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Abbreviations

ARUBA A Randomized trial of Unruptured Brain Arteriovenous malformations
COSS Carotid Occlusion Surgery Study
CTA Computed tomography angiography
DSA Digital subtraction angiography
DVT Deep vein thrombosis
EC-IC Extracranial-intracranial
EEG Electroencephalography
ICG Indocyanine green
ICH Intracerebral hemorrhage
ISUIA The International Study of Unruptured Intracranial Aneurysms
MEP Motor-evoked potential
PE Pulmonary embolism
PET Positron emission tomography
SEP Sensory evoked potentials
TIA Transient ischemic attack
TPA Tissue plasminogen activator
VTE Venous thromboembolism
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 Introduction

Research into complication avoidance and management begins with a clear defini-
tion of what constitutes a complication. This proves to be surprisingly difficult. An 
example is interpretation of the results of the CREST trial [1] for carotid stenosis in 
comparing the periprocedural stroke and myocardial infarction (MI) risk between 
the two treatment modalities studied—carotid endarterectomy (CEA) and carotid 
artery stenting (CAS). The trial reported higher stroke risk with CAS (4.1 vs. 2.3%; 
p = 0.01), which led proponents of CEA to propose that CEA was the preferable 
procedure of the two for stroke prevention. However, proponents of CAS argued 
that the vast majority of strokes were minor and non-disabling (81%) and pointed to 
the increased risk of MI with CEA (1.1 vs. 2.3%; p = 0.03). Counterarguments were 
that stroke was more impactful than MI on quality of life measures, while again pro-
CAS experts noted that cranial neuropathy and/or MI were important enough to be 
considered as major complications of CEA. This preceding brief discussion is illus-
trative of the conundrum of defining a complication: what constitutes a complica-
tion to one group may be an acceptable side effect to the other and vice versa. 
Indeed this difference may be more disparate from the perspective of the patient. 
For instance, temporal muscle atrophy following pterional craniotomy for a com-
plex incidental unruptured middle cerebral artery aneurysm requiring innovative 
clip reconstruction with bypass may be considered a minor expected trade-off for a 
highly involved procedure by the surgeon, whereas for the index patient, this may 
prove to be so irksome that it impacts daily social interactions. The latter may well 
be considered a complication of surgery in the patient’s eyes. Similarly, aneurysm 
recurrence following coiling which necessitates further angiography, radiation, 
anesthesia, and intracranial arterial catheterization with its attendant risks may be 
considered expected “aneurysm maintenance” by the surgeon but a complication by 
the patient.

The elusiveness in defining a complication is expertly discussed in a 
 thought-provoking paper by Sokol and Wilson in 2008. Through a stepwise devel-
opment, they propose defining a surgical complication as “any undesirable, unin-
tended, and direct result of an operation affecting the patient, which would not have 
occurred had the operation gone as well as could reasonably be hoped.” This implies 
an error of commission. We however believe that there is also a distinct category of 
adverse health outcomes that result from errors of omission (Table 8.1). For exam-
ple, the inability to detect an aneurysm that ultimately presents with fatal rupture 
could be construed as a complication resulting from non-diagnosis. Therefore 
research into complication avoidance could be organized into the following catego-
ries/phases of patient care:

 1. Screening for disease detection and patient selection for treatment
 2. Perioperative morbidity
 3. Follow-up

8 Complication Avoidance and Management Research
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Table 8.1 Illustrative examples of the role of research in aspects of neurovascular disease 
management

Disease Challenge
Type of 
complication Research focus Proposed study method

Intracranial 
aneurysm

Fatal rupture after 
detection where 
treatment was 
withheld per 
ISUIA criteria

Omission Hemodyanamic 
and morphologic 
factors predicting 
rupture (beyond 
size)

Natural history studies, 
prospective disease 
registry, prospective 
observational cohort 
studies incorporating 
flow dyanamics at 
different time points

Intraoperative 
rupture

Commission Safer anesthetic 
and surgical 
technique in 
operating room 
and endovascular 
suite

Patient-specific 
simulation

Incomplete coil 
occlusion of 
wide-necked 
aneurysm or 
residual after clip 
reconstruction

Omission Novel devices for 
aneurysm 
occlusion

Prospective device 
registry with long-term 
follow-up

Arteriovenous 
malformation 
(AVM)

Debilitating 
seizures from 
withholding 
definitive 
microsurgery for 
grade 1 AVM per 
ARUBA

Omission Better assessment 
of treatment risks

Characterizing AVM 
hemodynamics with 
novel imaging such as 
NOVA at different time 
points in natural history 
and treatment

Carotid 
stenosis

Stroke during stent Commission Enhanced distal 
protection devices

Healthy collaboration 
with industry for 
innovation in device 
development

Recurrent stenosis 
after CEA from 
progressive 
atherosclerosis

Omission Optimization of 
risk factor 
management

Community-based 
behavioral intervention 
care paths

Progressive 
cognitive decline 
due to 
hypoperfusion from 
carotid occlusion 
and withholding 
bypass per COSS

Omission Cognitive 
assessment at 
different time 
points, with and 
without 
intervention

Randomized protocol-
based study 
incorporating robust and 
reproducible scales
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Each in turn can focus on errors of omission or commission. In this chapter, we 
shall consider some relevant examples and scenarios where research on complications 
can improve patient outcomes in neurovascular surgery (defined as any technique 
involved in treating neurovascular diseases).

 Types of Research

Several methods exist to study the above components:

 1. Case reports
 2. Case series
 3. Epidemiologic studies
 4. Database analysis or registry studies
 5. Prospective observational studies
 6. Clinical trials (matched cohorts and randomized)
 7. Simulation studies and modeling
 8. Surgical procedural protocol standardization studies [2]

Prospective clinical trials typically progress through Phases I to IV with Phase 
III trials constituting the benchmark randomized controlled trials (RCT) (with 
blinding) [2]. Data proven in RCTs are most robust since data is gathered prospec-
tively in comparison with a control group and with well-defined endpoints while 
accounting and controlling for variability and bias. It must be realized that these are 

Table 8.1 (continued)

Disease Challenge
Type of 
complication Research focus Proposed study method

Acute stroke Hemorrhage from 
TPA in a patient 
who also 
underwent 
mechanical 
thrombectomy

Commission Optimizing 
outcomes of 
endovascular 
recanalization 
independent of 
TPA

High-quality multicenter 
prospective cohort 
design compared to 
simultaneously collected 
controls matched as best 
as possible 
(randomization 
impossible given TPA is 
a standard of care 
currently)

Continued aphasia 
from dominant M2 
occlusion

Omission Demonstration of 
feasibility of 
endovascular 
intervention

Prospective randomized 
trial design of outcomes 
after M2 recanalization

ICH Progressive 
hematoma 
expansion and 
perihematoma 
brain injury

Omission Minimally invasive 
clot evacuation 
and drugs 
delivered locally 
or systematically

Rapid phase 1/2 trials of 
novel clot stabilizing/
dissolution agents
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very expensive, time consuming, and involve vast resources at each stage. Clinical 
trials may examine screening, prevention, diagnosis, treatment, and quality of life. 
Behavioral interventional studies that introduce and modify operational procedures 
in the operating room and angiography suite hold great promise toward quality ini-
tiatives [3]. A limitation of clinical trials is they are best suited for homogenous 
diseases where equipoise is clearly established for two treatments. This is problem-
atic in neurosurgery where diseases are often highly heterogenous and equipoise is 
often lacking or controversial.

 Screening and Patient Selection

Efficient screening that detects asymptomatic/preclinical disease can potentially 
reduce “omission”-related complications. General screening of entire populations 
has the best chance of detecting asymptomatic disease but has not been well defined 
for cerebrovascular diseases. Targeted screening has a role but defining the target 
population is not straightforward. A growing body of literature on familial aneu-
rysms has made it easier to justify familial screening.

 Intracranial Aneurysm

For cerebral aneurysms, screening of persons with two or more first-degree relatives 
has demonstrated increased incidence of aneurysms [4], but the perception on cost-
effectiveness or impact on outcomes has not been uniform [5–7]. Even in diseases 
such as polycystic kidney disease, screening is deemed to be of utility if performed 
selectively [8]. Once detected, there is the issue of selecting appropriate patients for 
treatment since benefits despite therapy-related morbidity should outweigh the 
risks. The ISUIA trial, in two parts, attempted to answer this question for aneu-
rysms, but several significant study limitations preclude blanket recommenda-
tions—the study had inherent serious selection bias, overestimates the prevalence of 
aneurysms, about 1/3 of patients in the prospective second part (2003) switched to 
treatment arms and were excluded from follow-up, and includes cavernous carotid 
aneurysms [7, 9]. The trials do highlight the relative lower rupture risks for small 
aneurysms less than 7 mm (during 5 years of follow-up) for anterior circulation but 
lend no credence to aneurysm morphology or hemodynamics which has been shown 
to potentially influence rupture risk [10–13]. The latter are ripe areas for research 
into enabling better patient selection for treating unruptured aneurysms detected 
following screening (or as an incidental finding). Selection bias related to enrolling 
low-risk aneurysms undoubtedly influenced results. A number of studies since 
ISUIA have suggested a higher rupture risk for small aneurysms [14].

 AVM

The management of unruptured AVMs is challenging because of their variable hemor-
rhage risk and highly diverse morphologies and brain locations. Attempts have been 
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made to characterize this risk by incorporating individual AVM-related factors [15]. 
There are however pertinent AVM factors that are still inconsistently characterized in 
AVM scores. Comprehensive hemodynamic characterization of an AVM including the 
venous component coupled with prospective collaborative database analysis is an excit-
ing possibility toward consistent and accurate prediction of rupture risk [16]. Patient 
selection for treatment of brain arteriovenous malformations (AVMs) is also not straight-
forward since similar issues plague the few available published trials. The best known 
(on some counts, infamous) AVM trial is ARUBA, but the study is markedly inadequate 
in that included were low-grade, surgically curable AVMs randomized to conservative 
management alone vs. any procedural therapy and studied for a short follow-up duration 
of 33 months (mean) [17]. This presents another exciting area of research—application 
of the knowledge gained from multiple studies of AVM treatment modalities (with sur-
gery, embolization, radiosurgery, and combinations) into formulating a trial that com-
bines AVM flow assessment (as opposed to only static morphological parameters) and 
comprehensive multidisciplinary team-based randomization with recognition of true 
equipoise. Machine learning algorithms hold promise in this area [18].

 Carotid Stenosis

The utility of carotid endarterectomy in symptomatic (>50%) and asymptomatic 
(>60%) carotid stenosis was demonstrated by NASCET [19], ACAS [20], and 
ECAS studies [21]. However the increasing application of carotid artery stenting 
(CAS) has added an element of decision making that has been studied in RCT set-
tings [22]. The concerns with increased periprocedural stroke in CAS are an area of 
research focus. Possible study designs include incorporating enhanced distal 
embolic protection devices and longer clinical follow-up to ascertain long-term 
benefit. Another area of research is the frequent argument that medical management 
of vascular risk factors has become more aggressive and standardized over the years 
to the degree that the number of asymptomatic patients with carotid stenosis needed 
to treat (NNT) with CEA/CAS in order to prevent one stroke may be increasingly 
higher [23] though improvements have occurred in parallel in surgical technique 
[24]. A direct comparison between CAS vs. best medical management and CEA vs. 
best medical treatment is being undertaken in the CREST-2 trial that should address 
this issue. There are also opportunities to incorporate physiological parameters such 
as carotid plaque morphology and/or flow velocities into similar studies [25, 26].

 Occlusive Disease

Treatment for carotid occlusion by EC-IC bypass was deemed to be of no benefit in 
the recent COSS trial that selected patients based on PET determined hemodynamic 
(qualitative) flow reduction and randomized them to medical vs. bypass treatment 
[27]. Yet many flaws noted in that trial need to be addressed with further research 
[28]. Important among these is the application of rigorous cognitive assessment 
measures in patients with carotid occlusion given the known effect of hemispheric 
hypoperfusion in carotid stenosis and occlusion [29–31].
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Cognitive status per standardized tools and stratification according to flow reduc-
tion (e.g., quantitative rather than qualitative, with use of NOVA measurements) 
and, thenceforth, comparison of best medical management vs. surgical treatment is 
a good research focus. Identifying and selecting appropriate candidates for treat-
ment in patients with moyamoya disease based on cognitive assessment and cere-
bral blood flow measurements is a similar area for potential research [32, 33].

 Acute Stroke

Acute ischemic stroke management was revolutionized by the demonstration in 
multiple randomized trials of the efficacy of endovascular thrombectomy in large 
intracranial artery occlusion after IV TPA administration [34]. Expanding the pool 
of eligible patients for IV thrombolysis can also impact the results of stroke therapy 
if exclusion criteria are narrowed. An example would be the inclusion of patients on 
novel anticoagulants and accumulating high-quality evidence supporting this [35]. 
On the other hand, there is an accumulating body of evidence that demonstrates 
similar outcomes in patients who are TPA ineligible that undergo endovascular clot 
retrieval [36, 37]. This is a fertile area of investigation because if demonstrated with 
level 1 evidence, intravenous thrombolysis-related complications might be elimi-
nated in this patient population.

The benefit of endovascular recanalization in occlusion at the level of the M2 vessels 
remains to be demonstrated. Recanalization of a dominant M2 has the obvious potential 
of improving speech outcomes, for example, and should be aggressively evaluated [38].

 Perioperative Morbidity Reduction

Periprocedural complications can be reduced with attention to pre-, intra-, and post-
operative management. Interventions for reducing surgical complications begin in the 
preoperative phase. An example is smoking cessation before general anesthesia to 
reduce lung complications and improve wound healing [39]. Another area of research 
into periprocedural complications is VTE prophylaxis—a recent meta-analysis noted 
the relative risks and benefits of prophylactic anticoagulation in terms of number 
needed to treat to prevent DVT/PE/VTE at the expense of increased risk of ICH [40]. 
The specific indication for craniotomy has not been found to have any correlation with 
VTE risk [41] but research into the role of prophylactic anticoagulation in procedures 
such as aneurysm clipping and AVM resection will help understand risk-benefit ratios 
in vascular neurosurgery which are likely different from tumor or trauma surgery.

Prevention of ischemic complications in aneurysm clipping has relied on intraop-
erative monitoring with evoked potentials and/or EEG and vessel imaging with ICG 
[42]. However, no randomized study has established the utility of combined modali-
ties and the stage of surgery when a particular modality may be more applicable. This 
lends itself to a potential multicenter study of how to best utilize SEP, MEP, ICG, 
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microvascular Doppler, EEG, and other simpler modalities such as near infrared spec-
troscopy (NIRS). Another important facet of improving safety of aneurysm clipping 
is improved visualization of arterial anatomy. Incorporating smaller and more flexible 
endoscopes is an area of research to minimize morbidity [43]. Another area of research 
is studying ways of broadening the indications for novel minimally invasive approaches 
for aneurysm occlusion such as endonasal endoscopic techniques [44].

Wide-necked aneurysms are traditionally treated with clip reconstruction or flow 
diversion. Newer devices such as the WEB (Sequent Medical, Aliso Viejo, California) 
or pCONUS device (Phenox, Bochum, Germany) are being introduced for treatment 
of wide-necked bifurcation aneurysms. Despite promising early results, sound long-
term studies are paramount in ensuring continued aneurysm occlusion.

An area often relegated to the background in the “heat of battle” is intraoperative 
radiation exposure to the surgical team and the patient. This is of immediate rele-
vance to the neurovascular team. Typical exposures vary from diagnostic angiogra-
phy, Dose Area Product (DAP) 102.4/Kerma-Area Product (KAP) 142.10/0.8–19.6 
(5.0) mSv, to higher doses for interventional procedures, DAP 160–172/KAP 382.80 
[45]. Reduction of radiation doses requires appropriate use of protective equipment 
and change in machine settings [46]. Research into better and less cumbersome pro-
tection equipment with newer materials is required [47]. Another interesting avenue 
is the investigation and application of MR angiography as a substitute for diagnosis 
[48, 49] and ultimately for endovascular therapy [50].

 Follow-Up

An important shortcoming of some recent trials has been the lack of adequate 
data both in terms of length and quality. When such studies end up denouncing 
therapy altogether or recommend one preferentially over the other, potentially 
fatal errors of omission and commission occur. The ARUBA trial followed AVMs 
for a mean duration of less than 3 years for a lifelong disease in patients whose 
mean age was only in the mid-40s [51]. The implication is denial of potentially 
curative therapy for seizure patients with grade 1 and 2 AVMs, some of whom 
may be battling toxic side effects of multiple drugs for seizure control. This 
clearly demonstrates the need for longer follow-up in studies and disease regis-
tries. The COSS trial also followed patients only for 2 years, while there have 
been reports of progressive hemodynamic insufficiency leading to poor outcomes 
[52]. In addition, cognitive outcomes were not documented as diligently as 
stroke/TIA events [53].

For the individual neurovascular patient, research into ensuring close and contin-
ued follow-up through behavioral intervention is important. For example, there is 
roughly 6–10% risk of restenosis 2–5 years after carotid intervention and an ele-
vated stroke risk in these patients compared to those without restenosis [54, 55]. 
Similarly, there is a definite risk of long-term (10 years) recurrence of aneurysms 
after coiling requiring retreatment which mandates diligent follow-up [56, 57].
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 Complication Avoidance Through Simulation

A clear understanding of the positional relationship between various cerebral 
structures, cranial nerves, and blood vessels is difficult to appreciate on two-
dimensional radiographic imaging. For example, the complexity of cerebral 
vasculature around an aneurysm requires both extensive and exhaustive mental 
visualization by the treating neurosurgeon. Any error in navigating this complex 
anatomy may result in potentially fatal consequences for the patient [58]. Also, 
some neurosurgical cases allow for only one neurosurgeon to operate at a given 
moment. This is especially true for skull base procedures which have a very 
small and narrow surgical field of access [58]. Therefore, it would be prudent to 
practice on anatomically tailored models using 3D printing technology to better 
understand the anatomic relationships between the lesion and the surrounding 
normal structures. Many reports on simulation have emerged which have evalu-
ated the utility of 3D printing and virtual reality (VR) in the field of neurosur-
gery [59]. The use of 3D printer to construct patient-specific three-dimensional 
models based on actual surgical brain pathology is called rapid prototyping 
[60]. This technology uses processed 3D images (e.g., 3D-CTA, 3D-DSA) to 
fabricate patient-specific 3D models. This has been further possible with the 
digitalization of radiographic images which converts a normal two-dimensional 
image into 3D [60].

Simulation helps surgeons rehearse delicate surgical maneuvers prior to the 
actual surgery. In addition, simulation can enhance the training opportunities for 
neurosurgical trainees as the former have declined due to various factors. 
Recently, several reports have been published which have evaluated the role of a 
virtual reality (VR) neurosurgical simulator with haptic feedback in practicing 
and perfecting techniques [61]. Yet cost can be a barrier to widespread adoption 
of VR technology, at least at present. Consequently physical models in combina-
tion with pre- and posttest objective assessment hold great potential in technique 
simulation in vascular neurosurgery. Such simulation modules have been devel-
oped by the Congress of Neurological Surgeons (CNS) along with scales to 
assess the performance of students in different types of neurosurgical proce-
dures. The NOMAT (Northwestern Objective Assessment Tool) is a practical 
example of such a scale that accompanies the CNS Microanastomosis module 
[62]. Validation studies of NOMAT scale have documented that the scale can 
reliably distinguish between various levels of performance exhibited by residents 
at different levels of training [62]. Limitations do exist. For example, it is diffi-
cult to 3D print the consistency of different types of aneurysms such as calcified, 
mycotic, or thrombotic components. Secondly,  real-time complications like 
aneurysm rupture or tearing of friable tissues cannot be simulated effectively. 
Additionally, it is challenging to recreate the haptics and feedback of different 
microsurgical techniques. Progressive technological improvements in augmented 
reality and computing, including via high-end gaming platforms, is an area for 
active research.
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 Conclusion

Most complications can be viewed as errors of omission or commission that can 
impact a patient during disease screening, selection for treatment, surgical inter-
vention, or follow-up. Multiple avenues may be exploited in the study of compli-
cations occurring in different stages of disease management in the cerebrovascular 
patient. Although no single research technique can guarantee a 100% avoidance 
in complications, the cumulative results of various techniques can provide train-
ees and surgeons a road map or a blueprint for improving patient outcomes in the 
field of neurovascular surgery.
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