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1 Introduction

The Stewart platforms, also known as hexapod systems, are most commonly used
as motion bases for modern flight simulators. In this configuration, a moving upper
platform is driven by six linear actuators connected to the stationary base to provide
motion in 6 degree-of-freedom(DOF), as shown in Fig. 1. Commonly an Universal-
Prismatic-Spherical(UPS) structure is designed in such systems, in which the lower
and upper platforms are connected to the legs through passive universal joints and
spherical joints and the two parts of each leg are connected by a prismatic joint
where electrical or hydraulic actuation force is acted on. The parallel structure pro-
vide higher rigidity and accuracy compared with its serial robot counterparts. A
typical example of such a system is the SIMONA research simulator (SRS) in Delft
University of Technology as shown in Fig. 1 [18].

The main goal of the flight simulator motion systems is to track the reference
motion calculated by aircraft aerodynamics model and pilot input as accurate as
possible.Different from industrial applications, the pilot-in-the-loopflight simulators
require high performance motion systems to enhance the fidelity of simulation flight.
Typical PID controller is hardly eligible for the high performance requirement due
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Fig. 1 A Stewart platform based motion system SRS at TU Delft and it’s schematic drawing [6]

to the highly nonlinear dynamics of the parallel manipulator. Thus more advanced
control techniques have been studied intensively [5].

Nonlinear dynamics inversion [9, 13] (NDI) is capable of exactly linearise the
nonlinear dynamics and is also referred to as computed torque control [12] in the
field of robot control. However, it’s well known that NDI is seriously dependent on
the accuracy of the model that for a complex flight simulator system, any model
parametric uncertainty, unmodelled dynamics and disturbances such as joint friction
will significantly degrade the performance [1]. Thus NDI is rarely used directly in
parallel robot motion control. Adaptive control is a possible technique to deal with
parametric uncertainties and has been proposed for similar applications [4, 11, 12].
Nevertheless, the computational burden of adaptionmotion controller based on awell
modeled system is significant that real-time application is hard to achieve. Robust
control which is also capable of overcoming model uncertainties, is studied by only
a few papers addressing the studied control system [1, 7, 8] and a sliding mode
methodology is commonly used that may lead to chattering problem.

The Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-based control
technique for nonlinear systems which is much more robust than NDI [14, 15].
By computing the incremental input commands using the acceleration measurement
instead of calculating the total inputs, the controller need less model information and
is not sensitive to model mismatches while proving a high performance. These fea-
tures are useful for a parallel flight simulator which suffers from model uncertainties
or even load-varying mechanics due to change of pilots.

In this paper the application of INDImethodology to a 6-DOF hexapod flight sim-
ulator outer-loop motion control is presented, parametric uncertainties and unmod-
elled dynamics are introduced to model dynamics to simplify the controller design
and reduce computational burden. This is the first time that INDI is proved to be
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suitable for a parallel robot motion control, and the fact that an important assump-
tion, i.e. time scale separation principle, holds for the dynamics of such systems.
This work hires a detailed flight simulator model with consideration of actuator iner-
tial and joint friction based on SIMONA Research Simulator in Delft University
of Technology. The actuator dynamics are not considered in order to focus on the
INDI controller performance on the parallel robotic dynamics. In future work with
practical implementation of proposed control, the influences of actuator dynamics
will be included and considered.

This paper is organized as follows. In Sect. 2, the kinematics and dynamics of
the 6-DOF hexapod motion system are briefly derived. Section3 presents the motion
control system design based on INDI technique in detail and simulation results are
given in Sect. 4. The main conclusions are summarized in Sect. 5.

2 System Kinematics and Dynamics

A schematic drawing of a hexapod motion system is shown in Fig. 1. The Newton–
Euler approach [2, 3] is used to derive the system dynamic equations in Cartesian
space. The platform position and velocity are defined as

sx = [
cT ,ΦT

]T

ẋ = [
ċT ,ωT

p

]T
(1)

where c denotes the translation vector of the upper platform in inertial frame Eb, Φ
is the Euler angles between the body fixed frameEa and Eb and ωp is the angular
velocity of the upper platform.

Different from serial manipulators, the inverse kinematics of parallel robots are
very simple, which can be given by calculating the leg vector S in Fig. 1 as

S = c + Tbap − b

= c + qp − b
(2)

where p and qp are upper universal joint locations in reference frames Ea and Eb

respectively, and Tba the rotational matrix between them.
In terms of the platform dynamics, the dynamics of a single leg is derived in

literature [3] by combining Euler’s equation of the entire leg and Newton’s equation
of the moving rod as

− Fs = Qc̈ − Qq̃pω̇p + V − Fs (3)

where Fs is the force vector acting on the upper universal joint, F is the actuation
force generated on the prismatic joint, s is the unit vector to S, and Q and V are
matrix depending on leg inertial and dynamics properties.
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Similarly, the dynamics of the upper moving platform is described by writing the
Newton and Euler’s equation as

6∑

n=1

(Fs)i + Mpg = Mpap (4)

and

6∑

n=1

(
qp × Fs

)
i
+ MpR × g = MpR × ap + Ipω̇p + ωp × Ipωp (5)

Combining Eqs. 3, 4 and 5, the closed form of Stewart platform dynamic equation
is obtained as [3, 6]

M (sx) ẍ + η (ẋ, sx) = H (sx)F (6)

where

M =
[
ME3 −MR̃

MR̃ Ip + M
(
R2E3 − RRT

)

]

+
6∑

n=1

[
Qi −Qi q̃i

q̃iQi −q̃iQi q̃i

]

η =
[

M{ωp × (
ωp × R

) − g}
ωp × Ip + MR × {(ωp · R)

ωp − g}
]

+
6∑

n=1

[
Vi

qi × Vi

]

F is the actuation forces of all actuators

F = [F1 F2 F3 F4 F5 F6]

and H is

H =
[

s1 s2 s3 s4 s5 s6
qp1 × s1 qp2 × s2 qp3 × s3 qp4 × s4 qp5 × s5 qp6 × s6

]

It is now clear that matrix H is actually the transpose matrix [16] of the Jacobian
matrix relating leg length velocity L̇ with platform velocity ẋ that

L̇ = Jl,x ẋ = HT ẋ (7)

Take time derivative of Eq.7 we have

L̈ = HT ẍ + Ḣ
T
ẋ = HT ẍ + U(sx, ẋ) (8)
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Thus

ẍ = H−T [L̈ − U(ẋ, sx)] (9)

Substituting Eq.9 into Eq.6 one gets

L̈ = HTM−1HF − HTM−1η(ẋ, sx) + U(ẋ, sx) (10)

At this point we have the dynamic equations of Stewart platform both in operation
space as given in Eq.6 and partly in joint space with Eq.10. For a motion control
system, the actuation forces F are the system inputs. The matrix on the right hand
side of Eq.10 still depend on operation space states sx and ẋ and the cumbersome
forward kinematics of parallel robots are required in a model based feedback control
approach like NDI. However, it will be shown in the following chapters that this
problem is inherently solved with INDI approach, thus Eq.10 should be enough for
INDI based controller design in joint space.

3 Motion System Controller Design

The application of INDI strategy on a hexapod flight simulator is previously men-
tioned in [5] by the author. The basic idea is to calculate the required incremental
control inputs at the given moment to achieve a linearized relation. To do this, con-
sider system dynamic equation Eq.10, a first-order Taylor series estimation of the
right hand side is given by

L̈ = (
HTM−1H

)
sx0

F0 − (
HTM−1)

sx0
η (ẋ0, sx0) + U (ẋ0, sx0)

+ (
HTM−1H

)
sx0

(F − F0)

+ ∂

∂ ẋ

[−HTM−1η (ẋ, sx) + U (ẋ, sx)
]
ẋ0

(ẋ − ẋ0)

+ ∂

∂sx

[
HTM−1HF − HTM−1η ( ˙x, sx) + U ( ˙x, sx)

]
sx0

(sx − sx0)

(11)

where subscribe 0 denotes the time point around which the Taylor series expansion
is taken.

For a nonlinear system, the first-order estimation is accurate enough within a very
small time increment. The first terms on the right hand side of the equation is actually
L̈0, i.e.

L̈0 = (
HTM−1H

)
sx0

F0 − (
HTM−1

)
sx0

η (ẋ0, sx0) + U (ẋ0, sx0) (12)

Which is leg length acceleration which can be obtained by sensor measurement. In
case of SIMONA flight simulator motion system, leg length are measured by Tem-
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posonics sensors, thus the acceleration information should be obtained by numerical
differentiation. The INDI based controller is sensitive to sensor measurement, thus
is is also considered a sensor-based approach.

Now consider the other terms in Eq.11. The last two terms are considered much
smaller than the second term according to the time scale separation principle [14, 15,
17]. This is explained as the change of actuation forces δF has a direct effect on the
system acceleration change, which is represented by the left hand side of Eq.11. The
system velocity only change by integrating the system acceleration and the position
change is even integrated by the velocity. Thus when the integration sample time is
very small, these two terms are also small while the input change can be significantly
large. This indicates that the dynamics of system input is faster than system velocity
and position. It is noted that this assumption only holds with very small sample time
and very fast actuator dynamics. According to the aforementioned analysis, Eq.11
is finally simplified as

L̈ = L̈0 + (
HTM−1H

)
sx0

(F − F0) (13)

Equation13 is the incremental form of the system dynamic equation given by
Eq.10, which is actually a linear approximation around system states in zero time for
a small time increment. By comparing these two equations we can see that nonlinear
terms,U and η which consists of Coriolis/centripetal effects and gravity, disappeared
from the original equation. This indicates that the INDI controller designed based on
the incremental form system dynamics is not dependent on that part of the model.
However, the dynamics of the neglected part of the model is still compensated by
INDI since the leg length acceleration measurement already contain those informa-
tion. Thus it is already clear now that INDI is not sensitive to model and parametric
uncertainties in non-control-related parts in Eq.6, e.g. gravity and Coriolis effect
terms.

Based on Eq.13, typical procedure of NDI can be designed by inverting the
dynamics if the coupling matrix is invertible, hence the INDI control law is given in
incremental form as

δF = (
H−1MH−T

)
sx0

(
ν − L̈0

)
(14)

where ν is the virtual control and the control input as the required actuation force is
given by

u = F = F0 + δF (15)

Substituting Eq.14 into Eq.15, the full linearisation is achieved and the system is
turned into a double integrator:

ν = L̈ (16)
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Simple linear controller can be designed for the double integrator, for example

ν = L̈d + Kp (Ld − L) + Kd
(
L̇d − L̇

)
(17)

where subscript d denotes the reference trajectory given by the host to be tracked by
the motion system. In case of SIMONA simulator, the reference trajectory is given
in operation space, which means inverse kinematics are required for the proposed
joint space controller.

The state feedback used in INDI control law Eq.13 is another problem for parallel
robots. It is well known that the forward kinematic problem of 6-DOF does not
have an analytic solution. The mass matrix M (sx) and Jacobian matrix H (sx) are
given in the operation space while the measurement of system states is performed
in joint space. That means numerical iteration are required to calculate system states
in Cartesian space as well as the mass matrix and the Jacobian matrix, which will
largely add the computational burden. However, as will be discussed as follows, this
problem is inherently tackled by the robustness feature of INDI controller.

Assuming ideal sensor measurements, define the control related matrix in Eq.13
as the control effectiveness matrix as

G (sx) = HT (sx)M−1 (sx)H (sx) (18)

In existence of model inaccuracies in the effectiveness matrix, for instance mass
mismatch due to modification of flight cockpit or different pilot numbers, the system
dynamics is then written as

L̈ = L̈0 + [Gn (sx0) + ΔG (sx0)] (F − F0) (19)

where the subscript n denotes the nominal condition.
Since only nominal part of the system is known, the following control law is

actually applied according to Eq.14:

δF = G−1
n (sx0)

(
ν − L̈0

)
(20)

Substituting Eq.20 into Eq.19, the system under control yields

L̈ = ν + ΔG (sx0)G−1
n (sx0)

(
ν − L̈0

)
(21)

Again, using the assumption that very high sampling rate is used in INDI, the
change of leg length acceleration during one small sample time is very small that
L̈ ≈ L̈0 holds and Eq.21 yields

AL̈ = Aν (22)

where
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A = I6×6 + ΔG (sx0)G−1
n (sx0) (23)

This result indicates that with relative high sampling rate, the linearized relation
still holds with INDI controller in existence of model uncertainties in control effec-
tiveness matrix. This also imply that the INDI based controller is not sensitive to
almost all kinds of model inaccuracies in mass matrix, gravity effect terms as well
as the Coriolis/centripetal effect terms. Thus the proposed control scheme is robust
to model uncertainties of a hexapod parallel robot.

Taking advantage of the robustness of INDI methodology to model inaccuracies,
tow important modification can be made to simplify the controller design. First, the
complicated forward kinematics of parallel robot can be removed from the control
structure. As the controller is robust to control effectiveness matrix inaccuracies,
the trajectory set-points can be used to calculate the mass matrix M and Jacobian
matrixHT instead of system position feedback, since they are considered to be very
close if the motion controller works. Second, simplified mass matrix can be used by
neglecting less important parts like the mass of legs, which will largely reduce the
computation burden. By doing that, the INDI control law Eq.14 can be simplified to

δF = (
H−1MsH−T

)
sxd

(
ν − L̈0

)
(24)

where Ms is the simplified mass matrix and sxd is the system position trajectory
set-points.

The proposed motion control system is presented in Fig. 2. The input of the INDI
controller is the virtual control ν which is subtracted by actuator acceleration mea-
surement and the output is the calculated actuation force required to track themotion.
The virtual control is calculated by a linear controller which hire state feedback and
inverse kinematics of Stewart platform. The reference trajectory set-points are used
to calculate the control effectiveness matrix. Using the aforementioned two simplifi-
cations, the controller share the advantage of a feed forward control scheme, i.e. the
avoidance of forward kinematics and availability of simplifiedmodel, while still offer
a full system linearisation just as a typical NDI did with precise model information.

Fig. 2 INDI based motion controller architecture
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Fig. 3 SRS top view [6]

The proposed INDI based motion controller is robust to model uncertainties at a
cost of sensitivity to sensor measurement. It is note that the INDI technique is based
on three main assumptions: high sampling rate, fast actuator dynamics and ideal
sensor measurement. The performance of proposed control system will be tested
with simulation in the following chapter.

4 Simulation Results

The performance of the proposed controller is verified by numerical simulations, the
leg length tracking performance is presented since the controller is designed in the
joint space. A detailed model of flight simulator motion system based on SIMONA
Research Simulator(SRS) inDelft University of Technology is previously introduced
in literature [6] and is used for simulations in this work, only the actuators are set
to be ideal force generators. The simulations are performed in MATLAB/Simulink
environment and the fourth-order Runge–Kutta integration is used to solve the

Table 1 Geometric and inertial parameters

Parameters Value

Upper/lower gimbal radius, ra rb 1.6, 1.65 m

Upper/lower radius spacing, du dl 0.2, 0.6 m

Piston/cylinder masses, m2 m1 0.12, 0.15 tons

Piston/cylinder inertia wrt cog, i2 i1 20, 36 kgm2

Piston/cylinder cog wrt to gimbal, r2 r1 0.7, 0.5 m

Platform mass Mp 3.2 tons

Platform nonzero inertial Ixx Iyy Izz Ixz 7, 7, 8, 0.5 tons m2
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Fig. 4 Position tracking performance with nominal INDI controller
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Fig. 5 Position tracking error with nominal INDI controller

system dynamic equation. The geometry of SRS simulator motion system is shown
in Fig. 3 while the geometric and inertial parameters are given in Table1. For all the
simulations, the sampling rate is set to 1000Hz, which is the same with the current
controller implemented on SRS simulator.

Motion tracking tasks are performed in all the simulations. The motion profile
of a state reconstruction experiment [6, 10] performed on the SRS is used to give
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Fig. 6 Position tracking error with simplified INDI controller

reference trajectory in operation space. The origin of the upper platform moves in a
horizontal circular path with a radius of 0.5 m with a period of 5 s.

Figure4 presents the tracking performance of each leg under nominal condition
while real state feedback is used to calculate matrixM andH. The leg length tracking
errors are shown in Fig. 5. It is shown that the controller gives stable and good tracking
performance, with a maximum tracking error limited within 2 × 10−3m. This result
is already a verification of robustness of INDI controller to model inaccuracies in
gravity and Coriolis related terms, since that part of the model is not used in the
controller.

Figure6 gives tracking errors when the system position set-point, instead of the
real state feedback, are used to calculate the control effectiveness matrix. In this
simulation the modified control law Eq.24 is used. It is shown that the performance
almost remain intact. This result verified that the INDI controller is not sensitive
to model mismatch in the control effectiveness matrix, and the proposed simplified
control law will provide similar performance as a complete state feedback approach
will do.

In order to further test the robustness of the proposed controller, a significantmodel
mismatch is set for the system. In Fig. 7 the position tracking error of each leg when
there is 50% mismatch in the upper platform mass is presented, which is generally
beyond what we expect in reality. It is indicated that the performance is almost intact
again. This result verifies that INDI is very robust to parameter mismatch in the
control effectiveness matrix, hence the validation of using a simplified mass matrix
Ms is also enhanced.

The previous simulation results verify that at least at an practical sampling rate,
the time scale separation principle assumption holds for a hexapod flight simulator
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Fig. 7 Position tracking error with simplified INDI controller with 50% mass mismatch

motion system. The INDI technique is a promising approach for the studied motion
system and a wider range of parallel or serial robots to overcomemodel uncertainties
with simple design procedure and small computational burden.

5 Conclusion

Incremental nonlinear dynamic inversion is a promising approach for parallel robot
motion control. The time scale separation principle, which is the base of INDI tech-
nique, holds for the studied system at a practical sampling rate. The INDI based
controller is not sensitive to almost all kinds of model and parametric inaccuracies,
which allows for an accurate system linearization without precise model informa-
tion. Furthermore, the robustness of INDI tomodel uncertainties allows for trajectory
set-points to be used with simplified mass matrix, which will largely reduce the com-
putational burden. Since INDI technique depends on accurate sensor measurement
and fast actuator dynamics, the influence of measurement noise and bias, as well as
actuator dynamics should be investigated as future work before the proposed control
scheme is implemented to a promising real world application.
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