
Analysis of Optimization Strategies
for Solving Space Manoeuvre Vehicle
Trajectory Optimization Problem

Runqi Chai, Al Savvaris and Antonios Tsourdos

1 Introduction

Trajectory optimization problems in terms of space vehicles [2, 4, 6, 9] have attracted
significant attentions. One of the current objectives is the development of Space
Manoeuvre Vehicles (SMV) for a dynamic mission profile. The Mach number and
the flight altitude of the space vehicle vary largely during the whole flight phase, the
aerodynamic feature of the vehicle has large uncertainties and nonlinearities. Due to
these reasons, it is difficult to calculate analytical solutions of this type of problems.
Therefore, numerical methods are commonly used to approximate the optimal solu-
tion. Numerical methods for solving optimal control problems are divided into two
major classes: indirect methods and direct methods [1, 7, 10]. However, it is difficult
to solve the trajectory design problem using indirect methods based on maximum
principle. Hence, direct optimization method has been widely used for trajectory
optimization.

All the direct methods aim to transcribe the continuous-time optimal control prob-
lems to a Nonlinear Programming problem (NLP). The resulting NLP can be solved
numerically by well-developed algorithms such as gradient-based methods or deriv-
ative free algorithms. Sequential Quadratic Programming (SQP) and Interior point
(IP) methods are used successfully for the solution of large scale nonlinear program-
ming problems. The search direction in the SQPmethod is determined by solving the
Quadratic Program (QP) problem whereas IP transcribes the inequality constraints
to equality constraints by introducing slack variables. In recent years, derivative free
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methods has become more popular in the application of optimal control problems.
However, the actual advantage of using a global method such as Genetic Algorithm
(GA) and Differential Evolution (DE) is difficult to appreciate, in particular when
stochastic procedures are applied. In this paper, a number of global search methods
are tested for solving the SMV trajectory optimization problem.

Hereafter, the paper is organised as follows. Section2 introduces the equations of
motion, constraints of the SMV and the method used to discretize the optimal control
problem. In Sect. 3, the general procedures of typical gradient-based methods and
derivative free methods are detailed. Following that, Sect. 4 presents comparative
results between the solution calculated using different strategies.

2 Problem Formulation

Themission scenario investigated in this paper focuses on the atmospheric skip entry,
targeting the entry into the atmosphere down to a predetermined position and the
required controls involved in returning back to low earth orbit. The overall mission
can be found in Fig. 1. General skip reentry can be divided into five phases: initial
roll, down control, up control, Kepler and final entry. Considering the mission of
the SMV is to overfly the ground target with specific altitude, the most challenging
phase 2 and 3 will be considered in this paper.

2.1 Equations of Motion

To formulate a Space Manoeuvre Vehicle’s skip entry flight, the equations of three-
dimensionalmotion for a pointmass about a static Earth are integrated. The equations
of motion can be summarised as:

Fig. 1 Mission profile
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ṙ = V sin γ

θ̇ = V cos γ sinψ

r cosφ

φ̇ = V cos γ cosψ

r
V̇ = T cosα−D

m − g sin γ

γ̇ = L cos σ+T sin α
mV + (

V 2−gr
rV ) cos γ

ψ̇ = L sin σ
mV cos γ

+ V
r cos γ sinψ tan φ

ṁ = − T
Ispg

(1)

where r is the radial distance from the Earth center to the vehicle, θ and φ are the
longitude and latitude, respectively. V is the Earth-relative velocity. The relative
flight-path angle can be denoted as γ . ψ is the relative velocity heading angle mea-
sured clockwise from the north. m is the mass of vehicle and t is time. Angle of
attack and bank angle are α and σ , separately. The thrust is defined as T . The states
and controls are described as X = [r, θ, φ, V, γ, ψ,m]T and U = [α, σ,T ]T . In the
model given by Eq. (1), three autopilot equations are introduced using the technique
of first order lag to describe the rate constraint of the controls.

α̇ = Kα(αc − α)

σ̇ = Kσ (σc − σ)

Ṫ = KT (Tc − T)

(2)

in which αc, σc and Tc are the demand angle of attack, bank angle and thrust, respec-
tively. The atmosphere model, lift L and drag D can be defined as:

g = μ

r2 ρ = ρ0 exp
r−r0
hs

L = 1
2ρV

2CLS D = 1
2ρV

2CDS
CD = CD0 + CD1α + CD2α

2 CL = CL0 + CL1α

(3)

where S = 2690 ft2 is the reference area, ρ is the density of the atmosphere and ρ0 =
0.002378slug/ft3 is the density of the atmosphere at sea-level. μ = 1.4076539 ×
1016ft3/s2 is gravitational parameter of the earth. r0 = 20902900 ft is earth radius, L
andD are the lift and drag whereasCL andCD are lift and drag coefficient determined
by angle of attack α and Ma, respectively.

2.2 Boundary and Path Constraints

In this paper, two types of constraint are considered in the skip entry process. To
complete the mission, the boundary conditions for the states and controls are:

[r, φ, θ, V, γ, ψ,m, α, σ,T ]
= [r0, φ0, θ0, V0, γ0, ψ0,m0, α0, σ0,T0]
.[r(tb), r(tf )] = [rb, rf ]

(4)
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where tb, tf are time points for the SMV reaching the bottom point and going back
to the final boundary conditions. More precisely, as shown in Fig. 1, tb and tf are the
time points of the end of phase 2 and phase 3, respectively. Correspondingly, rb and
rf are the altitude values at tb and tf , respectively. Based on the boundary conditions
illustrated by Eq. (4), the whole process can be divided into two phases, the descent
phase and exit phase.

To protect the structure integrity for the SMV, three path constraints including
heating rate, dynamic pressure and load factor must be satisfied during the entire
flight phase:

Q̇d = KQρ0.5V 3.07(c0 + c1α + c2α2 + c3α3) < ˙Qdmax

Pd = 1
2ρV

2 < Pdmax

nL =
√
L2+D2

mg < nLmax

(5)

where c0 = 1.067, c1 = −1.101, c2 = 0.6988, c3 = −0.1903 and KQ = 9.289 ×
10−9BTU · s2.07/ft3.57/slug0.5, respectively. Mission-dependent parameters are
Qdmax = 200BTU/ft2/s, Pdmax = 13406.4583Pa and nLmax = 2.5 representing the
allowable maximum heating rate, dynamic pressure and acceleration, respectively.

2.3 Cost Function

According to the mission requirement given by the industrial sponsor of this project,
to complete the mission in the shortest time, minimizing the mission duration (e.g.
tf ) is chosen as the objective function. Let J represent objective function:

J = min tf (6)

By setting the cost function given by Eq. (6), the SMV trajectory problem can be
considered as an optimal control problem which has minimum cost function value
and satisfies the initial and terminal variables constraints, three path constraints and
dynamic equations.

2.4 Discrete Method

The SMV optimal control problem is discretized using a direct multiple shooting
method. The basic idea of the direct multiple shooting method is to transform the
original optimal control problem into NLP by parameterizing only the control vari-
ables. The controls can be approximated by interpolation at the discretized time
nodes [τ1, τ2, . . . , τN ]. Then the equation of motion are integrated with a fourth
order Runge–Kutta method. The approximation of controls are:
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u(τ ) ≈ U (τ ) =
N∑

i=0

UiLi(τ ) (7)

where Li(τ ) is a basis of Lagrange polynomials. After using direct multiple shooting
method, the resulting NLP problem is solved by applying different optimization
strategies illustrated in Sect. 3.

3 Optimization Strategies

A key ingredient to solve optimal control problems is the ability of solving NLP
problems. Numerical methods for solving NLP fall into categories: gradient-based
methods and derivative free algorithms.

3.1 Gradient Based Methods

3.1.1 Sequential Quadratic Programming

Themost commonly used gradient-basedmethods are SQP and IP or barriermethods.
The aim for SQP algorithm is to transform the original problem to a series of QP sub-
problems by approximating the augmented Lagrangian quadratically and linearizing
the constraints using Taylor expansion. The resulting augmented Lagrangian is:

L(x, λ, u) = f (x) + λTh(x) + uT g(x) (8)

Using quadratic model to approximate Eq. (8), the QP subproblem is:

min 1
2d

TH(xk, λk, uk)d + ∇f (xk)Td
h(xk) + ∇h(xk)d = 0
g(xk) + ∇g(xk)d ≤ 0

d ∈ �n

(9)

where a (xk, λk, uk) presents the current iterate point whereas H(xk, λk, uk) is
the Hessian matrix. Commonly, the Hessian is calculated using H(xk, λk, uk) =
∇xxL(xk, λk, uk) or a suitable approximation defined by the user. ∇h(xk) and ∇g(xk)
are the Jacobianmatrix of the vector of equality constraints and inequality constraints,
respectively. The index k stands for the number of iteration for the optimization algo-
rithm and k = 0, 1, 2, . . ..

If the active set is defined as �, a sequence of linear equations are constructed
as Karush-Kuhm-Tucker (KKT) system. Then by using Newton method, the KKT
condition of Eq. (9) can then be calculated.
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3.1.2 Interior Point Method

Another well-known and effective algorithm is the IP method. Numerous updates
and modifications have been done on this approach during the last several decades.
The ability for IP converging to a stationary point can be guaranteed theoretically.
Before applying the IP to the general form of problems, Eq. (8) should be transformed
by introducing s ∈ �m, τ > 0 and:

fτ (x) = f (x) + τΣ l
i=1hi(x) (10)

The IP strategy consists of reducing the inequality constraints in Eq. (8) using slack
variables s = (s1, s2, . . . , sm), where all the elements in the vector should be positive.
Then, the modified problem can be summarised as:

min fτ (x) − μΣm
j=1log(sj)

g(x) + s = 0
x ∈ �n, s ∈ �m

(11)

And the augmented Lagrangian for Eq. (11) is:

L(x, s, λ, u) = fλ(x) − μΣm
j=1log(sj) + uT (g(x) + s) (12)

In Eq. (11), the term μ stands for a barrier variable and the smaller it is, the closer
are the solutions. Both SQP and IP are using Newton iteration to get KKT system
and the converge solution.

3.2 Derivative Free Algorithms

In this paper, four derivative free global search algorithms are investigated: Genetic
Algorithm (GA) and Differential Evolution(DE) that belong to the generic class of
Evolutionary Algorithms (EA), Particle Swarm Optimization (PSO) that belongs to
the class of agent-based algorithms, andArtificial BeeColony (ABC) that is classified
to the colony-based algorithms.

3.2.1 Genetic Algorithm

GA [3] is one kind of evolution algorithms, which generates solutions to optimization
problems taking inspiration from the natural selection and survival of the fittest
in the biological world. Each iteration of a GA involves a competitive selection
that eliminates poor solutions. It is regarded as one of the most robust and reliable
optimization algorithmswhichhas no requirement for gradient information and initial
guess. Recombination and mutation are applied to generate new solutions so that
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the population can have more diversity. As for the control parameters of GA, the
population size is given as 500 individuals. Single values are used for the crossover
and mutation probability, CR = 0.7 and pi = 0.5, respectively.

3.2.2 Differential Evolution

The main attempt of DE [9] is to calculate the variation vector vi,G+1 of a solution
vector xi,G+1 by taking the weighted difference between two additional solutions.
This can be described as:

vi,G+1 = e[(xi3,G − xi,G) + F(xi2,G − xi1,G)] (13)

where F = 0.7, i is integer number randomly chosen within the interval [1,NP]. The
equation of e can be written as:

e(x) =
{
1, rand ≤ CR;
0. rand > CR.

(14)

where rand is a random number within [0, 1]. The selection process is largely
depended on the fitness function defined by the user. If the new candidate can have
a better fitness value then it can be selected to the next generation.

3.2.3 Particle Swarm Optimization

PSO [8] is a population-based derivative free optimization algorithm developed in
1995. PSO was inspired by the social behaviour of bird flocking or fish schooling.
The general concept of PSO consists of changing the velocity of every candidate at
each iteration. The new individual in the next generation can be calculated by:

vi,G+1 = ωvi,G + ui,G (15)

where ω is a weighting function which is proportional to the number of iterations
G. The process has two stochastic components given by the two random number
r1 and r2. The corresponding terms are elastic component controlled by c1 = 2 and
convergence term controlled by c2 = 2. The first term tends to recall the individual
back to the old position whereas the second term drives the entire population toward
convergence. The search is applied until a stopping condition is satisfied.

3.2.4 Artificial Bee Colony

The artificial bee colony (ABC) algorithm was originally presented by Dervis
Karaboga in 2007 [5] and was inspired by the collective behavior of honey bees.
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The ABC algorithm has been tested to exhibit a good performance in the function
optimization problems. For each iteration of the ABC algorithm, both global search
and local search are conducted so that the probability of achieving the optimum is
increased dramatically. In each iteration of the algorithm, the searching principle is
defined as:

vij = xij + ϕij(xij − xkj) (16)

where v denotes the new position. Such a searching strategy adaptively reduces the
searching step when the candidate approaches the optimal solution. The control para-
meters for ABC algorithm are NP = 200, Iter = 100 and Limit = 10, respectively.

4 Simulation Results

4.1 Parameters Setting

The initial, terminal boundary conditions, box constraints and aerodynamic coeffi-
cients of the skip process can be found in [2]. Comparative simulations using classical
gradient optimization techniques and derivative free optimization methods are pre-
sented. It should be noticed that only the skip entry phase shown in Fig. 1 is taken
into account in the paper. The initial altitude is around 80km, where is the assumed
edge of the atmosphere.

4.2 Time History of the State and Control for Different
Methods

The results of optimal trajectories are shown in Figs. 2, 3, 4, 5, 6, 7, 8 and 9.

4.3 Analysis of the Solutions

From Figs. 2, 3, 4, 5, 6, 7, 8 and 9, the general trend of trajectories is split into two
phases: descending and climbing.

(1) Descending phase: In order to achieve the target position (around 164000 ft
altitude) and minimize the mission time (since the overall objective is to minimize
the time duration, it is equivalent to minimize the time duration for each phase),
Fig. 2 shows that the SMV goes down directly at the beginning of the mission. To
avoid path constraints becoming active, angle of attack should increase to slow down
the vehicle so that the heating and dynamic pressure do not increase significantly.
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Fig. 2 Altitude generated by
using gradient methods and
derivative free methods

Fig. 3 Speed generated by
using gradient methods and
derivative free methods

(2) Climbing phase: After reaching the target point, the vehicle fires its engine so
that the SMV can have enough kinetic energy to go back to the final point. With the
decreasing of air density and mass, the aerodynamic heating, dynamic pressure and
load factor will decrease during the climbing phase. The trend of angle of attack can
be found in Fig. 4 where the angle of attack is increased during the whole climbing
phase. This is because in the climbing phase, without violating path constraints, it
can have positive influences in terms of acceleration.

With regard to the performance of different methods, all the global approaches
manage to generate skip entry trajectories between the predetermined initial position
and terminal position without violating the path constraints. This can be seen from
Figs. 6, 7 and 8. When the nonlinearity of the cost functions or path constraints
become higher, which means it is difficult to calculate the gradient information
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Fig. 4 Angle of attack
generated by using gradient
methods and derivative free
methods

Fig. 5 Bank angle generated
by using gradient methods
and derivative free methods

for gradient techniques, the global methods become the only way to solve the SMV
trajectory optimization problem. However, there are some limits for global strategies.
As can be seen from Figs. 2, 3, 4, 5, 6, 7, 8 and 9, the results are significantly different
between PSO-based method and others. This can be explained that in this case, the
initial guess generated by the PSO-based method is not close enough to the optimal
solution. Moreover, to combine the optimization processes with discrete methods,
global techniques cannot be as flexible as gradient methods. Also, it is hard to verify
the optimality for the solutions from global techniques whereas the SQP and other
gradient methods have KKT conditions.

Consequently, all the figures provided above confirm the feasibility of the gradient
and derivative free algorithms. By using different optimization strategies, the SMV
can reach the target position without violating three path constraints and boundary
conditions.
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Fig. 6 Heating generated by
using gradient methods and
derivative free methods

Fig. 7 Dynamic pressure
generated by using gradient
methods and derivative free
methods

Fig. 8 Load factor generated
by using gradient methods
and derivative free methods
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Fig. 9 Flight path angle
generated by using gradient
methods and derivative free
methods

5 Conclusions

In this paper, the gradient-based and derivative free algorithms are applied to solve
SMV trajectory design problem. In order to transform the continuous optimal con-
trol problem to static NLP problem, direct multiple shooting method is implemented
to discrete the equations of motion and path constraints. Simulation results indi-
cated that the proposed two kind of strategies can generate feasible solution for the
trajectory design problem. By applying the gradient-based method, the number of
iterations, function evaluations, and computational time can be decreased compared
with derivative freemethods. Therefore, although the solutions generated from deriv-
ative free methods can be accepted, there are still a lot of room for improvement in
terms of using these techniques in trajectory optimization problems.
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