
Chapter 2
Lipschitz and Hölder Shadowing and Structural
Stability

In this chapter, we give either complete proofs or schemes of proof of the following
main results:

• If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

• a diffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is ˝-stable (Theorem 2.4.1);

• if a diffeomorphism f of class C2 has the Hölder shadowing property on finite
intervals with constants L ;C; d0; �; !, where � 2 .1=2; 1/ and � C ! > 1, then
f is structurally stable (Theorem 2.5.1);

• there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

• if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

The structure of the chapter is as follows.
We devote Sects. 2.1–2.3 to the proof of Theorem 2.3.1. In Sect. 2.1, we prove

theorems of Maizel’ and Pliss relating the so-called Perron property of difference
equations and hyperbolicity of sequences of linear automorphisms, Sect. 2.2 is
devoted to the Mañé theorem (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof
of Theorem 2.3.1 to results of the previous two sections.

Theorem 2.4.1 is proved in Sect. 2.4; Theorem 2.5.1 is proved in Sect. 2.5;
Theorem 2.6.1 is proved in Sect. 2.6.

Finally, Sect. 2.7 is devoted to the proof of Theorem 2.7.1.
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38 2 Lipschitz and Hölder Shadowing and Structural Stability

2.1 Maizel’ and Pliss Theorems

Let I D fk 2 Z W k � 0g. Let A D fAk; k 2 Ig be a sequence of linear
isomorphisms

Ak W R
n ! R

n:

We assume that there exists a constant N � 1 such that

kAkk; kA�1
k k � N; k 2 I: (2.1)

We relate to this sequence two difference equations, the homogeneous one,

xkC1 D Akxk; k 2 I; (2.2)

and the inhomogeneous one,

xkC1 D Akxk C fkC1; k 2 I: (2.3)

Definition 2.1.1 We say that the sequence A has the Perron property on I if for
any bounded sequence fk, Eq. (2.3) has a bounded solution.

Set

F.k; l/ D
8
<

:

Ak�1 ı � � � ı Al; k > lI
Id; k D lI
A�1
k ı � � � ı A�1

l�1; k < l:

Definition 2.1.2 We say that the sequence A is hyperbolic on I if there exist
constants C > 0 and � 2 .0; 1/ and projections Pk;Qk; k 2 I, such that if Sk D PkR

n

and Uk D QkR
n, then

Sk ˚ Uk D R
nI (2.4)

AkSk D SkC1; AkUk D UkC1I (2.5)

jF.k; l/vj � C�k�ljvj; v 2 Sl; k � lI (2.6)

jF.k; l/vj � C�l�kjvj; v 2 Ul; k � lI (2.7)

kPkk; kQkk � C: (2.8)

In the relations above, k; l 2 I.
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Our first main result in this section is the following statement.

Theorem 2.1.1 (Maizel’) If the sequence A has the Perron property on I, then
this sequence is hyperbolic on I.

Remark 2.1.1 Of course, it is well known that a hyperbolic sequence A has the
Perron property on I (see Lemma 2.1.6 below), so the properties of A in the above
theorem are equivalent. We formulate it in the above form since this implication is
what we really need (and since precisely this statement was proved by Maizel’).

Proof Thus, we assume that the sequence A has the Perron property on I.
Let us denote by B the Banach space of bounded sequences x D fxkg, where

xk 2 R
n and k 2 I, with the usual norm

kxk D sup
k2I

jxkj:

A sequence x 2 B that satisfies Eq. (2.2) (or (2.3)) will be called a B-solution
of the corresponding equation.

Denote

V1 D fx0 W x D .x0; x1; : : : / is a B � solution of (2.2)g :

Since Eq. (2.2) is linear and B is a linear space, V1 is a linear space as well.
Denote by V2 the orthogonal complement of V1 in R

n and by P the orthogonal
projection to V1.

The difference of any two B-solutions of Eq. (2.3) with a fixed f 2 B is a
B-solution of Eq. (2.2). It is easily seen that for any f 2 B there exists a unique
B-solution of Eq. (2.3) (we denote it T. f /) such that .T. f //0 2 V2.

The defined operator

T W B ! B

plays an important role in the proof. Clearly, the operator T is linear.

Lemma 2.1.1 The operator T is continuous.

Proof Since we know that the operator T is linear, it is enough to show that the
graph of T is closed; then our statement follows from the closed graph theorem.

Thus, assume that

fn D . f n0 ; : : : / 2 B; yn D . yn0; : : : / 2 B;

yn D T. fn/, fn ! f , and yn ! y D . y0; : : : / in B.
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Then, clearly, y0 2 V2.
Fix k 2 I and pass in the equality

ynkC1 D Aky
n
k C f nkC1

to the limit as n ! 1 to show that

ykC1 D Akyk C fkC1:

Hence, y D T. f /, and the graph of T is closed. ut
Lemma 2.1.1 implies that there exists a constant r > 0 such that

kT. f /k � rk fk; f 2 B: (2.9)

Without loss of generality, we assume that

rN � 1; (2.10)

where N is the constant in (2.1).
Denote

X.k/ D
8
<

:

F.k; 0/; k > 0I
Id; k D 0I
F.0;�k/; k < 0:

Straightforward calculations show that the formula

yk D
kX

uD0
X.k/PX.�u/fu �

1X

uDkC1
X.k/.Id � P/X.�u/fu (2.11)

represents a solution of Eq. (2.3) provided that the series in the second summand
converges.

We can obtain a shorter variant of formula (2.11) by introducing the “Green
function”

G.k; u/ D
�
X.k/PX.�u/; 0 � u � kI
�X.k/.Id � P/X.�u/; 0 � k < u:

Then formula (2.11) becomes

yk D
1X

uD0
G.k; u/fu: (2.12)
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Lemma 2.1.2 Let k0; k1; k 2 I and let � 2 R
n be a nonzero vector with j�j � 1.

Then

jX.k/P�j
kX

uDk0

jX.u/�j�1 � r; 0 � k0 � k; (2.13)

and

jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1 � 2rN; 0 � k � k1: (2.14)

Proof Without loss of generality, we may take f0 D 0. Fix l0; l1 2 I such that l0 � l1.
Take a sequence f with fi D 0; i > l1. Then formula (2.12) takes the form

yl D
l1X

uD0
G.l; u/fu:

For l � l1, all the indices u in this sum do not exceed l1, and we apply the first
line in the definition of G. Thus,

yl D X.l/P
l1X

uD0
X.�u/fu:

Hence, if l � l1, then yl is the image under X.l/ of a vector from V1 that does not
depend on l. It follows that the sequence y (with the exception of a finite number of
entries) is a solution of Eq. (2.2) with initial value from V1. Hence, y 2 B. Since
f0 D 0,

y0 D �.Id � P/
l1X

uD0
X.�u/fu 2 V2:

Thus, y D T. f /, and k yk � rk fk.
Now we specify the choice of f . Let xi D X.i/�; since � ¤ 0, x ¤ 0 as well. Set

fi D
8
<

:

0; i < l0I
xi=jxij; l0 � i � l1I
0; i > l1:

Since k fk D 1, inequality (2.9) implies that

ˇ
ˇ
ˇ
ˇ
ˇ

l1X

uDl0

G.k; u/xi=jxij
ˇ
ˇ
ˇ
ˇ
ˇ

D j ylj � r: (2.15)
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We take l D l1 D k and l0 D k0 in (2.15) and conclude that

r �
ˇ
ˇ
ˇ
ˇ
ˇ

kX

uDk0

G.k; u/xu=jxuj
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

kX

uDk0

X.k/PX.�u/X.u/�=jX.u/�j
ˇ
ˇ
ˇ
ˇ
ˇ
D

D jX.k/P�j
kX

uDk0

jX.u/�j�1;

which is precisely inequality (2.13).
We prove inequality (2.14) using a similar reasoning.
First we consider 0 < k � k1. We take l D k � 1, l0 D k, and l1 D k1 in (2.15)

and get the estimates

r �
ˇ
ˇ
ˇ
ˇ
ˇ

k1X

uDk

G.k; u/xu=jxuj
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

k1X

uDk

X.k � 1/.Id � P/X.�u/X.u/�=jX.u/�j
ˇ
ˇ
ˇ
ˇ
ˇ
D

D jX.k � 1/.Id � P/�j
k1X

uDk

jX.u/�j�1 D jA�1
k�1X.k/.Id � P/�j

k1X

uDk

jX.u/�j�1 �

� kAk�1k�1jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1:

Applying inequality (2.1), we see that in this case,

jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1 � rN:

Now we consider 0 D k < k1 and apply the previous estimate with k D 1:

jX.0/.Id � P/�j
k1X

uD0
jX.u/�j�1 D jX.0/.Id � P/�j

k1X

uD1
jX.u/�j�1 C j.Id � P/�j �

� kA0k�1jX.1/.Id � P/�j
k1X

uD1
jX.u/�j�1 C 1 � rN C 1 � 2rN

(recall that j�j � 1 and rN � 1).
For k D k1 D 0, our inequality is trivial. ut
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Lemma 2.1.3 Let k0; k1; k; s 2 I and let � 2 R
n be a unit vector. Denote

� D 1 � .2rN/�1:

Then the following inequalities are satisfied:
if P� ¤ 0, then

sX

uDk0

jX.u/P�j�1 � �k�s
kX

uDk0

jX.u/P�j�1; k0 � s � kI (2.16)

if .Id � P/� ¤ 0, then

k1X

uDs

jX.u/.Id � P/�j�1 � �s�k
k1X

uDk

jX.u/.Id � P/�j�1; k � s � k1: (2.17)

Proof Denote

�i D
iX

uDk0

jX.u/P�j�1; i � k0;

and

 i D
k1X

uDi

jX.u/.Id � P/�j�1; i � k1:

Let us prove inequality (2.16). Since P� ¤ 0, �i > 0. Clearly, �i � �i�1 D
jX.i/P�j�1. Replacing � by P� (and noting that jP�j � 1) in (2.13), we see that

�i

�i � �i�1 � r � 2rN:

Hence,

.2rN/�1 � �i � �i�1
�i

D 1 � �i�1
�i
;

and

�i�1 � .1 � .2rN/�1/�i:

Iterating this inequality, we conclude that

�s � .1 � .2rN/�1/k�s�k; k � s:
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We prove inequality (2.17) similarly. We note that  i > 0 and that  i �  iC1 D
jX.i/.Id � P/�j�1. After that, we replace � by .Id � P/� in (2.14) and show that

 iC1 � .1 � .2rN/�1/ i:

Iterating this inequality, we get (2.17). ut
Now we prove that the sequence A is hyperbolic.

Lemma 2.1.4 The following inequalities are satisfied:

kX.k/PX.�s/k � r2�k�s; 0 � s � k;

and

kX.k/.Id � P/X.�s/k � 2r2N2�s�k; 0 � k � s:

Proof Fix a natural s and a unit vector �. Define a sequence y D fykg by

yk D
� �X.k/.Id � P/X.�s/�; 0 � k < sI
X.k/PX.�s/�; k � s:

The sequence y coincides (up to a finite number of terms) with a solution of
Eq. (2.2) with initial point from V1; hence, y 2 B.

Now we define a sequence f by

fk D
�
0; k ¤ sI
�; k D s:

It is easily seen that the above sequence y is a solution of Eq. (2.3) with
inhomogeneity f . Hence, y D T. f /, and k yk � r.

The definition of y implies that

jX.k/PX.�s/�j D j ykj � r; 0 � s � k:

Since � is an arbitrary unit vector, kX.k/PX.�s/k � r for 0 � s � k.
We replace � by the solution of the equation xs D X.s/� to show that

jX.k/P�j D jX.k/PX.�s/xsj � rjxsj; 0 � s � k: (2.18)

Using inequalities (2.13), (2.16) with k0 D s, and (2.18) with k D s, we see that

jX.k/PX.�s/xsj D jX.k/P�j � r

 
kX

uDs

jX.u/P�j�1
!�1

�

� r
�
��.k�s/jX.s/P�j�1��1 D r�k�sjX.s/P�j � r2�k�sjxsj:
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If P� D 0, then the resulting estimate is obvious. Since xs D X.s/� and X.s/ is
an isomorphism, we get the following estimate for the operator norm:

kX.k/PX.�s/k � r2�k�s; 1 � s � k:

In this reasoning, we have used inequality (2.18) with s D k. It is also true for
s D k D 0 since kPk � 1. Therefore, the first estimate of our lemma is proved for
0 � s � k.

The proof of the second estimate is quite similar. The only difference is as
follows. We cannot use an analog of (2.18) with k D s since k ¤ s in the definition
of the sequence y. The following inequality is proved by the same reasoning as
above:

jX.k/.Id � P/�j D jX.k/.Id � P/X.�s/xsj � rjxsj; s > k:

In the case k D s � 1, we write

jX.s/.Id � P/�j D jAs�1X.s � 1/.Id � P/X.�s/xsj �

� kAs�1kjX.s � 1/.Id � P/X.�s/xsj � rNjxsj;

and then repeat the reasoning of the first case. ut
Lemma 2.1.4 shows that if we take constants C0 D r2N and � D � and

projections

Pk D X.k/PX.�k/ and Qk D X.k/.Id � P/X.�k/;

then the operators F.k; l/ generated by the sequence A satisfy estimates (2.6) and
(2.7) with C D C0 and �. Clearly, relations (2.4) and (2.5) are valid.

Thus, to show that A is hyperbolic on I, it remains to prove the following
statement.

Lemma 2.1.5 There exists a constant C D C.N;C0; �/ � C0 such that inequalities
(2.8) are fulfilled.

Proof Let L1 and L2 be two linear subspaces of Rn. Introduce the value

†.L1;L2/ D min jv1 � v2j;

where the minimum is taken over all pairs of unit vectors v1 2 L1; v2 2 L2.
We claim that there exists a constant C1 D C1.N;C0; �/ such that

†.Sk;Uk/ � C1; k 2 I: (2.19)
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Fix an index k 2 I, take unit vectors v1 2 Sk and v2 2 Uk for which †.Sk;Uk/ D
jv1 � v2j, and denote

˛l D jF.l; k/.v1 � v2/j; l � k:

Inequalities (2.6) and (2.7) imply that

˛l � jF.l; k/v2j � jF.l; k/v1j � �k�l=C0 � C0�
l�k:

Hence, there exists a constant m D m.C0; �/ such that

˛kCm � 1:

At the same time, it follows from (2.1) that

˛kCm � Nm˛k:

Combining the above two inequalities, we see that

†.Sk;Uk/ D ˛k � C1.N;C0; �/ WD N�m.C0;�/;

which proves (2.19).
Clearly, if v1 and v2 are two unit vectors, then the usual angle hv1; v2i satisfies

the relation

jv1 � v2j D 2 sin.hv1; v2i=2/;

and we see that estimate (2.19) implies the existence of ˇ D ˇ.N;C0; �/ such that
if � is the usual angle between Sk and Uk, then

sin.�/ � ˇ:

Now we take an arbitrary unit vector v 2 R
n and denote vs D Pkv. If �s is the angle

between v and vs, then the sine law implies that

jvj
sin.�/

D jvsj
sin.�0/

� jvsj;

and we conclude that

jvsj D jPkvj � 1=ˇ;
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which implies that

kPkk � C D max.C0; 1=ˇ/:

A similar estimate holds for kQkk. ut
As we said above, the following statement holds.

Lemma 2.1.6 A hyperbolic sequenceA has the Perron property on I.

Proof Assume that the sequence A has properties stated in relations (2.4)–(2.8).
Take a sequence

f D f fk 2 R
n W k 2 Ig

such that k fk D � < 1 and consider the sequence y defined by formula (2.11).
Then

jX.k/PX.�u/fuj � C�k�u�; 0 � u � k;

and

jX.k/.Id � P/X.�u/fuj � C�u�k�; k C 1 � u < 1;

which implies that the second term in (2.11) is a convergent series (hence, the
sequence y is a solution of (2.3)) and the estimate

k yk � C.1C �C �2 : : : /� C C.�C �2 : : : /� D 1C �

1� �
C�

holds. ut
Now we pass to the Pliss theorem.
This time, I D Z, and we denote IC D fk 2 Z W k � 0g and I� D fk 2 Z W

k � 0g.
Now A is a sequence of linear isomorphisms

Ak W R
n ! R

n; k 2 I D Z:

It is again assumed that an analog of inequalities (2.1) holds, and we consider
difference equations (2.2) and (2.3).

The Perron property of (2.2) on Z is defined literally as in the case of I D fk 2
Z W k � 0g.

It follows from the Maizel’ theorem and its obvious analog for the case of I D
fk 2 Z W k � 0g that the sequence A is hyperbolic on both IC and I� (the definition
of hyperbolicity in the case of I� is literally the same).
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Without loss of generality, we assume that C and � are the same for the
hyperbolicity on IC and I� and denote by SC

k ;U
C
k ; k 2 IC; and S�

k ;U
�
k ; k 2 I�;

the corresponding subspaces of Rn.

Theorem 2.1.2 (Pliss) IfA has the Perron property on I D Z, then the subspaces
U�
0 and SC

0 are transverse.

Remark 2.1.2 In fact, Pliss proved in [74] that the transversality of U�
0 and SC

0 is
equivalent to the Perron property of A on I D Z, but we need only the implication
stated above.

Remark 2.1.3 Note that there exist sequences A that are separately hyperbolic on
IC and I� for which the subspaces U�

0 and SC
0 are transverse and such that these

sequences are not hyperbolic on I D Z. It is easy to construct such a sequence with
SC
k D R

n;UC
k D f0g; k 2 IC; and S�

k D f0g;U�
k D R

n; k 2 I� (we leave details to
the reader).

Proof To get a contradiction, assume that the subspaces U�
0 and SC

0 are not
transverse. Then there exists a vector x 2 R

n such that

x ¤ y1 C y2 (2.20)

for any y1 2 U�
0 and y2 2 SC

0 .
Since the subspaces UC

0 and SC
0 are complementary (see (2.4)), we can represent

x D � C 	; � 2 SC
0 ; 	 2 UC

0 :

Then it follows from (2.20) that

	 ¤ z1 C z2 (2.21)

for any z1 2 SC
0 and z2 2 U�

0 . We may assume that j	j D 1.
Consider the sequence

ak D
�
0; k � 0I
1; k > 0:

Since 	 ¤ 0 in (2.21), X.k/	 ¤ 0 for k 2 I. Define a sequence f D f fk; k 2 Ig
by

fk D X.k/	

jX.k/	jak; k 2 I: (2.22)

Clearly, k fk D 1. We claim that the corresponding Eq. (2.3) does not have
bounded solutions.
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Consider the sequence

�k D �
1X

uDkC1
X.k/.Id � P/X.�u/fu; k � 0:

In this formula, P is the projection defined for Eq. (2.2).
The sequence f�kg is bounded for k � 0. Indeed, fu 2 UC

u for u � 0; hence,

j�kj D
ˇ
ˇ
ˇ
ˇ
ˇ

1X

uDkC1
X.k/.Id � P/X.�u/fu

ˇ
ˇ
ˇ
ˇ
ˇ

�

�
1X

uDkC1
C�u�k D C

�

1 � �
:

We know that since the series defining �k is convergent, the sequence f�kg is a
solution of the homogeneous equation (2.2) for k � 0.

Clearly,

�0 D �
1X

uD1
.Id � P/X.�u/fu D �

1X

uD1

	

jX.u/	j D �	;

where

� D �
1X

uD1

1

jX.u/	j :

Deriving these relations, we take into account the definition of f and the equality
.Id � P/	 D 	. In addition, the value � is finite since

1

jX.k/	j � C�k; k � 0;

due to inequalities (2.7).
It follows from (2.21) that

�0 ¤ y1 C y2 (2.23)

for any y1 2 SC
0 and y2 2 U�

0 .
Now let us assume that Eq. (2.2) has a solution  D f kg that is bounded on

I D Z. Then  0 2 U�
0 .
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On the other hand,

 k D X.k/. 0 � �0/C �0:

Since �k are bounded for k � 0,  k can be bounded for k � 0 only if

X.k/. 0 � �0/

are bounded for k � 0, which implies that

 0 � �0 2 SC
0 :

Set

y1 D �0 �  0 2 SC
0 and y2 D  0 2 U�

0 :

Then �0 D y1 C y2, and we get a contradiction with (2.23). ut
Remark 2.1.4 We will apply the Maizel’ and Pliss theorems proved in this section
in a slightly different situation.

We consider a diffeomorphism f of a smooth closed manifold M, fix a point
x 2 M and the trajectory fxk D f k.x/ W k 2 Zg of this point and define linear
isomorphisms

Ak D Df .xk/ W TxkM ! TxkC1
M:

To the sequence A D fAkg we assign difference equations

vkC1 D Akvk; vk 2 TxkM;

and

vkC1 D Akvk C fkC1; vk 2 TxkM; fkC1 2 TxkC1
M:

Clearly, these difference equations are completely similar to Eqs. (2.2) and (2.3),
and analogs of the Maizel’ and Pliss theorems are valid for them.

Historical Remarks Theorem 2.1.1 was proved by A. D. Maizel’ in [38]. See also
the classical W. A. Coppel’s book [13].

The Pliss theorem (Theorem 2.1.2) was published in [74]. Later, it was gener-
alized by many authors; let us mention, for example, K. Palmer [55] who studied
Fredholm properties of the corresponding operators.
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2.2 Mañé Theorem

In this section, we prove Theorem 1.3.7.

Remark 2.2.1 In several papers, the analytic strong transversality condition is
formulated in the following form, which is obviously stronger than the condition
formulated in Definition 1.3.11: it is assumed that

QBC.x/C QB�.x/ D TxM; x 2 M;

where the subspaces QBC.x/ and QB�.x/ are defined by the equalities

QBC.x/ D
�

v 2 TxM W lim
k!1

ˇ
ˇDf k.x/v

ˇ
ˇ D 0

�

and

QB�.x/ D
�

v 2 TxM W lim
k!�1

ˇ
ˇDf k.x/v

ˇ
ˇ D 0

�

:

In fact, it is easily seen from our proof below that the structural stability of f
implies this form of the analytic strong transversality condition as well, so that both
conditions are equivalent.

The main part of our proof of Theorem 1.3.7 is contained in the following
statement.

Theorem 2.2.1 The analytic strong transversality condition implies Axiom A.
First we prove that the analytic strong transversality condition implies the

hyperbolicity of the nonwandering set ˝ .
We assign to a diffeomorphism f W M ! M the mapping 
 W TM ! TM (where

TM is the tangent bundle of M) which maps a pair .x; v/ 2 TM (where x 2 M and
v 2 TxM) to the pair . f .x/;Df .x/v/.

A subbundle Y of TM is a set of pairs .x;Yx/, where x 2 M and Yx is a linear
subspace of TxM.

Definition 2.2.1 A subbundle Y is called 
-invariant if

Df .x/Yx D Yf .x/ for x 2 M:

Assuming that f satisfies the analytic strong transversality condition, we define
two subbundles BC and B� of TM by setting

BC
x D BC.x/ and B�

x D B�.x/ for x 2 M:
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Since

lim inf
k!1

ˇ
ˇDf k.x/v

ˇ
ˇ D 0

if and only if

lim inf
k!1

ˇ
ˇDf k. f .x//Df .x/v

ˇ
ˇ D 0;

the subbundle BC is 
-invariant. A similar reasoning shows that the subbundle
B� is 
-invariant as well.

The main object in the proof is the mapping 
�, dual to the mapping 
 .
Denote by <;> the scalar product in TxM. Let D�f .x/ W Tf .x/M ! TxM be

defined as follows:

< �;Df .x/v >D< D�f .x/�; v >

for all v 2 TxM and � 2 Tf .x/M (thus, D�f .x/ is the adjoint of Df .x/). We define 
�
as follows: a pair . f .x/; �/ ; � 2 Tf .x/M; is mapped to


� . f .x/; �/ D �
x;D�f .x/�

�
:

If p W TM ! M is the projection to the first coordinate (i.e., p.x; v/ D x), then
p.
.x; v// D f .x/ (in this case, one says that 
 covers f ); since p.
�.x; v// D
f�1.x/, 
� covers f�1.

Clearly, the definition of 
� implies the following statement.

Lemma 2.2.1

.
�/� D 
:

If Y is a subbundle of TM, we define the orthogonal subbundle Y? as follows:

Y?
x D f� W < �; v >D 0 for all v 2 Yxg ; x 2 M:

Lemma 2.2.2 If a subbundle Y is 
-invariant, then Y? is 
�-invariant.

Proof Consider vectors � 2 Y?
f .x/ and D�f .x/� 2 TxM. If v 2 Yx, then

< v;D�f .x/� >D< �;Df .x/v >D 0

since Df .x/v 2 Yf .x/, which means that D�f .x/� 2 Y?
x . ut

We call two subbundles Y1 and Y2 complementary if

Y1x ˚ Y2x D TxM for any x 2 M: (2.24)
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Lemma 2.2.3 If Y1 and Y2 are complementary subbundles that are 
-invariant,

then
�
Y1
�?

and
�
Y2
�?

are complementary subbundles that are 
�-invariant.

Proof The subbundles
�
Y1
�?

and
�
Y2
�?

are 
�-invariant by Lemma 2.2.2. If
dimY1x D k, then equality (2.24) implies that dimY2x D n � k. Clearly,

dim
�
Y1
�?
x

D n � k and dim
�
Y2
�?
x

D k: (2.25)

Consider a vector � 2 �
Y1
�?
x \ �

Y2
�?
x . Due to (2.24), any vector v 2 TxM is

representable as

v D v1 C v2; v1 2 Y1x ; v2 2 Y2x :

Then < �; v >D< �; v1 > C < �; v2 >D 0. Since v is arbitrary, � D 0. The
equality

�
Y1
�?
x \ �

Y2
�?
x D f0g

and (2.25) imply the statement of our lemma. ut
Let M0 � M be a hyperbolic set of f . Then S and U defined by Sx D S.x/ and

Ux D U.x/ for x 2 M0 are two complementary 
-invariant subbundles on M0 such
that inequalities (HSD2.3) and (HSD2.4) hold (see Definition 1.3.1). In this case, we
say that M0 is hyperbolic with respect to 
 with subbundles S and U and constants
C and �.

Lemma 2.2.4 If a set M0 is hyperbolic with respect to 
 with subbundles S and U
and constants C and �, then M0 is hyperbolic with respect to 
� with subbundles
U? and S? and the same constants C and �.

Proof If A and B are linear operators, then .AB/� D B�A�; hence,

�
Df . f .x//Df .x/

�� D D�f .x/D�f . f .x//:

If we take v 2 TxM and � 2 Tf 2.x/M, then

< Df 2.x/v; � >D< Df . f .x//Df .x/v; � >D

D< Df .x/v;D�f . f .x//� >D< v;D�f .x/D�f . f .x//� >D< v;D�f 2.x/� > :

Applying induction, it is easy to show that

< v;D�f k.x/� >D< �;Df k.x/v >; k 2 Z; (2.26)
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for v 2 TxM and � 2 Tf k.x/M, where

D�f k.x/ D D�f .x/D�f . f .x// : : :D�f . f k�1.x//

and

Df k.x/ D Df . f k�1.x//Df . f k�2.x// : : :Df .x/:

By Lemma 2.2.3, the subbundles S? and U? are complementary and 
�-
invariant.

Fix k � 0 and a vector � 2 �
Ufk.x/

�?
. Then D�f k.x/� 2 TxM. The obvious

equality

j	j D max
jvjD1

< 	; v >; 	; v 2 TxM;

implies that

ˇ
ˇD�f k.x/�

ˇ
ˇ D max

jvjD1
< v;D�f k.x/� > :

Represent v D v1 C v2, where v1 2 Sx and v2 2 Ux.
Since U? is 
�-invariant,

D�f k.x/� 2 .Ux/
?;

and < v2;D�f k.x/� >D 0. It follows that

ˇ
ˇD�f k.x/�

ˇ
ˇ D max

jv1jD1
< v1;D

�f k.x/� >D max
jv1jD1

< �;Df k.x/v1 >� C�kj�j:

In the last inequality, we used inequality (HSD2.3) and the obvious relation

< �; v >� j�jjvj:

A similar reasoning shows that

ˇ
ˇD�f�k.x/�

ˇ
ˇ � C��kj�j

for � 2 �Sf k.x/
�?

and k � 0. ut
Now we prove that the analytic strong transversality condition implies that, in a

sense, 
� does not have nontrivial bounded trajectories. Fix a point .x; v/ 2 TM and
define the sequence .xk; vk/ D .
�/k.x; v/.
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Lemma 2.2.5 If

sup
k2Z

jvkj < 1; (2.27)

then v D 0.

Proof The obvious equalities

x D f�k
�
f k.x/

�
and u D Df�k

�
f k.x/

�
Df k.x/u

which are valid for all x 2 M, u 2 TxM, and k 2 Z imply that

< �; u >D< �;Df�k
�
f k.x/

�
Df k.x/u >D< D�f�k

�
f k.x/

�
�;Df k.x/u >

for all �; u 2 TxM and k.
Assume that a point .x; v/ satisfies condition (2.27).
By the analytic strong transversality condition, we can represent any vector � 2

TxM in the form � D �1C�2 for which there exist sequences ln ! 1 andmn ! �1
as n ! 1 such that

ˇ
ˇDf ln.x/�1

ˇ
ˇ ! 0 and

ˇ
ˇDfmn.x/�2

ˇ
ˇ ! 0; n ! 1:

Let us write

< v; � >D< v; �1 C �2 >D< v;Df�ln
�
f ln.x/

�
Df ln.x/�1 > C

C < v;Df�mn . f mn.x//Dfmn.x/�1 >D

D< D�f�ln
�
f ln.x/

�
v;Df ln.x/�1 > C < D�f�mn . f mn.x// v;Dfmn.x/�2 > :

(2.28)

By condition (2.27), both values
ˇ
ˇD�f�ln. f ln.x//v

ˇ
ˇ and

ˇ
ˇD�f�mn. f mn.x//v

ˇ
ˇ are

bounded; hence, both terms in (2.28) tend to 0 as n ! 1. Thus, < �; v >D 0 for
any �, which means that v D 0. ut

To simplify notation, let us denote 
� by � and write

�.x; v/ D .�.x/; ˚.x/v/;

so that �.x/ D f�1.x/ and ˚.x/ is the linear mapping TxM ! T�.x/M, ˚.x/ D
D�f .x/. Let

F.0; x/ D Id;

F.k; x/ D ˚.�k�1.x// � � �˚.x/; k > 0;
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and

F.�k; x/ D ˚�1.�1�k.x// � � �˚�1.x/; k > 0:

Obviously, the mapping � is continuous. By Lemma 2.2.5, it satisfies the
following Condition B: If

sup
k2Z

jF.k; x/vj < 1

for some .x; v/ 2 TM, then v D 0.
Let us define the following two subbundles in TM: V D f.x;Vx/g and W D

f.x;Wx/g. We agree that

• v 2 TxM belongs to Vx if jF.k; x/vj ! 0 as k ! 1
and

• v 2 TxM belongs to Wx if jF.k; x/vj ! 0 as k ! �1.

Clearly, the subbundles V and W are �-invariant.

Lemma 2.2.6 Let a sequence .xm; vm/ 2 TM be such that

(1) .xm; vm/ ! .x; v/ as m ! 1;
(2) there exists a number L > 0 and a sequence km ! 1 as m ! 1 such that

jF.k; xm/vmj � L; 0 � k � km: (2.29)

Then .x; v/ 2 V.

Proof Fix an arbitrary l � 0. There exists an m0 such that km > l for m � m0. Then
it follows from (2.29) that

jF.l; xm/vmj � L: (2.30)

Since F.l; y/w is continuous in y and w, we may pass to the limit in (2.30) as
m ! 1; thus,

jF.l; x/vj � L:

Since l is arbitrary, this means that

jF.k; x/vj � L; k � 0: (2.31)

Let .x0; v0/ be a limit point of the sequence
�
�k.x/;F.k; x/v

�
, i.e., the limit of the

sequence

�
� tm.x/;F.tm; x/v

�
(2.32)

for some sequence tm ! 1.
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Take an arbitrary k 2 Z. Since

� tm.x/ ! x0 and F.tm; x/v ! v0; m ! 1;

�kCtm.x/ ! �k.x0/ and F.k C tm; x/v ! F.k; x0/v0; m ! 1: (2.33)

For large m, k C tm > 0, and it follows from (2.31) and the second relation in
(2.33) that

jF.k; x0/v0j � L: (2.34)

Since (2.34) is valid for any k 2 Z, Condition B implies that v0 D 0. Thus, in
any convergent sequence of the form (2.32) with tm ! 1,

jF.tm; x/vj ! 0;

which means that .x; v/ 2 V . ut
Remark 2.2.2 A similar reasoning shows that if we take km ! �1 and km � k � 0

in condition (2) of Lemma 2.2.6, then .x; v/ 2 W. In what follows, we do not make
such comments and only consider the case of the subbundle V .

Define the set

A D f.x; v/ 2 TM W jF.k; x/vj � 1 for k � 1g:

Clearly, the set A is positively �-invariant, i.e., if .x; v/ 2 A and k � 0, then�
�k.x/;F.k; x/v

� 2 A.
Let us say that a set C D f.x; v/ 2 TMg is bounded if

sup
.x;v/2C

jvj < 1:

Since the manifold M is compact, any closed and bounded subset C of TM is
(sequentially) compact, i.e., any sequence in C has a convergent subsequence, and
the limit of this subsequence belongs to C.

Lemma 2.2.7 The set A is a compact subset of V.

Proof It was shown in the proof of Lemma 2.2.6 that inequality (2.31) implies the
inclusion .x; v/ 2 V; thus, A � V . Since F.0; x/v D v, A is bounded. Consider a
sequence .xm; vm/ 2 A such that .xm; vm/ ! .x; v/; m ! 1. For any fixed k � 0,

jF.k; x/vj D lim
m!1 jF.k; xm/vmj � 1:

Hence, .x; v/ 2 A, and A is closed. ut
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Lemma 2.2.8 For any � > 0 there exists a K > 0 such that if .x; v/ 2 A, then

jF.k; x/vj < �; k � K: (2.35)

Proof Assuming the converse, let us find sequences .xm; vm/ 2 A and km ! 1 and
a number � > 0 such that

jF.km; xm/vj � �: (2.36)

Since A is positively �-invariant,

�
�km.xm/;F.km; xm/vm

� 2 AI

since A is compact, the above sequence has a convergent subsequence. Assume, for
definiteness, that

�
�km.xm/;F.km; xm/vm

� ! .x; v/:

Then it follows from (2.36) that jvj � �. Fix a number k 2 Z. Since k C km > 0 for
large m,

�
�kCkm.xm/;F.k C km; xm/vm

� ! �
�k.x/;F.k; x/v

�
; m ! 1;

and

jF.k C km; xm/vm/j � 1;

we conclude that

jF.k; x/v/j � 1; k 2 Z:

Condition B implies that v D 0. The contradiction with (2.36) completes the proof.
ut

Lemma 2.2.9 There exists a number � > 0 such that if .x; v/ 2 V and jvj � �,
then .x; v/ 2 A.

Proof Assuming the contrary, we can find a sequence .xm; vm/ 2 V such that jvmj !
0; m ! 1, and .xm; vm/ … A.

Then

�m D max
k�0 jF.k; xm/vmj > 1

(we take into account that jF.k; xm/vmj ! 0; k ! 1).
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Find numbers km > 0 such that

jF.km; xm/vmj D �m:

Since

jF.k; xm/.vm=�m/j � 1; k � 0;

.xm; vm=�m/ 2 A.
The mapping � is continuous and F.k; x/0 D 0; hence,

max
0�k�K

jF.k; xm/.vm=�m/j ! 0; m ! 1;

for any fixed K (note that xm 2 M, M is compact, jvmj ! 0, and �m > 1).
Hence, km ! 1; m ! 1. Lemma 2.2.8 implies now that the relations

.xm; vm=�m/ 2 A and jF.km; xm/.vm=�m/j D 1

are contradictory. ut
Lemma 2.2.10 There exists a number K > 0 such that if .x; v/ 2 V, then

jF.k; x/vj � .1=2/jvj; k � K: (2.37)

Proof Apply Lemma 2.2.8 to find a number K such that

jF.k; x/v0j < �=2; k � K;

for any .x; v0/ 2 A (where � is the number from Lemma 2.2.9).
Take any .x; v/ 2 V . If v ¤ 0, set v0 D �.v=jvj/. Then .x; v0/ 2 A by

Lemma 2.2.9, and it follows from Lemma 2.2.8 that

ˇ
ˇF.k; x/v0ˇˇ D .�=jvj/ jF.k; x/vj � �=2; k � K;

which obviously implies the desired relation (2.37). If v D 0, we have nothing to
prove. ut
Lemma 2.2.11

(1) The subbundles V and W are closed.
(2) There exist numbers C > 0 and � 2 .0; 1/ such that

if .x; v/ 2 V, then

jF.k; x/vj � C�kjvj; k � 0I (2.38)
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if .x; v/ 2 W, then

jF.k; x/vj � C��kjvj; k � 0: (2.39)

Proof We prove the statements for the subbundle V; for W, the proofs are similar.
To prove statement (1), consider a sequence .xk; vk/ 2 V such that .xk; vk/ !

.x; v/ as k ! 1.
If v D 0, then, obviously, .x; v/ 2 V . Assume that v ¤ 0; then vk ¤ 0 for large

k, and, by Lemma 2.2.9 there exists a � > 0 such that

.xk; �vk=jvkj/ 2 A:

Since A is closed (see Lemma 2.2.7),

.x; �v=jvj/ 2 A;

and .x; v/ 2 V by Lemma 2.2.7. This proves the first statement of our lemma.
To prove the second one, apply Lemma 2.2.10 and find a number K such that

jF.k; x/vj � .1=2/jvj; k � K; (2.40)

for any .x; v/ 2 V .
It follows from (2.40) and from the �-invariance of V that

jF.2K; x/vj � .1=2/2jvj; : : : ; jF.kK; x/vj � .1=2/kjvj; k � 0: (2.41)

There exists a number C0 > 0 such that

max
0�k<K; x2M kF.k; x/k � C0: (2.42)

Let us show that inequality (2.38) holds with C D 2C0 and � D 21=K . We can
represent any k � 0 in the form k D k0K C k1, where k0 � 0 and 0 � k1 < K. If
.x; v/ 2 V , then it follows from (2.41) and (2.42) that

jF.k; x/vj D jF.k1; �k0K.x//F.k0K; x/vj � C0.1=2/
k0jvj;

but since k0 C 1 > k=K, �k0 < �k=K C 1, and 2�k0 < 2�k, we conclude that

jF.k; x/vj � C�kjvj;

as required. ut
Remark 2.2.3 Inequalities (2.38) and (2.39) have the same form as inequalities
(HSD2.3) and (HSD2.4) in the definition of a hyperbolic set. Thus, if we want to
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show that some compact, �-invariant subset M0 of M is a hyperbolic set of � with
subbundles V and W, we only have to show that

Vx C Wx D TxM; x 2 M0: (2.43)

Lemma 2.2.12 Assume that for a sequence .xm; vm/ 2 TM there exists a sequence
km ! 1 as m ! 1 and a number r > 0 such that

jvmj � r and jF.km; xm/vmj � r:

Then there exists a number R > 0 such that

jF.k; xm/vmj � R; 0 � k � km:

Proof Assume the contrary, and let there exist .xm; vm/ 2 TM and km ! 1 such
that

bm WD max
0�k�km

jF.k; xm/vmj ! 1; m ! 1:

Find numbers lm 2 Œ0; km� such that bm D jF.lm; xm/vmj. Since � is continuous, it is
obvious that

lm ! 1 and km � lm ! 1; m ! 1: (2.44)

Set

wm D F.lm; xm/.vm=bm/:

Let .x; v/ be a limit point of the sequence .� lm.xm/;wm/; then jvj D 1. The
inequality

ˇ
ˇF.k; � lm.xm//wm

ˇ
ˇ � 1

holds for k 2 Œ�lm; 0� [ Œ0; km � lm�. We apply relations (2.44) and Lemma 2.2.6
(and its analog for W) to conclude that v 2 Vx \ Wx, but then v D 0 by
Condition B. ut
Remark 2.2.4 A similar statement is valid if km ! �1. In this case,

jF.k; xm/vmj � R; km � k � 0:

Lemma 2.2.13 If x is a nonwandering point of the diffeomorphism f , then equality
(2.43) holds.



62 2 Lipschitz and Hölder Shadowing and Structural Stability

Proof By the definition of a nonwandering point, there exist sequences of points
xm 2 M and numbers km such that

xm ! x; f km.xm/ ! x; jkmj ! 1

as m ! 1. We may assume that km ! �1.
Consider the linear subspace Wx and let Q be its orthogonal complement. Let

dimQ D s. Fix an orthonormal base v1; : : : ; vs in Q. Clearly, we can find s
orthonormal vectors vm1 ; : : : ; v

m
s in TxmM such that vmj ! vj as m ! 1 for

j D 1; : : : ; s.
Let Qm be the subspace of TxmM spanned by vm1 ; : : : ; v

m
s . Introduce the numbers

�m D min fjF.km; xm/vj W v 2 Qm; jvj D 1g :

We claim that

�m ! 1; m ! 1: (2.45)

If we assume the contrary, we can find a number r > 0 and sequences wm 2 Qm,
jwmj D 1, and km ! �1 such that

jF.km; xm/wmj � r:

By the remark to Lemma 2.2.12, there exists a number R such that

jF.k; xm/wmj � R; k 2 Œkm; 0�:

By Lemma 2.2.6, in this case, any limit point .x; v/ of the sequence .xm;wm/ belongs
to W, i.e., v 2 Wx. This relation contradicts our construction since wm 2 Qm, which
implies that v is orthogonal to Q (note that jvj D 1). This proves (2.45).

Consider the linear space

Km D F.km; xm/Qm:

Clearly, Km � TymM, where ym D f km.xm/, and dimKm D s.
Consider a vector w 2 Km, jwj D 1. Let w D F.km; xm/v. It follows from the

definition of the numbers �m that

jvj � �mjwj D �m: (2.46)

Inequalities (2.46), relations (2.45), and Lemma 2.2.12 imply that for any
sequence . ym;wm/, where wm 2 Km and jwmj D 1, there exists a number R such
that

jF.k; xm/wmj � R; k 2 Œ0;�km�:
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Now Lemma 2.2.6 implies that any limit point .x;w/ of such a sequence . ym;wm/

belongs to V , i.e., w 2 Vx.
Select an orthonormal basis wm

1 ; : : : ;w
m
s in Km. We may assume that all the

sequences wm
1 ; : : : ;w

m
s converge for some sequence of indices. For definiteness, let

wm
1 ! w1; : : : ;w

m
s ! ws; m ! 1:

The vectors w1; : : : ;ws are pairwise orthogonal unit vectors in Vx; hence,

dimVx � s: (2.47)

By the definition of the spaces Q and Qm,

dimWx D n � s:

Combining this with inequality (2.47), we see that

dimVx C dimWx � n:

Since Vx \ Wx D f0g by Condition B, we conclude that

Vx C Wx D TxM;

as claimed. ut
The nonwandering set of the diffeomorphism f coincides with the nonwandering

set of the diffeomorphism � D f�1. Combining Lemma 2.2.1 with Lemma 2.2.4
applied to the mapping �, we conclude that the following statement holds.

Theorem 2.2.2 If a diffeomorphism f satisfies the analytic strong transversality
condition, then the nonwandering set of f is hyperbolic.

Now we show that the analytic strong transversality condition implies the second
part of Axiom A, the density of periodic points in the nonwandering set˝. f / of the
diffeomorphism f .

Since we are going to use the Mañé theorem in the proof of the implication (the
analytic strong transversality condition) ) (structural stability) for a diffeomor-
phism f having the Lipschitz shadowing property, we can essentially simplify this
proof (compared to the original Mañé proof) assuming that f has the shadowing
property.

Thus, now we prove the following statement.

Theorem 2.2.3 If a diffeomorphism f has the shadowing property and the nonwan-
dering set ˝. f / of f is hyperbolic, then periodic points are dense in˝. f /.

In this proof, we apply the following two well-known results (see, for example,
[71] for their proofs).

First we recall a known definition.
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Definition 2.2.2 A homeomorphism f of a metric space .M; dist/ is called expan-
sive on a set A with expansivity constant a > 0 if the relations

f k.x/; f k. y/ 2 A; k 2 Z;

and

dist
�
f k.x/; f k. y/

� � a; k 2 Z;

imply that x D y.

Theorem 2.2.4 If 
 is a hyperbolic set of a diffeomorphism f , then there exists a
neighborhood of 
 on which f is expansive.

Denote by cardA the cardinality of a finite or countable set A.

Theorem 2.2.5 (The Birkhoff Constant Theorem) If the phase space X of a
homeomorphism f is compact and U is a neighborhood of the nonwandering set
˝. f / of f , then there exists a constant T D T.U/ such that for any point x 2 X, the
inequality

card
˚
k 2 Z W f k.x/ … U

� � T

holds.

Proof (of Theorem 2.2.3) Fix an arbitrary point z 2 ˝. f /. There exist sequences of
points zn and numbers ln ! 1 such that

zn ! z and f ln.zn/ ! z; n ! 1:

Let U be a neighborhood of the set˝. f / on which f is expansive and let a be the
corresponding expansivity constant.

Fix an " > 0 such that the 3"-neighborhood of ˝. f / is a subset of U. Denote by
U0 the 2"-neighborhood of ˝. f /. We assume, in addition, that 2" < a.

For this " there exists a d > 0 such that any d-pseudotrajectory of f is "-shadowed
by an exact trajectory.

Fix an index n such that

dist.z; zn/; dist.z; f ln.zn// < d=2:

Construct a sequence fxkg as follows. Represent k 2 Z in the form k D k0C k1ln,
where k1 2 Z and 0 � k0 < ln, and set xk D f k0 .zn/.

Clearly, the sequence fxkg is periodic with period ln; the choice of n implies that
this sequence is a d-pseudotrajectory of f .

We claim that

fxkg � U0: (2.48)
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Assuming the contrary, we can find an index m such that xm … U0, i.e.,

dist .xm;˝. f // � 2";

but then

dist .xmCkln ;˝. f // � 2"; k 2 Z: (2.49)

Let p 2 M be a point whose trajectory "-shadows fxkg, i.e.,

dist
�
f k. p/; xk

�
< "; k 2 ZI

let pk D f k. p/.
Then it follows from inequalities (2.49) that

dist . pmCkln ;˝. f // � "; k 2 Z;

which contradicts Theorem 2.2.5. Thus, we have established inclusion (2.48).
Set r D f ln. p/. Since xk D xkCln , the following inequalities hold:

dist
�
f k.r/; xk

� D dist
�
f kCln. p/; xkCln

�
< "; k 2 Z:

Then

dist
�
f k.r/; f k. p/

�
< 2" < a; k 2 ZI

in addition, inclusion (2.48) implies that

f k.r/; f k. p/ 2 U; k 2 Z:

Since f is expansive on U, r D p.
Thus, p is a periodic point of f .
Since " and d can be taken arbitrarily small, there is such a point p in an arbitrarily

small neighborhood of the point z. ut
Thus, it remains to show that the analytic strong transversality condition implies

the strong transversality condition (stable and unstable manifolds of nonwandering
points are transverse).

For this purpose, we apply the following well-known theorem on the behavior of
trajectories of a diffeomorphism in a neighborhood of a hyperbolic set (its proof can
be easily reduced to Theorem 6.4.9 in the book [28]).

Theorem 2.2.6 Let 
 be a hyperbolic set of a diffeomorphism f with hyperbolicity
constants C; �. For any C1 > C and �1 2 .�; 1/ there exists a neighborhood U of

 with the following property. If x 2 Ws. p/, p 2 
, and f k.x/ 2 U for k � 0,
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then there exist two complementary linear subspaces LC.x/ and L�.x/ of TxM such
that

(1)

LC.x/ D TxW
s. p/; L�.x/ D TxW

u. p/I

(2)

ˇ
ˇDf k.x/v

ˇ
ˇ � C1�

k
1jvj; k � 0; v 2 LC.x/;

and

ˇ
ˇDf k.x/v

ˇ
ˇ � .1=C1/�

�k
1 jvj; k � 0; v 2 L�.x/:

Remark 2.2.5 Of course, a similar statement holds if x 2 Wu. p/, p 2 
, and f k.x/
belongs to a small neighborhood of 
 for k � 0.

Clearly, it is enough for us to prove that if r 2 Ws. p/\Wu.q/, where p; q 2 ˝. f /,
then

BC.r/ � TrW
s. p/ and B�.r/ � TrW

u.q/: (2.50)

We prove the first inclusion in (2.50) by proving that

BC.r/ � LC.r/ (2.51)

and applying Theorem 2.2.6; the second inclusion is proved in a similar way.
Any trajectory of a diffeomorphism satisfying Axiom A tends to one of the basic

sets as time tends to ˙1 (see Theorem 1.3.2).
Take as 
 the basic set to which f k.r/ tends as k ! 1; obviously, p belongs

to this basic set. Of course, we may assume that the positive semitrajectory of r
belongs to a neighborhood of 
 having the properties described in Theorem 2.2.6.

Assume that inclusion (2.51) does not hold; take v 2 BC.r/nLC.r/ and represent

v D vs C vu; vs 2 LC.r/; vu 2 L�.r/I

then vu ¤ 0.
Then

ˇ
ˇDf kv

ˇ
ˇ � ˇ

ˇDf kvu
ˇ
ˇ � ˇ

ˇDf kvs
ˇ
ˇ � .1=C1/�

�kjvuj � C1�
kjvsj ! 1; k ! 1;

which contradicts the relation defining BC.r/.
We have completely proved the Mañé theorem.
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Historical Remarks In his paper [39], R. Mañé gave several equivalent character-
izations of structural stability of a diffeomorphism; Theorem 1.3.7 of this book is
just one of them.

The property of expansivity of a dynamical system with discrete time is now
one of the classical properties studied in the global theory of dynamical systems.
Theorem 2.2.4 is folklore. Let us mention J. Ombach’s paper [49] in which it was
shown (see Proposition 9) that a compact invariant set 
 of a diffeomorphism f is
hyperbolic if and only if f j
 is expansive and has the (standard) shadowing property
(compare with Sect. 4.1).

Theorem 2.2.5 was proved in G. Birkhoff’s book [10].

2.3 Diffeomorphisms with Lipschitz Shadowing

Our main result in this section is as follows.

Theorem 2.3.1 If a diffeomorphism of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, then f is structurally stable.

As stated in Theorem 1.4.1 (1), a structurally stable diffeomorphism f has the
Lipschitz shadowing property. Combining this statement with Theorem 2.3.1, we
conclude that for diffeomorphisms, structural stability is equivalent to Lipschitz
shadowing.

Proof (of Theorem 2.3.1) Let us first explain the main idea of the proof.
Fix an arbitrary point p 2 M, consider its trajectory f pk D f k. p/ W k 2 Zg, and

denote Ak D Df . pk/. Consider the sequence A D fAk W k 2 Zg.
In Sect. 2.1 devoted to the Maizel’ and Pliss theorems, we worked with sequences

A of isomorphisms of Euclidean spaces. Here we apply these theorems (and all the
corresponding notions of the Perron property etc.) to the sequences A D fDf . pk/g
(see the remark concluding Sect. 3.1).

We claim that if f has the Lipschitz shadowing property, then A has the Perron
property on Z.

By the Maizel’ theorem, the Perron property on Z implies that the sequence A is
hyperbolic on both “rays” Z� and ZC. Denote by S�

k ;U
�
k ; k 2 Z� and SC

k ;U
C
k ; k 2

ZC the corresponding stable and unstable subspaces.
Then, by the Pliss theorem, the subspaces U�

0 and SC
0 are transverse.

Clearly,

jAk ı � � � ı A0vj ! 0; v 2 SC
0 ; k ! 1;

and

ˇ
ˇ.Ak/

�1 ı � � � ı .A0/�1v
ˇ
ˇ ! 0; v 2 U�

0 ; k ! �1;
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which means that U�
0 � B�. p/ and SC

0 � BC. p/, where B�. p/ and BC. p/ are the
subspaces from the analytic transversality condition.

The transversality of the subspaces U�
0 and SC

0 implies the transversality of the
subspaces B�.x/ and BC.x/. Since x is arbitrary, f is structurally stable by the Mañé
theorem.

Now we prove our claim.
To clarify the reasoning, we first prove an analog of this result, Lemma 2.3.2,

for a diffeomorphism of the Euclidean space R
n. Of course, Rn is not compact, but

we avoid the appearing difficulty making the following additional assumption (and
noting that an analog of this assumption is certainly valid for a diffeomorphism of
class C1 of a closed smooth manifold). We call the condition below Condition S.

Thus, we assume that for any � > 0 we can find a ı D ı.�/ > 0 (independent
of k) such that if jvj � ı, then

j f . pk C v/ � Akv � pkC1j � �jvj; k 2 Z: (2.52)

The basic technical part of the proof of Lemma 2.3.2 is the following statement
(Lemma 2.3.1). In the following two Lemmas, 2.3.1 and 2.3.2, f is a diffeomorphism
of Rn that has the Lipschitz shadowing property with constants L ; d0 > 0, f pk D
f k. p/g is an arbitrary trajectory of f , Ak D Df . pk/, and it is assumed that Condition
S is satisfied.

Lemma 2.3.1 Fix a natural number N. For any sequence

wk 2 R
n; k 2 Z;

with jwkj < 1 there exists a sequence

zk 2 R
n; k 2 Z;

such that

jzkj � L C 1; k 2 Z; (2.53)

and

zkC1 D Akzk C wkC1; �N � k � N: (2.54)

Proof Thus, we assume that f has the Lipschitz shadowing property with constants
L ; d0 > 0.

Define vectors

�k 2 R
n; �N � k � N C 1;
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by the following relations:

��N D 0 and �kC1 D Ak�k C wkC1; �N � k � N: (2.55)

Clearly, there exists a number Q (depending on N, A , and wk) such that

j�kj � Q; �N � k � N C 1: (2.56)

Fix a small number d 2 .0; d0/ (we will reduce this number during the proof)
and consider the following sequence � D fxk 2 R

n W k 2 Zg:

xk D
8
<

:

f kCN. p�N/; k < �NI
pk C d�k; �N � k � N C 1I
f k�N�1. pNC1 C d�NC1/; k > N C 1:

Note that if �N � k � N, then

jxkC1 � f .xk/j D j pkC1 C d�kC1 � f . pk C d�k/j �

� d j�kC1 � Ak�kj C j f . pk C d�k/� pkC1 � dAk�kj :

Since we consider a finite number of wk, the condition jwkj < 1 implies that there
is a � 2 .0; 1/ such that the first term above does not exceed �d; by Condition S,
the second term is less than .1 � �/d if d is small. Hence, in this case, the sum is
less than d.

For the remaining values of k,

jxkC1 � f .xk/j D 0:

Thus, we may take d � d0 so small that � is a d-pseudotrajectory of f . Then there
exists a trajectory 	 D fyk W k 2 Zg of f such that

jxk � ykj � L d; k 2 Z: (2.57)

Denote tk D . yk � pk/=d. Since �k D .xk � pk/=d, it follows from (2.57) that

j�k � tkj D jxk � ykj=d � L ; k 2 Z: (2.58)

It follows from (2.56) and (2.57) that

j yk � pkj � j yk � xkj C jxk � pkj � .L C Q/d; k 2 Z:

Hence,

jtkj � L C Q; k 2 Z: (2.59)
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Now we define a finite sequence

bk 2 R
n; �N � k � N C 1;

by the following relations:

b�N D t�N and bkC1 D Akbk; �N � k � N: (2.60)

Take �1 2 .0; 1/ such that

�
.K C 1/2N C .K C 1/2N�1 C � � � C 1

�
�1 < 1; (2.61)

where K D sup kAkk. Set

� D �1

L C Q

and consider d so small that inequality (2.52) holds for jvj � ı with ı D .L CQ/d.
The definition of the vectors tk implies that

dtkC1 D ykC1 � pkC1 D f . yk/� f . pk/ D f . pk C dtk/� f . pk/:

Since jdtkj � .L C Q/d by (2.59), it follows from Condition S and from the
above choice of d that

jdtkC1 � dAktkj D j f . pk C dtk/ � f . pk/� dAktkj �

� �jdtkj � �.L C Q/d D �1d:

Hence,

tkC1 D Aktk C �k; where j�kj < �1: (2.62)

Consider the vectors

ck D tk � bk:

Note that c�N D 0 by (2.60) and

ckC1 D Akck C �k; where j�kj < �1
by (2.62).
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Thus,

jc�NC1j � j��N j < �1;

jc�NC2j � jA�NC1c�NC1 C ��NC1j � .K C 1/�1;

and so on, which implies the estimate

jckj � �
.K C 1/2N C .K C 1/2N�1 C � � � C 1

�
�1 < 1; �N � k � N:

Hence,

jtk � bkj � 1; �N � k � N: (2.63)

Finally, we consider the sequence

zk D
8
<

:

0; k < �NI
�k � bk; �N � k � N C 1I
0; k > N C 1:

Relations (2.55) and (2.60) imply relations (2.54); estimates (2.58) and (2.63)
imply estimate (2.53). ut
Lemma 2.3.2 The sequenceA D fAkg has the Perron property.
Proof Take an arbitrary sequence

wk 2 R
n; k 2 Z;

with jwkj < 1 and prove that an analog of Eq. (2.54) has a solution

zk 2 R
n; k 2 Z;

with

jzkj � L C 1; k 2 Z:

Fix a natural N and consider the sequence

w.N/k D
�
wk; �N � k � NI
0; jkj � N C 1:

By Lemma 2.3.1, there exists a sequence
n
z.N/k ; k 2 Z

o
such that

z.N/kC1 D Akz
.N/
k C w.N/k ; �N � k � N; (2.64)
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and
ˇ
ˇ
ˇz
.N/
k

ˇ
ˇ
ˇ � L C 1; k 2 Z: (2.65)

Passing to a subsequence of
n
z.N/k

o
, we can find a sequence fvkg such that

vk D lim
N!1 z.N/k ; k 2 Z:

(Note that do not assume uniform convergence.) Passing to the limit in (2.64) and
(2.65) as N ! 1, we see that

vkC1 D Akyk C wk; k 2 Z;

and

jvkj � L C 1; k 2 Z:

Thus, we have shown that the sequence A has the Perron property. ut
Now let us explain how to prove the required statement in the case of a smooth

closed manifold M.

Lemma 2.3.3 If a diffeomorphism of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property,

˚
pk D f k. p/

�
is an arbitrary

trajectory of f , and Ak D Df . pk/, then the sequence A D fAkg has the Perron
property.

Proof Let exp be the standard exponential mapping on the tangent bundle of M
generated by the fixed Riemannian metric dist. Let

expx W TxM ! M

be the corresponding exponential mapping at a point x 2 M.
Denote (just for this proof) by B.r; x/ the ball in M of radius r centered at a point

x; let BT.r; x/ be the ball in TxM of radius r centered at the origin.
It is well known that there exists an r > 0 such that for any x 2 M, expx is a

diffeomorphism of BT.r; x/ onto its image and exp�1
x is a diffeomorphism of B.r; x/

onto its image; in addition, D expx.0/ D Id.
Thus, we may assume that r is chosen so that the following inequalities hold for

any x 2 M:

dist.expx.v/; expx.w// � 2jv � wj; v;w 2 BT.r; x/; (2.66)

and
ˇ
ˇexp�1

x . y/� exp�1
x .z/

ˇ
ˇ � 2dist. y; z/; y; z 2 B.r; x/: (2.67)
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These inequalities mean that distances are distorted not more than twice when
we pass from the manifold to its tangent space or from the tangent space to the
manifold (if we work in a small neighborhood of a point of the manifold or in a
small neighborhood of the origin of the tangent space).

In our reasoning below, we always assume that d is so small that the correspond-
ing points belong to such small neighborhoods.

Now we fix a trajectory
˚
pk D f k. p/

�
of our diffeomorphism f and introduce the

mappings

Fk D exp�1
pkC1

ıf ı exppk W TpkM ! TpkC1
M:

Clearly,

DFk.0/ D Ak:

The analog of Condition S is as follows: For any � > 0 we can find a ı > 0

(independent of k) such that if jvj < ı, then

jFk.v/ � Akvj � �jvj; k 2 Z: (2.68)

Of course, this condition is satisfied automatically since f is of class C1 and the
manifold M is compact.

To prove that the sequence A has the Perron property, let us consider the
difference equations

vkC1 D Akyk C wk; k 2 Z; (2.69)

where vk 2 TpkM and wk 2 TpkC1
M.

We assume that jwkj < 1; k 2 Z. Let us “translate” the reasoning of Lemma 2.3.1
to the “manifold language.”

We fix a natural N and consider the sequence

�k 2 TpkM; �N � k � N C 1;

defined by relations (2.55). Let Q satisfy (2.56).
We fix a small d and define the sequence � D fxk 2 M W k 2 Zg by

xk D

8

<̂

:̂

f kCN. p�N/; k < �NI
exppk.d�k/; �N � k � N C 1I
f k�N�1.exppNC1

.d�NC1//; k > N C 1:

This definition and inequalities (2.66) imply that if d is small enough, then

dist
�
xkC1; exppkC1

.dAk�k/
�
< 2d:
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Since

f .xk/ D exppkC1
.Fk.d�k//;

condition (2.68) with � < 1 implies that

dist
�

exppkC1
.dAk�k/; f .xk/

�
< 2d;

and we see that

dist . f .xk/; xkC1/ < 4d:

Thus, there exists an exact trajectory 	 D fyk W k 2 Zg of f such that

dist.xk; yk/ � 4L d; k 2 Z: (2.70)

Now we consider the finite sequence

tk D 1

d
exp�1

pk
. yk/; �N � k � N:

Inequalities (2.70) and (2.67) imply that

j�k � tkj � 8L ; k 2 Z: (2.71)

Note that

dist. yk; pk/ � dist. yk; xk/C dist.xk; pk/ � .4L C 2Q/d; k 2 Z:

Hence,

jtkj � 8L C 4Q; k 2 Z:

Now we define a finite sequence

bk 2 TpkM; �N � k � N C 1;

by relations (2.60) and repeat the reasoning of Lemma 2.3.1 with

� D �1

8L C 4Q
;

where �1 is the same as above (see relation (2.61)).
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The rest of the proof is literally the same (with natural replacement of Rn by the
corresponding tangent spaces), and we get the relation

jtk � bkj < 1

similar to (2.63).
Finally, we get the estimate

jzkj � 8L C 1;

which completes the proof of the analog of Lemma 2.3.1.
The rest of the proof of the implication “Lipschitz shadowing property implies

the Perron property of the sequence A ” almost literally repeats the proof of
Lemma 2.3.2. ut
Historical Remarks Theorem 2.3.1 was published by the first author and S. B.
Tikhomirov in the paper [68]. Let us mention that the paper [67] contained the first
proof of the fact that structural stability follows from certain shadowing property
based on a combination of the Maizel’, Pliss, and Mañé theorems.

2.4 Lipschitz Periodic Shadowing for Diffeomorphisms

The main result of this section is as follows.

Theorem 2.4.1 A diffeomorphism f of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz periodic shadowing property if and only if f is ˝-
stable.

First we prove the “if” statement of Theorem 2.4.1.

Theorem 2.4.2 If a diffeomorphism f is˝-stable, then f has the Lipschitz periodic
shadowing property.

Let us give one more definition.

Definition 2.4.1 We say that a diffeomorphism f has the Lipschitz shadowing
property on a set U if there exist positive constants L ; d0 such that if � D fxi W
i 2 Zg � U is a d-pseudotrajectory with d � d0, then there exists a point p 2 U
such that inequalities (1.5) hold.

Remark 2.4.1 It follows from Theorems 1.4.2 and 2.2.4 that we can find a neighbor-
hood U of a hyperbolic set 
 of a diffeomorphism f having the above-formulated
property and such that f is expansive on U.

We start by proving several auxiliary results.

Lemma 2.4.1 Let f be a homeomorpism of a compact metric space .M; dist/. For
any neighborhood U of the nonwandering set ˝. f / there exist positive numbers
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T; ı1 such that if � D fxi W i 2 Zg is a d-pseudotrajectory of f with d � ı1 and

xk; xkC1; : : : ; xkCl … U

for some k 2 Z and l > 0, then l � T.

Proof Take a neighborhood U of the nonwandering set ˝. f / and let T be the
Birkhoff constant for the homeomorphism f given for this neighborhood by
Theorem 2.2.5. Assume that there does not exist a number ı1 with the desired
property; then there exists a sequence dj ! 0 as j ! 1 and a sequence of dj-

pseudotrajectories fx. j/k W k 2 Zg of f such that

n
x. j/k W 0 � k � T � 1

o
\ U D ;

for all j.
The set M0 D M n U is compact. Passing to a subsequence, if necessary, we may

assume that x. j/0 ! x0 as j ! 1. In this case,

x. j/k ! f k.x0/ 2 M0; 0 � k � T � 1;

and we get a contradiction with the choice of T. ut
Now let us recall some basic properties of ˝-stable diffeomorphisms. It was

noted in Sect. 1.3 that a diffeomorphism f is ˝-stable if and only if f satisfies
Axiom A and the no cycle condition (Theorem 1.3.3).

Let ˝1; : : : ;˝m be the basic sets in decomposition (1.15) of the nonwandering
set of an ˝-stable diffeomorphism f .

Below we need one folklore technical statement. Recall that we write ˝i ! ˝j

if there is a point x … ˝. f / such that

f�k.x/ ! ˝i and f k.x/ ! ˝j; k ! 1:

Theorem 2.4.3 Assume that a diffeomorphism f is ˝-stable. For any family of
neighborhoods Ui of the basic sets ˝i one can find neighborhoods Vi � Ui such
that if a point x belongs to some Vi and there exist indices 0 < l � m such that

f l.x/ … Ui and f
m.x/ 2 Vj;

then there exist basic sets ˝i1 ; : : : ;˝it such that

˝i ! ˝i1 ! � � � ! ˝it ! ˝j: (2.72)

Proof Reducing the given neighborhoods Ui, we may assume that the compact sets
U0

i D f .Cl.Ui//[ Cl.Ui/ are disjoint.
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Assume that our statement does not hold. In this case, there exist sequences of
points xk; k � 0, and indices l.k/ � m.k/ such that

xk ! ˝i; f l.k/.xk/ … Ui; f m.k/.xk/ ! ˝i; k ! 1:

Clearly, we may assume that

xk; f .xk/; : : : ; f
l.k/�1.xk/ 2 Ui

while

yk WD f l.k/.xk/ … Ui:

Then yk 2 U0
i , and, passing to a subsequence, if necessary, we may assume that

yk ! y 2 U0
i as k ! 1.

Since ˝i is a compact f -invariant set, l.k/ ! 1 as k ! 1. Thus, for any t < 0,
f t. yk/ 2 Ui for large k, and it follows that f t. y/ 2 Cl.Ui/ for any t < 0. We note
that the set Cl.Ui/ intersects a single basic set, ˝i, and refer to (1.16) to conclude
that

y 2 Wu.˝i/: (2.73)

By the same relation (1.16), there exists a basic set ˝i1 such that

y 2 Ws.˝i1 /: (2.74)

By our choice of Ui, the sets Cl. f .Ui// nUi do not contain nonwandering points.
Thus, if i1 D i, inclusions (2.73) and (2.74) mean the existence of a 1-cycle, and we
get the desired contradiction.

Hence, i1 ¤ i and˝i ! ˝i1 . Consider the compact set

Y D ˚
f k. y/ W k � 0

�[˝i1 :

Clearly, the set Y has a neighborhoodZ such that Ui1 � Z and Z does not intersect
a small neighborhood of ˝i.

Since yk D f lk .xk/ ! y, there exist indices l1.k/ such that

f t. yk/ D f l.k/Ct.xk/ 2 Z; 0 � t � l1.k/;

for large k, and

x1;k D f l1.k/. yk/ D f l.k/Cl1.k/.xk/ ! ˝i1 ; k ! 1:
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At the same time, the positive trajectories of the points yk (and hence, of the
points x1;k) must leave Z (and hence, Ui1) since the sequence

f m.k/�l.k/. yk/ D f m.k/.xk/

tends to ˝i.
Thus, we can repeat the above reasoning with the points x1;k and the basic set˝i1

instead of xk and ˝i.
Such a process will produce basic sets ˝i1 ; ˝i2 ; : : : such that

˝i ! ˝i1 ! ˝i2 ! : : : :

Since f has no cycles, this process is finite, and, as a result, we conclude that
there exist basic sets ˝i1 ; : : : ;˝it such that relations (2.72) hold. ut

Now we apply the above theorem to prove a statement concerning periodic
pseudotrajectories of ˝-stable diffeomorphisms.

Lemma 2.4.2 Assume that a diffeomorphism f is ˝-stable. For any family of
disjoint neighborhoodsWi of the basic sets˝i there exists a number ı2 > 0 such that
any periodic d-pseudotrjectory � of f with d � ı2 belongs to a single neighborhood
Wi.

Proof Fix arbitrary disjoint neighborhoodsWi of the basic sets˝i and find a number
" > 0 and neighborhoods Ui of ˝i such that

N.";Ui/ � Wi; i D 1; : : : ;m:

Apply Theorem 2.4.3 to find for Ui the corresponding neighborhoods Vi of ˝i.
Reducing ", if necessary, we can find neighborhoods V 0

i of ˝i such that

N.";V 0
i / � Vi; i D 1; : : : ;m:

By Lemma 2.4.1, there exist positive numbers T; ı1 such that if � D fxkg is a
d-pseudotrajectory of f with d � ı1 and

xk; xkC1; : : : ; xkCl … V WD
m[

iD1
V 0
i

for some k 2 Z and l > 0, then l � T.
Find a number ı2 2 .0; ı1/ such that if � D fxkg is a d-pseudotrajectory of f with

d � ı2, then

dist. f l.xk/; xkCl/ < "; 0 � l � T C 1;

for any k 2 Z.
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Now let � D fxkg be a periodic d-pseudotrajectory of f of period � with d � ı2.
Let us call a V-block of � a finite segment

�k;m D fxk; xkC1; : : : ; xkCmg; k 2 Z; m > 0;

such that xk; xkCm 2 V while xkCl … V for 0 < l < m. Note that in this case,
m � T C 1.

Let us note simple properties of V-blocks.
It follows from the choice of ı2 that if �k;m is a V-block for which there exist

indices i; j 2 f1; : : : ;mg such that xk 2 V 0
i and xkCm 2 V 0

j , then dist. f m.xk/; xkCm/ <

"; hence, f m.xk/ 2 Vj.
At the same time, if for such a V-block there exists an index l 2 .0;m/ such that

xkCl … Wi, then dist. f l.xk/; xkCl/ < "; hence, f l.xk/ … Ui.
It follows from Theorem 2.4.3 that in this case, there exists a relation of the form

(2.72); the absence of cycles implies that j ¤ i.
Since ı2 < ı1, there exists a neighborhood V 0

i such that � intersects V 0
i .

Changing indices of �, we may assume that x0 2 V 0
i .

If either xk 2 Wi for k � 0 or any V-block �k;m with k � 0 belongs to Wi, then
the statement of our lemma follows from the periodicity of �.

It was noted above that if �k;m be a V-block with xk 2 Vj for k � 0 for which
there exists an index l 2 .0;m/ such that xkl … Wj, then there exists an index j0 ¤ j
for which we have a relation

˝j ! � � � ! ˝j0

of the form (2.72).
Thus, if we assume that there exists a V-block �k;m with k � 0 such that �k;m n

Wi ¤ ;, then we get an index j1 ¤ i such that we have a relation

˝i ! � � � ! ˝j1

of the form (2.72).
Going to “the right” of this V-block �k;m and continuing this process, we construct

a sequence of pairs of indices .i; j1/; . j1; j2/; : : : such that

˝i ! � � � ! ˝j1 ; ˝j1 ! � � � ! ˝j2 ; : : : :

In this case, it follows from the absence of cycles that all the indices i; j1; j2; : : :
are different.

But the �-periodicity of � implies that if �k;m is a V-block and n is a natural
number, then �kCn�;m is an identical V-block, and the existence of the above
sequence with different i; j1; j2; : : : is impossible.

Now we prove Theorem 2.4.2.
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By Remark 2.4.1, there exist disjoint neighborhoodsU1; : : : ;Um of the basic sets
˝1; : : : ;˝m such that

(i) f has the Lipschitz shadowing property on any of Uj with the same constants
L ; d�

0 ;
(ii) f is expansive on any of Uj with the same expansivity constant a.

Find neighborhoods Wj of ˝j (and reduce d�
0 , if necessary) so that the L d�

0 -
neighborhoods of Wj belong to Uj. Apply Lemma 2.4.2 to find the corresponding
constant ı2.

We claim that f has the Lipschitz periodic shadowing property with constants
L ; d0, where

d0 D min
�
d�
0 ; ı2;

a

2L

�
:

Take a �-periodic d-pseudotrajectory � D fxkg of f with d � d0. Lemma 2.4.2
implies that there exists a neighborhood Wi such that � � Wi � Ui.

Thus, there exists a point p such that inequalities (1.5) hold. Let us show that p
is a periodic point of f . By the choice of Ui and Wi, f k. p/ 2 Ui for all k 2 Z. Let
q D f�. p/. Inequalities (1.5) and the periodicity of � imply that

dist
�
f k.q/; xk

� D dist
�
f kC�. p/; xk

� D dist
�
f kC�. p/; xkC�

� � L d; k 2 Z:

Thus,

dist
�
f k.q/; f k. p/

� � 2L d � a; k 2 Z;

which implies that f�. p/ D q D p. This completes the proof. ut
Now we prove the “only if” statement of Theorem 2.4.1.

Theorem 2.4.4 If a diffeomorphism f has the Lipschitz periodic shadowing prop-
erty, then f is ˝-stable.

Thus, let us assume that f has the Lipschitz periodic shadowing property (with
constants L � 1; d0 > 0). Clearly, in this case f�1 has the Lipschitz periodic
shadowing property as well (and we assume that the constants L ; d0 are the same
for f and f�1).

To clarify the presentation, in the construction of pseudotrajectories in the
following Lemmas 2.4.3 and 2.4.4, we assume that f is a diffeomorphism of Rn

(and leave to the reader consideration of the case of a manifold).
We also assume that there exists a number N > 0 such that kDf .x/k � N for all

considered points x (an analog of this assumption is satisfied in the case of a closed
manifold).

Recall that we denote by Per. f / the set of periodic points of f .

Lemma 2.4.3 Every point p 2 Per. f / is hyperbolic.
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Proof To get a contradiction, let us assume that f has a nonhyperbolic periodic point
p (to simplify notation, we assume that p is a fixed point; literally the same reasoning
can be applied to a periodic point of period m > 1). In addition, we assume that
p D 0.

In this case, we can represent

f .v/ D Av C F.v/;

where A D Df .0/ and F.v/ D o.v/ as v ! 0.
By our assumption, A is a nonhyperbolic matrix. The following two cases are

possible:

Case 1: A has a real eigenvalue � with j�j D 1;
Case 2: A has a complex eigenvalue � with j�j D 1.

We treat in detail only Case 1 and give a comment concerning Case 2. To simplify
presentation, we assume that 1 is an eigenvalue of A; the case of eigenvalue �1 is
treated similarly.

We can introduce coordinate v such that, with respect to this coordinate, the
matrix A has block-diagonal form,

A D diag.B;P/; (2.75)

where B is a Jordan block of size l � l:

B D

0

B
B
B
@

1 1 0 : : : 0

0 1 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

1

C
C
C
A
:

Of course, introducing new coordinates, we have to change the constants L and
d0; we denote the new constants by the same symbols. In addition, we assume that
L is integer.

We start considering the case l D 2; in this case,

B D
	
1 1

0 1




:

Let

e1 D .1; 0; 0; : : : ; 0/ and e2 D .0; 1; 0; : : : ; 0/

be the first two vectors of the standard orthonormal basis.
Let K D 7L .
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Take a small d > 0 and construct a finite sequence y0; : : : ; yQ of points (where Q
is determined later) as follows: y0 D 0 and

ykC1 D Ayk C de2; k D 0; : : : ;K � 1: (2.76)

Then

yK D .Z1.K/d;Kd; 0; : : : ; 0/;

where the natural number Z1.K/ is determined by K (we do not write Z1.K/
explicitly). Now we set

ykC1 D Ayk � de2; k D K; : : : ; 2K � 1:
Then

y2K D .Z2.K/d; 0; 0; : : : ; 0/;

where the natural number Z2.K/ is determined by K as well. Take Q D 2KCZ2.K/;
if we set

ykC1 D Ayk � de1; k D 2K; : : : ;Q � 1;

then yQ D 0. Let us note that both numbers Q and

Y WD max0�k�Q�1 j ykj
d

are determined by K (and hence, by L ).
Now we construct a Q-periodic sequence xk; k 2 Z; that coincides with the above

sequence for k D 0; : : : ;Q.
We claim that if d is small enough, then � D fxkg is a 2d-pseudotrajectory of f

(and this pseudotrajectory is Q-periodic by construction).
Indeed, we know that jxkj � Yd for k 2 Z. Since F.v/ D o.jvj/ as jvj ! 0,

jF.xk/j < d; k 2 Z; (2.77)

if d is small enough.
The definition of xk implies that

jxkC1 � Axkj D d; k 2 Z: (2.78)

It follows from (2.77) and (2.78) that

jxkC1 � f .xk/j � jxkC1 � Axkj C jF.xk/j < 2d;

which implies that � D fxkg is a 2d-pseudotrajectory of f if d is small enough.
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Now we estimate the distances between points of trajectories of the diffeomor-
phism f and its linearization at zero.

Let us take a vector p0 and assume that the sequence pk D f k. p0/ belongs to the
ball jvj � .Y C 2L /d for 0 � k � K. Let rk D Akp0 (we impose no conditions on
rk since below we estimate F at points qk only).

Take a small number � 2 .0; 1/ (to be chosen later) and assume that d is small
enough, so that the inequality

jF.v/j � �jvj

holds for jvj � .Y C 2L /d.
By our assumption, kAk D kDf .0/k � N. Then

j p1j � jAp0j C jF. p0/j � .N C 1/j p0j; : : : ;

j pkj � jApk�1j C jF. pk�1/j � .N C 1/kj p0j

for 1 � k � K, and

j p1 � r1j D jAp0 C F. p0/� Ap0j � �j p0j;

j p2 � r2j D jAp1 C F. p1/� Ar1j � Nj p1 � r1j C �j p1j � �.2N C 1/j p0j;

j p3 � r3j � Nj p2 � r2j C �j p2j � �.N.2N C 1/C .N C 1/2/j p0j;

and so on.
Thus, there exists a number � D �.K;N/ such that

j pk � rkj � ��j p0j; 0 � k � K:

We take � D 1=�, note that � D �.K;N/, and get the inequalities

j pk � rkj � j p0j; 0 � k � K; (2.79)

for d small enough.
Since f has the Lipschitz periodic shadowing property, for d small enough, the

Q-periodic 2d-pseudotrajectory � is 2L d-shadowed by a periodic trajectory. Let p0
be a point of this trajectory such that

j pk � xkj � L d; k 2 Z; (2.80)

where pk D f k. p0/.
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The inequalities jxkj � Yd and (2.80) imply that

j pkj � jxkj C j pk � xkj � . Y C 2L /d; k 2 Z: (2.81)

Note that j p0j � 2L d.
Set rk D Akp0; we deduce from estimate (2.79) that if d is small enough, then

j pK � rK j � j p0j � 2L d: (2.82)

Denote by v.2/ the second coordinate of a vector v.
It follows from the structure of the matrix A that

ˇ
ˇ
ˇr
.2/
K

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ p

.2/
0

ˇ
ˇ
ˇ � 2L d: (2.83)

The relations
ˇ
ˇ
ˇ y
.2/
K

ˇ
ˇ
ˇ D Kd and j pK � yK j � 2L d

imply that

ˇ
ˇ
ˇ p

.2/
K

ˇ
ˇ
ˇ � Kd � 2L d D 5L d (2.84)

(recall that K D 7L ).
Estimates (2.82)–(2.84) are contradictory. Our lemma is proved in Case 1 for

l D 2.
If l D 1, then the proof is simpler; the first coordinate of Akv equals the first

coordinate of v, and we construct the periodic pseudotrajectory perturbing the first
coordinate only.

If l > 2, the reasoning is parallel to that above; we first perturb the lth coordinate
to make it Kd, and then produce a periodic sequence consequently making zero the
lth coordinate, the .l � 1/st coordinate, and so on.

If � is a complex eigenvalue, � D a C bi, we take a real 2 � 2 matrix

R D
	
a �b
b a




and assume that in representation (2.75), B is a real 2l � 2l Jordan block:

B D

0

B
B
B
@

R E2 0 : : : 0

0 R E2 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : R

1

C
C
C
A
;

where E2 is the 2 � 2 identity matrix.
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After that, almost the same reasoning works; we note that jRvj D jvj for any
2-dimensional vector v and construct periodic pseudotrajectories replacing, for
example, formulas (2.76) by the formulas

ykC1 D Ayk C dwk; k D 0; : : : ;K � 1;

where jth coordinates of the vector wk are zero for j D 1; : : : ; 2l � 2; 2l C 1; : : : ; n,
while the 2-dimensional vector corresponding to .2l� 1/st and 2lth coordinates has
the form Rkw with jwj D 1, and so on. We leave details to the reader. The lemma is
proved. ut
Lemma 2.4.4 There exist constants C > 0 and � 2 .0; 1/ depending only on N and
L and such that, for any point p 2 Per. f /, there exist complementary subspaces
S. p/ and U. p/ of Rn that are Df -invariant, i.e.,

(H1) Df . p/S. p/ D S. f . p// and Df . p/U. p/ D U. f . p//,
and the inequalities

(H2.1)
ˇ
ˇDf j. p/v

ˇ
ˇ � C�jjvj; v 2 S. p/; j � 0,

and
(H2.2)

ˇ
ˇDf�j. p/v

ˇ
ˇ � C�jjvj; v 2 U. p/; j � 0,

hold.

Remark 2.4.2 This lemma means that the set Per. f / has all the standard properties
of a hyperbolic set, with the exception of compactness.

Proof Take a periodic point p 2 Per. f /; let m be the minimal period of p.
Denote pi D f i. p/, Ai D Df . pi/, and B D Dfm. p/. It follows from Lemma 2.4.3

that the matrix B is hyperbolic. Denote by S. p/ and U. p/ the invariant subspaces
of B corresponding to parts of its spectrum inside and outside the unit disk,
respectively. Clearly, S. p/ and U. p/ are invariant with respect to Df , they are
complementary subspaces of Rn, and the following relations hold:

lim
n!C1Bnvs D lim

n!C1B�nvu D 0; vs 2 S. p/; vu 2 U. p/: (2.85)

We prove that inequalities (H2.2) hold with C D 4L and � D 1 C 1=.2L /

(inequalities (H2.1) are established by similar reasoning applied to f�1 instead of f ).
Consider an arbitrary nonzero vector vu 2 U. p/ and an integer j � 0. Define

sequences of vectors vi; ei and numbers �i > 0 for i � 0 as follows:

v0 D vu; viC1 D Aivi; ei D vi

jvij ; �i D jviC1j
jvij D jAieij:

Let

� D �m�1 � : : : � �1 C �m�1 � : : : � �2 C : : :C �m�1 C 1

�m�1 � : : : � �0 :
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Consider the sequence fai 2 R W i � 0g defined by the following formulas:

a0 D �; aiC1 D �iai � 1: (2.86)

Note that

am D 0 and ai > 0; i 2 Œ0;m � 1�: (2.87)

Indeed, if ai � 0 for some i 2 Œ0;m � 1�, then ak < 0 for k 2 Œi C 1;m�.
It follows from (2.85) that there exists an n > 0 such that

jB�n�e0j < 1: (2.88)

Consider the finite sequence of vectors fwi W i 2 Œ0;m.n C 1/�g defined as
follows:

8
<

:

wi D aiei; i 2 Œ0;m � 1�I
wm D B�n�e0I
wmC1Ci D AiwmCi; i 2 Œ0;mn � 1�:

Clearly,

wkm D Bk�1�n�e0; k 2 Œ1; n C 1�;

which means that we can consider fwig as an m.n C 1/-periodic sequence defined
for i 2 Z.

Let us note that

Aiwi D aiAiei D ai
viC1
jvij ; i 2 Œ0;m � 2�;

wiC1 D .�iai � 1/
viC1

jviC1j D ai
viC1
jvij � eiC1; i 2 Œ0;m � 2�;

and

Am�1wm�1 D am�1
vm

jvm�1j D vm

�m�1jvm�1j D em

(in the last relation, we take into account that am�1�m�1 D 1 since am D 0).
The above relations and condition (2.88) imply that

jwiC1 � Aiwij < 2; i 2 Z: (2.89)
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Now we take a small d > 0 and consider the m.n C 1/-periodic sequence

� D fxi D pi C dwi W i 2 Zg:

We claim that if d is small enough, then � is a 2d-pseudotrajectory of f .
Represent

f .xi/ D f . pi/C Df . pi/dwi C Fi.dwi/ D piC1 C Aidwi C Fi.dwi/;

where Fi.v/ D o.jvj/ as v ! 0.
It follows from estimates (2.77) that

j f .xi/� xiC1j < 2d

for small d.
By Lemma 2.4.3, the m-periodic trajectory f pig is hyperbolic; hence, f pig has a

neighborhood in which f pig is the unique periodic trajectory. It follows that if d is
small enough, then the pseudotrajectory fxig is 2L d-shadowed by f pig.

The inequalities jxi �pij � 2L d imply that jaij D jwij � 2L for 0 � i � m�1.
Now the equalities �i D .aiC1 C 1/=ai imply that if 0 � i � m � 1, then

�0 � : : : � �i�1 D a1 C 1

a0

a2 C 1

a1
: : :

ai C 1

ai�1
D

D ai C 1

a0

	

1C 1

a1




: : :

	

1C 1

ai�1




�

� 1

2L

	

1C 1

2L


i�1
>

1

4L

	

1C 1

2L


i

(we take into account that 1C 1=.2L / < 2 since L � 1).
It remains to note that

ˇ
ˇDf i. p/vu

ˇ
ˇ D �i�1 � � ��0jvuj; 0 � i � m � 1;

and that we started with an arbitrary vector vu 2 U. p/.
This proves our statement for j � m � 1. If j � m, we take an integer k > 0 such

that km > j and repeat the above reasoning for the periodic trajectory p0; : : : ; pkm�1
(note that we have not used the condition that m is the minimal period). The lemma
is proved. ut

In the following lemmas, we return to the case of a diffeomorphism f of a smooth
closed manifold M since the reasoning becomes “global.” We still assume that f has
the Lipschitz periodic shadowing property and apply analogs of Lemmas 2.4.3 and
2.4.4 for the case of a manifold.



88 2 Lipschitz and Hölder Shadowing and Structural Stability

Lemma 2.4.5 The diffeomorphism f satisfies Axiom A.

Proof Denote by Pl the set of points p 2 Per. f / of index l (as usual, the index of a
hyperbolic periodic point is the dimension of its stable manifold).

Let Rl be the closure of Pl. Clearly, Rl is a compact f -invariant set. We claim that
any Rl is a hyperbolic set. Let n D dimM.

Consider a point q 2 Rl and fix a sequence of points pm 2 Pl such that pm ! q as
m ! 1. By an analog of Lemma 2.4.4, there exist complementary subspaces S. pm/
and U. pm/ of TpmM (of dimensions l and n � l, respectively) for which estimates
(H2.1) and (H2.2) hold.

Standard reasoning shows that, introducing local coordinates in a neighborhood
of .q;TqM/ in the tangent bundle of M, we can select a subsequence pmk for
which the sequences S. pmk/ and U. pmk/ converge (in the Grassmann topology) to
subspaces of TqM (let S0 and U0 be the corresponding limit subspaces).

The limit subspaces S0 and U0 are complementary in TqM. Indeed, consider
the “angle” ˇmk between the subspaces S. pmk/ and U. pmk/ which is defined (with
respect to the introduced local coordinates in a neighborhood of .q;TqM/) as
follows:

ˇmk D min jvs � vuj;

where the minimum is taken over all possible pairs of unit vectors vs 2 S. pmk/ and
vu 2 U. pmk/.

The same reasoning as in the proof of Lemma 2.1.5 shows that the values ˇmk are
estimated from below by a positive constant ˛ D ˛.N;C; �/. Clearly, this implies
that the subspaces S0 and U0 are complementary.

It is easy to show that the limit subspaces S0 and U0 are unique (which means, of
course, that the sequences S. pm/ and U. pm/ converge). For the convenience of the
reader, we prove this statement.

To get a contradiction, assume that there is a subsequence pmi for which the
sequences S. pmi/ and U. pmi/ converge to complementary subspaces S1 and U1
different from S0 and U0 (for definiteness, we assume that S0 n S1 ¤ ;).

Due to the continuity of Df , the inequalities

ˇ
ˇDf j.q/v

ˇ
ˇ � C�jjvj; v 2 S0 [ S1;

and

ˇ
ˇDf j.q/v

ˇ
ˇ � C�1��jjvj; v 2 U0 [ U1;

hold for j � 0.
Since

TqM D S0 ˚ U0 D S1 ˚ U1;
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our assumption implies that there is a vector v 2 S0 such that

v D vs C vu; vs 2 S1; v
u 2 U1; v

u ¤ 0:

Then

jDf j.q/vj � C�jjvj ! 0; j ! 1;

and

ˇ
ˇDf j.q/v

ˇ
ˇ � C�1��jjvuj � C�jjvsj ! 1; j ! 1;

and we get the desired contradiction.
It follows that there are uniquely defined complementary subspaces S.q/ and

U.q/ for q 2 Rl with proper hyperbolicity estimates; the Df -invariance of these
subspaces is obvious. We have shown that each Rl is a hyperbolic set with
dimS.q/ D l and dimU.q/ D n � l for q 2 Rl.

If r 2 ˝. f /, then there exists a sequence of points rm ! r as m ! 1 and a
sequence of indices km ! 1 as m ! 1 such that f km.rm/ ! r.

Clearly, if we continue the sequence

rm; f .rm/; : : : ; f
km�1.rm/

periodically with period km, we get a periodic dm-pseudotrajectory of f with dm ! 0

as m ! 1.
Since f has the Lipschitz periodic shadowing property, for large m there exist

periodic points pm such that dist. pm; rm/ ! 0 as m ! 1. Thus, periodic points are
dense in ˝. f /.

Since hyperbolic sets with different dimensions of the subspaces U.q/ are
disjoint, we get the equality

˝. f / D R0 [ � � � [ Rn;

which implies that ˝. f / is hyperbolic. The lemma is proved. ut
Thus, to prove Theorem 2.4.4, it remains to prove the following lemma.

Lemma 2.4.6 If f has the Lipschitz periodic shadowing property, then f satisfies
the no cycle condition.

Proof To simplify presentation, we prove that f has no 1-cycles (in the general
case, the idea is literally the same, but the notation is heavy; we leave this case to
the reader).

To get a contradiction, assume that

p 2 .Wu.˝i/\ Ws.˝i// n˝. f /:
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In this case, there are sequences of indices jm; km ! 1 as m ! 1 such that

f�jm. p/; f km. p/ ! ˝i; m ! 1:

Since the set ˝i is compact, we may assume that

f�jm. p/ ! q 2 ˝i and f km. p/ ! r 2 ˝i:

Since ˝i contains a dense positive semitrajectory, there exist points sm ! r and
indices lm > 0 such that f lm.sm/ ! q as m ! 1.

Clearly, if we continue the sequence

p; f . p/; : : : ; f km�1. p/; sm; : : : ; f lm�1.sm/; f�jm. p/; : : : ; f�1. p/

periodically with period km C lm C jm, we get a periodic dm-pseudotrajectory of f
with dm ! 0 as m ! 1.

Since f has the Lipschitz periodic shadowing property, there exist periodic points
pm (for m large enough) such that pm ! p as m ! 1, and we get the desired
contradiction with the assumption that p … ˝. f /. The lemma is proved. ut
Historical Remarks Theorem 2.4.1 was published by A. V. Osipov, the first author,
and S. B. Tikhomirov in [50].

2.5 Hölder Shadowing for Diffeomorphisms

In this section, we explain the main ideas of the proof of the following result.

Theorem 2.5.1 Assume that a diffeomorphism f of class C2 of a smooth closed
manifold has the Hölder shadowing property on finite intervals with constants
L ;C; d0; �; ! and that

� 2 .1=2; 1/ and � C ! > 1: (2.90)

Then f is structurally stable.
The proof of Theorem 2.5.1 is quite complicated. For that reason, we try to

simplify the presentation and omit inessential technical details; the reader can find
the original Tikhomirov’s proof in the paper [101].

The main two steps of the proof of Theorem 2.5.1 are as follows.
First one considers a trajectory f pk D f k. p/g of f , denotes Ak D Df . pk/, and

shows that under conditions of Theorem 2.5.1, the sequence A D fAkg has a
weak analog of the Perron property (in which the existence of bounded solutions
of the inhomogeneous difference equations is replaced by the existence of “slowly
growing” solutions).
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We reproduce this part of the proof in Theorem 2.5.2 in which we restrict our
consideration to the case of a diffeomorphism f of the Euclidean space Rn.

After that, it is shown that the above-mentioned weak analog of the Perron
property implies then f satisfies the analytic strong transversality condition (with
exponential estimates) and, hence, by the Mañé theorem, f is structurally stable. To
explain the basic techniques of that part of the proof, we prove the above statement
in Theorem 2.5.3 in the case of a one-dimensional phase space (and note that the
reasoning in the proof of Theorem 2.5.3 reproduces the most important part of the
proof given by Tikhomirov). We again refer the reader to [101] for the proof of the
general case.

Theorem 2.5.2 Assume that a diffeomorphism f of the Euclidean space Rn has the
Hölder shadowing property on finite intervals with constantsL ;C; d0; �; ! and that
condition (2.90) is satisfied.

Assume, in addition, that there exist constants S; " > 0 such that

j f . pk C v/ � pkC1 � Akvj � Sjvj2; k 2 Z; jvj � ": (2.91)

Then there exist constants L > 0 and � 2 .0; 1/ such that for any i 2 Z and
N > 0 and any sequence

W D fwk 2 R
n W i C 1 � k � i C N C 1g (2.92)

with jwkj � 1, the difference equations

vkC1 D Akvk C wkC1; i � k � i C N; (2.93)

have a solution

V D fvk W i � k � i C N C 1g; (2.94)

such that the value

kVk WD max
i�k�iCNC1 jvkj (2.95)

satisfies the estimate

kVk � LN� : (2.96)

Remark 2.5.1 Clearly, an analog of condition (2.91) is satisfied if we consider a
diffeomorphism of class C2 for which the trajectory f pkg is contained in a bounded
subset of Rn (or a diffeomorphism of class C2 of a smooth closed manifold studied
in the original paper [101]). In fact, it was noted by Tikhomirov that one can prove
a similar result in the case where exponent 2 in (2.91) is replaced by any � > 1. The
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reasoning remains almost the same, but calculations become very cumbersome. For
that reason, we follow the proof given in [101] (with exponent 2).

Proof (of Theorem 2.5.2) Denote

˛ D � � 1=2:

Inequalities (2.90) imply that

˛ 2 .0; 1=2/ and 1=2� ˛ < !: (2.97)

Consider two auxiliary linear functions of ˇ � 0,

g1.ˇ/ D .2C ˇ/.1=2� ˛/ and g1.ˇ/ D .2C ˇ/!:

By inequalities (2.97),

g2.0/ D 2! > 1 � 2˛ D g1.0/ 2 .0; 1/

and

g0
2.ˇ/ D ! > 1=2� ˛ D g0

1.ˇ/:

Hence, there exists a ˇ > 0 such that

g1.ˇ/ 2 .0; 1/ and g2.ˇ/ > 1:

We fix such a ˇ and write the above relations in the form

0 < .2C ˇ/.1=2� ˛/ < 1 and .2C ˇ/! > 1: (2.98)

Introduce the values

� D ..2C ˇ/!/�1 and �1 D 1 � .2C ˇ/.1=2� ˛/:

Then it follows from (2.98) that

0 < � < 1 and �1 > 0: (2.99)

Now we fix a sequence W of the form (2.92) and denote by E.W/ the set of
all sequences V of the form (2.94) that satisfy Eqs. (2.93). The function kVk is
continuous on the linear space of sequences V; the set E.W/ is closed. Hence, the
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value

F.W/ D min
V2E.W/ kVk (2.100)

is defined.
The set of finite sequences W of the form (2.92) with

kWk D max
iC1�k�NC1 jwkj � 1

is compact. The function F.W/ is continuous in W; thus, there exists the number

Q D max
W

F.W/:

Let us fix sequences W0 and V0 2 E.W0/ such that

Q D F.W0/ D kV0k: (2.101)

Note the following two properties of the number Q. They follow from the
definition of Q and from the linearity of Eqs. (2.93).

(Q1) Any sequence V 2 E.W0/ satisfies the inequality

kVk � Q:

(Q2) For any sequence W of the form (2.92) there exists a sequence V 2 E.W/ such
that

kVk � QkWk:

It follows from property (Q2) that to complete the proof of our theorem, it is
enough to prove the following statement:

There exists a number L independent of i and N such that

Q � LN� : (2.102)

Define the number

d D "Q�.2Cˇ/: (2.103)

Let us consider the following two cases.

Case 1: C..S C 1/d/�! < N. In this case,

Q < ."!.S C 1/!=C/� N� ;
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which proves inequalities (2.103) with

L D ."!.S C 1/!=C/� :

Case 2: C..S C 1/d/�! � N. In this case, we prove a stronger statement: There
exists a number L independent of i and N such that

Q � L: (2.104)

Treating Case 2, we assume without loss of generality that i D 0.

Also, without loss of generality, we assume that " < 1 and Q > 2. Concerning
the latter assumption, we note that if there exists a fixed number L independent of
N such that Q � L, then estimate (2.104) is obviously valid. Thus, we may assume
that Q is larger than any prescribed number independent of N. Applying the same
reasoning, we assume that Q is so large that

Q > ..S C 1/"=d0/
1=.2Cˇ/ (2.105)

and

L ..S C 1/"=Q2Cˇ/� < "=2: (2.106)

Fix sequences W0 and V0 for which relation (2.101) is valid. To simplify notation,
write V0 D fvkg.

Consider the sequence of points

yk D pk C dvk; 0 � k � N C 1:

We claim that this sequence is an .S C 1/d-pseudotrajectory of f .
Let us first note that jvkj � Q; hence,

jdvkj � "Q�.2Cˇ/Q D "Q�.1Cˇ/ < "=2: (2.107)

In addition,

.dQ/2 D ."Q�.1Cˇ//2 < "Q�.2Cˇ/ D d: (2.108)

Now we estimate

j f . yk/� ykC1j D j f . pk C dvk/� . pkC1 C dvkC1/j D

D j f . pk C dvk/� . pkC1 C dAkvk C dwkC1/j �
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� j f . pk C dvk/ � . pkC1 C dAkvk/j C djwkC1j �

� Sjdvkj2 C d � .S C 1/d:

We estimate the first term of the third line taking into account condition (2.91) and
inequality (2.107); estimating the first term of the last line, we refer to inequality
(2.108).

Inequality (2.105) implies that

Q2Cˇ > .S C 1/"=d0I

hence,

.S C 1/d D .S C 1/"Q�.2Cˇ/ < d0:

Since we treat Case 2,

N � C..S C 1/d/�! < Cd�!;

and we can apply the Hölder shadowing property on finite intervals to conclude that
there exists an exact trajectory fxkg of f such that

j yk � xkj � L ..S C 1/d/� ; 0 � k � N C 1:

Denote xk D pk C ck and L1 D L .S C 1/� . Then

jdvk � ckj � j yk � xkj � L1d
� ; 0 � k � N C 1; (2.109)

and

jckj � Qd C L1d
� ; 0 � k � N C 1: (2.110)

Inequalities (2.107) and (2.106) imply that

jckj < ":

By the first inequality in (2.98),

Q > Q.1=2�˛/.2Cˇ/ D ."=d/1=2�˛ D "1=2�˛d˛�1=2:

Hence,

Qd > "1=2�˛d˛C1=2 D "1=2�˛d� :
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Now it follows from (2.110) that there exists an L2 independent of N such that

jckj � L2Qd:

Since pkC1 C ckC1 D f . pk C ck/, we can estimate

jckC1 � Akckj D j f . pk C ck/� . pkC1 C Akckj � Sjck/j2 � SL2.Qd/
2:

Denote tkC1 D ckC1 � Akck; then

jtkj � Sjckj2 � L3.Qd/
2;

where the constant L3 does not depend on N. By property (Q2), there exists a
sequence zk such that

zkC1 D Akzk C tkC1 and jzkj � QL3.Qd/
2; 0 � k � N:

Consider the sequence rk D ck � zk. Clearly,

rkC1 D Akrk and jrk � ckj � QL3.Qd/
2; 0 � k � N: (2.111)

Now we define the sequence ek D .dvk � rk/=d. Relations (2.109) and (2.111)
imply that

ekC1 D Akek C wkC1; 0 � k � N; (2.112)

and

jekj D j..dvk � ck/� .rk � ck//=dj � L1d
��1 C L3Q

3d; 0 � k � N:

Property (Q1) implies that

L1d
��1 C L3Q

3d D L1d
˛�1=2 C L3Q

3d � Q:

We can apply (2.103) and find L4;L5 > 0 independent of N and such that this
inequality takes the form

L4Q
�.2Cˇ/.˛�1=2/ C L5Q

1�ˇ � Q;

or

L4Q
1��1 C L5Q

1�ˇ � Q:

It follows that either

L4Q
1��1 � Q=2
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or

L5Q
1�ˇ � Q=2;

which implies that

Q � max
�
.2L4/

1=�1 ; .2L5/
1=ˇ
�
:

The theorem is proved. ut
Now we assume, in addition, that there exists a constant R > 0 such that

kAkk � R; k 2 Z: (2.113)

Remark 2.5.2 Of course, an estimate of the form (2.113) holds for Ak D Df . pk/ in
the case of a diffeomorphism f of a closed manifold.

Theorem 2.5.3 Let f be a diffeomorphism of the line R having the Hölder
shadowing property on finite intervals. Assume that conditions (2.91) and (2.113)
are satisfied for a trajectory f pk D f k. p/g. There exists a constant � 2 .0; 1/ with
the following property.

For any k 2 Z there exists a constant C > 0 and subspaces S. pk/ and U. pk/ of
R such that

S. pk/C U. pk/ D R; (2.114)

jAkCl�1 � � �Akvj � C�ljvj; v 2 S. pk/; l � 0; (2.115)

jA�1
k�l � � �A�1

k�1vj � C�ljvj; v 2 U. pk/; l � 0: (2.116)

The essential part of the proof of Theorem 2.5.3 is contained in the following
lemma.

Let us first introduce some notation. Consider a one-dimensional vector (i.e., a
real number) e0 with je0j D 1 and define a sequence fek W k 2 Zg as follows:

ekC1 D Akek=jAkekj; e�k�1 D A�1�k�1e�k=jA�1�k�1e�kj; k � 0: (2.117)

Set

�k D jAkekj:

It follows from inequalities (2.113) that

�k 2 Œ1=R;R�; k 2 Z: (2.118)

Set also

˘.k; l/ D �k � � ��kCl�1; k 2 Z; l � 1: (2.119)
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Lemma 2.5.1 If the sequence A satisfies the conclusion of Theorem 2.5.2, then
there exists a number N depending only on L, � , and R (see inequality (2.113)) and
such that, for any i 2 Z, one of the following alternatives is valid:

either˘.i;N/ > 2 or ˘.i C N;N/ < 1=2: (2.120)

Proof Fix numbers i 2 Z and N > 0 and consider the sequence

wk D �ek; i � k � i C 2N C 1:

It follows from the conclusion of Theorem 2.5.2 that there exists a sequence

fvk W i � k � i C 2Ng

such that

vkC1 D Akvk C wkC1 and jvkj � L.2N C 1/� ; i � k � i C 2N:

Set vk D akek, where ak 2 R. Then

akC1 D �kak � 1 and jakj � L.2N C 1/� ; i � k � i C 2N: (2.121)

Now we show that there exists a large enough number N (depending only on
L, � , and R) such that if aiCN � 0, then ˘.i;N/ > 2, and if aiCN < 0, then
˘.i C N;N/ < 1=2.

Let us prove the existence of N for the first case (i.e., for the case where
aiCN � 0).

Since �k > 0, it follows from relations (2.121) that if ak � 0 for
some k 2 Œi; i C 2N � 1�, then akC1 < 0. Thus, if aiCN � 0, then
ai; : : : ; aiCN�1>0.

Relations (2.121) imply that in this case,

�k D akC1 C 1

ak
; i � k � i C N � 1:

Hence,

˘.i;N/ D aiC1 C 1

ai

aiC2 C 1

aiC1
� � � aiCN C 1

aiCN�1
D

D 1

ai

aiC1 C 1

aiC1
aiC2 C 1

aiC2
� � � aiCN�1 C 1

aiCN�1
.aiCN C 1/ D

D aiCN C 1

ai

iCN�1Y

kDiC1

ak C 1

ak
;
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and it follows from relations (2.121) that

˘.i;N/ � 1

L.2N C 1/�

	

1C 1

L.2N C 1/�


N�1
: (2.122)

Denote the expression on the right in (2.122) by G1.�;N/. Since

logG1.�;N/ D �� log.L.2N C 1//C .N � 1/ log

	

1C 1

L.2N C 1/�




;

log

	

1C 1

L.2N C 1/�




' .L.2N C 1//��

for large N, and � 2 .0; 1/, we conclude that

G1.�;N/ ! 1; N ! 1:

Hence, there exists an N1 depending only on L and � such that G1.�;N/ > 2 for
N � N1.

Now we consider the second case, i.e., we assume that aiCN < 0. In this case, it
follows from relations (2.121) that

ak 2 .�L.2N C 1/� ;�1/; i C N < k � i C 2N: (2.123)

As above, we set

�k D akC1 C 1

ak
:

Now we write

˘.i C N C 1;N � 1/ D aiCNC2 C 1

aiCNC1
aiCNC3 C 1

aiCNC2
� � � aiC2N C 1

aiC2N�1
D

D 1

aiCNC1
aiCNC2 C 1

aiCNC2
aiCNC3 C 1

aiCNC3
� � � aiC2N�1 C 1

aiC2N�1
.aiC2N C 1/

and conclude that

˘.i C N C 1;N � 1/ D aiC2N C 1

aiCNC1

iC2N�1Y

kDiCNC2

ak C 1

ak
: (2.124)

Inclusions (2.123) imply that

0 <
ak C 1

ak
< 1 � 1

L.2N C 1/�
; i C N C 2 � k � i C 2N � 1;
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and

0 <
aiC2N C 1

aiCNC1
< L.2N C 1/� :

Combining these inequalities with (2.124), we conclude that

˘.i C N C 1;N � 1/ < L.2N C 1/�
	

1 � 1

L.2N C 1/�


N�2
:

Denote the right-hand side of the above inequality byG2.�;N/. Clearly,G2.�;N/ !
0 as N ! 1; hence, there exists an N2 depending only on L, � , and R such
that

G.�;N/ <
1

2R
; N � N2:

If N � N2, then

˘.i C N;N/ D �iCN˘.i C N C 1;N � 1/ < R
1

2R
D 1=2:

Hence, the conclusion of our lemma holds for N D max.N1;N2/.
ut

Proof (of Theorem 2.5.3) Take an arbitrary i 2 Z and the number N given by
Lemma 2.5.1. The following statements hold:

(a) If ˘.i;N/ > 2, then ˘.i � N;N/ > 2;
(b) If ˘.i;N/ < 1=2, then˘.i C N;N/ < 1=2.

Let us prove statement (a); the proof of statement (b) is similar.
By Lemma 2.5.1 applied to i�N, either˘.i�N;N/ > 2 or˘.i;N/ < 1=2. By the

assumption of statement (a), the second case is impossible; thus, ˘.i � N;N/ > 2.
It follows from these statements that only one of the following cases is realized:

Case 1. ˘.i;N/ > 2 for all i 2 Z.
Case 2. ˘.i;N/ < 1=2 for all i 2 Z.
Case 3. There exist indices i; j 2 Z such that ˘.i;N/ > 2 and˘. j;N/ < 1=2.

Now we show that Theorem 2.5.3 is valid with � D 2�1=N .
Consider Case 1. Take e0 with je0j D 1 and define ek; k 2 Z, by formulas

(2.117). Represent any integer l � 0 in the form

l D nN C l1; n 2 ZC; 0 � l1 < N:
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Then

˘.i; l/ D ˘.i; nN/˘.i C nN; l1/ > 2
nR�l1

(in the last estimate, we take into account inequalities (2.118)).
Hence, in Case 1,

˘.i; l/ > R�l1
�
2�l1=N

� �
21=N

�l
> C0�

�l; i 2 Z; l � 0; (2.125)

where

C0 D R�N=2:

Now we fix a point pk of the trajectory f pkg and set S. pk/ D f0g and U. pk/DR.
Clearly, in this case, relations (2.114) and (2.115) are satisfied. Let us prove
inequalities (2.116). Take any v 2 R D U. pk/ and l � 0. Let

w D A�1
k�l � � �A�1

k�1v:

Then

v D Ak�1 � � �Ak�lw:

Hence,

jvj D �k�l � � ��k�1jwj D ˘.k � l; l/jwj;

and it follows from (2.125) that

jwj � C�ljvj;

where C D .C0/�1, as required.
In Case 2, we set U. pk/ D f0g and S. pk/ D R and apply a similar reasoning.
Let us now consider Case 3. By our remark at the beginning of the proof,

˘.i � nN;N/ > 2 and˘. j C nN;N/ < 1=2; n 2 ZC:

In this case, we set S. pk/ D U. pk/ D R. Clearly, in this case, relation (2.114) is
satisfied. Let us show how to prove inequalities (2.115).

We treat in detail two cases:

Case (I). k C l � j
and

Case (II). k < j and k C l > j
(the remaining cases and the proof of inequalities (2.116) are left to the reader).
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In Case (I), we note that l � j � k and estimate

˘.k; l/ � Rj�k D Rj�k2l=N2�l=N � C�l;

where C D Rj�k2. j�k/=N . Hence,

jAkCl�1 � � �Akvj � C�ljvj; v 2 S. pk/:

In Case (II), we represent k C l D j C nN C l1, where n 2 ZC and 0 � l1 < N.
Then

˘.k; l/ D ˘.k; j � k/˘. j; nN/˘. j C nN; l1/:

We note that ˘.k; j � k/ � Rj�k,

˘. j; nN/ < 2�n D 2l1=N�l;

and

˘. j C nN; l1/ � Rl1 < RN ;

which gives us the desired estimate˘.k; l/ < C�l (and, hence, inequalities (2.115))
with C D 2Rj�kCN . ut
Historical Remarks Theorem 2.5.1 was published by S. B. Tikhomirov in [101].

Let us mention that earlier S. M. Hammel, J. A. Yorke, and C. Grebogi, based on
results of numerical experiments, conjectured that a generic dissipative mapping f W
R
2 ! R

2 belongs to a class FHSPD.L ;C; d0; 1=2; 1=2/ [23, 24]. If this conjecture
is true, then, in a sense, Theorem 2.5.1 cannot be improved.

2.6 A Homeomorphism with Lipschitz Shadowing
and a Nonisolated Fixed Point

Consider the segment

I0 D Œ�7=6; 4=3�

and a mapping f0 W I0 ! I0 defined as follows:

f0.x/ D
8
<

:

1C .x � 1/=2; x 2 Œ1=3; 4=3�I
2x; x 2 .�1=3; 1=3/I
�1C .x C 1/=2; x 2 Œ�7=6;�1=3�:
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Clearly, the restriction f � of f0 to Œ�1; 1� is a homeomorphism of Œ�1; 1� having
three fixed points: the points x D ˙1 are attracting and the point x D 0 is repelling
(and this homeomorphism f � is an example of the so-called “North Pole – South
Pole” dynamical system; every trajectory starting at a point x ¤ 0;˙1 tends to an
attractive fixed point as time tends to C1 and to the repelling fixed point as time
tends to �1).

Now we define a homeomorphism f W Œ�1; 1� ! Œ�1; 1�. For an integer n � 0,
denote Nn D 2�.nC2/ and set

f .x/ D Nnf0.N
�1
n .x � 3Nn//C 3Nn; x 2 .2Nn; 4Nn�: (2.126)

This defines f on .0; 1�. Set f .0/ D 0 and f .x/ D �f .�x/ for x 2 Œ�1; 0/.
Clearly, f is a homeomorphism with a nonisolated fixed point x D 0 (for example,

every point x D ˙2�n is fixed). Let us note that in a neighborhood of any fixed point
(with the exception of x D 0), f is either linearly expanding with coefficient 2 or
linearly contracting with coefficient 1/2.

Theorem 2.6.1 The homeomorphism f has the Lipschitz shadowing property.
Before proving Theorem 2.6.1, we prove two auxiliary lemmas.

Lemma 2.6.1 The mapping f0 has the Lipschitz shadowing property on I0.

Proof Let

G0 D .�1=3; 1=3/

and

G1 D .�7=6;�1=3/[ .1=3; 4=3/:

We take d0 small enough and d � d0; in fact, we write below several explicit
conditions on d and assume that they are satisfied.

There exist trivial cases where � is a subset of one of the segments J1 D
Œ�7=6;�1=3�, J2 D Œ�1=3; 1=3�, or J3 D Œ1=3; 4=3�.

Let, for example, � � J3. The inequalities 1=3 � xk � 4=3 imply that

1=2 < 2=3 � d � f0.xk/� d � xkC1 � f0.xk/C d � 7=6C d < 15=12:

These inequalities are satisfied for an arbitrary k; hence, � belongs to a domain in
which f0 is a hyperbolic diffeomorphism (and � is uniformly separated from the
boundaries of the domain); by Theorem 1.4.2 (which, of course, is valid for infinite
pseudotrajectories as well), there exist L ; d0 > 0 such that if d � d0, then � is
L d-shadowed by an exact trajectory of f0.

A similar reasoning can be applied if � � J1 or � � J2.
To consider “nontrivial” cases, let us first describe possible positions of d-

pseudotrajectories � of f0 with small d with respect to J1; : : : ; J3.
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First we show that such a pseudotrajectory cannot intersect both J1 and J3.
Indeed, if we assume that �\J3 ¤ ;, i.e., there exists an indexm such that xm � 1=3,
then

xmC1 � f0.1=3/� d D 2=3� d > 1=3

and, consequently,

xmCi > 1=3; i > 0:

Similarly, if there exists an index l such that xl � �1=3, then

xlC1 � �2=3C d < �1=3
and

xlCi < �1=3; i > 0;

and we get a contradiction.
Thus, it remains to consider the cases where either

� � J2 [ J3; � \ Int. J2/ ¤ ;; � \ Int. J3/ ¤ ;;
or

� � J1 [ J2; � \ Int. J1/ ¤ ;; � \ Int. J2/ ¤ ;:

We consider the first case; the reasoning in the second case is similar.
We claim that in the case considered, � contains two points xk; xl such that

0 < xk < 1=3 < xl: (2.127)

The existence of the point xl follows directly from our assumption; it is easily
seen that

xlCi � 2=3� d > 1=2; i > 0: (2.128)

Thus, either the set

fm W xm 2 Int. J2/; xm � 0g

is empty (which implies that there exists an index k for which inequality (2.127) is
valid) or it is nonempty and bounded from above. In the latter case, let m0 be its
maximal element. Then

xm0C1 � f0.xm0 /C d � d

(i.e., xm0C1 2 J2) and xm0C1 > 0; thus, we get the required k D m0 C 1.
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Obviously, l > k (see (2.128)). Consider the finite set of indices

� D f i 2 Œk; l � 1� W xi � 1=3g:

This set is nonempty (k 2 �) and finite; hence, it contains the maximal element. Let
it be xk0 ; clearly,

xk0 � 1=3 < xk0C1:

To simplify notation, let us assume that k0 D 0. Thus,

x0 � 1=3 < x1:

In this case,

xi � 2=3� d > 1=2; i � 2: (2.129)

On the other hand,

x1 � 2=3C d < 1;

and one easily shows that

xi � 1C 2d; i � 2: (2.130)

Since f�1
0 has Lipschitz constant 2, � is a 2d-pseudotrajectory of f�1

0 ; hence,

x�1 � 1=6C 2d < 2=9;

and, applying the same reasoning as above, we conclude that

� 4d < xi < 1=6C 2d < 2=9; i < 0: (2.131)

Now we show that there exists a d0 such that if d � d0 and p D x0, then

ˇ
ˇ f k0 . p/� xk

ˇ
ˇ < 3d; k 2 Z: (2.132)

First, clearly,

j f0. p/� x1j < d:

Since the Lipschitz constant of f0 is 2,

ˇ
ˇ f 20 . p/� x2

ˇ
ˇ � j f . f . p//� f .x1/j C j f .x1/ � x2j < 2d C d D 3d:
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It follows from (2.129) that

f 20 . p/ > 1=2� 3d > 1=3;

and then

f k0 . p/ > 1=3; k � 2:

Hence,

ˇ
ˇ f 30 . p/� x3

ˇ
ˇ � ˇ

ˇ f0. f
2
0 . p//� f0.x2/

ˇ
ˇC j f0.x2/� x3j < 3d=2C d < 3d:

Repeating these estimates, we establish inequalities (2.132) for k � 2.
On the other hand, the inclusion p 2 J2 implies that f k0 . p/ 2 J2 for k � 0. Since

f�1
0 .x/ D x=2 for x 2 J2 and (2.131) holds, the inequality

j f0.x1/ � pj < d

implies that

jx1 � f�1
0 . p/j < d=2:

After that, we estimate

ˇ
ˇx2 � f�2

0 . p/
ˇ
ˇ � ˇ

ˇx2 � f�1
0 .x�1/

ˇ
ˇC ˇ

ˇ f�1
0 .x�1/ � f�1

0 . f�1
0 . p//

ˇ
ˇ < d=2C d=2;

and so on, which shows that an analog of (2.132) with 3d replaced by d holds for
k < 0. ut

The following statement is almost obvious.

Lemma 2.6.2 Let g be a mapping of a segment J and let numbers M > 0 and m be
given. Consider the mapping

g0. y/ D M�1g.M. y � m//C m

on the set

J0 D fy W M. y � m/ 2 Jg:

If g has the Lipschitz shadowing property with constants L ; d0, then g0 has the
Lipschitz shadowing property with constantsL ;M�1d0.
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Proof First we note that if fykg is a d-pseudotrajectory of g0 with d � d0=M and
xk D M. yk � m/, then

g.xk/ � xkC1 D M.g0. yk/ � ykC1/:

Hence, fxkg is an Md-pseudotrajectory of g.
Since Md � d0, there exists a point p such that

ˇ
ˇgk. p/� xk

ˇ
ˇ � LMd:

Set p0 D M�1p C m. Then, obviously,

ˇ
ˇ.g0/k. p0/� yk

ˇ
ˇ D M�1 ˇˇgk. p/� xk

ˇ
ˇ � L d:

ut
Let us prove Theorem 2.6.1.

Proof For a natural n, define the segment

In D Œ˛n; ˇn� D Œ11Nn=6; 13Nn=3�

and note that formula (2.126) defining f for x 2 .2Nn; 4Nn� is, in fact, valid for
x 2 In.

To prove Theorem 2.6.1, we first claim that there exists a constant c independent
of n such that if d satisfies a condition of the form

d � cNn (2.133)

and � D fxkg is a d-pseudotrajectory of f that intersects In, then � is a subset of one
of the segments In�1; In; InC1.

In fact, all the conditions imposed below on d have the form (2.133).
It follows from the inequalities

f .˛n/ D 23Nn=12 > ˛n; f .ˇn/ D 25Nn=6 < ˇn

that if c is small enough (we do not repeat this assumption below), then

Cl.N.d; f .Im/// � Im; m D n � 1; n; n C 1: (2.134)

Thus, if xk 2 Im for some m D n � 1; n; n C 1, then it follows from (2.134) that

xkCi 2 Im; i � 0: (2.135)

Let x0 2 In.
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We assume that

Cl.N.2d; f�1.In/// � In�1 [ In [ InC1

(note that this condition on d has precisely form (2.133)).
By (2.135), xk 2 In for k � 0. Thus, if the inclusion � � In does not hold, there

exists an index l < 0 such that

xl 2 .In�1 [ InC1/ n In

(recall that � is a 2d-pseudotrajectory of f�1).
Assume, for definiteness, that xl 2 In�1 (the remaining case is treated similarly).

In this case, the same inclusions (2.135) imply that

xlCi 2 In�1; i � 0:

To show that

xlCi 2 In�1; i < 0;

take an index m < l and assume that xm 2 I� . Then inclusions (2.135) imply that

x0; xl 2 I�I

hence,

I� \ In ¤ ; and I� \ In�1 ¤ ;;

from which it follows that either � D n or � D n � 1. But since xl … In, � ¤ n, and
we conclude that � � In�1, as claimed.

Of course, a similar statement holds for the segments I0
n D Œ�ˇn;�˛n�.

Without loss of generality, we assume that

c � d0=2; (2.136)

where d0 is given by Lemma 2.6.1. Let ı.m/ D cNm.
Consider a d-pseudotrajectory � D fxkg � Œ�1; 1� of f with d � d0. If

d � ı.0/ D cN0 D c=4;

then 1 � 4d=c, and � is 4d=c-shadowed by the fixed point x D 0.
Otherwise, we find the maximal index m0 for which d < ı.m0/. In this case,

d � ı.m0 C 1/ D ı.m0/=2: (2.137)
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First we assume that

� \ Im ¤ ; for some m � m0 (2.138)

(the case of I0
m is similar).

In this case, the inequalities

d < ı.m0/ � ı.m/

imply that � is a subset of one of the segments Im�1; Im; ImC1. We assume that � �
ImC1; in the remaining cases, the same estimates work.

Since

d � ı.m/ D cNm � d0Nm=2 D d0NmC1

(we refer to (2.136)), Lemma 2.6.2 implies that � is L -shadowed.
If relation (2.138) does not hold, then

jxkj � ˛m0 D 11Nm0

6
D 11ı.m0/

6c
� 11

3c
d

(we take into account inequality (2.137) in the last estimate). Thus, in this case, � is
11d=.3c/-shadowed by the fixed point x D 0. ut
Historical Remarks In this section, we give a simplified proof of Theorem 2.6.1
compared to the original variant published by A. A. Petrov and the first author in
[59].

2.7 Lipschitz Shadowing Implies Structural Stability: The
Case of a Vector Field

Let M be a smooth closed manifold with Riemannian metric dist and let X be a
vector field on M of class C1. Denote by �.t; x/ the flow on M generated by the
vector field X.

Our main goal in this section is to prove the following statement.

Theorem 2.7.1 If a vector field X has the Lipschitz shadowing property, then X is
structurally stable.

In the proof of Theorem 2.7.1, we refer to Theorem 1.3.14.
Define a diffeomorphism f on M by setting f .x/ D �.1; x/.
It is an easy exercise to show that the chain recurrent set R.�/ of the flow � (see

Definition 1.3.22) coincides with the chain recurrent set of the diffeomorphism f .
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2.7.1 Discrete Lipschitz Shadowing for Flows

In this section, we introduce the notion of discrete Lipschitz shadowing for a vector
field in terms of the diffeomorphism f .x/ D �.1; x/ introduced above and show that
the Lipschitz shadowing property of � implies the discrete Lipschitz shadowing.

Definition 2.7.1 A vector field X has the discrete Lipschitz shadowing property if
there exist d0;L > 0 such that if yk 2 M is a sequence with

dist. ykC1; f . yk// � d � d0; k 2 Z; (2.139)

then there exist sequences xk 2 M and tk 2 R such that

jtk � 1j � Ld; dist.xk; yk/ � Ld; xkC1 D �.tk; xk/; k 2 Z: (2.140)

Lemma 2.7.1 The Lipschitz shadowing property of � implies the discrete Lipschitz
shadowing of X.

Proof First we note that since M is compact and X is C1-smooth, there exists a
� > 0 such that

dist.�.t; x/; �.t; y// � �dist.x; y/; x; y 2 M; t 2 Œ0; 1�: (2.141)

Consider a sequence yk that satisfies inequalities (2.139) and define a mapping
y W R ! M by setting

y.t/ D �.t � k; yk/; k � t < k C 1; k 2 Z:

Fix a � 2 Œk; k C 1/. If t 2 Œ0; 1� and � C t < k C 1, then

dist . y.� C t/; �.t; y.�/// D dist .�.� C t � k; yk/; �.t; �.� � k; yk/// D 0:

If k C 1 � � C t, then

dist. y.� C t/; �.t; y.�/// D dist.�.� C t � k � 1; ykC1/; �.� C t � k; yk// D

D dist.�.� C t � k � 1; ykC1/; �.� C t � k � 1; �.1; yk/// � �d:

Thus, y.t/ is a .� C 1/d-pseudotrajectory of �. Hence, if d � d0=.� C 1/, where
d0 is from the definition of the Lipschitz shadowing property for �, then there exists
a trajectory x.t/ of X and a reparametrization

˛ 2 Rep.L .� C 1/d/
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such that

dist. y.t/; x.˛.t/// � L .� C 1/d; t 2 R:

If we set

xk D x.˛.k// and tk D ˛.k C 1/� ˛.k/;

then

xkC1 D x.˛.k C 1// D �.˛.k C 1/� ˛.k/; x.˛.k// D �.tk; xk/;

dist.xk; yk/ D dist.x.˛.k//; yk/ � L .� C 1/d;

and

jtk � 1j D
ˇ
ˇ
ˇ
ˇ
˛.k C 1/� ˛.k/

k C 1 � k
� 1

ˇ
ˇ
ˇ
ˇ � L .� C 1/d:

Taking L D L .�C 1/ and d0 in Definition 2.7.1 as d0=.�C 1/, we complete the
proof of the lemma. ut

As in Sect. 2.3, we reduce our shadowing problem to the problem of existence
of bounded solutions of certain difference equations. To clarify the presentation,
we again first take M D R

n, assume that the considered vector field X defines a
flow (every trajectory is defined for t 2 R), and assume that the diffeomorphism
f satisfies Condition S formulated in Sect. 2.3 (see estimate (2.52)). To treat the
general case of a compact manifold M, one has to apply exponential mappings (see
Remark 2.7.1 below); we leave details to the reader.

As above, we denote

kVk D sup
k2Z

jvkj

for a bounded sequence of vectors V D fvk W k 2 Zg.

Lemma 2.7.2 Assume that X has the discrete Lipschitz shadowing property with
constant L. Let x.t/ be an arbitrary trajectory of X, let pk D x.k/, and set Ak D
Df . pk/ (recall that f .x/ D �.1; x/). Assume that f satisfies Condition S formulated
in Sect. 2.3. Let B D fbk 2 R

ng be a bounded sequence and denote ˇ0 D kBk.
Then there exists a sequence of scalars sk with

jskj � ˇ D L.ˇ0 C 1/

such that the difference equation

vkC1 D Akvk C X. pkC1/sk C bkC1 (2.142)
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has a solution V D fvkg with

kVk � ˇ: (2.143)

Proof Fix a natural number N and define �k 2 R
n as the solution of

vkC1 D Akvk C bkC1; k D �N; : : : ;N � 1;

with ��N D 0. Then

j�kj � C; k D �N; : : : ;N; (2.144)

where C depends on N, ˇ0, and an upper bound of kAkk for k D �N; : : : ;N � 1.
Fix a small number d > 0 and fix � in (2.52) so that

�C < 1: (2.145)

Consider the sequence of points yk 2 R
n defined as follows: yk D pk for k � �N,

yk D pk C d�k; k D �N; : : : ;N � 1;

and yNCk D f k. yN/ for k > 0.
Then ykC1 D f . yk/ for k � �N � 1 and k � N.
Since

ykC1 D pkC1 C d�kC1 D pkC1 C dAk�k C dbkC1;

j ykC1 � pkC1 � dAk�kj � djbkC1j � dˇ0: (2.146)

On the other hand, if dC � ı.�/, then it follows from (2.52) that

j f . yk/� pkC1 � dAk�kj D j f . pk C d�k/ � f . pk/� dAk�kj �

� �jd�kj � �dC < d (2.147)

(see (2.145)).
Combining (2.146) and (2.147), we see that

j ykC1 � f . yk/j < d.ˇ0 C 1/; k 2 Z;

if d is small enough. Let us emphasize that the required smallness of d depends on
ˇ0, N, and estimates on kAkk.
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Now the assumptions of our lemma imply that there exist sequences xk and tk
such that

jtk � 1j � dˇ; jxk � ykj � dˇ; xkC1 D �.tk; xk/; k 2 Z:

If we represent

xk D pk C dck and tk D 1C dsk;

then

jdck � d�kj D jxk � ykj � dˇ:

Thus,

jck ��kj � ˇ; �N � k � N: (2.148)

Clearly,

jskj � ˇ; k 2 Z: (2.149)

Define mappings

Gk W R � R
n ! R

n; k 2 Z;

by

Gk.t; v/ D �.1C t; pk C v/ � pkC1:

Then

Gk.0; 0/ D 0; DtGk.t; v/jtD0;vD0 D X. pkC1/; DvGk.t; v/jtD0;vD0 D Ak:

We can write the equality

xkC1 D �.1C dsk; xk/

in the form

pkC1 C dckC1 D �.1C dsk; pk C dck/;

which is equivalent to

dckC1 D Gk.dsk; dck/: (2.150)



114 2 Lipschitz and Hölder Shadowing and Structural Stability

Now we fix a sequence of values d D d.m/ ! 0; m ! 1. Let us denote by c.m/k ,

t.m/k , and s.m/k the values ck, tk, and sk defined above and corresponding to d D d.m/.

It follows from estimates (2.148) and (2.149) that jc.m/k j � C C ˇ and js.m/k j � ˇ

for all m and �N � k � N � 1. The second inequality implies that
ˇ
ˇ
ˇt
.m/
k

ˇ
ˇ
ˇ � 1 for

large m. Hence (passing to a subsequence, if necessary), we can assume that

c.m/k ! Qck; t.m/k ! Qtk; s.m/k ! Qsk; m ! 1;

for �N � k � N � 1.
Applying relations (2.150) and (2.149), we can write

dmc
.m/
kC1 D Gk

�
dms

.m/
k ; dmc

.m/
k

�
D Akdmc

.m/
kC1 C X. pkC1/dms.m/k C o.dm/:

Dividing these equalities by dm, we get the relations

c.m/kC1 D Akc
.m/
kC1 C X. pkC1/s.m/k C o.1/; �N � k � N � 1:

Letting m ! 1, we arrive at the relations

QckC1 D Ak Qck C X. pkC1/Qsk; �N � k � N � 1;

where

j�k � Qckj; jQskj � ˇ; �N � k � N � 1;

due to (2.148) and (2.149).
Recall that N was fixed in the above reasoning. Denote the obtained Qsk by s.N/k .

Then v.N/k D �k � Qck is a solution of the equations

v
.N/
kC1 D Akv

.N/
k C X. pkC1/s.N/k C bkC1; �N � k � N � 1;

such that
ˇ
ˇ
ˇv
.N/
k

ˇ
ˇ
ˇ � ˇ.

There exist subsequences v. jN /k ! v0
k and s. jN /k ! s0

k as N ! 1 (we do not
assume uniform convergence) such that

v0
kC1 D Akv

0
k C X. pkC1/s0

k C bkC1; k 2 Z;

and jv0
kj; js0

kj � ˇ. The lemma is proved. ut
Remark 2.7.1 An analog of Lemma 2.7.2 is valid in the case of a smooth closed
manifold M. In this case, we denote Mk D TpkM and consider the difference
equation (2.142) in which vk; bk 2 Mk.
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Proving an analog of Lemma 2.7.2 in the case of a closed manifold (and
replacing, for example, the formula yk D pk C d�k by yk D exppk .d�k/, compare
with the proof of Lemma 2.3.3 in Sec 2.3), one gets a similar statement with the
estimates jskj � ˇ WD L.2ˇ0 C 1/ and kVk1 � 2ˇ (see the original paper [57]).

Thus, in what follows, we refer to Lemma 2.7.2 in the case of a vector field X on
a smooth closed manifold M (with B D fbk 2 R

ng replaced by B D fbk 2 Mkg and
properly corrected estimates).

2.7.2 Rest Points

In this section, we show that if a vector field has the Lipschitz shadowing property,
then its rest points are hyperbolic and isolated in the chain recurrent set. Thus, in
what follows we assume that we work with a vector field X on a smooth closed
manifold M having the Lipschitz shadowing property.

Lemma 2.7.3 Every rest point of X is hyperbolic.

Proof Let x0 be a rest point. Applying an analog of Lemma 2.7.2 for the case of a
manifold with pk D x0 and noting that X. pk/ D 0, we conclude that the difference
equation

vkC1 D Df .x0/vk C bkC1

has a bounded solution for any bounded sequence bk 2 Mk (recall that Mk D
TpkM).

Then it follows from the Maizel’ theorem (see Theorem 2.1.1 of Sect. 2.1) that
the constant sequence A D fAk D Df .x0/g is hyperbolic on ZC; in particular, every
bounded solution of the equation

vkC1 D Df .x0/vk

tends to 0 as k ! 1.
However, if the rest point x0 is not hyperbolic, then the matrix Df .x0/ has an

eigenvalue on the unit circle, in which case the above equation has a nontrivial
solution with constant norm. Thus, x0 is hyperbolic. ut
Lemma 2.7.4 Rest points are isolated in the chain recurrent setR.�/.

Proof Let us assume that there exists a rest point x0 that is not isolated in R.�/.
First we want to show that there is a homoclinic trajectory x.t/ associated with x0.

Since x0 is hyperbolic by the previous lemma, there exists a small d > 0 and a
number a > 0 such that if dist.�.t; y/; x0/ � L d for jtj � a, then �.t; y/ ! x0 as
jtj ! 1.

Assume that there exists a point y 2 R.�/ such that y is arbitrarily close to
x0 and y ¤ x0. Given any "0; � > 0 we can find points y1; : : : ; yN and numbers
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T0; : : : ;TN > � such that

dist.�.T0; y/; y1/ < "0;

dist.�.Ti; yi/; yiC1/ < "0; i D 1; : : : ;N;

and

dist.�.TN ; yN/; y1/ < "0:

Set T D T0 C � � � C TN and define g� on Œ0;T� by

g�.t/ D
8
<

:

�.t; y/; 0 � t � T0I
�.t; yi/; T0 C � � � C Ti�1 < t < T0 C � � � C TiI

y; t D T:

Clearly, for any " > 0 we can find "0 depending only on " and � (see (2.141))
such that g�.t/ is an "-pseudotrajectory of � on Œ0;T�.

Now we define

g.t/ D
8
<

:

x0; t � 0I
g�.t/; 0 < t � TI
x0; t > T:

We want to choose y and " in such a way that g.t/ is a d-pseudotrajectory of �.
We have to show that

dist.�.t; g.�//; g.t C �// < d (2.151)

for all � and t 2 Œ0; 1�.
Clearly, (2.151) holds for (i) � � �1, (ii) � � T, (iii) �; � C t 2 Œ�1; 0�, and (iv)

�; � C t 2 Œ0;T� and " < d.
If � 2 Œ�1; 0� and � C t > 0, then

dist.�.t; g.�//; g.t C �// D dist.x0; g
�.t C �// �

� dist.x0; �.t C �; y//C dist.�.t C �; y/; g�.t C �// � �dist.x0; y/C ";

where � is as in (2.141). The last value is less than d if dist.x0; y/ and " are small
enough. Note that, for a fixed y, we can decrease " and increase N;T0; : : : ;TN
arbitrarily so that g.t/ remains a d-pseudotrajectory.

Similarly, (2.151) holds if � 2 Œ0;T� and � C t > T.
Thus, g.t/ is L d shadowed by a trajectory x.t/ such that dist.x.t/; x0/ � L d if

jtj is sufficiently large; hence, x.t/ ! x0 as jtj ! 1.
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Now we want to show that x.t/ is a homoclinic trajectory if d is small enough.
For this purpose, we have to show that x.t/ ¤ x0.

There exists an "1 > L d (provided that d is small enough) such that if y does not
belong to the local stable manifold of x0, then dist.�.t0/; y/ � "1 for some t0 > 0.
We can choose T0 > t0 (not changing the point y). Then g.t/ contains the point
g�.t0/ D �.t0; y/ whose distance to x0 is more than L d. Hence, x.t/ contains a
point different from x0, as was claimed.

If y belongs to the local stable manifold of x0, then it does not belong to the
local unstable manifold of x0. In this case, considering the flow  .t; x/ D �.�t; x/,
we can apply the above reasoning to  noting that R. / D R.�/ and  has the
Lipschitz shadowing property as well.

Now we show that the existence of this homoclinic trajectory x.t/ leads to a
contradiction. Set pk D x.k/. Since AkX. pk/ D X. pkC1/, it is easily verified that if
we consider two sequences ˇk and sk such that

ˇkC1 D ˇk C sk; k 2 Z;

then uk D ˇkX. pk/ is a solution of

ukC1 D Akuk C X. pkC1/sk; k 2 Z: (2.152)

In addition, if the sequence sk is bounded, then the sequence ˇkX. pk/ is bounded
as well since X. pk/ ! 0 exponentially as jkj ! 1 (the trajectory x.t/ tends to a
hyperbolic rest point as time goes to ˙1) and the sequence jˇkj=jkj is bounded).

By Lemma 2.7.2, for any bounded sequence bk 2 Mk there exists a bounded
scalar sequence sk such that Eqs. (2.142) have a bounded solution vk. We have shown
that Eqs. (2.152) have a bounded solution uk. Then the sequence wk D vk � uk is
bounded and satisfies the equations

wk D Akwk C bkC1; k 2 Z:

Thus, the sequence A D fAkg has the Perron property on Z. It follows from
Theorems 2.1.1 and 2.1.2 that the sequence A is hyperbolic both on ZC and Z� and
the corresponding spaces SC

0 and U�
0 are transverse. But this leads to a contradiction

since

dimSC
0 C dimU�

0 D dimM

(because dimSC
0 equals the dimension of the stable manifold of the hyperbolic rest

point x0 and dimU�
0 equals the dimension of its unstable manifold), while any of the

spaces SC
0 and U�

0 contains the nonzero vector X. p0/. The lemma is proved. ut
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2.7.3 Hyperbolicity of the Chain Recurrent Set

We have shown that rest points of � are hyperbolic and isolated in the chain recurrent
set R.�/. Since M is compact, this implies that the set R.�/ is the union of a finite
set of hyperbolic rest points and a compact set (let us denote it ˙) on which the
vector field X is nonzero.

To show that R.�/ is hyperbolic, it remains to show that the set ˙ is hyperbolic.
Consider the subbundle V .˙/ of the tangent bundle TMj˙ defined in Sect. 1.3

before Theorem 1.3.15.
Let x.t/ be a trajectory in ˙ . Let us introduce the following notation. Put

pk D x.k/ and let Pk D P. pk/ and Vk D V. pk/ (recall that P.x/ is the orthogonal
projection in TxM with kernel spanned by X.x/ and V.x/ is the orthogonal
complement to X.x/ in TxM). Introduce the operators

Bk D PkC1Ak W Vk ! VkC1

(recall that Ak D Df . pk/).

Lemma 2.7.5 For every bounded sequence bk 2 Vk there exists a bounded solution
vk 2 Vk of

vkC1 D Bkvk C bkC1; k 2 Z: (2.153)

Proof Fix a bounded sequence bk 2 Vk. There exist bounded sequences sk of scalars
and wk of vectors in TpkM such that

wkC1 D Akwk C X. pkC1/sk C bkC1; k 2 Z; (2.154)

(see the remark after Lemma 2.7.2).
Note that AkX. pk/ D X. pkC1/. Since .Id � Pk/v 2 fX. pk/g for v 2 Mk, we see

that

PkC1Ak.Id � Pk/ D 0;

which gives us the equality

PkC1Ak D PkC1AkPk: (2.155)

The properties of the set ˙ imply that the projections Pk are uniformly bounded.
Multiplying (2.154) by PkC1, taking into account the equalities PkC1X. pkC1/ D

0 and PkC1bkC1 D bkC1, and applying (2.155), we conclude that vk D Pkwk is the
required bounded solution of (2.153). The lemma is proved. ut

It follows from the above lemma that if we fix a trajectory x.t/ in˙ and consider
the corresponding sequence of operatorsB D fBkg, then B has the Perron property.
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By Theorems 2.1.1 and 2.1.2, the sequence B is hyperbolic both on Z� and ZC
and the corresponding spaces U�

0 .B/ and SC
0 .B/ are transverse.

Consider the mapping 
 on the normal bundle V .˙/ defined in Sect. 1.3. Recall
that


.x; v/ D . f .x/;B.x/v/; where B.x/ D P. f .x//Df .x/

(see Sect. 1.3).
In fact, we have shown that 
 satisfies an analog of the strong transversality

condition.
The same reasoning as in the proof of Lemma 2.2.5 shows that the dual mapping


� does not have nontrivial bounded trajectories. It is easy to show that if the flow
� has the shadowing property, then its nonwandering set coincides with its chain
recurrent set.

Hence, we can repeat the reasoning of the proof of Theorem 2.2.2 to conclude
that the mapping 
 is hyperbolic.

It remains to refer to Theorem 1.3.15 to conclude that ˙ is a hyperbolic set of
the flow �.

2.7.4 Transversality of Stable and Unstable Manifolds

Let x.t/ be a trajectory that belongs to the intersection of the stable and unstable
manifolds of two trajectories, xC.t/ and x�.t/, respectively, lying in the chain
recurrent set of �.

Without loss of generality, we may assume that

dist.x.0/; xC.0// ! 0; t ! 1;

and

dist.x.0/; x�.0// ! 0; t ! �1:

Denote pk D x.k/; k 2 Z; let Ws. p0/ and Wu. p0/ be the stable and unstable
manifolds of p0, respectively. Then, of course, Ws. p0/ D Ws.xC.0// and Wu. p0/ D
Wu.x�.0//. Denote by Es and Eu the tangent spaces of Ws. p0/ and Wu. p0/ at p0.

We use the notation introduced before Lemma 2.7.5.
By Lemma 2.7.5, for any bounded sequence bk 2 Vk there exists a bounded

solution vk 2 Vk of (2.153). By the Maizel’ theorem (Theorem 2.1.1), the sequence
Bk is hyperbolic on Z� and ZC.

By the Pliss theorem (Theorem 2.1.2),

E s C E u D V0; (2.156)
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where

E s D fw0 W wkC1 D Bkwk; jwkj ! 0; k ! 1g

and

E u D fw0 W wkC1 D Bkwk; jwkj ! 0; k ! �1g:

Clearly, it follows from the hyperbolicity of the sequence Bk on Z� and ZC that
the following equalities hold:

E s D fw0 W wkC1 D Bkwk; sup
k�0

jwkj < 1g

and

E u D fw0 W wkC1 D Bkwk; sup
k�0

jwkj < 1g:

We claim that

E s � Es and Eu � E u: (2.157)

First we note that (2.157) implies the desired transversality of Ws. p0/ and
Wu. p0/ at p0.

Indeed, combining equality (2.156) with inclusions (2.157) and the trivial
relations

Es D V0 \ Es C fX. p0/g and Eu D V0 \ Eu C fX. p0/g;

we conclude that

Es C Eu D Tp0M;

which gives us the transversality of Ws. p0/ and Wu. p0/ at p0.
Thus, it remains to prove inclusions (2.157). We prove the first inclusion; for the

second one, the proof is similar.

Case 1: The limit trajectory x0.t/ D x0 is a rest point of X. In this case, the stable
manifold of the rest point x0 in the flow � coincides with the stable manifold of
the fixed point x0 for the time-one diffeomorphism f .x/ D �.1; x/.

It is clear that if pk is a trajectory of f belonging to the stable manifold of x0, then
the tangent space to the stable manifold at p0 is the subspace Es of the initial values
of bounded solutions of

vkC1 D Akvk; k � 0: (2.158)
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Let us prove that E s � Es. Fix an arbitrary sequence wk such that wkC1 D Bkwk

and w0 2 E s. Consider the sequence

vk D �kX. pk/=jX. pk/j C wk;

where the �k satisfy the relations

�kC1 D jX. pkC1/j
jX. pk/j �k C X. pkC1/�

jX. pkC1/jAkwk (2.159)

(we denote by X� the row-vector corresponding to the column-vectorX) and �0 D 0.
It is easy to see that the sequence vk satisfies (2.158).

Since x.t/ is in the stable manifold of the hyperbolic rest point x0, there exist
positive constants K and ˛ such that

ˇ
ˇ
ˇ
ˇ
dx

dt
.t/

ˇ
ˇ
ˇ
ˇ � K exp.˛.t � s//

ˇ
ˇ
ˇ
ˇ
dx

dt
.s/

ˇ
ˇ
ˇ
ˇ ; 0 � s � t:

This implies that

jX. pk/j � K exp.˛.k � m// jX. pm/j ; 0 � m � k:

Thus, the scalar difference equation

�kC1 D jX. pkC1/j
jX. pk/j �k

is hyperbolic on ZC and is, in fact, stable. Since the second term on the right in
(2.159) is bounded as k ! 1 (recall that we take w0 2 E s), it follows that the �k
are bounded for any choice of �0.

We conclude that vk is a bounded solution of (2.158), and v0 D w0 2 Es. Thus,
we have shown that E s � Es, which completes the proof in Case 1.

Case 2: The limit trajectory is in the set˙ (the chain recurrent set minus rest points).
We know that the set ˙ is hyperbolic. Our goal is to find the intersection of its
stable manifold near p0 D x.0/ with the cross-section at p0 orthogonal to the
vector field (in local coordinates generated by the exponential mapping). To do
this, we discretize the problem and note that there exists a number � > 0 such
that a point p close to p0 belongs to Ws. p0/ if and only if the distances of the
consecutive points of intersections of the positive semitrajectory of p to the points
pk do not exceed � .
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For suitably small � > 0 we find all the sequences of numbers tk and vectors
zk 2 Vk (recall that Vk is the orthogonal complement to fX. pk/g at pk) such that

jtk � 1j � �; jzkj � �; ykC1 D �.tk; yk/; k � 0;

where yk D pk C zk.
Thus, we have to solve the equations

pkC1 D �.tk; pk C vk/; k � 0;

for numbers tk and vectors zk 2 Vk such that jtk � 1j � � and jzkj � �.
We reduce this problem to an equation in a Banach space. It was mentioned above

that the sequence fBkg generating the difference equation

zk D Bkzk; k � 0;

(where Bk D PkC1Ak and Pk is the orthogonal projection with range Vk) is
hyperbolic on ZC. Denote by Qk W Vk ! Vk the corresponding projections to
the stable subspaces and by R.Q0/ the range of Q0 (note that R.Q0/ D E s).

Fix a positive number �0 and denote by V the space of sequences

V D fzk 2 Vk W jzkj � �0; k 2 ZCg:

Let l1 .ZC; fMkC1g/ be the space of sequences f�k 2 MkC1 W k 2 ZCg with the
usual norm.

Define a C1 function

G W Œ1 � �0; 1C �0�
ZC � V � R.Q0/ ! l1.ZC; fMkC1g/ � R.Q0/

by

G.t; z; 	/ D .f pkC1 C zkC1 � �.tk; pk C zk/g;Q0z0 � 	/:

This function is defined if �0 is small enough.
We want to solve the equation

G.t; z; 	/ D 0

for .t; z/ as a function of 	. It is clear that

G.1; 0; 0/ D 0;

where the first argument of G is f1; 1; : : : g, the second argument is f0; 0; : : : g, and
the right-hand side is .f0; 0; : : : g; 0/.
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To apply the implicit function theorem, we must verify that the operator

T D @G

@.t; z/
.1; 0; 0/

is invertible.
First we note that if .s;w/ 2 l1.ZC; fMkC1g/ � V , then

T.s;w/ D .fwkC1 � X. pkC1/sk � Akwkg;Q0w0/:

To show that T is invertible, we have to show that the equation

T.s;w/ D .g; 	/

has a unique solution for any .g; 	/ 2 l1.ZC; fMkC1g/� R.Q0/. Thus, we have to
solve the equation

wkC1 D Akwk C X. pkC1/sk D gk; k � 0; (2.160)

subject to the condition

Q0w0 D 	:

If we multiply Eq. (2.160) by X. pkC1/� and solve for sk, we get the equalities

sk D � X. pkC1/�

jX. pkC1/j2 ŒAkwk C gk�; k � 0;

and if we multiply Eq. (2.160) by PkC1, we get the equalities

wkC1 D PkC1Akwk C PkC1gk D Bkwk C PkC1gk; k � 0:

Now we know that the last equations have a unique bounded solution wk 2 Vk; k �
0, that satisfies Q0w0 D 	. Thus, T is invertible.

Hence, we can apply the implicit function theorem to show that there exists a
� > 0 such that if j	j is sufficiently small, then the equation G.t; z; 	/ D 0 has
a unique solution .t.	/; z.	// such that kt � 1k1 � � and kzk1 � �. Moreover,
t.0/ D 1, z.0/ D 0, and the functions t.	/ and z.	/ are of class C1.

The points p0Cz0.	/ form a submanifold containing p0 and contained in Ws. p0/.
Thus, the range of the derivative z0

0.0/ is contained in Es.
Take an arbitrary vector � 2 E s and consider 	 D ��; � 2 R. Differentiating the

equalities

pkC1 C zkC1.��/ D �.tk.��/; pk C zk.��//; k � 0;
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and

Q0.��/ D ��

with respect to � at � D 0, we see that

sk D @tk
@	

j	D0� and wk D @zk
@	

j	D0� 2 Vk

are bounded sequences satisfying the equalities

wkC1 D Akwk C X. pkC1/sk and Q0w0 D �:

Multiplying by PkC1, we conclude that

wkC1 D Bkwk and Q0w0 D �:

It follows that w0 2 E s D R.Q0/. Then w0 D Q0w0 D �.
We have shown that the range of z0

0.0/ is exactly E s. Thus, E s � Es.

Historical Remarks Theorem 2.7.1 was published by K. Palmer, the first author,
and S. B. Tikhomirov in [57].
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