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How to Do ‘‘The Impossible’’, a Quantum
Mechanics Without Observers: The de

Broglie–Bohm Theory

But in 1952 I saw the impossible done. It was in papers by David Bohm. Bohm
showed explicitly how parameters could indeed be introduced, into nonrelativis-
tic wavemechanics, with the help of which the indeterministic description could
be transformed into a deterministic one. More importantly, in my opinion, the
subjectivity of the orthodox version, the necessary reference to the ‘observer’,
could be eliminated.

John Bell [14, p. 160]

8.1 Introduction

Let us see where we are: In Chap. 5, we learned that there is no easy way to
understand what the wave function means. If we try to give a meaning by
analyzing measurements within quantum mechanics, we only get unphysical
macroscopic superpositions. If we try to give it a statistical meaning, we run
into a contradiction, because of the no hidden variables theorems. In Chap. 7
we learned that there is something nonlocal going on in the world, but we do
not know what.

What is needed is a theory that gives a meaning to the wave function,
beyond being a tool for predicting the results of laboratory measurements.
This theory will thus have to go beyond ordinary quantummechanics, namely
it will include “hidden variables”, that give a more detailed description of a
physical system than the one given by the wave function, but without being
refuted by the nohidden variables theoremof Sect. 5.2. Because of theEPR-Bell
argument, this theory will have to be nonlocal.

© Springer International Publishing AG 2017
J. Bricmont, Quantum Sense and Nonsense, DOI 10.1007/978-3-319-65271-9_8

137

http://dx.doi.org/10.1007/978-3-319-65271-9_5
http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_5


138 J. Bricmont

Surprisingly, not only does such a theory exist, but it was introduced at
approximately the same time as the Copenhagen interpretation, even slightly
before, in 1924–1927, by the French physicist Louis de Broglie. But, as we said
in Chap. 1, that theory was rejected at the time of its introduction by a large
majority of physicists, and ignored even by critics of the Copenhagen school,
like Einstein and Schrödinger. The theory was even abandoned by its founder,
only to be rediscovered and completed by the American physicist David Bohm
in 1952, then further developed and advertised by John Bell.

We shall call this theory the de Broglie–Bohm theory, because although it
was developed fully only by Bohm (who hadn’t heard of de Broglie’s work), it
was introduced by de Broglie about 25 years before Bohm. Other people call
that theory Bohm’s theory or Bohmian mechanics [62]. We shall not argue
about that.

Here is what it achieves:

• It is a “hidden variables” theory.
• Its “hidden variables” are not hidden at all (hence the expression “hidden

variables” is quite a misnomer in this case).
• There is no fundamental role whatsoever for the “observer” in that theory.
• That theory is not contradicted by the no hidden variables theorems. It is

a sort of statistical interpretation of quantum mechanics, but a consistent
one.

• The de Broglie–Bohm theory is entirely deterministic.
• It accounts for all the observations used to justify the validity of ordinary

quantum mechanics.
• It allows us to understand the “active role” of themeasuringdevices,meaning

that a measurement in general does not record some pre-existing value of
the system being “measured”, as the “no hidden variables” theorems imply.
But it does so without making it a philosophical a priori.

• It explains to some extent where the nonlocality of the world comes from.

It would seem that, given all the claims to the effect that such a theory
is impossible, and given what it accomplishes, its mere existence should be a
subject of considerable interest, but this is not the case. Although interest in
the de Broglie–Bohm theory is probably increasing, it is still widely ignored
or misrepresented, even by experts on foundations of quantum mechanics (we
postpone the discussion of why this is so to Chap. 10).

From this comment, the reader can guess that the claims of this chapter are
not at all universally accepted by physicists. In fact it represents a very minority
view. We explain it because we think that the de Broglie–Bohm theory does
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solve the “mysteries” of quantum mechanics, but we emphasize that is not
a standard opinion. We also think that this is the only existing way to solve
those mysteries, but that is even less a generally accepted view, since there
are a number of other solutions on the market. We shall discuss one of those
alternative solutions in the next chapter and briefly mention the other ones.

As in the rest of this book, we shall avoid formulas and only rely on drawings
to explain how the de Broglie–Bohm theory works.1 We shall proceed slowly
and step by step:

• Explain what the de Broglie–Bohm theory says about the world and how
it deals with the double-slit experiment.

• What are “measurements” in that theory.
• The previous points concern the deterministic behavior of a given system.

But one has also to explain where the statistical predictions of quantum
mechanics come from in the de Broglie–Bohm theory.

• One has also to see what is the status, in the de Broglie–Bohm theory, of
the reduction or collapse of the wave function.

• Finally, how the de Broglie–Bohm theory allows us to understand nonlo-
cality.

But once this is done, we will have explained, within the de Broglie–Bohm
theory, all the phenomena discussed in Chaps. 2 and 7 and we will have given
a meaning to the formalism of Chap. 4.
Then, all the quantum mysteries will be clarified; in particular, the loose

talk about the moon not being there when nobody looks at it or the cat
being both alive and dead, will simply disappear. There will no longer be
this incomprehensible duality of rules for the evolution of the wave function
(depending on whether onemeasures something or not). Nonlocality of course
will remain baffling but at least its origin will be clearer.

8.2 The de Broglie–Bohm Theory in a Nutshell

In the de Broglie–Bohm theory, particles have positions at all times, and
therefore trajectories, and thus also velocities, independently of whether one
measures them or not. The positions are, by convention, called the “hidden
variables” of the theory, because they are not included in the purely quantum

1See, e.g., [1, 190] for elementary introductions the de Broglie–Bohm theory and [7, 18, 27, 62,
93, 105, 189] for more advanced ones. There are also pedagogical videos made by students in Munich,
available at: https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html.
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description, given by the wave function �. But here, the word “hidden” is
silly since the positions are not hidden at all: they are the only things that are
directly “seen”. For example, in the double-slit experiment, one detects particle
positions on the second screen in Fig. 2.6. Actually, as we shall explain in the
next section and in Appendix 8.A, the particle positions are also the only things
that are directly “seen” in any experiment.

In the de Broglie–Bohm theory, the complete physical state of a particle or a
system of particles is given both by its wave function, which is the same as in
ordinary quantum mechanics, and the positions of the particles.
They both change in time, in the following way:

1. The wave function evolves according to the usual laws, but nothing special
happens to it during measurements.

2. The motion of the particles is guided by their wave function. This means
that the velocity of a particle is a function of its wave function and its
position, if we consider a single particle. If we consider a system composed
of several particles, the velocity of each one of them is a function of the wave
function of that system and of the positions of all the other particles. We
will illustrate this motion below.

The de Broglie–Bohm theory is sometimes called the “pilot wave” theory,
because the wave function tells the particle how to move.

Now, we finally have given a physical meaning to the wave function! It is
not only something that allows to “predict results of measurements”, but it has
a clear physical role outside the laboratories: there are particles that move and
the wave function guides the motion of the particles.
That’s all! The de Broglie–Bohm theory is simply a theory of matter in

motion, just likeNewton’s theory.Of course, the way particlesmove is different
(the phenomena to be explained are radically different!) than in Newton’s
theory, but there is nothing philosophically new.

All we have to do now is to explain what this new kind of motion is and
how it accounts for the strange quantum phenomena.

One should first stress an important fact about the motion of the particles,
that will be used repeatedly in this chapter: if a wave function is composed of
two non-overlapping parts, as in Figs. 4.5–4.7, then only the part of the wave
function where the particle actually is matters as far as the guidance of the
particle is concerned.2 If the particle is in the left part of the wave function

2When we say that a particle is “in” a part of the wave function, we mean that it is where that part of the
wave function is non-zero. But we shall use the expression “in the wave function” as a shorthand.
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of Fig. 4.5, then it will be guided only by that part of the wave function, and
similarly if the particle is in the right part of that wave function. If the two
parts are recombined and overlap again, as for example in Fig. 4.10, then the
particle will be guided by this recombined wave function.

We shall now illustrate, via simple examples, how such guiding works, start-
ing with the double-slit experiment, described in Sect. 2.1.

In Figs. 8.1, 8.2, 8.3 and 8.4, we show solutions of that experiment within
the de Broglie–Bohm theory. Each (wavy) line represents the trajectory of
a single particle (since particles are sent one by one, there is no interaction
between the particles). Different lines correspond to different initial positions
behind the two slits. Since we have many trajectories, those initial positions
are not easy to distinguish visually, but one can think that each point behind
the slits corresponds to the initial position of a trajectory.

In the de Broglie–Bohm theory, each particle goes through only one slit,
but the wave function goes through both slits when they are both open (see
Fig. 4.10), and this in turn affects the motion of the particle, since the wave
function guides it. This is rather easy to understand intuitively: the wave func-
tion propagates like a wave. Obviously, a wave beyond the slits will be different

Fig. 8.1 De Broglie–Bohm trajectories computed for the double-slit experiment. Each
(wavy) line represents the trajectory of a single particle. See Fig. 8.2 for another example
of de Broglie–Bohm trajectories, with a different distribution of particles behind the slits
(A. Gondran cc by-sa 4.0)

http://dx.doi.org/10.1007/978-3-319-65271-9_4
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Fig. 8.2 An example of de Broglie–Bohm trajectories computed for the double-slit
experiment, with a different distribution of particles behind the slits than in Fig. 8.1.
Each (wavy) line represents the trajectory of a single particle. Reproducedwith the kind
permission of Società Italiana di Fisica and the authors, from C. Philippidis, C. Dewdney,
B.J. Hiley: Quantum interference and the quantum potential, Il Nuovo Cimento B 52,
15–28 (1979)

if it has two sources (one for each slit) or one.Thus, the behavior of the particle
(depicted in Figs. 8.1, 8.2, 8.3 and 8.4 when both slits are open) is affected by
the fact that the slit through which it does not go is open or not.

As an analogy, imagine a water wave coming through the slits, and a small,
light object being carried by that water wave; evidently, the form of the wave
behind the slits will depend on whether one slit is open or both, and that will
affect the motion of the object, even though the latter goes through only one
slit.

Looking at Figs. 8.1, 8.2, 8.3 and 8.4 should dispel the “mystery” of the
double-slit experiment, if we accept the idea that a particle can be guided by a
wave. There is no sense in which the particle “goes through both slits” if they
are both open, as one says too easily. The particle, being a particle, always goes
through only one slit. The wave that guides its motion, being a wave, goes through
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Fig. 8.3 De Broglie–Bohm trajectories computed for the double-slit experiment. The
white and blue areas indicate places where the wave function is non zero and their
intensity is proportional to the square of the wave function (white more intense, blue
less intense). The yellow lines are three particular trajectories (A. Gondran cc by-sa 4.0)

Fig. 8.4 De Broglie–Bohm trajectories computed for the double-slit experiment. The
white and blue areas indicate places where the wave function is non zero and their
intensity is proportional to the square of the wave function (white more intense, blue
less intense). There are one hundred yellow lines indicating particular trajectories. The
blue curve on the right of the figure indicates the density of particles detected on the
second screen (A. Gondran cc by-sa 4.0)
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both slits if they are both open, and that affects the motion of the particle behind
the slits. What is surprising here?3

Note also that the particles do not cross the line in the middle of Figs. 8.1
and 8.2 (this is a property of the de Broglie–Bohm equations in this situation,
but we shall not prove it). As a consequence, one can determine a posteriori
through which slit the particle went, by detecting the particle on the screen,
since the particle ends up in the upper part of the picture if and only if it goes
through the upper slit. Note that this knowledge is obtained without “looking”
directly through which slit the particle goes.

Now, if one puts a detector behind one of the slits, say the lower one as
in Fig. 2.7, that allows us to record through which slit the particle went, this
changes the part of the wave function going through that slit in such a way
that this part no longer guides the motion of the particle that goes through
the upper slit.4 Then, if one considers only the events where the detector does
not detect the particle and where one therefore knows that the particle goes
through the upper slit, the pattern on the second screen, where the landing of
the particle is detected, will be as if the lower slit was closed, i.e., as in part
(a) of Fig. 2.6.

But there is nothing related to our knowledge in itself that influences the
behavior of the particle; the detector interacts with the part of thewave function
that guides the particles and that changes the future motion of the particle.
Of course, that interaction also allows us to know which slit the particle went
through, but the behavior of the particle is entirely guided by physical laws
and does not depend at all on an “observer” looking at it.

Finally, if one considers the delayed-choice experiment of Sect. 2.2, there is
again nothing surprising from the point of view of the de Broglie–Bohm theory
and there is no action whatsoever of the future on the past! The particle always
goes through one slit and is simply guided by the part of the wave function
in which it finds itself. Because of the lenses in Figs. 2.9 and 2.10, the wave
function behaves in a somewhat different way than in the usual double-slit
experiment, but that’s all: the region where the plate P may or may not be
inserted is the regionwhere the twowave functions, coming from the upper and
the lower slits overlap and that gives rise to the interference pattern (Fig. 2.10).
If one does not insert the plate P , those two wave functions continue their

3The interested reader may look at [111], where an indirect measurement of trajectories of particles leads
to a picture qualitatively similar to Figs. 8.1, 8.2, 8.3 and 8.4.
4In the usual approach, one says that the effect of the detector is to collapse the wave function, see Sect. 4.2.
In the de Broglie–Bohm theory, there is never a real collapse but there is something playing a similar role,
which is explained in Sect. 8.4.3.
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propagation towards the counters C1 and C2, but there, they do not overlap
any more and thus no interference pattern is observed (Fig. 2.9).

Actually, there is one small surprise in the delayed-choice experiment: if one
computes the trajectories of the particles in the de Broglie–Bohm theory, one
finds that the particles detected by the counter C1 in Fig. 2.9 went through
the lower slit while those detected by counter C2 went through the upper one,
contrary to what one might naively expect and what is usually said in presen-
tations of the delayed-choice experiment (and that we followed in Sect. 2.2).
The reason for that somewhat strange behavior is a property of the de Broglie–
Bohm dynamics (not proven here): the particles cannot cross the horizontal
line in the middle of Fig. 2.9, just as they could not do it in Figs. 8.1 and 8.25;
so they bounce back when they hit that middle line and go to the counter that
is on the same side of that middle line as the slit that they went through.

Remember that in ordinary quantummechanics particles do not follow any
paths whatsoever, so, if one adopts the orthodox viewpoint, one should not be
surprised by this counterintuitive behavior.

Only in a more complete theory, like the de Broglie–Bohm one, where one
assigns trajectories to particles, can one meaningfully ask and answer questions
such as: through which slit did the particle go?That the answer to that question
is counterintuitive is no argument against the de Broglie–Bohm theory: why
should physics in the microscopic scale satisfy our intuitions?

Here is how John Bell summarized the de Broglie–Bohm theory in the case
of the double-slit experiment:

Is it not clear from the smallness of the scintillation on the screen that we have
to do with a particle? And is it not clear, from the diffraction and interference
patterns, that themotion of the particle is directed by a wave? De Broglie showed
in detail how the motion of a particle, passing through just one of two holes in
the screen, could be influenced by waves propagating through both holes. And
so influenced that the particle does not go where the waves cancel out, but is
attracted to where they cooperate. This idea seems to me so natural and simple,
to resolve the wave–particle dilemma in such a clear and ordinary way, that it is
a great mystery to me that it was so generally ignored.

John Bell [14, p. 191]

It is interesting to compare this statement with what is claimed in a standard
quantum mechanical textbook, which we already quoted in Chap. 2:

5We did not explicitly draw that line in Fig. 2.9, but it is clear that there is an horizontal line in the middle
of that figure, with respect to which the parts of the figure above that line and below it are symmetric
images of each other.
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It is clear that [the results of the double-slit experiment] can in no way be
reconciledwith the idea that electronsmove in paths. […] Inquantummechanics
there is no such concept as the path of a particle.

Lev Landau and Evgeny Lifshitz [114, p. 2]

And, after describing the double-slit phenomenon, Feynman wrote:

Nobody knows any machinery. Nobody can give you a deeper explanation of
this phenomenon than I have given; that is, a description of it.

Richard Feynman, [79, p. 145]

What is surprising is the dogmatic assurance of those statements: how does
one know that an experiment can in no way be reconciled with a concept or
that no “deeper explanation” of a phenomenon than its description can be
given?

We will now turn to natural questions that the reader may ask about the
de Broglie–Bohm Theory. We will separate those questions into those whose
answers are relatively simple, discussed below, and those whose answers are
relatively more complicated, discussed in the Appendices. Sometimes we will
invoke facts, about quantum mechanics or the de Broglie–Bohm theory, that
we cannot prove without getting into the mathematical formalism.

8.3 How Do ‘‘Measurements’’ Work in the de
Broglie–Bohm Theory?

We have seen in Sect. 5.2 that measurements in general cannot possibly reveal
pre-existing properties of quantum systems. In particular, one cannot assign
values to both the positions and the velocities of individual particles in such
a way that their statistical distribution agrees with the quantum mechanical
predictions.

But in the de Broglie–Bohm theory, particles do have a position and a
velocity at each instant! Isn’t that a plain contradiction?

No, because the no hidden variables theorem refer to results of measurements
and the positions and the velocities in the de Broglie–Bohm theory refer to
properties of particles independently of measurements.
To understand what is going on, we need to analyze how measurements

work in the de Broglie–Bohm theory.
We will discuss here what “measurements” of velocities mean in the

de Broglie–Bohm theory and we will discuss “measurements” of spin in

http://dx.doi.org/10.1007/978-3-319-65271-9_5
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Appendix 8.A.Wewill come back to the relation between the de Broglie–Bohm
theory and the no hidden variables theorem in Sect. 8.4.1.

8.3.1 ‘‘Measurements’’ of Velocities in the de
Broglie–Bohm Theory

The simplest example is the measurement of velocities: how does one do that?
One measures the difference of the positions at two different times and one
divides by the length of the time interval.6

So, measurements of velocities are in the end dependent on measurements
of positions. Now consider a particle in a box, like the one we introduced in
Sect. 7.2. It turns out that, in the de Broglie–Bohm theory, for many wave
functions associated to a particle in a box, the particle is actually at rest: it has
a well-defined velocity, but which is equal to zero! Yet, quantum mechanics
predicts that results of measurements of velocities will have a probability dis-
tribution which is quite different from zero (another quantum fact that one
has to accept without proof ).

But how does one measure the velocity of the particle in the box? One
cannot just look at it with God’s eye so to speak and see that it is at rest. One
way to measure this velocity is to open the box, let the particle move and
detect its position after some time. Then, one obtains its velocity, as we said,
by computing the difference between the positions at the initial time and the
final one and dividing by the length of the time interval.7

But, in the de Broglie–Bohm theory, opening the box changes the wave
function of the particles in the box; that in turn causes the particles in the
box to start to move (remember: that’s because the wave function guides the
particles), and they move in such a way that, if we measure the positions
of the particles after some time, and compute their velocity with the above
method, we obtain results whose statistical distribution agrees with the quan-
tum mechanical predictions.8

6In formulas, if t1 and t2 are the two times, we get v = x(t2)−x(t1)
t2−t1

. To be precise, this formula defines an
average velocity. Below, we will let t2 → ∞.
7The readermightworry that we do not know the initial positionwith infinite precision and thatmeasuring
it might disturb the wave function of the particle. That is true, but we can assume that the box is relatively
small and that if one measures the later position after a long enough time, the uncertainty about the initial
position within the box will not affect very much the final result for the velocity: if t1 is the initial time,
t2 the final one and x(t1) the initial position, limt2→∞ x(t1)

t2−t1
= 0, so that v = limt2→∞ x(t2)−x(t1)

t2−t1
=

limt2→∞ x(t2)
t2−t1

does not depend on x(t1).
8However, describing how this “measurement of velocities” works in detail would take us beyond the scope
of this book. See [27, Sect. 6.3], [36, Sect. 5.1.4] for more details.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
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But this means that our “measurement of velocity” did not measure the
initial velocity of the particle (which was zero!).

Note also that, unlike what Heisenberg’s inequality is often taken to mean,
not only do particles have both a position and a velocity at all times, but one
can know both with arbitrary precision, at least in the example of the particle in
the box: indeed, we know from the de Broglie–Bohm theory, that the velocity is
zero andwe can, in principle,measure independently its positionwith arbitrary
precision.

But if we “measure its velocity” by the above procedure (opening the box and
measuring the position later), then we obtain something entirely different, and
if we take the size of the box as related to the “spread” of the initial positions
(see Sect. 4.4) and consider the “spread” of the statistical distribution of results
of what are called the “measurements of the velocities”, those two “spreads”
will satisfy Heisenberg’s inequality, simply because the “measured” statistical
distributions agree with the ones predicted by the quantum mechanical for-
malism and the Heisenberg inequality is just a mathematical consequence of
that formalism.

But in the de Broglie–Bohm theory, particles do have positions and velocities
at all times, and the values of those variables, being well-defined, would not
satisfy Heisenberg’s uncertainty relations. The latter are satisfied by the results
of measurements of positions and velocities, but at least for the velocities,
these measurements results from interactions with the particle being measured
(letting it move) and do not reveal the true velocity of the particle (here equal
to zero).

8.4 Things Not Discussed in Detail

There are several natural questions that the reader may raise about the de
Broglie–Bohm theory: what is the relationship of that theory with the non-
locality discussed in Chap. 7? How does a deterministic theory, like the de
Broglie–Bohmone, account for the statistical predictions of quantummechan-
ics? If the wave function does never collapses in the de Broglie–Bohm theory,
what happens with that rule?
The first question will be answered in Appendix 8.B, and the two others

below; but we will start with the relationship between the de Broglie–Bohm
theory and the no hidden variables theorem.

http://dx.doi.org/10.1007/978-3-319-65271-9_4
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8.4.1 Why Isn’t the de Broglie–Bohm Theory Refuted
by the No Hidden Variables Theorem?

We just answered that question in the previous Sect. 8.3.1: the no hidden
variables theoremof Sect. 5.2 says that one cannot introduce “hidden variables”
simultaneously for both positions and velocities in such away that their statistical
distribution coincides with the quantum mechanical predictions.

In the de Broglie–Bohm theory, we do introduce both positions and veloc-
ities, but, and that is the important point, their statistical distribution does not
coincide with the quantummechanical predictions. Indeed, we just saw that in the
example of the particles in a box, we can have particles that are at rest (hence,
their velocity is zero), while the quantum mechanical prediction for the “mea-
surements” of velocities is not zero! The crucial word here is “measurements”
(with scare quotes). Those “measurements” do not measure any pre-existing
property of the particles but are the results of interactions with those particles,
as we explained in Sect. 8.3.1. And the de Broglie–Bohm theory does predict
correctly the statistical results of those measurements.

So, there is no contradiction with the no hidden variables theorems. As we
explain in Appendix 8.A, the same thing is true for the “measurements” of
the spin (they are the results of interactions and do not reveal a pre-existing
property of the particle).

Here is how Bell summarized the situation:

[…] the word [measurement] comes loaded with meaning from everyday life,
meaning which is entirely inappropriate in the quantum context.When it is said
that something is ‘measured’ it is difficult not to think of the result as referring to
some pre-existing property of the object in question. This is to disregard Bohr’s
insistence that in quantum phenomena the apparatus as well as the system is
essentially involved.

John Bell [12, p. 34]

Bell is here referring to statements of Bohr such as:

[…] the impossibility of any sharp distinction between the behavior of atomic objects
and the interaction with the measuring instruments which serve to define the condi-
tions under which the phenomena appear.

Niels Bohr [31, p. 210], quoted in [14, p. 2] (italics in the original)

However, in the de Broglie–Bohm theory, the fact that measurements do
not in general measure an intrinsic property of the particle follows from the

http://dx.doi.org/10.1007/978-3-319-65271-9_5
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equations of the theory and not from somemore or less a priori notion or some
“intuition” suggested by the strange behavior of quantum particles.

What precedes cannot be emphasized strongly enough: the de Broglie–Bohm
theory is a “hidden variables” theory where the hidden variables (the positions) are
not hidden (they are the only thing that we ever detect) and that is not refuted by
the no hidden variables theorems.

8.4.2 Where Does ‘‘Randomness’’ Come from in the de
Broglie–Bohm Theory?∗

So far, we have discussed how various individual trajectories behave in the de
Broglie–Bohm theory, but what about the statistics of the results? How can a
deterministic theory reproduce apparently random results?
To start, think of coin tossing: each toss of a coin is a perfectly deterministic

process (if you are worried about the free will of the tosser, let us replace him
by a machine) and is entirely determined by the initial properties of the coin,
namely its position, velocity, the way it rotates etc. When we want to explain
why the results of tossing several coins look random (random was defined in
Sect. 3.1.1), we have to say that these initial properties are also random; one
of the reasons that they are random is that a slight change in those initial
properties (a little more velocity, a faster rate of rotation) will make the coin
fall heads instead of tails and vice-versa; therefore, one cannot control those
initial properties with the precision that would be needed in order to obtain a
definite result.

Something similar happens in the de Broglie–Bohm theory. Let us consider,
for simplicity, systems composed of a single particle, like in the double-slit
experiment; the extension to systems with many particles is rather easy, but
will not be discussed in detail here. Let us also first discuss the quantum
mechanical predictions for measurements of positions.

Consider a large number of independent particles, as we did in the double-
slit experiment. And assume that each particle has the same wave function as
the others. The word “independent” means here that they are sent one by one
so that they cannot interact with each other.

If one has a large number of particles, distributed in some random fashion,
one can define the statistical distribution of that set of particles, as we did in
Sect. 3.4.1. Now, consider Fig. 8.5 in which only a few points are indicated on
the left (for better visibility) but where the continuous curve is supposed to
represent the statistical distribution of the particles that would be obtained if
one had a large number of particles.

http://dx.doi.org/10.1007/978-3-319-65271-9_3
http://dx.doi.org/10.1007/978-3-319-65271-9_3
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Fig. 8.5 Illustration of properties of the �(x, t)2 distribution, in one dimension, for a
Gaussian �. Each dot represents the position of a particle, both at time 0 and at time t ,
connected by trajectories. The statistical distribution of particles is given by �(x, 0)2 on
the left of the picture and by �(x, t)2 on the right

Of course, this notion becomes precise only in the limit where the number
of particles tends to infinity, but we can use that concept “approximately” when
the number of particles is large enough. After all, remember that the number
of particles in a small quantity of matter is on the order of Avogadro’s number,
namely on the order of 1023 (1 followed by 23 zeros), so that we shall always feel
free to assume that the number of particles is so large that the approximation
we make by “taking it to infinity” does not matter.

Now suppose thatwehave a large number of particles, whose initial statistical
distribution is given. Each initial position X (0) of a particle gives rise to a
unique trajectory, hence to a unique position X (t) at any given later time t .
This is illustrated in Fig. 8.5, where the lines going from left to right correspond
to trajectories and the curve on the right gives the distribution of the positions
X (t) at the later time t .
Hence, if we start with an initial statistical distribution of the particles,9 we

shall have a well-defined statistical distribution of the particles at all later times:

9See Fig. 3.2 for an illustration of that concept.

http://dx.doi.org/10.1007/978-3-319-65271-9_3
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each value of X (0) gives rise to a unique value of X (t); so, if we have a large
number of values of X (0), with a certain statistical distribution, we shall have
a corresponding set of values of X (t), which will also have certain statistical
distribution. This statistical distribution is uniquely defined, once we know
the initial statistical distribution of the particles and the way particles move.

Now, an important property of the de Broglie–Bohm theory (which we shall
not prove) is that, if we have a large set of particles, having an initial statistical
distribution equal to the square of the wave function at time 0, �(x, 0)2,
then, at any later time t , the statistical distribution of the particles that we just
defined will be also equal to the square of the wave function, but at time t ,
�(x, t)2. This is illustrated in Fig. 8.5.
This property of the de Broglie–Bohm theory can also be illustrated by

Figs. 8.1 and 8.2. There, one assumes a statistical distribution of particles (i.e.,
of initial positions just behind the slits, which are not easily visible in Figs. 8.1
and 8.2, because of the large number of lines starting behind the slits) given
by �(x, 0)2, 0 denoting the time of passage through the slits. Then, the right
side of the figure indicates the place where the particle lands on the screen and
these dots have a statistical distribution given by �(x, t)2, t being the time of
arrival on the screen. This is similar to what one saw in Chaps. 2 and 4, for
example in Fig. 4.10.

So if we assume that the statistical distribution of the particles in some spe-
cific situation is determined at some initial time by �(x, 0)2, this will be true
at all later times and therefore coincide with the usual quantum predictions.

Now, consider measurements of other quantities than positions, for exam-
ple velocities. As we already said, when we “measure” the velocity, we do it,
indirectly, by measuring positions. So, if one predicts correctly (meaning, in
agreement with the usual quantum predictions) the statistics of the positions
of particles, we automatically predict the correct statistics for the results of
velocity measurements and in fact also for any other measurement.10

Now comes a deeper question: if assuming that, at some initial time, the
distribution of the particles being determined by �(x, 0)2 implies the correct
quantum prediction at later times, what justifies that assumption about the
statistical distribution of the particles at that “initial” time?

Well, we can simply assume that this assumption held also at some earlier
time t , say t = −1: at that time, the distribution of particles would be given by

10The same thing is true for the “measurement” of the spin (see Appendix 8.A): what we see directly is
only the particle going out of a box through the upward hole or the downward one. But that means that
the only thing that we directly observe are positions. So, if we correctly predict the results of detection of
positions (and the de Broglie–Bohm theory does predict correctly the positions), we also correctly predict
the results of “measurements” of spin.

http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_4
http://dx.doi.org/10.1007/978-3-319-65271-9_4
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�(x, −1)2. Then, the previous reasoning would then imply that this assump-
tion at time −1 implies that the statistical distribution of the particles at time
0 is given by �(x, 0)2.

But it is obvious that we then get into a “chicken and egg” problem, since
the assumption at time t = −1will be justified by a similar assumption at time
t = −2, etc., and, ultimately, we have to make assumptions that go back to
the beginning of the Universe. And making assumptions about the beginning
of the Universe is something that always makes some people (including this
author) uneasy.

But since the de Broglie–Bohm theory is deterministic, “randomness” can
only come from assumptions about initial conditions and the latter always
ultimately refer to those of the Universe.
This argument may seem to some readers to be an instance of what is

called “GIGO”, or “garbage in, garbage out”, namely that we just assume what
is to be proven. But that is not quite true; our argument relies on a non-
evident property of the de Broglie–Bohm theory, namely that assuming that
the statistical distribution of the particles at some “initial” time is given by
�(x, 0)2 guarantees that this statistical distribution will be given by �(x, t)2

at all later times.
Let us come back to our initial example of coin tossing.When we explained

why the results of tossing several coins look random we said that the initial
conditions of each coin that determine its motion are also random.

But our Universe could be different: certain machines tossing coins could be
so finely tuned that they would produce far more heads than tails for example.
So, if we want to explain why the machines tossing the coins produce random
results, we have to go back in time and examine how they were built. And
then, how whatever was used to build them was built etc. But this is also a
“chicken and egg” problem going back further and further in time.
Thus, even to explain the simplest random results, such as those of coin toss-

ing, we are logically brought back to the initial properties of the Universe!
It is no different in the de Broglie–Bohm theory, except that the “random”

initial distribution of particle positions is assumed to be given by �(x, 0)2.
Unfortunately, going further into this discussion will be too technical for

this book. Let us simply conclude by saying that the properties of the de
Broglie–Bohm theory give a perfectly coherent understanding of the random
nature of the quantumpredictions simply bymaking assumptions on the initial
distribution of the positions of the particles whenever one repeats many times
the same experiment, with the same initial wave function.

In practice, when one explains the random nature of the results of coin toss-
ing, one does not go back to the origin of the Universe, but one is happy to
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refer to the uncontrollable initial conditions when coins are tossed, and we can
take a similar attitude with respect to the de Broglie–Bohm theory.

8.4.3 What About the Collapse of the Wave Function?∗

The short answer, which we shall elaborate in this section, is that there is never
any collapse of the wave function in the de Broglie–Bohm theory, but there
is a collapse “in practice”, which coincides with the one in ordinary quantum
mechanics, at least when the latter is unambiguous.This collapse is often called
an “effective collapse”, which just means in practice but not in principle.

As we saw, if a wave function is in a superposed state, namely a sum of
two (or more) terms corresponding to different physical situations, like going
through one slit or the other in the double-slit experiment, then one has to
keep both terms in order to predict the future behavior of the system correctly.

Indeed, even when the two parts of the wave function are initially far apart
from each other, like when one part goes through one slit and the other part
through the other slit in the double-slit experiment (see Fig. 4.10, just after
the slits), they may recombine later, in the sense that the two parts of the wave
function will overlap (see Fig. 4.10, further to the right), and then both terms
will affect the behavior of the particle.11

This is what happens in the double-slit experiment and gives rise to the
interference pattern on the second screen (see Fig. 4.10 and Figs. 8.1, 8.2, 8.3
and 8.4 for the behavior of the particles in the de Broglie–Bohm theory).

But what happens when we “observe” a quantum system? We already
described what happens in the quantum formalism in Sect. 5.1: in order to
observe something, we need that the particle interacts with a macroscopic sys-
tem, because that is the only sort of thing that we can directly perceive. Such a
system could be any detector in a laboratory, a pointer pointing up or down,
or a cat that can be alive or dead, but must be composed of a large number of
particles.

Suppose that we have two terms, each of which corresponds to macroscopi-
cally distinct situations, for example the wave function (5.5) of Sect. 5.1 which
is:

a superposition of the state ϕ↑�1 and of the state ϕ↓�2 , (8.1)

where �1 and �2 correspond to the wave functions localized near the upper
and the lower slit respectively and ϕ↑ and ϕ↓ are the wave functions associated

11See the Glossary for a formal definition of the notion of overlap of two wave functions.

http://dx.doi.org/10.1007/978-3-319-65271-9_4
http://dx.doi.org/10.1007/978-3-319-65271-9_4
http://dx.doi.org/10.1007/978-3-319-65271-9_4
http://dx.doi.org/10.1007/978-3-319-65271-9_5
http://dx.doi.org/10.1007/978-3-319-65271-9_5
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to the last two pictures in Fig. 5.3, namely to macroscopic bodies (the pointers)
detecting through which slit the particle goes.

It is important to notice that the symbols ϕ↑ and ϕ↓ refer to systems having
a large number of particles on the order of Avogadro’s number ∼ 1023, and
that each particle of those bodies has its own wave function, so that each of the
symbols ϕ↑ and ϕ↓ actually corresponds to a large number of wave functions
for individual particles and is an aggregate of all those wave functions.12

The particle will be “in” only one of these terms (meaning that only one of
the two terms in (8.1) will be non-zero where the particle is): either the particle
goes through the upper slit and the term ϕ↑�1 is the one which is non-zero
where the particle is, or it goes through the lower slit and the term ϕ↓�2 is
the one which is non-zero where the particle is.

As we said, in principle, we must keep both terms because they may overlap
later and produce interference effects as in Fig. 4.10. Thus, keeping only one
term (the one in which the particle is) could lead to different predictions.
The interference pattern would be destroyed if the two wave functions did

not overlap as they do in that figure. However, when one considersmacroscopic
systems, namely systems composed of a large number of particles, like a pointer
or a cat, in a superposed state like (8.1), we need the overlap to occur for each
wave function of each particle in the system represented by ϕ↑ or ϕ↓. But,
and that is another fact that we will not prove, making the two parts of the
wave function of each particle overlap is in practice impossible if the number
of particles is very large. As an analogy, suppose that you try to control the
tossing of a coin so that it falls heads. If you are clever enough you might be
able to do it once, twice, maybe ten times, but to do it on the order of 1023

times would be in practice impossible.
Thus, if we can be sure that no overlap will occur in the future between

the two terms in a wave function like (8.1), because they refer to macroscopic
objects, we can simply keep the term in which the particle happens to be (and
we know which one it is because of the coupling between the particle and the
macroscopic device, by simply looking at the latter: the pointer is up or down),
as far as the predictions for the future behavior of the system are concerned.

Reduction or collapse of the wave function in the de Broglie–Bohm theory
is as simple as that. It is just a practical impossibility, not an “in principle” one.
This reduction is a matter of degree: as the number of particles increases it
becomes more and more difficult to make the two parts of the wave function
overlap in the future, but there is no fixed number for which there would be a
sharp jump from a non-reduced wave function to a reduced one.

12This is a simplification, but it will be adequate for our argument.

http://dx.doi.org/10.1007/978-3-319-65271-9_5
http://dx.doi.org/10.1007/978-3-319-65271-9_4
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So, in some sense, we do “collapse” the wave function when we look at the
result of an experiment. But this is only a practical matter.We can still consider
that the true wave function is and remains forever given by the time evolution
of the full wave function (8.1). It is simply that one of the terms of the wave
function no longer guides the motion of the particle, either now or at any time
in the future and it would just be cumbersome to keep it in our calculations,
but the results would be the same if we did.
The measuring process here is an entirely physical process, with no role

whatsoever left to the observer. And the latter only uses the reduction of the
wave function as a practical tool for further calculations on the system.

Finally, let us stress that there is a rather common misconception about this
“in practice” reduction of the wave function,13 namely that this phenomenon
not only allows us to make sense of the effective collapse within the de Broglie–
Bohm theory, but that it is also, on its own, sufficient to account for the
collapse rule, within ordinary quantum mechanics. The idea is roughly that,
if the different terms in the sum involving a macroscopic object like (8.1) do
not overlap, then we just pick up the one we see at the end of the experiment
in order to predict the future behavior of the system.
The crucial difference between that view and the de Broglie–Bohm theory

is that, in the latter, there is a fact of the matter as to where the particle is and
as to whether the pointer points up or down. Then, we learn where the particle
is by looking at the macroscopic measuring device, and use that information
to predict the future behavior of the particle in a simpler way than if we kept
the whole wave function. But we learn something that exists in the world,
independently of whether we look at it or not.

But if we do not reason within the de Broglie–Bohm theory and remain
within ordinary quantum mechanics, there is no fact whatsoever that distin-
guishes one term from the other in a sum like (8.1), except our observations.

So, we then go back to square one: putting our observations in the very
formulation of our physical theories, which is exactly what we have been trying
to avoid all along and that the de Broglie–Bohm theory manages to do.
There are more sophisticated ways to try to make the practical impossibility

of interference between macroscopic wave functions the cornerstone of a solu-
tion to themeasurement problem, for example, themany-worlds interpretation
of quantum mechanics, but this will be discussed in Chap. 9.

13This is related to what is called decoherence in the literature.

http://dx.doi.org/10.1007/978-3-319-65271-9_9
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8.5 Is It that Simple?∗

By simply assuming that particles have positions (hardly a revolutionary idea,
although not a generally accepted one) and that their motion is guided by
the wave function (an idea which is also not really revolutionary, but also not
generally accepted), we have accounted for the interference phenomena in the
double-slit experiment. By doing so, we have completely eliminated the role
of the observer and we have done that within a deterministic theory.

Could it be that the solution to all the conceptual problems of quantum
mechanics is that simple? The answer is again yes and no. If one is interested in
what is called non relativistic quantummechanics (namely the part of quantum
mechanics that leaves aside the theory of relativity), which basically coversmost
of physics, like atomic, molecular and solid state physics, the foundations of
chemistry and all applications to modern electronics, then the answer is yes.

But there is a part of physics dealing with waves rather than particles, like
the electromagnetic waves. And there is a quantum theory for those electro-
magnetic waves, related to high energy physics, the sort of physics tested in
accelerators such as the ones at CERN. This is a spectacularly successful part
of physics, with a correspondence between experimental observations and the-
oretical predictions superior to anything else in science.

Moreover, it is crucial for that part of physics to take into account the theory
of relativity.Therefore, a natural question for the de Broglie–Bohm theory (and
a frequent objection raised against it) is whether there is an extension of de
Broglie–Bohm theory to the quantum theory of the electromagnetic waves,
and whether this extension incorporates the theory of relativity.

A detailed answer to that question is unfortunately too complicated to be
given here. The brief answer is that, yes there is a way to extend the de Broglie–
Bohm theory to quantum electromagnetic waves, but there is no unique way
to do that and it is not clear which extension is the best.

As for relativity, the problem is the same as the one discussed in Sect. 7.7,
namely the nonlocal effects whose reality is proven by the EPR-Bell argument,
irrespective of one’s views on quantum mechanics.

If we consider our discussion of nonlocality in Appendix 8.B, we see that,
in the situation illustrated in Figs. 8.8 and 8.9, one measures the spin of the
A particle before one measures the one of the B particle. But, because of the
relativity of simultaneity, “before and after” are relative to the state of motion
of the system in which the system is described, see Sect. 7.7. And that is a
serous problem if we want to have a causal view of the world, where causes
precede their effects in an absolute sense.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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But the situation is not any better in ordinary quantum mechanics. There,
the nonlocal effects are due to the collapse of the wave function, which in
the EPR-Bell situation, is nonlocal, since a measurement on the A particle
collapses the wave function of both the A and the B particles, no matter how
far apart those particles are. Of course, since the status of the wave function is
unclear, that difficulty can be swept under the rug, which is often done, as we
explained in Sect. 7.5.

If one looks at books on quantum field theory or relativistic quantum
mechanics, the collapse rule is almost never mentioned, although it is supposed
to be a basic tenet of any quantum theory. The reason is that the collapse rule
cannot be treated in a relativistic fashion, precisely because, in the EPR-Bell
situation, it is a nonlocal operation. Indeed, as explained in Sect. 7.7, relative
to one state of motion, the measurement of the A particle will occur before the
one of the B particle and it is that measurement that will induce the collapse of
the wave function of both the A and the B particles. Relative to another state
of motion, the measurement of the B particle will occur before the one of the
A particle and it is that measurement that will induce the collapse of the wave
function of both the A and the B particles. So, if collapses of wave functions
are real physical operations, it is not at all clear how to reconcile causality with
the fact that the chronological order of those operations depends on the state
of motion relative to which they are described.

So, the problem of combining causality, nonlocality and relativity is not just
a defect of the de Broglie–Bohm theory, since nonlocality is an unavoidable
feature of Nature. How to fully reconcile quantum nonlocality and the theory
of relativity is an open problem, but for everyone, not just for defenders of the
de Broglie–Bohm theory, although most physicists refuse to admit that this
problem is a real one.

8.6 A Last Look at Traditional Questions

At the risk of repeating ourselves (the impatient reader may skip this section)
we want to discuss again two of the main questions that we have raised in this
book: does quantum mechanics imply the “death of determinism” in physics
and is quantum mechanics a complete theory?

8.6.1 So, Does God Play Dice After All?

If there is one sentence of Einstein that anybodywhohas an interest in quantum
mechanics must have heard, it is: “God does not play dice” [35, p. 91].We will

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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discuss that sentence in its historical context in Sect. 10.1, but here we want to
reformulate that question: does quantum mechanics prove that the Universe
is indeterministic? In Chap. 3, we claimed that it is not easy to prove such a
statement, because apparent indeterminism can always be due to an incomplete
description of physical systems. One way to “prove” indeterminism is to claim
that quantum mechanics is both intrinsically indeterministic and complete,
but its completeness is precisely what has to be demonstrated.

But now, we can say more: we have a theory that does complete quantum
mechanics and that is deterministic, so that the claim that quantummechanics
proves indeterminism is surely false. However, determinism in the de Broglie–
Bohm theory is a special sort and has two properties that make it somewhat
different fromwhat onemight expect from a deterministic theory in the setting
of classical physics:

(1) First of all, the de Broglie–Bohm theory is nonlocal. This means that, even
if one wants to determine the future of what happens only in a given region
of space, denoted A, one has in principle to specify the physical state of the
entire Universe, since events in regions that are arbitrarily far from region
A might influence instantaneously what happens in the latter.
This does not contradict the deterministic nature of the theory, but one
would naively expect that, in a deterministic theory, it would be sufficient
to know the initial conditions in a neighborhood of region A in order to
predict the future in that region, at least for short times. But that is not
true in the de Broglie–Bohm theory.
Of course the same thing happens in Newton’s theory, since gravitational
forces also act arbitrarily far and in principle instantaneously; but at least
their effects decrease with distance, which is not true for the EPR-Bell
nonlocal effects.
What remains true is that the correlations betweendistant particles that give
rise to nonlocality are difficult to maintain in practice over large distances,
so that, again in practice, the determinism of the theory would hold even if
one forgot about events very distant from region A in our specification of
the initial conditions of the Universe. But that is an “in practice” statement
not an “in principle” one.

(2) Secondly, the de Broglie–Bohm theory contains in its very formulation an
element of radical uncertainty that one might not expect in a deterministic
theory. Indeed, the best analogy is to think of the initial conditions of
quantum systems as being like the ones of a large number of coins that are
being tossed.

http://dx.doi.org/10.1007/978-3-319-65271-9_10
http://dx.doi.org/10.1007/978-3-319-65271-9_3
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Although, in principle, the end result of each coin tossing can be deter-
mined if one knew the initial conditions with sufficient precision, in prac-
tice it is impossible to do. For quantum systems, this impossibility is even
more an “in principle” one, but the simplest way to explain the situation
is through this analogy.

So, coming back to Einstein’s famous quote, no, God does not play dice
or at least there is no argument based on quantum mechanics that indicates
that he does. The idea of determinism can be maintained, thanks to the de
Broglie–Bohm theory, but it is of rather special type.

8.6.2 Is Quantum Mechanics Complete?

We have repeatedly asked that question in this book, but now we can give
it a clear answer: no, ordinary quantum mechanics does not give a complete
description of physical systems, and one can give a more complete description
of them than the one given by the wave function, in which the “observer”
looses entirely its special status. Moreover, because that more complete theory,
the de Broglie–Bohm one, introduces only the particle positions as “hidden
variables” and accounts for the measurements of everything else in terms of
interactions between the particle and some apparatus, it avoids being refuted
by the no hidden variables theorems of Sect. 5.2.

But there is a weaker sense in which ordinary quantum mechanics is com-
plete, namely as far as empirical predictions are concerned; one might call it
“predictively complete”. That is simply because, in the de Broglie–Bohm the-
ory, one cannot control the initial conditions of the particles well enough to be
able to make more precise statistical predictions than the usual ones. We have
sketched an explanation of why this is so in Sect. 8.4.2. The simplest way to
understand this situation is by analogy with a set of tossed coins whose initial
conditions could not be controlled sufficiently well, so as to produce different
statistics than the usual ones (half heads, half tails).

But the value of the de Broglie–Bohm theory lies in its explanatory power,
not in its predictions.

http://dx.doi.org/10.1007/978-3-319-65271-9_5
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8.7 Conclusion: The Merits of the de
Broglie–Bohm Theory

First of all, let’s ask: what is the relationship between the de Broglie–Bohm
theory and ordinary quantummechanics? The quick answer to this question is
that it is not a different theory! More precisely, the de Broglie–Bohm theory is a
theory, while ordinary quantummechanics is not. Indeed, quantummechanics
doesn’t even pretend to be a theory, but rather claims to be an algorithm
allowing us to compute “results of measurements”.

Another way to say this is that ordinary quantum mechanics is the algo-
rithm used to compute results of measurements that can be derived from the
de Broglie–Bohm theory: in that theory, measurements do not really measure
anything (except for detections of positions) but are interactions between a
macroscopic system and a microscopic one. Once one understands that, the
mystery of the ever present “observer” of standard quantum mechanics disap-
pears.

One might also say that ordinary quantum mechanics is simply a truncated
version of the de Broglie–Bohm theory or that the de Broglie–Bohm theory
is a completion of ordinary quantum mechanics: in the latter, one ignores
the particle trajectories, but since the empirical predictions of the de Broglie–
Bohm theory are statistical, and are the same as those of ordinary quantum
mechanics, there are no practical consequences of that omission.
Thus, ordinary quantum mechanics is sufficient “for all practical purposes”

to use Bell’s expression [12], for which he even invented an acronym: FAPP.
But it is the de Broglie–Bohm theory that explains why ordinary quantum
mechanics is sufficient FAPP, something that is true but mysterious without
de Broglie–Bohm.
These remarks also provide a reply to a frequent objection raised against the

de Broglie–Bohm theory: what are the new predictions made by that theory
compared to ordinary quantum mechanics? Once we understand that the
de Broglie–Bohm theory is just a way to make sense of ordinary quantum
mechanics, which, on its own, does notmake sense as a theory about the world
outside the laboratories, that objection collapses.

In fact, it is excellent news that the de Broglie–Bohm theory does notmake
new predictions with respect to those of ordinary quantum mechanics or,
at least, that it does not make predictions at variance with those of the lat-
ter. Otherwise, it would simply be refuted by experiments, given the incredi-
ble empirical success of ordinary quantum mechanics. What the de Broglie–
Bohm theory does is to explain what goes on in the world that makes ordinary
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quantum mechanics successful, but not contradict or complement the latter’s
predictions.
To physicists making the “no new predictions” objection to the de Broglie–

Bohm theory, one should retort: what does ordinary quantum mechanics say
about the world outside the laboratories? The answer is likely to run into dif-
ficulties for the reasons discussed in Chap. 5: either because of the existence of
macroscopic superpositions or because of the no hidden variables theorems.
And if the answer is that ordinary quantum mechanics does not say anything
about the world outside the laboratories, the next question should be: “Are
you satisfied with that state of affairs? And, if yes, why do you build labo-
ratories then, if they do not lead to any knowledge of the world outside the
laboratories?”.

If people reply that themany extremely successful technological applications
of quantummechanics show that no question should be asked about the latter,
the answer that we have already given is that, the more “it works”, the more it
is natural to ask ourselves “why does it work so well?”.

Aswe saw, the deBroglie–Bohmtheory eliminates the dual nature of the time
evolution in quantum mechanics: one between observations and one during
observations. It also explains in a natural way why, as the no hidden variables
theorems show, one cannot introduce hidden variables for both positions and
velocities (or for the spin values, see Appendix 8.A). Finally, even the strangest
aspect of all of quantummechanics, nonlocality, is made more understandable
thanks to the de Broglie–Bohm theory (see Appendix 8.B).

Moreover, since it is a truism that a single counterexample is enough to
refute a general claim, the de Broglie–Bohm theory is a counterexample to three
claims that have been almost universally accepted by physicists, commented
by philosophers, taught in classes, and sold to the general public:

1. That quantum mechanics signals the end of determinism in physics.
2. That quantum mechanics assigns a special role, in its very formulation,

to the “observer”. There has been quite some debate as to whether this
“observer” is a set of laboratory instruments or a human consciousness, but
the debate would never have got under way if the central role of observations
in quantum mechanics had not been accepted to start with.

3. That quantummechanics is something that “nobody understands”, to quote
Richard Feynman [79]; that quantummechanics is mysterious and requires
a farmore drastic revision in ourways of thinking than any previous scientific
revolution.

http://dx.doi.org/10.1007/978-3-319-65271-9_5
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By simply existing, being deterministic, and describing the “measurements”
as purely physical processes, the de Broglie–Bohm theory constitutes a refuta-
tion of claims 1 and 2.

A further quality of de Broglie–Bohm theory is its perfect clarity, which
refutes claim 3. In that theory, we just deal with matter in motion, just as in
classical physics, but of course with very different laws of motion than the
classical ones, which is to be expected, since the phenomena to be explained
(like interference) are radically different from the classical ones.

Given that there are endless bookshelves of confused talk about the role of
the “observer” in physics or about the death of determinism, or about the radical
incomprehensibility of the quantumworld, this is no small feat, especially given
the number of times that this accomplishment has been declared impossible.

Finally, coming back to the three fundamental questions raised in the begin-
ning of this book (indeterminism, the role of the observer and nonlocality),
we have already answered how the de Broglie–Bohm theory answers the first
two. As for nonlocality, the merit of the de Broglie–Bohm theory is to make it
explicit: when the wave function of a pair of particles is like the one described
in Sect. 7.4, the motion of these particles is coordinated in such a way that,
acting on the wave function of the pair near where one particle is, may affect
the behavior of the other particle, even if that particle is arbitrarily far away
from where the action takes place.
This is also often considered an objection to the de Broglie–Bohm theory,

but since Bell has shown that nonlocality is here to stay, even if quantum
mechanics was superseded some day by another theory, far from being a defect,
the natural account of nonlocality within the de Broglie–Bohm theory is one
of its greatest merits.

Let us leave the last word to John Bell:

Bohm’s 1952 papers on quantum mechanics were for me a revelation. The
elimination of indeterminism was very striking. But more important, it seemed
to me, was the elimination of any need for a vague division of the world into
“system” on the one hand, and “apparatus” or “observer” on the other. I have
always felt since that people who have not grasped the ideas of those papers
. . . and unfortunately they remain the majority . . . are handicapped in any
discussion of the meaning of quantum mechanics.

[…]

Why is the pilot wave picture ignored in textbooks? Should it not be taught, not
as the only way, but as an antidote to the prevailing complacency? To show that
vagueness, subjectivity, and indeterminism are not forced on us by experimental
facts, but by deliberate theoretical choice?

John Bell [14, pp. 173, 160]

http://dx.doi.org/10.1007/978-3-319-65271-9_7
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One possible answer to that last question could be that “the pilot wave
picture” is just one “interpretation” of quantum mechanics among many, so
why pay attention to that one alone? The next chapter will deal with that
objection.

8.8 Summary

The deBroglie–Bohm theory is a theory ofmatter inmotion, just like thewhole
of “classical” physics is (meaning the whole pre-quantum physics, including
the theories of relativity). In the latter, particle move under the influence of
forces or of electromagnetic waves or because of the structure of space-time. In
the de Broglie–Bohm theory, there is an object, the wave function, that guides
the motion of the particles. That motion is illustrated in Figs. 8.1, 8.2, 8.3 and
8.4 and is very non classical but it accounts for the observations.

One of the most important aspect of the de Broglie–Bohm theory is that
it explains what happens in what are called “measurements”: first of all, the
latter are always in the end measurements of positions. This is both true for
measurements of velocities, that depend on measuring the distance between
two positions at different times or the measurement of spin, which depends
through which hole a particle exits from a box.

In the de Broglie–Bohm theory, measurements of velocities do not reveal
a value that is “already there”: for velocities, in some situations, the true pre-
measurement velocity is zero, but the “measured” one is not.14 Measurements
are interactions between particles and somemacroscopic objects and that inter-
action is described by the de Broglie–Bohm theory.
Thatmeasurements are interactions and not just passive observations is what

one would expect on the basis of the no hidden variables theorems of Sect. 5.2,
and is also one way to understand the Copenhagen view, but here this fact is
shown to be a consequence of the theory, not an a priori claim.

Onemight wonder how does one recover the statistical quantumpredictions
in a deterministic system such as the de Broglie–Bohm theory.This can only be
done via suitable assumptions on the initial conditions of the system. It turns
out that those assumptions are rather natural: one has only to assume that the
initial positions of the particles of any system are distributed according to the
quantum mechanical statistics. This may seem like assuming what has to be
proven, but it is not, since the validity of this statement depends on a non

14And for the spin, there is simply no pre-existing value of the spin being “measured”, see Appendix 8.A.

http://dx.doi.org/10.1007/978-3-319-65271-9_5
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obvious property of the de Broglie–Bohm theory: if the initial positions of the
particles are distributed according to the square of the wave function�(x, 0)2

at some “initial” time, they will be distributed at a later time according to the
square of the wave function at that time �(x, t)2.

In the de Broglie–Bohm theory, the wave function always evolves according
to the usual Shrödinger’s equation and never collapses. But then, how does one
explain the practical necessity to use the collapse rule in ordinary quantum
mechanics? The answer is that, when a particle interacts with a measuring
device, namely a big system, the wave function of the latter becomes coupled
to the one of the particle: this leads to macroscopic superpositions, where one
part of the wave function of the pointer is up and the other down.

But then, because macroscopic objects contain many particles, in order for
the two parts of the wave function (up and down) to interfere with each other,
the wave function of each particle of the up part of the pointer would have
to overlap with the corresponding wave function of the same particle in the
down part of the pointer. However, this requires too many overlaps so that
it becomes impossible in practice (even if not in theory) to make the up and
down parts of the wave function of the pointer interfere with each other.
Then, one can just use for later purposes the wave function of the part of the

pointer which we see – either up or down. But, unlike in ordinary quantum
mechanics, here there is a fact of the matter as to whether the pointer is up
or down at the end of the experiment and then, looking at the result has no
physical significance whatsoever.

In Appendix 8.B, we will explain why the de Broglie–Bohm theory is non-
local: in the situation discussed in Chap. 7, a single wave function may guide
simultaneously two particles together. So that, acting on one part of the wave
function, may influence the way both particles are guided, no matter how far
apart those particles are.

Of course, because of the EPR-Bell result, this nonlocality is a quality rather
than a defect.

Finally, we stressed that, even if the de Broglie–Bohm theory is not the final
word on quantummechanics, particularly when it comes to a quantum theory
of waves and fields and the theory of relativity, it has the merit of completely
eliminating the observer from quantum mechanics, clarifying the paradoxes
surrounding the notion of measurement, restoring determinism and making
the unavoidable nonlocality of the Universe somewhat more understandable.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
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Fig. 8.6 An idealized spin measurement: A particle is sent towards a box, which is
perpendicular to the plane of the figure, and in which there is a magnetic field H
oriented upwards along the vertical axis, denoted 1. The wave function associated to
the particle is represented by a disk. In the box, the wave function splits into two parts,
one going upward in the direction of the field, the other going downward, in the
direction opposite to the one of the field. The particle position is indicated by a dark
dot. In the de Broglie–Bohm theory, if the particle starts initially above the horizontal
line in the middle of the figure (at the level of the rightward pointing arrow), it will
always go in the upward direction, namely here in the direction of the field. This figure
corresponds to the situation described in Fig. 7.3, butwithin the deBroglie–Bohm theory

Appendices

8.A ‘‘Measurements’’ of the Spin in the de
Broglie–Bohm Theory

We will describe here how a spin measurement works in the de Broglie–Bohm
theory.15 In Fig. 8.6, we show the wave function, represented by a disk moving
towards the box with a magnetic field H in it. As far as the wave function is
concerned, it splits itself in two parts, one going in the direction of the field,

15It should be stressed that all the “experiments” are only meant to illustrate the theory, not to explain
how real experiments are performed. Some ideas of this appendix come from Chap. 7 of David Albert’s
book Quantum Mechanics and Experience [1].

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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the other in the direction opposite to the one of the field. Those two parts are
represented by two disks.16

But all we directly observe is the final position of the particle. As shown in
Figs. 7.3 and 7.4, it will either go in the direction of the field, or in the direction
opposite to the one of the field. One can show that, in the de Broglie–Bohm
theory, if the particle starts initially above the horizontal line in the middle of
the Fig. 8.6 (at the level of the rightward pointing arrow), it will always go in
the upward direction, namely in the direction of the field in this figure (again,
a property of the de Broglie–Bohm theory that we shall not prove).

Now, here is something a priori surprising, but which is fundamental if one
wants to understand the de Broglie–Bohm theory. Suppose that we reverse the
direction of the magnetic field, relative to its direction in Fig. 8.6, as is done
in Fig. 8.7.

And let us start with exactly the same wave function and exactly the same
particle position, as in Fig. 8.6.

One can show that the particle will again go in the upward direction, see
Fig. 8.7. But now, this is the direction opposite to the one of the field.

In the situation of Fig. 8.6, one would say that the spin is “up”, in Fig. 8.7
that it is “down” (up just means “in the direction of the field”, down means
“in the direction opposite to the field”). But the only difference between the
two figures comes from the orientation of the field. As far as the particle
is concerned, its complete physical state, namely its wave function and its
position are exactly the same in both situations.

In other words, the value up or down of the spin that actually results from
the “measurement” does not depend only on the wave function and the initial
position of the particle (which, remember, in the de Broglie–Bohm theory, is
the complete description of the physical state of any system), but on the concrete
arrangement of the “measuring” device. Here the scare quotes that we used all
along when speaking of measurements are finally understandable: there is no
intrinsic property of the particle that is being “measured”, in general, in a
“measurement”, except for measurements of positions.

Of course, since the system is deterministic, once we fix the full initial
state (the wave function and the position) of the particle and the experimental
device, the result of the experiment is pre-determined. But that does not mean
that the spin value that we “observe” is pre-determined, because, as we saw,
we can measure the spin by orienting the magnetic field in one direction or

16At least for some wave functions, which we will assume are those associated with the particles here.With
some simplification, one may assume that each part of the wave function takes a constant value on those
disk and vanishes elsewhere.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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Fig. 8.7 An idealized spin measurement with the field reversed relative to Fig. 8.6:
A particle is sent towards a box, which is perpendicular to the plane of the figure,
and in which there is a magnetic field H oriented downwards along the vertical axis,
denoted 1. The wave function associated to the particle is represented by a disk. In the
box, that wave function splits into two parts, one going downward in the direction of
the field, the other going upward, in the direction opposite to the one of the field.
The particle position is indicated by a dark dot. In the de Broglie–Bohm theory, if the
particle starts initially above the horizontal line in the middle of the figure (at the level
of the rightward pointing arrow), it will always go in the upward direction, namely in
the direction opposite to the one of the field in this figure, as opposed to what happens
in Fig. 8.6

the opposite one. So the value of the “spin” of the particle that results from a
measurement depends on our conventions, which means that it does not exist
as an intrinsic property of the particle.

8.B How Does the de Broglie–Bohm Theory
Account for Nonlocality?

As we saw in Chap. 7 there exist nonlocal effects in Nature.17 But we do
not know what these effects are, because in ordinary quantum mechanics
nonlocality manifests itself through the “collapse rule”, and the meaning of

17Some ideas of this appendix come from Chap. 7 of David Albert’s book Quantum Mechanics and
Experience [1].

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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that rule depends on the meaning of the wave function, which itself is unclear.
But in the de Broglie–Bohm theory, the wave function has a clear meaning: it
guides the motion of the particles.
The de Broglie–Bohm theory for a single particle is essentially local: the

particle is always guided by the part of the wave function in which it finds
itself. There is some weak form of nonlocality, if one wants to use that term
here, because the motion of a particle going through one slit in the double-slit
experiment may be affected by the part of its wave function going through the
other slit, as we saw in Figs. 8.1, 8.2, 8.3 and 8.4.

But, when one discusses one particle, everything is still local, in the sense
that those effects are felt only when one part of the wave function comes back
and becomes superposed with the other part, the one in which the particle
is. This leads to interference phenomena, but there is no instantaneous action
at a distance here, since the effect will take the time needed for the two wave
functions to be recombined.
The same holds for Einstein’s boxes in the de Broglie–Bohm theory: the

particle is always in one of the half-boxes and we simply learn in which box
it is by opening one of them. In that situation, the wave function is partly
in each of the boxes, and that might have an effect if, instead of opening the
boxes far away from each other, one were to bring them together again and
then recombine those two parts of the wave function.

So, in the thought experiment of Einstein’s boxes, there is no action at a
distance whatsoever, from the point of view of the de Broglie–Bohm theory.
But, of course, coming back to the dilemma of Sect. 7.2 (either there are actions
at a distance or quantum mechanics is incomplete), the de Broglie–Bohm
theory is based on the idea that quantum mechanics is incomplete!

But we learned in Chap. 7 that there are nonlocal effects when we deal with
at least two particles.

It would go far beyond the scope of this book to really explain how nonlo-
cality appears in the de Broglie–Bohm theory, but we will sketch what happens
in the EPR-Bell situation discussed in Chap. 7.

We will first describe what happens when one measures the spin of two
particles far away from each other, when the wave function is as in Sect. 7.4.2,
and then explain what is nonlocal in those experiments.

Consider the left part of Fig. 8.8. If we measure first18 the spin of particle
A (the box in which it is measured is closer to where the particles came from
than the one measuring the spin of particle B), we shall get the up result,
since, again, there is an horizontal line in the middle of Fig. 8.8 (at the level

18We discussed in Sect. 8.5 the problems that this notion of “first” implies if we take into account the
theory of relativity.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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Fig. 8.8 Two particles, A and B are sent towards boxes, located at X and Y , that are
perpendicular to the plane of the figure, and in which there is a magnetic field H
oriented upwards along the vertical axis, denoted 1. The wave functions associated to
the particles are represented by disks. In the boxes, the wave functions split into two
parts, one going upward in the direction of the field, the other going downward, in
the direction opposite to the one of the field. The particle positions are indicated by
dark dots. Suppose we measure the spin of the A particle first (the box in which it
is measured being closer to where the particles came from than the one measuring
the spin of particle B). In the de Broglie–Bohm theory, if the A particle starts initially
above the horizontal line in the middle of the figure (at the level of the two arrows), it
will always go in the upward direction, namely in the direction of the field. But then,
since the wave functions of the two particles are such that they are (anti)-correlated,
the B particle will have to go in the direction opposite to the one of the field namely
downwards. This figure corresponds to the situation described in Figs. 7.5 and 7.6, but
within the de Broglie–Bohm theory

of the two arrows) that particles cannot cross, as was the case in Figs. 8.6 and
8.7. Since the A particle starts above that line, it will have to go up. So the A
particle will go in the direction of the magnetic field. By definition, its spin
will be “up”.

But then, since particle B always goes in the direction of the field opposite
to the one taken by the A particle, it will have to go down, that is in the
direction opposite to the magnetic field, since the field is oriented in the same
way in the boxes at X and at Y , see the right part of Fig. 8.8.

Note that this behavior of the B particle is independent of where it starts:
above (as in Fig. 8.8) or below the horizontal line in the middle of Fig. 8.8 (at
the level of the two arrows). That is because, once the spin of particle A has
been measured, there is no symmetry any more between the top and bottom
halves of the figure and that implies that the line in the middle can be crossed

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_7
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Fig. 8.9 Measurement of the spin on the left first, with the field reversed on the left
hand side relative to the one of Fig. 8.8: two particles, A and B are sent towards boxes,
located at X and Y , that are perpendicular to the plane of the figure, and in which
there is a magnetic field H oriented upwards along the vertical axis, denoted 1 on the
right and downwards on the left. The wave functions associated to the particles are
represented by disks. In the boxes, the wave functions split into two parts, one going
in the direction of the field, the other going in the direction opposite to the one of the
field. The particle positions are indicated by dark dots. Suppose we measure the spin of
the A particle first (the box in which it is measured being closer to where the particles
came from than the one measuring the spin of particle B). In the de Broglie–Bohm
theory, if the A particle starts initially above the horizontal line in the middle of the
figure (at the level of the two arrows), it will always go in the upward direction, namely
in the direction opposite to the one of the field. But then, since the wave functions of
the two particles are such that they are (anti)-correlated, the B particle will have to go
in the direction of the field, namely upwards

by the B particle (again, a fact about the de Broglie–Bohm theory that we
cannot explain in detail).

Now, suppose that one reverses the direction of the field on the left side of
Fig. 8.8, but that one does not reverse it on its right side, which measures the
spin of particle B, see Fig. 8.9. Then, let us measure first the spin of particle
A, as in Fig. 8.8. Since there is an horizontal line in the middle of Fig. 8.9 (at
the level of the two arrows) that particles cannot cross, if the A particle starts
above that line, as in Fig. 8.9, it will have to go up.
Thus the A particle goes now in the direction opposite to the magnetic field,

and, by definition, its spinwill be “down”. But then, in that situation, particle B
must go in the direction of the field, since the two particles are (anti)-correlated.
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But that means that the B particle must now go up, see Fig. 8.9, instead of
down, as it did in Fig. 8.8, and its spin will be “up”.19

So by changing the orientation of the field on the left of Fig. 8.9, relative to
Fig. 8.8, while doing nothing whatsoever on the right of Fig. 8.9, we affect the
trajectory of particle B (in one situation, it goes up, in the other one it goes
down) which may be arbitrarily far away from the A particle. This is the way
the action at a distance manifests itself in the de Broglie–Bohm theory.
This action does not allow the transmission of messages, because, in the

situation of Figs. 8.8 and 8.9, if one repeats the experiment many times, the
A particle will start half of the time above the horizontal line in the middle of
Fig. 8.8 (at the level of the two arrows) and half of the time below it.When it is
above the middle line, it will go up in Fig. 8.8 and particle B will go down. If
the A particle starts below the middle line, it will go down and the B particle
will go up. If one reverses the field on the left, as in Fig. 8.9, and if the A
particle starts above the middle line, both particles will go up. If the A particle
starts below the middle line, both particles will go down.

So, there is a genuine action at a distance here, since acting on the A par-
ticle (by choosing how to measure its spin) instantly affects the behavior of
particle B.

However, since there is no way to control whether the A particle will start
above or below the middle line in Figs. 8.8 and 8.9, there is no way to control
whether changing the orientation of the magnetic field at X will make particle
B go up or down at Y . So there is no way, by playing with the orientation of
the magnetic field at X , to send a message at Y (which one could of course
do if one could decide, by choosing the orientation of the field at X , to make
particle B go up or down).
The fact that the de Broglie–Bohm theory is nonlocal is a quality rather

than a defect, since Bell showed that any theory accounting for the quantum
phenomena must be nonlocal. Moreover, the nonlocality is of the right type,
i.e., just what is needed becauseBell’s results, but notmore, where “more”might
be a nonlocal theory allowing the instantaneous transmission of messages.

19As in Fig. 8.8, this holds irrespectively of the initial position of the B particle, since, once the spin of
the A particle has been measured, there is no longer a line in the middle of the figure that the B particle
cannot cross.
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