combination of the kinematic, kinetostatic and dynamic models, which is
applicable to other industrial applications, such as machining.
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11. Kövecses, J., Angeles, J.: The stiffness matrix in elastically articulated rigid-body
systems. Multibody Syst. Dyn. 18(2), 169–184 (2007)

12. Meggiolaro, M.A., Dubowsky, S., Mavroidis, C.: Geometric and elastic error cali-
bration of a high accuracy patient positioning system. Mech. Mach. Theory 40(4),
415–427 (2005)

13. Pashkevich, A., Klimchik, A., Chablat, D.: Enhanced stiffness modeling of manip-
ulators with passive joints. Mech. Mach. Theory 46(5), 662–679 (2011)

14. Quennouelle, C., Gosselin, C.M.: Stiffness matrix of compliant parallel mech-
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