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Nomenclature

Rso: ideal geosynchronous radius = 42164000m
λso: ideal satellite longitude
ωe: sidereal earth rotation rate = 7.2921159E-05 rad/s
R, L,λ: radius, geocentric latitude, longitude
Reo: equatorial radius = 6378136.6m
f: earth flattening = 1/298.25642
h: landmark altitude
φ, θ, ψ: roll, pitch, yaw
ECLF: earth centered local frame
GEOS: fixed grid frame
LOS: line of sight
LRF: LOS reference frame
IIRF: imager internal reference frame
ACF: attitude control frame
ORF: orbit reference frame
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Iixi, 0ixj: ixi identity matrix, ixj null matrix
S, C: Sin, Cos
EW, NS: East-West, North-South

Subscripts

0, s, e: initial, satellite, earth
T: landmark point on earth
ma: misalignment
m: number of imager internal misalignment
att: spacecraft attitude from telemetry
corr: thermoelastic/attitude correction angles

1 Introduction

The term image navigation and registration and the INR acronym were coined by
Kamel [1] and patented in US Patents # 4,688,091, 4,688,092, and 4,746,976 to
represent a system that determines image pixel location and register it to fixed grid
frame (called FGF in GOES and GEOS in COMS and in this paper). This INR inven-
tion became the foundation for subsequent GOES and similar systems worldwide
[2–5]. The INR system requirements tightened as spacecraft and ground hardware
improved [6–9].

The image navigation part of INR relates to LOS absolute pointing. Section2
defines the INR and KF state vectors needed for this process. Section3 describes
new INR method (patent application being filed in ROK) based on landmark mea-
surements to determine orbit, attitude correction, and imager misalignments with
maneuvers delta V provided by FDS. Also, orbit refinement can be made if FDS pro-
vides orbit with coarse accuracy instead of delta V. Section4 shows the simulation
results of this basic system. Section5 shows how the new method can be adapted to
be used for other INR systems implemented nowadays.

The image registration part of INR relates to LOS stability. The objective of image
registration is to provide the users with images with pixels that have the same fixed
earth location regardless of time. Section6 provides an algorithm for transferring
pixels from LOS frame to GEOS frame needed for pixel data resampling in GEOS
frame.

2 INR and KF SV Definitions

The INR and KF SV definitions and the associated time series are given in the next
three subsections.
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2.1 INR SV Definition

The INR SV is required for transformation from LRF to GEOS for Sect. 3.1.2. This
is given by:

SVINR = [SVT
ma SV

T
corr SV

T
att SV

T
orb]T (1)

SVma is based on IIRF misalignment relative to LRF.
SVcorr, SVatt, and SVorb are based on:
(φcorr θcorr ψcorr) = ACF attitude relative to IIRF.
(φatt, θatt,ψatt) = ORF attitude relative to ACF.
(φorb, θorb,ψorb) = GEOS attitude relative to ORF.

For single mirror imagers, such as GOES I-P, COMS, MTSAT2, SVma is given by:

SVma = [φma θma]T (2.1)

= SVma,model + xma (2.2)

SVma,model = [φma,model θma,model]T
SVcorr = [φcorr θcorr ψcorr]T (3.1)

= SVcorr,model + xcorr (3.2)

SVcorr,model = [φcorr,model θcorr,model ψcorr,model]T

The thermoelastic misalignment and correctionmodels are computed in Sect. 3.4 and
(xma, xcorr) are defined in Sect. 2.2 and determined by KF.

SVatt = [φatt θatt ψatt]T from telemetry (4)

SVorb = [Rs �λs Ls ]T (5.1)

Rs = Rso

(
1 + �Rs

Rso

)
, �λs = λs − λso (5.2)

For 3,1,2 type rotation, SVORF is given by:

SVORF = [φorb θorb ψorb]T (6.1)

For Spacecraft x axis parallel to earth equator (e.g., COMS):

SVORF = [Ls �λs 0]T (6.2)
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For Spacecraft x axis parallel to orbit plane (e.g., GOES I-M):

SVORF = [Ls �λs L̇s/ωe]T (6.3)

(
�Rs
Rso

,�λs,Ls L̇s/ωe

)
are Kamel parameters [10, 11] originally used for GOES I-M.

If FDS provides maneuver delta V:

�Rs

Rso
= δRs

Rso
,�λs = δ λs,Ls = δLs,Ls = δLs (7.1)

(
δRs

Rso
, δ λs, δLs, δ L̇s

)
= ideal ordeal refinement by KF.

If FDS provides orbit instead of maneuver delta V:

Rs = Rso

[
RFDS

Rso
+ δRs

Rso

]
�λs = �λFDS + δ λs,

Ls = LFDS + δLs, L̇s = L̇FDS + δ L̇s (7.2)(
δRs

Rso
, δ λs, δLs, δ L̇s

)
= FDS ordeal refinement by KF.

2.2 KF SV Definition

SVKF = x is needed to determine SVINRof Sect. 2.1. This is defined as follows:

X = [XT
corr ẊT

corr XT
orb ẊT

orb XT
ma ẊT

ma]T (8.1)

Xcorr = [δ φcorr δ θcorr δ ψcorr]T (8.2)

Ẋcorr = [
bφcorr

bθcorr bψcorr

]T = constant (8.3)

Xorb =
[
δRs

Rso
δ λs δLs

]T

(8.4)

Ẋorb =
[
δ Ṙs

Rso
δ λ̇s λL̇s

]T

(8.5)

Xma = [δ φma δ θma]T (8.6)

Ẋma = [bφma
bθma ]T = constant (8.7)

At KF start, x = 012+2m.
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2.3 SV Time Series

SVINR time series are generated at points spaced by �ti for image registration of
Sect. 6. This requires interpolation between SVKF time series points determined by
landmarks (or star measurements) time series points based on attitude telemetry (e.g.,
at one second interval) and FDS orbit, SVma,model, and SVcorr,model time series (e.g., at
one minute interval). The SVKF time series between measurements can be obtained
as follows:

X(ti) = A(�ti)X(t0), �ti = ti − ti − t0, t0 ≤ ti ≤ t1 (9.1)

A(�ti ) =
⎡
⎣Acorr(�ti ) 06×6 06×2m

06×6 Aorb(�ti ) 06×2m

02m×6 02m×6 Ama(�ti )

⎤
⎦ (9.2)

Acorr(�ti ) =
[
I3×3 I3×3�ti
03×3 I3×3

]
(9.3)

Aorb(�ti) obtained from the well-known Euler-Hill equations [12]

Aorb(�ti) =
[
A11 A12

A21 A22

]
(9.4)

A11 =
⎡
⎣ (4 − 3 C) 0 0

6(S − γ) 1 0
0 0 C

⎤
⎦ (9.5)

A12 =
⎡
⎣ ω−1

e S 2ω−1
e (1 − C) 0

−2ω−1
e (1 − C) ω−1

e (4S − 3 γ) 0
0 0 ω−1

e S

⎤
⎦ (9.6)

A21 =
⎡
⎣3ωeS 0 0

6ω−1
e (C − 1) 0 0

0 0 −ωeS

⎤
⎦ (9.7)

A22 =
⎡
⎣ C 2 S 0

−2 S (4C − 3) 0
0 0 C

⎤
⎦ (9.8)
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C = Cos γ, S = Sin γ, γ = ωe�ti , ω−1
e = 1

ωe
.

For small �ti , C = 1 and S = γ = ωe�ti ,

Aorb(�ti ) =
[
I3×3 I3×3�ti
03×3 I3×3

]
(9.9)

Note that Euler-Hill equations used to model orbit and Sect. 3.4 used to model ther-
moelastic angles leads to significant reduction of the number of landmarks processed
by KF compared to using simple linear models that are only valid for short time.

Ama(�ti ) =
[
Im×m Im×m�ti
0m×m Im×m

]
(9.10)

m = number of imager internal misalignments.

For single mirror imager used for GOES I-P, COMS, MTSAT2 and in this pa-
per, m = 2. For two mirror imagers, the number of misalignments depend on the
thermoelastic effect on pointing. The leading term was called Orthogonality (Oma)
by Kamel because it represents deviation of the scanning axes from being perpen-
dicular. Note that if only Oma has significant effect on pointing [11], the number of
misalignments m = 1.

3 Image Navigation Using KF

Figure1 shows KF flow for the basic INR method. KF uses one landmark at a time
to determine best (a-posteriori) state vector and covariance matrix estimate (x+

1 , P
+
1 ).

KF is then re-initialized tomake propagation always between t0 and t1 and estimation
at t1.

The 3-step process is as follows:

1. a-priori state vector and covariance matrix (x−
1 , P

−
1 ) obtained from (x+

0 , P
+
0 ) using

the transition matrix A(�t), �t = t1 − t0 and error matrix Q(�t) obtained from
system model. This first step is called SV and covariance matrix P propagation

Fig. 1 Kalman filter for the basic INR method



Generalized Image Navigation and Registration … 615

between two successive landmarks.

x−
1 = A(�t)x+

0 (10.1)

P−
1 = A(�t)P+

0 A(�t)T + Q(�t) (10.2)

2. (x+
1 , P

+
1 ) obtained from (x−

1 , P
−
1 ) and measurement model (Z, H,R). This second

step is called SV and covariance matrix P estimation at t1. Kalman assumed
the relation- ship between x+

1 and x−
1 is given by a form like least squares and

determined associated Kalman gain matrix K and covariance matrix P:

x+
1 = x−

1 − K�Z , �Z = Z − Z̄ (11.1)

K = P−
1 H

T(HP−
1 H

T + R)−1 (11.2)

P+
1 = (I − KH)P−

1 (I − KH)T + KRKT (11.3)

The residual �Z is computed as follows:

• Compute SVINR from x−
1 using Sects. 2.1 and 2.2.

• Compute landmark residuals using Sect. 3.1.
• If landmark is rejected because residual is outside predetermined limit:
– Re-initialize KF: (t0, x

+
0 , P

+
0 ) = (t1, x

+
1 , P

+
1 ) = (t1, x

−
1 , P

−
1 ).

– Skip estimation and go to next landmark.

If landmark is accepted, compute x+
1 using Eq. (11.1).

Note that (�x+
corr, �x+

orb, �x+
ma) = (x+

corr, x
+
orb, x

+
ma) − (x−

corr, x
−
orb, x

−
ma) obtained

from Eq. (11.1) can cause jumps in level 1B images at t1. This can be avoided
by replacing (ẋ+

corr, ẋ
+
orb, ẋ

+
ma) [also obtained from Eq. (11.1) and given by Eqs.

(8.3), (8.5) and (8.7)] with (ẋ+
corr, ẋ

+
orb, ẋ

+
ma) + (�x+

corr, �x+
orb,�x+

ma)/ δ t, where,
δ t = delta time to next landmark or next KF point. After this slope adjustment,
set (x+

corr, x
+
orb, x

+
ma) = (x−

corr, x
−
ma, x

−
ma) at t1.

3. The third step is to re-initialize KF by setting (t0, x
+
0 , P

+
0 ) = (t1, x

+
1 , P

+
1 ) to start

the next cycle from t0 to t1 and compute SVINR from x+
1 using Sect. 2. This is

needed for Sect. 6.

3.1 KF Landmark Residual Computation

The landmark residuals �Z = Z − Z̄ are computed from the next two subsections.

3.1.1 Actual Landmark Measurement Z̄

In view of Fig. 2, we get:
�RTo = �T − �RSo (12.1)

http://dx.doi.org/10.1007/978-3-319-65283-2_11
http://dx.doi.org/10.1007/978-3-319-65283-2_11
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Fig. 2 ECLF to GEOS geometry

Using vector components in GEOS coordinates, we get:

�RTo = (Re + h)

⎡
⎣ CLTS�λT

−SLT

−CLTC�λT

⎤
⎦ − Rso

⎡
⎣ 0

0
−1

⎤
⎦

= RTo

⎡
⎣ CN̄GEOS

SĒGEOS−SN̄GEOS

CN̄GEOS
CĒGEOS

⎤
⎦ (12.2)

Re = Reo(1 + aS2LT
)−

1
2 ∼= Reo(1 − f S2LT

) (12.3)

�λT = λT − λso, a = (1 − f)−2 − 1 ∼= 2f (12.4)

This leads to:

RTo =
√
R2
so + (Re + h)2 − 2Rso(Re + h)CLTC�λT (13.1)

ĒGEOS = Arc tan

[
(Re + h)CLTS�λT

Rso − (Re + h)CLTC�λT

]
(13.2)

N̄GEOS = Arc sin

[
(Re + h)SLT

RTo

]
(13.3)

Z̄ =
[
ĒGEOS

N̄GEOS

]
(13.4)
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3.1.2 Estimated Landmark Measurement Z

Transformation of landmark (ELRF, NLRF) coordinates to (EGEOS, NGEOS) coordinates
is obtained in the next 4 subsections.

3.1.2.1 ÛIIRF and R̂IIRF Computation

For single mirror instruments:

EIIRF = ELRF − (φmaSNLRF + θmaCNLRF) (14.1)

NIIRF = NLRF − (φmaCNLRF − θmaSNLRF)/CELRF (14.2)

(ELRF, NLRF) = determined landmark (EW, NS) angles.
To get (ELRF, NLRF) from (EIIRF, NIIRF) for inverse transformation, two iterations

of Eqs. (14.1) and (14.2) may be needed.
The unit vector ÛIIRF components in IIRF coordinates is obtained by a rotation

NIIRF about X-axis followed by a rotation EIIRF about new Y-axis. This leads to:

ÛIIRF =
⎡
⎣ SEIIRF

−CEIIRF SNIIRF

CEIIRF CNIIRF

⎤
⎦ (14.3)

The unit vector R̂IIRF components in GEOS is given by:

R̂IIRF = CGEOS
IIRF ÛIIRF = [R̂GEOS,X R̂GEOS,Y R̂GEOS,Z]T (14.4)

Note that for inverse transformation, use:

ÛIIRF = CIIRF
GEOSR̂IIRF,C

IIRF
GEOS = [CGEOS

IIRF ]T (14.5)

3.1.2.2 IIRF to GEOS Transformation Matrix Computation

Transformation from IIRF to GEOS is 3,1,2, type rotation and can be obtained from
Appendix E, Table E-1, Ref. [13] by replacing (φ, θ, ψ) with (ψC, φC, θC):

CGEOS
IIRF =

⎡
⎣CθCψ − SθSφSψ CθCψ + SθSφSψ −SθCφ

−SψCφ CψCφ Sφ

SθCψ + CθSφSψ SθSψ − CθSφCψ CφCθ

⎤
⎦

C

∼=
⎡
⎣1 ψC − θC

− ψC 1 φC

θC −φC 1

⎤
⎦ (15.1)

In view of Eqs. (3.1), (4), and (6.1) to (6.3) we get:
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Fig. 3 Image navigation geometry

SVC =
⎡
⎣ φc

θC
ψC

⎤
⎦ = SVACF + SVcorr (15.2)

SVACF =
⎡
⎣ φ

θ
ψ

⎤
⎦ = SVORF + SVatt (15.3)

SVcorr =
⎡
⎣ φcorr

θcorr
ψcorr

⎤
⎦ ,SVORF =

⎡
⎣ φorb

θorb
ψorb

⎤
⎦ ,SVatt =

⎡
⎣ φatt

θatt
ψatt

⎤
⎦ (15.4)

3.1.2.3 RIIRF computation

In view of Fig. 3 and Eq. (14.4), we get:

�T = �RS + �RIIRF (16.1)

(Re + h)

⎡
⎣ CLTS�λT

−SLT

CLTC�λT

⎤
⎦ = RS

⎡
⎣ CLSS�λS

−SLS

−CLSC�λS

⎤
⎦ + RIIRF

⎡
⎣ R̂GEOS,x

R̂GEOS,y

R̂GEOS,z

⎤
⎦ (16.2)

RIIRF can be obtained from Eq. (16.1) as follows:

|�T| = |�RS + �RIIRF| (17.1)
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(Re + h)2 = R2
IIRF + R2

s + 2RIIRFRsCαs (17.2)

Cα s = − dot product of unit vectors R̂s and R̂IIRF

= −R̂GEOS,xCLsS�λs + R̂GEOS,ySLs + R̂GEOS,zCLsC�λs

Solution of the quadratic Eq. (17.2) leads to:

RIIRF = RS/r (17.3)

r =
{
Cαs −

√
c2αs

− c2αso

}−1

C2
αso

= 1 − [(Re + h)/Rs]2 (17.4)

Note that the parameter r is the same as A (α) in [1] and r in [11] and was called earth
curvature parameter by Kamel because its value is dependent on Earth curvature.
Re is obtained from Eq. (12.3) with SLT from the middle row of Eq. (16.2):

sLT = Rs

(
SLS − R̂GEOS,y

r

)
/(Re + h) (17.5)

Note that because S2LT is multiplied by small number in Eq. (12.3), one or two
iterations using Eqs. (12.3), (17.4) and (17.5), starting with Re = Reo in Eqs. (17.4)
and (17.5), should be sufficient to get accurate values for Re and r.

Note also that if C2
αs

< C2
αso

,
√
c2αs

− c2αso
in Eq. (17.4) is imaginary indicating that

the image pixel (ELRF,NLRF) corresponds to a point outside earth and (EGEOS,NGEOS)

transition from earth to space will be undefined. This can be avoided if a fictitious
earth with Cαso = Cαs is used in Eq. (17.4) for the space portion of the earth images.
In this case, Eqs. (17.3) and (17.4) lead to:

r = 1

cαs

,RIIRF = RSCαs (17.6)

3.1.2.4 GEOS Coordinate Computation

In view of Fig. 3, we get:
�RIIRF0 = �RIIRF + ��Rs (18.1)

�RIIRF0 from Eqs. (14.4) and (17.3) or (17.6),

��Rs = �Rs − �Rs0 =
⎡
⎣ RsCLsS�λs

−RsSLs

Rso − RsCLsC�λs

⎤
⎦ (18.2)
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(EGEOS, NGEOS) are obtained from Figs. 2 and 3 and Eqs. (18.1) and (18.2):

⎡
⎣ CNGEOSSEGEOS

−SNGEOS

CNGEOSCEGEOS

⎤
⎦ =

⎡
⎣ R̂GEOS0,x

R̂GEOS0,y

R̂GEOS0,z

⎤
⎦ = �RIIRF + �R̂s

| �RIIRF + ��Rs|
(18.3)

EGEOS = Arc tan

[
R̂GEOS0,x

R̂GEOS0,z

]
(18.4)

NGOES = −Arc sin R̂GEOS0,y (18.5)

Z =
[
EGEOS

NGOES

]
(18.6)

Note that for starmeasurements, Z is obtaineddirectly fromEq. (14.4) andSect. 3.1.2.3
skipped because ��RS is insignificant compared to �RIIRF in Eq. (18.3).

3.2 KF Initial Conditions

KF initial conditions are given by:
t0 = epoch time = UTC0 at KF start.
x+
0 = SVKF at epoch = 012+2m

P+
0 = error covariance matrix at epoch =

⎡
⎣Pcorr,0 06×6 06×2m

06×6 Porb,0 06×2m

02m×6 02m×6 Pma,0

⎤
⎦ (19.1)

Pcorr,0 = σ2
corr,0

[
I3×3 03×3

03×3 03×3

]
,Porb,0 = σ2

orb,0

[
I3×3 03×3

03×3 03×3

]

Pma,0 = σ2
ma,0

[
Im×m 0m×m

0m×m 0m×m

]
(19.2)

σcorr,0 ∼= σorb,0 ∼= σma,0
∼= 5.0E − 05 for simulation.

3.3 KF Detailed Computation

After level 1A data block searched for landmarks and determined landmarks are time
tagged, KF propagates (t0, x

+
0 , P

+
0 ) from last event prior to this data block and re-

initialized after the(t1, x
+
1 , P

+
1 ) estimation as shown in Fig. 1. If no landmarks found
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within the data block, go to end of block of Eq. (21). Otherwise, let LMT = total
number of determined landmarks within the data block and do the following:

For k = 1 to LMT do to ENDFOR

�t = t1 − t0, t1 = UTCk time at landmark number k. (20)

Propagation: From step number 1 of Sect. 3.
Estimation: From step number 2 of Sect. 3.
Re-initialize KF: From step number 3 of Sect. 3.
ENDFOR

At end of data block, do the following:

�t = t1 − t0, t1 = UTCend = time at end of data block (21)

Propagation: From step number 1 of Sect. 3.
Re-initialize KF: (t0, x+

0 , P
+
0 ) = (t1, x

+
1 , P

+
1 ) = (t1, x

−
1 , P

−
1 )

Compute SVINR from x+
1 using Sect. 2. This is needed for Sect. 6.

If maneuver delta V provided by FDS
At maneuver, do the following:

�t = t1 − t0, t1 = UTCmaneuver = maneuver time (22.1)

Propagation: From step number 1 of Sect. 3.
Re-initialize KF:

x+
1 = x−

1 + �x (22.2)

P+
1 = P−

1 + �P (22.3)

�x =
[
01×9

�vFDS,r

Rso

�vFDS,λ

Rso

�vFDS,L

Rso
01×2m

]T

(22.4)

�P = diagonal terms 10 to 12 from delta v error analysis.

(t0,x
+
0 ,P+

0 ) = (t1, x
+
1 ,P+

1 ) (22.5)

Compute SVINR from x+
1 using Sect. 2. This is needed for Sect. 6.

If orbit is delta V provided by FDS instead of delta V
At maneuver, do the following:

�t = t1 − t0, t1 = UTCOD = orbitdeterminationtime (23.1)

Propagation: From step number 1 of Sect. 3.
Re-initialize KF:
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x+
1 = x−

1 + δ x (23.2)

P+
1 = P−

1 + δP (23.3)

δ x =
[
01×6 δ

(
�Rs

Rso

)
δ �λs δLs 01×(3+2m)

]T

(23.4)

(δ �Rs, δ �λs) = (RFDS,�λFDS,LFDS)
− before OD

− (RFDS,�λFDS,LFDS)
+ after OD (23.5)

δP = diagonal terms 7 to 9 from OD error analysis.

(t0,x
+
0 ,P+

) = (t1, x
+
1 ,P+

1 ) (23.6)

Compute SVI N R from x+
1 using Sect. 2. This is needed for Sect. 6.

Transition matrix A: From Sect. 2.3.
Process noise covariance matrix Q: From Ref. [13], Eqs. (13)–(83) and (13)–

(89), we get:

Q(�t) = V0 + V�t + 1

2
[FxV + VFT

x ]�t2 + 1

3
FxVF

T
x�t3 (24.1)

V0 =
⎡
⎣Vcorr,0 06×6 06×2m

06×6 Vorb,0 06×2m

02m×6 02m×6 Vma,0

⎤
⎦ , Vy,0 =

[
σ2
e,yI3×3 03×3

03×3 03×3

]
(24.2)

V =
⎡
⎣Vcorr 06×6 06×2m

06×6 Vorb 06×2m

02m×6 02m×6 Vma

⎤
⎦ , Vy =

[
σ2

ν,y I3×3 03×3

03×3 σ2
u,y I3×3

]
(24.3)

where,

y = corr, orb, or ma. For ma, 3 replaced by m.
σe = measurement white noise standard deviation, rad.
σν = random walk standard deviation, rad/sec1/2.
σu = rate random walk standard deviation, rad/sec3/2.

FX =
⎡
⎣Fcorr 06×6 06×2m

06×6 Forb 06×2m

02m×6 02m×6 Fma

⎤
⎦ , Fcorr =

[
03×3 I3×3

03×3 03×3

]
(25.1)

Forb from Euler-Hill equations:

Forb =
[
03×3 I3×3

ω2
e F21 2ωe F22

]
∼=

[
03×3 I3×3

03×3 03×3

]
(25.2)
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F21 =
⎡
⎣3 0 0
0 0 0
0 0 −1

⎤
⎦ ,F22 =

⎡
⎣0 1 0

−1 0 0
0 0 0

⎤
⎦ ,Fma =

[
0mxm Imxm

0mxm 0mxm

]

(25.3)
This leads to:

Q(�t) =
⎡
⎣Qcorr 06×6 06×2m

06×6 Qorb 06×2m

02m×6 02m×6 Qma

⎤
⎦ (25.4)

Qy =
⎡
⎣

(
σ2
e,y + σ2

v,y �t + 1
3 σ2

u,y �t3
)
I3×3

1
2 σ2

u,y �t2I3×3

1
2 σ2

u,y �t2I3×3 σ2
u,y �tI3×3

⎤
⎦ (25.5)

where,
y = corr, orb, or ma. For ma, I3×3 is replaced by Imxm.
Note that the first element of the abovematrix is the same as in [13], Eq. (7)–(143).
The sigma values can be computed using Eq. (25.5), SVINR error analysis and

estimate of time between measurements. For simulation, this leads to:
(σe,corr, σe,orb, σe,ma) = (1.942E − 07, 0, 0) rad.
(σν,corr, σν,orb, σν,ma) = (4.8E − 07, 0, 1.269E − 09) rad/s1/2.
(σu,corr, σu,orb, σu,ma) = (4.774E − 10, 9.32E − 13, 2.318E − 11) rad/s3/2.

Landmark measurement noise covariance matrix R:

R = σ2
M I2×2

σM = sigma measurement noise calculated from landmark determination error
analysis (=0.1 pixel for simulation).

Landmark location sensitivity matrix H:

H is determined from ( ∂Z
∂x )x=0 where Z is the estimated landmark measurement

from Sect. 3.1.2 using the linear representation of CGEOS
IIRF of Eq. (15.1). After some

laborious algebraic manipulation, we get:
H = 2 × (12 + 2m) matrix given by:

H =
(

∂Z

∂x

)
x=0

= [Hcorr Horb Hma] (26.1)

where,

Hcorr = −
[
TN̄SĒ 1 TN̄CĒ 01×3

CĒ 0 − SĒ 01×3

]
(26.2)

For Spacecraft x axis parallel to earth equator (e.g., COMS):

Horb = −
[
0 1 TN̄SĒ 01×3

0 0 CĒ 01×3

]
+ r̄

[
SĒ
CN̄

CĒ
CN̄

0 01×3

CĒSĒ −SĒSN̄ CN̄ 01×3

]
(26.3)
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For Spacecraft x axis parallel to orbit plane (e.g., GOES I-M):

Replace

[
0 1 TN̄SĒ 01×3

0 0 CĒ 01×3

]
by

[
0 1 TN̄SĒ 01×2 TN̄CĒ/ωe

0 0 CĒ 01×2 −SĒ/ωe

]

r̄ =
(
Cᾱs −

√
C2

ᾱs
− 1 + ((Re + h)/Rso)2

)−1

(26.4)

Cαs = Cosαs = CN = CE (26.5)

TN = TanNGEOS, SN = SinNGEOS, CN = CosNGEOS

SE = SinEGEOS , CE = CosEGEOS

(EGEOS , NGEOS) = landmark location from Eq. (13.4).

Re = earth radius at landmark location from Eq. (12.3).

h = landmark altitude.

For star measurements, r = 0 and Horb becomes insensitive to orbit translational
part (δR/Rso, δ λ, δL). Therefore, stars cannot be used to refine orbit and, therefore,
orbit refinement must be deleted from KF as described in Sect. 5.1.

Hma =
[
C11 C12 0 0
C21 C22 0 0

]
(26.6)

C11 = −C22

CN
, C12 = −C21

CN
, C21 = − SE − CN

1 − CNSE
, C22 = − SNCN

1 − CNSE
(26.7)

Hma for two mirror imaging systems to be investigated in the future.

3.4 Thermo-Elastic Model Time Series

The thermo-elastic SVma,model and SVcorr,model time series can be obtained form Eqs.
(2.1)–(3.2) as follows:

1. Create daily time series at, e.g., one-minute interval for, e.g., seven days using
interpolation of SVma and SVcorr data at time ti,n, i = 1, 2, . . . , 1440 and n =
1, 2 . . . , 7.

2. The SVma,model(ti,n) and SVcorr,model(ti,n) for the next day (n = 8) are obtained by
averaging the last seven days of SVma(ti,n) and SVcorr(ti,n) data:

SVma,model(ti,8) = 1

7

∑n=7

n=1
SVma(ti,n) (27.1)

SVcorr,model(ti,8) = 1

7

∑n=7

n=1
SVcorr(ti,n) (27.2)
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Note that SVma,model and SVcorr,model are initially determined by analysis or set to
zero.

3. Repeat above process once a day using one-day sliding window.

4 Simulation Results

A hundred landmarks distributed over earth and COMS imaging schedule were used
in the simulation [14, 15]. The true SVINR is calculated using eccentricity =0.0001,
inclination = 0.05◦, SVma,model and SVcorr,model amplitudes = 100 μrad, with 24-h
period, and attitude amplitude = 300 μrad with 2.4-h period. The maneuver delta V
times are obtained from [16], Fig. 8, and magnitudes from [17], Tables2.

The estimated SVINR are shown in Fig. 4 for seven days and is computed using
Sect. 3.3 based on SVma,model and SVcorr,model errors =10 μrad, FDS maneuver delta
V errors from [17], Table3 (or FDS orbit determination error from Table7). Figure5
shows SVerrors, δ SV = SVINR − SVINR. Figure6 shows residual errors computed
using Sect. 3.1. The simulated landmarks are obtained using the true SVINR to transfer
(EGEOS,NGEOS) to (ELRF,NLRF) based on Sect. 3.1.2 inverse transformation. The
estimated (ELRF,NLRF) are then obtained from actual (ĒLRF, N̄LRF) by adding a
random normal distribution land- mark determination error with σM = 2.8E-06 rad
for visible landmarks and σM = 11.2E-06 rad for IR landmarks. Simulation was also
successfully used to stress test the basic method for cases using eccentricity= 0.001,
inclination = 0.5◦, SVma,model and SVcorr,model amplitudes = 1000 μrad with errors
=100 μrad and only IR landmarks.

5 Adaptation to Other Systems

The following 3 subsections show how the basic method described in Fig. 1 can be
adapted to be used for systems based on star and landmark measurements, star only
measurements with orbit from FDS or GPS, and systems with attitude rate telemetry
inserted in the image wideband data.

5.1 Systems Based on Star and Landmark Measurements

For stars:

• KF refinements (δRs/Rso, δ λs, δLs) = (0,0,0) and (xorb, ẋorb) deleted from KF
state vector.

• Rows and columns associated with Porb,0, Aorb, Porb and Forb deleted from P+
0 , A,

V, V0, and Fx.
• Horb deleted from H.
In this case:
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Fig. 4 KF state vector

• one star per minute or 3 stars per 5min are sufficient to determine KF
xcorr and xma.

• SVKF dimension = 6 + 2m instead of 12 + 2m.
• KF detailed computation is like basic method with landmarks replaced by stars.
For landmarks:

• Use KF for orbit refinements (δRs/Rso, δ λs, δLs) using the above deleted items.
In this case:

• Few landmarks (e.g.,10 well distributed landmarks over earth) are sufficient to de-
termine (xorb, ẋorb).

• SVKF dimension = 6 instead of 12 + 2m.

5.2 Systems Based on Star only Measurements

• KF is same as in Sect. 5.1 for stars. In this case, the orbit must be provided by FDS
or GPS.
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Fig. 5 SV errors δSV = SVINR − SVINR

5.3 Systems Based on Inertial Angular Rate Telemetry

The (ωsx, ωsy, ωsz) telemetry represent inertial angular rate along ACF axes in the
form of time series spaced at�tatt (e.g., 0.01 s) inserted in the imager wideband data.
The rates SVACF of Eq. (15.3) can be obtained from (ωsx, ωsy, ωsz) using Fig. 3 with
IIRF replaced by ACF. Starting with θ̇ + ωe about−YGEOS axis followed by φ̇ about
the new −X axis followed by ψ̇ about −ZACF axis and using Eqs. (14.5) and (15.1),
we get:

⎡
⎣ωsx

ωsy

ωsz

⎤
⎦ = −ψ̇

⎡
⎣0
0
1

⎤
⎦ − φ̇

⎡
⎣Cψ

Sψ

0

⎤
⎦ − (θ̇ + ωe)

⎡
⎣ SψCφ

CψCφ

Sφ

⎤
⎦ (28.1)

This leads to:
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Fig. 6 Landmarks measurement residuals

SV̇ACF =
⎡
⎣ φ̇

θ̇

φ̇

⎤
⎦ = −

⎡
⎣ ωsySψ +ωsxCψ

ωe + (ωsyCψ −ωsxSψ)/Cφ

ωsx − (ωsyCψ −ωsxSψ)Sφ /Cφ

⎤
⎦

∼= −
⎡
⎣ ωsx + ωsy ψ

ωsy + ωe − ωsx ψ

ωsz − ωsy φ

⎤
⎦ (28.2)

Note that Eq. (28.2) can also be obtained from [13], Appendix E Table E-2 for 2, 1,
3 type rotation by replacing (φ, ψ) with −(φ, ψ) and (ωI, ωJ, ωK) with (ωsy, ωsx,
ωsz) on the right side of the equation and replacing (φ̇, θ̇, ψ̇) with −(θ̇ + ωe, φ̇, ψ̇)

on the left side of the equation.
Now, the SVC time series spaced by �tatt over �t = t1−t0 is computed as follows:

Let j = Integer(�t/�tatt)
For i = 1, …, j plus final step from τj to t1

SVACF(τi) = SVACF(τi−1) + SV̇ACF(τi−1)�tatt (28.3)

where

SV̇C(τi−1) = SV̇ACF(τi−1) + SV̇corr,model(τi−1) + ẋcorr(τi−1) (28.4)
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With

SVC(τi) = SVACF(τi) + SVCorr,model(τi) + xcorr(τi) (28.5)

SVcorr,model obtained from Sect. 3.4 and xcorr determined by KF and defined in Eqs.
(8.2) and (8.3).

At KF start (see Sects. 3.2 and 3.4):

SVKF = 012+2m and SVcorr,model = 03 (29.1)

In view of Eqs. (15.2), (15.3), and (6.1) to (6.3)

SVC(0) = SVACF(0) = SVORF(0) + SVatt(0) (29.2)

SVatt(0) from telemetry or = 03. (29.3)

At KF re-initialization (see Fig. 1):

SVC(0) = SVC(t1) from Eq. (28.4) (29.4)

SVACF(0) = SVACF(t1) from Eq. (28.3) (29.5)

SV̇ACF(0) = SV̇ACF(t1) from Eq. (28.2) (29.6)

Note that SVACF of Eq. (28.4) is corrected by xCorr determined by KF to compensate
for gyro drift and the first part of Horb in Eq. (26.3) must be deleted.

6 Image Registration Using Resampling

Image registration requires two steps. The first step is to transfer level 1A (column,
line) pixel indices (c, �) to (c′, �′) = (c, �) + (�c,��),� in the GEOS fixed frame. The
second step is to resample (c′, �′) pixels to generate level 1B data block (see, e.g.,
[18]). The first step can be performed using Sect. 3.1.2 algorithm to determine (��,
��)c,� from (�E, �N)c,� = (EGEOS, NGEOS)c,� − (ELRF, NLRF)c,� divided by pixel
size. Index c and NLRF are fixed over pixel line and index c and ELRF are fixed over
pixel column. The SVINR time series needed for (c, �) to (c′, �′) transformation is
obtained from Sect. 2.3. The processing time of this transformation is significantly
reduced by computing (�C,�L)C , L for a subset of pixels (C, L) uniformly distrib-
uted over the level 1A (c, �) array. The (�C,�L)C , L for the remaining pixels are
then computed by EW and NS linear interpolation between the (�C,�L)C,L subset.
Note that the number of (C, L) pixel subset is obtained by analysis of SVINR and
attitude jitter effects on registration error. Note also that level 1A block should be
slightly larger than level 1B block to account for the shift caused by orbit, attitude,
and misalignment variation over time.
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7 Conclusion

INR and KF state vectors suitable for the new INR method were defined. The basic
method is based on landmark measurements to determine orbit, attitude correction
angles, and imager misalignments with maneuvers delta V (or orbit with coarse
accuracy) provided by FDS. The method was proven by simulation. Adaptation of
this method to other INR systems and an algorithm for transferring pixels from LOS
to the fixed grid GEOS frame needed for pixel data resampling are presented.

Acknowledgements The authors appreciate the support of Eun-joo Kwon and J.B. Park during
the simulation effort.
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