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1 Introduction

Data fusion techniques have been widely employed in multisensory environments
to fuse data from multiple sensors in order to achieve lower detection errors and
higher reliability. One of the most popular approaches for navigation sensor fusion
is implementing the conventional Kalman filters [1–3]. The significant difficulties
in designing the conventional Kalman filters (i.e. EKF, UKF, and IEKF) for sensor
fusion is incomplete prior information on covariance matrices [4]. Poor knowledge
of the models may seriously reduce the Kalman filters’ performance, and make
the filters unstable. Numerous model proposals have been improved to address this
problem over the last twenty years, including the adaptive Kalman filtering approach,
which has proven to be an effective strategy for managing the limitations associated
with the conventional Kalman filters. An adaptive Extended Kalman Filter for the
localization of mobile robots were developed by Jetto and Longhi [5]. In their work,
the data provided by sonar and odometrical sensors were fused through an adaptive
EKF to provide online estimates of a robot’s position. An adaptive two stage EKF for
estimating unknown fault bias in an INS/GPS loosely coupled system, was proposed
by Kim and Lee [6]. An adaptive EKF using artificial neural networks was devel-
oped by Stubberu et al. [7], who designed a neuro-observer that can learn system
uncertainties and improve the overall performance of an uncertain control system
in the state-estimator model. An adaptive UKF algorithm for target tracking with
unknown process noise statistics was introduced by Shi et al. [8]. In this algorithm,
a modified Sage-Husa noise statistics estimator was introduced to assess the system
process noise variance adaptively. An adaptive fading UKF with Q-Adaptation for
attitude estimation was introduced by Soken et al. [9].

The adaptive tuning of theKalman filterwith the fuzzy logic has been very popular
for managing systems with dynamical uncertainties, particularly in the field of adap-
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tive control. A fuzzy adaptive strong tracking Kalman filter for ultra-tight GPS/INS
integration was introduced by D. Jwo et al. [10]. In this work, the performance of
the filter improved by adaptively modifying the sub-optimal fading factor via fuzzy
logic. J.Z. Sasiadek et al. [11–14], proposed an adaptive filter known as the Fuzzy
Adaptive Extended Kalman Filter (FAEKF), to adapt the process and measurement
noise covariance matrices. The method was based on exponential data weighting, to
protect the EKF from divergence. In this work, the EKF has been modified using the
fuzzy logic.

This paper focuses on the development of new integration algorithms based on
the combination of the Fuzzy Logic Controllers (FLCs) and conventional Kalman
filters such as the Iterated Extended Kalman Filter (IEKF) and Unscented Kalman
Filter (UKF) to provide reliable and accurate navigation solutions. The proposed
algorithms are based on the correction of both the process noise covariance matrix
Q, and the measurement error covariance R. The FLCs are implemented to adjust
the exponential weighting of weighted UKF and IEKF and protect the filters from
divergence. The rest of the paper is organized as follows. Section2 describes two
proposed adaptiveKalmanfiltering approaches. Section3 introduces the FuzzyLogic
Controllers. In order to validate the effectiveness of the proposed adaptive algorithms,
simulation results are discussed in Sect. 4 and finally, in Sect. 5, the conclusions of
this work are given.

2 The Adaptive Estimation Algorithms

2.1 System Description

The non-linear dynamic and measurement models are given by:

xk = f(xk−1,uk) + wk (1)

yk = h(xk) + vk (2)

where the vectors xk ∈ �8, represents the state of the system at the time point k. The
process noise is given bywk , and zk ∈ �4, corresponds to the observed measurement
signal, driven by Gaussian white noise vk .

In order to protect the conventional Kalman filters from divergence when there
are uncertainties in the system noise covariances, exponential data weighting is
applied. Two new adaptive formulations, weighted Iterated Extended Kalman Filter
and weighted Unscented Kalman Filter can be described as follow.
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2.2 Weighted Iterated Extended Kalman Filter

Themodel and implementation equations for theweighted Iterated ExtendedKalman
Filter are defined as the following recursive equations.

2.2.1 Initialization

x̂0 = E(x0), P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (3)

2.2.2 Prediction

The predicted state can be defined as:

x̂k|k−1 = f(x̂k−1,uk) (4)

The covariance matrices of the adaptive IEKF defined as:

Rk = α−2(k+1)R (5)

Qk = α−2(k+1)Q (6)

where, α ≥ 1. For α > 1, as the time increases the covariance matrices decrease
which means the recent data has more credibility, due to the exponential decreased
noise covariance with time. When α = 1, the filter is acting like a regular IEKF. It
should be noted that α is the output of the fuzzy controllers.

P−
k = Fk−1P−

k−1F
T
k−1 + α−2(k+1)Q (7)

where, Fk−1, the linear approximation equation can be present in form of:

Fk−1 ≈ ∂f
∂x

|x̂k−1,uk
(8)

By defining the weighted covariance as

P−
k = α−2kPk|k−1 (9)

By calculating x̂k , Kk , Pk at each iteration about the most recent estimate. The
Kalman gain can be computed as:

Kk,i = P−
k H

T
k,i (Hk,iP−

k H
T
k,i + α−2(k+1)R)−1 (10)
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The superscript i , (i = 0, 2, . . . , τ ), is the number of iteration steps. By using (9),
the Kalman gain can be rewritten as:

Kk,i = Pk|k−1HT
k,i (Hk,iPk|k−1HT

k,i + R/α2)−1 (11)

where

Hk,i ≈ ∂h
∂x

|x̂k,i (12)

The predicted measurement estimation can be rewritten as:

x̂k,i+1 = x̂k|k−1 + Kk,i (yk − h(x̂k,i ) − Hk,i (x̂k|k−1 − x̂k,i )) (13)

where, x̂k,i presents the estimate at time point k and ith iteration. The iteration process
is initialized with x̂k,0 = x̂k|k−1.

And the posterior covariance matrix defined as:

Pk,i = (I − Kk,iHk,i )Pk|k−1 (14)

The iterative process will not be stopped until a certain termination condition is
met.

2.3 Weighted Unscented Kalman Filter

2.3.1 Initialization

x̂0 = E(x0), P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (15)

2.3.2 Prediction

For the L elements state vector, a set of (2L + 1) sigma-points are created according
to the following:

χ k−1 = [x̂k−1 x̂k−1 + √
(L + λ)

√
Pk−1 x̂k−1−

√
(L + λ)

√
Pk−1] (16)

where each column of χ k−1, represents a sigma-point.
√
Pk−1 = chol(Pk−1) is the

square root of the state error covariance [15], and the scaling parameter λ defined as:

λ = σ 2(L + κ) − L (17)
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where, σ , 1e−4 ≤ σ ≤ 1, determines the size of the sigma-points distribution and κ

influences the accuracy of the approximation [16]. Once the sigma-points have been
generated, each point is propagated through out the non-linear state equation as:

χ
(i)
k|k−1 = f(χ k−1,uk), i = 0, . . . , 2L (18)

Themean and covariance are approximated using aweightedmean and covariance
of the transformed points as:

x̂k|k−1 =
2L∑

i=0

η
(m)
i χ

(i)
k|k−1 (19)

Pk|k−1 =
2L∑

i=0

η
(c)
i (χ

(i)
k|k−1 − x̂k|k−1)(χ

(i)
k|k−1 − x̂k|k−1)

T + α−2(k+1)Q (20)

where the mean weight vector η
(m)
i , and the covariance weight vector η

(c)
i associated

with the ith point are defined as:

η
(c)
i = η

(m)
i = 1/(2(L + λ)), i = 1, . . . , 2L (21)

γ
(i)
k|k−1 = h(χ

(i)
k|k−1) (22)

Then the mean of the measurement vector is calculated as:

ŷk|k−1 =
2L∑

i=0

η
(m)
i γ

(i)
k|k−1 (23)

Covariance and cross-covariance matrices of the proposed adaptive UKF are
defined as:

Pyy
k =

2L∑

i=0

η
(c)
i (γ

(i)
k|k−1 − ŷk|k−1)(γ

(i)
k|k−1 − ŷk|k−1)

T + α−2R (24)

Pxy
k = α−2(k−1)

2L∑

i=0

η
(c)
i (χ

(i)
k|k−1 − x̂k|k−1)(γ

(i)
k|k−1 − ŷk|k−1)

T (25)

Similar to the weighted IEKF, When α = 1, the filter is acting like a regular UKF.
For α > 1, as the time increases the covariance matrices decrease.
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2.3.3 Update

Kk = Pxy
k (Pyy

k )−1 (26)

The Kalman gainKk , is then used to update the state and covariance estimates as:

x̂k = x̂k|k−1 + Kk(yk − ŷk|k−1) (27)

Pk = Pk|k−1 − KkP
yy
k KT

k (28)

3 Fuzzy Logic Controllers

The conventional Kalman filters provide an effective means of estimating the state of
a system from noisy measurements when the covariances of the system are known,
and the system is well defined. However, in some cases, there are uncertainties in
the system noise covariances, which can cause filters to become unstable. Adaptive
tuning of the conventional Kalman filters via fuzzy logic has been one of the promis-
ing strategies to protect the filters from divergence when dealing with parameter
uncertainty and non-white process noise [13]. In order to adjust the filters, the FLCs
continuously monitors and tunes the noise level in the filters, internal model. The
residuals of Kalman filter should be zeromeanwhite noise process; if not, divergence
will happen. Hence, in this paper, the covariance and mean values of the residuals
are used as inputs to the FLCs to decide the degrees of divergence.

The block diagram for the GPS/INS navigation sensor fusion using the FAUKF
and FAIEKF is shown in Fig. 1. The proposed fuzzy adaptive Kalman filters have
been validated for two different cases.

3.1 Fuzzy Logic Adaptive System for Parameter Uncertainty

The uncertain or time varying parameters inQ andRmatrices make the conventional
Kalman filters diverge or coverage to a large bound. When the filter does not work
well, the FLCswould apply a suitableweighting factor to Enhance the accuracy of the
filter. Two groups of fuzzy controllers have been defined for parameter uncertainty.

3.1.1 First Fuzzy Controller

In this controller, the mean values and covariance of the residuals are inputs to the
FLC to determine the degree of divergence. The exponential weighting α is the first
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INS

GPS Weighted UKF/IEKF

Fuzzy Controller

Integrated Navigation Output

+
- Inovation Sequence

Pesudorange

Estimated INS Error

Fig. 1 Block diagram representation of fuzzy adaptive Kalman filter for GPS/INS integration

Fig. 2 Mean value
membership functions for
parameter uncertainty
[J.Z. Sasiadek et al. [13]]

fuzzy controller output. The FLC will select the suitable α to optimally adapt the
Kalman filter. The membership function of FLC inputs (i.e. the mean and covariance
of residuals) and the output α are illustrated in Figs. 2, 3 and 4, respectively. The
characteristics of a fuzzy system are highly dependent on the relevant rules. The
proposed fuzzy logic controller used 9 rules as shown in Table1.

3.1.2 Second Fuzzy Controller

The second controller was designed to detect the changes in the R matrix, and
adapt the filter accordingly. The measurement covariance matrix, R, is related to
the residual’s covariance; thus, any changes in the measurement covariance matrix
can alter the covariance of the residuals. With this controller, the UKF and IEKF
is adapted by selecting the appropriate scale. For example, the FLC applies a large
scale to adjust the α if it determines that the covariance of the residual is greater than
expected.

αk+1 = (αk − 1) ∗ scale + 1 (29)

The 9 rules for this fuzzy controller are shown in Table2.
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Fig. 3 Covariance
membership functions for
parameter uncertainty
[J.Z. Sasiadek et al. [13]]

Fig. 4 α membership
functions for parameter
uncertainty [J.Z. Sasiadek et
al. [13]]

Table 1 Rule table of α for parameter uncertainty

α Mean value

Z S L

Z Z S S

S S L S

L Z NS NS

Z − Zero; S − Small; NS− Negative Small; L− Large

Table 2 Rule table of scale for parameter uncertainty

scale Mean value

Z S L

Z Z Z Z

S S S S

L L S Z

Z − Zero; S − Small; L− Large

3.2 Fuzzy Logic Adaptive System for Non-white Process
Noise

The conventional Kalman filters require that both, the process noise wk , and the
measurement noise vk are zero-mean white noise with known covariance Q and R.
In practice, sometimes the process noise could be correlatedwith itself. Implementing
the FLC is one alternative to this problem

The membership functions for this fuzzy control are shown in Figs. 5, 6 and 7
respectively.
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Table 3 Rule table of α for non-white noise

α Mean value

Z S L

Z S Z Z

S Z L M

L L M Z

Z − Zero; S − Small; M− Medium; L− Large

Fig. 5 Mean value
membership functions for
non-with process noise
[J.Z. Sasiadek et al. [13]]

Fig. 6 Covariance
membership functions for
non-with process noise
[J.Z. Sasiadek et al. [13]]

Fig. 7 α membership
functions for non-with
process noise [J.Z. Sasiadek
et al. [13]]

There are 9 rules for the FLC in the present of non-white noise, Table3, hence,
little computational time is required.

4 Simulation Results

Numerical simulation has been done to validate the performance of the proposed
FAUKF and FAIEKF in comparison with FAEKF and the conventional EKF, UKF
and IEKF approaches for INS/GPS integration when dealing with non-white noise
and uncertain or time varying parameters are considered to exist in the process and
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Table 4 The position errors with the non-white noise inputs

Position RMS Error Position RMS Error

Mean of
INS [m]

x = 2 y = 0.5 z = 1 x = 1 y = 1 z = 1

X Y Z X Y Z

FAUKF 3.20 1.28 2.53 1.5 1.7 2.4

FAEKF 7.23 3.34 5.83 3.19 3.53 4.14

FAIEKF 7.03 3.14 5.03 2.9 3.13 3.94

EKF 24.91 8.58 8.36 14.82 10.67 6.7

IEKF 24.51 7.51 7.78 14.6 10.50 5.6

UKF 10.23 14.71 14.09 5.1 3.6 6.32

measurement noise matrices. More detailed descriptions of weighted EKF and stan-
dard Kalman filters approaches for GPS/INS integration are given in J.Z. Sasiadek
et al. [13] and S. Yazdkhasti et al. [17, 18], respectively (Fig. 5).

The state vectors used in the simulation included three states for INS position
errors, three for INS velocity errors and two states for GPS range drift and range bias
as:

xk = [xk, yk, zk, ẋk, ẏk, żk,CΔt,CΔ̇t] (30)

where, x points east, y points north and z is the attitude, CΔt , CΔ̇t represent GPS
range and drift states (Fig. 6).

For the first part of the simulation, the process noise wk assumed as a non-zero
mean process noise. The white noise with a standard deviation of 4m was applied
to the GPS measurements. The simulation was done for different INS mean values
(wk), for the East (x), North (y), and Altitude (z) respectively (Fig. 7).

The summary of rootmean square (RMS) errors of the sixGPS/INS configurations
provided in Table4. As it is indicated, the fuzzy adaptive filters clearly improved
the performance of the conventional Kalman filters. The position errors of FAEKF,
FAUKF and FAIEKF are much smaller than that of EKF, UKF, and IEKF. Among the
six approaches, the FAUKF demonstrates superior navigation accuracy performance
in comparison with other filters.

The residuals of the six filters are shown in Fig. 8. The residual is the difference
between the best measurement prediction based on the filter’s internal mode and the
actual measurement; hence, it can be used to evaluate filter’s performance. From
Fig. 8 it could be noticed that the residual of the EKF, UKF, and IEKF have a large
drift, while the residual mean value of FAEKF, FAUKF, and FAIEKF are smaller
than that of EKF, UKF, IEKF.

For the second part of the simulation, the developed algorithms have been tested
and evaluated for various parameter uncertainties. The white noise with a standard
deviation of 5m was applied to the GPS measurements. The INS standard devia-
tions are 0.006, 0.006, and 0.0006m for the East (x), North (y), and Altitude (z),
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Fig. 9 Variance of the Adaptive Filters for 5Q and 4R
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Fig. 10 Variance of the convential filters for 5Q and 4R

respectively. Figures9 and 10 illustrates the covariance of Fuzzy adaptive filters and
standard Kalman filters when high uncertainty, 5Q and 4R, exists. 5Q and 4R mean
the real time parameters are 5 and 4 times as large as the designed Q and R. The
simulation was repeated for different covariance values (5Q,R), Figs. 11 and 12 and
(Q, 4R), Figs. 13 and 14.
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Fig. 11 Variance of the adaptive filters for 5Q and R
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Fig. 12 Variance of the convential filters for 5Q and R

Due to better treatment of parameter uncertainties, the FAUKF and FAIEKF has
shown performance improvement when compared to the conventional UKF and
IEKF, respectively.
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5 Conclusion

This paper develops new data fusion techniques for GPS/INS integration by incor-
porating Fuzzy Logic controller (FLC) and the conventional Kalman filters. The
Fuzzy Adaptive Unscented Kalman Filter (FAUKF) and a Fuzzy Adaptive Iterated
Extended Kalman Filter (FAIEKF) have been developed to improve the Unscented
Kalman Filter and Iterated Extended Kalman filter Performance, respectively. By
monitoring the residual, the FLC can detect uncertainty or time varying Parameters
in both, the process, and the measurement noise covariance matrices. And then adapt
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the Kalman gain in real time to improve the IEKF and UKF performance and avoid
the filters from divergence. Performance comparisons on FAUKF, FAIEKF, FAEKF,
UKF, EKF, and IEKFhave been conducted. The simulation results show the proposed
FAUKF leads to very accurate results.

Appendix

GPS Satellite Geometry

Four pseudo range measurements are used as a measurement model of the Kalman
filter.

h1 =
√

(X1 − x)2 + (Y1 − y)2 + (Z1 − z)2 + CΔt1

h2 =
√

(X2 − x)2 + (Y2 − y)2 + (Z2 − z)2 + CΔt2

h3 =
√

(X3 − x)2 + (Y3 − y)2 + (Z3 − z)2 + CΔt3

h4 =
√

(X4 − x)2 + (Y4 − y)2 + (Z4 − z)2 + CΔt4 (31)

where, (X1,Y1, Z1), (X2,Y2, Z2), (X3,Y3, Z3), (X4,Y4, Z4) are the positions of the
four GPS satellites respectively, and (x, y, z) are the position of the vehicle. The
GPS satellite assumed to be in circular orbits.

X j = R[cosθ j cosΩi − sinθ j sinΩ j cos55
◦] (32)

Y j = R[cosθ j sinΩ j + sinθ j sinΩ j cos55
◦] (33)

Z j = R[sinθ j sin55
◦] (34)

where

θ j = θ0 + T
360

43082
deg j = 1, . . . , 4

Ω j = Ω0 − T
360

86164
deg

R = 26560000m (35)
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Table 5 Satellite parameters

GPS satellite Ω◦
0 θ◦

0

Satellite 1 326 68

Satellite 2 26 340

Satellite 3 146 198

Satellite 4 86 271

P0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

100 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 100 0 0 0 0 0
0 0 0 10 0 0 0 0
0 0 0 0 100 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 10

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ 2
x t

3/3 σ 2
x t

2/2 0 0 0 0 0 0

σ 2
x t

2/2 σ 2
x t

2 0 0 0 0 0 0

0 0 σ 2
y t

3/3 σ 2
y t

2/2 0 0 0 0

0 0 σ 2
y t

2/2 σ 2
y t

2 0 0 0 0

0 0 0 0 σ 2
z t

3/3 σ 2
z t

2/2 0 0

0 0 0 0 σ 2
z t

2/2 σ 2
z t

2 0 2/3

0 0 0 0 0 0 (Sat + Sbt3

3 )c2 Sbt2c2

2

0 0 0 0 0 0 Sbt3c2

2 Sb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(37)
where, σx , σy , and σz represent standard deviations associated with x, y, and z,
respectively. t is the sample time, c is the speed of light Sa = 0.4(10)−18, standard
deviation of clock offset, and Sb = 1.58(10)−18, is the standard derivation associated
with velocity (Table5).
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