
Chapter 3
C1 Interiors of Sets of Systems with Various
Shadowing Properties

In this chapter, we study the structure of C1 interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

• The C1 interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result and Theorem 1.4.1 (a) imply that the C1 interior of the
set of diffeomorphisms having the standard shadowing property coincides with
the set of structurally stable diffeomorphisms;

• the set Int1.OrientSPF n B/ is a subset of the set of structurally stable vector
fields (Theorem 3.3.1); similarly to the case of diffeomorphisms, this result and
Theorem 1.4.1 (b) imply that the set Int1.OrientSPF n B/ coincides with the set
of structurally stable vector fields;

• the set Int1.OrientSPF/ contains vector fields that are not structurally stable
(Theorem 3.4.1).

The structure of the chapter is as follows.
Section 3.1 is devoted to the proof of Theorem 3.1.1:

Int1 .SSPD/ � SD:

Our proof of Theorem 3.1.1 is based on reduction to Theorem 1.3.6 (2) (the C1

interior of the set of Kupka–Smale diffeomorphisms coincides with the set of
structurally stable diffeomorphisms).

We give a detailed proof of the inclusion

Int1 .SSPD/ � HPD

© Springer International Publishing AG 2017
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
in Mathematics 2193, DOI 10.1007/978-3-319-65184-2_3

125



126 3 C1 Interiors of Sets of Systems with Various Shadowing Properties

(thus, any periodic point of a diffeomorphism f 2 Int1 .SSPD/ is hyperbolic).
Concerning the proof of transversality of stable and unstable manifolds of periodic
points of a diffeomorphism f 2 Int1 .SSPD/, we refer the reader to Sect. 3.3 where
a similar statement is proved in a more complicated case of flows on manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect. 3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If f 2 Int1 .SSPD/, then f satisfies Axiom A.
Our proof uses neither Mañé’s ergodic closing lemma [42] nor the techniques of
creating homoclinic orbits developed in [44]. Instead, we refer to a sifting type
lemma of Wen–Gan–Wen [109] influenced by Liao’s work and apply it to Liao’s
closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C1 interior of the set of
vector fields having the oriented shadowing property. We introduce a special class
B of vector fields having two rest points p and q for which there exists a trajectory
of nontransverse intersection of the stable manifold Ws. p/ and Wu.q/. Of course,
vector fields in B are not structurally stable.

In Sect. 3.3, we prove Theorem 3.3.1: The set

Int1 .OrientSPF n B/

is a subset of the set of structurally stable vector fields.
At the same time, we show in Sect. 3.4 that the set Int1.OrientSPF/ contains

vector fields belonging to B. The complete description of the corresponding
example given in [69] is quite complicated, and we describe a “model” suggested
in [100].

3.1 C1 Interior of SSPD

The main result of this section is the following theorem.

Theorem 3.1.1 Int1 .SSPD/ � SD.
It follows from Theorem 1.4.1 (a) that

SD � LSPD � SSPD:

Since the set of structurally stable diffeomorphisms is C1-open,

SD D Int1.SD/ � Int1.SSPD/:

Combining this with Theorem 3.1.1, we conclude that the C1 interior of the set
of diffeomorphisms having the standard shadowing property coincides with the set
of structurally stable diffeomorphisms.
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As was said at the beginning of this chapter, we reduce the proof of Theo-
rem 3.1.1 to Theorem 1.3.6 (2). Thus, we have to show that

Int1 .SSPD/ � Int1 .KSD/:

Of course, for this purpose, it is enough to show that

Int1 .SSPD/ � KSD: (3.1)

This means that we have to establish the inclusion

Int1 .SSPD/ � HPD (3.2)

(i.e., every periodic point of a diffeomorphism in Int1 .SSPD/ is hyperbolic) and to
show that, for a diffeomorphism in Int1 .SSPD/, stable and unstable manifolds of its
periodic points are transverse.

We prove inclusion (3.2) in Lemma 3.1.2.
We do not give here a proof of transversality of stable and unstable manifolds of

periodic points of a diffeomorphism in Int1 .SSPD/. Instead, we refer the reader to
Sect. 3.3 of this book; in this section, a similar statement is proved for the case of
vector fields (which is technically really more complicated). We advice the reader
to “transfer” the proof of Sect. 3.3 to the case of diffeomorphisms.

We start with a lemma proved by Franks in [19]; this lemma plays an essential
role in proofs of several theorems below.

If U is a domain in R
m with compact closure and f ; g W U ! R

m are
diffeomorphisms of U onto their images such that f .U/ D g.U/ D V , then we
define �1;U. f ; g/ as the maximum of the following values:

sup
x2U

ˇ
ˇ f .x/ � g.x/

ˇ
ˇ; sup

x2U
�
�Df .x/ � Dg.x/

�
�;

sup
y2V

ˇ
ˇ f�1.y/� g�1.y/

ˇ
ˇ ; sup

y2V
�
�Df�1.y/ � Dg�1.y/

�
�

(this definition corresponds to our definition of the C1 topology of Diff 1.M/, see
Sect. 1.3).

Lemma 3.1.1 Let U be a domain in R
m with compact closure, where m � 1, and

let f W U ! R
m be a C1 diffeomorphism of U onto its image.

Consider a finite set of different points fx1; x2; : : : ; xng � U.
Then for any " > 0, any neighborhood N of the set fx1; x2; : : : ; xng, and any

linear isomorphisms

Li W Rm ! R
m
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such that

kLi � Df .xi/k; kL�1
i � .Df .xi//

�1k � "=8; 1 � i � n; (3.3)

there exists a number ı > 0 and a C1 diffeomorphism g W U ! R
m with f .U/ D

g.U/ and such that

(a) �1;U. f ; g/ � ",
(b) g.x/ D f .x/; x 2 U n N,

and
(c) g.x/ D f .xi/C Li.x � xi/; x 2 N.ı=4; xi/; 1 � i � n:

Proof Standard reasoning shows that since U is a domain with compact closure,
there exists a number "0 > 0 such that if g is a C1 mapping of U such that f .U/ D
g.U/ and

sup
x2U

j f .x/� g.x/j; sup
x2U

kDf .x/ � Dg.x/k < "0;

then g is a diffeomorphism of U onto g.U/.
For a positive ı > 0, let

Bı.xi/ D fy 2 U W jy � xij � ıg; 1 � i � n:

We assume that ı is small enough, so that the sets Bı.xi/ with different i do not
intersect. In what follows, we reduce ı if necessary.

Choose a C1 real-valued function � W R ! R such that 0 � �.x/ � 1,

�.x/ D
(

0 if jx j � ı;

1 if jx j � ı=4;

and 0 � j� 0.x/j < 2=ı for all x.
Let � W Sn

iD1 Bı.xi/ ! R be defined by

�.y/ D � .jy � xij/ ; y 2 Bı.xi/; 1 � i � n:

Fix " 2 .0; "0/ and take 0 < ı < min.1; "/ so small that

n[

iD1
Bı.xi/ � N; (3.4)

j f .xi/C Li.y � xi/ � f .y/j � "

4
jy � xij; (3.5)
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and

jLiv � Df .y/vj � "

4
jvj; v 2 R

m; (3.6)

for y 2 Bı.xi/; 1 � i � n (clearly, this is possible due to estimates (3.3)).
Define a mapping g W U ! R

m by

g.y/ D
(

f .y/ if y … Sn
iD1 Bı.xi/;

�.y/. f .xi/C Li.y � xi//C .1 � �.y//f .y/ if y 2 Sn
iD1 Bı.xi/:

It is easy to see that if y 2 Sn
iD1 Bı.xi/, then

j f .y/� g.y/j D j�.y/. f .xi/C Li.y � xi//� �.y/f .y/j D

D �.y/j f .xi/C Li.y � xi/� f .y/j � 1 � "
4

� ı < ":

Let us estimate the differences of the derivatives. If y 2 Bı.xi/ and v 2 R
m, then

Dg.y/v D �.y/Liv C hD�.y/; vi. f .xi/C Li.y � xi//C

C.1 � �.y//Df .y/v � hD�.y/; vif .y/;
where

hD�.y/; vi D
mX

jD1

@�

@yj
.y/vj:

Thus,

jDf .y/v � Dg.y/vj D

D j�.y/Liv � �.y/Df .y/v C hD�.y/; vi. f .xi/C Li.y � xi// � hD�.y/; vif .y/j �

� �.y/jLiv � Df .y/vj C jhD�.y/; vijj f .xi/C Li.y � xi/� f .y/j:
It is clear that if jy � xij > ı, then �.y/ D 0, and if jy � xij � ı, then, by the

choice of ı (see (3.6)),

�.y/ � jLiv � Df .y/vj � jLiv � Df .y/vj � "

4
jvj:

If jy� xij > ı, then D�.y/ D 0 (since �.y/ D 0 for jy� xij > ı). If jy� xij � ı, then
jD�.y/j < 2=ı and

j f .xi/C Li.y � xi/� f .y/j � "

4
jy � xij
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by the choice of ı (see (3.5)) and the definition of �. Thus,

jhD�.y/; vijj f .xi/C Li.y � xi/� f .y/j �

� 2

ı
� "
4

jy � xijjvj � 2

ı
� "
4
ıjvj D "

2
jvj:

Hence,

jDf .y/v � Dg.y/vj � "

4
jvj C "

2
jvj � "jvj:

It follows from the choice of " < "0 that g is a diffeomorphism of U onto g.U/ D
f .U/.

Now a similar reasoning can be applied to estimate the values

j f 1.y/� g�1.y/j and kDf 1.y/ � Dg�1.y/k

(reducing ı, if necessary).
Inclusion (3.4) implies that g and f coincide outside N. The lemma is proved. ut

Lemma 3.1.2 Inclusion (3.2) holds.

Proof Let us consider the case of an m-dimensional manifold M with m � 1. To
get a contradiction, assume that there exists a diffeomorphism f 2 Int1 .SSPD.M//n
HPD.M/.

Then f has a nonhyperbolic periodic point p of period �. p/.
Take a C1 neighborhood U . f / of f lying in SSPD.M/.
To simplify presentation, we assume that �. p/ D 1 (the case of a periodic point

of minimal period �. p/ > 1 is considered similarly). Moreover, since the argument
is local, we assume further that f is defined on an open set of Rm.

By the Franks lemma, it is possible to find a diffeomorphism g 2 U . f / with the
following properties:

– p is a fixed point of g,
– g is linear in a neighborhood of p.

Indeed, let us introduce local coordinates x 2 R
m near p such that p is the origin.

Then, by the Franks lemma, for any r > 0 there exists a diffeomorphism fr such
that

– fr.x/ D f .x/ for x … N.4r; p/,
– fr.x/ D Df . p/x for x 2 N.r; p/.

Note that fr converges to f with respect to the C1 topology as r ! 0. Fix r0 > 0

such that fr0 2 U . f / and write g instead of fr0 .
Since the point p D 0 is not hyperbolic, the matrix Dg. p/ has an eigenvalue �

with j�j D 1. To simplify presentation, we assume that � D 1 (the proof in the
general case can be found in [87]).
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Applying a C1-small perturbation of g (so that the perturbed g still is in U . f /)
and preserving the notation g for the perturbed diffeomorphism, we may assume
further that Dg. p/ has an eigenvalue equal to 1, p is the origin with respect to some
local coordinates x D .x1; : : : ; xm/, and g maps a point x D .x1; y/ 2 N.r0; p/, where
y D .x2; : : : ; xm/, to the point .x1;By/, where B is a hyperbolic matrix.

In this case, the segment

I D f.x1; 0; : : : ; 0/ W 0 � jx1j � r0g

consists of fixed points of g.
Since it was assumed that g 2 SSPD.M/, for " D r0=2 there is the corresponding

0 < d < " from the definition of the standard shadowing property. Take a natural
number l such that the sequence

� D fxk W k 2 Zg � I ;

where

xk D
8

<

:

0 for k < 0I
�
r0k
2l ; 0; : : : ; 0

�

for 0 � k � lI
.r0=2; 0; : : : ; 0/ for k > l;

is a d-pseudotrajectory of g.
Let x 2 N."; x0/ be a point such that

jgk.x/ � xkj < � for k 2 Z:

Since the matrix B is hyperbolic, for any point .x1; y/ with y ¤ 0, its g-trajectory
leaves the set N.r0; p/. Hence, if

jgk.x/ � xkj < "; k 2 Z;

then x D .b; 0; : : : ; 0/. Since

g.x/ D g.b; 0; : : : ; 0/ D .b; 0; : : : ; 0/;

we see that jbj < r0=2, and then jb � r0j < r0=2. The obtained contradiction proves
our lemma. ut
Historical Remarks One of the first results concerning C1 interiors of sets of
diffeomorphisms with properties similar to shadowing was proved by K. Moriyasu
in [47].

Let us denote by TSD the set of topologically stable diffeomorphisms. Recall that
a diffeomorphism f of a smooth manifold M is called topologically stable if for any
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" > 0 there is a d > 0 such that for any homeomorphism g satisfying the inequality
�0. f ; g/ < d, there exists a continuous map h mapping M onto M and such that
�0.h; id/ < " and f ı h D h ı g (see [104]).

It is known that every topologically stable diffeomorphism has the standard
shadowing property (see [46, 105]); thus, SSPD � TSD. In addition, every expansive
diffeomorphism in SSPD is in TSD (see [64] for details).

K. Moriyasu proved in [47] that any diffeomorphism in Int1 .TSD/ satisfies
Axiom A. In fact, the paper [47] contains the proof of inclusion (3.2) (see
Proposition 1 in [47]).

Theorem 3.1.1 was proved by the second author in [87].
Later, a more general result (in which the set SSPD was replaced by a larger set

OSPD) was obtained by the first author, A. A. Rodionova, and the second author in
[65] (the method of proving transversality of the stable and unstable manifolds of
periodic points used in [65] was later applied in the case of vector fields [69]; see
Sect. 3.3 of this book).

In [88], the second author introduced the notion of C0 transversality and showed
that for two-dimensional Axiom A diffeomorphisms, C0 transversality of one-
dimensional stable and unstable manifolds is equivalent to shadowing. Later, the
authors related C0 transversality to inverse shadowing in two-dimensional Axiom A
diffeomorphisms [66].

Let us mention here one more result of that type related to shadowing properties.
Let f be a homeomorphism of a metric space .M; dist/. We say that f has the
weak shadowing property if for any " > 0 there exists d > 0 such that for any
d-pseudotrajectory � of f there is a point p 2 M such that

� � N.";O. p; f //:

Denote by WSPD the set of diffeomorphisms having the weak shadowing property.
It was shown by the second author in [89] that if M is a smooth two-dimensional

manifold, then

Int1.WSPD.M// � ˝SD.M/:

Let us note that the above inclusion is strict; it was shown by O. B.
Plamenevskaya in [72] that there exist ˝-stable diffeomorphisms of the two-
dimensional torus that do not have the weak shadowing property.

Let us also note that the result of [89] cannot be generalized to higher dimensions.
R. Mañé constructed in [40] an example of a C1-open subset T of the space of
diffeomorphisms of the three-dimensional torus such that

• any diffeomorphism f 2 T has a dense orbit (thus, any f 2 T is in Int1.WSPD/);
• any diffeomorphism f 2 T is not Anosov (and hence, it is not˝-stable).
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3.2 Diffeomorphisms in Int1 .SSPD/ Satisfy Axiom A

As was said at the beginning of this chapter, in this section we prove the following
statement.

Theorem 3.2.1 If f 2 Int1 .SSPD/, then f satisfies Axiom A.

Remark 3.2.1

1. To get an independent proof of Theorem 3.1.1 using Theorem 3.2.1, one has to
show that if a diffeomorphism f 2 Int1 .SSPD/ satisfies Axiom A, then f also
satisfies the strong transversality condition.

This can be done by applying the following scheme. Assuming that the
stable manifold Ws. p/ and the unstable manifold Wu.q/ for two points p; q 2
˝. f / have a point r of nontransverse intersection, one can approximate r by
points of intersection of periodic points of f and then, perturbing f , to get
a point of nontransverse intersection of periodic points of a diffeomorphism
g 2 Int1 .SSPD/. After that, one can apply the techniques described in Sect. 3.3
to get a contradiction. We leave details to the reader.

2. Of course, it has shown by Mañé and Hayashi [25, 42, 45] that a diffeomorphism
f 2 Int1 .HPD/ satisfies Axiom A, but we give a simpler proof of this result under
the assumption that f 2 Int1 .SSPD/; this proof uses neither Mañé’s ergodic
closing lemma [42] nor the techniques creating homoclinic orbits developed
in [44].

Let the phase space be a �-dimensional manifold M.
Denote, as above, by Per. f / the set of periodic points of a diffeomorphism f W

M ! M. Let �. p/ be the minimal period of a periodic point p 2 Per. f /.
It is proved in [40] that if f 2 Int1 .SSPD.M/, then ˝. f / D Cl.Per. f //.
Denote by Pj. f /; 0 � j � �, the set of hyperbolic periodic points of f whose

index (the dimension of the stable manifold) is equal to j. Let 	j be the closure of
the set Pj. f /.

It has shown by Pliss [73] that the sets of sinks, P�. f /, and of sources, P0. f /,
of a diffeomorphism f 2 Int1.SSPD.M// are finite sets (another proof can be found
in [36]).

The following lemma is a “globalized” variant of Frank’s lemma (Lemma 3.1.1)
for C1 diffeomorphisms of a smooth closed manifold using exponential mappings.

Lemma 3.2.1 Let f 2 Diff 1.M/ and let U . f / be a neighborhood of f .
Then there exists a number ı0 > 0 and a neighborhood V . f / � U . f / such

that for any g 2 V . f /, any finite set fx1; x2; : : : ; xmg consisting of pairwise different
points, any neighborhoodU of the set fx1; x2; : : : ; xmg, and any linear isomorphisms
Li W TxiM ! Tg.xi/M such that

kLi � Dg.xi/k; kL�1
i � Dg�1.xi/k � ı0; 1 � i � m;
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there exist "0 > 0 and Qg 2 U . f / such that

.a/ Qg.x/ D g.x/ if x 2 M n U, and

.b/ Qg.x/ D expg.xi/ ıLi ı exp�1
xi
.x/ if x 2 B"0.xi/ for all 1 � i � m.

Note that assertion .b/ implies that Qg.x/ D g.x/ if x 2 fx1; x2; : : : ; xmg and that
Dxi Qg D Li for all 1 � i � m.

In what follows, we assume that f 2 Int1 .SSPD/; hence, by Lemma 3.1.1, f 2
Int1 .HPD/.

Thus, there exists a neighborhoodU . f / of f in Diff 1.M/ such that every periodic
point p 2 Per.g/ is hyperbolic for any g 2 U . f /.

Then there exists a C1 neighborhood V . f / of f such that the family of
periodic sequences of linear isomorphisms of tangent spaces of M generated by
the differentials Dg of diffeomorphisms g 2 V . f / along hyperbolic periodic orbits
of points q 2 Per.g/ is uniformly hyperbolic (see [42]).

To be exact, this means that there exists " > 0 and a neighborhood V . f / of f
such that for any g 2 V . f /, any q 2 Per.g/, and any sequence of linear maps

Li W Tgi.q/M ! TgiC1.q/M

with

�
�Li � Dg

�

gi.q/
��
� < "; i D 1; : : : ; �.q/� 1;

Q�.q/�1
iD0 Li is hyperbolic (here " > 0 and V . f / correspond to U . f /) according to

Lemma 3.2.1.
The following result was proved by Mañé [42, Proposition II.1]. Denote by

Es.q/. f / and Eu.q/. f / the stable and unstable spaces of the hyperbolic structure
at a point q of a hyperbolic periodic orbit of f , respectively.

Proposition 3.2.1 Let f 2 Int1 .HPD/.
In the above notation, there are constants C > 0, m > 0, and 0 < � < 1 such

that:

.a/ if g 2 V . f / , q 2 Per.g/, and �.q/ � m, then

k�1Y

iD0

�
�
�DgmjEs.gim.q//.g/

�
�
� � C�k and

k�1Y

iD0

�
�
�Dg�m

jEu.g�im.q//.g/

�
�
� � C�k;

where k D Œ�.q/=m
.
.b/ For any g 2 V . f / and 0 � j � �, the set 	j.g/ D Cl.Pj.g// admits a

dominated splitting (see Definition 1.3.12)

T	j.g/M D E.g/˚ F.g/
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with dimE.g/ D j, i.e.,

�
�
�DgmjE.x/.g/

�
�
� �

�
�
�Dg�m

jF.gm.x//.g/
�
�
� � �

for all x 2 Cl.Pj.g// (note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/ if
x 2 Pj.g//.

It is easy to see that the above proposition can be restated in the following way.

Proposition 3.2.2 In the notation and assumptions of Proposition 3.2.1, there exist
constants m > 0, 0 < � < 1, and L > 0 such that:

.a/ If g 2 V . f /, q 2 Per.g/, and �.q/ � L, then

�.q/�1
Y

iD0

�
�
�DgmjEs.gim.q//.g/

�
�
� < ��.q/ and

�.q/�1
Y

iD0

�
�
�Dg�m

jEu.g�im.q//.g/

�
�
� < ��.q/:

.b/ For any g 2 V . f / and 0 � j � �, the set 	j.g/ admits a dominated splitting
T	j.g/M D E.g/˚ F.g/ with dimE.g/ D j such that

�
�
�DgmjE.x/.g/

�
�
� �

�
�
�Dg�m

jF.gm.x//.g/
�
�
� < �2

for any x 2 	j.g/ (note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/ if
x 2 Pj.g//.

In what follows, we need two technical lemmas (Lemmas 3.2.2 and 3.2.3).
Denote by 	 a set 	j D Cl.Pj. f //, where 0 � j � �.
Lemma 3.2.2 deals with extension of the dominated splitting to a small neigh-

borhood of	 in M. Assume that 	 admits a dominated splitting T	M D E ˚ F for
which there exist constants m > 0 and 0 < � < 1 such that

�
�
�DfmjE.x/

�
�
� �

�
�
�Df�m

jF. f m.x//
�
�
� � �

for all x 2 	. To simplify notation, denote f m by f .
It is known (see [27]) that there exists a neighborhood U of	, a constant O� > 0,

� < O� < 1, and a continuous splitting TUM D OE ˚ OF with dim OE D dimE such
that

– OEj	 D E and OFj	 D F;
– Df .x/ OE.x/ D OE. f .x// if x 2 U \ f�1.U/;
– Df�1.x/ OF.x/ D OF. f�1.x// if x 2 U \ f .U/;

–
�
�
�Df kj OE.x/

�
�
� �

�
�
�Df�k

j OF. f k.x//
�
�
� < O�k if x 2 Tk

iD�k f
i.U/ for k � 0.

The continuity of the differential Df implies the following statement (in which
we have to shrink the neighborhood U of 	 if necessary).
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Lemma 3.2.2 In the above notation and assumptions of Proposition 3.2.1, there
exists a Df -invariant continuous splitting T	f .U/M D OE ˚ OF with dim OE D dimE

and 0 < O� < 1 such that
– OEj	 D E and OFj	 D F;

–
�
�
�Df kj OE.x/

�
�
� �

�
�
�
�
Df�k

j OF. f k.x//

�
�
�
�
< O�k for any x 2 	f .U/ and k � 0;

– for any " > 0 there exists ı > 0 such that if x 2 	f .U/, y 2 	, and dist.x; y/ < ı,
then

ˇ
ˇ
ˇ log

�
�Dfj OE.x/

�
� � log

�
�DfjE.y/

�
�

ˇ
ˇ
ˇ < "

and
ˇ
ˇ
ˇ log

�
�Df�1

j OF.x/
�
� � log

�
�Df�1

jF.y/
�
�

ˇ
ˇ
ˇ < ":

In the statement above,

	f .U/ D
\

n2Z
f n.U/:

The second technical lemma (Lemma 3.2.3) is a variant of the so-called sifting
lemma first proved by Liao (see [36]). The statement which we prove belongs to
Wen–Gan–Wen [109].

Let T	f .U/M D OE ˚ OF be as in Lemma 3.2.2 and let 0 < � < 1.
An orbit string

fx; ng D fx; f .x/; : : : ; f n.x/g � 	f .U/

is called a �-quasi-hyperbolic string with respect to the splitting OE ˚ OF if the
following conditions are satisfied:

(1)

k�1Y

iD0

�
�
�Dfj OE. f i.x//

�
�
� � �k for k D 1; 2; : : : ; nI

(2)

n�1Y

iDk�1
m

�

Dfj OF. f i.x//
�

� �k�n�1 for k D 1; 2; : : : ; nI

(3)

�
�
�Dfj OE. f i.x//

�
�
� =m

�

Dfj OF. f i.x//
�

� �2 for every i D 0; 1; : : : ; n � 1:
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Here m.A/ is the minimum norm of a linear map A, i.e.,

m.A/ D inf
kvkD1

kAvk:

Lemma 3.2.3 (Sifting Lemma, [36, 107, 109]) Let faig1
iD0 be an infinite sequence

for which there exists a constant K such that jaij < K. Assume that

lim sup
n!1

1

n

n�1X

iD0
ai D � and lim inf

n!1
1

n

n�1X

iD0
ai D � 0;

where � 0 < �. Then for any �1 and �2 with �1 < � < �2 there is an infinite sequence
fmig1

iD1 � N such that

1

k

miCk�1
X

jDmi

aj � �2 and
1

k

miC1�1X

jDmiC1�k

aj � �1

for every i D 1; 2; : : : and every k D 1; : : : ;mi C 1 � mi.

Proof Let S.n/ D Pn�1
iD0 ai.

Fix a small " > 0 with

� � � 0

2
> ":

(We determine " at the end of the proof.)
Choose a large enough N 2 N such that

1

n
S.n/ < � C "

for any n > N.
By our assumption, the upper and lower limits are different; hence, there is an

infinite sequence

N < n1 < n0
1 < n2 < n0

2 < n3 < n0
3 < : : :

such that

1

ni
S.ni/ < �

0 C " < � � " <
1

n0
i

S.n0
i/

for every i D 1; 2; : : : .
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Take an integer ni < mi < niC1 such that

S.k/� S.mi/

k � mi
� � � "

for every k D mi C 1;mC2 : : : ; niC1 and

S.mi/� S.k/

mi � k
� � � "

for every k D ni; ni C 1; : : : ;mi � 1.
This is a crucial point of the proof. Roughly speaking, mi is the index at which

S.k/� S.ni/� .k� ni/.� � "/ attains maximum when k runs over the set ni C 1; ni C
2; : : : ; niC1 (Fig. 3.1).

Claim

niC1 � mi >
� � � 0 � 2"

K C � 0 C "
mi and mi � ni >

� � � 0 � 2"
K � � 0 � "

mi:

Proof (of the claim) By the choice of mi, it is easy to see that

S.mi/ � S.n0
i/ � .mi � n0

i/.� � "/:

Hence,

S.mi/ � mi.� � "/:

m3 n

S(n)

ε

4(n  , S(n  ))

m2m1n1

S(n )1

+ξ

ε−ξ

ε+ξ’

4

3(n  , S(n  ))3

2(n  , S(n  ))2

1(n  , S(n  ))1

Fig. 3.1 The choice of mi
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Since jaij < K, we get the inequalities

niC1.� 0 C "/ > S.ni C 1/ > S.mi/ � K.niC1 � mi/ � mi.� � "/� K.niC1 � mi/

and

ni.�
0 C "/C K.mi � ni/ > S.ni/C K.mi � ni/ > S.mi/ � mi.� � "/:

Hence,

K.niC1 � mi/ > .� � "/mi � .� C "/niC1 D

D .� � � 0 � 2"/mi C .� 0 C "/.mi � niC1/

and

K.mi � ni/ > mi.� � "/ � ni.�
0 C "/ D

D mi.� � � 0 � 2"/C .� 0 C "/.mi � ni/:

Therefore,

niC1 � mi >
� � � 0 � 2"

K C � 0 C "
mi and mi � ni >

� � � 0 � 2"
K � � 0 � " mi:

Thus, the claim is proved. ut
Let us pass to the proof of Lemma 3.2.3.
It is obvious that for k D 1; 2; : : : ; niC1 � mi,

1

k
.S.mi C k/ � S.mi// � � � ":

For k D niC1 � mi C 1; : : : ;miC1 � mi,

1

k
.S.mi C k/ � S.mi// <

1

k
..mi C k/.� C "/� mi.� � "// D

D � C "C 2"
mi

k
< � C

�

1C 2
K C � 0 C "

� � � 0 � 2�

�

":

Note that in the third inequality we have used the above claim.
Similarly, for k D 1; 2; : : : ;mi � ni,

1

k
.S.mi/� S.mi � k// � � � ";
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and for k D mi � ni C 1; : : : ;mi � mi�1,

1

k
.S.mi/ � S.mi � k// >

1

k
.mi.� � "/� .mi � k/.� C "/ D

D � C " � 2"
mi

k
> � C

�

1 � 2
K � � 0 � "

� � � 0 � 2"

�

":

Now choose " small enough so that

� C
�

1C 2
K C � 0 C "

� � � 0 � 2"

�

" < �2

and

min

	

� � "; � C
�

1 � 2 K � � 0 � "
� � � 0 � 2"

�

"




> �1:

This proves Lemma 3.2.3. ut
A proof of the following lemma (in fact of its generalized version) is given at the

end of this section (see Lemma 3.2.5).

Lemma 3.2.4 (Liao’s Closing Lemma [36]) Let T	f .U/M D OE ˚ OF be a
continuous Df -invariant splitting. For any 0 < � < 1 and any " > 0 there
is ı > 0 such that for any �-quasi-hyperbolic string fx; ng of f in 	f .U/ with
dist . f n.x/; x/ < ı, there is a periodic point p 2 M of f such that f n. p/ D p and
dist

�

f i. p/; f i.x/
� � " for all 0 � i � n � 1.

In the following proposition, to simplify notation, we denote	f .U/, OE ˚ OF, and
O� by 	, E ˚ F, and �, respectively. The next proposition is proved by applying
Lemmas 3.2.3 and 3.2.4.

Proposition 3.2.3 Let 	 be a compact f -invariant set, let 0 < � < 1 be given, and
assume that there is a continuous Df -invariant splitting T	M D E ˚ F such that

�
�
�DfjE.x/

�
�
� �

�
�
�Df�1

jF. f .x//
�
�
� < �

2

for any x 2 	.
Assume that there exists a point y 2 	 such that

log� < log�1 D lim sup
n!1

1

n

n�1X

iD0
log

�
�
�DfjE. f i.y//

�
�
� < 0

and

lim inf
n!1

1

n

n�1X

iD0
log

�
�
�DfjE. f i.y//

�
�
� < log�1:
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Then for any �2 and �3 with � < �2 < �1 < �3 < 1 and any neighborhood W
of 	 there is a hyperbolic periodic point q of index dimE such that O.q; f / � W,

k�1Y

iD0

�
�
�DfjEs. f i.q//

�
�
� � �k3; and

�.q/�1
Y

iDk�1

�
�
�DfjEs. f i.q//

�
�
� > �

�.q/�kC1
2

for all k D 1; 2; : : : ; �.q/.
Furthermore, q can be chosen so that the period �.q/ is arbitrarily large.
Our Theorem 3.2.1 follows from the next proposition (this kind of result was first

obtained in [109]).

Proposition 3.2.4 Let	 be a compact f -invariant set, and let 0 < � < 1 and L > 1
be given. Assume that f has the following properties (P.1)–(P.4).

(P.1) There is a homogeneous Df -invariant splitting T	M D E ˚ F such that

�
�
�DfjE.x/

�
�
� �

�
�
�Df�1

jF. f .x//
�
�
� < �2

for any x 2 	.
(P.2) There is a compact neighborhoodU of	 such that if q 2 	f .U/\Per. f / and

�.q/ � L, then

�.q/�1
Y

iD0

�
�
�DfjEs. f i.q//

�
�
� < ��.q/ and

�.q/�1
Y

iD0

�
�
�Df�1

jEu. f�i.q//

�
�
� < ��.q/:

(P.3) 	 D PdimE. f /.
(P.4) f has the standard shadowing property.

Then 	 is hyperbolic.

Proof Let 	 be a compact f -invariant set, let 0 < � < 1 and L > 0 be given, and
assume that f has properties (P.1)–(P.4). Let T	M D E˚F be a Df -invariant splitting
as in (P.1) (recall that every dominated splitting is continuous). Thus, shrinking
the neighborhood U of 	, we may assume further that there exists an extension
T	f .U/M D OE ˚ OF of the dominated splitting T	M D E ˚ F (see Lemma 3.2.2).

Let us prove that 	 is hyperbolic. Assuming that E is not contracting, we show
first that for any � < � < �0 < 1 there is z 2 	f .U/ such that

lim inf
n!1

1

n

n�1X

jD0
log

�
�
�Dfj OE. f j.z//

�
�
� < log � < lim sup

n!1
1

n

n�1X

jD0
log

�
�
�Dfj OE. f j.z//

�
�
� < log �0:

After that, we derive a contradiction by applying Proposition 3.2.3.
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It is known that if there exists N > 0 such that for any x 2 	 there is 0 � n.x/ �
N such that

�
�
�Df

n.x/
jE.x/

�
�
� < 1, then E is contracting.

Since E is not contracting, it is easy to see that there is y0 2 	 such that

n�1Y

jD0

�
�
�DfjE. f j.y0//

�
�
� � 1 for all n � 1

(recall that 	 is compact).
Choose " > 0 small enough with N.2";	/ � U such that

(i) if dist.x; y/ < " for some x; y 2 N.";	/, then

ˇ
ˇ
ˇ log

�
�Dfj OE.x/

�
� � log

�
�Dfj OE.y/

�
�

ˇ
ˇ
ˇ < min

	
1

2
.log �0 � log �/;

1

3
.log � � log�/




:

Observe that item .i/ follows from the continuity of E (recall that OEj	 D E).
Since f has the standard shadowing property, there is 0 < ı � " such that any

ı-pseudotrajectory of f in M can be "-shadowed by a trajectory of f .
Denote the !-limit set of y0 by !f .y0/. It is well known that !f .y0/ � 	 is an

f -invariant compact set, and for any neighborhoodV D V.!f .y0// of !f .y0/ there is
N > 0 such that f n.y0/ 2 V for any n � N. By the compactness, there exists a finite
set of points fxjg`jD1 in !f .y0/ such that

!f .y0/ �
[̀

jD1
N.ı=2; xj/:

Since PdimE. f / is dense in 	, it is easy to see that for the chosen ı there exists a
finite set of periodic points fpjg`jD1 � PdimE. f / with dist.xj; pj/ < ı

2
such that

!f .y0/ �
[̀

jD1
N.ı; pj/

and thus, there is N0 > 0 such that

f n.y0/ 2
[̀

jD1
N.ı; pj/ � N.";	/

for any n � N0.
Assume that n � N0. Then

n�1Y

jD0

�
�
�DfjE. f j.y0//

�
�
� D

n�N0�1Y

jDN0

�
�
�DfjE. f j.y0//

�
�
� �

N0�1Y

jD0

�
�
�DfjE. f j.y0//

�
�
� � 1:
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Thus,

n�1Y

jD0

�
�
�DfjE. f N0Cj.y0//

�
�
� �

0

@

N0�1Y

jD0

�
�
�DfjE. f j.y0//

�
�
�

1

A

�1

� e�KN0

;

so that

1

n

n�1X

jD0
log

�
�
�DfjE. f N0Cj.y0//

�
�
� � �KN0

n
:

Here K D max
˚ˇ
ˇ log kDf .x/kˇ

ˇ;
ˇ
ˇ log kDf�1.x/kˇ

ˇ W x 2 M
�

.
Hence,

(ii) lim inf
n!1

1

n

n�1X

jD0
log

�
�
�DfjE. f N0Cj.y0//

�
�
� � lim

n!1

�

�KN0

n

�

D 0.

We may assume that the period of pj satisfies the inequality �. pj/ � L for any j,
and, finally, put

� D
Ỳ

jD1
�. pj/:

The set of periodic orbits

PO D
[̀

jD1
O. pj; f /

forms a ı-net of !f .y0/, i.e., for any w 2 !f .y0/, there is q 2 PO such that
dist.w; q/ < ı, and, conversely, for any q 2 PO, there is w 2 !f .y0/ such that
dist.w; q/ < ı.

Observe that for any for any q 2 PO,

(iii)
1

�

��1X

jD0
log

�
�
�DfjE. f j.q//

�
�
� <

1

2
.log�C log �/

by the choice of ı (see (P.2)).
We construct a ı-pseudotrajectory fxigi2Z � 	 of f composed of points of the

orbit O.y0; f / and of the set PO by mimicking the procedure displayed in [109]
(the construction is by induction). Denote f N

0

.y0/ by y0 for simplicity.

Step I Since y0 2 	, there is qj1 2 PO such that dist.y0; qj1 / < ı. Set

x�1 D qj1�1; x�2 D qj1�2; : : : ; x��C1 D qj1��C1;

x�� D qj1 ; x���1 D qj1�1; x���2 D qj1�2 : : : :
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Then dist. f .x�i/; x�iC1/ < ı for i � 1, so that the negative part fxig�1
iD�1 of fxigi2Z

is constructed.

Step II Let n1 D 1. Then

1

n1�

0

@n1

��1X

jD0
log

�
�
�DfjE.qj1Cj/

�
�
�

1

A <
1

2
.log�C log �/:

Obviously, this inequality is ensured by .iii/.
Let i1 D n1� , put xj D qj1Cj for j D 0; 1; : : : ; i1 � 1 D � � 1, and put xi1 D y0.

Then dist. f .xj/; xjC1/ < ı for j D 0; 1; : : : ; i1 � 1, and

1

i1

i1�1X

jD0
log

�
�DfjE.xj/

�
� <

1

2
.log�C log �/:

Put

aj D log
�
�DfjE.xj/

�
�

for j D 0; 1; : : : ; i1 � 1, and choose l1 so that

1

i1 C l1

0

@

i1�1X

jD0
aj C

l1�1X

jD0
log

�
�DfjE. f j.y0//

�
�

1

A � 1

2
.log�C log �0/

and

1

i1 C l

0

@

i1�1X

jD0
aj C

l�1X

jD0
log

�
�DfjE. f j.y0//

�
�

1

A <
1

2
.log �C log �0/

for any l < l1.
The existence of l1 is ensured by the choice of y0 (recall the choice of y0 and .ii/).
Set j1 D i1 C l1, let xi1C1 D f .y0/; xi1C2 D f 2.y0/; : : : ; xj1�1 D f l1�1.y0/ 2

O.y0; f /, and put

ai1Cj D log
�
�
�DfjE.xi1Cj/

�
�
�

for j D 0; 1; : : : ; l1 � 1.

Step III Let ik�1, jk�1, fxigjk�1�1iD0 , and faigjk�1�1iD0 have been constructed in the
previous steps. Similarly with the choice of qj1 and n1, we can choose qjk 2 PO so
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that

dist
�

f .xjk�1 /; qjk
�

< ı;

and a positive number nk such that

1

ik

0

@

jk�1�1X

jD0
aj C nk

��1X

jD0
log

�
�
�DfjE.qjkCj/

�
�
�

1

A <
1

2
.log�C log �/;

where ik D jk�1 C nk� (the existence of nk is ensured by .iii/). Let

xjk�1C1 D qjkC1; xjk�1C2 D qjkC2; : : : ; xjk�1C� D qjk ;

xjk�1C�C1 D qjkC1; xjk�1C�C2 D qjkC2; : : : ;

and xik D f .xjk�1�1/ 2 O.y0; f /.
Obviously,

dist. f .xjk�1Cj/; xjk�1CjC1/ < ı

for j D 0; 1; : : : ; nk� � 1. Put

ajk�1Cj D log
�
�
�DfjE.xjk�1Cj/

�
�
�

for j D 0; 1; : : : ; nk � � � 1, and choose lk so that

1

ik C lk

0

@

ik�1X

jD0
aj C

lk�1X

jD0
log

�
�
�DfjE. f j.xik //

�
�
�

1

A � 1

2
.log �C log�0/;

and

1

ik C l

0

@

ik�1X

jD0
aj C

lX

jD0
log

�
�
�DfjE. f j.xik //

�
�
�

1

A <
1

2
.log �C log �0/

for any l < lk.
The existence of lk is ensured by the fact that xik 2 O.y0; f / (recall the choice of

y0 and .ii/).
Let jk D ik C lk and let xikC1 D f .xik /; xikC2 D f 2.xik /; : : : ; xjk�1 D f lk�1.xik/.

Finally, we put

ajk�1Cj D log
�
�
�DfjE. f j.xik //

�
�
�

for j D 0; 1; : : : ; lk � 1.
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This completes the construction of fxigi2Z � 	.
Roughly speaking, the ı-pseudotrajectory fxigi2Z looks as follows:

˚� � � ; PO; PO; y0; f .y0/; f
2.y0/; : : : ; f

l1 .y0/; PO;

: : : ; PO; f l1C1.y0/; : : : ; f l1Cl2 .y0/; PO; PO; : : :
�

:

Recall that K D max
˚j log kDf .x/kj; j log kDf�1.x/kj W x 2 M

�

.
It is easy to see that

1

ik

ik�1�1X

jD0
aj <

1

2
.log�C log �/ and

1

jk

jk�1X

jD0
aj � 1

2
.log �C log �0/

for every k D 1; 2; : : : , and

1

n

n�1X

jD0
aj <

1

n

�
1

2
.log �C log �0/ .n � �/C K � �

�

for every n � � .
Hence,

lim sup
n!1

1

n

n�1X

jD0
aj D 1

2
.log �C log �0/ and lim inf

n!1
1

n

n�1X

jD0
aj � 1

2
.log�C log �/:

Let z 2 M be a point whose f -trajectory "-shadows fxigi2Z (see (P.4)). Note that
O.z; f / � N.2";	/ � U. Thus, by the choice of " (see .i/),

lim inf
n!1

1

n

n�1X

jD0
log

�
�
�Dfj OE. f j.z//

�
�
� < log � < lim sup

n!1
1

n

n�1X

jD0
log

�
�
�Dfj OE. f j.z//

�
�
� < log �0:

By Proposition 3.2.3, there is a hyperbolic periodic point q of index dimE
such that O.q; f / � U and the derivatives along the trajectory O.q; f / satisfy the
inequalities

k�1Y

iD0

�
�DfjEs. f i.q//

�
� � �0k and

�.q/�1
Y

iDk�1

�
�DfjEs. f i.q//

�
� > ��.q/�kC1

for all k D 1; 2; : : : ; �.q/.
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Furthermore, q can be chosen so that �.q/ is arbitrarily large, and thus we may
assume that �.q/ � L. This is a contradiction because

�.q/�1
Y

iD0

�
�DfjEs. f i.q//

�
� < ��.q/

by (P.2). Applying a similar reasoning, we can show that F is expanding, and thus,
	 is hyperbolic. ut

Now we give a proof of a generalization of Liao’s closing lemma (Lemma 3.2.4)
proved by Gan [20].

Recall that a definition of a �-quasi-hyperbolic orbit string

fx; f .x/; f 2.x/; � � � ; f n.x/g

with respect to a splitting of TxM D E.x/˚F.x/ has been given before Lemma 3.2.3.
Let fxig1

iD�1 be a sequence of points in M and let fnig1
iD�1 be a sequence of

positive integers. Denote

fxi; nig D f f j.xi/ W 0 � j � ni � 1g:

The sequence fxi; nig1
iD�1 is called a �-quasi-hyperbolic ı-pseudotrajectory with

respect to splittings TxiM D E.xi/˚ F.xi/ if for any i, fxi; nig is �-quasi-hyperbolic
with respect to TxiM D E.xi/˚ F.xi/ and dist . f ni.xi/; xiC1/ � ı.

A point x "-shadows fxi; nig1
iD�1 if

dist
�

f j.x/; f j�Ni .xi/
� � " for Ni � j � NiC1 � 1;

where Ni is defined as follows:

Ni D
8

<

:

0; if i D 0I
n0 C n1 C � � � C ni�1; if i > 0I
ni C niC1 C � � � C n�1 if i < 0:

In the following result, it is assumed that 	 is a compact invariant set of
f 2 Diff1.M/ and there is a continuous Df -invariant splitting T	M D E ˚ F, i.e.,
Df .x/.E.x// D E. f .x// and Df .x/.F.x// D F. f .x//.

Lemma 3.2.5 (Generalized Liao’s Closing Lemma [20]) For any 0 < � < 1

there exist L > 0 and ı0 > 0 such that for any 0 < ı < ı0 and any
�-quasi-hyperbolic ı-pseudotrajectory fxi; nig1

iD�1 with respect to the splitting
T	M D E ˚ F there exists a point x that Lı-shadows fxi; nig1

iD�1. Moreover, if
the sequencefxi; nig1

iD�1 is periodic, i.e., there exists an m > 0 such that xiCm D xi
and niCm D ni for all i, then the point x can be chosen to be periodic with period
Nm.
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Proof Let .X; k � k/ be a Banach space and let

X.�/ D fv 2 X W kvk � �g; � > 0:

If X is the direct sum of two closed subspaces E and F, i.e., X D E ˚ F, then the
angle between E and F is defined as

†.E;F/ D inffku � vk W .u 2 E; v 2 F; kuk D 1/ or .u 2 E; v 2 F; kvk D 1/g:

Since E and F are closed, 0 < †.E;F/ � 1. ut
The following lemma is well known (e.g., see [64]); we give a proof for complete-
ness.

Lemma 3.2.6 In the above notation, assume that X D E˚F and†.E;F/ � ˛ > 0.
Let L W X ! X be a linear automorphism of the form

L D
�
A B
C D

�

W E ˚ F ! E ˚ F

such that

maxfkAk; kD�1kg � � and maxfkBk; kCkg � "

for some 0 < � < 1 and " > 0.
If

"1 D 2".1C �/

˛2.1 � �/
< 1;

then I � L is invertible, and

�
�.I � L/�1

�
� � R D R.�; "; ˛/ D 1C �

˛.1 � �/.1 � "1/ :

Proof Put J D
�
A 0

0 D

�

and K D
�
0 B
C 0

�

: Then

.I � J/�1 D
�

.I � A/�1 0

0 .I � D/�1
�

;

�
�.I � A/�1

�
� � 1

1 � �
; and

�
�.I � D/�1

�
� � �

1 � �
:
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If u 2 E, v 2 F and ku C vk D 1, then, by the definition of †.E;F/,

1 D ku C vk � †.E;F/kuk � ˛kuk and ku C vk � ˛kvk:

Thus,

k.I � J/�1.u C v/k � k.I � A/�1uk C k.I � D/�1vk � 1C �

˛.1 � �/ ;

and hence,

k.I � J/�1k � 1C �

˛.1 � �/
:

A similar reasoning shows that

kKk � 2"

˛
:

Since

"1 D 2".1C �/

˛2.1 � �/
< 1

by assumption, I�L D .I�J/�K D .I�J/.I�.I�J/�1K/ and k.I�J/�1Kk � "1.
Hence, I � L is invertible, and

k.I � L/�1k D k.I � J/�1.I � .I � J/�1K/�1k � R;

which proves our lemma. ut
The sequence version of the shadowing lemma is derived from the following

fixed point result. For completeness, we give a proof following the method of [64].
In the next proposition, we denote

R D R.�; �; ˛/ D 1C �

˛.1 � �/.1� �1/
; L D 2R; and ı0 D �

L

for 0 < � < 1, 0 < ˛ � 1, and � > 0 such that �1 D 2�.1C�/
˛2.1��/ < 1 and � > 0.

The minimal Lipschitz constant of a map � is denoted by Lip �.

Proposition 3.2.5 If 0 < ı � ı0 and ˚ D N C � W X.�/ ! X, where N is a linear
automorphism of the form

N D
�
A B
C D

�

W E ˚ F ! E ˚ F
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such that

maxfkAk; kD�1kg � �;

maxfkBk; kCkg � �;

†.E;F/ � ˛, Lip� � 1
L , and k�.0/k � ı, then ˚ has a unique fixed point z in X.�/

such that kzk � Lı.

Proof By Lemma 3.2.6, I � N is invertible. Let

H D .I � N/�1� W X.�/ ! X:

The set of fixed points of H in X.�/ coincides with the set of fixed points of ˚ in
X.�/. If x 2 X.Lı/, then

kH.x/k D kH.0/C .H.x/� H.0//k �
� k.I � N/�1�.0/k C k.I � N/�1.�.x/� �.0//k �
� Rı C R 1

LLı D Lı:

Thus, H maps X.Lı/ to X.Lı/.
If x; y 2 X.�/, then

kH.x/ � H.y/k D k.I � N/�1.�.x/� �.y//k � R
1

L
kx � yk D kx � yk

2
: (3.7)

Hence, the map H W X.Lı/ ! X.Lı/ is contracting. Therefore, H has a unique
fixed point z in X.Lı/. Moreover, if z0 2 X.�/ is another fixed point of H, then z D z0
by (3.7). ut

In the following proposition, let Xi D R
� for integer i (where � D dimM) and

we assume that Xi D Ei ˚ Fi. Let

Y D
1Y

iD�1
Xi

be endowed with the supremum norm

kvk D supfjvijg; v D .vi/:

Thus, Y is a Banach space.
We consider a map˚ W Y ! Y of the form .˚.v//iC1 D ˚i.vi/, where˚i W Xi !

XiC1.
Applying Proposition 3.2.5 to ˚ W Y ! Y, we obtain the sequence version of the

shadowing lemma for hyperbolic pseudotrajectories in the following way.



3.2 Diffeomorphisms in Int1 .SSPD/ Satisfy Axiom A 151

Proposition 3.2.6 Let us assume that conditions of Proposition 3.2.5 are satisfied
and use the above notation.

If 0 < ı � ı0 and ˚ W Y.�/ ! Y has the form

˚i D Li C �i W Xi.�/ ! XiC1;

where

Li D
�
Ai Bi

Ci Di

�

with respect to the splitting Xi D Ei ˚ Fi such that †.Ei;Fi/ � ˛,

maxfkAik; kD�1
i kg � �; maxfkBik; kCikg � �; Lip� � 1

L
;

and k�i.0/k � ı, then ˚ has a unique fixed point v 2 Y.�/, and kvk � Lı.
We need one more technical lemma. Fix 0 < � < 1.
A pair of sequences fai; bigniD1 of positive numbers is called �-hyperbolic if ak �

� and bk � ��1 for k D 1; 2; : : : ; n.
A pair of sequences fai; bigniD1 of positive numbers is called �-quasi-hyperbolic

if the following three conditions are satisfied:

(1)
Qk

jD1 aj � �k;
(2)

Qn
jDk bj � �k�n�1;

(3) bk=ak � ��2
for k D 1; 2; : : : ; n.

A sequence fcigniD1 of positive numbers is called a balance sequence if

kY

jD1
cj � 1 for k D 1; 2; : : : ; n � 1 and

nY

jD1
cj D 1:

A balance sequence fcigniD1 is called adapted to a �-quasi-hyperbolic sequence
pair fai; bigniD1 if fai=ci; bi=cigniD1 is still �-quasi-hyperbolic. Moreover, if
fai=ci; bi=cigniD1 is �-hyperbolic, then fcigniD1 is called well adapted.

If a balance sequence fcigniD1 is adapted to a �-quasi-hyperbolic sequence pair
fai; bigniD1, then we say that fai=ci; bi=cigniD1 is derived from fai; bigniD1. If fNai; NbigniD1
is derived from fai; bigniD1 and fNNai; NNbigniD1 is derived from fNai; NbigniD1, then fNNai; NNbigniD1
is derived from fai; bigniD1 as well.

Lemma 3.2.7 Let 0 < � < 1. Then any �-quasi-hyperbolic pair of sequences
fai; bigniD1 has a well adapted sequence fcigniD1.
Proof First we show that fai; bigniD1 has an adapted sequence fcigniD1 such that
ai=ci � � for 1 � i � n.
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To get a contradiction, assume that

N D maxfk W there exist fcigniD1 such that ai=ci � �; 1 � i � kg < n:

Obviously, N � 1. Assume that fcigniD1 is such an adapted sequence. Let Nai D ai=ci,Nbi D bi=ci, i D 1; 2; : : : ; n. Then NaNC1 > �.
Since

QNC1
iD1 Nai � �NC1, there exists 1 � m < N C 1 such that

NC1Y

iDk

Nai > �NC2�k for k D m C 1; : : : ;N C 1 and
NC1Y

iDm

Nai � �NC2�m:

Let Nci D Nai=� for i D m C 1; : : : ;N C 1 and Nci D 1 for i < m and i > N C 1.
Then fNcigniD1 is a balance sequence. Let NNai D Nai=Nci and NNbi D Nbi=Nci for 1 � i � n

and put Ncm D
�
QNC1

iDmC1 Nci
��1

. Obviously, NNai D � for m C 1 � i � N C 1,

NNam D Nam=Ncm D Nam
�
QNC1

iDmC1 Nci
�

D

D Nam
�
QNC1

iDmC1 Nai
�

��.N�mC1/ D
�
QNC1

iDm Nai
�

��.N�mC1/ � �;

and NNbi D Nbi=Nci D �Nbi=Nai � ��1 for m C 1 � i � N C 1.
Thus, one can easily check that fNNai; NNbigniD1 is a �-quasi-hyperbolic pair which is

derived from fai; bigniD1. But NNai � � for 1 � i � N C 1, which contradicts the
maximality of N.

Similarly, fai; bigniD1 has an adapted sequence fcigniD1 such that bi=ci � ��1 for
1 � i � n. In what follows, we assume that fai; bigniD1 itself has the property that
bi � ��1 for 1 � i � n. We will repeat the proof of the above paragraph to show
that a well adapted sequence exists.

Let

N D maxfk W there exist fcigniD1 such that

ai=ci � �; 1 � i � k; and bi=ci � �; 1 � i � ng < n:

Now we can copy the proof of the first paragraph word by word and only have to
show that NNbm � ��1. Since Ncm � 1, this is obvious. ut
Remark 3.2.2 If fcigniD1 is a well adapted sequence of fai; bigniD1, then ai=ci � �

and bi=ci � ��1. Hence, ai < ai=� � ci � bi� < bi for i D 1; 2; : : : ; n.
We prove Lemma 3.2.5 (the generalized Liao’s closing lemma) by combining

Proposition 3.2.6 and Lemma 3.2.7.
Let Gk.x/; x 2 M; be the Grassmann manifold of k-dimensional subspaces of the

tangent space Tx.M/. Denote by Gk.M/ the bundle fGk.x/ W x 2 Mg and consider a
metric � on Gk.M/ (we do not indicate the dependence of � on k).
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The following lemma is an easy corollary of well-known properties of the
exponential map.

Lemma 3.2.8 For any ˛, ",  , � > 0 there exists � > 0 such that if x; y 2 M,
TxM D E.x/˚ F.x/, TyM D E.y/˚ F.y/,

minf†.E.x/;F.x//;†.Ey;Fy/g � ˛;

and

maxf�.Df .x/E.x/;E.y//; �.Df .x/F.x/;F.y/g � �;

then the map

˚ D exp�1
y ıf ı expx W TxM.�/ ! TyM

can be written as ˚ D L C �, where

L D
�
A B
C D

�

with respect to the splittings E.x/˚ F.x/ and E.y/˚ F.y/,

1 �  � kAk
�
�Df jE.x/

�
�

� 1C ;

1 �  �
�
�D�1���1

m
�

Df jF.x/
� � 1C ;

maxfkBk; kCkg � "; and Lip� � �:

Proof of Lemma 3.2.5 Let fxi; nig1�1 be a �-quasi-hyperbolic pseudotrajectory with
respect to the splitting T	M D E ˚ F. Denote

K D sup
x2M

˚kDf .x/k; kDf�1.x/k�

and ˛ D inf
x2	†.E.x/;F.x// > 0:

We first show that there exists a point z that "-shadows fxi; nig1
iD�1, i.e.,

dist
�

f j.z/; f j�Ni .xi/
� � " for Ni � j � NiC1 � 1;

where

Ni D
8

<

:

0 if i D 0I
n0 C n1 C � � � C ni�1 if i > 0I
ni C niC1 C � � � C n�1 if i < 0:
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Let yj D f j�Ni.xi/ for Ni � j < NiC1 and denote Xj D TyjM, Ej D E.yj/, and
Fj D F.yj/.

Put � D 1C�
2

and r D �=� and take " > 0 such that

"1 D 2".1C �/

˛2.1� �/
< 1:

Let R D R.�; "; ˛/, L D 2R, and "2 D "=K.
Since the splitting T	M D E ˚ F is continuous, it follows from Lemma 3.2.7

that if � > 0 is small enough and fyjgNiC1

jDNi
is �-quasi-hyperbolic �-pseudotrajectory,

then the map

˚j D exp�1
yjC1 ıf ı expyj W Xj.�/ ! XjC1

has the form ˚j D Lj C �j, where

Lj D
�
Aj Bj

Cj Dj

�

W Ej ˚ Fj ! EjC1 ˚ FjC1

and Lip �j � 1
KL .

If Ni � j < NiC1 � 1, then �j.0/ D 0, Bj D Cj D 0, Aj D Df jEj , and Dj D Df jFj .
If j D NiC1 � 1, then

maxfkBjk; kCjkg � "2; kAjk � rkDf jEjk; and kD�1
j k � rm.Df jFj/

�1:

Let ı0 D �=L and fix 0 < ı � ı0. If fxi; nig1�1 is a quasi-hyperbolic

ı-pseudotrajectory, then k�j.0/k � ı. Thus,
˚kAjk;m.Dj/

�NiC1�1
jDNi

is a �-quasi-

hyperbolic pair of sequences. Hence, there is a well adapted sequence fhjgNiC1�1
jDNi

,
i.e.,

kY

jDNi

hj � 1 for k D Ni; : : : ;NiC1 � 2 and
NiC1�1Y

jDNi

hj D 1;

where 1
K � hj � K.

Let gj D Qj
kDNi

hk, QLj D h�1
j Lj, Q�j.x/ D g�1

j �j.gj�1.x// (note that gNi�1 D 1),

and Q̊ j D QLj C Q�j. Denote

�j D ˚j ı � � � ı ˚Ni and Q�j D Q̊ j ı � � � ı Q̊Ni :

Then Q�j D g�1
j �j.
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Note that gNiC1�1 D 1 and Q�NiC1�1 D �NiC1�1. Thus,

Lip Q�j D g�1
j Lip�jgj�1 D h�1

j Lip�j � K
1

KL
D 1

L
;

Q�j.0/ D �j.0/ D 0 for j D Ni; : : : ;NiC1 � 2, and Q�j.0/ D g�1
j �j.0/ D �j.0/ for

j D NiC1 � 1 since gj D 1.
Hence, by Proposition 3.2.6, Q̊ D f Q̊ jg W Y.�/ ! Y (where Y D Q1

iD�1 Xi)
has a unique fixed point Qv D fQvjg, and k Qvk � Lı. Let vNi D QvNi and for Ni < j <
NiC1 � 1, define vj D ˚j�1.vj�1/ inductively.

To guarantee that this is possible, let us check that kvjk � Lı. Since

vj D �j�1.vNi/ D gj�1 Q�j�1 D gj�1 Qvj;

we have the inequalities kvjk � kQvjk � Lı.
Since

vNiC1
D QvNiC1

D Q�NiC1�1.vNi/ D �NiC1�1.vNi/ D ˚NiC1�1.vNiC1�1/;

v is a fixed point of ˚ , and kvk � Lı. Then the f -trajectory of the point z D
expy0 .v0/ Lı-shadows fyjg. This proves the first conclusion of Lemma 3.2.5.

Now we assume that the sequence fxi; nig1
iD�1 is periodic, i.e., there exists an

m > 0 such that xiCm D xi and niCm D ni for all i.
Define Qw by . Qw/i D . Qv/NmCi . Since Qv and Qw are fixed points of Q̊ in Y.Lı/, Qv D Qw

by Proposition 3.2.6. Thus, v D w, and z has period Nm. ut
Historical Remarks The theory involving a selection of some special kinds of �-
quasi-hyperbolic strings has its origins in the works of V. A. Pliss [73] and S. T.
Liao [36].

The notion of �-quasi-hyperbolic string and Liao’s closing lemma played an
essential part in the solution of the stability conjecture in [45].

3.3 Vector Fields in Int1 .OrientSPF nB/

To formulate our main results in the last two sections of Chap. 3, we need one more
definition.

Consider a smooth vector field X on a smooth closed manifold M.
Let us say that a vector field X belongs to the class B if X has two hyperbolic

rest points p and q (not necessarily different) with the following properties:

(1) The Jacobi matrix DX.q/ has two complex conjugate eigenvalues �1;2 D a1 ˙
ib1 of multiplicity one with a1 < 0 such that if � ¤ �1;2 is an eigenvalue of
DX.q/ with Re� < 0, then Re� < a1;
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(2) the Jacobi matrixDX. p/ has two complex conjugate eigenvalues �1;2 D a2˙ib2
with a2 > 0 of multiplicity one such that if � ¤ �1;2 is an eigenvalue of DX. p/
with Re� > 0, then Re� > a2;

(3) the stable manifold Ws. p/ and the unstable manifold Wu.q/ have a trajectory
of nontransverse intersection.

Clearly, vector fields X 2 B are not structurally stable.
Condition (1) above means that the “weakest” contraction in Ws.q/ is due to the

eigenvalues �1;2 (condition (2) has a similar meaning).
The main result of this section is as follows.

Theorem 3.3.1

Int1.OrientSPF n B/ � SF: (3.8)

It follows from Theorem 1.4.1 (2) that SF � SSPF; since the set SF is C1-open
and SF \ B D ;,

SF � Int1.SSPF n B/ � Int1.OrientSPF n B/:

Combining this inclusion with (3.8), we see that

Int1.OrientSPF n B/ D SF:

Proof The proof of inclusion (3.8) is based on Theorem 1.3.13 (2):

Int1.KSF/ D SF

(recall that KSF is the set of Kupka–Smale vector fields).
Thus, in fact, we are going to prove that

Int1.OrientSPF n B/ � KSF: (3.9)

Before proving inclusion (3.9), we introduce some terminology and notation.
The term “transverse section” will mean a smooth open disk in M of codimension

1 that is transverse to the flow � at any of its points.
Let, as above, Per.X/ denote the set of rest points and closed orbits of a vector

field X.
Recall (see Sect. 1.3) that we have denoted by HPF the set of vector fields X for

which any trajectory of the set Per.X/ is hyperbolic. Our first lemma is valid for the
set OrbitSPF (which is, in general, larger than OrientSPF); we prove it in this, more
general form, since it can be applied for other purposes.

Lemma 3.3.1

Int1.OrbitSPF/ � HPF: (3.10)
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Proof To get a contradiction, let us assume that there exists a vector field X 2
Int1.OrbitSPF/ that does not belong to HPF, i.e., the set Per.X/ contains a trajectory
p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with R
n in a

neighborhood of p. Applying an arbitrarily C1-small perturbation of the field X, we
can find a field Y 2 Int1.OrbitSPF/ that is linear in a neighborhood U of p (we also
assume that p is the origin of U).

(Here and below in the proof of Lemma 3.3.1, all the perturbations are C1-small
perturbations that leave the field in Int1.OrbitSPF/; we denote the perturbed fields
by the same symbol X and their flows by �.)

Then trajectories of X in U are governed by a differential equation

Px D Px; (3.11)

where the matrix P has an eigenvalue � with Re� D 0.
Consider first the case where � D 0. We perturb the field X (and change

coordinates, if necessary) so that, in Eq. (3.11), the matrix P is block-diagonal,

P D diag.0;P1/; (3.12)

and P1 is an .n � 1/ � .n � 1/ matrix.
Represent coordinate x in U as x D .y; z/ with respect to (3.12); then

�.t; .y; z// D .y; exp.P1t/z/

in U.
Take " > 0 such that N.4"; p/ � U. To get a contradiction, assume that X 2

OrbitSP; let d correspond to the chosen ".
Fix a natural number m and consider the following mapping from R into U:

g.t/ D
8

<

:

y D �2"; z D 0I t � 0I
y D �2"C t=m; z D 0I 0 < t < 4m"I
y D 2"; z D 0I 4m" < t:

Since the mapping g is continuous, piecewise differentiable, and either Py D 0 or
Py D 1=m, g is a d-pseudotrajectory for large m.

Any trajectory of X in U belongs to a plane y D const; hence,

distH
�

Cl.O.q; �//;Cl.fg.t/ W t 2 Rg/� � 2"

for any q. This completes the proof in the case considered.
A similar reasoning works if p is a rest point and the matrix P in (3.12) has a pair

of eigenvalues ˙ib; b ¤ 0.
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Now we assume that p is a nonhyperbolic closed trajectory. In this case, we
perturb the vector field X in a neighborhood of the trajectory p using the perturbation
technique developed by Pugh and Robinson in [77]. Let us formulate their result
(which will be used below several times).

Pugh-Robinson Pertubation Assume that r1 is not a rest point of a vector field X.
Let r2 D �.; r1/, where  > 0. Let ˙1 and ˙2 be two small transverse sections
such that ri 2 ˙i; i D 1; 2. Let � be the local Poincaré transformation generated by
these transverse sections.

Consider a point r0 D �. 0; r1/, where  0 2 .0; /, and let U be an arbitrary
open set containing r0.

Fix an arbitrary C1 neighborhood F of the field X.
There exist positive numbers "0 and �0 with the following property: if � 0 is a

local diffeomorphism from the �0-neighborhood of r1 in ˙1 into˙2 such that

distC1 .�; �
0/ < "0;

then there exists a vector field X0 2 F such that

(1) X0 D X outside U;
(2) � 0 is the local Poincaré transformation generated by the sections ˙1 and ˙2

and trajectories of the field X0.

Let ! be the least positive period of the nonhyperbolic closed trajectory p. We
fix a point � 2 p, local coordinates in which � is the center, and a hyperplane˙ of
codimension 1 transverse to the vector F.�/. Let y be coordinate in ˙ .

Let � be the local Poincaré transformation generated by the transverse section
˙ ; denote P D D�.0/. Our assumption implies that the matrix P is not hyperbolic.
In an arbitrarily small neighborhood of the matrix P, we can find a matrix P0 such
that P0 either has a real eigenvalue with unit absolute value of multiplicity 1 or a
pair of complex conjugate eigenvalues with unit absolute value of multiplicity 1. In
both cases, we can choose coordinates y D .v;w/ in ˙ in which

P0 D diag.Q;P1/; (3.13)

where Q is a 1 � 1 or 2 � 2 matrix such that jQvj D jvj for any v.
Now we can apply the Pugh-Robinson perturbation (taking r1 D r2 D � and

˙1 D ˙2 D ˙) which modifies X in a small neighborhood of the point �.!=2; �/
and such that, for the perturbed vector field X0, the local Poincaré transformation
generated by the transverse section ˙ is given by y 7! P0y.

Clearly, in this case, the trajectory of � in the field X0 is still closed (with some
period!0). As was mentioned, we assume that X0 has the orbital shadowing property
(and write X; �; ! instead of X0; �0; !0).

We introduce in a neighborhood of the point � coordinates x D .x0; y/, where
x0 is one-dimensional (with axis parallel to X.�/), and y has the above-mentioned
property.
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Of course, the new coordinates generate a new metric, but this new metric is
equivalent to the original one; thus, the corresponding shadowing property (or its
absence) is preserved.

We need below one more technical statement.

LE (Local Estimate) There exists a neighborhood W of the origin in ˙ and
constants l; ı0 > 0 with the following property: If z1 2 ˙\W and jz2�z1j < ı < ı0,
then we can represent z2 as �.; z0

2/ with z
0
2 2 ˙ and

j j; jz0
2 � z1j < lı: (3.14)

This statement is an immediate corollary of the theorem on local rectification
of trajectories (see, for example, [8]): In a neighborhood of a point that is not a
rest point, the flow of a vector field of class C1 is diffeomorphic to the family of
parallel lines along which points move with unit speed (and it is enough to note
that a diffeomorphic image of ˙ is a smooth submanifold transverse to lines of the
family).

We may assume that the neighborhood W in LE is so small that for y 2 ˙ \
W, the function ˛.y/ (the time of first return to ˙) is defined, and that the point
�.˛.v;w/; .0; v;w// has coordinates .Qv;P1w/ in ˙ .

Let us take a neighborhood U of the trajectory p such that if r 2 U, then the first
point of intersection of the positive semitrajectory of r with ˙ belongs to W.

Take a > 0 such that the 4a-neighborhood of the origin in ˙ is a subset of W.
Fix

" < min
�

ı0;
a

4l

�

;

where ı0 and l satisfy the LE. Let d correspond to this " (in the definition of the
orbital shadowing property).

Take y0 D .v0; 0/ with jv0j D a. Fix a natural number � and set

˛k D ˛

��
k

�
Qkv0; 0

��

; k 2 Œ0; � � 1/;

ˇ0 D 0; ˇk D ˛1 C � � � C ˛k;

and

g.t/ D
8

<

:

�.t; .0; 0; 0//; t < 0I
�

�

t � ˇk;
�

0; k
�
Qkv0; 0

��

; ˇk � t < ˇkC1; k 2 Œ0; � � 1/I
� .t � ˇ�; .0;Q�v0; 0// ; t � ˇ�:

Note that for any point y D .v; 0/ of intersection of the set fg.t/ W t 2 Rg with ˙ ,
the inequality jvj � a holds. Hence, we can take a so small that

N.2a;Cl.fg.t/ W t 2 Rg// � U:
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Since
ˇ
ˇ
ˇ
ˇ

k

�
QkC1v0 � k C 1

�
QkC1v0

ˇ
ˇ
ˇ
ˇ

D a

�
! 0; � ! 1;

g.t/ is a d-pseudotrajectory for large �.
Assume that there exists a point q such that

distH.Cl.O.q; �//;Cl.fg.t/ W t 2 Rg// < �:

In this case, O.q; �/ � U, and there exist points q1; q2 2 O.q; �/ such that

jq1j D jq1 � .0; 0; 0/j < "

and

jq2 � .0;Q�v0; 0/j < ":

By the choice of ", there exist points q0
1; q

0
2 2 O.q; �/\˙ such that

jq0
1j < l" < a=4 and jq0

2 � Q�v0j < l" < a=4:

Let q0
1 D .0; v1;w1/ and q0

2 D .0; v2;w2/. Since these points belong to the same
trajectory that is contained in U, jv1j D jv2j. At the same time,

jv1j < a=4; jv2 � Q�v0j < a=4; and jQ�v0j D a;

and we get a contradiction which proves Lemma 3.3.1. ut
To complete the proof of Theorem 3.3.1, we show that any vector field

X 2 Int1.OrientSPF n B/

has the second property from the definition of Kupka–Smale flows, i.e., stable and
unstable manifolds of trajectories of the set Per.X/ are transverse.

Then

Int1.OrientSPF n B/ � KSFI

hence, inclusion (3.9) is valid.
To get a contradiction, let us assume that there exist trajectories p; q 2 Per.X/ for

which the unstable manifold Wu.q/ and the stable manifold Ws. p/ have a point r of
nontransverse intersection. We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow �.
Case (B2): either p or q is a closed trajectory.
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Case (B1) Since X … B, we may assume (after an additional perturbation, if
necessary) that the eigenvalues �1; : : : ; �u with Re�j > 0 of the Jacobi matrix
DX. p/ have the following property:

Re�j > �1 > 0; j D 2; : : : ; u

(where u is the dimension of Wu. p/). This property means that there exists a one-
dimensional “direction of weakest expansion” in Wu. p/.

If this is not the case, then our assumption that X … B implies that the
eigenvalues �1; : : : ; �s with Re�j < 0 of the Jacobi matrix DX.q/ have the
following property:

Re�j < �1 < 0; j D 2; : : : ; s

(where s is the dimension of Ws.q/). If this condition holds, we reduce the problem
to the previous case by passing from the field X to the field �X (clearly, the fields X
and �X have the oriented shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the
perturbed field belongs to the set OrientSP n B), we may “linearize” the field X
in a neighborhood U of the point p; thus, trajectories of X in U are governed by a
differential equation

Px D Px;

where

P D diag.Ps;Pu/; Pu D diag.�;P1/; � > 0; (3.15)

P1 is a .u � 1/ � .u � 1/ matrix for which there exist constants K > 0 and � > �

such that

k exp.�P1t/k � K�1 exp.��t/; t � 0; (3.16)

and Re�j < 0 for the eigenvalues �j of the matrix Ps.
Let us explain how to perform the above-mentioned perturbations preserving

the nontransversality of Wu.q/ and Ws. p/ at the point r (we note that a similar
reasoning can be used in “replacement” of a component of intersection of Wu.q/
with a transverse section ˙ by an affine space, see the text preceding Lemma 3.3.2
below).

Consider points r� D �.; r/, where  > 0, and r0 D �. 0; r/, where  0 2 .0; /.
Let ˙ and ˙� be small transverse sections that contain the points r and r�. Take
small neighborhoods V and U0 of p and r0, respectively, so that the set V does not
intersect the “tube” formed by pieces of trajectories through points of U0 whose
endpoints belong to˙ and˙�. In this case, if we perturb the vector field X in V and
apply the Pugh-Robinson perturbation in U0, these perturbations are “independent.”
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We perturb the vector field X in V obtaining vector fields X0 that are linear in
small neighborhoodsV 0 � V and such that the values �1.X;X0/ are arbitrarily small.

Let �s and ��
s be the components of intersection of the stable manifold Ws. p/

(for the field X) with ˙ and ˙� that contain the points r and r�, respectively.
Since the stable manifold of a hyperbolic rest point depends (on its compact

subsets) C1-smoothly on C1-small perturbations, the stable manifolds Ws. p/ (for
the perturbed fields X0) contain components � 0

s of intersection with˙� that converge
(in the C1 metric) to ��

s .
Now we apply the Pugh-Robinson perturbation in U0 and find a field X0 in

an arbitrary C1 neighborhood of X such that the local Poincaré transformation
generated by the field X0 and sections ˙ and ˙� takes � 0

s to �s (which means that
the nontransversality at r is preserved).

We introduce in U coordinates x D .yI v;w/ according to (3.15): y is coordinate
in the s-dimensional “stable” subspace (denoted Es); .v;w/ are coordinates in the
u-dimensional “unstable” subspace (denoted Eu). The one-dimensional coordinate
v corresponds to the eigenvalue � (and hence to the one-dimensional “direction of
weakest expansion” in Eu).

In the neighborhood U,

�.t; .y; v;w// D .exp.Pst/yI exp.�t/v; exp.P1t/w/ ;

and it follows from (3.16) that

j exp.P1t/wj � K exp.�t/jwj; t � 0: (3.17)

Denote by Eu
1 the one-dimensional invariant subspace corresponding to �.

We naturally identify Es \ U and Eu \ U with the intersections of U with the
corresponding local stable and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow �. We may assume that
the point r of nontransverse intersection of Wu.q/ and Ws. p/ belongs to U. Take
a hyperplane ˙ 0 in Es of dimension s � 1 that is transverse to the vector X.r/. Set
˙ D ˙ 0 C Eu; clearly,˙ is transverse to X.r/.

By a perturbation of the field X outside U, we may get the following: in a
neighborhood of r, the component of intersection Wu.q/ \ ˙ containing r (for the
perturbed field) has the form of an affine space r C L, where L is the tangent space,
L D Tr.Wu.q/\˙/, of the intersection Wu.q/\˙ at the point r for the unperturbed
field (compare, for example, with [33]).

Let ˙r be a small transverse disk in ˙ containing the point r. Denote by � the
component of intersection of Wu.q/\˙r containing r.

Lemma 3.3.2 There exists " > 0 such that if x 2 ˙r and

dist .�.t; x/;O�.r; �// < "; t � 0; (3.18)

then x 2 � .
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Proof To simplify presentation, let us assume that q is a rest point; the case of a
closed trajectory is considered using a similar reasoning.

By the Grobman–Hartman theorem, there exists "0 > 0 such that the flow of X
in N.2"0; q/ is topologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of q, Ws
loc.q/, with the

boundary of the ball N.2"0; q/.
Take a negative time T such that if s D �.T; r/, then

�.t; s/ 2 N."0; q/; t � 0: (3.19)

Clearly, if "0 is small enough, then the compact sets A and

B D f�.t; r/ W T � t � 0g

are disjoint. There exists a positive number "1 < "0 such that the "1-neighborhoods
of the sets A and B are disjoint as well.

Take "2 2 .0; "1/. There exists a neighborhoodV of the point s with the following
property: If y 2 V n Wu

loc.q/, then the first point of intersection of the negative
semitrajectory of y with the boundary of N.2"0; q/ belongs to the "2-neighborhood
of the set A (this statement is obvious for a neighborhood of a saddle rest point of a
linear vector field; by the Grobman-Hartman theorem, it holds for X as well).

Clearly, there exists a small transverse disk ˙s containing s and such that if y 2
˙s \ Wu

loc.q/, then the first point of intersection of the positive semitrajectory of y
with the disk˙r belongs to � (in addition, we assume that˙s belongs to the chosen
neighborhood V).

There exists " 2 .0; "1 � "2/ such that the flow of X generates a local Poincaré
transformation

� W ˙r \ N."; r/ ! ˙s:

Let us show that this " has the desired property. It follows from our choice of ˙s

and (3.18) with t D 0 that if x … � , then

y WD �.x/ 2 ˙s n Wu
loc.q/I

in this case, there exists  < 0 such that the point z D �.; y/ belongs to the
intersection of N."2;A/ with the boundary of N.2"0; q/. By (3.19),

dist.z; �.t; s// > "0; t � 0: (3.20)

At the same time,

dist.z; �.t; r// > "1 � "2; T � t � 0: (3.21)

Inequalities (3.20) and (3.21) contradict condition (3.18). Our lemma is proved. ut
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Now let us formulate the property of nontransversality of Wu.q/ and Ws. p/
at the point r in terms of the introduced objects. Recall that we work in a small
neighborhood U of the rest point p identified with the Euclidean space Rn.

Let ˘ u be the projection to Eu parallel to Es.
The transversality of Wu.q/ and Ws. p/ at r means that

TrW
u.q/C TrW

s. p/ D R
n:

Since˙ is a transverse section to the flow � at r, the above equality is equivalent to
the equality

L C Es D R
n:

Thus, the nontransversality means that

L C Es ¤ R
n;

which implies that

L0 WD ˘ uL ¤ Eu: (3.22)

We claim that there exists a linear isomorphism J of ˙ for which the norm kJ �
Idk is arbitrarily small and such that

˘ uJL \ Eu
1 D f0g: (3.23)

Let e be a unit vector of the lineEu
1. If e … L0, we have nothing to prove (take J D Id).

Thus, we assume that e 2 L0. Since L0 ¤ Eu, there exists a vector v 2 Eu n L0.
Fix a natural number N and consider a unit vector vN that is parallel to Ne C v.

Clearly, vN ! e as N ! 1. There exists a sequence TN of linear isomorphisms of
Eu such that TNvN D e and

kTN � Idk ! 0; N ! 1:

Note that T�1
N e is parallel to vN ; hence, T�1

N e does not belong to L0, and

TN˘
uL \ Eu

1 D f0g: (3.24)

Define an isomorphism JN of ˙ by

JN.y; z/ D .y;TNz/

and note that

kJN � Idk ! 0; N ! 1:
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Let LN D JNL. Equality (3.24) implies that

˘ uLN \ Eu
1 D f0g: (3.25)

Our claim is proved.
First we consider the case where dimEu � 2. Since dimL0 < dimEu by (3.22) and

dimEu
1 D 1, our reasoning above (combined with a Pugh-Robinson perturbation)

shows that we may assume that

L0 \ Eu
1 D f0g: (3.26)

For this purpose, we take a small transverse section ˙ 0 containing the point r0 D
�.�1; r/, denote by � the component of intersection of Wu.q/ with ˙ 0 containing
r0, and note that the local Poincaré transformation � generated by˙ 0 and˙ takes �
to the linear space L (in local coordinates of˙). The mapping �N D JN� is C1-close
to � for large N and takes � to LN for which equality (3.25) is valid. Thus, we get
equality (3.26) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if .yI v;w/ 2
r C L, then

jvj � Cjwj: (3.27)

Fix a > 0 such that N.4a; p/ � U. Take a point ˛ D .0I a; 0/ 2 Eu
1 and a

positive number T and set ˛T D .ryI a exp.��T/; 0/, where ry is the y-coordinate of
r. Construct a pseudotrajectory as follows:

g.t/ D
(

�.t; r/; t � 0I
�.t; ˛T/; t > 0:

Since

jr � ˛T j D a exp.��T/ ! 0

as T ! 1, for any d there exists T such that g is a d-pseudotrajectory.

Lemma 3.3.3 Assume that b 2 .0; a/ satisfies the inequality

logK � logC C
��

�
� 1

� �

log
a

2
� log b

�

� 0:

Then for any T > 0, reparametrization h, and a point s 2 rCL such that jr� sj < b
there exists  2 Œ0;T
 such that

j�.h./; s/� g./j � a

2
:
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Proof To get a contradiction, assume that

j�.h./; s/� g./j < a

2
;  2 Œ0;T
: (3.28)

Let s D .y0I v0;w0/ 2 r C L. Since jr � sj < b,

jv0j < b: (3.29)

By (3.28),

�.h./; s/ 2 U;  2 Œ0;T
:

Take  D T in (3.28) to show that

jv0j exp.�h.T// >
a

2
:

It follows that

h.T/ > ��1
�

log
a

2
� log jv0j

�

: (3.30)

Set �./ D j exp.P1h.//w0j; then �.0/ D jw0j. By (3.27),

jv0j � C�.0/: (3.31)

By (3.17),

�.T/ � K exp.�h.T//�.0/: (3.32)

We deduce from (3.29)–(3.32) that

log

�
2�.T/

a

�

� log �.T/ � log jv0 exp.�h.T//j �

� logK C log �.0/� log jv0j C .� � �/h.T/ �

� logK � logC C
��

�
� 1

� �a

2
� log jv0j

�

�

� logK � logC C
��

�
� 1

� �a

2
� log b

�

� 0:

We get a contradiction with (3.28) for  D T since the norm of the w-coordinate
of �.h.T/; s/ equals �.T/, while the w-coordinate of g.T/ is 0. The lemma is
proved. ut
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Let us complete the proof of Theorem 3.3.1 in case (B1). Assume that l; ı0 > 0

are chosen for ˙ so that the LE holds.
Take " 2 .0;min.ı0; "0; a=2// so small that if dist.y; r/ < ", then �.t; y/

intersects˙ at a point s such that

dist.�.t; s/; r/ < "0; jtj � l": (3.33)

Consider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist.�.h.t/; x/; g.t// < "; t 2 R; (3.34)

for some point x and reparametrization h and set y D �.h.0/; x/.
Then dist.y; r/ < ", and there exists a point s D �.; y/ 2 ˙ with j j < l".
If �l" � t � 0, then

dist.�.t; s/;O�.r; �// � "0

by (3.33).
If t < �l", then h.0/C  C t < h.0/, and there exists t0 < 0 such that h.t0/ D

h.0/C  C t. In this case,

�.t; s/ D �.h.0/C  C t; x/ D �.h.t0/; x/;

and

dist .�.t; s/;O�.r; �// � dist
�

�.h.t0/; x/; �.t0; r/
� � "0:

By Lemma 3.3.2, s 2 r C L. If " is small enough, then dist.s; r/ < b, where b
satisfies the condition of Lemma 3.3.3, whose conclusion contradicts (3.34).

This completes the consideration of case (B1) for dimWu. p/ � 2. If
dimWu. p/ D 1, then the nontransversality of Wu.q/ and Ws. p/ implies that
L � Es. This case is trivial since any shadowing trajectory passing close to r must
belong to the intersection Wu.q/\Ws. p/, while we can construct a pseudotrajectory
“going away” from p along Wu. p/. If dimWu. p/ D 0, Wu.q/ and Ws. p/ cannot
have a point of nontransverse intersection.

Case (B2) Passing from the vector field X to �X, if necessary, we may assume that
p is a closed trajectory. We “linearize” X in a neighborhood of p as described in
the proof of Lemma 3.3.1 so that the local Poincaré transformation of the transverse
section˙ is a linear mapping generated by a matrix P with the following properties:
With respect to some coordinates in ˙ ,

P D diag.Ps;Pu/; (3.35)
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where j�jj < 1 for the eigenvalues �j of the matrix Ps, j�jj > 1 for the eigenvalues
�j of the matrix Pu, every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such
a “linearization” (and other perturbations of X performed below) so that the
nontransversality of Wu.q/ and Ws. p/ is preserved.

Consider an eigenvalue � of Pu such that j�j � j�j for the remaining eigenvalues
� of Pu.

We treat separately the following two cases.

Case (B2.1): � 2 R.
Case (B2.2): � 2 C n R.

Case (B2.1) Applying a perturbation, we may assume that

Pu D diag.�;P1/;

where j�j < j�j for the eigenvalues � of the matrix P1 (thus, there exists a one-
dimensional direction of “weakest expansion” in Wu. p/). In this case, we apply
precisely the same reasoning as that applied to treat case (B1) (we leave details to
the reader).

Case (B2.2) Applying one more perturbation of X, we may assume that

� D � C i� D � exp

�
2�m1i

m

�

;

where m1 and m are relatively prime natural numbers, and

Pu D diag.Q;P1/;

where

Q D
�
� ��
� �

�

with respect to some coordinates .y; v;w/ in ˙ , where � D j�j < j�j for the
eigenvalues � of the matrix P1.

Denote

Es D f.y; 0; 0/g; Eu D f.0; v;w/g; Eu
1 D f.0; v; 0/g:

Thus, Es is the “stable subspace,” Eu is the “unstable subspace,” and Eu
1 is the two-

dimensional “unstable subspace of the weakest expansion.”
Geometrically, the Poincaré transformation � W ˙ ! ˙ (extended as a linear

mapping to Eu
1) acts on Eu

1 as follows: the radius of a point is multiplied by �, while
2�m1=m is added to the polar angle.
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As in the proof of Lemma 3.3.1, we take a small neighborhood W of the origin
of the transverse section ˙ so that, for points x 2 W, the function ˛.x/ (the time of
first return to ˙) is defined.

We assume that the point r of nontransverse intersection of Wu.q/ and Ws. p/
belongs to the section ˙ . Similarly to case (B1), we perturb X so that, in a
neighborhood of r, the component of intersection of Wu.q/\˙ containing r has the
form of an affine space, r C L.

Let ˘ u be the projection in˙ to Eu parallel to Es and let˘ u
1 be the projection to

Eu
1; thus,

˘ u.y; u; v/ D .0; u; v/ and ˘ u
1 .y; u; v/ D .0; u; 0/:

The nontransversality of Wu.q/ and Ws. p/ at r means that

L0 D ˘ uL ¤ Eu

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so
that if L00 D L0 \ Eu

1, then

dimL00 < dimEu
1 D 2:

Hence, either dimL00 D 1 or dimL00 D 0. We consider only the first case, the second
one is trivial.

Denote by A the line L00. Images of A under degrees of � (extended to the whole
plane Eu

1) are m different lines in Eu
1.

In what follows, we refer to an obvious geometric statement (given without a
proof).

Proposition 3.3.1 Consider coordinates .x1; : : : ; xn/ in the Euclidean spaceRn. Let
x0 D .x1; x2/, x00 D .x3; : : : ; xn/, and let G be the plane of coordinate x0. Let D be a
hyperplane in Rn such that

D \ G D fx2 D 0g:

For any b > 0 there exists c > 0 such that if x D .x0; x00/ 2 D and x0 D .x0
1; x

0
2/, then

either jx0
2j � bjx0

1j or jx00j � cjx0j.
Take a > 0 such that the 2a-neighborhood of the origin in ˙ belongs to W. We

may assume that if v D .v1; v2/, then the line A is fv2 D 0g.
Take b > 0 such that the images of the cone

C D fv W jv2j � bjv1jg

in Eu
1 under degrees of � intersect only at the origin (denote these images by

C1; : : : ;Cm/.
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We apply Proposition 3.3.1 to find a number c > 0 such that if .0; v;w/ 2 L0,
then either .0; v; 0/ 2 C or

jwj � cjvj: (3.36)

Take a point ˇ D .0; v; 0/ 2 ˙ , where jvj D a, such that ˇ … C1 [ � � � [ Cm.
For a natural number N, set ˇN D .ry;P�N

u .v; 0// 2 ˙ (we recall that equality
(3.35) holds), where ry is the y-coordinate of r. We naturally identify ˇ and ˇN with
points of M and consider the following pseudotrajectory:

g.t/ D
	
�.t; r/; t � 0I
�.t; ˇN/; t > 0:

The following statement (similar to Lemma 3.3.2) holds: there exists "0 > 0 such
that if

dist.�.t; s/;O�.r; �// < "0; t � 0;

for some point s 2 ˙ , then s 2 r C L.
Since ˇ does not belong to the closed set C1 [ � � � [Cm, we may assume that the

disk in Eu
1 centered at ˇ and having radius "0 does not intersect the set C1[� � �[Cm.

Define numbers

˛1.N/ D ˛.ˇN/; ˛2.N/ D ˛1.N/C ˛.�.ˇN//; : : : ;

˛N.N/ D ˛N�1.N/C ˛.�N�1.ˇN//:

Take ı0 and l for which LE holds for the neighborhood W (reducing W, if
necessary). Take " < min."0=l; ı0/ and assume that there exists the corresponding d
(from the definition of the OrientSPF). Take N so large that g is a d-pseudotrajectory.

Let h be a reparametrization; assume that

j�.h.t/; p0/� g.t/j < "; 0 � t � ˛N.N/;

for some point p0 2 ˙ .
Since g .˛k.N// 2 ˙ for 0 � k � N by construction, there exist numbers �k such

that

j��k . p0/ � g.˛k.N//j < "0; 0 � k � N:

To complete the proof of Theorem 3.3.1, let us show that for any p0 2 r C L and
any reparametrization h there exists t 2 Œ0; ˛N.N/
 such that

dist.�.h.t/; p0/; g.t// � ":
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Assuming the contrary, we see that

j��k . p0/� g.˛k.N//j < "0; 0 � k � N;

where the numbers �k were defined above.
We consider two possible cases.
If

˘ u
1 p0 2 C

(C is the cone defined before estimate (3.36)), then

˘ u
1 �

�k . p0/ 2 C1 [ � � � [ Cm:

By construction,˘ u
1 g.˛N.N// is ˇ. Hence,

j˘ u
1 �

�N . p0/ �˘ u
1 g.˛N.N//j > "0;

and we get the desired contradiction.
If

˘ u
1 p0 … C

and p0 D .y0; v0;w0/, then .0; v0;w0/ 2 L0, and it follows from (3.36)) that jw0j �
cjv0j. In this case, decreasing "0, if necessary, we apply the reasoning similar to
Lemma 3.3.3.

Thus, we have proved inclusion (3.9), which completes the proof of Theo-
rem 3.3.1. ut
Historical Remarks The first result concerning C1 interiors of sets of vector fields
having some shadowing properties was obtained by K. Lee and the second author
in [33]. Denote by N the set of nonsingular vector fields. It was shown in [33] that
vector fields in the set

Int1.SSPF/\ N

are structurally stable.
The class B was introduced by S. B. Tikhomirov in [99].
Theorem 3.3.1 was proved by the first author and S. B. Tikhomirov in [69].
Let us also note that S. B. Tikhomirov proved in [99] the following result: If the

dimension of the manifold does not exceed 3, then

Int1.OrientSPF/ D SF:
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3.4 Vector Fields of the ClassB

In the previous section, we defined the set B of vector fields. As was mentioned,
vector fields of that class are not structurally stable. This section is devoted to the
following result [69].

Theorem 3.4.1 Int1.OrientSPF/\ B ¤ ;:
This theorem states that there exist vector fields in Int1.OrientSPF/ that belong to

the class B. The complete proof of Theorem 3.4.1 given in [69] is quite complicated,
and we do not give it here.

Instead, we explain the main idea of the proof. One constructs a vector field X of
the class B on the four-dimensional manifold M D S2 � S2 that has the following
properties (F1)-(F3) (� denotes the flow generated by X).

(F1) The nonwandering set of � is the union of four rest points p; q; s; u.
(F2) We can introduce coordinates in the disjoint neighborhoodsUp D N.1; p/ and

Uq D N.1; q/ so that

X.x/ D Jp.x � p/; x 2 Up;

and

X.x/ D Jq.x � q/; x 2 Uq;

where

Jp D

0

B
B
@

�1 0 0 0

0 �2 0 0

0 0 1 �1
0 0 1 1

1

C
C
A

and

Jq D

0

B
B
@

1 0 0 0

0 �1 0 1

0 0 2 �1
0 �1 0 1

1

C
C
A
:

Since the eigenvalues of Jp are �1;�2; 1˙ i and the eigenvalues of Jp are
1; 2;�1 ˙ i, conditions (1) and (2) of the definition of the class B (see the
previous section) are satisfied for the vector field X and its rest points q and p.

(F3) The point s is an attracting hyperbolic rest point. The point u is a repelling
hyperbolic rest point. The following condition holds:

Wu. p/ n fpg � Ws.s/; Ws.q/ n fqg � Wu.u/: (3.37)
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The intersection of Ws. p/\Wu.q/ consists of a single trajectory ˛, and for
any x 2 ˛, the condition

dim .TxWs. p/˚ TxW
u.q// D 3 (3.38)

holds.

These conditions imply that the two-dimensional manifolds Ws. p/ and Wu.q/
intersect along a one-dimensional curve in the four-dimensional manifold M. Thus,
Ws. p/ and Wu.q/ are not transverse; hence, X 2 B.

Geometrically, condition (3.38) means the following. Fix a point r 2 ˛ and let˙
be a transverse section to the flow � at r (as above, this means that ˙ is a smooth
open disk in M of codimension 1 containing r that is transverse to the flow � at any
of its points).

Denote by ˇs and ˇu the intersections of˙ with Ws. p/ and Wu.q/, respectively.
Clearly, ˇs and ˇu are one-dimensional curves containing the point r. Condition
(3.38) means that the curves ˇs and ˇu intersect at r at nonzero angle.

To prove Theorem 3.4.1, it is enough to show that any vector field X0 that is
C1-close to X belongs to OrientSPF.

The vector field X satisfies Axiom A0 and the no-cycle condition; hence, X is˝-
stable. Thus, there exists a neighborhood V of X in X 1.M/ such that for any field
X0 2 V , its nonwandering set consists of four hyperbolic rest points p0; q0; s0; u0 that
belong to small neighborhoods of p; q; s; u, respectively. We denote by �0 the flow
of any X0 2 V and by Ws. p0/;Wu. p0/, etc. the corresponding stable and unstable
manifolds.

Select compact subsets bs and bu of the curves ˇs and ˇu, respectively, such that
the interiors of bs and bu (in the interior topology) contain the point r.

Let �s and �u be compact subsets of Ws. p/ and Wu.q/, respectively, such that
bs � �s and bu � �u.

It follows from the stable manifold theorem that if x0 2 V , then the stable
and unstable manifolds Ws. p0/ and Wu.q0/ of the hyperbolic rest points p0 and q0
contain compact subsets �0

s and �0
u that converge (in the C1 topology) to �s and

�u, respectively, as X0 tends to X.
Hence, the corresponding curves b0

s and b0
u tend in the C1 topology to bs and bu,

respectively, as X0 tends to X.
We have the following two possibilities for a vector field X0 2 V:

• b0
s \ b0

u D ;;
• b0

s and b0
u have a point r0 of intersection close to r, and they intersect at r0 at

nonzero angle.

Clearly, we can choose˙ so that in the first case,

Wu. p0/ \ Ws.q0/ D ;I

then the vector field X0 is structurally stable, and X0 2 OrientSPF .
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Thus, it remains to consider the second case. To simplify notation, we write X,
�, etc. instead of X0, �0, etc.

In this case, we make several additional assumptions which help us to explain to
the reader the main geometric ideas used in the proof of Theorem 3.4.1 and to avoid
heavy technical constructions of [69]. Here we follow the reasoning of [100].

First, we assume that the vector field X is linear in neighborhoods Up and Uq of
the rest points p and q, respectively (see property (F2) above).

In addition, we assume that, in a sense, the shift at some fixed time along
trajectories in a neighborhood of a compact part of the trajectory ˛ of nontransverse
intersection of Ws. p/ and Wu.q/ is a parallel translation (see property (F5) below).

Let us introduce some notation. For a point x 2 Up denote P1x D x1 and P34x D
.x3; x4/, where x � p D .x1; x2; x3; x4/; for a point x 2 Uq, denote P1x D x1 and
P24x D .x2; x4/, where x � q D .x1; x2; x3; x4/. For a small m > 0 we denote
Wu

loc. p;m/ D Wu. p/\ N.m; p/ etc.
Our additional assumptions are as follows.

(F4) The trajectory ˛ satisfies the following inclusions:

˛\Up � fpC .t; 0; 0; 0/I t 2 .0; 1/g and ˛\Uq � fq� .t; 0; 0; 0/I t 2 .0; 1/g:

(F5) There exist numbers� 2 .0; 1/ and Ta > 0 such that

�.Ta; q C .�1; x2; x3; x4// D . p C .1; x2; x3; x4//; jx2j; jx3j; jx4j < �:

(F6) �.t; x/ … Uq for x 2 Up; t � 0.

In what follows, we need two simple geometric lemmas.
In the first lemma, we consider a planar linear system of differential equations

dx

dt
D Jx; x 2 R

2;

where

J D
�

1 �1
1 1

�

;

and denote by  .t; x/ its flow on R
2.

If a point x 2 R
2 has polar coordinates .r; �/ with � 2 Œ0; 2�/ and r ¤ 0, we put

arg.x/ D � .

Lemma 3.4.1 For any point x0 2 R
2 n 0, angle � 2 Œ0; 2�/, and number T0 there

exists t < T0 such that arg. .t; x0// D �.
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The proof of this lemma is straightforward. Of course, a similar statement holds
for the system

dx

dt
D �Jx; x 2 R

2;

with t < T0 replaced by t > T0.

Lemma 3.4.2 Let S1 and S2 be three-dimensional vector spaces with coordinates
.x1; x2; x3/ and .y1; y2; y3/, respectively. Let Q W S2 ! S1 be a linear map such that

Qfy2 D y3 D 0g ¤ fx2 D x3 D 0g:

Then for any D > 0 there exists R > 0 (depending on Q and D) such that if two sets
V1 � S1 \ fx1 D 0g and V2 � S2 \ fy1 D 0g satisfy the following conditions:
• V1 � N.R; 0/ and V2 � N.R; 0/;
• V1 intersects any ray in S1 \ fx1 D 0g starting at 0;
• V2 intersects any ray in S2 \ fy1 D 0g starting at 0;
then

C1 \ QC2 ¤ ;;

where

C1 D f.x1; x2; x3/ W jx1j < D; .0; x2; x3/ 2 V1g

and

C2 D f.y1; y2; y3/ W jy1j < D; .0; y2; y3/ 2 V2g:

Proof Let us fix a linear map Q and a number D > 0. Consider the lines l1 � S1
and l2 � S2 given by the equations x2 D x3 D 0 and y2 D y3 D 0, respectively.

By our assumption, Ql2 ¤ l1. Let us consider the plane � � S1 containing l1 and
Ql2. Consider a parallelogram P � � that is symmetric with respect to 0, has sides
parallel to l1 and Ql2, and satisfies the relation

P � fjx1j < Dg \ Q.fjy1j < Dg/: (3.39)

Find a number R > 0 such that the following inclusions hold:

B.R; 0/\ � � P and Q.B.R; 0/\ Q�1�/ � P: (3.40)

Let z1 be a point of intersection of V1 and the line � \ fx1 D 0g. Condition (3.40)
implies that z1 2 P. Consider the line k1 containing z1 and parallel to l1. Inclusion
(3.39) implies that k1 \ P � C1.
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Similarly, let z2 be a point of intersection of V2 and the line � \ fy1 D 0g.
Condition (3.40) implies the inclusion Qz2 2 P. Let k2 be the line containing Qz2
and parallel to Ql2. Inclusion (3.39) implies that Q�1.k2 \ V/ � C2.

Since k1 ¬ k2, there exists a point z 2 k1 \ k2. The inclusions z1; z2 2 P imply
that z 2 P. Hence, z 2 C1 \ QC2. Our lemma is proved. ut

Now let us prove that the vector field X has the oriented shadowing property.
Fix points yp D ˛.Tp/ 2 Up and yq D ˛.Tq/ 2 Uq (note that in this case, Tp > Tq

by property (F5)) and a number ı > 0.
We say that g.t/ is a pseudotrajectory of type Ps.ı/ if

g.t/ D
8

<

:

�.t � Tp; xp/; t > TpI
�.t � Tq; xq/; t < TqI
˛.t/; t 2 ŒTq;Tp
;

for some points xp 2 B.ı; yp/ and xq 2 B.ı; yq/.
Fix an " > 0. Let us say that a pseudotrajectory g.t/ can be "-oriented shadowed

if there exists a reparametrization h 2 Rep and a point z such that

dist.�.h.t/; z/; g.t// < "; t 2 R:

Clearly, the required inclusion X 2 OrientSPF is a corollary of the following two
statements.

Proposition 3.4.1 For any ı > 0, yp 2 ˛ \ Up, and yq 2 ˛ \ Uq there exists d > 0
such that if g.t/ is a d-pseudotrajectory of X, then either g.t/ can be "-oriented
shadowed or there exists a pseudotrajectory g�.t/ of type Ps.ı/ with these yp and yq
and a number t0 2 R such that

dist
�

g.t/; g�.t C t0/
�

< "=2; t 2 R:

Proposition 3.4.2 There exist ı > 0, yp 2 ˛ \ Up, and yq 2 ˛ \ Uq such that any
pseudotrajectory of type Ps.ı/ with these yp and yq can be "=2-oriented shadowed.

Proposition 3.4.1 can be proved by a standard reasoning. Precisely the same
statement was proved in [69] for a slightly different vector field (the only difference
is in the structure of the matrices Jp and Jq). The proof can be literally repeated in
our case.

The main idea of the proof is the following. Outside a neighborhood of the
curve ˛, our vector field X coincides with a structurally stable one. Hence,
pseudotrajectories that do not intersect a fixed neighborhood of ˛ can be shadowed.

If g.t/ intersects a small neighborhood of ˛, then (after a proper shift of time),
the points g.t/ with t > Tp also belong to a set where X coincides with a structurally
stable vector field; thus, for such t, g.t/ can be shadowed by �.t�Tp; xp/. Similarly,
the pseudotrajectory g.t/ can be shadowed by �.t � Tq; xq/. For t 2 .Tq;Tp/, the
points g.t/ are close to ˛. We leave the rest of the proof to the reader.
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Proof (of Proposition 3.4.2) Since the rest points s and u are a hyperbolic attractor
and a hyperbolic repeller, we may assume, without loss of generality, that

OC.N."=2; s/; �/ � N."; s/ and O�.N."=2; u/; �/ � N."; u/;

where OC.A; �/ and O�.A; �/ are the positive and negative semitrajectories of a set
A in the flow �, respectively.

Take m 2 .0; "=8/. We fix points yp D ˛.Tp/ 2 N.m=2; p/ \ ˛ and yq D
˛.Tq/ 2 N.m=2; q/ \ ˛. Put T D Tp � Tq. Find a number ı > 0 such that if
g.t/ is a pseudotrajectory of type Ps.ı/ (with yp and yq fixed above), t0 2 R, and
x0 2 N.2ı; g.t0//, then

dist.�.t � t0; x0/; g.t// < "=2; jt � t0j � T C 1: (3.41)

Consider a number  > 0 such that if x 2 Wu. p/ n N.m=2; p/, then �.; x/ 2
N."=8; s/. Take "1 2 .0;m=4/ such that if two points z1; z2 2 M satisfy the inequality
dist.z1; z2/ < "1, then

dist.�.t; z1/; �.t; z2// < "=8; jtj � :

In this case, for any y 2 N."1; x/, the following inequalities hold:

dist.�.t; x/; �.t; y// < "=4; t � 0: (3.42)

Decreasing "1, we may assume that if x0 2 Ws.q/ n N.m=2; q/ and y0 2 N."1; x0/,
then

dist.�.t; x0/; �.t; y0// < "=4; t � 0:

Let g.t/ be a pseudotrajectory of type Ps.ı/, where yp, yq, and ı satisfy the above-
formulated conditions.

Let us consider several possible cases. t

Case (P1): xp … Ws. p/ and xq … Wu.q/. Let

T 0 D infft 2 R W �.t; xp/ … N. p; 3m=4/g:

If ı is small enough, then dist.�.T 0; xp/;Wu. p// < "1. In this case, there exists a
point zp 2 Wu

loc. p;m/ n N.m=2; p/ such that

dist.�.T 0; xp/; zp/ < "1: (3.43)

Applying a similar reasoning in a neighborhood of q (and reducing ı, if
necessary), we find a point zq 2 Ws

loc.q;m/ n N.m=2; q/ and a number T 00 < 0

such that dist.�.T 00; xq/; zq/ < "1.
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Consider the hyperplanes Sp WD fx1 D P1ypg and Sq WD fx1 D P1yqg. From our
assumptions on the linearity of X in neighborhoods of p and q and from assumption
(F5) it follows that the Poincaré map defined by Q.x/ D �.T; x/ is a linear map
Q W Sq ! Sp such that Q.f.x2; x4/ D 0g/ ¤ f.x3; x4/ D 0g.

Apply Lemma 3.4.2 to the hyperplanes Sp and Sq, the map Q, and the number
D D "=8 and find the corresponding R > 0. Note that there exists a TR > 0 such
that

j�.t;P34xp/j < R; t < �TR; and j�.t;P24xq/j < R; t > TR:

Consider the sets

V� D ˚

�.t;P34xp/ W t < �TR
�

and VC D ˚

�.t;P24xq/ W t > TR
�

:

Due to Lemma 3.4.1, the sets V˙ satisfy the assumptions of Lemma 3.4.2; hence,
the sets

C� D ˚

x 2 Sp W P34x 2 V�; jP2xj < D
�

and

CC D ˚

x 2 Sq W P24x 2 VC; jP3xj < D
�

are such that C� \ QCC ¤ ;.
Let us consider a point

x0 2 C� \ QCC (3.44)

and numbers tp < �TR and tq > TR such that P34x0 D �.tp;P34xs/ and P24Q�1x0 D
�.tq;P24xu/. The following inclusions hold:

�.�TQ � TR � T 00; x0/ 2 N.2"1; zq/; �.�TQ; x0/ 2 N.D; yq/;

�.0; x0/ 2 N.D; yp/; �.TR C T 0; x0/ 2 N.2"1; zp/:

Inequalities (3.41) imply that if ı is small enough, then

dist.�.t3 C t; x0/; g.Tp C t// < "=2; t 2 Œ�T; 0
: (3.45)

Define a reparametrization h.t/ as follows:

h.t/ D

8

ˆ̂
<

ˆ̂
:

h.Tq C T 00 C t/ D �TQ � TR � T 00 C t; t < 0I
h.Tp C T 0 C t/ D TR C T 0 C t; t > 0I
h.Tp C t/ D t; t 2 Œ�T; 0
I
h.t/ increases; t 2 ŒTp;Tp C T 0
 [ ŒTq C T 00;Tq
:
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If t � Tp C T 0, then inequality (3.42) implies that

dist.�.h.t/; x0/; �.t � .Tp C T 0/; zp// < "=4

and

dist.�.t � Tp; xp/; �.t � .Tp C T 0/; zp// < "=4:

Hence, if t � Tp C T 0, then

dist.�.h.t/; x0/; g.t// < "=2: (3.46)

For t 2 ŒTp;Tp C T 0
, the inclusions �.h.t/; x0/; g.t/ 2 N.m; p/ hold, and inequality
(3.46) holds for these t as well.

A similar reasoning shows that inequality (3.46) holds for t � Tq. If t 2 ŒTq;Tp
,
then inequality (3.46) follows from (3.45). This completes the proof in case (P1).

Case (P2): xp 2 Ws. p/ and xq … Wu.q/. In this case, the proof uses the same
reasoning as in case (P1). The only difference is that instead of (3.44) we
construct a point x0 2 N.D; yp/ \ Ws

loc. p;m/ such that

�.�T � T 00; x0/ 2 N.2"1; zq/ and �.�T; x0/ 2 N."=8; yq/:

The construction is straightforward and uses Lemma 3.4.1.
Case (P3): xp … Ws. p/ and xq 2 Wu.q/. This case is similar to case (P2).
Case (P4): xp 2 Ws. p/ and xq 2 Wu.q/. In this case, we take ˛ as the shadowing

trajectory; the reparametrization is constructed similarly to case (P1).

Thus, we have shown that X 2 OrientSPF . ut
Historical Remarks Theorem 3.4.1 was published by the first author and S. B.
Tikhomirov in [69]. As was said at the beginning of Chap. 3, the complete proof
given in this paper is technically very complicated, and we only describe a “model”
published by S. B. Tikhomirov in the paper [100] devoted to the Komuro conjecture
[29].
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