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1 Introduction

Within various projects, the Institute of Flight System Dynamics at TU Miinchen
developed a modular flight control software for usage in applications ranging from
manned autopilot functions to unmanned operations from ground. The controllers
were developed using a model-based approach with MATLAB, Simulink, and State-
flow. To guarantee high-quality models and code, and to pave the way for future
certification, a model-based development process based on industry standards pro-
posed for airborne software was developed.

In the chosen development approach according to DO-178C [19] and DO-331
[20], Simulink and Stateflow models step in the place of “Software Low-Level
Requirements” and “Software Architecture”. The “Design Models”, as they are called
by DO-331 in this context, are directly used to generate ANSI C “Source Code”. The
use of MATLAB, Simulink, and Stateflow in such a context requires a special setup,
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preparation, and limitation of the tool capabilities. The required documentation and
configuration is in general created during the Software Planning Process and in the
following denoted as “Modeling Environment”. Estrada [6] emphasizes the impor-
tance of an environment, but does not discuss the details of its content.

The Modeling Environment describes a package of settings, libraries, and tem-
plates that are made available to developers in order to support them in implement-
ing models and generate code that is safe and compliant to the defined process. The
difficulty in setting up such an environment originates from the close connection
between Design Model and Source Code and the standards both have to fulfill. Since
code generation is normally done by a single function call, the Design Model not
only describes the design itself, but also the appearance of the generated code. A
well-prepared Modeling Environment can significantly improve the results of static
code analysis and standard compliance checking in subsequent steps and reduce the
remaining effort as shown in [9].

Another challenge is that model developers usually do not have the experience
of a C programmer, but are responsible for the generated safety-critical code and its
compliance to standards as well. Thus, the fulfillment is mainly determined by the
quality and consistency of the conventions and settings from the provided Modeling
Environment.

The Modeling Environment normally depends on multiple factors and may vary
from company to company. However, the presented basic set is required in most
of the projects. Since the content may be influenced by the chosen development
process, the application to be developed and the hardware on which the application
shall be executed, Sect.?2 introduces the applied model-based development process
and Sect.3 gives a short overview about the flight control computer hardware and
the controller design. Based on this, Sect.4 contains a detailed discussion of the
suggested Modeling Environment.

2 Model-Based Software Development Process

The objective was to develop a controller application in alignment with guidance
material for a CS-23 aircraft. In Book 2 of CS-23 [7], the relevant paragraph CS
23.1309 “Equipment, systems and installations” does not provide acceptable means
of compliance for digital flight control systems, but EAS A Certification Review Items
refer to FAA Advisory Circular AC 23.1309-1E [8], which itself refers DO-254 [18]
and DO-178B/C [19] as guidance material for software and hardware development.

With DO-178C, RTCA published additional supplements addressing modern
techniques for software development like model-based approaches (DO-331 [20]) or
formal methods (DO-333 [21]). Especially model-based development became pop-
ular in the recent years, since it provides means to implement complex software,
simulate the models in an early development stage, and automatically generate code.

Tool vendors for model-based development software try to provide a consistent
tool chain, allowing the fulfillment of DO-331 objectives in an effective and mostly
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automated way. Most popular are the workflows provided by MathWorks [32] and
Esterel [5].

For the given project, the Institute of Flight System Dynamics decided to setup a
development process based on the MathWorks DO Qualification Workflow [32] for
applications up to DAL B. The workflow proposes to use Simulink and Stateflow to
implement the Design Model, replacing Software Low-level Requirements as well
as Software Architecture from the conventional DO-178C process. The approach
coincides with DO-331 MB.1.6.3 Example 1 and is also presented in [4, 17].

C Source Code is directly generated from the Design Model using Embedded
Coder (EC). Since the code generator is not shipped with a Tool Qualification Kit,
MathWorks provides Simulink Code Inspector to automate code review and verify
compliance of the Source Code with the Design Model as well as traceability. Using
SLClI restricts features of Simulink and Stateflow to a robust and safe subset.

The workflow and tool chain at the institute subsequent to the generation of Source
Code is described in [10]. The interplay with a system design process for control
algorithm development is outlined in [11].

Using a Design Model and directly generating code out of it brings the DO-178C
Design Process closer to the Coding Process. The work to be done in the Coding
Process reduces to a single function call of the coder. The fulfillment of Source Code
objectives from Table MB.A-5 now can only be influenced by the Design Model. The
Simulink and Stateflow models thus have to address rules from a Software Design
Standard, a Model Standard but also a Code Standard.

3 Hardware and Software Context

3.1 Flight Control Computer Hardware

The addressed controller runs on a single flight control computer (FCC). This is
possible due to the system architecture of the research aircraft and the safety concept
of the experimental flight control system [1].

The flight control computer has been developed together with industry partners
regarding certification aspects.! The Power PC 32-bit architecture has a clock speed
of 533 MHz with a double-precision floating point unit and works in Big-Endian
mode. It also has a high-speed interface to two Cortex M-I/O-processors, providing
various UART, ARINC-825, and ARINC-429 interfaces along with multiple discrete
IOs.

Thitp://www.fsd. mw.tum.de/infrastructure/gnc-subsystems/ [Cited on 6 January 2017].
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Fig. 1 Structure of the modular integrated flight control system

3.2 Controller Design Considerations

3.2.1 Controller Architecture

Figure 1 shows a simplified version of the cascaded controller and the identified soft-
ware modules. Input and output processing modules contain reorganization of the
incoming and outgoing data. Core of the algorithm is an aircraft dependent baseline
innerloop controller, whose input commands are the load factors. The auto flight
system contains a trajectory/path controller and a controller for well-known autopi-
lot functionalities like attitude, altitude, heading, or speed hold. Further information
about the auto flight module and the integrated trajectory/path controller is provided
by [14, 15, 22]. For high-level commands, e.g., waypoints, the controllable path is
calculated by the trajectory generation module as described in [23, 25, 26]. Addi-
tionally, there exists a module for automatic landing and take off (ATOL). All mode
switching as well as the startup behavior is implemented in the system automation
module as outlined in [16].

3.2.2 Software Modules and Interfaces

The controller is concurrently developed by various developers that are working
on and are responsible for clearly defined software modules. A software module
consists of a set of Simulink Models and dependent data passing the software lifecycle
together. A software module has an own revision index, a defined interface and
separately allocated requirements. The schematic draft of the system in Fig. 1 also
outlines the most important software modules.

3.2.3 Floating-Point Arithmetic

Since the FCC has a double-precision floating point unit, this arithmetic is preferred.
Although real necessity for double-precision is only given when dealing with WGS-
84 waypoint positions, it was decided to honor simplicity and perform all calculations
with double-precision.
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Understanding generated shared utility functions (see Sect.4.2.4) and treatment
of special floating point quantities (NaN, Inf,...) requires a deeper look into floating
point arithmetic. The FCC partly supports floating point arithmetic standardized by
IEEE-754:2008 [12]. Here, the binary64 format with base two, an exponent length
of ten bytes and a mantissa length of 52 bytes (plus one bit for the sign) is used. This
complies with the internal floating point representation and arithmetic of MATLAB.?

The treatment of special floating point quantities is shortly addressed in the follow-
ing section. The internal floating point exception handling as specified in IEEE-754
is not considered.

3.2.4 Interface to C Framework

The model-based controller is embedded in a conventionally developed C framework.
The top-level model of the controller application, as simplified in Fig.2, provides
one in- and outport for every incoming and every outgoing physical interface of the
FCC. The port data types are designed as Simulink Bus objects, which are translated
to C structures during code generation. The coder settings therefor are described in
Sect.4.2.1.

The input and output buses have sub-buses for every readable/writable message,
which itself contain elements for every message payload parameter. Additionally,
every message bus has an update indication, notifying that a new message has been
received, or a message as to be sent, respectively.

The execution of the whole software is as follows: Every iteration the surrounding
C-Framework decodes incoming messages and copies the received data into the
exposed C structures of the generated code. After that, it calls the step function of
the application. As soon as the step function has finished, the framework copies the
data from the outgoing C structures into the messages to be sent.

It is also visible in Fig.2 that the incoming data is rearranged into functional
structures in system “datain” at first (e.g., into sensors_in). This system addi-
tionally performs basic input monitoring like saturation to a specific range. From this
point on, no special floating point quantity shall be in the software any more and no
subsequent software module shall introduce such.

4 Modeling Environment for Safety-Critical Software
with Simulink and Stateflow

This chapter summarizes the most important aspects, which a consistent Model-
ing Environment for MATLAB Release 2016b must fulfill to create safety-critical
software. For other releases, variations are possible. The Modeling Environment is

Zhttp://de.mathworks.com/help/matlab/matlab_prog/floating- point-numbers.html [Cited on 09/05/
2016].
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Fig. 3 Modeling Environment provided to developers at the Institute of Flight System Dynamics.
The whole package is under version control and its content must be read or installed by the developers
in Simulink prior to implementation

defined during the software planning process and mainly documented in the Software
Model Standard (DO-331 MB.11.23 “Model Standards’) with respect to

existing modeling rules,
standards for generated code,
tools used in the process,
strategies for integration, and
planned target hardware.

The Modeling Environment used at the institute is depicted in Fig.3. For this
paper, the Modeling Environment is divided into a modeling and coding part. In
reality, the border is indistinct. For example, Simulink uses a single configuration
file/object, mixing options for simulation and for code generation with EC. This is
similar for modeling rules that influence the model, but with respect to the generated
code.
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Section4.1 introduces the part of the Modeling Environment that primarily
impacts the Design Model in its function as Software Low-Level Requirements and
Software Architecture. Section4.2 focuses on details relevant for code generation.

4.1 Environment for Design and Simulation

4.1.1 Modeling Rules

Basis for the finally applied set of rules in the presented application were the MAAB
Control Algorithm Modeling Guidelines [27], the MathWorks High-Integrity System
Modeling Guidelines [30], and the MathWorks Code Generation Guidelines [29].

This basic set was reduced by removing duplicates resulting from the independent
historical origin of the rules. Additionally, restrictions imposed by subsequent tools,
especially SLCI, allowed the exclusion of further guidelines (e.g., since no Embedded
MATLAB Charts and Functions are supported, all rules on MATLAB code could be
excluded). Instead and supplemental to this basic collection, custom rules have been
defined. Table 1 lists a summary of the applicable modeling rules at the institute. In
some cases, the custom rules replace or overwrite parts of the MAAB and MathWorks
rules. Then, the respective, underlying rules have been marked as not applicable and
were redefined.

Not included in Table 1 are rules concerning compatibility. Compatibility rules
e.g., for SLCI are documented in the corresponding tool operational requirements.
In the case of SLCI, most of the compatibility rules are also shipped with checks.

During the verification process, the rules may either be reviewed or automatically
checked using Simulink Model Advisor. The collection of Model Advisor checks is
provided to the developer within the Modeling Environment as “Model Advisor Con-
figuration” to allow continuous checking before the subsequent verification process
is triggered.

A closer look at the set of applicable rules reveals, that not all of them have
the same criticality. Rules addressing model appearance are for example necessary
to achieve readable models, but do not impact the generated code. In contrast, an
integer overflow behavior setting is of much higher importance. Thus, the rules are
categorized into three groups:

Table 1 Composition of modeling rules

Source # Rules original # Applicable?
MAAB (v. 3.0) 109 54
MW HI (R2016b) 101 72
MW CG (R2016b) 12 5
Custom 51 51

“For projects at the Institute of Flight System Dynamics
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Safety-critical Rules These rules describe model settings, architecture, and patterns
that significantly contribute to safe code. If these rules are not respected, it is possible
that errors are introduced in the code, which are hard to find in subsequent verification
processes. Additionally, rules are contained that play an important role in the process
and would require a significant restructuring and redefinition. Related Model Advisor
checks of this group require a tool qualification, and a failure or warning is not
accepted and not justifiable.

Compatibility Rules These rules ensure compatibility with subsequent tools and
the process. Incompatibility introduced by the model developer is reliably detected
by the affected qualified tools, thus these rules have no direct relevance for safety.
However, when incompatibility is discovered late, this may lead to significant rework.
This category of rules requires no tool qualification for the checks, a failure is not
accepted, but a warning may be formally justified.

Quality Rules Under this category, all non-critical rules are summarized. They do
not have a direct impact on safety, or their impact is analyzed in subsequent steps
with qualified tools. The rules address readability, maintainability, appearance and
comfort settings. A single violation is not critical, but has impact on the quality
of the model. Related Model Advisor checks shall not fail, but a warning may be
acceptable without formal justification. Quality rules may be summarized to a quality
index. Then, an acceptable quality range may be defined and checked. Quality metrics
and their automated evaluation are a rising topic for models [24].

4.1.2 Modeling Naming Rules

Beside modeling rules, modeling naming rules have been established. To avoid over-
loading of the modeling rules, they were defined in a separate document. The naming
rules give syntax and semantics for names of files and folders, workspace objects,
as well as blocks and signals belonging to the Design Model. The work required for
defining proper naming conventions should not be underestimated due to the direct
impact of the model on code and the high number of different files and workspace
objects to be covered.
The purpose of naming conventions is to support

Compliance to Modeling Rules As described above, the developed set of modeling
rules bases on MAAB, MathWorks High Integrity, and MathWorks Code Generation
Guidelines. At least the first two define naming rules, which have to be respected.

Integration of Software Modules Since the whole application is split into different
software modules, naming conventions must ensure that integration of models and
code is possible without conflicts.

For example, all software modules at the institute currently initialize their objects
into the base workspace, since SLCI had an incompatibility with Data Dictionaries
for a long time. Since the model workspace did not support Simulink.Bus objects
or Simulink.Parameter and Simulink.Signal objects with explicitly set storage class,
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the shared base workspace was the only remaining solution. Naming conventions
ensure that the software modules do not conflict and overwrite data when loaded
together. This special issue was resolved by introducing a short identifier for every
separately developed module prepended to all data initialized in the base workspace
(e.g. af_sensor_data_Bus with prefix af for the autopilot module).

In the Source Code, the uniqueness of global identifiers and file names across
software modules is directly influenced by naming conventions of the model (e.g.
naming of an exported header file). Naming conflicts lead either to mangling in the
code generation process, or errors later on during compilation.

Compliance to Coding Rules Coding rules like MISRA C:2012 [33] include guid-
ance on naming, e.g. enforcing uniqueness of identifiers within a specified range of
characters. Due to automatic code generation, the naming of workspace objects is
the only way to influence MISRA:2012 compliance of the generated code beside
tuning the coder settings.

A typical issue is that the coder adds prefixes to identifiers, which leads to longer
identifiers in the generated code and may result in violation of MISRA C:2012
rule 5.1 requiring a distinct external identifier within the first 31 characters for C99
(due to this definition, postfixes are in general no issue for MISRA compliance). A
bus sensor_data_Bus inamodel called £f1ight_control may introduce the
external identifier f1ight_ control_rtZsensor_data_Bus. In general, EC
can automatically limit identifier length. This however reduces readability and has
limitations.? To avoid a violation, both restrictions on the model and bus name length
are required. Helpful for figuring out limitations of the coder is also the MathWorks
Embedded Coder Compliance Report [31].

In newer releases of EC, the treatment of pre- and postfixes has been significantly
improved. In some cases, if the length of the generated identifier exceeds the maxi-
mum identifier length specified in the coder settings, pre- and postfixes are removed
before the original name is shortened.

Readability of Models Workspace object names should have a clear syntax and
already provide some information about their type and physical meaning. Best exam-
ple is the label of a signal line, which may provide a hint of its boolean data type
by the postfix _f1g. However, more important for a controller application is that it
states its physical meaning in a clear way. A major part of the modeling naming rules
is thus defining the naming of coordinate systems, angles, transformation matrices
(e.g., M_O_B for Mpp as transformation from body-fixed to the north-east-down
system), units (e.g., mDs2 for m/s?) or the translation of mathematical characters
(e.g., mu for u or x_ddot for X).

Readability of Code As already mentioned, coding standards introduce naming
restrictions to ensure compliance with a majority of compilers. Code generators
like EC provide functionality to enforce this compliance. However, most of these
automatic procedures reduce readability and their usage should be avoided if possible

3Limitations on controlling the identifier format are documented in the Embedded Coder User’s
Guide (28] pp. 36-33 “Identifier Format Control Parameters Limitations”.
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by designing the model correctly. For example, a concept to enforce uniqueness of
identifiers is mangling, meaning that similar identifiers are shortened and an arbitrary
but unique sequence of characters is appended. For example, when using Virtual
Subsystems, two similarly named Unit Delay blocks may be placed in the same Source
Code scope. The created global C variables of two blocks called int_unit_delay
with a maximum identifier length of 15 (exemplary) and mangling length of 4 would
be int_unit_delay and int_unit__h4p3j, which reduces readability and
impedes debugging as well as verification later on.

4.1.3 Traceability Plugin

One solution used at the institute to document System Requirements and Software
High-Level Requirements is Polarion REQUIREMENTS.* The application is web-
based and runs on a web server. On model-side, the MathWorks toolbox Simulink
Verification and Validation® provides the Requirement Management Interface (RMI)
to annotate model elements and establish a link to any requirement management tool
that provides a corresponding plugin. The plugin for connecting Polarion and the RMI
is provided by the Polarion Connector for Simulink.® The plugin must be registered
in Simulink and is thus included in the Modeling Environment, too.

4.14 Model Element Library

The model element library contains atomic blocks and small subsystems, which
do not generate separate functions, but are inlined in the code of the higher model
level. These subsystems have to be small enough to be testable in the model and C-
function, in which they are embedded. The usable atomic blocks are mainly defined
by compatibility with SLCI, which comes along with the s1cilib library. This
basic block set was modified to additionally comply with the applicable modeling
rules.

4.1.5 Simulation Configuration Settings
The configuration settings mainly relevant for simulation are solver, optimization

and diagnostic settings. Most of them are given by the guidelines from MathWorks,
MAAB or SLCI. Only a few remain eligible.

“https://polarion.plm.automation.siemens.com/products/polarion-requirements [Cited on 6 Janu-
ary 2017].

Shttp://de.mathworks.com/products/simverification/ [Cited on 6 January 2017].

Polarion Connector for Simulink, see http://extensions.polarion.com/extensions/173-polarion-
connector-for-simulink [Cited on 6 January 2017].
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Table 2 Model configuration settings

Name Description

Top-level Model (Coding) Configuration for the top-level model generating an
interface of type void-void (see also Sect.4.2.1)

Reusable Model (Coding) A reusable model reference can be used for multiple
instances. However, only signals with custom storage
class “Simulink Global” are allowed (see also
Sect.4.2.1)

Singleton Model (Coding) A model reference that can only be embedded once.
This model can include “Exported Global” signals (see
also Sect.4.2.1)

Test Harness (Simulation) Since the test harness encapsulates the whole
model-in-the-loop simulation with e.g., the flight
dynamic model or actuator models, its configuration has
to differ slightly to be compatible

For the presented controller, the solver settings restrict execution to “single rate”
and with a discrete fixed-step solver. For diagnostics, conservative settings are chosen.
Optimization settings mainly affect the generated code and are thus discussed in the
next section.

Although referred to as a single configuration set in here, there are normally
multiple model configurations. Currently, four slightly different model configuration
settings are used in the presented Modeling Environment as listed in Table 2.

Model configuration settings are set in models as “Configuration References”.
This increases maintainability and consistency over all software modules.

4.1.6 Common Library Module

Beside the model element library, a so-called Common Library is provided to the
developer. This library contains subsystems that are too large to be inlined and are
thus reusable model references. These libraries are considered a separate software
module, and follow an own software verification process.

Content of the library are subsystems adding robustness to critical function calls,
like protected divisions, square roots or integrators protected against windup.

4.2 Environment for Code Generation

The generated Source Code shall comply with ANSI ISO/IEC 9899:1999 [13] and
satisfy the rules and directives for autogenerated code (Appendix E) of MISRA
C:2012 [33].
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As already mentioned, EC is used for code generation. The coder provides hun-
dreds of settings and customization possibilities. The following sections demonstrate
the minimum of customization that is required from the viewpoint of a DO-331 soft-
ware development process. In general, it is advisable to avoid extensive customiza-
tion, since any deviation from the default configuration may have an impact on tool
compatibility and robustness [3].

4.2.1 Coder Configuration Settings

Coder configuration settings are manifold and they are defined as modeling rules,
since the border between simulation and coder settings is blurry. Many simulation
settings are directly used by the coder (for example the single- or multi-rate or most
of the optimization settings).

Code Interface The code interface differs depending on the model. For the top-level
model, whose functions are externally called by the surrounding C framework, a
simple non-reusable interface of type void-void is generated. This creates structures
for input and output, as well as void-void initialize and step functions. For
nested models, either a reusable or a non-reusable interface can be chosen, depend-
ing on whether multiple or only a single instance shall be allowed. The code of
non-reusable models may be easier to test separately, since signals can be exposed
as exported global variables. All functions of nested models pass parameters as indi-
vidual arguments to avoid the overhead of copying the input variables into a single
structure.

Code Packaging Code packaging is set for modularity. However, modular code
generation cannot be achieved solely by coder settings. The right usage of built-in
custom storage classes is another important point.

Code Style For the code style, a nominal parenthesis level is used as well as nominal
casting. Note that “Standard compliant” casting is not yet compatible with SLCIL.
Comments must be adjusted to provide sufficient traceability information in the
code. The identifier control was set to standard values.

Support of Functionality Code is generated for a single rate system. Since a floating
point unit is available on the target computer, floating point arithmetic is activated.
Further features like complex numbers, infinite numbers or absolute time are disabled,
since they are neither required nor would they solely be checkable with SLCI due to
the large amount of additional code.

Code Optimization To allow verification with SLCI, advanced code optimizations
are disabled by setting AdvancedOptControl to -SLCI. The optimization group
contains the powerful feature “Signal Storage Reuse”. Although SLCI is compatible
with all of the nested settings, their usage must be analyzed carefully. “Signal Storage
Reuse” on the one hand can drastically improve the performance of the generated
code and reduce the memory requirements, but on the other hand it can significantly
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reduce readability and robustness concerning change. For example, a locally reused
variable may be named according to its first occurrence. In other contexts, in which
it is reused, this name may be misleading and may not fit to the actual meaning of the
stored value. Furthermore, if the first occurrence changes its variable name, changes
all over the generated code will appear. The actual fix around the first occurrence is
hard to find and verify in the code.

4.2.2 Modeling Rules Concerning Coding

The structure of the code is not only influenced by the configuration settings, but
also by block or signal line settings.

Input and Output Data types of Atomic Blocks Atomic blocks often allow an
implicit type conversion. Implicit type conversions affect readability and should
be avoided. The data type should be preserved. The block “Sum of elements” for
example allows setting an accumulator data type as well as an output data type.
Including the input data type, a conversion between three data types is necessary if
set differently. Although supported by EC, this is a SLCI incompatibility in most
cases.

Integer Saturation on Overflow Blocks for integer calculations typically provide
the option to generate code that saturates on integer overflow. This produces signifi-
cant extra code and is not verifiable by SLCI. Integer saturation on overflow should
thus be deactivated in the block and - if required - modeled separately. Exception of
the rule is the Abs block, where hisl_0001 of the High Integrity Guidelines explicitly
advises to set the option (due to the differing positive and negative ranges of signed
integers). It was observed, that developers are normally not aware of this exception,
since they take preset library blocks. The result was dead code for every Abs block
in early verification, since they added their own protections.

Subsystem Settings Simulink knows various kinds of subsystems, basically vir-
tual and non-virtual (atomic) subsystems. Virtual subsystems can be considered
as visual help. The coder eliminates them. By setting a subsystem to “atomic”,
the coder is forced to keep the generated code of the subsystem together. Further
options allow to specify, how this is achieved, either by a function (reusable or
non-reusable) or by a packaged block of code (inlined). Up to release 2016a,
SLCI only supported the inlined option. Structuring code by functions, which is
necessary for testing, was only possible by model references. With Release 2016b,
non-reusable functions are verifiable, too.

Simulink Data Objects By explicitly specifying the storage class of Simulink Data
Objects’ (Simulink.Bus, Simulink.Signal and Simulink.Parameter) and, for example,
their header or source file name, the behavior of the code generator can be influenced.

7http://de.mathworks.com/help/simulink/ug/working-with-data-objects.html [Cited on 6 January
2017].
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Simulink.Parameter objects should be used for non-scalar or structured parameters
to prevent that the coder generates a common data pool [9]. Simulink.Signals for
example may be used to expose signals for global access (for testing) or to define
reused signals and thus prevent data copies.

4.2.3 Customization of the Coding Process and Advanced
Target-Specific Configuration

The coding process, controlled by Target Language Compiler (TLC) files, has not
been modified for the presented controller. Slightly customized is only the Code
Generation Template (CGT), which allows formatting the high-level organization of
the code. The general arrangement of the code remained, only the comment fields
were updated to include further necessary information and exclude the timestamp (to
ease comparison of revisions with Diff tools and identify real changes). Additionally,
a data alignment specification is registered to include alignment information for the
compiler.

4.2.4 Replacement of Shared Utility Functions

When generating C-code from a Simulink model, some atomic blocks expand to
complex functions. These functions are placed in a shared location, so they are only
generated once for all models. They have canonical function and file names differing
for every combination of settings in the block mask.

For these shared C functions, the following aspects have to be considered:

1. In the presented case, the Design Model replaces Software Low-Level and Soft-
ware Architecture. Therefore, the Design Model must be sufficiently descriptive
and granular. If an atomic block produces complex code, this argumentation does
not hold any more.

2. Requirements cannot be linked into shared utility C-code, since these functions

are regenerated every build.

. SLCT just verifies the call, but not the correctness of the function itself.

4. Shared utility function complicate configuration management if their generation
is not controlled. Although the functions have canonical names, the number of C
functions, that can be created, is immense, even with a reduced block set (thou-
sands). Limiting the shared utility functions to a dedicated subset of functions
is task of the modeling rules, which have to restrict the allowed atomic block
settings.

(O8]

As a consequence of points 1 to 3, it is desirable to replace the generated shared
functions by C functions developed and verified along a conventional DO-178C soft-
ware development process. One way is using so-called Code Replacement Libraries.
They allow replacing specified function calls in the generated C-code by custom
calls. This avoids the generation of the shared utilities.
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Not yet solved with this solution is point 4. If the modeling rules are not restrictive
enough, shared code beyond the replaced function may be generated. A repeated
review for unsupported, additionally generated functions is necessary after building
the code.

With Release 2016b, the new EC setting ExistingSharedCode was intro-
duced, which allows the specification of an already existing shared code directory.
EC then scans the specified directory for the functions it requires during code gen-
eration and copies the files to the new shared folder. Identified are the files by their
canonical filename. Further, setting the option UseOnlyExistingSharedCode
allows to automatically abort the coding process, if not all required files are found.
Thus, the developer gets direct feedback, whether the model generates unsupported
shared functions or not.

For the presented controller, only four auto-generated functions are required.
Reason is, that SLCI limits the options e.g., for Lookup Tables and their dimensions.
Additionally, the integrated integer overflow protection functionality is disabled for
all blocks except the Abs Block (see Sect.4.2.2).

e rt_roundd: Although the ISO C standard [13] defines the round function
that rounds halfway cases away from zero regardless the floating point rounding
direction, EC generates rt_roundd, which only bases on ceil and floor
functions. Additionally, it prevents rounding if the units in the last place (ULPs) are
equal or greater than 1.0. The rt _roundd function has probably been introduced
to also ensure calculation equality between simulation and code for non-standard
compliant C libraries.

e rt_modd: This is a protected version and safe implementation of the double-
precision floating point modulo operation generated by the Mathematical Function
block. The function is implemented to preserve simulation and code equality for
non-standard compliant C math libraries. If the typically used fmod function
shall be called directly, the Rem block setting has to be used. However, even the C
standard does not define the behavior for a divisor equal to zero for this function.

e lookl_binlca and look2_binlca: Functions originating from Lookup
Table blocks with double-precision input, output and accumulator data type, binary
search and linear interpolation. Extrapolation method is “cut” and out-of-range
protection is not removed.

4.2.5 Replacement of Compiler-Supplied Libraries

Beside the shared functions, the controller code generated with EC addresses addi-
tional standard C functions like sin or memcpy. Although these basic functions are
normally supplied with the compiler, they have to be verified separately and must
satisfy DO-178C objectives [2].

Depending on the used libraries, a Code Replacement Library must be registered
in Simulink before generating code, to replace standard C function calls (e.g., a
sin(...) tocert_sin(...)).
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5 Summary

Using Simulink and Stateflow for implementing a Design Model is not an out-of-
the box solution, but requires a planned setup and preparation of the tool. In this
paper, aspects of a consistent Modeling Environment were presented in the light of
the used hardware, application design considerations, and the chosen model-based
development process.

The paper structured the Modeling Environment in two parts, one containing the
relevant components concerning the role of the Design Model as Software Design
and Software Architecture, and a second part with focus on code generation. For the
first part, an overview of the applicable rules was given and model libraries as well
as a important configuration settings have been highlighted. The code generation
part pointed out the major settings relevant for EC and strategies to deal with code
libraries.

The details in this paper should not be seen as the ultimate solution for every com-
pany and workflow due to the varying context, but the key aspects can be considered
in every safety-critical project.

The close connection between Design Model and Source Code in a code-
generation based process emphasizes the importance of presciently planned rules,
restrictions, and settings for MATLAB, Simulink, and Stateflow, since any setting
in the Design Model may directly impact the Source Code. Making the Modeling
Environment consistent may require an iterative process and experience.

The discussion also showed the central role of SLCI. This tool should not only be
seen as a sole verification tool since it also plays an important part in defining a safe
and robust subset of MATLAB, Simulink, and Stateflow features for safety-critical
applications.

The outlined Modeling Environment is a snapshot of the effort taken at the Institute
of System Dynamics. Further investigation is planned on modular code generation,
and optimal settings for improved compatibility with 3rd party tools used along
the workflow, like WCET analyzers or special compilers, all coming along with
additional restrictions.
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