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Abstract. The virtual machine tool and Computer-Aided Manufacturing
(CAM) simulation are widely adopted nowadays to lower the cost and save
time. Although parallel robotic machines are becoming popular in industry due
to its unique advantages in manufacturing application, few methods are avail-
able for its simulation. This paper presents a work achieved by combining
conventional CAM analysis tool HSMWorks, Computer-Aided Design
(CAD) software SolidWorks, and programming tools such as Python and
MATLAB to realize the machining movement simulation of a parallel robotic
machine. Firstly, an original NC code interpreter is compiled in Python that
interprets G-code generated by HSMWorks. Then, necessary coordinate trans-
formation and kinematic calculation are done by using MATLAB. Finally,
driving data are imported into virtual machine tool in SolidWorks, and a
complete motion simulation environment is then developed. The proposed
method is a general approach, which can be upgraded and modified for the
simulation of parallel robotic machines with any structure.
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1 Introduction

The concept of parallel mechanism machines is initially proposed by Pollard in 1938
[1] and then became an interesting topic both for research [2–9] and industrial appli-
cations. Since every chain is connected as a closed loop, errors in every chain are
averaged and forces are distributed, which lead to higher accuracy [10], higher load
capacity, and higher structure rigidity [11]. Due to its great potential and unique

© Springer International Publishing AG 2017
Y. Huang et al. (Eds.): ICIRA 2017, Part II, LNAI 10463, pp. 3–13, 2017.
DOI: 10.1007/978-3-319-65292-4_1



advantages, in cases where the complex faces were hard for the traditional serial
machine tools to mill, it is a good choice for parallel robotic machines to finish rapid
machining tasks [12–14].

Meanwhile, along with the fast development of the society, manufacturing industry
are not very keen to use their resources (time and money) to build physical machine
tools for performance test and optimization. The concept of Virtual Manufacturing
(VM) is proposed as a system which can operate as a real machine to deal with models
in the virtual world [15–19]. With this technology, researchers started to focus on how
to better deal with the obstacles [20] and use visible decision-making method to
generate safer too-paths [21]. Virtual Manufacturing and computer simulation system
greatly avoided the unnecessary space waste in a real machine shop, saved money and
work for building prototype and test, and increased the reliability and safety of the final
product.

However, since the kinematics of parallel robot is sometimes more complex than
traditional serial machine tools, it is troublesome to directly use manufacturing simu-
lation software to simulate the working state of the parallel robotic machine. Therefore,
a complete method for carrying out such simulation is in urgent need for manufacturing
assessment.

A 5-degree-of-freedom (DOF) spatial parallel kinematic mechanism (PKM) with
three limbs was proposed, and its mobility, singularity, and kinematics analysis were
analyzed recently [22]. On this basis, the work in this paper is carried out. To achieve
the aim of universality, the work here focuses on NC G-code interpreting to provide the
robot with detailed machining data. Therefore, as long as there are G-code and its
syntax documents, a complete manufacturing plan can be acquired no matter how the
G-code is originally generated. After the complete process of “CAM Analysis—
Interpreter—Kinematic Operator—Tool and Stock Setting”, a machining movement
simulation can be produced for further demands such as collision inspection and
structure modification.

2 Computer-Aided Manufacturing (CAM) Analysis

The structure of a G-code program for 2D pocket milling generated by CAM software
HSMWorks is presented and analyzed as follows. For lack of space, the program
posted here contains only example of non-repetitive and motion-related commands.

The workpiece to be milled is presented in Fig. 1(a). The most important parameter
to be set is the work coordinate system (WCS), which is crucial for the robotic machine
tool presented in the following simulation. Post this milling process under
Siemens SINUMERIK 810D postprocessor configuration, and the corresponding
G-code and trajectory simulation can be seen in HSMWorks NC Editor (Fig. 1(b)). In
real manufacturing cases, this G-code can be directly imported into the machine and
start milling.
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G-code:
N11 G90 G94
N12 G71
N14 G17
N15 G0 SUPA Z80 D0
N22 X-8.511 Y20.349
N24 Z86
N25 Z76
N26 G1 Z75.499 F500

N27 G17
N28 G3 X -8.498 Y20.331 

Z75.203 I7.704 J5.559
……
N120 G2 X -78.169 Y23.55 

I-151.12 J-64.574
……

According to SIEMENS SINUMERIK 840D sl/840Di sl/840D/840Di/810D Fun-
damentals [23], key commands in each block are demonstrated in Table 1.

3 NC Code Interpreter Design

As a CAD software, SolidWorks is able to receive direct position coordinates rather
than G-code commands. It is necessary to design an interpreter to interpret the G-code
initially designed for serial machine tools into actual kinematics information.

Fig. 1. Milling work setting: (a) workpiece; (b) CAM plan

Table 1. Some key commands in G-code program of this task

Commands Meaning

G90 Absolute coordinate mode
G94 Feedrate per minute
G71 Metric dimensions (length [mm])
G17 XY-plane specification
G0 Rapid move
G1 Linear move
G2/G3 Circular interpolation, clockwise/counterclockwise
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Recognition method is illustrated in the flowchart as shown in Fig. 2. The interpreter
consists of three units: Scanner, State Storage, and Interpolator.

3.1 Scanner

The Scanner is used to read and analyze each G-code block, which contains key
commands for tool’s motion. By using Python “readlines” function, it is convenient to
import each G-code block as a separate line to the interpreter and analyze its com-
ponents. Commands such as G17/18/19 and G0/1/2/3 and numerical parameters fol-
lowing X/Y/Z/I/J/K are all major searching tasks.

3.2 State Storage

The State Storage contains various vital state markers which will define the working
mode and all further operations. It receives information from Scanner and stores those
states in some variables. As long as there is no other mode change appearing, these
variables stored in the State Storage unit will keep the same, thus offering guidance for
interpolation. Some of the relevant variables are Working Plane, Cutting Mode
(rapid/linear/circular), Rotating Direction of the circular interpolation, Feedrate (ma-
chining speed), Step Size of the interpolation and so forth.

3.3 Interpolator

The Interpolator is the core unit of the interpreter. It will be utilized to interpolate
processing points between the starting point and end point following a certain kind of

Fig. 2. Working principle of the interpreter
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motion. During the milling process, there will be four different motion modes—Rapid
traverse motion (G0), Linear interpolation (G1), Circular interpolation clockwise (G2),
and Circular interpolation counter-clockwise (G3).

Rapid Traverse Motion (G0): G-code program does not contain any speed definition
for the rapid traverse. Because G0 only makes it faster than G1 to move tool to the
working region, it is acceptable to set a certain larger G0 speed according to the feed
rate for G1.

Linear Interpolation (G1): The program will supplement processing points linearly
between the starting point and end point using particular step size, while defining the
exact time at every point. As a result, the interpreter will export an extensive data
matrix made up of four columns, where every row is a 4-dimensional array—(Time,
X coordinate, Y coordinate, Z coordinate).

Circular Interpolation (G2/G3): According to mathematical theory, in 3D space, a
parametric equation of a circle with radius r is given by

xðwÞ ¼ px þ r cos ðwÞ � ax þ r sin ðwÞ � bx
yðwÞ ¼ py þ r cos ðwÞ � ay þ r sin ðwÞ � by
zðwÞ ¼ pz þ r cos ðwÞ � az þ r sin ðwÞ � bz

8><
>:

ð1Þ

Where the center of the circle is pc ¼ ðpx; py; pzÞ, and two orthonormal vectors in

the plane containing the circle are a!¼ ðax; ay; azÞ and b
!¼ ðbx; by; bzÞ.

As is demonstrated previously, key data can be acquired by the Scanner (Table 2):
These parameters are further processed to fit in the mathematical theory in (1):

• Center of the circle: pc ¼ ðpx; py; pzÞ ¼ ðxs þ i; ys þ j; zs þ kÞ
• Two vectors in the plane containing the circle are a!0 ¼ ðxs � px; ys � py; zs � pzÞ,

c!0 ¼ ðxe � px; ye � py; ze � pzÞ, then normalized to a! ¼ a0
!= a0

!�� ��, c! ¼ c0
!= c0

!�� ��
• Radius of circle is r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ k2

p
.

To finish the parametric Eq. (1), the vector ~b, which is orthonormal with~a, is still
in need. The normal vector of the circle plane is given by n!¼ a!� c!. So the vector~b

can be calculated by b0
!¼ n!� a!, which is then normalized to b

!¼ b0
!
= b0
!���
���.

Table 2. Key data and parameters picked by the Scanner

Name & Type Source command Extraction result

Starting point coordinate G0/1/2/3 X… Y… Z… ps ¼ ðxs; ys; zsÞ
Endpoint coordinate G2/3 X… Y… Z… pe ¼ ðxe; ye; zeÞ
Center point offset G2/3 I… J… K… co ¼ ði; j; kÞ
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Considering the interpolating process, when w ¼ 0, it is easy to find the relation-
ship ðxð0Þ; yð0Þ; zð0ÞÞ ¼ a0

!, which means the start of the circular motion.
Define the angle between a0

! and c0
! to be w0, then the angle the cutting tool needs

to cover is w0 or 2p�w0. The interpolator can start to create processing points from the
starting point to the endpoint by changing w step by step under the restriction wj j\w0
or wj j\2p�w0. The problem arises here: how to distinguish these two cases?

In the parametric Eq. (1), if w increases from 0 to w0, the result ðxðwÞ; yðwÞ; zðwÞÞ
will always move in the direction that passing a minor arc from point A to point B
along the circle. In contrast, the effect of decreasing w from 0 to �ð2p�w0Þ will step on
the other way. So the location of point B will determine the effect of changing w. Since

the vector b
!

is derived from n!� a!, the orientation of n! (more specifically, the sign
of nz) will be a major focus in the end.

Figure 3 illustrates four possible situations during circular motion. For the con-
venience of programming and analysis, a marker “Cir” is used to describe expecting
rotating direction, that is, G2 (clockwise) will lead to “Cir ¼ �1” and G3 (counter-
clockwise) will result in “Cir ¼ 1”.

By investigating all four cases, it can be summarized that:

(I) ðnz � CirÞ[ 0: w should increase from 0 to w0.
(II) ðnz � CirÞ\0: w should decrease from 0 to �ð2p�w0Þ.

Fig. 3. All possible cases considering starting and end point positions and rotating directions
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Until now it is finally clear that how the Interpolator should control variable w to
finish circular interpolation. By following the changing direction and the extremum
restriction, it only needs to change w by a certain step size to supplement processing
points between the starting point and end point.

It is worthwhile to make a further explanation that if only two parameters show in
(I, J, K) but three in (X, Y, Z), it means that there will be circular motion on the plane
indicated by the existing two coordinates in (I, J, K) while a linear move occurs
perpendicular to it, thus resulting in a helix interpolation as a whole.

To conclude this part, in a complete G-code program, there will be multiple
G0/G1/G2/G3 commands, so the interpolation methods described above will be reused
for a significant number of times. Via the interpreter, the G-code program will finally
be translated into a large data matrix sI¼ ~t sX sY sZ

� �
in stock frame describing

discrete points along its path (each line of sX sY sZ½ �, Fig. 4) and their corre-
sponding arriving time (column vector~t). It will be then processed as the input for
parallel robotic machine inverse kinematic calculation.

4 Machining Motion Simulation

The SPR-2(2UP-R-S) parallel robotic machine has been proposed in Ref. [22], the
CAD model and kinematic scheme are shown in Fig. 5. From the inverse kinematics
described in Ref. [22], it is clear that as long as there is a tool position coordinate, the
length of five limbs will be available. However, the coordinate frames of the Interpreter
and the Inverse Kinematic Operator (IKO) are different. The interpreter uses coordinate
frame attached to stock while IKO uses frame attached to the machine base. So the
combining of these two parts requires the transformation of the stock frame <s to the
machine frame <m.

Fig. 4. Trajectory redrawn after interpretation
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The force and position control of such a pocket milling job is vital for the final
product’s quality, where the chip removal will be a matter of concern with high
priority. Therefore, the horizontal configuration is adopted for workpiece installation
and machining (Fig. 6). In this case, chips will either automatically fall or be easily
swept, avoiding the accumulation of the chips in vertical case and the corresponding
problems. Moreover, the coolant can easily flow out in this configuration without
accumulating and flooding in the pocket.

According to the definition of the two frames, the stock frame can be arrived by
firstly a / ¼ 90� rotation along the X axis of the machine frame and then a translation
sx sy sz½ �T to the stock position (sx; sy; sz are coordinates of the stock frame origin
in machine frame). The transformation can be achieved by applying homogeneous
coordinate transformation matrix

m
s T ¼

1 0 0 sx
0 cos/ � sin/ sy
0 sin/ cos/ sz
0 0 0 1

2
664

3
775 ¼

1 0 0 sx
0 0 �1 sy
0 1 0 sz
0 0 0 1

2
664

3
775 ð2Þ

The coordinates in stock frame collected by the Interpreter will then be transformed
to the machine frame by multiplying m

s T. This process is necessary before transporting
data into the IKO.

mX mY mZ 1½ �T ¼m
s T � sX sY sZ 1½ �T ð3Þ

Moreover, there are still two parameters required in IKO not defined— the azimuth
angle and the tilt angle u; hð Þ. Since this task is a 2D milling job, u; hð Þ are constants
that won’t change through the whole process. Input initial values u0; h0ð Þ to generate

two column vectors u!¼ u0 � � � u0½ �T and h
!¼ h0 � � � h0½ �T , both of which have

the same number of rows as~t. Here the machine tool is set to work under horizontal
configuration, so u0 ¼ 90o and h0 ¼ �90o.

Fig. 5. The parallel robotic machine: (a) CAD model; (b) kinematic scheme
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Now all necessary inputs for IKO are ready as

mI¼ ~t mX mY mZ u! h
!h i

ð4Þ

According to the algorithm in Ref. [22], T ¼ x; y; z½ �T repeatedly picks three
coordinates from every row in mX mY mZ½ � and Rðu; h; rÞ picks u; hð Þ from every

row in u! and h
!
.

Fig. 6. Workpiece installation and machine tool application scene

Fig. 7. Continuous output curve of five actuators L1, L2, L3, L4, and L5
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By defining the initial state of the machine tool and calculating all corresponding
limb lengths as a datum, the displacement change that five actuators should generate
will be determined. However, now they are only timeline-based discrete data showing
the displacement change.

In SolidWorks, the feature “Motion Study” can define linear motors on actuators
and import displacement data from files to offer instruction for motors’ movement. It
can also help users to plot discrete data points thus transforms discrete information into
a continuous working curve (Fig. 7).

After finishing all setups and data import for actuators, click “Play” or export
motion as a video file, the simulation is finally finished. Different camera views can be
added to observe every desired detail of the machine tool motion. Moreover, various
other analysis functions are provided by the software to provide the performance
information of the robot.

5 Conclusion

In this paper, a machining motion simulation method is proposed for parallel robotic
machines by utilizing G-code generated by CAM analysis and motion function in
SolidWorks. There is no strict demand for CAM software or specific interface as long
as manufacturing G-code for some machine tools and its supporting document are
available. This feature significantly broadens the area where this method can be
applied. In the part of the Interpreter design, Python programming language is
employed because of its brevity in reading and processing information in each line of
G-code text. Necessary interpolation in milling process is demonstrated with emphasis
since G2 and G3 commands are hardest to be translated into motion data available for
parallel kinematics. As for the IKO, the core solving principle is based on the result of
previous work done in the lab. The last step requires some precise adjustment such as
locating the stock position and choosing a proper machine tool configuration for
manufacturing. The proposed simulation method can achieve the goal of closed-loop
analysis to better detect the defects in the machine tool or manufacturing plan with high
efficiency, which is crucial for fast design and prototyping.
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