Chapter 3
C' Interiors of Sets of Systems with Various
Shadowing Properties

In this chapter, we study the structure of C! interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

The C! interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result and Theorem 1.4.1 (a) imply that the C! interior of the
set of diffeomorphisms having the standard shadowing property coincides with
the set of structurally stable diffeomorphisms;

the set Int' (OrientSPr \ ) is a subset of the set of structurally stable vector
fields (Theorem 3.3.1); similarly to the case of diffeomorphisms, this result and
Theorem 1.4.1 (b) imply that the set Int! (OrientSPr \ %) coincides with the set
of structurally stable vector fields;

the set Int!(OrientSPr) contains vector fields that are not structurally stable
(Theorem 3.4.1).

The structure of the chapter is as follows.
Section 3.1 is devoted to the proof of Theorem 3.1.1:

Int! (SSPD) c Yp.

Our proof of Theorem 3.1.1 is based on reduction to Theorem 1.3.6 (2) (the C!
interior of the set of Kupka—Smale diffeomorphisms coincides with the set of
structurally stable diffeomorphisms).

We give a detailed proof of the inclusion

Int' (SSPp) C HP)p
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(thus, any periodic point of a diffeomorphism f € Int' (SSPp) is hyperbolic).
Concerning the proof of transversality of stable and unstable manifolds of periodic
points of a diffeomorphism f € Int' (SSPp), we refer the reader to Sect. 3.3 where
a similar statement is proved in a more complicated case of flows on manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect.3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If f € Int' (SSPp), then f satisfies Axiom A.
Our proof uses neither Mafié’s ergodic closing lemma [42] nor the techniques of
creating homoclinic orbits developed in [44]. Instead, we refer to a sifting type
lemma of Wen—Gan—Wen [109] influenced by Liao’s work and apply it to Liao’s
closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C' interior of the set of
vector fields having the oriented shadowing property. We introduce a special class
% of vector fields having two rest points p and ¢ for which there exists a trajectory
of nontransverse intersection of the stable manifold W*(p) and W*(g). Of course,
vector fields in % are not structurally stable.

In Sect. 3.3, we prove Theorem 3.3.1: The set

Int' (OrientSP \ %)

is a subset of the set of structurally stable vector fields.

At the same time, we show in Sect.3.4 that the set Int!(OrientSPs) contains
vector fields belonging to . The complete description of the corresponding
example given in [69] is quite complicated, and we describe a “model” suggested
in [100].

3.1 C! Interior of SSP)

The main result of this section is the following theorem.

Theorem 3.1.1 Int' (SSPp) C .%)p.
It follows from Theorem 1.4.1 (a) that

p C LSPp C SSPp.
Since the set of structurally stable diffeomorphisms is C'-open,
p = Int' (%) C Int' (SSPp).
Combining this with Theorem 3.1.1, we conclude that the C! interior of the set

of diffeomorphisms having the standard shadowing property coincides with the set
of structurally stable diffeomorphisms.
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As was said at the beginning of this chapter, we reduce the proof of Theo-
rem 3.1.1 to Theorem 1.3.6 (2). Thus, we have to show that

Int! (SSPp) C Int' (KSp).
Of course, for this purpose, it is enough to show that
Int' (SSPp) C KSp. (3.1)
This means that we have to establish the inclusion
Int' (SSPp) C HPp (3.2)

(i.e., every periodic point of a diffeomorphism in Int! (SSPp) is hyperbolic) and to
show that, for a diffeomorphism in Int' (SSPp), stable and unstable manifolds of its
periodic points are transverse.

We prove inclusion (3.2) in Lemma 3.1.2.

We do not give here a proof of transversality of stable and unstable manifolds of
periodic points of a diffeomorphism in Int' (SSPp). Instead, we refer the reader to
Sect. 3.3 of this book; in this section, a similar statement is proved for the case of
vector fields (which is technically really more complicated). We advice the reader
to “transfer” the proof of Sect. 3.3 to the case of diffeomorphisms.

We start with a lemma proved by Franks in [19]; this lemma plays an essential
role in proofs of several theorems below.

If U is a domain in R™ with compact closure and f,g : U — R™ are
diffeomorphisms of U onto their images such that f(U) = g(U) = V, then we
define p; y(f, g) as the maximum of the following values:

sup |f(x) — g)|. sup |Df (x) — Dg(x)

)

sup o) —¢ ')

. sup [DFT' () —Dg”' )|
yev

(this definition corresponds to our definition of the C! topology of Diff ' (M), see
Sect. 1.3).

Lemma 3.1.1 Let U be a domain in R™ with compact closure, where m > 1, and
letf: U — R™ be a C' diffeomorphism of U onto its image.

Consider a finite set of different points {x;,x,, ..., x,} C U.

Then for any ¢ > 0, any neighborhood N of the set {x|,x,,...,x,}, and any
linear isomorphisms

LiIRm%Rm
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such that

ILi = DF Gl L7 — (DF )™ < /8, 1<i<n, (3.3)
there exists a number § > 0 and a C' diffeomorphism g : U — R" with f(U) =
g(U) and such that

(@) pru(f.g) <e
(b) g(x) =f(x), xe€U\N,
and
(c) g&x) =f(x)) + Lilx —x;), x€N(@/4,x), 1 <i<n.

Proof Standard reasoning shows that since U is a domain with compact closure,
there exists a number gy > 0 such that if g is a C' mapping of U such that f(U) =
g(U) and

sup |f(x) —g(x)], sup |Df (x) — Dg(x) || < o,

then g is a diffeomorphism of U onto g(U).
For a positive § > 0, let

Bs(x;))={yeU:|ly—x]| <6}, 1<i=<n.
We assume that § is small enough, so that the sets Bs(x;) with different i do not
intersect. In what follows, we reduce § if necessary.

Choose a C* real-valued function o : R — R such that 0 < o(x) < 1,

0if |x| > 6,
1if |x| < 8/4,

o(x) =

and 0 < |o’(x)| < 2/6 for all x.
Let p : [J._, Bs(x;) — R be defined by

p() =o(ly—xil), ye€Bs(x), 1 <i<n

Fix ¢ € (0, &) and take 0 < § < min(1, &) so small that

|JBs@) cN. (3.4)

i=1

1f() + Liy —x) —f ()] < j|y _ (3.5)
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and
&
|Liv — Df (y)v] < 4|v|, v eR"”, (3.6)

fory € Bs(x;), 1 <i < n (clearly, this is possible due to estimates (3.3)).
Define a mapping g : U — R" by

f) if y ¢ Uiz) Bs(x),
PO(f() + Lily —x) + (1 — pO)f ) if ¥y € U Bs(x).

It is easy to see thatif y € [ J/_, Bs(x;), then

IfO) =W = [pM(f(xi) + Li(y — x:)) — pOIf )| =

g =

= OIS0 + Ly —x) —f ) <1+ -8 <.
Let us estimate the differences of the derivatives. If y € Bs(x;) and v € R™, then
Dg()v = pO)Liv + (Dp(). v)(f () + Li(y — x:))+
+(1 = pODF G — (Dp(). V).

where

m

(Dp(y). v Z 0.

Thus,
IDf (y)v — Dg(y)v| =
= [pOMLiv — p(Df (y)v + (Dp(y), v) (f (xi) + Li(y — x:)) = (Dp(y), v)f (¥)] =
< pMILiv = Df ()| + (Dp(). v)|[f(x) + Li(y — xi) = f ()]

It is clear that if [y — x;| > &, then p(y) = 0, and if |y — x;| < &, then, by the
choice of § (see (3.6)),

p() - |ILiv — DF()V] < |Liv — Df()v] < j|v|.

If [y —x;| > 8, then Dp(y) = 0 (since p(y) = O for [y —x;| > 8). If |[y —x;| < 8, then
|Dp(y)| < 2/8 and

@) + Ly =x) —fO] < v —x|
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by the choice of § (see (3.5)) and the definition of p. Thus,

(Dp(y), v)[|f(x) + Li(y —xi) = f ()] =

2 ¢

2 ¢ )
< . —X; < . Sl = .
< vl = - sl =l

Hence,
g £
IDF )0 = Dgvl < ol + o] < efol.

It follows from the choice of ¢ < g that g is a diffeomorphism of U onto g(U) =

f().

Now a similar reasoning can be applied to estimate the values

If' ) — ¢~ )l and |Df' () — Dg~ W)

(reducing &, if necessary).
Inclusion (3.4) implies that g and f coincide outside N. The lemma is proved. O

Lemma 3.1.2 Inclusion (3.2) holds.

Proof Let us consider the case of an m-dimensional manifold M with m > 1. To
get a contradiction, assume that there exists a diffeomorphism f € Int' (SSPp(M))\
HPp(M).

Then f has a nonhyperbolic periodic point p of period 7 ( p).

Take a C! neighborhood % (f) of f lying in SSPp(M).

To simplify presentation, we assume that 7(p) = 1 (the case of a periodic point
of minimal period 7 (p) > 1 is considered similarly). Moreover, since the argument
is local, we assume further that f is defined on an open set of R™.

By the Franks lemma, it is possible to find a diffeomorphism g € %/ (f) with the
following properties:

— pis afixed point of g,
— g is linear in a neighborhood of p.

Indeed, let us introduce local coordinates x € R™ near p such that p is the origin.
Then, by the Franks lemma, for any r > 0 there exists a diffeomorphism f, such
that

— fr(x) = f(x) for x ¢ N(4r, p),
- f(x) = Df(p)x forx € N(r,p).

Note that f, converges to f with respect to the C! topology as r — 0. Fix ry > 0
such thatf,, € % (f) and write g instead of f;,,.

Since the point p = 0 is not hyperbolic, the matrix Dg(p) has an eigenvalue A
with |A| = 1. To simplify presentation, we assume that A = 1 (the proof in the
general case can be found in [87]).
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Applying a C'-small perturbation of g (so that the perturbed g still is in % (f))
and preserving the notation g for the perturbed diffeomorphism, we may assume
further that Dg( p) has an eigenvalue equal to 1, p is the origin with respect to some
local coordinates x = (xi, ..., X;), and g maps a pointx = (x,y) € N(ro,p), where
y = (x2,...,%n), to the point (x;, By), where B is a hyperbolic matrix.

In this case, the segment

= {(x1.0,...,0): 0 < |x;| < ro}

consists of fixed points of g.

Since it was assumed that g € SSPp(M), for ¢ = ry/2 there is the corresponding
0 < d < ¢ from the definition of the standard shadowing property. Take a natural
number / such that the sequence

E={x:kelZ}C I,
where

0 for k < 0;
xe =14 ("%.,0,....0) for 0 <k<I
(r0/2,0,...,0) for k> [,

is a d-pseudotrajectory of g.
Let x € N(g,x0) be a point such that

lgf(x) —xi| <€ for keZ.

Since the matrix B is hyperbolic, for any point (x;,y) with y # 0, its g-trajectory
leaves the set N(ro, p). Hence, if

g (@) — x| <& keZ,
then x = (b,0,...,0). Since
gx) = g(,0,...,0) = (b,0,...,0),
we see that |b| < ry/2, and then |b — ry| < ry/2. The obtained contradiction proves

our lemma. O

Historical Remarks One of the first results concerning C! interiors of sets of
diffeomorphisms with properties similar to shadowing was proved by K. Moriyasu
in [47].

Let us denote by TSy, the set of topologically stable diffeomorphisms. Recall that
a diffeomorphism f of a smooth manifold M is called topologically stable if for any



132 3 C!Interiors of Sets of Systems with Various Shadowing Properties

& > 0 there is a d > 0 such that for any homeomorphism g satisfying the inequality
po(f,g) < d, there exists a continuous map s mapping M onto M and such that
po(h,id) < eandf oh = ho g (see [104]).

It is known that every topologically stable diffeomorphism has the standard
shadowing property (see [46, 105]); thus, SSPp C TSp. In addition, every expansive
diffeomorphism in SSPp, is in TSy (see [64] for details).

K. Moriyasu proved in [47] that any diffeomorphism in Int' (TSp) satisfies
Axiom A. In fact, the paper [47] contains the proof of inclusion (3.2) (see
Proposition 1 in [47]).

Theorem 3.1.1 was proved by the second author in [87].

Later, a more general result (in which the set SSPp was replaced by a larger set
OSPp) was obtained by the first author, A. A. Rodionova, and the second author in
[65] (the method of proving transversality of the stable and unstable manifolds of
periodic points used in [65] was later applied in the case of vector fields [69]; see
Sect. 3.3 of this book).

In [88], the second author introduced the notion of C° transversality and showed
that for two-dimensional Axiom A diffeomorphisms, C° transversality of one-
dimensional stable and unstable manifolds is equivalent to shadowing. Later, the
authors related C° transversality to inverse shadowing in two-dimensional Axiom A
diffeomorphisms [66].

Let us mention here one more result of that type related to shadowing properties.
Let f be a homeomorphism of a metric space (M, dist). We say that f has the
weak shadowing property if for any ¢ > 0 there exists d > 0 such that for any
d-pseudotrajectory £ of f there is a point p € M such that

§ CN(e O(p.f)).

Denote by WSPp, the set of diffeomorphisms having the weak shadowing property.
It was shown by the second author in [89] that if M is a smooth two-dimensional
manifold, then

Int' (WSPp(M)) C 2.p(M).

Let us note that the above inclusion is strict; it was shown by O. B.
Plamenevskaya in [72] that there exist §2-stable diffeomorphisms of the two-
dimensional torus that do not have the weak shadowing property.

Let us also note that the result of [89] cannot be generalized to higher dimensions.
R. Mafié constructed in [40] an example of a C'-open subset .7 of the space of
diffeomorphisms of the three-dimensional torus such that

+ any diffeomorphismf € .7 has a dense orbit (thus, any f € .7 isin Int' (WSPp));
* any diffeomorphism f € .7 is not Anosov (and hence, it is not §2-stable).
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3.2 Diffeomorphisms in Int! (SSP)) Satisfy Axiom A

As was said at the beginning of this chapter, in this section we prove the following
statement.

Theorem 3.2.1 Iff € Int' (SSPp), then f satisfies Axiom A.
Remark 3.2.1

1. To get an independent proof of Theorem 3.1.1 using Theorem 3.2.1, one has to
show that if a diffeomorphism f € Int! (SSPp) satisfies Axiom A, then f also
satisfies the strong transversality condition.

This can be done by applying the following scheme. Assuming that the
stable manifold W*(p) and the unstable manifold W*(g) for two points p,q €
£2(f) have a point r of nontransverse intersection, one can approximate r by
points of intersection of periodic points of f and then, perturbing f, to get
a point of nontransverse intersection of periodic points of a diffeomorphism
g € Int! (SSPp). After that, one can apply the techniques described in Sect. 3.3
to get a contradiction. We leave details to the reader.

2. Of course, it has shown by Maiié and Hayashi [25, 42, 45] that a diffeomorphism
f € Int' (HP)p) satisfies Axiom A, but we give a simpler proof of this result under
the assumption that f € Int! (SSPp); this proof uses neither Maifié’s ergodic
closing lemma [42] nor the techniques creating homoclinic orbits developed
in [44].

Let the phase space be a v-dimensional manifold M.

Denote, as above, by Per(f) the set of periodic points of a diffeomorphism f :
M — M. Let r(p) be the minimal period of a periodic point p € Per(f).

It is proved in [40] that if f € Int' (SSPp (M), then £2(f) = Cl(Per(f)).

Denote by P;(f), 0 < j < v, the set of hyperbolic periodic points of f whose
index (the dimension of the stable manifold) is equal to j. Let A; be the closure of
the set P;(f).

It has shown by Pliss [73] that the sets of sinks, P, (f), and of sources, Py(f),
of a diffeomorphism f € Int'(SSPp(M)) are finite sets (another proof can be found
in [36]).

The following lemma is a “globalized” variant of Frank’s lemma (Lemma 3.1.1)
for C' diffeomorphisms of a smooth closed manifold using exponential mappings.

Lemma 3.2.1 Letf € Diff ' (M) and let % (f) be a neighborhood of f.

Then there exists a number §g > 0 and a neighborhood ¥ (f) C % (f) such
that for any g € V' (f), any finite set {x1,x3, ..., Xy} consisting of pairwise different
points, any neighborhood U of the set {x\,x3, . .., Xy}, and any linear isomorphisms
L : TyM — TyyM such that

IL; — Dgx)|l, IL7' —Dg ' (xi)ll <80, 1<i<m,
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there exist &g > 0 and g € % (f) such that

(a) g(x) =g(x) ifxe M\ U, and
(b) g(x) = expy, oLio expx_’,l(x) ifx € By (x;) foralll <i<m.

Note that assertion (b) implies that g(x) = g(x) if x € {x1,x2,...,x,} and that
Dy,g=Lforalll <i<m.

In what follows, we assume that f € Int! (SSPp); hence, by Lemma 3.1.1, f €
Int' (HPp).

Thus, there exists a neighborhood % (f) of f in Diff ! (M) such that every periodic
point p € Per(g) is hyperbolic for any g € Z (f).

Then there exists a C' neighborhood ¥ (f) of f such that the family of
periodic sequences of linear isomorphisms of tangent spaces of M generated by
the differentials Dg of diffeomorphisms g € #'(f) along hyperbolic periodic orbits
of points ¢ € Per(g) is uniformly hyperbolic (see [42]).

To be exact, this means that there exists ¢ > 0 and a neighborhood 7'(f) of f
such that for any g € ¥'(f), any g € Per(g), and any sequence of linear maps

Li: Ta M = Ty M
with
||L,- —Dg (g’(q))H <e, i=1,...,m(q) —1,

]_[;;(%) s hyperbolic (here ¢ > 0 and 7' (f) correspond to % (f)) according to
Lemma 3.2.1.

The following result was proved by Mainé [42, Proposition II.1]. Denote by
E*(g)(f) and E"(q)(f) the stable and unstable spaces of the hyperbolic structure
at a point g of a hyperbolic periodic orbit of f, respectively.

Proposition 3.2.1 Letf € Int' (HPp).
In the above notation, there are constants C > 0, m > 0, and 0 < A < 1 such
that:

(a) ifge YV (f), q € Per(g), and n(q) = m, then

kol k—1
g HDg"Zs(g,-m(q))(g) H = €M and 1:[0 HD 85 (=) &) H = cx,

where k = [r(q)/m].
(b) Forany g € V(f) and 0 < j < v, the set Aj(g) = CI(P;(g)) admits a
dominated splitting (see Definition 1.3.12)

Tr M = E(g) ® F(g)
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withdim E(g) = j, i.e.,

HDgIE(x)(g> H HDgwgm(x»(g) H =4

for all x € CI(Pj(g)) (note that E(x)(g) = E*(x)(g) and F(x)(g) = E"(x)(g) if
x € Pi(g)).

It is easy to see that the above proposition can be restated in the following way.

Proposition 3.2.2 In the notation and assumptions of Proposition 3.2.1, there exist
constants m > 0,0 < A < 1, and L > 0 such that:

(a) Ifg € V(f), q € Per(g), and m(q) > L, then
m(g)—1

7(q)
g H glEf(qu))(g)H <A™ and l_[ HD 8 (o W(q))(g)“ <4

(b) Forany g € V(f)and 0 < j < v, the set A;(g) admits a dominated splitting
Taj)M = E(g) ® F(g) with dim E(g) = j such that

HDgT’Eu)(g) 'HDgngu))(g)
Jor any x € Aj(g) (note that E(x)(g) = E*(x)(g) and F(x)(g) = E"(x)(g) if
x € Pj(g))-
In what follows, we need two technical lemmas (Lemmas 3.2.2 and 3.2.3).
Denote by A aset A; = CI(Pj(f)), where 0 <j < v.
Lemma 3.2.2 deals with extension of the dominated splitting to a small neigh-
borhood of A in M. Assume that A admits a dominated splitting TAM = E & F for
which there exist constants m > 0 and 0 < A < 1 such that

<A

HDf\Ew ' HDf\;(fw))
for all x € A. To simplify notation, denote f by f.
It is known (see [27]) that there exists a ne1ghb0rh00d U of A, a constant > 0,

A < A < 1, and a continuous splitting TyM = E & F with dimE = dimE such
that

— ElA = Eandl:"|A =

Df(x)E(x) E(f(x)) ifxe unf'(y;

Df_ X)F(x) = F(f '(x) if x e UNF(U);

<kifxe ﬂi=_kf‘(U) for k > 0.

h H Ew | H o
The continuity of the differential Df implies the following statement (in which
we have to shrink the neighborhood U of A if necessary).
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Lemma 3.2.2 In the above notation and assumptions of Proposition 3.2.1, there
exists a Df-invariant continuous splitting T s, )M = E & F with dimE = dimE

and 0 < A < 1 such that

- EM = Eandﬁm = F,'
—k

H f\E( )H ()

— foranye > O there exists § > O such thatifx € Ap(U),y € A, and dist(x,y) < 6,
then

< ikfor anyx € Ap(U) and k > 0;

| 10g [ Dz, |~ log [ DAy || < &
and

[1og |Dr7L | = Tog [ DAl || < .

In the statement above,

ArU) = (V).

ne€z

The second technical lemma (Lemma 3.2.3) is a variant of the so-called sifting
lemma first proved by Liao (see [36]). The statement which we prove belongs to
Wen-Gan-Wen [109]

Let Ta,pyM = E@® FbeasinLemma3.2.2andlet0 <A < 1.

An orbit string

ton) = f).....[" (0} C A (U)

is called a A-quasi-hyperbolic string with respect to the splitting E & F if the
following conditions are satisfied:

(1)
k—1
1_[ HDf\E(fi(x)) ‘ < lk for k=1,2,...,n;
i=0
(2
n—1
1_[ m (Df\i’(f"(x))> > M= for k= 1,2,...,n;
(3)

2 .
HDfIE(f"(x)) ‘ /m (Df|ﬁ(f"(x))) < A“forevery i =0,1,...,n—1.
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Here m(A) is the minimum norm of a linear map A, i.e.,

m(A) = inf ||Av].
lli=1

Lemma 3.2.3 (Sifting Lemma, [36, 107, 109]) Let {a;}?2, be an infinite sequence
for which there exists a constant K such that |a;| < K. Assume that

n—1 n—1

1 1
l > ai=&and liminf Y ai=¢.
im sup I_Oa & an imin i, izoa £

n—oo N °

where &' < E. Then for any &, and &, with & < £ < &, there is an infinite sequence
{mi}2, C N such that

1 m;+k—1 mijy1—1
k Z aj <& and r Z a; > &

J=mi j=mip1—k

foreveryi=1,2,... andeveryk =1,...,m; + 1 —m;.

Proof Let S(n) = Z::é a;.
Fix a small ¢ > 0 with

§-¢

> &.
2

(We determine ¢ at the end of the proof.)
Choose a large enough N € N such that

1S(n)<§+£
n

forany n > N.
By our assumption, the upper and lower limits are different; hence, there is an
infinite sequence

N<n <n <m<n,<m<n,<...
1 1 2 2 3 3

such that
1 / 1 1A
Sn) <& +e<b—e< ,Sn)
n; n;

foreveryi =1,2,....
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Take an integer n; < m; < n;4 such that

SH) = Smy) _
k—m,- -

E—c¢

foreveryk =m; + 1,m42...,n;4 and

S(m;) — Sk
(m)=S® _, _,
m,'—k
forevery k = nj,n; +1,...,m; — 1.

This is a crucial point of the proof. Roughly speaking, m; is the index at which
S(k) — S(n;) — (k — n;) (€ — &) attains maximum when & runs over the setn; + 1, n; +
2,..., ni41 (Flg 31)

Claim

—-& -2 —& -2
§-§ Smi andmi—ni>S § 5m

i+1 — M >
i K+§& +e¢ K—§ —¢

Proof (of the claim) By the choice of m;, it is easy to see that
S(mi) = S(ny) = (m; —n)(€ — ).
Hence,

S(mi) = mi(§ —e).

S(n)

m ml m2 WI3 n

S(”ll)
(1, S(ny))

E+e

("2, S(”z )

("3, S(n3 )

E+eg

(l’l4, S("4))

Fig. 3.1 The choice of m;
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Since |a;| < K, we get the inequalities

niv1(E +¢€) > S(ni + 1) > S(m;) — K(nixr —m) = mi(§ — ) — K(niy1 —m

and
ni(& + &) + K(m; — n) > S(ny) + K(m; — ny) > S(m;) > my(§ — ¢).
Hence,
K(nipr —m;) > (§ —e)m; — (§ + &)nipy =
= (& — & —2e)m; + (&' + &) (m; — niy1)
and
K(m; —n;) > mi(§ —e) —ni(§' +¢) =
=mi(§ — & —2¢) + (£ + &) (m; — ny).
Therefore,

Thus, the claim is proved.
Let us pass to the proof of Lemma 3.2.3.
Itis obvious that fork = 1,2, ..., ni+1 — m;,

L (SOm ) = Som)) < — e
FOI'kZI’li_H —m; + 1,...,mi+1 —m;,
1 1
i SO+ 1K) = S(m)) < (i + K)(E + &) —mi(§ — &) =

; K+¢
:g+e+2st <.§+(1+2 +e +€)

£—§ -2

Note that in the third inequality we have used the above claim.
Similarly, fork = 1,2,...,m; —n;,

(S~ S(m — ) = £~

139

i)
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andfork =m; —n; +1,...,m; —m;—q,

1 1
i SOmi) =S(mi —k)) > (mi(§ — &) — (m; —k)(§ + &) =

=&+e— Zen]:i > &+ (1 — 2;{__;/__288) e.

Now choose ¢ small enough so that

K+¢&+e¢
142
(1020 e <t
and
K—-§¢—
min{§—£,§+(1—2§_§_2i)s} > £1.
This proves Lemma 3.2.3. O

A proof of the following lemma (in fact of its generalized version) is given at the
end of this section (see Lemma 3.2.5).

Lemma 3.2.4 (Liao’s Closing Lemma [36]) Let Ta M = E & F be a
continuous Df-invariant splitting. For any 0 < A < 1 and any ¢ > O there
is § > 0 such that for any A-quasi-hyperbolic string {x,n} of f in Ay(U) with
dist (f"(x),x) < 4, there is a periodic point p € M of f such that f"(p) = p and
dist (fi(p),fi(x)) <egforall0<i<n-—1.

In the following proposition, to simplify notation, we denote A (U), E® F, and
A by A, E @ F, and A, respectively. The next proposition is proved by applying
Lemmas 3.2.3 and 3.2.4.

Proposition 3.2.3 Let A be a compact f-invariant set, let 0 < A < 1 be given, and
assume that there is a continuous Df -invariant splitting TAM = E & F such that

H Df i

—1 2
' HDf\F(f(X)) ‘ <A

forany x € A.
Assume that there exists a pointy € A such that

n—1
. 1
logA <logi; = hrltIl)Solip ; ;log HDf‘E(fi(”) H <0
and

n—1
o1
11nn_1>101.3f i, ;log HDf‘E(f,-(y)) H < logA;.
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Then for any A, and Az with A < Ay < A1 < A3 < 1 and any neighborhood W
of A there is a hyperbolic periodic point q of index dim E such that O(q,f) C W,

k—1 w(g)—1

! r(g)—ct1
[ HDfIEX(ff(m) H =25, and ] HDf\ES(fi(m) H >4
i=0 i=k—1

forallk=1,2,...,7(q).

Furthermore, q can be chosen so that the period 1 (q) is arbitrarily large.

Our Theorem 3.2.1 follows from the next proposition (this kind of result was first
obtained in [109]).

Proposition 3.2.4 Let A be a compact f-invariant set, andlet0) < A < land L > 1
be given. Assume that f has the following properties (P.1)—(P.4).

(P.1) There is a homogeneous Df -invariant splitting TAM = E @ F such that

HDﬁE<x>

—1 2
' HDf\F(.f(X)) ‘ <A

forany x € A.
(P.2) There is a compact neighborhood U of A such that if g € Ar(U) N Per(f) and
w(q) > L, then

w(g)—1 m(g)—1

@ —1 @
l_[ HDf\ES(f'(q)) H <A™ and l_[ HD lE“(~i(q)) H <A™
i =0

i=0

(P3) A = Paime(f)-
(P.4) f has the standard shadowing property.

Then A is hyperbolic.

Proof Let A be a compact f-invariant set, let 0 < A < 1 and L > 0 be given, and
assume that f has properties (P.1)-(P.4). Let TyM = E®F be a Df-invariant splitting
as in (P.1) (recall that every dominated splitting is continuous). Thus, shrinking
the neighborhood U of A, we may assume further that there exists an extension
TaryM = E & F of the dominated splitting ToM = E @ F (see Lemma 3.2.2).

Let us prove that A is hyperbolic. Assuming that E is not contracting, we show
first that for any A < n < 1’ < I there is z € A¢(U) such that

' 1 n—1 )
‘ < logn < lim sup " Zlog HDfIE(ff'(z)) ‘ <logn'.
j=0

n—>o00

n—1

e

fimnf , 3 log 12150
<

After that, we derive a contradiction by applying Proposition 3.2.3.
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It is known that if there exists N > 0 such that for any x € A thereis 0 < n(x) <

N such that HDflrfE((X;)

Since E is not contracting, it is easy to see that there is yp € A such that

< 1, then E is contracting.

n—1
[T[2ecrom| = 1 foran n=1
j=0

(recall that A is compact).
Choose ¢ > 0 small enough with N(2¢, A) C U such that

(i) if dist(x,y) < & for some x,y € N(e, A), then
(1 , 1
‘ log HDf|E(x) || — log ”Df@(y) H‘ < min 2(log n —logn), 3 (logn —logA); .

Observe that item (i) follows from the continuity of E (recall that E a4 = E).

Since f has the standard shadowing property, there is 0 < § < & such that any
§-pseudotrajectory of f in M can be e-shadowed by a trajectory of f.

Denote the w-limit set of yy by wy(yo). It is well known that wy(yo) C A is an
f-invariant compact set, and for any neighborhood V = V(wr(y0)) of wr(yo) there is
N > 0 such that f"(yg) € V for any n > N. By the compactness, there exists a finite
set of points {xj}le in wr(yo) such that

l
o (v0) C | JN(8/2.x).

Jj=1

Since Pgim g(f) is dense in A, it is easy to see that for the chosen § there exists a
finite set of periodic points {pj}le C Paime(f) with dist(x;, pj) < g such that

{
oy (v0) C | JNG.py)

Jj=1

and thus, there is N’ > 0 such that

l
f"00) € | NG.py) € N(e, )

j=1
forany n > N'.
Assume that n > N’. Then
n—1 n—N'—1 N —1
[1 HDflE(ﬂow) ‘ = 11 HDflE(ﬂ(m) H 11 HDf\E(ff(yo)) H > 1.
j=0 j=N J=0
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Thus,

‘ Z e ki

n—l N'—1
I1 HDflE(fN/“‘f(yo)) H > I1 HDflE(ﬂow)
=0 =0
so that
1 ”‘11 _ kN
n 2(; o8 HDf‘E(fN/ﬂU’O)) H =
iz

Here K = max {|log | Df ()|
Hence,

log |IDf ' ()| : x € M}.

3

T = . KN\
(i) Timinf X(;log HDf‘E(fNur_,-(yO)) H = lim (=77 ) =o.
j=
We may assume that the period of p; satisfies the inequality 7 (p;) > L for any j,
and, finally, put

L

T = Hn(pj).

Jj=1

The set of periodic orbits

12
26 = Jowp;.N

J=1

forms a §-net of wy(yo), i.e., for any w € ws(yo), there is ¢ € £ 0 such that
dist(w,q) < &, and, conversely, for any g € &0, there is w € wy(yo) such that
dist(w, q) < 6.

Observe that for any for any g € Z0,

r—1
o 1 1
(iif) . Zlog )‘DﬁE(fj(q)) H < 2(log/\ + logn)
j=0
by the choice of § (see (P.2)).
We construct a §-pseudotrajectory {x;}iez C A of f composed of points of the

orbit O(yo,f) and of the set & by mimicking the procedure displayed in [109]
(the construction is by induction). Denote £V (yo) by yo for simplicity.

Step I Since yy € A, there is g;, € &2 such that dist(yo, g;,) < J. Set
X—1 = gj;—1, X=2 = gj;—=2, -+ X—g+1 = gjj—n+1,

X = Qs X—n—1 = Gji—15 X—z—2 = ;=2 ...
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Then dist(f(x—;), x—i+1) < & fori > 1, so that the negative part {x; i_=1_oo of {x;}iez
is constructed.

StepII Letn; = 1. Then

r—1

1 1

- nlg log HDﬁE(qlerj)H <2(logk+logn).
j=0

Obviously, this inequality is ensured by (iif).
Leti; = nym, putx; = gj,+; forj =0,1,...,ii —1 = 7 — 1, and put x; = yo.
Then dist(f(x;), xj+1) <6 forj=0,1,...,i; — 1, and

i1—1

1 1
) Zlog |Dfiecy || < 2(10g)k + log 7).

j=0
Put
o = 10g | Dy |
forj=0,1,...,i; — 1, and choose /; so that
1 i1—1 -1 1
P >4+ D log | Dfigcn]| | = , (logn +log ')
=0 =0
and
1 i1—1 -1 1
i+l > ai+ Y log|[Dfigron | | <, (ogn +logi)
=0 j=0

forany ! < [;.
The existence of /; is ensured by the choice of y, (recall the choice of yo and (ii)).
Set ji = i1 + I, let xy 41 = f(0). Xi42 = f2(00)s-. .. X1 = 17 () €
O(yOsf)’ and put

aj,+j = log HDﬁE(Xi1+j)

forj=0,1,...,; — 1.

Step III Let ir—1, ji—1, {Xi jl::(;_l, and {ai}jl::(;_l have been constructed in the
previous steps. Similarly with the choice of g;, and n;, we can choose g;, € Z 0 so



3.2 Diffeomorphisms in Int' (SSP)) Satisfy Axiom A 145
that
dist (f(,)» gix) < 6,

and a positive number n; such that

1 Jk—1—1 n—1 1

i Z aj + ng Zlog HDf\E(qjkﬂ) H < 2(10g)& + logn),
Jj=0 J=0
where i, = ji—1 + m7 (the existence of ny is ensured by (iii)). Let

Kjp—1+1 = Gjr+15 X142 = G425 -+ -5 X1+ = Gjis
Xjp—1+m+1 = Gjr+1> Xjp—+7+2 = Gje+25 - - -5

and x;, = f(xj,_,—1) € O(yo.f).
Obviously,

dist(f (X, +)s Xje_y +j+1) < O

forj=0,1,...,mmx — 1. Put

ajy_,+j = log HDf\E(Xjk_lﬂ)
forj=0,1,...,n -7 — 1, and choose [} so that

ixr—1 k—1
1

1
- D a4+ ) log “DﬁE(ff<x,-k>> ‘ > (logy +logn).
L N = 2

and

i—1 ]
1

1
it D+ ) log HDflE(ffu,-k» ‘ <, (logn +log)
= =0

for any [ < I.

The existence of /i is ensured by the fact that x;, € O(yo,f) (recall the choice of
yo and (if)).

Let jr = iy + I and let Xig+1 = f(xik),xik+2 = fz(xik), v Xjp—1 = flk—l(xik).
Finally, we put

i+ = log HDﬁE(ffuik»

forj=0,1,...,L; — 1.
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This completes the construction of {x;};,ez C A.
Roughly speaking, the §-pseudotrajectory {x;};cz looks as follows:

{"'a gzﬁs '@ﬁs yOsf(yO)vfz(yO)v ---sfll(yO)v L@ﬁv
s 20, " Do), L TR0, 20, 20, )

Recall that K = max {|log ||[Df (x)[||. | log [ Df "' (x)|l| : x € M}.
It is easy to see that

1 ik—1—1 1 Ji—1 1
i Z a; < 2(log)k + logn) and i Zaj > 2(10g7] + log 1)
Jj=0 j=0

foreveryk =1,2,...,and
n—1
1 1/1 ,
Zaj< (logn+logn)y(n—n)+K-7m
n = n\2

foreveryn > .

Hence,
1 n—1 1 1 n—1 1
. _ / o '
11£igpn;aj_ 2(10g77+10g77) and hnlggfn;ajf 2(10g)&+logn).

Let z € M be a point whose f-trajectory e-shadows {x;};cz (see (P.4)). Note that
O(z.f) C N(2e, A) C U. Thus, by the choice of ¢ (see (i)),

<log7'.

n—>o0

n—l n—1

.1 . 1

hnn_l)logfn Z; log HDfIE(ff(z)) ‘ < logn < limsup , Z;log HDf\E(ﬂ'(z))
Jj= Jj=

By Proposition 3.2.3, there is a hyperbolic periodic point g of index dimFE
such that O(g,f) C U and the derivatives along the trajectory O(q,f) satisfy the
inequalities

= . 7(g)—1
[[12fega] <7 and T [Dfiega| > 7@
=0 i=k—1

forallk =1,2,...,7(q).
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Furthermore, g can be chosen so that (g) is arbitrarily large, and thus we may
assume that 7w(¢) > L. This is a contradiction because

m(g)—1

[T [P | < A7

i=0

by (P.2). Applying a similar reasoning, we can show that F' is expanding, and thus,
A is hyperbolic. O
Now we give a proof of a generalization of Liao’s closing lemma (Lemma 3.2.4)
proved by Gan [20].
Recall that a definition of a A-quasi-hyperbolic orbit string

{x,f(x),fz(x), e sfn(x)}

with respect to a splitting of 7,M = E(x) ®F (x) has been given before Lemma 3.2.3.
Let {x;}2_., be a sequence of points in M and let {n;}72___ be a sequence of
positive integers Denote

i=—00

{onit = {f(x):0<j<nm—1}

The sequence {x;, n;}2_ is called a A-quasi-hyperbolic §-pseudotrajectory with
respect to splittings 7,,M = E(x;) @ F(x;) if for any i, {x;, n;} is A-quasi-hyperbolic
with respect to Ty, M = E(x;) ® F(x;) and dist (f" (x;), x;4+1) < 6.
A point x &- shadows {xi, nib 2 _ oo if
dist (F/(x).fN(x))) <& for N; <j<Niy1—1,
where V; is defined as follows:

0, if i=0;
Ni=7no+n +---+n—, if i>0;
ni+nip+---+n_ if i<O.

In the following result, it is assumed that A is a compact invariant set of
f € Diff! (M) and there is a continuous Df-invariant splitting TAM = E @ F, i.e.,
Df(x)(E(x)) = E(f(x)) and Df (x)(F(x)) = F(f(x)).

Lemma 3.2.5 (Generalized Liao’s Closing Lemma [20]) Forany 0 < A < 1
there exist L > 0 and &9 > 0 such that for any 0 < § < & and any
A-quasi-hyperbolic §-pseudotrajectory {x;,n;}?2_., with respect to the splitting
TAM = E @ F there exists a point x that L§-shadows {x;,n;}?2__,. Moreover, if
the sequence{x;, n;j}32_ . is periodic, i.e., there exists an m > 0 such that X;,, = X;
and niy,, = n; for all i, then the point x can be chosen to be periodic with period
Ny
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Proof Let (X, || - ||) be a Banach space and let
X)) ={veX:|vll=ny n>0.

If X is the direct sum of two closed subspaces E and F, i.e., X = E @ F, then the
angle between E and F is defined as

LZ(E,F)=inf{|lu—v| :(ueE,veF,|ul|=1) or e E,veF,|v|=1}

Since E and F are closed, 0 < Z(E,F) < 1. O
The following lemma is well known (e.g., see [64]); we give a proof for complete-
ness.

Lemma 3.2.6 In the above notation, assume that X = E®F and Z(E,F) > o > 0.
Let L : X — X be a linear automorphism of the form

A B
L= E®F—>E®F
(CD) OF—>E®

such that
max{[|A]. [D7'[} <A and max{|B|.||C|} <&

forsome 0 < A < 1ande > 0.

If

o264
Y T

then I — L is invertible, and

1+A

-1 _ =
[0=D7 T =sR=RO200= (231 —epy

A0 0B
Proof PutJ = (OD) and K = (CO).Then

o (u=a)"" 0
a0 = 0 o)

and -0y =

1
la-a) <! b

A, ’
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IfueE,v € Fand |u+ v| = 1, then, by the definition of Z(E, F),

1= |lu+v| = ZE F)llull = aful and u + v = «|v].

Thus,
_ _ _ 1+A
I =N+ )l < 10 =A) " ull + 10 =D)" "ol < :
a(l—24)
and hence,
1+A
-7 < :
la=n7= 0
A similar reasoning shows that
2¢
Ikl <.
o
Since
2e(14+A)
= 1
T -2y "

by assumption, I —L = (I-J)—K = (I-J)(I—(I—J)"'K) and |(I-J)"'K| < &;.
Hence, I — L is invertible, and

-~ =la-n"'a—a-HT"K)| <R,

which proves our lemma. O
The sequence version of the shadowing lemma is derived from the following

fixed point result. For completeness, we give a proof following the method of [64].
In the next proposition, we denote

1+ 24

R=R* €)= a—na—-e)

L =2R, and §y = i
L

for0 <A <1,0 <a <1,and € > O such thate; = ffz((llti; <landn > 0.

The minimal Lipschitz constant of a map ¢ is denoted by Lip ¢.

Proposition 3.2.5 If0 < § < 8y and ® = N + ¢ : X(n) — X, where N is a linear
automorphism of the form

AB
N = EQF ->EDF
(£5):For—ro



150 3 C!Interiors of Sets of Systems with Various Shadowing Properties
such that
max{[|A[l, ID7']}} < A,
max{[|B[| |C[|} < e.
Z(E,F)>a,Lipp < i, and ||¢(0)|| < 8, then @ has a unique fixed point z in X(n)

such that ||z|| < Lé.
Proof By Lemma 3.2.6, — N is invertible. Let

H=(I-N)"¢:X(n) — X.

The set of fixed points of H in X(7) coincides with the set of fixed points of @ in
X(n). If x € X(L§), then

[H@)[ = [[H(0) + (H(x) = H0))|| =

= T=NTp O + [ =N)"HpE) — O] <
<RS+RLS = LS.

Thus, H maps X (L§) to X(L$).
If x,y € X(n), then

IHG) —~ HO) = 1007 @0 — ol =R eyl = 1 @)

Hence, the map H : X(L§) — X(LJ) is contracting. Therefore, H has a unique
fixed point z in X(L§). Moreover, if 7 € X () is another fixed point of H, then z = 7/
by (3.7). O

In the following proposition, let X; = R" for integer i (where v = dim M) and
we assume that X; = E; @ F;. Let

be endowed with the supremum norm

vl = sup{lvil}, v = (vi).

Thus, Y is a Banach space.

We consideramap @ : Y — Y of the form (@ (v));+1 = ®;(v;), where @, : X; —
Xit1.

Applying Proposition 3.2.5to @ : Y — Y, we obtain the sequence version of the
shadowing lemma for hyperbolic pseudotrajectories in the following way.
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Proposition 3.2.6 Let us assume that conditions of Proposition 3.2.5 are satisfied
and use the above notation.
If 0 <6 <8pand @ : Y(n) — Y has the form

D =L + ¢ : Xi(n) = Xit1,

where
L= A; B;
Ci D;
with respect to the splitting X; = E; @ F; such that Z(E;, F;) > «,

_ . 1
max{[Aill, D7} < &, max{|[Bill. |Cill} <€, Lip¢ < L

and ||¢;(0)|| <6, then @ has a unique fixed point v € Y(n), and ||v|| < LS.
We need one more technical lemma. Fix 0 < A < 1.
A pair of sequences {a;, b;}_, of positive numbers is called A-hyperbolic if a; <
Aand by > A7 fork=1,2,....,n.
A pair of sequences {a;, b;}’_, of positive numbers is called A-quasi-hyperbolic
if the following three conditions are satisfied:

(M) Tz @ < A%

@) T by = A

() bifay = A7
fork=1,2,...,n.

A sequence {c;}"_, of positive numbers is called a balance sequence it

k n
=1 for k=12...n—=1 and [[e=1
=1 j=1

J

A balance sequence {c;}"_, is called adapted to a A-quasi-hyperbolic sequence
pair {a;, bi}l_, if {ai/ci,bi/ci}}—, is still A-quasi-hyperbolic. Moreover, if
{ai/ci, bi/ci}l—, is A-hyperbolic, then {c;}"_, is called well adapted.

If a balance sequence {c;}/_, is adapted to a A-quasi-hyperbolic sequence pair
{ai, bi}'_,, then we say that {a;/c;, b;/ci}l_, is derived from {a;, bi}!_, . If {a;, l_ai}l'f:l
is derived from {a;, b;}"_, and {@;, b;}"_, is derived from {a;, b;}"_, then {&;, b;}"_,
is derived from {a;, b;}’_, as well.

Lemma 3.2.7 Let 0 < A < 1. Then any A-quasi-hyperbolic pair of sequences
{ai, bi}i_, has a well adapted sequence {c;}'_,.

Proof First we show that {a;, b;}/_, has an adapted sequence {c;}/_, such that
aifci < Aforl <i<n.
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To get a contradiction, assume that
N = max{k : there exist {c;}/—, suchthat a;/c; <A,1=<i<k} <n.
Obviously, N > 1. Assume that {ci}?_, is such an adapted sequence. Let a; = a;/c;,

bl‘ = bi/Ci, i = 1,2,...,1’!. ThenZlN+1 > A.
Since ]_[f\:;l a; < ANt1 there exists 1 < m < N + 1 such that

N+l N+1
[Jai>A"""* for k=m+1.....N+1 and []a <AV
i=k i=m

Let¢;=ai/Afori=m+1,... . N+ land¢;=1fori <mandi> N+ 1.

Then {c;}/_, is a balance sequence. Let a; = a;/¢;and b; = b;/cifor1 <i<n

—1 _
and put ¢, = (]_[f\:;an Ei) .Obviously,a; = Aform+1<i<N+1,

= - - _ N+l -
am = le/Cm = dam (l_[i=m+l Ci) =

i (l—lgv:4;r3+l ai) A= N—m+1) — (I'I,NS,J g,i) A—N-mtD) < g

I
Qi

and b; = b;/¢; = Ab;/a; > A" form+ 1 <i <N + 1.

Thus, one can easily check that {a;, 1_9,-}:.’21 is a A-quasi-hyperbolic pair which is
derived from {a;, b;}_,. But a < Aforl <i < N+ 1, which contradicts the
maximality of N.

Similarly, {a;, b;}’_, has an adapted sequence {c;}?_, such that b;/c; > A~! for
1 < i < n. In what follows, we assume that {g;, b;}'_, itself has the property that
b; > A7 for 1 < i < n. We will repeat the proof of the above paragraph to show
that a well adapted sequence exists.

Let

N = max{k : there exist {c;}/—_, such that
aifci <A, 1 <i<k, andb;/c; > A,1 <i<n}<n.

Now we can copy the proof of the first paragraph word by word and only have to
show that b,, > A~!L. Since &,, < 1, this is obvious. O

Remark 3.2.2 If {c;}?_, is a well adapted sequence of {a;, b;}'_,, then a;/c; < A
and b;/c; > A™'. Hence, a; < a;/A < c¢; <bA <b;fori=1,2,...,n.

We prove Lemma 3.2.5 (the generalized Liao’s closing lemma) by combining
Proposition 3.2.6 and Lemma 3.2.7.

Let Gi(x), x € M, be the Grassmann manifold of k-dimensional subspaces of the
tangent space T(M). Denote by G;(M) the bundle {G(x) : x € M} and consider a
metric p on G(M) (we do not indicate the dependence of p on k).
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The following lemma is an easy corollary of well-known properties of the
exponential map.

Lemma 3.2.8 For any «, ¢, T, ¥y > 0 there exists n > 0 such that if x,y € M,
T:M = E(x) @ F(x), yM = E(y) @ F(y),

min{Z(E(x), F(x)), Z(Ey. Fy)} > a,
and
max{p(Df ()E(x), E(y)), p(Df () F (x), F(y)} < 1,
then the map
@ = expy_l of oexp, : T.M(n) = T,M

can be written as @ = L + ¢, where

L= (‘é g) with respect to the splittings E(x) @ F(x) and E(y) @ F(y),

l1—1< 4] <1+4r,
| D | |
111

< P
m (Df |rw)

max{||B|.||C||} <&, and Lip¢ <y.

Proof of Lemma 3.2.5 Let {x;, n;}* be a A-quasi-hyperbolic pseudotrajectory with
respect to the splitting TyM = E @ F. Denote

K = SEE{IIDJ‘(X)II, IDF~' (oI} and a = inf Z(E(x), F(x)) > 0.

oo

We first show that there exists a point z that e-shadows {x;, n;}2__, i.e.,

dist (f/(2).f/ N (x;)) <& for Ni <j<Niys—1,
where
0 if i=0;

Ni=44ng+n +---+n—y if i>0;
ni+nip+---+n_ if i<O.
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Let y; = f/~Ni(x;) for N; < j < Ni11 and denote X; = T,,M, E; = E(y;), and
Fj = F(y).

Put u = HZ'A and r = /A and take & > 0 such that
2e(1
&1 = 8( +M) < 1.
a?(1—p)

LetR = R(u,e,a), L =2R,and g, = ¢/K.
Since the splitting ToM = E @ F is continuous, it follows from Lemma 3.2.7

that if » > 0 is small enough and {yj};vz’f\,‘i is A-quasi-hyperbolic n-pseudotrajectory,
then the map

® = expy’}, of oexp, : X;(1) = X

has the form @; = L; + ¢;, where

A; B;
L:( J ])ZE'@F'%E'+1@F'+1
J qD] J J J J

andLipg; < ;.
Ile fj < Ni+l - 1, then (]SJ(O) = 0, Bj = Cj = O, Aj = Df|E/, and Dj = DfIF_]
Ifj = Ni+1 — 1, then

max{||B;ll, IGill} < &2, 4]l < rlIDf|gll, and | D7 < rm(Df|r)~".

Let § = n/L and fix 0 < & < &o. If {x;,n;}°%, is a quasi-hyperbolic

§-pseudotrajectory, then [|¢;(0)|| < §. Thus, {||Aj||,m(Dj)};\’:"w;vl.—l is a p-quasi-
hyperbolic pair of sequences. Hence, there is a well adapted sequence {hj};vz"f\,li_l,

ie.,

k Nit1—1
[[hi<t for k=Ni.....Niyy—2 and [ =1
J=Ni J=Ni

where [l< <hi <K
Let & = [Timn, i Lj = 17'Ly, ¢5(x) = &7 ¢i(gj~1(x)) (note that gy,— = 1),
and @; = L; + ¢;. Denote

q/qujjo---O@Ni and 4}1243/00451\/

i

Then ¥ = g7'¥.
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Note that gy, ,—1 = 1 and l1~/N.

=1 = WNiJrl_l. Thus,

Lip¢; = g 'Lip¢jgj—1 = h; 'Lip¢; < KKIL = i
¢;(0) = ¢;(0) = 0 forj = N;,...,Niy1 — 2, and ¢;(0) = gj_1¢3i(0) = ¢;(0) for
Jj=Niy1 —1lsince g; = 1.

Hence, by Proposition 3.2.6, & = {qu} 2 Y(n) — Y (where Y = [[2_ X))
has a unique fixed point ¥ = {9;}, and ||0|| < L§. Let vy, = vy, and for N; < j <
Niy1 — 1, define v = <,~_1(vj_1) inductively.

To guarantee that this is possible, let us check that ||v;|| < L§. Since

v = Wi (oy) = g1 %1 = g7,

we have the inequalities [|v;]| < ||v;|| < Lé.
Since

UNiyy = 5Ni+1 = qjNi+1—1(vNi) = lI/Ni+l_1(vNi) = ®N,-+1—1(UN,-+1—1),

v is a fixed point of @, and ||v| < L§. Then the f-trajectory of the point z =
exp,, (vo) L3-shadows {y;}. This proves the first conclusion of Lemma 3.2.5.
Now we assume that the sequence {x;, n;}{2_ is periodic, i.e., there exists an
m > 0 such that x;4+,, = x; and n;,, = n; for all i.
Define w by (W); = (9)w,,,- Since ¥ and w are fixed points of @ inY(LS), o =w

by Proposition 3.2.6. Thus, v = w, and z has period N,,. O

Historical Remarks The theory involving a selection of some special kinds of A-
quasi-hyperbolic strings has its origins in the works of V. A. Pliss [73] and S. T.
Liao [36].

The notion of A-quasi-hyperbolic string and Liao’s closing lemma played an
essential part in the solution of the stability conjecture in [45].

3.3 Vector Fields in Int! (OrientSPy \ %)

To formulate our main results in the last two sections of Chap. 3, we need one more
definition.

Consider a smooth vector field X on a smooth closed manifold M.

Let us say that a vector field X belongs to the class Z if X has two hyperbolic
rest points p and g (not necessarily different) with the following properties:

(1) The Jacobi matrix DX(g) has two complex conjugate eigenvalues (1, = a; +
ib; of multiplicity one with a; < 0 such that if A # pu;, is an eigenvalue of
DX(g) with ReA < 0, then ReA < ay;
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(2) the Jacobi matrix DX ( p) has two complex conjugate eigenvalues vy, = a,£ib,
with a; > 0 of multiplicity one such that if A # v, , is an eigenvalue of DX(p)
with Red > 0, then Red > a5;

(3) the stable manifold W*(p) and the unstable manifold W*(g) have a trajectory
of nontransverse intersection.

Clearly, vector fields X € % are not structurally stable.

Condition (1) above means that the “weakest” contraction in W*(g) is due to the
eigenvalues (11> (condition (2) has a similar meaning).

The main result of this section is as follows.

Theorem 3.3.1
Int' (OrientSPp \ ) C S. (3.8)

It follows from Theorem 1.4.1 (2) that .%» C SSPp; since the set .%% is C'-open
and SN % =0,

Sr C Int' (SSPr \ &) C Int! (OrientSPr \ A).
Combining this inclusion with (3.8), we see that
Int' (OrientSPy \ &) = 7.
Proof The proof of inclusion (3.8) is based on Theorem 1.3.13 (2):
Int'(KSp) = %%

(recall that KSp is the set of Kupka—Smale vector fields).
Thus, in fact, we are going to prove that

Int! (OrientSPy \ 2) C KSg. (3.9)

Before proving inclusion (3.9), we introduce some terminology and notation.

The term “transverse section” will mean a smooth open disk in M of codimension
1 that is transverse to the flow ¢ at any of its points.

Let, as above, Per(X) denote the set of rest points and closed orbits of a vector
field X.

Recall (see Sect. 1.3) that we have denoted by HP the set of vector fields X for
which any trajectory of the set Per(X) is hyperbolic. Our first lemma is valid for the
set OrbitSPy (which is, in general, larger than OrientSPr); we prove it in this, more
general form, since it can be applied for other purposes.

Lemma 3.3.1

Int' (OrbitSPr) C HPf. (3.10)
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Proof To get a contradiction, let us assume that there exists a vector field X €
Int' (OrbitSPr) that does not belong to HPz, i.e., the set Per(X) contains a trajectory
p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with R” in a
neighborhood of p. Applying an arbitrarily C'-small perturbation of the field X, we
can find a field Y € Int' (OrbitSP) that is linear in a neighborhood U of p (we also
assume that p is the origin of U).

(Here and below in the proof of Lemma 3.3.1, all the perturbations are C'-small
perturbations that leave the field in Int' (OrbitSPr); we denote the perturbed fields
by the same symbol X and their flows by ¢.)

Then trajectories of X in U are governed by a differential equation

i = Px, @3.11)

where the matrix P has an eigenvalue A with ReA = 0.
Consider first the case where A = 0. We perturb the field X (and change
coordinates, if necessary) so that, in Eq. (3.11), the matrix P is block-diagonal,

P = diag(0, Py), (3.12)

and Py isan (n — 1) x (n — 1) matrix.
Represent coordinate x in U as x = (y, z) with respect to (3.12); then

o(1. (y.2)) = (v.exp(P11)2)

inU.

Take ¢ > 0O such that N(4e,p) C U. To get a contradiction, assume that X €
OrbitSP; let d correspond to the chosen e.

Fix a natural number m and consider the following mapping from R into U:

y = —2e¢, 7z=0; t<0;
g)=qy=-"2e+1t/m, z=0; 0<t<dme;
y =2, 7z=0; 4me<t.

Since the mapping g is continuous, piecewise differentiable, and either y = 0 or
y = 1/m, g is a d-pseudotrajectory for large m.
Any trajectory of X in U belongs to a plane y = const; hence,

dist (CL(O(g, $)), Cl({g(1) : 1 € R})) = 2¢

for any ¢. This completes the proof in the case considered.
A similar reasoning works if p is a rest point and the matrix P in (3.12) has a pair
of eigenvalues +ib, b # 0.
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Now we assume that p is a nonhyperbolic closed trajectory. In this case, we
perturb the vector field X in a neighborhood of the trajectory p using the perturbation
technique developed by Pugh and Robinson in [77]. Let us formulate their result
(which will be used below several times).

Pugh-Robinson Pertubation Assume that r| is not a rest point of a vector field X.
Let r, = ¢(t,r1), where T > 0. Let X1 and X, be two small transverse sections
such thatr; € X;,i = 1,2. Let 0 be the local Poincaré transformation generated by
these transverse sections.

Consider a point ¥’ = ¢ (', r), where t' € (0,1), and let U be an arbitrary
open set containing r'.

Fix an arbitrary C' neighborhood F of the field X.

There exist positive numbers &y and Agy with the following property: if ¢’ is a
local diffeomorphism from the Ag-neighborhood of r1 in X\ into X, such that

distc1(0,0") < &g,

then there exists a vector field X' € F such that

(1) X' = X outside U;
(2) o’ is the local Poincaré transformation generated by the sections Xy and X,
and trajectories of the field X'.

Let w be the least positive period of the nonhyperbolic closed trajectory p. We
fix a point & € p, local coordinates in which r is the center, and a hyperplane X of
codimension 1 transverse to the vector F(;r). Let y be coordinate in X

Let o be the local Poincaré transformation generated by the transverse section
XY'; denote P = Do (0). Our assumption implies that the matrix P is not hyperbolic.
In an arbitrarily small neighborhood of the matrix P, we can find a matrix P’ such
that P’ either has a real eigenvalue with unit absolute value of multiplicity 1 or a
pair of complex conjugate eigenvalues with unit absolute value of multiplicity 1. In
both cases, we can choose coordinates y = (v, w) in X in which

P’ = diag(Q. Py), (3.13)

where Qisal x 1 or 2 x 2 matrix such that |Qu| = |v| for any v.

Now we can apply the Pugh-Robinson perturbation (taking r; = r, = 7 and
Y = X, = X) which modifies X in a small neighborhood of the point ¢(w/2, )
and such that, for the perturbed vector field X’, the local Poincaré transformation
generated by the transverse section X is given by y > P'y.

Clearly, in this case, the trajectory of 7 in the field X’ is still closed (with some
period @’). As was mentioned, we assume that X’ has the orbital shadowing property
(and write X, ¢, w instead of X', ¢, @").

We introduce in a neighborhood of the point 7 coordinates x = (x,y), where
x' is one-dimensional (with axis parallel to X(5r)), and y has the above-mentioned

property.
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Of course, the new coordinates generate a new metric, but this new metric is
equivalent to the original one; thus, the corresponding shadowing property (or its
absence) is preserved.

We need below one more technical statement.

LE (Local Estimate) There exists a neighborhood W of the origin in X and
constants 1, 8y > 0 with the following property: If z1 € XNO\W and |25—z1| < § < 8o,
then we can represent z as ¢(t, z5) with z, € X and

2], |z —z1] < 16. (3.14)

This statement is an immediate corollary of the theorem on local rectification
of trajectories (see, for example, [8]): In a neighborhood of a point that is not a
rest point, the flow of a vector field of class C! is diffeomorphic to the family of
parallel lines along which points move with unit speed (and it is enough to note
that a diffeomorphic image of X' is a smooth submanifold transverse to lines of the
family).

We may assume that the neighborhood W in LE is so small that fory € ¥' N
W, the function a(y) (the time of first return to X) is defined, and that the point
¢ (x(v,w), (0, v,w)) has coordinates (Qv, Pyw) in X.

Let us take a neighborhood U of the trajectory p such that if » € U, then the first
point of intersection of the positive semitrajectory of r with X' belongs to W.

Take a > 0 such that the 4a-neighborhood of the origin in X is a subset of W.
Fix

& < min (80, Zl) ,

where &y and [ satisfy the LE. Let d correspond to this ¢ (in the definition of the
orbital shadowing property).
Take yo = (v, 0) with |vg| = a. Fix a natural number v and set

o= ((];kao,O)), kel0,v—1),

Bo=0, Br=oar+- -+,
and

$(1,(0,0,0)), 1<0;
g) =1 ¢ (t—Br. (0.5 0o, 0)),  Br <t < Big1. ke[0,v—1);
¢ (t =By, (0,0"v9,0)), t> B

Note that for any point y = (v, 0) of intersection of the set {g(¢) : r € R} with X,
the inequality |v| < a holds. Hence, we can take a so small that

NQa,Cl({g(t) : t € R})) C U.
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Since

a

k k+1
Qk+1v0_ Qk+lv0 — § — 0’ v — 00,

Vv v

g(?) is a d-pseudotrajectory for large v.
Assume that there exists a point g such that

disty (C1(O(g, ¢)).Cl({g(r) : t € R})) < e.
In this case, O(g, ¢) C U, and there exist points g1, g» € O(g, ¢) such that
lg1] = g1 —(0,0,0)[ <&

and

|512 - (07 vi()vo)l <é.
By the choice of ¢, there exist points ¢/, g5 € O(q, ¢) N X such that
lq| <le <a/4 and |qy—Q"vo| <le <a/4.

Let g; = (0,v;,w;) and ¢, = (0, v2, w»). Since these points belong to the same
trajectory that is contained in U, |v;| = |v,|. At the same time,

lvi| <a/4, |va—Q"vo| <a/4, and |Q"vo| = a,

and we get a contradiction which proves Lemma 3.3.1. O
To complete the proof of Theorem 3.3.1, we show that any vector field

X € Int' (OrientSPy \ %)

has the second property from the definition of Kupka—Smale flows, i.e., stable and
unstable manifolds of trajectories of the set Per(X) are transverse.
Then

Int' (OrientSPy \ &) C KSg;

hence, inclusion (3.9) is valid.

To get a contradiction, let us assume that there exist trajectories p, g € Per(X) for
which the unstable manifold W*(g) and the stable manifold W*( p) have a point r of
nontransverse intersection. We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow ¢.
Case (B2): either p or g is a closed trajectory.
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Case (B1) Since X ¢ %, we may assume (after an additional perturbation, if
necessary) that the eigenvalues Aj,...,A, with ReA; > 0 of the Jacobi matrix
DX (p) have the following property:

Red;> A1 >0, j=2,...,u

(where u is the dimension of W*( p)). This property means that there exists a one-
dimensional “direction of weakest expansion” in W*( p).

If this is not the case, then our assumption that X ¢ % implies that the
eigenvalues fi1,..., s with Reu; < 0 of the Jacobi matrix DX(g) have the
following property:

Rep; <y <0, j=2,...,s

(where s is the dimension of W*(g)). If this condition holds, we reduce the problem
to the previous case by passing from the field X to the field —X (clearly, the fields X
and —X have the oriented shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the
perturbed field belongs to the set OrientSP \ %), we may “linearize” the field X
in a neighborhood U of the point p; thus, trajectories of X in U are governed by a
differential equation

x = Px,
where
P = diag(P,,P,), P, =diag(A,P;), A >0, (3.15)

Pyisa (u—1) x (u— 1) matrix for which there exist constants K > 0 and u > A
such that

| exp(=P11)|| < K~ exp(—put), t>0, (3.16)

and ReA; < 0 for the eigenvalues A; of the matrix P;.

Let us explain how to perform the above-mentioned perturbations preserving
the nontransversality of W“(q) and W*(p) at the point r (we note that a similar
reasoning can be used in “replacement” of a component of intersection of W*(q)
with a transverse section X' by an affine space, see the text preceding Lemma 3.3.2
below).

Consider points r* = ¢(z, r), where T > 0, and ¥ = ¢(z’, r), where v’ € (0, 7).
Let X and X'* be small transverse sections that contain the points r and r*. Take
small neighborhoods V and U’ of p and r/, respectively, so that the set V does not
intersect the “tube” formed by pieces of trajectories through points of U’ whose
endpoints belong to X' and X'*. In this case, if we perturb the vector field X in V and
apply the Pugh-Robinson perturbation in U’, these perturbations are “independent.”
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We perturb the vector field X in V obtaining vector fields X’ that are linear in
small neighborhoods V/ C V and such that the values p; (X, X’) are arbitrarily small.

Let y; and y;" be the components of intersection of the stable manifold W*(p)
(for the field X) with X' and X* that contain the points r and r*, respectively.

Since the stable manifold of a hyperbolic rest point depends (on its compact
subsets) C'-smoothly on C!-small perturbations, the stable manifolds W*(p) (for
the perturbed fields X’) contain components y; of intersection with X'* that converge
(in the C' metric) to y*.

Now we apply the Pugh-Robinson perturbation in U’ and find a field X’ in
an arbitrary C! neighborhood of X such that the local Poincaré transformation
generated by the field X and sections X and X* takes y/ to y, (which means that
the nontransversality at r is preserved).

We introduce in U coordinates x = (y; v, w) according to (3.15): y is coordinate
in the s-dimensional “stable” subspace (denoted E*); (v, w) are coordinates in the
u-dimensional “unstable” subspace (denoted E*). The one-dimensional coordinate
v corresponds to the eigenvalue A (and hence to the one-dimensional “direction of
weakest expansion” in E").

In the neighborhood U,

o(t, (y,v,w)) = (exp(P;t)y; exp(Ar)v, exp(PiH)w) ,
and it follows from (3.16) that
lexp(Pif)w| > K exp(un)lw], 1> 0. (3.17)

Denote by Ef the one-dimensional invariant subspace corresponding to A.

We naturally identify E° N U and E* N U with the intersections of U with the
corresponding local stable and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow ¢. We may assume that
the point r of nontransverse intersection of W*(g) and W*(p) belongs to U. Take
a hyperplane X’ in E* of dimension s — 1 that is transverse to the vector X(r). Set
Y = X' + E% clearly, X is transverse to X(r).

By a perturbation of the field X outside U, we may get the following: in a
neighborhood of r, the component of intersection W¥(g) N X containing r (for the
perturbed field) has the form of an affine space r 4+ L, where L is the tangent space,
L =T,(W"(g)N Y), of the intersection W"(g) N X' at the point r for the unperturbed
field (compare, for example, with [33]).

Let X, be a small transverse disk in X' containing the point . Denote by y the
component of intersection of W*(g) N X, containing r.

Lemma 3.3.2 There exists € > 0 such that if x € X, and
dist (p(t,x),0 (r,¢)) <e, =<0, (3.18)

then x € y.
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Proof To simplify presentation, let us assume that g is a rest point; the case of a
closed trajectory is considered using a similar reasoning.

By the Grobman—Hartman theorem, there exists &9 > 0 such that the flow of X
in N(2¢e0, g) is topologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of g, W}, .(q), with the
boundary of the ball N(2¢y, g).

Take a negative time 7 such that if s = ¢ (T, r), then

¢(t,s) € N(eo,q), t=0. (3.19)
Clearly, if g¢ is small enough, then the compact sets A and
B={¢@t.r): T<1=0}

are disjoint. There exists a positive number €; < &g such that the &;-neighborhoods
of the sets A and B are disjoint as well.

Take &, € (0, &1). There exists a neighborhood V of the point s with the following
property: If y € V \ W} (g), then the first point of intersection of the negative
semitrajectory of y with the boundary of N(2¢gy, ¢) belongs to the e,-neighborhood
of the set A (this statement is obvious for a neighborhood of a saddle rest point of a
linear vector field; by the Grobman-Hartman theorem, it holds for X as well).

Clearly, there exists a small transverse disk X containing s and such thatif y €
X5 N W (g), then the first point of intersection of the positive semitrajectory of y
with the disk X, belongs to y (in addition, we assume that X'y belongs to the chosen
neighborhood V).

There exists ¢ € (0,&; — &2) such that the flow of X generates a local Poincaré
transformation

o: X, NN(er)— X

Let us show that this ¢ has the desired property. It follows from our choice of X
and (3.18) with ¢ = 0 that if x ¢ y, then

yi=0(x) € X\ W, .(q):

in this case, there exists T < 0 such that the point z = ¢(z,y) belongs to the
intersection of N(g3,A) with the boundary of N(2¢y, g). By (3.19),

dist(z, ¢ (2,5)) > g9, t=<0. (3.20)
At the same time,
dist(z, ¢(t,7)) > &1 —&2, T <t=<0. (3.21)

Inequalities (3.20) and (3.21) contradict condition (3.18). Our lemma is proved. O
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Now let us formulate the property of nontransversality of W*(g) and W*(p)
at the point r in terms of the introduced objects. Recall that we work in a small
neighborhood U of the rest point p identified with the Euclidean space R".

Let IT" be the projection to E* parallel to E*.

The transversality of W"(q) and W*(p) at r means that

T,W*(q) + T,W*(p) = R".

Since X is a transverse section to the flow ¢ at r, the above equality is equivalent to
the equality

L+ E =R"
Thus, the nontransversality means that
L+E #R",
which implies that
L' .= IT"L # E". (3.22)

We claim that there exists a linear isomorphism J of X' for which the norm ||J —
Id|| is arbitrarily small and such that

mn"JjLn Ey = {0}. (3.23)
Let e be a unit vector of the line EY. If e ¢ L', we have nothing to prove (take J = Id).
Thus, we assume that e € L’. Since L' # E", there exists a vector v € E* \ L.

Fix a natural number N and consider a unit vector vy that is parallel to Ne + v.
Clearly, vy — e as N — oo. There exists a sequence Ty of linear isomorphisms of
E" such that Tyvy = e and

Ty —1d|| = 0, N — oo.
Note that 7, leis parallel to vy; hence, Ty, le does not belong to L', and
TyIT"L N EY = {0}. (3.24)
Define an isomorphism Jy of X' by
In(.2) = (3. Tyz)

and note that

|y —1d|| = 0, N — oo.
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Let Ly = JyL. Equality (3.24) implies that
"Ly N EY = {0}. (3.25)

Our claim is proved.

First we consider the case where dimE" > 2. Since dimL’ < dimE" by (3.22) and
dimE{ = 1, our reasoning above (combined with a Pugh-Robinson perturbation)
shows that we may assume that

L' NE" = {0}. (3.26)

For this purpose, we take a small transverse section X’ containing the point ' =
¢(—1,r), denote by y the component of intersection of W"(g) with X’ containing
¥/, and note that the local Poincaré transformation o generated by X’ and X takes y
to the linear space L (in local coordinates of X). The mapping oy = Jyo is C'-close
to o for large N and takes y to Ly for which equality (3.25) is valid. Thus, we get
equality (3.26) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if (y; v,w) €
r + L, then

lv] < Clw|. (3.27)
Fix a > 0 such that N(4a,p) C U. Take a point « = (0;a,0) € E{ and a

positive number T and set ar = (ry; aexp(—AT), 0), where r, is the y-coordinate of
r. Construct a pseudotrajectory as follows:

_)e@r)., t=0;
8) = ot ar), t>0.

Since
|r —ar| = aexp(—AT) — 0

as T — oo, for any d there exists T such that g is a d-pseudotrajectory.

Lemma 3.3.3 Assume that b € (0, a) satisfies the inequality
i a
logK —log C + (A - 1) (log ) —logb) > 0.

Then for any T > 0, reparametrization h, and a point s € r + L such that |[r—s| < b
there exists T € [0, T] such that

WM@%Q—g&Hz;.
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Proof To get a contradiction, assume that
(.9 —g@| < . Te0.T] (3.28)
Let s = (yo: vo, wg) € r + L. Since |r —s| < b,
[vo| < b. (3.29)
By (3.28),
¢(h(z),s) e U, t€][0,T].
Take t = T in (3.28) to show that
[vol exp(A(T)) > .
It follows that
W(T) > 27! (log;l ~log |v0|) . (3.30)
Set 6(t) = | exp(P1h(t))wol; then 8(0) = |wy|. By (3.27),
[vo| < CH(0). (3.31)
By (3.17),
O(T) = K exp(uh(T))60(0). (3.32)
We deduce from (3.29)—(3.32) that
(ZQ(T)
a

log ) > log 0(T) — log |vg exp(AR(T))| >

> log K + log 6(0) — log |vg| + (& — A)A(T) >

= logK —log €+ (% 1) (5 —loguol) =

> log K — log C + (’; ~1) (‘2’ ~logh) > 0.

We get a contradiction with (3.28) for t = T since the norm of the w-coordinate
of ¢p(h(T),s) equals 8(T), while the w-coordinate of g(7) is 0. The lemma is
proved. O
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Let us complete the proof of Theorem 3.3.1 in case (B1). Assume that /, §o > 0
are chosen for X' so that the LE holds.

Take ¢ € (0, min(3o, &0, a/2)) so small that if dist(y,r) < e, then ¢(¢,y)
intersects X' at a point s such that

dist(¢(z,5),r) < &9, |t] <le. (3.33)

Consider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist(¢ (h(r), %), g(1)) < e, teR, (3.34)

for some point x and reparametrization 4 and set y = ¢ (h(0), x).
Then dist(y, r) < &, and there exists a point s = ¢(z,y) € X with || < [s.
If —le <t <0, then

dist(¢ (2, 5), O~ (r,¢)) < &0

by (3.33).
If t < —le, then h(0) + © + t < h(0), and there exists ¥ < 0 such that (') =
h(0) 4+ t + ¢. In this case,

p(1.5) = p(h(0) + T + £,.x) = ¢(h().x),

and

dist (¢(t,5), 0~ (r. ¢)) < dist (p(h().x), p(7. 1)) < &o.

By Lemma 3.3.2, s € r + L. If ¢ is small enough, then dist(s, 7) < b, where b
satisfies the condition of Lemma 3.3.3, whose conclusion contradicts (3.34).

This completes the consideration of case (B1) for dimW*(p) > 2. If
dimW“(p) = 1, then the nontransversality of W“(¢) and W*(p) implies that
L C E°. This case is trivial since any shadowing trajectory passing close to r must
belong to the intersection W*(g) N W*( p), while we can construct a pseudotrajectory
“going away” from p along W*(p). If dimW"(p) = 0, W“(g) and W*(p) cannot
have a point of nontransverse intersection.

Case (B2) Passing from the vector field X to —X, if necessary, we may assume that
p is a closed trajectory. We “linearize” X in a neighborhood of p as described in
the proof of Lemma 3.3.1 so that the local Poincaré transformation of the transverse
section X is a linear mapping generated by a matrix P with the following properties:
With respect to some coordinates in X,

P = diag(Ps, P,,), (3.35)



168 3 C!Interiors of Sets of Systems with Various Shadowing Properties

where |A;| < 1 for the eigenvalues A; of the matrix Py, |A;| > 1 for the eigenvalues
A; of the matrix P, every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such
a “linearization” (and other perturbations of X performed below) so that the
nontransversality of W*(q) and W*(p) is preserved.

Consider an eigenvalue A of P, such that |[A| < |u| for the remaining eigenvalues
uofP,.

We treat separately the following two cases.

Case (B2.1): A € R.
Case (B2.2): A e C\ R.

Case (B2.1) Applying a perturbation, we may assume that
P, = diag(A, Py),

where |A| < |u| for the eigenvalues w of the matrix Py (thus, there exists a one-
dimensional direction of “weakest expansion” in W*(p)). In this case, we apply
precisely the same reasoning as that applied to treat case (B1) (we leave details to
the reader).

Case (B2.2) Applying one more perturbation of X, we may assume that
) .
A=v+in=pexp( ﬁmll),
m

where m; and m are relatively prime natural numbers, and

P, = diag(Q, Py),

where
v —
e=(;7)
n v
with respect to some coordinates (y,v,w) in X, where p = |A| < |u]| for the
eigenvalues u of the matrix P;.
Denote

E ={(.0,0)}, E"={0.v.,w)}, E{={0,v,0)].

Thus, E* is the “stable subspace,” E" is the “unstable subspace,” and EY is the two-
dimensional “unstable subspace of the weakest expansion.”

Geometrically, the Poincaré transformation o : ¥ — X (extended as a linear
mapping to EY) acts on EY as follows: the radius of a point is multiplied by p, while
27my/m is added to the polar angle.
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As in the proof of Lemma 3.3.1, we take a small neighborhood W of the origin
of the transverse section X' so that, for points x € W, the function «(x) (the time of
first return to X') is defined.

We assume that the point r of nontransverse intersection of W*(g) and W*(p)
belongs to the section Y. Similarly to case (Bl), we perturb X so that, in a
neighborhood of r, the component of intersection of W*(g) N X' containing r has the
form of an affine space, » + L.

Let IT* be the projection in X' to E* parallel to E* and let I1}' be the projection to
EY; thus,

" (y,u,v) = (0,u,v) and IT{'(y, u, v) = (0,u,0).
The nontransversality of W“(q) and W*( p) at r means that
L =I"L #E"

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so
that if L” = L’ N EY, then

dimL” < dimE} = 2.

Hence, either dimL” = 1 or dimL” = 0. We consider only the first case, the second
one is trivial.

Denote by A the line L”. Images of A under degrees of o (extended to the whole
plane EY) are m different lines in EY.

In what follows, we refer to an obvious geometric statement (given without a
proof).

Proposition 3.3.1 Consider coordinates (x1, . .. ,xy,) in the Euclidean space R". Let
X = (x1,x2), X" = (x3,...,x,), and let G be the plane of coordinate x'. Let D be a
hyperplane in R" such that

DNG={x, =0}

For any b > 0 there exists ¢ > 0 such that if x = (X', x") € D and x' = (x|, x}), then
either |x,| < blx}| or [x"| = c|x'|.

Take a > 0 such that the 2a-neighborhood of the origin in X' belongs to W. We
may assume that if v = (vy, v;), then the line A is {v, = 0}.

Take b > 0 such that the images of the cone

C=1{v: |vz] <blvi]}

in E} under degrees of o intersect only at the origin (denote these images by
Ci,...,Cn).
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We apply Proposition 3.3.1 to find a number ¢ > 0 such that if (0,v,w) € L/,
then either (0, v,0) € C or

[w| = clvl. (3.36)

Take a point § = (0,v,0) € ¥, where |v| = a, suchthat § ¢ C; U ---U Cy,.

For a natural number N, set By = (ry, P;V(v,0)) € X (we recall that equality
(3.35) holds), where ry is the y-coordinate of r. We naturally identify 8 and By with
points of M and consider the following pseudotrajectory:

o(t,r), t<0;

SO =\ 60 By). 150,

The following statement (similar to Lemma 3.3.2) holds: there exists g9 > 0 such
that if

dist(¢(t,5), O (r,9)) <&, =<0,

for some point s € X, thens € r + L.
Since B does not belong to the closed set C; U - -- U C,,, we may assume that the
disk in EY centered at 8 and having radius &y does not intersect the set C; U - -U C,y..
Define numbers

o1 (V) = a(By). ca(N) = i (N) + (0 (By)). ...
ay(N) = ax—1(N) + (@' (By)).

Take 8y and [ for which LE holds for the neighborhood W (reducing W, if
necessary). Take ¢ < min(gg/1, §p) and assume that there exists the corresponding d
(from the definition of the OrientSPr). Take N so large that g is a d-pseudotrajectory.

Let & be a reparametrization; assume that

lp(h(1).po) —g()| <&, 0=t=<an(N),
for some point pg € X.

Since g (o4 (N)) € X for 0 < k < N by construction, there exist numbers y; such
that

[0 (po) — g(ax(N))| < €9, 0 =<k<=<N.

To complete the proof of Theorem 3.3.1, let us show that for any pg € r + L and
any reparametrization / there exists ¢ € [0, ay (V)] such that

dist(¢ (h(1). po). 8(1)) = .
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Assuming the contrary, we see that
lo%(po) — gax(N))| < &0, O0=<k=<N,

where the numbers y; were defined above.
We consider two possible cases.
If

M'py e C
(C is the cone defined before estimate (3.36)), then
o™ (pg) € C; U---UCy,.
By construction, I7{g(an(N)) is 8. Hence,
HT{o™ (po) — Hj'g(an(N))| > éo,

and we get the desired contradiction.
If

ITipo ¢ C

and po = (yo, vo, wp), then (0, vy, wy) € L, and it follows from (3.36)) that |wg| >
c|vol. In this case, decreasing &, if necessary, we apply the reasoning similar to
Lemma 3.3.3.

Thus, we have proved inclusion (3.9), which completes the proof of Theo-
rem 3.3.1. O

Historical Remarks The first result concerning C' interiors of sets of vector fields
having some shadowing properties was obtained by K. Lee and the second author
in [33]. Denote by .4 the set of nonsingular vector fields. It was shown in [33] that
vector fields in the set

Int' (SSPr) N A

are structurally stable.

The class % was introduced by S. B. Tikhomirov in [99].

Theorem 3.3.1 was proved by the first author and S. B. Tikhomirov in [69].

Let us also note that S. B. Tikhomirov proved in [99] the following result: If the
dimension of the manifold does not exceed 3, then

Int' (OrientSPy) = .%.
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3.4 Vector Fields of the Class %

In the previous section, we defined the set # of vector fields. As was mentioned,
vector fields of that class are not structurally stable. This section is devoted to the
following result [69].

Theorem 3.4.1 Int' (OrientSPr) N A # 0.

This theorem states that there exist vector fields in Int! (OrientSP) that belong to
the class 2. The complete proof of Theorem 3.4.1 given in [69] is quite complicated,
and we do not give it here.

Instead, we explain the main idea of the proof. One constructs a vector field X of
the class 2 on the four-dimensional manifold M = S? x S? that has the following
properties (F1)-(F3) (¢ denotes the flow generated by X).

(F1) The nonwandering set of ¢ is the union of four rest points p, g, s, u.
(F2) We can introduce coordinates in the disjoint neighborhoods U, = N(1, p) and
U, = N(1, g) so that

X(x) =J,(x=p), xeU,

and
X(x) =Jyx—q), xeU,
where
-1 000
0 —-200
=10 0121
0 011
and
1000
0-101
=100 221
0-101

Since the eigenvalues of J, are —1, —2, 1 £ 7 and the eigenvalues of J, are

1,2,—1 = i, conditions (1) and (2) of the definition of the class & (see the

previous section) are satisfied for the vector field X and its rest points g and p.

(F3) The point s is an attracting hyperbolic rest point. The point « is a repelling
hyperbolic rest point. The following condition holds:

W)\ {p} C W(s).  W(g) \ {g} C W'(u). (337
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The intersection of W*( p) N W“(q) consists of a single trajectory o, and for
any x € «, the condition

dim (T, W* (p) ® TW"(q)) = 3 (3.38)

holds.

These conditions imply that the two-dimensional manifolds W*(p) and W*(q)
intersect along a one-dimensional curve in the four-dimensional manifold M. Thus,
W*(p) and W"(q) are not transverse; hence, X € A.

Geometrically, condition (3.38) means the following. Fix a point 7 € o and let ¥
be a transverse section to the flow ¢ at r (as above, this means that X' is a smooth
open disk in M of codimension 1 containing r that is transverse to the flow ¢ at any
of its points).

Denote by S, and B, the intersections of X' with W*(p) and W*(g), respectively.
Clearly, B, and B, are one-dimensional curves containing the point r. Condition
(3.38) means that the curves f; and §, intersect at r at nonzero angle.

To prove Theorem 3.4.1, it is enough to show that any vector field X’ that is
C'-close to X belongs to OrientSP.

The vector field X satisfies Axiom A’ and the no-cycle condition; hence, X is §2-
stable. Thus, there exists a neighborhood V of X in 2! (M) such that for any field
X’ € V, its nonwandering set consists of four hyperbolic rest points p’, ¢’, s, v’ that
belong to small neighborhoods of p, g, s, u, respectively. We denote by ¢’ the flow
of any X’ € V and by W*(p’), W*(p’), etc. the corresponding stable and unstable
manifolds.

Select compact subsets b, and b, of the curves B, and f,,, respectively, such that
the interiors of b, and b, (in the interior topology) contain the point r.

Let A; and A, be compact subsets of W*(p) and W"(q), respectively, such that
by C Ayand b, C A,.

It follows from the stable manifold theorem that if X’ € V, then the stable
and unstable manifolds W*(p’) and W*(q’) of the hyperbolic rest points p’ and ¢’
contain compact subsets A’ and A/ that converge (in the C' topology) to A, and
A,, respectively, as X’ tends to X.

Hence, the corresponding curves b and b/, tend in the C' topology to b and b,,,
respectively, as X’ tends to X.

We have the following two possibilities for a vector field X’ € V:

. VNb =0
» bl and b, have a point #’ of intersection close to r, and they intersect at ' at
nonzero angle.

Clearly, we can choose X' so that in the first case,
Wi(p') N W(g) = ;

then the vector field X’ is structurally stable, and X’ € OrientSPg.
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Thus, it remains to consider the second case. To simplify notation, we write X,
¢, etc. instead of X', ¢/, etc.

In this case, we make several additional assumptions which help us to explain to
the reader the main geometric ideas used in the proof of Theorem 3.4.1 and to avoid
heavy technical constructions of [69]. Here we follow the reasoning of [100].

First, we assume that the vector field X is linear in neighborhoods U, and U, of
the rest points p and g, respectively (see property (F2) above).

In addition, we assume that, in a sense, the shift at some fixed time along
trajectories in a neighborhood of a compact part of the trajectory a of nontransverse
intersection of W*(p) and W*(g) is a parallel translation (see property (F5) below).

Let us introduce some notation. For a point x € U, denote P1x = x| and P3;x =
(3, x4), where x — p = (x1,x2,x3,x4); for a point x € U,, denote Pix = x; and
Pyx = (x2,x4), where x — g = (x1,X2,X3,x4). For a small m > 0 we denote
Wi (p,m) = W"(p) N N(m,p) etc.

Our additional assumptions are as follows.

(F4) The trajectory o satisfies the following inclusions:
anU, C{p+(0,0,0);re (0,1)} andaeNU, C {g—(£,0,0,0);z € (0, 1)}.
(F5) There exist numbers A € (0, 1) and T, > 0 such that

O (Ta. g+ (=L x2,x3,x2)) = (p+ (1,x2,x3,X4)),  |x2], |x3], |xa| < A.

(F6) ¢(t.x) ¢ U, forx € Uy, t > 0.

In what follows, we need two simple geometric lemmas.
In the first lemma, we consider a planar linear system of differential equations

dx
dt

1-1
J= ,
and denote by ¥ (z, x) its flow on R

If a point x € R? has polar coordinates (r, §) with 6 € [0, 27) and r # 0, we put
arg(x) = 0.

=Jx, x¢€ RZ,

where

Lemma 3.4.1 For any point xo € R*\ 0, angle @ € [0, 27), and number T, there
exists t < Ty such that arg(y (¢, x0)) = O.
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The proof of this lemma is straightforward. Of course, a similar statement holds
for the system

dx

=—Jx, xeR?
& X, X
with ¢ < T replaced by ¢ > Ty.

Lemma 3.4.2 Let S| and S, be three-dimensional vector spaces with coordinates
(x1,x2,x3) and (y1,y2,y3), respectively. Let Q : S — S| be a linear map such that

Ofy2 =y3 =0} # {x, = x3 = O}.
Then for any D > 0 there exists R > 0 (depending on Q and D) such that if two sets
Vi C 81 N{x; =0} and V, C Sy N {y; = 0} satisfy the following conditions:

e VI CN(R,0)and V, C N(R,0);
e V) intersects any ray in S N {x; = 0} starting at 0;
eV, intersects any ray in S, N {y; = 0} starting at 0;

then
CiNEGC, #0,
where
Cr ={(x1,x2,x3) © x| <D, (0,x2,x3) € Vii}
and

Cy ={01.y2.y3): il <D, (0,y2,y3) € Va}.

Proof Let us fix a linear map Q and a number D > 0. Consider the lines /| C S
and [, C S, given by the equations x, = x3 = 0 and y, = y3 = 0, respectively.

By our assumption, O, # ;. Let us consider the plane # C S containing /; and
QU. Consider a parallelogram P C m that is symmetric with respect to 0, has sides
parallel to /; and Q/,, and satisfies the relation

P C{lal <Dy OIn| < D). (3.39)

Find a number R > 0 such that the following inclusions hold:
B(R,O)Nmw CP and Q(B(R,0)NQ 'n)cCP. (3.40)
Let z; be a point of intersection of V; and the line = N {x; = 0}. Condition (3.40)

implies that z; € P. Consider the line k| containing z; and parallel to /;. Inclusion
(3.39) implies that k; N P C C;.
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Similarly, let z; be a point of intersection of V, and the line = N {y; = 0}.
Condition (3.40) implies the inclusion Qz, € P. Let k;, be the line containing Oz,
and parallel to Ql,. Inclusion (3.39) implies that 9~ (k, N V) C C.

Since k; } kz, there exists a point z € k; N k,. The inclusions z;, 7, € P imply
that z € P. Hence, z € C; N QC,. Our lemma is proved. O
Now let us prove that the vector field X has the oriented shadowing property.

Fix points y, = a(T},) € U, andy, = a(T,) € U, (note that in this case, T, > T,
by property (F5)) and a number § > 0.

We say that g(¢) is a pseudotrajectory of type Ps(§) if

Ot =Ty, x5), t>Tp;
g(t) = ¢(t_ Tqv-xq)v < Tqa
a(r), t € [Ty, Tpl,

for some points x, € B(8,y,) and x, € B(8,y,).
Fix an ¢ > 0. Let us say that a pseudotrajectory g(¢) can be e-oriented shadowed
if there exists a reparametrization 4 € Rep and a point z such that

dist(¢ (h(1),2),8(1)) <&, telR.

Clearly, the required inclusion X € OrientSPy is a corollary of the following two
statements.

Proposition 3.4.1 Forany$§ > 0,y, € o N U, and y, € a N U, there exists d > 0
such that if g(t) is a d-pseudotrajectory of X, then either g(t) can be e-oriented
shadowed or there exists a pseudotrajectory g*(t) of type Ps(8) with these y, and y,
and a number ty € R such that

dist (g(t),g*(t +10)) <e/2, teR.

Proposition 3.4.2 There exist § > 0, y, € « N Uy, and y, € o N U, such that any
pseudotrajectory of type Ps(8) with these y, and y, can be € /2-oriented shadowed.

Proposition 3.4.1 can be proved by a standard reasoning. Precisely the same
statement was proved in [69] for a slightly different vector field (the only difference
is in the structure of the matrices J, and J,;). The proof can be literally repeated in
our case.

The main idea of the proof is the following. Outside a neighborhood of the
curve ¢, our vector field X coincides with a structurally stable one. Hence,
pseudotrajectories that do not intersect a fixed neighborhood of « can be shadowed.

If g(r) intersects a small neighborhood of «, then (after a proper shift of time),
the points g(#) with ¢ > T, also belong to a set where X coincides with a structurally
stable vector field; thus, for such 7, g(¢) can be shadowed by ¢ (t — T, x,,). Similarly,
the pseudotrajectory g(#) can be shadowed by ¢ (¢t — T, x,). For t € (T,,T},), the
points g(#) are close to . We leave the rest of the proof to the reader.
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Proof (of Proposition 3.4.2) Since the rest points s and « are a hyperbolic attractor
and a hyperbolic repeller, we may assume, without loss of generality, that

0t (N(g/2,5),¢) C N(e,s) and O (N(g/2,u),¢) C N(e, u),

where O (A, ¢) and O™ (A, ¢) are the positive and negative semitrajectories of a set
A in the flow ¢, respectively.

Take m € (0,¢/8). We fix points y, = a(T,) € N(m/2,p) N« and y, =
a(T;) € Nim/2,q) Na. Put T = T, — T,. Find a number § > 0 such that if
g(?) is a pseudotrajectory of type Ps(§) (with y, and y, fixed above), #p € R, and
Xo € N(28, g(l‘o)), then

dist(¢p(t — 19, x0), 8(1)) < &/2, |t—1to| <T+ 1. (3.41)
Consider a number 7 > 0 such that if x € W*(p) \ N(m/2,p), then ¢(7,x) €

N(e/8,s). Take e, € (0,m/4) such that if two points z;, 2o € M satisfy the inequality
dist(z1,z2) < &1, then

dist(¢(1,21). p(t.22)) < &/8, || <.

In this case, for any y € N(gy, x), the following inequalities hold:
dist(¢p (¢, x), p(t,y)) <e/4, t>0. (3.42)

Decreasing ¢, we may assume that if ' € W*(q) \ N(m/2,q) and y € N(g1,x),
then

dist(p(t,x'), ¢ (t,y)) < e/4, t=<0.

Let g() be a pseudotrajectory of type Ps(8), where y,, y;, and § satisfy the above-
formulated conditions.
Let us consider several possible cases. t

Case (P1): x, ¢ W(p) and x, ¢ W"(q). Let
T'=inf{ft e R: ¢(1,x,) ¢ N(p,3m/4)}.

If § is small enough, then dist(¢ (1", x,), W*(p)) < &1. In this case, there exists a
point z, € W} (p,m) \ N(m/2, p) such that

dist(¢(T", x,). 2p) < 1. (3.43)

Applying a similar reasoning in a neighborhood of ¢ (and reducing §, if
necessary), we find a point z, € W; (g.m) \ N(m/2,q) and a number 7”7 < 0
such that dist(¢ (T, x,), z4) < €1.
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Consider the hyperplanes S, := {x; = P1y,} and S, := {x; = P1y,}. From our
assumptions on the linearity of X in neighborhoods of p and ¢ and from assumption
(F5) it follows that the Poincaré map defined by Q(x) = ¢ (T, x) is a linear map

Q:S; — S, such that Q({(x2,x4) = 0}) # {(x3,x4) = 0}.
Apply Lemma 3.4.2 to the hyperplanes S, and S, the map Q, and the number
D = ¢/8 and find the corresponding R > 0. Note that there exists a Tz > 0 such
that
|¢(l, P34Xp)| <R, t < —Tg, and |¢(l, P24xq)| <R, t > Tg.
Consider the sets

VT ={p(t.Paxy) 1 t < —Tg} and V" = {¢(t. Pouxy) = t > Tg}.

Due to Lemma 3.4.1, the sets VE satisfy the assumptions of Lemma 3.4.2; hence,
the sets

C ={xeS,: PuxeV  |Px| <D}
and
Ct={xeS;: PuxeV*t |Px| <D}

are such that C~ N QC™* # 0.
Let us consider a point

xo€C NQOC* (3.44)

and numbers #, < —Tk and t;, > T such that P34xo = ¢ (t,, P34x,) and PO 'xg =
¢ (t,, P24x,). The following inclusions hold:

¢(—To—Tr—T",x0) € NQe1.2.), ¢ (—Tp,x0) € N(D,y,).
#(0,x0) € N(D,y,), ¢(Tgr+ T, x0) € NQéey1,2p).
Inequalities (3.41) imply that if § is small enough, then
dist(¢ (13 + 1,x0),8(T, + 1)) <¢/2, te[-T,0]. (3.45)
Define a reparametrization h(t) as follows:

W, +T'+1)=-Tog—Tr—T"+1,1<0;

W, +T +0) =T +T +1, t>0;

T, +1) =t te[-T,0];

h(r) increases, tel|l,.T,+TNU [T, +T",T,.

h(t) =
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If 1 > T, + T’, then inequality (3.42) implies that

dist(p (h(r). x0). ¢ (¢ — (T, +T').5,)) < /4
and
dist( (1 — T.3). (1 — (T, + T').3) < e/4.
Hence, if 1 > T, + 77, then

dist(¢ (h(t), x0), g(1)) < £/2. (3.46)

Fort € [T),, T, + T'], the inclusions ¢ (h(r), xo), g(t) € N(m, p) hold, and inequality
(3.46) holds for these ¢ as well.

A similar reasoning shows that inequality (3.46) holds for ¢t < T,,. If t € [T, T},],
then inequality (3.46) follows from (3.45). This completes the proof in case (P1).

Case (P2): x, € W¥(p) and x, ¢ W"(q). In this case, the proof uses the same
reasoning as in case (P1). The only difference is that instead of (3.44) we
construct a point xo € N(D,y,) N W} _(p, m) such that

¢ (=T —T",x0) € N(2¢1,z,) and ¢ (=T, x0) € N(¢/8,y,).

The construction is straightforward and uses Lemma 3.4.1.

Case (P3): x, ¢ W¥(p) and x, € W"(g). This case is similar to case (P2).

Case (P4): x, € W*(p) and x, € W¥(q). In this case, we take « as the shadowing
trajectory; the reparametrization is constructed similarly to case (P1).

Thus, we have shown that X € OrientSPr. O

Historical Remarks Theorem 3.4.1 was published by the first author and S. B.
Tikhomirov in [69]. As was said at the beginning of Chap. 3, the complete proof
given in this paper is technically very complicated, and we only describe a “model”
published by S. B. Tikhomirov in the paper [100] devoted to the Komuro conjecture
[29].
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