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1 Introduction

Parafoil and payload systems offer high payload capacities, robustness and ease of
deployment. Thus, they are used in both military and civil applications like remote
sensing, aerial survey or airdrop supply systems. Besides their versatility, powered
paragliders (PPGs) are interesting objects of investigation because of their unique
flight dynamics. The center of mass being suspended below the parafoil leads to a
high roll and pitch stability. At the same time, the high wind-to-airspeed ratio makes
the aircraft susceptible to wind and gusts.

A large body of research on parafoil and payload systems focuses on modeling
their complex, nonlinear dynamics. References [2, 4, 13] provide multiple detailed,
nonlinear system descriptions with 8 or 9 degrees of freedom (DOF). These models
are derived on the basis of a two-body system description with a joint representing
the flexible connection between the payload and the parafoil. Reference [13] then
continues to derive simpler models with only 6 DOF, which are more suitable for
controller design. Assuming that the lateral and longitudinal motion are decoupled,
model complexity can be further reduced to three DOF [5]. The parameters used in
thesemodels are either known or obtained using system identification techniques [8].

Concerning theflight guidanceof parafoil andpayload systems, several approaches
can be found in the literature. At the highest level they share a common structure,
namely, a separation between heading control and flight path guidance. The heading
control is achieved using (nonlinear) model predictive control (MPC) [10, 11] or
classic PID control [7].

To track the reference flight path, several control schemes have been proposed.
Most commonly, the distance to a point on the reference flight path is mapped to a
commanded heading, see [11]. More recently, the increased computational power of
modern avionics allowed the use of MPC directly for flight guidance. In this regard,
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Ref. [12] presents experiment results of a parallel implementation of an MPC on a
graphics processor. Here, the parallel processing capabilities are used to find a flight
path which is robust against uncertainties introduced by wind gusts. Similarly, [6]
presents a parallel implementation of nonlinear model predictive control (NMPC)
on a FPGA-based flight computer enabling sample rates of 10Hz.

Against this background, the control scheme for the horizontal flight path guid-
ance presented here focuses on simplicity and ease of implementation. Especially
in outer flight guidance control loops the inherent properties of PPGs can easily
lead to large control deviations. One reason for this is the fact that classic feedback
controllers typically only react to changes of the reference input. The controller pro-
posed here is a predictive controller and thus can act according to predicted, future
changes of the reference input. It can be argued that this property makes predictive
controllers especially suited for flight guidance problems, since the reference flight
path is typically known ahead of time. While the results gathered in this paper were
obtained with a PPG, they are applicable to other parafoil and payload systems.

The paper is structured as follows: First, Sect. 2 gives an overview of the charac-
teristics of PPGs along with a brief introduction into NMPC. Based on this, Sect. 3
presents the conceptual approach of the control scheme, then Sect. 4 discusses sev-
eral aspects of its realization. The results of evaluating the controller in simulations
and flight tests are summarized in Sect. 5.

2 Fundamentals

This section introduces basics concerning the flight dynamics of PPGs and will
highlight some challanges these characteristics pose for accurate flight path guidance.
Since the control scheme used here uses a black-boxmodel of the plant, no analytical
description of the flight dynamics of a PPGwill be given. For a discussion of different
modelling techniques the reader may refer to [8, 13, 14].

The discussion of model predictive control will concentrate on its conceptual
ideas and keep formulas to a minimum. Comprehensive material on (nonlinear)
model predictive control may be found in [3, 9].

2.1 Powered Paragliders

Powered paragliders belong to the class of parafoil and payload systems, which
are characterized by the payload being suspended with lines below the parafoil, see
Fig. 1. The only means of steering is the deflection of the trailing edge of the parafoil.
The deflection is accomplished using two lines, each connected to one side of the
trailing edge, often called brakes. Pulling one line alters the parafoils shape on the
correspondig side. This asymmetric brake deflection creates a yawingmoment,which
in turn leads to a yawing rate. Pulling both brakes symmetrically primarily leads to an



Nonlinear Model Predictive Flight Path Control for an Unmanned Powered Paraglider 371

Fig. 1 Conceptual overview
of a powered paraglider
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increase in drag and can be used to control the airspeed and thus the glide path of the
parafoil. Additionally, powered paragliders are equipped with a propulsion system,
which is located in the same frame as the actual payload. Due to the suspension
below the parafoil, an increase in thrust primarily increases the incidence angle of
the parafoil and thus the vertical velocity. In comparison, the effect on the horizontal
airspeed is small.

Due to their construction, PPGs typically exhibit high stability in both yaw and
pitch. The long suspension lines allow relative motion between the parafoil and the
payload. Because in the PPG considered here, all sensors are located in the payload,
this relativemotion has to be taken into account during controller design.With regard
to heading control the relative motion in form of a self-induced yawing oscillation
has to be considered.

Since PPGs are often used in harsh environments robust sensing equipment is
beneficial. To that end, the control scheme presented here only requires heading
information of the payload, aswell as ground speed and position. The heading can be
obtainedusing off-the-shelf devices,while the ground speed andposition are obtained
by a GPS device. Notably, no airspeed information is required. This small number
of required sensors is sufficient for our control scheme because of two assumptions
which are made concerning the flight mechanics of PPGs: a constant airspeed and a
negligible stationary side-slip.

2.2 Model Predictive Control

Model predictive control (MPC) is an umbrella term for a family of control algorithms
which offer a conceptually simple solution to awide range of control problems.While
the core concept is simple, the implementation of an MPC often requires substantial
processing power. This hindered the application of MPC in fast control loops, as
those typically found in aircraft, in the past.

All MPC algorithms share the idea, that control action is based on predictions of
the state trajectory of the plant. For different future control input sequences, different
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trajectories of the plant are predicted. These predicted trajectories are rated using a
cost function. Finding the optimal control input sequence with regard to the cost
function constitutes solving an optimization problem. In a closed-loop setting this
optimization is carried out in every timestep and only the first element of the optimal
input sequence is used as an actual input to the plant.

The complexity of solving the optimization problem is highly dependent on the
model used. For linear models, analytical solutions can readily be derived. Nonlinear
models on the other hand require nonlinear optimization algorithms, which typically
require much processing power and a complex implementation.

One can identify four separate components which will be present in any MPC:
the model, the observer, the cost function and the optimizer. A general discrete-time
model is given by

x(k + 1) = f
(
x(k), u(k)

)
(1)

Here, the next state x(k + 1) is a (nonlinear) function f of the previous state x(k)
and the previous input u(k). A sequence x(·) is called the (state) trajectory of the
system. In general, the state x cannot be measured directly, but has to be calculated
based on the measurable outputs and inputs y(k) = g(x(k), u(k)). Thus, most model
predictive control schemes will include an observer.

The predicted trajectories are rated using a cost function of the form

JH =
H−1∑

k=0

�(xu(k), u(k)) (2)

The index H denotes the prediction horizon, xu is the state trajectory obtained using
the input sequence u(·) and � are the pointwise costs. Often, additional terms are
included to improve or proof stability, but for this work the simple formulation in
(2) is sufficient.

One of the advantages of MPC compared to other control schemes is its ability
to incorporate constraints. These can be introduced at several points, either as hard
constraints or as soft constraints. Hard constraints, as those often found in inputs,
can be easily included as part of the model or the optimizer. Soft constraints (e.g. a
flight state, which should be avoided) can be included by assigning a large cost to
the corresponding state or input.

Given the cost function, the model and the currently observed state, the optimizer
has to find the input sequence u(·) which minimizes the cost function JH over the
prediction horizon H and at the same time satisfies the given constraints. The optimal
control problem (OCP) thus is:
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Find u∗(·) = argmin
u(·)

JH = argmin
u(·)

H−1∑

k=0

�(xu(k), u(k))

where xu(0) = x0 (OCP)

and xu(k + 1) = f (xu(k), u(k))

while satisfying the given constraints.

Solving (OCP) yields an optimal control sequence u∗(·), where the first element
provides the input to the plant during the next timestep.

Prediction Horizon The time covered by the prediction horizon H is Δt = H · T .
Since T effectively introduces a dead time into the control loop it is desirable to
keep T small. However, for a fixed Δt the consequences of a smaller timestep T are
twofold: First, we increase the number of timesteps we need to predict. Secondly,
the computation time per timestep increases, because (OCP) needs to be solved for
more variables. Due to this using an MPC quickly becomes infeasible for small
timesteps T .

3 Conceptual Approach

A simplified block diagram of the horizontal flight path guidance is shown in Fig. 2.
There are two control loops: the outer loop controls the horizontal flight path using
a model predictive controller and generates heading commands for the inner loop,
the heading controller. Dividing the controller into two loops, the “fast” heading
controller loop and the “slow” flight guidance loop, has several advantages over a
solution based on model predictive control only. The most apparent advantage is
that it allows the reuse of an existing heading controller. At the same time, both
controllers can be designed separately. From the viewpoint of the MPC, the heading
controller is now part of the plant. One can achieve a mostly linear control response
from commanded heading to actual heading by designing the heading controller
correspondingly. Thus a linear model can be used to represent the heading-controlled

Heading ControllerMPC
ψc δa

xg

ψ

-
Kinematics

Observer

VA, VW , ΨW

Dynamics + Kinematics

MPC model

vg

Dynamics
ref. flight path

Fig. 2 MPC control loop
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PPG.Another,more subtle effect is that, due to this division it is natural to let the “fast”
heading controller run at a higher frequency than the “slow” flight path controller.

In addition to the linear model of the heading-controlled PPG, the underlying
model of the MPC also includes the flight path kinematics, which are inherently
nonlinear. Due to this, the optimization problem (OCP) also becomes nonlinear. To
predict the future flight path, the current wind speed has to be estimated. This is
done using a non-standard observer, which is only based on heading information and
ground velocity measurements.

The reference flight path is constructed using straight-line segments. Turns are
constructed in compliance with the maximum achievable turn rate and then approx-
imated using multiple straight-line segments.

In the following sections, each component briefly presented above will be dis-
cussed in more detail.

3.1 Model of Heading-Controlled PPG

The model consists of two parts: the dynamics and the kinematics. The dynamics
model the behaviour of the heading-controlled plant, thus the input is the commanded
heading Ψc and the output is the actual heading Ψ . As mentioned before, the suspen-
sion of the payload leads to heading oscillations. While high-DOF models, which
model the relative motion of the canopy and the payload, exist, considering these
effects is not useful for the purposes of flight path guidance. This is due to the fact
that the actuators are too slow to counteract the oscillations, thus they ideally should
not react to them at all. Additionally, considering the flight path, heading oscillations
about a setpoint will in effect still lead to an approximately straight-line path.

The model of the heading-controlled PPG is a transfer function obtained using
black-box system identification, see Sect. 4.2. It is of the form

GΨ Ψc = 1 + n1s + n2s2 . . .

1 + d1s + d2s2 + . . .
(3)

Note that, while most of the coefficients of the numerator and denominator polyno-
mials need to be estimated, we fix n0 = 1. In other words, the static-gain of GΨ Ψc is
1, because we assume that the heading controller will achieve zero stationary control
deviation. Additionally, GΨ Ψc shall be strictly proper, since there should be no direct
feed-through. For the actual discrete-time implementation, the dynamics (3) need to
be discretized.

The kinematic model is based on the assumptions that airspeed, wind speed and
wind direction only vary slowly and that the side-slip of the PPG is negligible. Thus
the kinematics are given by
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Vg = VA + VW

xg =
∫

Vg dt
(4)

Here,VA andVW denote the aerodynamic and thewind speed respectively.As before,
(4) needs to be discretzied for the actual implementation.

The complete model consists of the dynamics of the heading controller (3) and
the kinematics (4).

To predict a trajectory of a system the initial states need to be known. The states
of the kinematic model are comprised of the position xg, the airspeed VA, the wind
speed VW and the wind directionΨW . The states of the dynamic model are dependent
on the actual dynamic model chosen in the system identification process. In the case
of a discrete-time transfer function model without direct feed-through the output is
a function of the previous outputs and the previous inputs:

Ψ (k) = −a1Ψ (k − 1) − a2Ψ (k − 2) − . . . + b1Ψc(k − 1) + b2Ψc(k − 2) + . . .

Thus the previous inputs and outputs can be considered states of the model. Akin to
internal model control (IMC), the previous outputs Ψ (k − 1), Ψ (k − 2), . . . are
obtained by updating an internal model at each timestep k with the previously chosen
input Ψc(k − 1). This has the advantage, that the heading oscillations of the PPG do
not affect the MPC model. However, this approach only works, if the plant and the
model do not diverge over time. We assume that this is given, since the dynamics
model has a static gain of 1 and the heading controller is designed accordingly. Using
this technique effectively decouples the flight guidance loop from the dynamics of
the PPG.

3.2 Observer

As mentioned in Sect. 3.1 the model state is given by

x = [
xg VA VW ΨW Ψ (k − 1) Ψ (k − 2) . . . Ψc(k − 1) Ψc(k − 2) . . .

]T
(5)

All state variables, but the airspeed VA, wind speed VW and wind direction ΨW , are
either directlymeasurable or known. Based on the assumption of negligible side-slip,
slowly varying airspeed, wind speed and wind direction (c.f. Sect. 3.1) the unknown
state variables VA, VW and ΨW can be observed from available measurements.

We first introduce the ground speed in direction of the current heading Vg,Ψ , which
can be calculated using the following formula:

Vg,Ψ =
∣
∣∣∣

(
Vg,x

Vg,y

)∣
∣∣∣ cos(χ − Ψ ) = Vg cos(χ − Ψ ) where χ = atan2(Vg,y, Vg,x )

(6)
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Fig. 3 Velocity vectors
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Figure3 shows the relationship between VA, VW and Vg and gives the following
equation for Vg,Ψ :

Vg,Ψ = VA + VW cos(Ψ − ΨW ) (7)

In principle, given a set of observations Vg,Ψ andΨ the unknown parameters VA, VW

and ΨW can be determined using nonlinear regression. A more efficient approach
is to introduce a nonlinear transformation such that the unknown parameters can be
determined using linear regression:

Vg,Ψ = VA + VW cos(Ψ − ΨW )

= VW cos(ΨW ) cos(Ψ ) + VW sin(ΨW ) sin(Ψ ) + VA (8)

= VWx · cos(Ψ ) + VWy · sin(Ψ ) + VA

Equation (8) is linear in the parameters VWx , VWy and VA. The transformation back
to the original parameters is given by

VW =
√
V 2
Wx + V 2

Wy (9)

ΨW = atan2(VWy, VWx ) (10)

For N observations the following system of equations can be formulated:

⎛

⎜⎜⎜
⎝

cos(Ψ1) sin(Ψ1) 1
cos(Ψ2) sin(Ψ2) 1

...
...

...

cos(ΨN ) sin(ΨN ) 1

⎞

⎟⎟⎟
⎠

⎛

⎝
VWx

VWy

VA

⎞

⎠ =

⎛

⎜⎜⎜
⎝

Vg,Ψ,1

Vg,Ψ,2
...

Vg,Ψ,N

⎞

⎟⎟⎟
⎠

⇔ Ax = b (11)

The least-squares problem corresponding to Eq. (11) can be solved using standard
algorithms. However, the choice of observations to include in the regression is not as
obvious. Always choosing the last N observations can quickly lead to a case whereA
becomes singular, for examplewhen the PPG is flyingwith a constant heading. In this
case, all rows of A will be nearly equal and the least-squares problem becomes badly
conditioned. Instead, we divide the heading range from −180 to 180◦ into N equal
slices. For each slice, P observations (Ψ, Vg,Ψ ) are recorded and thus a mean and a
variance can be calculated. A large variance in a slice will likely be due to changes
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in the wind vector, thus for the regression this slice should have a smaller influence
on the estimate than a section with low variance. By introducing the diagonal matrix
W = diag(1/σi), where σi is the standard deviation in the i-th slice, a new regression
problem can be formulated:

b̂ = Âx where b̂ = Wb and Â = WA (12)

b and A are defined using mean values in each slice as described above. The observer
can be classified as an online least-squares estimator with directional forgetting [1].

3.3 Cost Function

The cost function penalizes deviations of a predicted flight path from the reference
flight path. As stated in Eq. (2) the total cost is the sum of pointwise costs �. The
main goal is to minimize the distance to the reference flight path.We use the standard
practice to minimize the squared distance, since it enables a more efficient imple-
mentation. In addition to penalizing the distance we also penalize deviations from
the reference flight path azimuth. This prevents the optimizer from finding solutions
which are close to the reference flight path, but opposite to the direction associated
with the current line segment. To allow approaching the reference flight path in a 90◦
angle, this term is weighted with the inverse of the distance to the reference flight
path. The pointwise cost function is thus

�(x, u) = μ1d
2(x, xre f (·)) + μ2

Δχ2

d(x, xre f (·)) (13)

where the current fligh path azimuth is given by χi = atan2(yg,i+1 − yg,i , xg,i+1 −
gg,i ), xi = (xg,i , yg,i ) is the i-th element of the predicted flight path and d(x, xre f (·))
denotes the distance from the reference flight path. Equation (13) introduces the addi-
tional weighting factorsμ1 andμ2, which make the corresponding terms dimension-
less. For the optimization, the relative weighting of both terms is essential, so μ1 can
be fixed to 1/m2. μ2 should be large enough to prevent the optimizer from choosing
the wrong directions. Suitable values can be found in simulation studies. The cost
function (13) only penalizes states, not inputs, since the hard input constraints are
handled during optimization.

3.4 Optimizer

The optimizer’s task is to minimize the cost function JH (2) with regard to the input
sequence u(·). Given the dynamics of the heading-controlled PPG we know that
a maximum absolute commanded turn rate |Ψ̇c,max| can be achieved. This creates
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Fig. 4 Optimizer working principle

a constraint, which has to be satisfied during optimization. Since the optimization
problem (OCP) is formulated in a discrete-time setting, the maximum absolute com-
manded turn rate Ψ̇c,max is replaced by amaximumchange in the commanded heading
|ΔΨc,max|.

A common problem in solving (OCP) is that changes in the inputs have non-local
effects, i.e. a change in the commanded heading affects the entire predicted flight path
in the following time steps. A consequence of this property is that minimizing JH by
optimizing the input sequence at one point can easily lead to the situation depicted in
Fig. 4b. Initially the pointwise cost � decreases, but increases again after the predicted
trajectory crosses the reference flight path. In total, the costs JH might not be lower
for the predicted flight path in Fig. 4b than for the initial path in Fig. 4a. Thus the
predicted flight path in Fig. 4b will not be considered further during gradient-based
optimization. An effective way to circumvent this problem is to introduce changes
to the commanded heading not only at one, but at two points in the predicted flight
path. This leads to the predicted flight path shown in Fig. 4c.

The optimization algorithm works by successively introducing opposing changes
at two prediction points, denoted by indices i and j . The index i runs from1 to H − 1,
while the index j runs from i + 1 to H . For each pair (i, j) a small change ΔΨc is
introduced to the commanded heading (added at i , substracted at j and vice versa).
This process continues as long as the total cost decreases, otherwise the algorithm
advances to the next pair (i, j). The number of iterations per pair (i, j) is bounded,
because the introduced change is limited to±ΔΨc,max. Additionally, the total number
of iterations is bounded, to ensure that the algorithm produces a result in the required
time T . The number of index pairs (i, j) is in the order of 1

2H
2. At each pair, the

model has to be executed H times to give the predicted flight path. Thus the total
complexity of the algorithm is of order H 3.

If it takes Tonce seconds to step the model once and calculate the pointwise cost
�, predicting a complete flight path takes H · Tonce seconds. In the worst case, the
optimizer needs to evaluate ΔΨc,max

ΔΨ
· H 2 complete trajectories. For a fixed prediction

time Δt and an MPC timestep of T , the number of prediction steps H is Δt
T . The

smallest MPC timestep is thus found to be

Tmin = 4

√
ΔΨc,max

ΔΨc
Δt3Tonce (14)

The values of Δt and ΔΨc,max depend on the plant dynamics, while Tonce and ΔΨc

are design variables.
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4 Implementation

The following section discusses the implementation of the previously presented con-
trol scheme.

Technical Data The actual PPG used was a SUSI62 provided by Dr. H.-P. Thamm
Geo-Technic (Fig. 5). Its technical data are summarized in the Table1.

The flight control hardware was developed at the Institute of Flight System
Dynamics of the RWTH Aachen University. Besides an integrated IMU and a GPS
module it has two dedicated microcontrollers for running control algorithms. Both
microcontrollers are clocked at 164MHz and contain a floating point unit (FPU). Due
to this architecture, the previously discussed division between heading control and
flight path control could be easily transferred to the actual implementation. While
the heading controller runs at a frequency of 200 Hz, the flight path controller runs
only at 1 Hz, see Sect. 4.4.

Fig. 5 The powered
paraglider SUSI62

Table 1 Technical data Wing area 6 m2

Empty weight ≈10 kg

Payload capacity up to 5 kg

Airspeed ≈8 m/s

Motor 62 cm3, 2-stroke, gasoline

Flight time up to 1 h
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Fig. 6 Nonlinear Hammerstein–Wiener model

4.1 Heading Controller

Heading control is achieved by a PID-based controller. In contrast to other works
[7] the process model is a black-box model obtained using system identification.
The input to the system is the asymmetric brake deflection δa = δle f t − δright . The
output is the yawing rate r , which approximates the heading rate of change Ψ̇ for
small bank angles. To capture the nonlinear properties of both the actuators and
the flight dynamics of the PPG we use a nonlinear Hammerstein–Wiener model.
Hammerstein–Wiener models combine static input and output nonlinearities with a
linear system in between.

Figure6 shows the characteristics of the individual components of the identified
model. Several conclusions can be drawn from these figures: The input nonlinearity
shows a non-zero output in case of a zero input. Additionally the flap’s effect does not
change beyond approximately −0.2 in the negative or 0.3 in the positive direction.
The output nonlinearity shows a plateau from −0.4 to 0.5 units, which has the effect
of a dead-zone as well as of a dead-time. The step response of the linear block shows
a rise time of about 2 s.

On the basis of these nonlinear dynamicswe tuned aPIDcontrollerwhich achieves
zero stationary control deviation and a linear response for reasonably small input
changes. Figure7 shows data from flight tests, where the commanded heading was
controlled manually. Even though the heading controlled plant exhibits large over-
shoots, this behaviour is acceptable as long as a suitable model can be found.

4.2 Kinematic and Dynamic Model

Dynamics As implied by the considerable overshoots, a second-order model is
needed to describe the plant behaviour to a sufficient accuracy. Based on flight-test
data the following continuous-time transfer function model was identified:
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G(s) = K ·(1+Tzs)
1+2ζTws+(Tws)

2

where K = 1; Tz = −0.29 sec; Tw = 1.47 sec; ζ = 0.40
(15)

In addition to the plant behaviour, Fig. 7 shows the model response ΨModel . The
model shows a similar behaviour with regard to the step response aswell as the
overshoots to some degree. The large oscillations caused by the suspension cannot
be represented since these are not caused by a measurable input to the plant. Since
the MPC is formulated in a discrete-time setting, Eq. (15) was discretzied using a
zero-order hold method and the MPC sample time T .

Kinematics The observer discussed in Sect. 3.2 estimates the airspeed, wind speed
andwinddirection.Due to this, the velocities in (4) are expressed in polar coordinates.
Discretizing (4) with a sample time of T yields

vg(k) = VA(k)

[
cosΨ (k)
sinΨ (k)

]
+ VW (k)

[
cosΨW (k)
sinΨW (k)

]

xg(k + 1) = xg(k) + vg(k) · T
(16)

We use euler-integration because simulation results indicated no improvement when
using more elaborate integration schemes.

4.3 Wind Estimation

Section3.2 introduced the observer that is used to estimate the aerodynamic speed
and thewind velocity. The two essential parameters of this observer are the number of
sections N and the number of observations per section P . As a first approximation, N
influences the convergence time and P the noise of the estimate. In simulation studies
N = 12 and P = 10 were found to result in a good tradeoff between convergence
speed and noise level.
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Fig. 8 Observer simulation results

Figure8 shows one such simulation study. The simulated wind is based on mea-
sured wind data. During the first 50 s the heading slices are filled with new observa-
tions, leading to large changes in the estimate. The length of this initial phase depends
on the actual flight path. After this initial phase, the solution stabilizes, effectively
smoothing the simulated velocities.

4.4 Optimizer

The main advantage of the optimization algorithm presented in Sect. 3.4 is its con-
ceptual simplicity. While this simplicity also translates to its implementation, the
runtime of the MPC is still the major limiting factor for an application to faster
control loops.

MPC timestep Equation (14) allows a calculation of the minimum MPC timestep
Tmin. It takes about Tonce = 19µs to step the model once and calculate the point-
wise cost �. Given the rise time of about 2 s of the plant (see Sect. 4.1), the pre-
diction horizon was Δt = 10 s. The maximum heading change in one timestep
was set to ΔΨc,max = 0.3rad (≈17◦), while the incremental change was set to
ΔΨc = 0.05 rad (≈3◦). This results in a minimum MPC timestep of Tmin = 0.58 s
(i.e. a maximum control frequency of 1.72 Hz). Since Tmin only constitutes the MPC
computation time, we set the actual MPC timestep to 1 s to allow the microcontroller
to execute other tasks besides computing the heading command.

Initial solution Starting optimization from a good initial solution considerably
reduces the required iterations to find the optimal solution. If the model is suffi-
ciently accurate we assume that the predicted flight path will be close to the actual
future flight path. The next optimal solution will then be close to the current opti-
mal solution, minus the first element. Using the last optimal solution to initialize
the current solution reduces the required number of iterations considerably. Once a
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solution is found, it takes only about 50 iterations to find the optimal solution in the
subsequent timesteps. This results in a computation time of about 5 ms, which is
well below the theoretical worst-case of about 500 ms.

5 Evaluation

The following section presents an evaluation of the previously described control
scheme. The individual components of the MPC will be discussed separately where
applicable. First, results from a simulation study are discussed and then compared
to results from flight tests.

Reference Flight Path All results are obtained using the same reference flight path.
The flight tests were conducted at a small airfield with a limited area of about
250 m ×500 m. Thus the primary requirement for the reference flight path was
to stay within these allowed limits. We chose a flight path in shape of the number 8,
featuring both left and right turns. The minimum turn radius is 70 m. With an air-
speed of 8 m/s and a maximum expected wind speed of 5 m/s this corresponds to a
maximum turn rate of 0.16 rad/s (≈9◦/s). This is well within the maximum turn
rate of Ψ̇c,max = 0.3 rad/s (≈17◦/s) imposed by the heading controller.

5.1 Simulation Study

The following simulation results were obtained with a mean wind speed of
VW = 3 m/s in direction of the positive y-axis (ΨW = 90◦). Wind gusts up to
1 m/s were added to the mean wind velocity. The estimated velocities behave simil-
iarly to the estimates in Fig. 8 and thus are not discussed further. For the simulation,
we used the nonlinear model described in Sect. 4.2.

Figure9 shows the reference flight path and the simulated flight path. The sim-
ulated flight path stays within approximately ±10 m of the reference flight path.
As is to be expected, the largest deviations occur when the velocity estimation is
inaccurate. This inaccuracy is however part of the overall design, since the actuators
of the PPG are too slow to counteract wind gusts. Additionally, the deviation from
the reference flight path rises during fast turn maneuvers, where the PPG achieves
comparatively large turn rates. This suggests an insufficient model accuracy for this
flight state.

Effects of inaccurate velocity estimates The observer is based on the assumption
that the observed variables are only varying slowly. Due to its working principle,
changes in the wind direction or speed can only be detected reliably if enough new
observations are gathered in new slices. Especially during long straight-line flight
segments this condition will not be satisfied. To quantify the effect of erroneous
estimtates of wind velocity and airspeed, we carried out simulation studies. In these
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Fig. 9 Simulated flight
along reference flight path
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studies, the velocity estimates were set to a fixed value while an additional crosswind
was introduced in the simulation. We found that the deviation from the reference
path rises linearly with the error in wind speed estimation. An erroneous wind speed
estimate of 5 m/s will lead to an error of about 30 m. The relevance of this result
depends on the properties of the reference flight path and the required accuracy.

It should be noted that even in the case of an unaltered estimate, a mean deviation
of about 2 m is present. This seems to result from the optimizers discretized search
space. The optimizer is not able to find a commanded heading that leads to zero mean
deviation.

5.2 Flight Test

A flight test was conducted to validate the results obtained in the simulation study
described previously. Due to a biased heading measurement, the flight path guidance
results are distorted and not included here. The effects of this bias are the same
as those of inaccurate velocity estimates. Thus, resulting from an incorrect wind
correction angle the actual flight path was offset from the reference flight path by
about 20 m. Nevertheless, the resulting flight path was similar to the simulation
results with respect to its variation and reproducability.

Only those components of the MPC not affected by the biased heading measure-
ment will be discussed below.



Nonlinear Model Predictive Flight Path Control for an Unmanned Powered Paraglider 385

0 100 200 300

4

6

8

Time [s]

Sp
ee
d
[m

/s
]

airspeed
wind speed

0 100 200 300
−60

−40

−20

0

Time [s]

D
ir
ec
tio

n
[◦
]

wind direction

Fig. 10 Velocity estimation in flight test

5.2.1 Observer

Figure10 shows the estimated wind speed and airspeed during one test flight. After
take-off, the estimated airspeed converges to approximately 8 m/s, which is in the
expected range. Due to the lack of airspeed sensors the estimated velocities could
only be checked for plausibility and couldn’t be validated further.

5.2.2 Model

Figure11 compares the measured heading during a flight with the predicted heading.
The left plot shows the heading commanded by the model predictive flight path
controller. The heading controller has a considerable lag of approximately 2 s. The
right plot shows the heading predicted by the internal dynamics model. Of course,
not all dynamics are described by the simple linear model. A typical example of this
can be seen around 610 s. Here, shortly after the turn starts, the payload swings back
again before following the motion of the parafoil. Besides such nonlinear behaviour,
the lag and the rise time of the plant are represented well by the linear model.
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Fig. 11 Comparison between measured and predicted heading
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It should be noted, that the model was identified during a flight where the heading
was commanded manually. In contrast, the data underlying Fig. 11 was produced
during an MPC-guided flight. Performing another system identification procedure
on these flight data results in a model, very similar to the original model. Thus,
despite the difference in excitation, the previously identified model could be used
for the MPC without change.

6 Conclusion

We presented a nonlinear model predictive control scheme for the horizontal flight
path guidance of a PPG. Model predictive controllers are inherently more complex
than many classic control solutions. Because of this, the control scheme presented
here was designed with a focus on simplicity, both conceptual and regarding its
implementation. Using a heuristic optimization algorithm we were able to imple-
ment the control scheme on an embedded flight control platform. The control scheme
adopts the common division of flight path control into heading control and flight
path guidanace. While the heading controller was designed as a classic feedback
controller, the flight path guidance was realized using an MPC. To predict the future
flight path of the underlying model, an estimation of the mean wind velocity and
airspeed was implemented. The estimation was transformed to a linear least-squares
problem, yielding a robust estimation of the observed variables at a reduced compu-
tational cost.

The control schemewas developed and tested in a simulation environment. Here, a
maximum deviation from the reference fligth path of 10 m was achieved. Flight tests
were then conducted to validate this simulation result. While the actual flight path
guidance could not be validated due to a biased heading measurement, the individual
components of the MPC could be validated successfully. It was shown that the linear
model of the heading dynamics describes the behaviour of the heading-controlled
PPG well. Also, the estimation of the wind speed and airspeed yielded plausible
results.
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