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1 Introduction

The maintenance of safe and reliable performance of flight vehicles is always highly
demanded, for the flight transportation system are an indispensable support for the
modern society and world economy. However, in spite of high-level redundancy
systems, aircraft still has the risk of faults and failures in three major parts, which are
generally referred to as sensors, actuators and airframe. Specifically, fault detection
and isolation (FDI) methods on sensors and actuators have been intensively used and
well developed [1]. The integration of these technologies generate multiple choices
and attractive issues in preventing accidents due to degrading mechanical properties
like fatigues, cracks and debonding, which are generally categorized as structural
health monitoring (SHM). A multitude of various SHM methods as well as nice
reviews can be found in literature [2, 3].

Generally the approaches taken in SHM are classified into physics-based type and
data-based type [3]. The conventional physics-based methods rely on identification
techniques such as the estimation of structure stiffness and model parameters, which
are considered deterministic without uncertainties. The problem with this method
is that it’s difficult to evaluate the reliability of the estimated damage case. On the
other hand, the data-driven approach takes more considerations into uncertainties,
which relies on system measurements for training and assessment. Nevertheless, the
data-basedmethod sometimesmay lack insights into the nature of the damage, which
makes it less ‘physical’, or straightforward. Various methods have been developed
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to find a balance between the two approaches and enhance the confidence in dam-
age diagnosis in the existence of uncertainties. However, successful applications of
these methods in flight vehicles face a lot of technical challenges. One difficulty is
the acquisition of extensive training data from repetitive experiments and onboard
sensors. Also, the knowledge of damage location and damage type are not always
well known a prior, and the operational and environmental conditions sometimes
vary significantly due to diverse uncertainties [3]. So the main focus of this paper is
on dealing with aircraft structural damage under uncertainties.

One of the approaches dealing with uncertainties as well as the lack of determin-
istic knowledge is based on fuzzy logic, which provides a potential way of sufficient
training and accurate pattern recognition based on imperfect data. The damage type
can be determined by fuzzy set method through the assignment of membership func-
tions to each input. Various literature [2–10] can be found using fuzzy logic to detect
and assess structural damage of composites in various applications of industries.
Most of the methods use non-destructive vibration-based data like natural frequen-
cies, material properties like Young’s moduli, mode shape curvatures and stiffness
based on finite element models. For aircraft, however, there are no such onboard sen-
sors to provide real-time data for monitoring and diagnosing. In order to determine
which part of the aircraft (e.g. fuselage, wings, tails) is under crisis, new damage indi-
cators need to be defined using information that already existed onboard. Therefore,
in this paper a different way of detecting and estimating aircraft structural damage
is proposed by using aerodynamic coefficients of moments and forces as featured
inputs to the fuzzy logic system.

2 Modeling of Aircraft Structural Damage

One major bottleneck for damage assessment of aircraft is that repeated destructive
experiments are hardly feasible, thus there’s little real flight data for analysis. How-
ever, with the increasing concern for the safety of civil airliners, a number of experi-
ments on subscale models in windtunnel and Computational Fluid Dynamics (CFD)
software have been conducted to satisfy the expanding need for multiple sources of
data. Earlier researches done by NASA Langley Research Center are a series of wind
tunnel tests on a swept-wing airplane model to determine the effects of simulated
wing damage on the aerodynamic characteristics of the model at Mach numbers
larger than one. Wing damage was simulated by removal of either a leading-edge
or a trailing-edge portion or an entire wing panel [11]. In recent years, the Generic
Transport Model (GTM), a 5.5% scale model of a commercial airplane has been
the subject of a series of extensive wind tunnel tests and CFD experiments [12]
undertaken by NASA for the exploration of loss-of-control events involving various
contributions such as stall/ high-angle-of-attack, airframe damage and icing [13].

With the aid of these data and reports, the aerodynamic characteristics of the
partially damaged aircraft can be studied, which provides the theoretic foundation of
our paper. The effect of structural damage is mainly a combination of aerodynamic
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change, mass property shift and control degradation. The control effectiveness can
be evaluated in a relatively independent way through the isolation of actuator faults
by advanced actuators fault detection systems. Mass properties, seem not have a
substantial effect on flight characteristics compared with the impact of aerodynamic
forces and moments, according to an experiment conducted by Shah [14], in which
a large, asymmetric mass change (physical separation of an engine) was modeled. In
this paper we mainly focus on the aerodynamic effects of structural damage based
on the wind tunnel tests conducted by Shah et al. [14, 15], in which the damage in
the form of partial or total tip loss is applied to three major parts of the aircraft that
provides aerodynamic forces and moments: the horizontal tails, the vertical tail, and
the wings [16]. In order to correctly identify the damage type, we need to model the
damage in a simple but general way that can reflect the trend of experimental damage
data.

2.1 Horizontal Stabilizer Damage

The horizontal stabilizers provide the only stabilizing contribution to pitching
moment. So the damage to horizontal stabilizers often causes significant changes
in both static and dynamic longitudinal stability. When damage occurs, a steady
decrease in pitching moment is most likely to happen. A trend from negative to posi-
tive (unstable) in Cmα

with increasing area of damage is observed in the wind tunnel
data. As an important indication of dynamic stability, the pitching dampingCmq over
the angle of attack range is reduced with the scale roughly proportional to the ratio
of tip loss.

2.2 Vertical Tail Loss

The effect of vertical tail damage on directional characteristics is similar to that
of horizontal tail damage on pitch axis, and it rarely induces incremental rolling
moments since the damage is basically symmetric. The change in lateral static and
dynamic stability is seen as a steady decrease in yawing moment at the same angle
of sideslip with increasing size of tip loss. As to static stability, the value of Cnβ

experiences a progressive decrease proportional to the scale of damage at the same
angle of attack, but the change with respect to α remains almost the same. Yaw
damping steadily decreases and approaches to zero (unstable limit) with the increase
of the damage area.

2.3 Wing Damage

The wing damage is different from tail damage in the progressive reduction of lift
curve slope versus angle of attack. More importantly, wing tip loss also results in
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incremental rolling moment due to unequal normal force contributions from the left
wing to the right wing, which are roughly proportional to damaged scale at given
angle of attack.

2.4 Aerodynamic Coefficients as the Damage Indicator

As is explained before, the conventional damage indicators for structural monitor-
ing and diagnosing are not available due to limited onboard sensors. Instead, the
measured translational accelerates A(x,y,z)m and the rotational rates pm, qm, rm from
inertial navigation system (INS) are used to calculate the dimensionless forces and
moments of the aircraft [17]:

CX = mAx

1/2ρV 2S
CY = mAy

1/2ρV 2S
CZ = mAz

1/2ρV 2S
CL = CX sin α − CZ cosα

(1)

Cl = ṗ Ixx + qr
(
Izz − Iyy

) − (pq + ṙ) Ixz
1
2ρV

2Sb

Cm = q̇ Iyy + rp (Ixx − Izz) + (
p2 − r2

)
Ixz

1
2ρV

2Sc̄

Cn = ṙ Izz + pq
(
Iyy − Ixx

) + (qr − ṗ) Ixz
1
2ρV

2Sb

(2)

where CL denotes the dimensionless aerodynamic lift force.
These calculated forces andmoments are closely related to the integrity of aircraft

components. Moreover, based on the discussion on wind tunnel results, the structural
damage directly influences the value of aerodynamic coefficients, which means that
we can use estimated aerodynamic coefficients as the damage indicators through
least squares based on the following model structure:
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V
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The damage indicators are listed in Table1. It is noticed that different aerodynamic
coefficients are picked on which different damage cases have the most dominant
influence. That is how we distinguish between two different damage locations based
on the value of their unique damage indicators.

3 Formulation of Fuzzy Logic System

Unlike what we listed in Table1, the actual damage cases are never deterministic.
Even if we have all the time and condition to collect data from a given airplane, it
would be impossible to obtain all the information to predict all the possible phenom-
ena. Under the situation of uncertainties, what we can do is to make generalizations
and predictions of the current and future system behaviors based on the past expe-
rience and data [3]. Specifically, we need to use inductive reasoning and inference
to find a balance between the vague, uncertain world and its precise, determinis-
tic estimation. By using linguistic variables, fuzzy logic system is a marvelous tool
that provides a possible way of dealing with vagueness and imprecision of informa-
tion from limited experiments. In this paper, a fuzzy logic system is designed and
integrated in the problem of damage assessment of the aircraft using aerodynamic
coefficients as damage indicators.

As is illustrated in Fig. 1, a fuzzy Inference system (FIS) is basically composed
of five functional blocks, in which the rule base contains a number of fuzzy if-
then rules that need to be generated or trained offline and the membership functions
of the fuzzy sets used in the fuzzy rules are stored in the database for retrieval. The

Table 1 Damage indicators for different damage locations

Indicator Horizontal tail (HT) Vertical tail (VT) Wing

Aerodynamic
coefficients

Cmα , Cmq Cnβ , Cnr , CYβ CLα , Clα

system 

decision making unit

database rule base

input output

x y

Fig. 1 Schematic representation of a fuzzy inference system
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fuzzification process transforms the crisp inputs into degrees of match with linguistic
variables using membership functions. A decision-making unit will then be used to
performs the inference operations on the rules, i.e. to map fuzzy sets to fuzzy sets
and determines the way they are combined. Finally, the defuzzifier again transforms
the fuzzy values into crisp results [4, 7].

3.1 Input and Output

The inputs to the fuzzy logic system are the aerodynamic coefficients listed in Table1,
which are identified from measured forces and moments according to Eq.3. The
outputs are the location and severity of structural damage expressed in linguistic
variables. Mathematically, FLS performs a mapping from crisp inputs x to outputs
y [4, 7]:

y = F(x) (4)

The linguistic variables describing damage parts include four aerodynamic surfaces
of the aircraft, which are horizontal tail (HT), vertical tail (VT), left wing (LW), right
wing (RW). Each variable is split into a set of terms covering its universe of damage
severity like:

T (left wing) = {undamaged, slight damage, moderate damage, severe damage}
(5)

In this paper, we only consider single damage for simplicity, and each damage case
is simulated in the well-developed DASMAT citation model in a Maltab/Simulink
environment with measurement noises, based on which the aerodynamic coefficients
are identified via recursive least squares. The damaged aircraft model is modeled as
a linear change to the original model of total forces and moments from aerodynamic
look-up table:

CXdmg = (1 + ΔCX )CX0 CYdmg = (1 + ΔCY )CY0 CZdmg = (1 + ΔCZ )CZ0

Cldmg = (1 + ΔCl)Cl0 + ΔClαα Cmdmg = (1 + ΔCm)Cm0 Cndmg = (1 + ΔCn)Cn0
(6)

For each damage location and severity level, the changed values of aerodynamic
forces and moments are list in Table2. Due to limited sources of data, the figures
in the table are assigned based on the information like changing magnitude and
gradient abstracted from the experimental results done by others. So the table does
not represent the aerodynamic changes of damage in a numerically precise way, but
only for the proof of concept and the feasibility of algorithms adopted in this paper.
Further improvements might be obtained with more experimental data and thorough
analysis.

The identified aerodynamic coefficients under three damage cases are displayed
in Figs. 2, 3 and 4. For wing damage only the results of left wing are shown because
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Fig. 2 The identified damage indicators for horizontal stabilizer tip loss
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Fig. 3 The identified damage indicators for vertical tail tip loss
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Fig. 4 The identified damage indicators for left wing tip loss

the figures of right wing has little difference with the left wing only with some signs
reversed. The simulation time is 10 s, and all the coefficients have converged to stable
values, which shows clearly the aerodynamic effects of different scales of structural
damage.

3.2 Fuzzification

After obtaining the input data, the next step in FIS is fuzzification, where the inputs
are transformed into degrees of membership of the linguistic variables calculated
from the membership functions μ(x), which takes on the values between 0 and 1 [4,
7]. Fuzzy sets with Gaussian membership functions are used for the input variables,
which are defined as:

μ(x) = e−0.5((x−m)/σ )2 (7)

where m is the midpoint of the fuzzy set and σ is the standard deviation associated
with each linguistic variable. In this application, the linguistic variables for numerical
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Fig. 5 The input membership function of each damage indicator

inputs are defined below:

T (x) = {negligible (N), low (L), medium (M), high (H)} (8)

The membership function of each damage indicator, i.e. aerodynamic coefficients
are displayed in Fig. 5.

3.3 Rule Generation and Inference Engine

Rules for the fuzzy system can be expressed as [4, 7]:

Ri : IF x1 is F1 AND x2 is F2 AND . . . xm is Fm

THEN y = Ki
(9)

where Fi ∈ Vi and Ki ∈ W are fuzzy sets characterized bymembership functionsμFi
and μKi . Each rule corresponds to one class, i.e., damage pattern in our application.

The rules can be either defined or trained through a supervised learning. Each
rule can be evaluated by applying fuzzy operator and implication method. For the IF
part, which is also called the antecedent, the fuzzy operator is applied to obtain one
number by combining the input membership degree of each part of the antecedent.
Various types of fuzzy operators could be taken. In this paper we pick the AND
operation which multiplies all the membership degrees of the inputs for each rule:

μRi (x) = μF1(x1) · μF2(x2) · · · ·μFm (xm) (10)
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Fig. 6 The output membership function of each damage part of the aircraft

The resulting number is then applied to the output membership function μKi (y), as
is illustrated in Fig. 6 and implication process is implemented for each rule as:

μRi (x, y) = μRi (x) · μKi (y) (11)

Given the input and outputmembership function, the training and generation of fuzzy
rules can be followed by the procedure explained below [4, 7]:

1. Each given damage case is simulated in the aircraft model according to Table2
and the corresponding damage indicators are identified. The membership degrees
of each damage indicator are calculated through the input membership functions

2. For each damage indicator having four degrees of membership based on the
linguistic measures in Eq.8, select the membership with the maximum degree.

3. One rule is obtained for each damage case by combining all the damage indicators
with linguistic measures having maximum membership degrees.

Based on the above procedure, the trained rules from simulation data are displayed
in Table3.
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Table 3 Rules of fuzzy inference system

IF THEN

Cmα Cmq Cnβ Cnr CYβ
CLα Clα Damage case

N N N N N N N Undamaged

L N Slight damage at HT

M L Moderate damage at HT

H H Severe damage at HT

L N L Slight damage at VT

M M M Moderate damage at VT

H M H Severe damage at VT

L L Slight damage at wing

M M Moderate damage at wing

H H Severe damage at wing

3.4 Defuzzification

Once the fuzzy rule are applied to a given input, we have a set of degree of member-
ships for each damage pattern. Widely used defuzzification methods include maxi-
mummatching and centroid defuzzification. The latter one is often used when a crisp
output value is required, while in pattern recognition we only need to know the class
index [4, 7]. So in this paper, maximum matching is used to find the class which
has the maximum matching degree of the rules. Finally the damage pattern with
the highest degree of membership is selected containing the information of damage
location as well as damage severity.

3.5 Damage Pattern Recognition Using Fuzzy Logic

To validate the methods proposed in this paper, validation data are generated from
the DASMAT simulation model on which four levels of damage severity for differ-
ent parts of the aircraft are applied. In order to test how well the proposed FIS deal
with uncertainties, noises with four different signal-to-noise ratios (SNR) are added
in to simulate the uncertainty present in experimental measurements and modeling
process. For each case, one thousand noisy data points are generated. The perfor-
mances is evaluated by success rate, which is the ratio of the damage cases that are
correctly recognized by the FIS. Figure7 shows the results of different noise levels
for damage in left horizontal stabilizer, vertical tail and left wing respectively. It can
be observed that the success rate increases when larger SNR, i.e., less noises are
applied, and the success rates of severe damage are slightly lower then that of less
severe damage.
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Fig. 7 The success rate of damage pattern recognition at different locations and noise levels

4 Conclusion

A new method using fuzzy logic for damage pattern recognition is proposed and
implemented in this paper to compensate for the limited experimental condition and
data of damaged aircraft. The aerodynamic coefficients sensitive to the integrity of the
aerodynamic surfaces are picked as damage indicators. The selected coefficients are
estimated, fuzzified andmapped to a damage case via a set of fuzzy rules. Simulation
results show that by using FIS, the damage pattern recognition can deliver vague but
useful information on the health condition of the aircraft. Future work can be done to
enhance the accuracy of themethod by using neural networks to train themembership
functions and fuzzy rules so that the parameters of FIS can always be updated with
new incoming measurement information.
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