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1 Introduction

Ground or naval targets are usually equipped with the defensive measures and
anti-missile systems such as armoured shield for self-protection, electronic jammer,
close-in weapons system, etc. However, those measures cannot provide isotropic and
uniform defensive power over all directions due to limited coverage. In other words, a
certain direction around the target is more vulnerable to incoming attack than others.
From the view of offensive missile, it will be advantageous to have a capability of
hitting the target from a desired impact direction.

On the other hand, it is desirable in most cases to regulate the lateral acceleration
to zero as the missile approaches to the target. This is to maximize the hit probability
and the destructive power of warhead, to reduce the angle-of-attack at the moment of
impact, and to allow small correction near the end of engagement. Most importantly,
zero terminal acceleration constraint is necessary to avoid command saturation at the
end of homing phase, because the control authority and the margin for manoeuvre
in response to external disturbances can be maintained by ensuring this constraint.

To meet the above requirements, several guidance laws have been developed
to cope with terminal impact angle constraint while reducing terminal manoeuvre
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demand at the same time [1–10]. Time-to-go Polynomial Guidance law (TPG) pre-
sented in [2, 4] is of concern in this study. TPG is a class of guidance laws with
terminal impact angle and acceleration constraints, which is a general framework of
trajectory shaping guidance law design. To design the TPG, the form of acceleration
command is given by a polynomial of time-to-go, and the coefficients of the polyno-
mial are determined by terminal boundary conditions. TPG is known as a guidance
scheme that provides several promising results in theoretical analysis, flexibility of
tuning, and good performance. Moreover, TPG is a general form of trajectory shap-
ing guidance laws for terminal impact angle control, and weighted linear quadratic
optimal guidance laws with terminal impact angle constraint can be regarded as a
specific type of TPG.

In this study, a modified approach is proposed to improve several shortcomings
of the TPG. In [2, 4], TPG was designed by designating acceleration command as
a polynomial of time-to-go. Note that TPG has been developed on the basis of lin-
earized engagement kinematics with constant speed assumption. Also, the guidance
command is given by an explicit function of time-to-go for which an approximate
estimate is only available rather than the exact one. Unlike the TPG, in this study, the
desired crossrange trajectory is constructed using a polynomial of downrange-to-go,
which is the first step of a new trajectory shaping guidance law design. By doing
this, the proposed guidance law does not depend on (1) linearization of engagement
kinematics, (2) assumption of constant speed missile, and (3) inaccurate time-to-go
estimate. In summary, the proposed approach overcomes the shortcomings of TPG
while sharing similarities in its design philosophy.

The key idea of the proposed approach is to assign a desired crossrange pattern as
a function of downrange-to-go, instead of other options for the independent variable
such as time-to-go, range-to-go, or path-length-to-go. If time-to-go is chosen as the
independent variable for describing the desired trajectory, then it is hard to deal with
time-varying speed case and the final commandwill depend on inaccurate time-to-go
estimate. If path-length-to-go is chosen, then the constant speed assumption can be
relaxed. However, the design in this case is identical to the previous one using the
time-to-go except the change-of-variable in engagement kinematics, and it is difficult
to represent the path-length-to-go as an exact form. Or, if range-to-go is used to
describe the desired trajectory, then it will be difficult to consider the terminal impact
angle constraint. To treat the shortcomings of the previousmethods, downrange-to-go
is used to describe the desired trajectory in this study. Also, the proposed approach
does not require linearization of engagement kinematics. Note that this approach
differs from performing feedback linearization of engagement kinematics first and
then designing the virtual control as a polynomial of downrange-to-go.

The rest of this paper is organized as follows: The problem of stationary target
interception with terminal constraints is formulated in Sect. 2. The trajectory shaping
guidance law is proposed and its properties are discussed in Sect. 3. Numerical sim-
ulation is performed to demonstrate the effectiveness of the proposed guidance law
and the results are shown in Sect. 4. Concluding remarks are summarized in Sect. 5.
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2 Problem Formulation

In this section, assumptions to design a guidance law, equations of planar engagement
kinematics, and problem statement are described.

2.1 Assumptions

The following assumptions are considered to design and analyse the guidance law
proposed in this study.

Assumption 1 The target is stationary, and the velocity and acceleration vectors of
the missile lies on a plane for all time, i.e., the engagement is two-dimensional.

Assumption 2 Themissile is a lag-free point-mass such that the actual lateral accel-
eration equals to the commanded lateral acceleration without time-delay and distor-
tion.

Assumption 3 The information on the position and velocity of the missile and the
position of the target is available from sensors without time-delay and noise.

Assumption 4 The (initial) velocity of the missile is within ±90 deg from the
desired terminal impact direction.

Note that Assumption 2 does not influence on the tangential acceleration which is
related to the change of speed. The lateral (normal) acceleration is only related to the
change of flying direction and therefore to the geometric shape of the curve flown
by missile.

2.2 Planar Engagement Kinematics

Figure1 shows the planar homing engagement geometry considered in this study. In
Fig. 1, (XI ,YI ) and

(
X f ,Y f

)
denote the inertial coordinate system and the impact

coordinated system, respectively. The impact coordinate system has its origin on the
stationary target T , X -axis is aligned to the desired terminal impact direction, and γ fd
is the flight path angle for the desired terminal impact direction. For the missile M ,
(x, y) is the position with respect to the impact coordinate system, VM is the speed,
γM is the flight path angle, and anM is the lateral acceleration. The downrange-to-go
denoted by xgo is the remaining distance to the target along X f -axis, and xgo = −x
by construction. The flight path angle error is defined as follows

γ̄M � γM − γ fd (1)
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Fig. 1 Planar engagement geometry

The motion of the missile can be represented in the impact coordinate system as

ẋ = VM cos γ̄M , x (t0) = x0 < 0

ẏ = VM sin γ̄M , y (t0) = y0

˙̄γM = anM
VM

, |γ̄M (t0)| <
π

2

(2)

where ˙( ) = d
dt ( ), and γ̄M (t0) = γ̄M0 = γM0 − γ fd . Due to Assumption 4 which

implies that ẋ (t) ≥ 0 for ∀t ∈ [
t0, t f

]
, the downrange x can be used as an inde-

pendent variable instead of the time t , then equation of motion can be rewritten
as

y′ = tan γ̄M (3)

γ̄ ′
M = anM

VM
2 cos γ̄M

= anM
VM

2

√
1 + tan2 γ̄M = anM

VM
2

√
1 + y′2 (4)

where ( )′ = d
dx ( ). The second derivative of y with respect to x can be derived as

y′′ = d

dx
tan γ̄M = γ̄ ′

M

d

dγ̄M
tan γ̄M = γ̄ ′

M

(
1 + tan2 γ̄M

) = γ̄ ′
M

(
1 + y′2

)
(5)

Equation (4) can be rewritten using Eq. (5) as follows.

anM = y′′
(
1 + y′2) 3

2

VM
2 = κVM

2 (6)
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Note that κ in Eq. (6) is the curvature of the curve flown by missile. Additionally,
the derivative of the lateral acceleration with respect to x can be derived as follows.

(
anM

)′ = ȧnM
VM cos γ̄M

= ȧnM
VM

√
1 + y′2

=
y′′′

(
1 + y′2

)
− 3y′y′′2

(
1 + y′2) 5

2

VM
2 + 2y′′

1 + y′2 V̇M

(7)

2.3 Problem Statement

The constraints on the miss distance, impact angle, and acceleration at the terminal
time can be represented as follows.

y
(
t f

) = 0 (8)

γ̄M
(
t f

) = 0 (9)

anM
(
t f

) = 0 (10)

Let t f be the time instance when x becomes zero, i.e., x
(
t f

) = 0. Considering Eqs.
(3) and (6), the terminal constraints of Eqs. (8)–(10) are equivalent to the following
conditions using the changed independent variable x .

y (0) = 0 (11)

y′ (0) = 0 (12)

y′′ (0) = 0 (13)

Note that, if ȧnM
(
t f

) = 0 is considered as an additional constraint, then, in view of
Eq. (7), y′′′ (0) = 0 is required in addition to Eq. (13).

The problem to be solved in this study is to design a guidance law anMcmd
with

which all of the terminal constraints given by Eqs. (8)–(10) (or equivalently, Eqs.
(11)–(13)) can be achieved.

3 Guidance Law Based on Downrange-to-Go Polynomial

This section is devoted to the development of a new trajectory shaping guidance law
based on desired crossrange pattern given by a polynomial of downrange-to-go.
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3.1 Design of Guidance Law

3.1.1 Desired Crossrange Pattern

Let the desired crossrange pattern be the polynomial of downrange-to-go which can
be written as

y (x) = cmxgo
m + cnxgo

n = [
xgom xgon

]
[
cm
cn

]
(14)

where xgo = x
(
t f

) − x = −x , m and n are the design parameters satisfying m >

n ≥ 2, and cm , cn are the constant coefficients. The derivatives of Eq. (14) can be
written as follows.

y′ (x) = − [
mxgom−1 nxgon−1

] [
cm
cn

]
(15)

y′′ (x) = [
m (m − 1) xgom−2 n (n − 1) xgon−2

] [
cm
cn

]
(16)

It can be concluded from Eqs. (14)–(16) that the constraints of Eqs. (11)–(13), which
are equivalent to the constraints ofEqs. (8)–(10),will be satisfied ifm andn are chosen
to be m > n > 2. If m > n > 3, then the additional constraint on the terminal jerk,
namely ȧnM

(
t f

) = 0, can be satisfied at the same time.

3.1.2 Determination of Coefficients

Equations (14) and (15) can be augmented into matrix form as follows.

[
y (x)
y′ (x)

]
=

[
xgom xgon

−mxgom−1 −nxgon−1

] [
cm
cn

]
(17)

The coefficients cm and cn can be determined by the initial conditions. Since down-
range is used as a new independent variable in this study, the initial conditions given
in Eq. (2) can be rewritten as follows.

y (x0) = y0
γ̄M (x0) = γ̄M0

(18)

Using Eqs. (3) and (18), the initial slope of the crossrange pattern can be calculated
as

y′ (x0) = tan γ̄M0 (19)
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Considering Eqs. (18) and (19) in Eq. (17), the coefficients can be obtained as follows

[
cm
cn

]
=

[
xgo0

m xgo0
n

−mxgo0
m−1 −nxgo0

n−1

]−1 [
y0

tan γ̄M0

]

= 1

m − n

[−nxgo0
−m −xgo0

−m+1

mxgo0
−n xgo0

−n+1

] [
y0

tan γ̄M0

]

= 1

m − n

[− (
ny0 + xgo0 tan γ̄M0

)
xgo0

−m
(
my0 + xgo0 tan γ̄M0

)
xgo0

−n

]

(20)

where xgo0 = −x0 > 0.

3.1.3 Closed-Form Solution

Substituting Eq. (20) into Eq. (17) and considering Eq. (3) yields the closed-form
solution for the desired crossrange trajectory in terms of downrange-to-go.

[
y (x)

tan γ̄M (x)

]
=

[
xgom xgon

−mxgom−1 −nxgon−1

] [
xgo0

m xgo0
n

−mxgo0
m−1 −nxgo0

n−1

]−1 [
y0

tan γ̄M0

]

(21)

Because the coefficients obtained in Eq. (20) are constants, Eq. (21) can be reinter-
preted as the existence of an invariant quantity c throughout the engagement.

[
xgom xgon

−mxgom−1 −nxgon−1

]−1 [
y

tan γ̄M

]
=

[
xgo0

m xgo0
n

−mxgo0
m−1 −nxgo0

n−1

]−1 [
y0

tan γ̄M0

]

= c
(22)

3.1.4 Guidance Command

Equation (6) can be rewritten using Eqs. (3) and (16) as

anM (x) = y′′ (x) cos3 γ̄M (x) VM
2

= [
m (m − 1) xgom−2 n (n − 1) xgon−2

] [
cm
cn

]
cos3 γ̄M (x) VM

2
(23)

The open-loop form guidance command can be obtained by substituting Eq. (20)
into Eq. (23) as follows.
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anMcmd
= [

m (m − 1) xgom−2 n (n − 1) xgon−2
] [

cm
cn

]
cos3 γ̄MVM

2

= [
m (m − 1) xgom−2 n (n − 1) xgo

n−2
] [−nxgo0

−m −xgo0
−m+1

mxgo0
−n xgo0

−n+1

] [
y0

tan γ̄M0

]

· 1

m − n
cos3 γ̄MVM

2

= −
[
mn

x2go

{

(m − 1)

(
xgo
xgo0

)m

− (n − 1)

(
xgo
xgo0

)n
}

y0

+ 1

xgo

{

m (m − 1)

(
xgo
xgo0

)m−1

− n (n − 1)

(
xgo
xgo0

)n−1
}

tan γ̄M0

]

· 1

m − n
cos3 γ̄MVM

2

(24)
Because of the relation shown in Eq. (22), finally, the guidance command can be
rewritten in closed-loop feedback form as follows.

anMcmd
= −

(
mn

xgo2
y + m + n − 1

xgo
tan γ̄M

)
cos3 γ̄MVM

2 (25)

3.2 Properties of Guidance Law

Using the guidance law of Eq. (25), the missile will follow the desired trajectory
given by Eq. (14). The critical points and the inflection points of y (x), at which y′
and y′′ equals to zero, respectively, occurs at

y′ = 0 : xgo = 0,

xgocrt =
[
− cnn

cmm

] 1
m−n =

[
n

(
my0 + xgo0 tan γ̄M0

)

m
(
ny0 + xgo0 tan γ̄M0

)

] 1
m−n

xgo0

y′′ = 0 : xgo = 0,

xgoin f =
[
− cnn (n − 1)

cmm (m − 1)

] 1
m−n =

[
n (n − 1)

(
my0 + xgo0 tan γ̄M0

)

m (m − 1)
(
ny0 + xgo0 tan γ̄M0

)

] 1
m−n

xgo0

(26)
Note that the missile with trajectory y (x) will change its turning direction at the
critical points, and the lateral acceleration will be zero at the inflection points. It can
be observed in Eq. (26) that the critical and inflection points of the desired trajectory
occurs at the points with certain ratios to the initial downrange-to-go.

According to the extreme value theorem, the maximum
∣∣y′′∣∣ may occur at

xgo = xgo0 , xgo = 0, or xgo = xgoin f . If m > n ≥ 2, it is trivial that y′′ (0) = 0 by
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the proposed design, and therefore,

max
x

∣∣y′′ (x)
∣∣ = max

(∣∣y′′ (x0)
∣∣ ,

∣∣y′′ (−xgoin f
)∣∣) (27)

For the curvature κ given in Eq. (6), the following is always true.

|κ (x)| =
∣∣y′′ (x)

∣∣
(
1 + y′ (x)2

) 3
2

≤ ∣∣y′′ (x)
∣∣ (28)

Therefore, from Eqs. (27) and (28), the boundedness of curvature can be guaranteed.

|κ (x)| ≤ max
(∣∣y′′ (x0)

∣∣ ,
∣∣y′′ (−xgoin f

)∣∣) (29)

Note from Eq. (6) that the upper bound on curvature implies that of lateral accelera-
tion, and consequently, Eq. (29) can be used to adjust the desired trajectory consid-
ering the manoeuvrability limit of missile.

The desired terminal constraints can be achieved with the proposed trajectory
shaping guidance law based on the desired crossrange pattern given by a polynomial
of downrange-to-go. The characteristics of engagement can be controlled with the
choice of design parameters m and n. As mentioned in introduction, the proposed
guidance law of Eq. (25) does not depend on (1) linearized engagement kinematics,
(2) constant speed assumption, and (3) inaccurate time-to-go estimate. Exact non-
linear engagement kinematics equations are considered in the design process of the
proposed guidance law without constant speed assumption. Also, the downrange-to-
go entering into the guidance command can be obtained without any approximation.

4 Numerical Simulation

Numerical simulation is performed to demonstrate the effectiveness of the proposed
guidance law. The simulation results are described in this section.

4.1 Simulation Environment

The closed-loop form guidance command is utilized to demonstrate the proposed
method. The horizontal plane is assumed to be the engagement plane for the simu-
lation. To include the effect of speed change in the simulation, the following simple
model is utilized

V̇M = −CD0ρS

2m̄
VM

2 (30)
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Table 1 Simulation parameters for the missile and the target

Parameter Value Unit
(
XMI (t0) , YMI (t0)

)
(0, 1000) m

(
XTI , YTI

)
(4000, 0) m

VM (t0) 200 m/s

CD0 0.02 –

m̄ 90.035 kg

ρ 1.2041 kg/m3

S 0.2 m2

Table 2 Guidance parameters, initial flight path angle, and terminal impact angle

(m, n) γM0 [deg] γ fd [deg]

Case 1 (5, 4) 0 −75 : 15 : 0
Case 2 (5, 4) −90 : 15 : 30 −45

Case 3 (6, 5), (5, 5), (5, 4),
(5, 3), (4, 3), (3, 2)

0 −45

where CD0 is the zero-lift drag coefficient, ρ is the atmospheric density, m̄ and S are
the mass and reference area of the missile, respectively.

Three simulation cases are considered in this study. In Case 1, simulation is
performed using the proposed guidance lawwith (m, n) = (5, 4) for various terminal
impact angles with fixed initial flight path angle, and vice versa in Case 2. In Case
3, simulation is performed for various design parameters with fixed terminal impact
angle and initial flight path angle. Initial position of the missile and the target for
Cases 1–3, and the physical parameters of the missile are summarized in Table1.
Guidance parameters (m, n), initial flight path angle, and the terminal impact angle
for Cases 1–3 are summarized in Table2.

4.2 Simulation Results

4.2.1 Case 1: Various γ fd , Fixed γM0 and (m, n)

Figures2, 3, 4, 5 and 6 show the trajectories in the inertial coordinate system, the
lateral acceleration commands, the speed histories, the crossranges with respect to
the impact angle coordinate system, and the flight path angle errors, respectively.

Simulation results of Case 1 shows that various desired terminal impact directions
can be handled with the proposed guidance law.
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4.2.2 Case 2: Various γM0 , Fixed γ fd and (m, n)

Figures7, 8, 9, 10 and 11 show the trajectories in the inertial coordinate system, the
lateral acceleration commands, the speed histories, the crossranges with respect to
the impact angle coordinate system, and the flight path angle errors, respectively.

Simulation results of Case 2 shows that the proposed guidance law can cope with
various initial flight path angles, as long as

∣
∣γ̄M0

∣
∣ < π

2 . A limitation of the proposed
guidance law is that the missile flies in a pattern that xgo is always decreasing with
respect to time, but this is not a severe restriction.

4.2.3 Case 3: Various (m, n), Fixed γM0 and γ fd

Figures12, 13, 14, 15 and 16 show the trajectories in the inertial coordinate system,
the lateral acceleration commands, the speed histories, the crossranges with respect
to the impact angle coordinate system, and the flight path angle errors, respectively.

For a given initial flight path angle and a terminal impact angle, Case 3 shows
that the engagement trajectory can be adjusted by the choice of design parameters
m and n. The case of (m, n) = (3, 2) is included in Case 3 to show that the terminal
acceleration constraint can be met only if m > n > 2. Also, the cases of (m, n) =
(5, 3) , (4, 3) are included in Case 3 to show that the terminal jerk constraint can
be met only if m > n > 3. In addition, Fig. 13 shows that the magnitude of the
initial lateral acceleration increases with greaterm + n. Furthermore, interception is
achieved while the missile is decelerating in all cases. Therefore, it can be concluded
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from the results of Cases 1–3 that the proposed guidance law can achieve stationary
target interception with given terminal impact angle and acceleration constraints,
together with the flexibility of shaping.
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Fig. 14 Case 3: speed VM
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Fig. 15 Case 3: crossrange y
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Fig. 16 Case 3: flight path angle error γ̄M



Trajectory Shaping Guidance Law … 569

5 Conclusion

A new trajectory shaping guidance law was proposed to achieve interception of a
stationary target with terminal flight path angle and acceleration constraints. The
desired crossrange pattern was designed as a polynomial of downrange-to-go, which
might supplement the existing trajectory shaping guidance law. The proposed guid-
ance law was derived without linearization of engagement kinematics, and constant
speed assumption. Also, the time-to-go estimate is not required to implement the
proposed guidance law.
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