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How Do Physicists Deal with Interference?

So, we have seen, in Chap. 2, one of the two “impossible things that we have
to believe before breakfast” namely things being apparently in two different
states before being measured or before one looks at them.
There is a mathematical language that allows to predict the “impossible”

phenomenon of the double-slit experiment. We shall describe this language
without mathematics.1

This language should be regarded, for the moment, only as a “recipe” for
predicting those phenomena, without worrying about what it “means” physi-
cally. The main problem for the reader is probably not to ask, for the moment:
what does this language mean (beyond being an efficient recipe for predictions
of observations)?We shall come to the question of the physical meaning of this
language in the next chapter, but in this chapter, we shall only explain how the
recipe works.

4.1 The Wave Function

In order to predict the behavior of electrons in the double-slit experiment, we
need a notion that is central in the whole of quantum mechanics: the wave
function.2 As the name indicates, it is a function, which is usually denoted by

1See the Appendix for somewhat more precise mathematical treatment; however it is not necessary to read
the Appendix in order to follow the rest of the arguments.
2Note for the advanced reader: throughout this book, we shall not distinguish between the wave function
of a physical system and its quantum state, which is a more general notion.
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Fig. 4.1 An example of a wave function �(x). Each point on the curve, with coordinate
(x, y) has a y coordinate equal to �(x)

the Greek letter� and such a function is associated in principle to any physical
system.
To simplify matters, we shall consider � as being a function of one variable

denoted x : � = �(x), which corresponds to a single particle moving on a
line.3 For a graphical representation of wave functions, see Figs. 4.1 and 4.2.
We will give other examples of wave functions below.

The physical meaning of �(x), in orthodox quantum mechanics, is simply
that the square of the wave function �(x)2, determines the probability of
finding the particle somewhere if one “measures” its position: the probability
of finding the particle in a set A is given by the shaded area in Fig. 4.3 under
the curve �(x)2. We assume that the total area under the curve in Fig. 4.3 is
equal to one, so that the probability of the particle being found somewhere is
equal to one, as it should. Another example of a function �(x)2 is given in
Fig. 4.4.4

3In mathematics, a function is usually denoted f (x), but for the wave function the notation �(x) is
almost universal.
4A caveat is necessary here: the number�(x) is in reality a complex number and one should write |�(x)|2
instead of �(x)2, see the Appendix.
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Fig. 4.2 An example of a wave function �(x) that takes both positive and negative
values. Each point on the curve, with coordinate (x, y) has a y coordinate equal to �(x)

Fig. 4.3 An example of awave function�(x)2. Each point on the curve, with coordinate
(x, y) has a y coordinate equal to �(x)2. The function �(x)2 is the square of the function
�(x) drawn in Fig. 4.1. The probability of finding the particle in the region A is equal
to the shaded area (we used the same curve as in Fig. 3.2)

So, if one considers many particles, all having the same wave function�(x),
and one detects their individual positions, the statistical distribution of those
positions will be given by the curve �(x)2.5

5This fact follows from the law of large numbers, discussed in Sect. 3.4.1.

http://dx.doi.org/10.1007/978-3-319-65271-9_3
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Fig. 4.4 Another example of a wave function �(x)2. Each point on the curve, with
coordinate (x, y) has a y coordinate equal to �(x)2. The function �(x)2 is the square of
the function �(x) drawn in Fig. 4.2

An immediate question may occur: if the physical meaning of�(x) is given
by �(x)2, why talk about �(x) instead of talking directly and only about
�(x)2? That will become clear soon, when we explain below that, in some
circumstances, one must add different wave functions and not their squares.

Another natural question is, why use the square of �(x), and not �(x)
itself or its cube �(x)3, or its fourth power �(x)4, or any other power?
Why not �(x) is easy to answer: �(x) in general is not a positive number
and probabilities have to be positive numbers (see Fig. 4.2)! The same answer
holds for �(x)3 (the cube of a negative number is also negative), but for the
other powers, there is no easy answer: the fact is that only �(x)2 leads to
experimentally correct results. We will simply accept that as a fact.
There are two mistakes to be avoided when one thinks about the wave func-

tion in the orthodox fashion:

1. The first mistake is to think that �(x)2 describes some density of “stuff ”,
for example some density of matter or of electric charge. In classical physics,
particles were supposed to be “point particles”, namely localized at an exact
point in space, which works at least as an idealization. It is certainly more
intuitive to think of them as being somewhat spread out and if �(x)2

corresponded to a density of matter or of electric charge, that would be
appealing (actually this is how Schrödinger first thought of the meaning of
�(x)2).
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Fig. 4.5 A wave function being the sum of two wave functions that are non-zero over
non-overlapping regions

The problem is that, as we see in the example drawn in Fig. 4.5, the wave
function �(x) can be a sum of two other functions:

�(x) = �1(x) + �2(x), (4.1)

where the sum of the functions �1(x) and �2(x) is easy to understand:
we add, for each value of the variable x the numbers �1(x) and �2(x).
Here, �1(x) = 0 where �2(x) �= 0 and vice-versa, so that the sum �(x)
is simply equal to �1(x) on the interval A where �1(x) �= 0, to �2(x) on
the interval B where �2(x) �= 0, and is equal to 0 everywhere else.
The two regions A where �1(x) �= 0 and B where �2(x) �= 0 can be as far
apart from each other as one wants (we do not indicate the distance between
A and B in Fig. 4.5, but we can imagine it to be large) and then the density
of stuff picture does not work, because the particle will always be detected
either in the region A where �1(x) �= 0 or in region B where �2(x) �= 0,
but not in both.

2. The other mistake is to think that �(x)2 determines the probability of the
particle being in a region like A in Fig. 4.3. But that is not what orthodox
quantum mechanics says. The latter always defines �(x)2 as determining
the probability of the particle being found in a region like A in Fig. 4.3 if one
measures its position.
Of course the two notionsmay look identical: after all, measuring something
means that we measure some property (here the particle’s position) that is
there before one measures it. If one measures the length of a table, one
assumes that the table has a length and that, when we measure it, we simply
learn what it is.
But in ordinary quantum mechanics it is not so simple, because, a priori,
a measurement might affect the system being “measured” (which of course
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implies that using the word “measurement” in this context could be mis-
leading).
That is why ordinary quantum mechanics only speaks of results of measure-
ments, but says nothing about what happens outside of them or before a
measurement. Results ofmeasurement are, by definition, sufficientlymacro-
scopic so that they can be directly perceived by us.Quantummechanics does
not say that particles have a position before being “observed”.6

As already mentioned in Chap. 1, someone who expressed that view very
clearly was Pascual Jordan, one of the founder of quantum mechanics and
an adherent of the Copenhagen interpretation of quantummechanics, who
wrote:

In a measurement of position, “the electron is forced to a decision. We
compel it to assume a definite position; previously, it was, in general, neither
here nor there; it had not yet made its decision for a definite position […] If,
in another experiment, the velocity of the electron is measured, this means:
the electron is compelled to decide itself for some exactly defined value of
the velocity; and we observe which value it has chosen.”

Pascual Jordan [109], quoted and translated by M. Jammer [108, p. 161]
(italics in the original)

Putting aside those mistakes (which are made quite naturally), let us come
back to the meaning of �(x). Equation (4.1) and Fig. 4.5 is the first example
encountered in this book of what is called a superposition or a superposed wave
function which is an expression used whenever the wave function is a sum of
wave functions corresponding to different physical situations.

A superposition is usually described by saying that the particle is both in A
and B, which means only that the particle will be detected either in A or in
B if ones measures its position and that the theory refuses to claim that it is
either in A or B before being measured. This, of course, gives a special role to
measurements and is the source of this special role in the quantum formalism.
The latter statement is very similar to the claim that the particle goes through

both slits in the double-slit experiment; we will discuss that experiment using
the language of wave functions in the next section.

6In Chap. 8 we shall see that �(x)2 can actually be understood as being related to the probability of
the particle being at point x , but that will be possible only within a more complete theory than ordinary
quantum mechanics.

http://dx.doi.org/10.1007/978-3-319-65271-9_1
http://dx.doi.org/10.1007/978-3-319-65271-9_8
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At this point, we beg the reader not to try to understand what the wave
function means, beyond what is said here: it gives the probability distribution
of results of measurements and that’s it!7

The wave function �(x) also changes with time, more or less like a
wave, hence the name wave function. The equation that governs the way
�(x) changes in time, when no measurements are made is famously known as
Schrödinger’s equation. To indicate the fact that � evolves in time, we write �

as a function of both the position x and the time t : �(x, t).
We shall not write down Schrödinger’s equation, but we will list here two

fundamental properties of the way �(x, t) evolves in time:

1. This evolution is deterministic, i.e. if, at some initial time, noted 0, we
give ourselves a function �(x, 0), then this determines a unique function
�(x, t) for all later times t . We explained the notion of determinism in
Chap. 3. The function �(x, 0) corresponds to what we called the initial
condition in that chapter. Once it is given, the functions �(x, t) for later
times are determined in a unique way.

2. This evolution is linear: if the initial wave function at time 0 is a sum of two
other wave functions �1(x, 0) and �2(x, 0), as in (4.1):

�(x, 0) = �1(x, 0) + �2(x, 0),

then for all later times,

�(x, t) = �1(x, t) + �2(x, t), (4.2)

where �1(x, t) is the result of the deterministic evolution with initial wave
function �1(x, 0), and �2(x, t) is the result of the deterministic evolution
with initial wave function �2(x, 0).

This describes all we need to know about the time evolution when no mea-
surements are made.

But what happens to �(x, t) if we measure the position of the particle?
To give a simple example, suppose that we have, as in Figs. 4.5 and 4.6, a
wave function �(x, t) = �(x) = �1(x) + �2(x), with the region A, where
�1(x) �= 0, and the region B, where �2(x) �= 0, being different and with t
being the time when the measurement is made.

7We will discuss in the next chapter some apparently natural ways to understand what the wave function
means (and see that they run into problems). We will later give a physical meaning to the wave function,
in Chap. 8.

http://dx.doi.org/10.1007/978-3-319-65271-9_3
http://dx.doi.org/10.1007/978-3-319-65271-9_8
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Fig. 4.6 A wave function being the sum of two wave functions that are non-zero over
non-overlapping regions, but with unequal probabilities for the particle to be found in
region A and in region B

Then, for �(x) as in Fig. 4.5, we shall find the particle in the region A with
probability 1

2 , and in region B with probability 1
2 (because of the symmetry in

Fig. 4.5). After the measurement, the wave function “collapses” or “is reduced” to
either �1(x) or �2(x), depending on the result. For an example where there
is no symmetry and the probabilities to find the particle in region A and in
region B are not equal, see Fig. 4.6.
The time evolution “during measurements” has two properties that are the

exact opposite of what happens “outside of measurements”:

1. This evolution is non-deterministic, i.e. it gives only the probabilities for the
particle to be found in regions A or B and, depending on the result, the wave
function jumps to either�1(x) or�2(x). In Fig. 4.5, we chose a symmetric
situation, where both probabilities are equal to 1

2 , but in principle any other
probabilities could be obtained, see Fig. 4.6.

2. This evolution is non-linear: in our example, we start with a wave function
�(x, 0) = �1(x) + �2(x), see Fig. 4.5. After the measurement, we get
�(x, t) = �1(x) or �(x, t) = �2(x), where t is a time right after the
measurement. This is a not a sum as in the linear evolution (4.2).

Now, the fact that we have incompatible rules for the time evolution “outside
ofmeasurements” and “duringmeasurements” raises an obvious question: what
kind of physical processes qualify as measurements? And why do the physical
laws change when measurements occur? As we have said, this question will
be with us throughout this book, but we see here why it enters into ordinary
quantummechanics. And, since theword “measurement” implies an “observer”
who does the measurement, we see why ordinary quantummechanics puts the
observer on center stage.
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The problem posed by this duality of rules was expressed ironically by John
Bell:

What exactly qualifies some physical systems to play the role of “measurer”?Was
the wavefunction of the world waiting to jump for thousands of millions of
years until a single-celled living creature appeared? Or did it have to wait a little
longer, for some better qualified system …with a PhD?

John S. Bell [12, p. 34]

Finally, we should stress that it is only through this second rule, the one valid
“during measurements” that probabilities enter into quantum mechanics. The
Schrödinger evolution, valid when no measurements are made, is perfectly
deterministic.
Thus, both the central role of the observer and the apparent indeterminism

of quantum mechanics have their roots in this collapse rule. We will see in
Chap. 7 that the problem of nonlocality is also related to this rule.

4.2 The Double-Slit Experiment

Let us now discuss the double-slit experiment, using the language of wave
functions.
To do that, we shall rely on Fig. 4.10. Let 0 denote the time when the wave

passes through one or two slits in the first wall and let �1(x, 0) be the wave
function right beyond the upper slit. Let �2(x, 0) be the wave function right
beyond the lower slit.
To illustrate this via a simple example, consider Fig. 4.7, where we have

drawn the wave functions of Fig. 4.5, but with the variable x on the vertical
axis: one can think of �1(x) and �2(x) as qualitatively similar to the wave
functions �1(x, 0) and �2(x, 0) after the slits in the two slits experiment of
Fig. 4.10.
The wave arriving on the second wall when only the upper slit is open is

given by �1(x, t), where t is the time at which the particles are detected, and
where�1(x, t) is the solution of the usual time evolution when one starts with
�1(x, 0), see Fig. 4.8. The wave coming on the second screen when only the
lower slit is open is given by�2(x, t), where t is the time at which the particles
are detected, and where �2(x, t) is the solution of the usual time evolution
when one starts with �2(x, 0), see Fig. 4.9.

If only the upper slit is open, the density of particles detected at a point
x on the screen will be given by �1(x, t)2, since that density is given by the
square of the wave function, see the curve on the right of Fig. 4.8. Similarly, if

http://dx.doi.org/10.1007/978-3-319-65271-9_7
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Fig. 4.7 The same wave function as in Fig. 4.5, but drawn vertically

Fig. 4.8 The time evolution of the wave function in the situation of the double-slit
experiment when only the upper slit is open (the time evolution goes from left to
right). The white and blue areas indicate places where the wave function is non zero
and their intensity is proportional to the square of the wave function (white more
intense, blue less intense). Dots on the right indicate the impact of particles. The blue
curve on the right indicates the density of such impacts. This figure corresponds to
part (a) of Fig. 2.6, but in two dimensions and interpreted in the language of the wave
function (A. Gondran cc by-sa 4.0)

http://dx.doi.org/10.1007/978-3-319-65271-9_2
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Fig. 4.9 The time evolution of the wave function in the situation of the double-slit
experiment when only the lower slit is open (the time evolution goes from left to
right). The white and blue areas indicate places where the wave function is non zero
and their intensity is proportional to the square of the wave function (white more
intense, blue less intense). Dots on the right indicate the impact of particles. The blue
curve on the right indicates the density of such impacts. This figure corresponds to
part (b) of Fig. 2.6, but in two dimensions and interpreted in the language of the wave
function (A. Gondran cc by-sa 4.0)

only the lower slit is open, the density of particles detected at a point x on the
screen will be given by �2(x, t)2, see the curve on the right of Fig. 4.9.

But if both slits are open, then the initial wave function, just beyond the
slits, will be the sum of the wave function associated with the upper slit and
the one associated with the lower slit, �(x, 0) = �1(x, 0) + �2(x, 0).

And, because of the fundamental property of linearity of the evolution of
the wave functions, the wave function arriving on the second screen when
both slits are open will be the sum of the two wave functions, �(x, t) =
�1(x, t) + �2(x, t).

So, the density of particles detected at a point x on the screen will be given
by the square of �(x, t), namely by (�1(x, t) + �2(x, t))2, see the curve on
the right of Fig. 4.10. But that square is not equal to the sum of the squares
�1(x, t)2 + �2(x, t)2.8

8To see this, consider the following example:

(3 + 4)2 = 72 = 49 �= 32 + 42 = 9 + 16 = 25. (4.3)

In general, for real numbers a and b, we have:

(a + b)2 �= a2 + b2, (4.4)

http://dx.doi.org/10.1007/978-3-319-65271-9_2
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Fig. 4.10 The time evolution of the wave function in the situation of the double-slit
experiment when both slits are open (the time evolution goes from left to right). The
white and blue areas indicate places where the wave function is non zero and their
intensity is proportional to the square of the wave function (white more intense, blue
less intense). We see that at some places, the waves coming from both slits interfere
constructively, and at other places, destructively. Dots on the right indicate the impact
of particles. The blue curve on the right indicates the density of such impacts. This
figure corresponds to part (c) of Fig. 2.6, but in two dimensions and interpreted in the
language of the wave function (A. Gondran cc by-sa 4.0)

Since the quantummechanical rules predict that the distribution of electrons
detected on the second screen will be given by the square of the wave function
corresponding to one slit being open, or the other one, or both, depending on
what is open or not, we can understand, at least qualitatively, why the density
given by the curve on the right of Fig. 4.10 can be less than the sum of the
densities given by the curves on the right in Figs. 4.8 and 4.9 at some points
(and larger at others).

We will illustrate this phenomenon via a simple mathematical example in
the Appendix.

On the other hand, if we put a detector behind the first screen, as in Fig. 2.7,
we can tell through which slits the particle went, so that the wave function

(Footnote 8 continued)
or, with a = �1(x, t) and b = �2(x, t),

(�1(x, t) + �2(x, t))
2 �= (�1(x, t))

2 + (�2(x, t))
2, (4.5)

namely the square of a sum is not equal to the sum of the squares!

http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
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collapses to either�1(x, 0) or�2(x, 0), because the detector performs a mea-
surement and thus the collapse rule applies, and the interference pattern dis-
appears: the resulting density of particles detected on the second wall will be
given either by �1(x, t)2 or �2(x, t)2.

In the situation of Fig. 2.7, if we do not detect the particle going through
the lower slit, it means that we “know” that it went through the upper one
and thus the wave function collapses to �1(x, 0) and the density of particles
detected on the second wall will be given by �1(x, t)2.

Finally, in the delayed-choice situation of Sect. 2.2, when no detection plate
is inserted, the wave functions pass each other and, if t is now the time of arrival
at the counterC1 andC2, the resulting detections will be given by�1(x, t)2 or
�2(x, t)2, where �1(x, t)2 will be concentrated at C1 and �2(x, t)2 will be
concentrated at C2 (see Fig. 2.9). On the other hand, with the detection plate
P inserted, one gets the usual interference pattern of (�1(x, t ′)+�2(x, t ′))2,
with t ′ now being the time when the waves reach the detection plate (see
Fig. 2.10).
This finishes our explanation of how the quantum mechanical rules con-

cerning the wave function predict the observed behavior in the double-slit
experiment. But we do not claim to have explained what happens in the exper-
iment. In fact, ordinary quantum mechanics usually emphasizes the fact that
the theory does not explains what happens but only predicts it.

4.3 Einstein’s Early Worries

At the Solvay Congress of 1927, which was a historical landmark in the discus-
sions about the meaning of quantummechanics, Einstein considered a particle
going through a hole, as shown in Fig. 4.11. In the situation described in the
picture, the wave function spreads itself over the half circle,9 would but one
always detects the particle in one piece at a given point, somewhere on the
detection surface denoted by P in Fig. 4.11.10

Einstein raised the following objection:

But the interpretation, according to which (�)2 expresses the probability that
this particle is found at a given point,11 assumes an entirely peculiar mechanism

9We speak of a half circle because the picture is two dimensional, but of course in three dimensions the
spreading would be over a hemisphere.
10The situation is not very different than what happens in the two slits experiment when only one slit is
open (see parts (a) and (b) of Fig. 2.6).
11Here Einstein writes (�)2 of what we write �(x)2, x being the point to which he refers (Note by J.B.).

http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
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Fig. 4.11 A version of Einstein’s objection at the 1927 Solvay Conference. Drawing by
Travis Norsen. See [7, p. 440], or [182, p. 254] for the ‘‘original’’ (published in French
translation at the time of the Solvay Conference)

of action at a distance, which prevents the wave continuously distributed in
space from producing an action in two places on the screen.

Albert Einstein [7, p. 441]

Indeed, if the wave function is spread out in space before the particle is
detected, then the fact that the latter is always detected at a given point implies
that the wave function collapses on that point (or on a small neighborhood
of that point), i.e. that it vanishes everywhere else instantaneously. Thus some
sort of action at a distance (detecting the particle at one place makes the wave
function vanish everywhere else) must be taking place. Einstein adds:

In my opinion, one can remove this objection [action at a distance] only in the
following way, that one does not describe the process solely by the Schrödinger
wave, but that at the same time one localises the particle during the propagation.

Albert Einstein [7, p. 441]

Here Einstein stresses the essential ambiguity concerning the meaning of
�(x)2: does it describe the probability of the particle being somewhere or of
the particle being detected somewhere if we detect its position, but not being
anywhere before that? And Einstein also stresses that the second meaning,
which is the orthodox view of quantum mechanics, implies this “peculiar
mechanism of action at a distance”, namely the collapse of the wave function
at a point.
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Einstein could not accept this “action at a distance” (nor did anybody else
at that time), for reasons that will be discussed in Chaps. 7 and 10. In Chap. 8
we will see that the situation described by Einstein does not imply any action
at a distance, but that this will be true only within a more complete theory
than ordinary quantummechanics, a theory in which “one localises the particle
during the propagation”.
The essence of Einstein’s objection to the orthodox view of quantum

mechanics, which is often misunderstood, was always based on this nonlo-
cal aspect of the orthodox view.

4.4 Heisenberg’s Inequality or ‘‘Uncertainty
Principle’’

Heisenberg’s inequality is one of the mathematical consequences of the quan-
tum formalism that is often presented as being one of the main “mysteries” of
quantum mechanics (although we do not see it that way).
To explain this inequality, we have tomention that, besidesmeasurements of

positions, one can also measure velocities and that, given a wave function, one
can compute the probability distribution of results of “measurements of the
velocity”.12 Of course, since we stressed that, in ordinary quantummechanics,
particles do not have trajectories, the reader may wonder how they can possibly
have a velocity, since the velocity simply quantifies the way the position of a
particle changes along its trajectory. But this has again to do with the fact
that we speak of “results of measurements”, not of what exists independently
of measurements and measurements may not simply measure some intrinsic
property of the particle beingmeasured, butmay perturb the particle or interact
with it in an uncontrollable way.

In 1927, right at the time when the quantum theory was being developed,
Heisenberg discovered an inequality relating the probability distribution of the
position measurements to the probability distribution of the velocity measure-
ments.13

To be more precise, Heisenberg wrote an inequality relating how “spread
out” the probability distribution of the position measurements is compared
to how “spread out” the probability distribution of the velocity measurements

12We will come back to what measurements of velocity really are in Sect. 8.3.
13Heisenberg, and physicists generally, speak of momentum measurements rather than velocity measure-
ments, but momentum is simply defined as the product of the mass times the velocity.

http://dx.doi.org/10.1007/978-3-319-65271-9_7
http://dx.doi.org/10.1007/978-3-319-65271-9_10
http://dx.doi.org/10.1007/978-3-319-65271-9_8
http://dx.doi.org/10.1007/978-3-319-65271-9_8
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Fig. 4.12 The curve B is more ‘‘spread out’’ or more ‘‘flat’’ than the curve A

is. The notion of a probability distribution being “spread out” or “flat” is
illustrated in Fig. 4.12.

In words, Heisenberg’s inequality says that the less “spread out” the prob-
ability distribution of the position measurements is, the more “spread out”
the probability distribution of the velocity measurements must be, and vice
versa.14

But what does this inequality mean? Sometimes it is interpreted as showing
that particles do not have well-defined positions and velocities before the latter
aremeasured (which, of course, again puts backmeasurements on center stage).

But that is not what the inequality means, strictly speaking; it only relates
how spread out the probability distributions of certain measurements (of posi-
tions and velocities) are and says nothing whatsoever about what happens
outside of measurements or before them. Since a priori “measurements” might
affect or disturb the system being measured and not simply reveal some prop-
erty of it, we cannot conclude anything, at this stage, about what Heisenberg’s
inequality implies concerning what goes on outside of measurements.

14For the more mathematical reader: there is a standard way to measure how spread out a probability
distribution is and it is given by the variance of that probability distribution. Let Var(x) denote the variance
of the distribution of the measurements of the position x and Var(p) the variance of the distribution of
the product of the mass m times the measurements of the velocity v: p = mv. What Heisenberg showed
is that their product cannot be made arbitrarily small and satisfies a lower bound:

Var(x)Var(p) ≥ 1

4
, (4.6)

where the value 1
4 depends on a choice of physical units that we shall not discuss. But, independently of

this value, what this lower bound implies is that, if Var(x)is very small, then Var(p) must be very large,
and vice-versa.
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Let us also mention that calling Heisenberg’s inequality a “principle” (like in
“uncertainty principle” or sometimes “indeterminacy principle”) is misleading
because it suggests that this is a principle independent of other principles of
the quantum theory, while it is in fact a mathematical consequence of ordinary
quantum mechanics (the purpose of this remark is only to clarify the status
of this inequality, and obviously not to minimize the value of Heisenberg’s
discovery, which was quite extraordinary).

4.5 Conclusions

Coming back to our three fundamental questions, what does the duality of
rules described here imply?

1. It suggests some sort of “reality created by the observer”, since the rules of
physics are different when one performs a measurement and when one does
not.

2. Moreover, the rules are fundamentally statistical: one predicts the probabil-
ities of events, but nothing is said about what might determine the behavior
of each individual particle. Hence, quantum mechanics looks “intrinsically
random”.

3. There seems to be something nonlocal going on, which is what bothered
Einstein already in 1927.

As we saw, the mysterious behavior described in Sects. 2.1 and 2.2 can easily
be predicted by the quantum formalism. But we then face a basic puzzle: how
can one understand all this talk about wave functions, and this duality in their
rules of evolution, that singles out the role of measurements?

In the next chapter, we shall examine some natural sounding answers to
those questions.

4.6 Summary

In this chapter, we introduced, without real formulas, the mathematical for-
malism used by physicists to predict the results described in Chap. 2. We
emphasized that this formalism has to be viewed, at this point, only as an
efficient recipe, but nothing more. All questions concerning its meaning will
be discussed later.

http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
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The central concept is the one of the wave function �, which, in quantum
mechanics, is associated to any physical system.
The wave function � = �(x) is a function of one variable for a single

particle in one dimension of space, and its sole meaning is that �(x)2 deter-
mines the probability of finding the particle somewhere, when one detects its
position. This is illustrated in Fig. 4.3.

It is important to understand that �(x)2 does not represent a density of
“stuff ” (mass or electric charge) nor does it determine the probability of the
particle being somewhere, when its position is not measured. Indeed a wave
function can in principle be as in Figs. 4.5 and 4.6. Since the regions A and
B can be far apart, the density of stuff picture does not make sense. In that
situations, one says that the wave function is a superposition (or a sum) of two
wave functions �1(x) and �2(x).

One could of course say that the particle is either in region A or in region
B before being observed. But that is not what the theory says. It is agnostic as
to what happens before observations.
The reason for that attitude, which sounds paradoxical, is that, in order

to account for the double-slit experiment, one has to assume that the wave
function, when both slits are open, is a superposition (meaning a sum as
in (4.1)) of two wave functions, one behind each slit, at the time when the
“particle” (or the “wave”) reaches the first wall, with the two slits in it. And, in
that situation, quantum mechanics does not commit itself to saying that the
particle goes through one slit or the other.
The evolution of the wave functions puts observations on center stage: when

no observations are made, they propagate smoothly, and deterministically, like
waves and their evolution is linear (see (4.2)). But when observations are made,
they suddenly jump or get reduced: for example, if we measure whether the
particle is in region A or B in Fig. 4.5, the wave function becomes �1(x) or
�2(x), depending on the result. This is a sudden jump, which moreover is
“random” in the sense that one can only attribute probabilities to its outcome
(here one-half for each possibility, �1(x) or �2(x)).

In the double-slit experiment, one has two wave functions, one behind each
slit, when both slits are open. The interference pattern that we see in part
(c) of Fig. 2.6 is obtained by letting these two wave functions evolve as waves
between the two walls. Then, at some places, they interfere constructively, at
other places, destructively.

But, if one observes through which slit the particle goes, for example by
putting a detector behind one of the slits (see Fig. 2.7), then the wave function
collapses and is reduced to the wave function behind the slit through which the
particle goes: either the upper one if the particle is detected there or the lower

http://dx.doi.org/10.1007/978-3-319-65271-9_2
http://dx.doi.org/10.1007/978-3-319-65271-9_2
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one if it is not. Then, that remaining wave function evolves between the walls,
but, since the other wave function is now absent, it no longer contributes to
the production of an interference pattern.

We thenmentioned an early objection of Einstein, that he repeated through-
out his life: consider Fig. 4.11; here the wave function spreads itself on the half
circle P , yet the particle is always detected at a single point. For Einstein, either
the wave function is not the complete story and the particle has, besides its
wave function, also a well defined position or the wave function is the complete
story but then the fact that the particle is detected at a single point means that
the wave function suddenly collapses at that point and thus vanishes every-
where else. But that is a nonlocal effect or “action at a distance” that Einstein
could not accept.

We added a remark on Heisenberg’s inequality, which is a mathematical
relation saying that the less spread out the results of measurements of the
position of the particles with a given wave function are, the more spread out
will be the results of measurements of their velocities, and vice versa. Although
this inequality is often interpreted as showing that particles do not have definite
positions or velocities before being measured, we emphasized that precisely
because the status of the wave function and the role of the measurements is
unclear in ordinary quantum mechanics, no such definite conclusion can be
drawn.
This shows how physicists deal with the phenomenon of interference, but

it does not really explain anything, because the physical meaning of the wave
function, and particularly of superpositions is unclear: it is an extremely accu-
rate tool for predicting results of measurements, but, so far, nothing else.

Appendix

4.A The Wave Function

The first precision to bemade about the wave function is that�(x) is in general
a complex number and, to be correct, one should have written everywhere
|�(x)|2 instead of �(x)2 in Sects. 4.1 and 4.2, where, for a complex number
z = a + ib, |z|2 = a2 + b2.
The fact that the total area under the curve in Fig. 4.3 is equal to one

means that
∫
R

|�(x)|2dx = 1. This ensures that the probability of finding
the particle somewhere is equal to one, as it should!
The probability of finding the particle in a region A is therefore

∫
A |�(x)|2

dx , see Fig. 4.3.
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Fig. 4.13 The graphs of �1(x)2, �2(x)2 and (�1(x) + �2(x))2, for two different wave
functions �1(x) and �2(x) (for those who are familiar with trigonometric functions, we
chose �1(x) = cos x and �2(x) = cos(x + π

3 ), but this is not important) (A. Gondran cc
by-sa 4.0)

Finally, in order to keep that constraint, each of the collapsedwave functions,
after a measurement, must also satisfy

∫
R

|�(x)|2dx = 1. In Fig. 4.5, the situ-
ation is symmetric and, since the regions where�1(x) and�1(x) are non-zero
do not overlap, one has

∫
R

|�(x)|2dx = ∫
R

|�1(x)|2dx + ∫
R

|�2(x)|2dx =
1 and thus

∫
R

|�1(x)|2dx = ∫
R

|�2(x)|2dx = 1
2 . So, the collapsed wave

function is not �1(x) or �2(x), as we said in Sect. 4.2, but rather
√
2�1(x)

or
√
2�2(x), that satisfy

∫
R

|√2�1(x)|2dx = ∫
R

|√2�2(x)|2dx = 1.
To illustrate the phenomenon of constructive and destructive interferences,

consider Fig. 4.13, where the three curves represent the functions �1(x)2,
�2(x)2 and (�1(x) + �2(x))2 (we suppress the variable t here). We chose
those functions (with the x axis drawn horizontally), so that they resemble
(qualitatively) the wiggly blue curve on the right of Fig. 4.10.We note that the
function (�1(x)+�2(x))2 may vanish at points x where neither �1(x)2 nor
�2(x)2 vanish. It can also be larger than the sum �1(x)2 + �2(x)2 for other
x ’s. In the latter case, one says that the waves interfere constructively and in
the former one that they interfere destructively.
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