Chapter 2
Lipschitz and Holder Shadowing and Structural
Stability

In this chapter, we give either complete proofs or schemes of proof of the following
main results:

If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

a diffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is §2-stable (Theorem 2.4.1);

if a diffeomorphism f of class C? has the Holder shadowing property on finite
intervals with constants .2, C, dy, 6, w, where 6 € (1/2,1) and 6 + w > 1, then
f is structurally stable (Theorem 2.5.1);

there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

The structure of the chapter is as follows.
We devote Sects.2.1-2.3 to the proof of Theorem 2.3.1. In Sect. 2.1, we prove

theorems of Maizel’ and Pliss relating the so-called Perron property of difference
equations and hyperbolicity of sequences of linear automorphisms, Sect.2.2 is
devoted to the Mafié theorem (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof
of Theorem 2.3.1 to results of the previous two sections.

Theorem 2.4.1 is proved in Sect.2.4; Theorem 2.5.1 is proved in Sect.2.5;

Theorem 2.6.1 is proved in Sect. 2.6.

Finally, Sect. 2.7 is devoted to the proof of Theorem 2.7.1.
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38 2 Lipschitz and Holder Shadowing and Structural Stability

2.1 Maizel’ and Pliss Theorems

Let/] = {k € Z: k > 0}. Let & = {Ay, k € I} be a sequence of linear
isomorphisms

Ap: R" - R
We assume that there exists a constant N > 1 such that
IAll 1A <N, kel (2.1)
We relate to this sequence two difference equations, the homogeneous one,
X1 = Apxx, ke, 2.2)
and the inhomogeneous one,
Xk+1 = Apxk + fiv1, keL (2.3)

Definition 2.1.1 We say that the sequence .2/ has the Perron property on I if for
any bounded sequence fi, Eq. (2.3) has a bounded solution.
Set

Ag—10---0A;, k>1
F(k,l) = 1§ Id, k=1
Ailo-0Al k<L

Definition 2.1.2 We say that the sequence .o/ is hyperbolic on I if there exist
constants C > 0 and A € (0, 1) and projections Py, O, k € I, such that if Sy = PR"
and U, = QR", then

Sk ® Ur = R"; (2.4)

ApSk = Sk+1, AkUp = Upyrs (2.5)
|F(k,)v| < CA*|v|, vesS, k=1 (2.6)
|F(k,)v| < CA™ |, veU, k<l .7)
I Pell, 1Okl = C. (2.8)

In the relations above, k, [ € 1.
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Our first main result in this section is the following statement.

Theorem 2.1.1 (Maizel’) If the sequence </ has the Perron property on I, then
this sequence is hyperbolic on 1.

Remark 2.1.1 Of course, it is well known that a hyperbolic sequence .7 has the
Perron property on I (see Lemma 2.1.6 below), so the properties of .7 in the above
theorem are equivalent. We formulate it in the above form since this implication is
what we really need (and since precisely this statement was proved by Maizel’).

Proof Thus, we assume that the sequence 7 has the Perron property on 1.
Let us denote by & the Banach space of bounded sequences x = {x;}, where
x; € R" and k € I, with the usual norm

X[l = sup |xe].
kel

A sequence x € Z that satisfies Eq. (2.2) (or (2.3)) will be called a #-solution
of the corresponding equation.
Denote

Vi={x: x= (x0,x1,...) isaZ% —solutionof (2.2)}.

Since Eq.(2.2) is linear and 4 is a linear space, V) is a linear space as well.
Denote by V, the orthogonal complement of V| in R" and by P the orthogonal
projection to V.

The difference of any two %-solutions of Eq.(2.3) with a fixed f € £ is a
AB-solution of Eq. (2.2). It is easily seen that for any f € 2 there exists a unique
AB-solution of Eq. (2.3) (we denote it T(f)) such that (T'(f))o € Va.

The defined operator

T: B—> XA

plays an important role in the proof. Clearly, the operator T is linear.
Lemma 2.1.1 The operator T is continuous.

Proof Since we know that the operator T is linear, it is enough to show that the
graph of T is closed; then our statement follows from the closed graph theorem.
Thus, assume that

=) eB. yu=(¥5...) € B,

Yn = T(fn)’fn _)f’ andyn —>y = (y(),.--) 11’133.
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Then, clearly, yg € V>.
Fix k € I and pass in the equality

Yer1 = Ak +iq
to the limit as n — oo to show that
Vi+1 = Ay + fit1-

Hence, y = T(f), and the graph of T is closed. O
Lemma 2.1.1 implies that there exists a constant r > 0 such that

ITHOI = rllfIl - f € 2. 2.9

Without loss of generality, we assume that

rN > 1, (2.10)
where N is the constant in (2.1).
Denote
F(k,0), k>0;
X(k) = 4 1Id, k=0;
F(0,—k), k <O0.

Straightforward calculations show that the formula

k oo
e =) XWPX(~u)fy = Y X(k)(1d— P)X(-u)f, (2.11)
u=0 u=k+1

represents a solution of Eq. (2.3) provided that the series in the second summand
converges.

We can obtain a shorter variant of formula (2.11) by introducing the “Green
function”

X(k)PX(—u), 0<u<k

Glh,u) = { —X(k)(Id — P)X(~u), 0 < k < u.

Then formula (2.11) becomes

=Y Glk.wf. (2.12)

u=0
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Lemma 2.1.2 Let ko, k1, k € I and let §¢ € R" be a nonzero vector with || < 1.
Then

k
IX(PE| Y IX@E™ <0<k <Kk (2.13)
u=ko
and
k1
IX(K)(Id— P)E| Y |IXW)E[™ <2V, 0 <k <. (2.14)
u=k

Proof Without loss of generality, we may take fy = 0. Fix [y, /; € I suchthatly < ;.
Take a sequence f with f; = 0, i > [;. Then formula (2.12) takes the form

I
Y= Z G(ls u)fu

u=0

For I > [, all the indices u in this sum do not exceed [;, and we apply the first
line in the definition of G. Thus,

0
y=XDPY X(-u)f,.

u=0

Hence, if [ > [}, then y; is the image under X (/) of a vector from V; that does not
depend on /. It follows that the sequence y (with the exception of a finite number of
entries) is a solution of Eq. (2.2) with initial value from V;. Hence, y € 2. Since

Jo=0,

)
Yo =—(d=P) Y X(-u)f, € Va.

u=0

Thus, y = T(f), and || y[| < 7| f].
Now we specify the choice of f. Let x; = X(i)&; since £ # 0, x # 0 as well. Set

O, i<lo;
fi= 3 xi/lxl o <i <l
O, i>ll.

Since || f|| = 1, inequality (2.9) implies that

I
> Gk, uxi/ |xi

u=ly

=|yl=r (2.15)
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We take [ = I} = k and [y = ko in (2.15) and conclude that

r=

k
Y X(PX(—u)X )&/ |X (w)§]| =

u=ko

k
> Glk,u)x,/|x.|

u=ko

k
= [X(k)PE| Y IX k[,

u=ko

which is precisely inequality (2.13).

We prove inequality (2.14) using a similar reasoning.

First we consider 0 < k < k;. Wetakel = k— 1,1y = k, and [y = k; in (2.15)
and get the estimates

ki
Y X(k—1)(Ad - P)X ()X (w)é/ X (w)E|| =

u=k

k1
Y Gk ux/ x|

u=k

r=

k1 ki
= [X(k— D= P)E| Y (X" = |4, X () (d - P)E| D Xl =

u=k u=k

ki
> A7 X () (1d = P)E D X )|

u=k

Applying inequality (2.1), we see that in this case,

k1
X (k)(Id — P)E| Y " [X(w)g| " < rN.

u=k

Now we consider 0 = k < k; and apply the previous estimate with k = 1:

ki ki
IX(0)(Id — P)&| Y |[X(wE|™" = [X(0)(Id — P)E| Y (X)€" + |(1d — P)§| <

u=0 u=1

ki
< [lAolI 7' 1X(1)(1d = P)E] Y IX@)E[ + 1 <N +1 < 2N

u=1

(recall that |§] < 1 and N > 1).
For k = k; = 0, our inequality is trivial. O
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Lemma 2.1.3 Let ko, k1, k,s € I and let & € R" be a unit vector. Denote
w=1-@QN)"".

Then the following inequalities are satisfied:
if PE #£ 0, then

s k
Y IX@PE[T < @Y T IX@PET, ko <5 <k; (2.16)

u=ko u=ko

if (Id — P)§ # 0, then

k1 ki
D X@Ud—=PE™ = T Y IX@Ud =P k<=s<hk. (217

u=s u=k

Proof Denote

¢ =) IX@PE™', P>k,

u=ko

and

ki

vi= ) IX@Ad-PE[T, i<k

Let us prove inequality (2.16). Since P§ # 0, ¢; > 0. Clearly, ¢; — i1 =
|X(i)P£|~". Replacing £ by P (and noting that | P£| < 1) in (2.13), we see that
¢ <r <2rN.
éi — di-1

Hence,

i1
o

¢ — Pi—1 1

@rN) ! < 5

3

and

pi-1 < (1—@2rN) D¢,
Iterating this inequality, we conclude that

¢ < (1= QN "), k>
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We prove inequality (2.17) similarly. We note that ¥; > 0 and that ¥, — ¥, =
|X(i)(Id — P)&|~". After that, we replace £ by (Id — P)£ in (2.14) and show that

Vi1 < (1= @2rN) Hy

Iterating this inequality, we get (2.17). O
Now we prove that the sequence <7 is hyperbolic.

Lemma 2.1.4 The following inequalities are satisfied:
IX®WPX(=9)| <P~ 0<s<k
and
IX(k)(ld — P)X(=s)|| < 2°N*u*™*, 0 <k<s.
Proof Fix a natural s and a unit vector £. Define a sequence y = {y;} by

_ { —X(k)(Id — P)X(—$)€, 0 < k < s;
YE XWX (—s)E, k>s.

The sequence y coincides (up to a finite number of terms) with a solution of
Eq. (2.2) with initial point from V;; hence, y € A.
Now we define a sequence f by

{0, k#s;
fk_{g,kzs.

It is easily seen that the above sequence y is a solution of Eq. (2.3) with
inhomogeneity f. Hence, y = T(f), and || y|| < r.
The definition of y implies that

IX()PX(—=s)§| = |yl =r. 0=s=<k

Since £ is an arbitrary unit vector, || X (k)PX(—s)|| < rfor0 <s <k.
We replace £ by the solution of the equation x; = X(s)& to show that

IX(K)PE| = [X()PX(—s)x| < rlx], 0<s<k (2.18)

Using inequalities (2.13), (2.16) with ky = s, and (2.18) with k = s, we see that

k

—1
IX(K)PX(—s)xs| = [X(k)P§| < r (Z X (u)P§ I_l) <

U=s

< (P IXPET) T = X ()PE] < Pk,
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If PE€ = 0, then the resulting estimate is obvious. Since x; = X(s)& and X(s) is
an isomorphism, we get the following estimate for the operator norm:

IX(RPX(=s)|| < Pp*™, 1<s<k

In this reasoning, we have used inequality (2.18) with s = k. It is also true for
s = k = 0 since || P|| < 1. Therefore, the first estimate of our lemma is proved for
0<s<k.

The proof of the second estimate is quite similar. The only difference is as
follows. We cannot use an analog of (2.18) with k = s since k # s in the definition
of the sequence y. The following inequality is proved by the same reasoning as
above:

[X(k)(Ad — P)§| = |X(k)(Id — P)X(—=s)xs| < rlxs], s> k.
In the case k = s — 1, we write
[X(s)(Id — P)é| = |A;—1X(s — ) (Id — P)X(—s)x,| <

< [[As—1 11X (s = DA = P)X(=s)xs| < rN|xs],

and then repeat the reasoning of the first case. O
Lemma 2.1.4 shows that if we take constants Cp = 7N and A = p and
projections

Py = X(K)PX(—k) and Qy = X(k)(Id — P)X(—F),

then the operators F(k, [) generated by the sequence .7 satisfy estimates (2.6) and
(2.7) with C = Cj and A. Clearly, relations (2.4) and (2.5) are valid.

Thus, to show that .o/ is hyperbolic on /, it remains to prove the following
statement.

Lemma 2.1.5 There exists a constant C = C(N, Cy, L) > Cy such that inequalities
(2.8) are fulfilled.

Proof Let L) and L, be two linear subspaces of R". Introduce the value
Z(Ly, L) = min|v; — vy,

where the minimum is taken over all pairs of unit vectors v; € Lj, v, € L.
We claim that there exists a constant C; = C{(N, Cp, A) such that

(S, Uy) = Cy, kel (2.19)
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Fix an index k € I, take unit vectors v; € S; and v, € Uy for which Z(Sy, Uy) =
|v; — v2|, and denote

a = |FLk)(vi —v)|, >k
Inequalities (2.6) and (2.7) imply that
@ = | F(Lk)va| = | F(Lk)vi| = A1/ Co = CoA™™.
Hence, there exists a constant m = m(Cy, A) such that
Qp+m = 1.
At the same time, it follows from (2.1) that
Qetm < N" .
Combining the above two inequalities, we see that
£(Sk Uy) = ax = C1(N, Co. A) := N7,

which proves (2.19).

Clearly, if v; and v, are two unit vectors, then the usual angle (v;, vy) satisfies
the relation

|v; — vo| = 2sin({vy, v2)/2),

and we see that estimate (2.19) implies the existence of § = B(N, Cp, A) such that
if y is the usual angle between S; and Uy, then

sin(y) = B.

Now we take an arbitrary unit vector v € R” and denote vy = Pyv. If y; is the angle
between v and vy, then the sine law implies that

ol

= > |vgl,
sin(y) — sin(yo) =

and we conclude that

lvs| = [ Prv] = 1/8,
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which implies that
I Pell = € = max(Co. 1/B).

A similar estimate holds for || Q]|. O
As we said above, the following statement holds.

Lemma 2.1.6 A hyperbolic sequence <f has the Perron property on I.

Proof Assume that the sequence .27 has properties stated in relations (2.4)—(2.8).
Take a sequence

f={fieR": kel}

such that || f|| = v < oo and consider the sequence y defined by formula (2.11).
Then

IX(k)PX (—w)f,| < CA*™v, 0 <u<k,
and
X (k)(Id — P)X (—u)f,| < CA* %y, k41 <u < oo,

which implies that the second term in (2.11) is a convergent series (hence, the
sequence y is a solution of (2.3)) and the estimate

1+

Iyl SCA+A4+22 w+CA+A1.. )= L

Cv
holds. O
Now we pass to the Pliss theorem.
This time, ] = Z,and wedenote I+ = {ke€ Z: k> 0}andI- ={k e Z:
k < 03.
Now 7 is a sequence of linear isomorphisms

Ay R" >R, kel=27Z.

It is again assumed that an analog of inequalities (2.1) holds, and we consider
difference equations (2.2) and (2.3).

The Perron property of (2.2) on Z is defined literally as in the case of I = {k €
Z: k=>0}.

It follows from the Maizel’ theorem and its obvious analog for the case of I =
{k € Z : k < 0} that the sequence .2/ is hyperbolic on both /1 and /_ (the definition
of hyperbolicity in the case of I_ is literally the same).
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Without loss of generality, we assume that C and A are the same for the
hyperbolicity on /4 and I_ and denote by S,j', U,;",k € ly,and S, U,k € I,
the corresponding subspaces of R”.

Theorem 2.1.2 (Pliss) If <7 has the Perron property on I = Z, then the subspaces
U, and Sg' are transverse.

Remark 2.1.2 1In fact, Pliss proved in [74] that the transversality of U and S(‘)F is
equivalent to the Perron property of &/ on I = Z, but we need only the implication
stated above.

Remark 2.1.3 Note that there exist sequences .« that are separately hyperbolic on
I, and I for which the subspaces U, and Sg' are transverse and such that these
sequences are not hyperbolic on I = Z. It is easy to construct such a sequence with
SE =R UF = {0}k €Iy, and S; = {0}, U, = R", k € I_ (we leave details to
the reader).

Proof To get a contradiction, assume that the subspaces U; and Sg' are not
transverse. Then there exists a vector x € R” such that

xF#Fyi+y (2.20)

forany y; € Uy and y; € S .
Since the subspaces UJ' and Sg' are complementary (see (2.4)), we can represent

x=£E+n &S, neUJ’.
Then it follows from (2.20) that
n#Fu+a (2.21)

forany z; € S(‘)F and z; € Uy . We may assume that 5| = 1.
Consider the sequence

g 10 k=0
“TlLk>o.
Since n # 0in (2.21), X(k)n # 0 for k € I. Define a sequence f = {fi, k € I}
by

_ X(n
fi = Xon ™ kel (2.22)

Clearly, ||f|| = 1. We claim that the corresponding Eq.(2.3) does not have
bounded solutions.
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Consider the sequence

o0

¢e=— Y X((1d—P)X(—uwfs, k=0.

u=k+1

In this formula, P is the projection defined for Eq. (2.2).
The sequence {¢y} is bounded for k > 0. Indeed, f,, € U,j‘ for u > 0; hence,

[e.0]

el = | Y X(R)(1d = P)X(—w)f,| <
u=k+1
> A
< crk=c .
ME;;I 1_-A

We know that since the series defining ¢ is convergent, the sequence {¢;} is a
solution of the homogeneous equation (2.2) for k > 0.
Clearly,

(o]

S
$o=—y (1d—P)X(—u)f, = — =,
=2 ; X (u)|

u=1

where

1
’ ‘_; X |

Deriving these relations, we take into account the definition of f and the equality
(Id — P)n = n. In addition, the value v is finite since

1
<CA, k>0,
[X (k)

due to inequalities (2.7).
It follows from (2.21) that

$o # y1 +y2 (2.23)

forany y; € Sf and y, € Uj .
Now let us assume that Eq.(2.2) has a solution ¥ = {yy} that is bounded on
I =7.Then ¢ € Uy .
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On the other hand,
Vi = X(k) (Yo — o) + go.
Since ¢y are bounded for k > 0, 1 can be bounded for £k > 0 only if

X(k)(Yo — ¢o)

are bounded for k > 0, which implies that

Yo — o € Sy -
Set
yi=g¢o—VYo €Sy and y, =1y € Up.
Then ¢p = y; + y», and we get a contradiction with (2.23). O

Remark 2.1.4 We will apply the Maizel’ and Pliss theorems proved in this section
in a slightly different situation.

We consider a diffeomorphism f of a smooth closed manifold M, fix a point
x € M and the trajectory {x; = f*(x) : k € Z} of this point and define linear
isomorphisms

Ak = Df(xk) : Tka — Txk+1M'

To the sequence &/ = {A;} we assign difference equations
Vk+1 = Akvk, Vg € Tkas
and

Vir1 = AgVk + fit1, Ok € ToM, fit1 € Ty M.
Clearly, these difference equations are completely similar to Egs. (2.2) and (2.3),
and analogs of the Maizel” and Pliss theorems are valid for them.

Historical Remarks Theorem 2.1.1 was proved by A. D. Maizel’ in [38]. See also
the classical W. A. Coppel’s book [13].

The Pliss theorem (Theorem 2.1.2) was published in [74]. Later, it was gener-
alized by many authors; let us mention, for example, K. Palmer [55] who studied
Fredholm properties of the corresponding operators.
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2.2 Maiié Theorem

In this section, we prove Theorem 1.3.7.

Remark 2.2.1 In several papers, the analytic strong transversality condition is
formulated in the following form, which is obviously stronger than the condition
formulated in Definition 1.3.11: it is assumed that

BY(x)+B (x) =T:M, xeM,

where the subspaces B (x) and B~ (x) are defined by the equalities
Bt (x) = {v e T.M: lim |Dff(x)v| = o}
k—>00
and
B~ (x) = {v eT.M: lim |Dff(xpv|= o} )
k—>—00

In fact, it is easily seen from our proof below that the structural stability of f
implies this form of the analytic strong transversality condition as well, so that both
conditions are equivalent.

The main part of our proof of Theorem 1.3.7 is contained in the following
statement.

Theorem 2.2.1 The analytic strong transversality condition implies Axiom A.

First we prove that the analytic strong transversality condition implies the
hyperbolicity of the nonwandering set £2.

We assign to a diffeomorphism f : M — M the mapping = : TM — TM (where
TM is the tangent bundle of M) which maps a pair (x,v) € TM (where x € M and
v € T,M) to the pair (f(x), Df (x)v).

A subbundle Y of TM is a set of pairs (x, Y;), where x € M and Y, is a linear
subspace of T, M.

Definition 2.2.1 A subbundle Y is called w-invariant if
Df(x)Yx = Yf(x) for xe M.

Assuming that f satisfies the analytic strong transversality condition, we define
two subbundles BT and B~ of TM by setting

Bf =B*(x) and B, =B (x) for xeM.
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Since
lim inf [Df*(x)v| =0
k—o00
if and only if

lim inf |Df*(FONDI @] =0,

the subbundle BT is m-invariant. A similar reasoning shows that the subbundle
B~ is w-invariant as well.

The main object in the proof is the mapping 7 *, dual to the mapping 7.

Denote by <, > the scalar product in T,M. Let D*f(x) : TyyM — T.M be
defined as follows:

< £, Df(x)v >=< D*f(x)€, v >

forall v € TyM and & € TyyM (thus, D*f(x) is the adjoint of Df (x)). We define 7*
as follows: a pair (f(x), &), § € TyM, is mapped to

7 (f(x),€) = (x. D*f(0)§) .
If p : TM — M is the projection to the first coordinate (i.e., p(x, v) = x), then
p(m(x,v)) = f(x) (in this case, one says that 7 covers f); since p(7*(x,v)) =

—1(x), m* covers f~L.
f
Clearly, the definition of 7* implies the following statement.

Lemma 2.2.1
(*)* = .
If Y is a subbundle of TM, we define the orthogonal subbundle Y as follows:
Yr={t:<&v>=0 foral veY), xeM.

Lemma 2.2.2 [fa subbundle Y is w-invariant, then YLt is w*-invariant.
Proof Consider vectors £ € YfJ(-X) and D*f(x)é € M. If v € Y,, then
< v, D*f(x)€ >=< £, Df(x)v >=0

since Df (x)v € Y(x), which means that D*f(x)§ € Yt O
We call two subbundles Y' and ¥? complementary if

Y!®Y?=TM forany xeM. (2.24)
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Lemma 2.2.3 If Y' and Y? are complementary subbundles that are m-invariant,
then (YI)J' and (Yz)l are complementary subbundles that are w*-invariant.
Proof The subbundles (Yl)J' and (YZ)J' are m*-invariant by Lemma 2.2.2. If
dimY! = k, then equality (2.24) implies that dim¥Y? = n — k. Clearly,
. L . L
dim(Y') " =n—k and dim(Y?) =k (2.25)

Consider a vector £ € (Yl )j’ N (Yz)j'. Due to (2.24), any vector v € T, M is
representable as

v = v + vy, vleYi, vzer.

Then < £,v >=< &,v; > + < &, vy >= 0. Since v is arbitrary, § = 0. The
equality

(Y)Fn ()7 =0

and (2.25) imply the statement of our lemma. O

Let My C M be a hyperbolic set of f. Then S and U defined by S, = S(x) and
U, = U(x) for x € My are two complementary r-invariant subbundles on M, such
that inequalities (HSD2.3) and (HSD2.4) hold (see Definition 1.3.1). In this case, we
say that My is hyperbolic with respect to 7 with subbundles S and U and constants
Cand A.

Lemma 2.2.4 [f a set M is hyperbolic with respect to w with subbundles S and U
and constants C and A, then My is hyperbolic with respect to w* with subbundles
UL and S* and the same constants C and A.

Proof If A and B are linear operators, then (AB)* = B*A*; hence,
(DF(fC)Df )" = D* D™ (f (X))
If we take v € ToM and § € Tpo(, M, then
< DFA(x)v. £ >=< DF(f())Df (x)v. § >=
=< Df (), D*f(f(x)E >=< v, DD f(f(0)E >=< v, D*f*()§ > .
Applying induction, it is easy to show that

< v, D*f*(0)E >=< £, Dff(x)v >, keZ, (2.26)
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forv € TxM and § € Ty, M, where

D*f*(x) = D*f()D*f(f(x) ... D*f (/7' (x)

and

Df(x) = Df (S ()DF(f 2 () ... DF ().

By Lemma 2.2.3, the subbundles S+ and U' are complementary and 7*-
invariant.

Fix k > 0 and a vector £ € ([]fk(x))l. Then D*f*(x)é € T.M. The obvious
equality

|n] = max < n,v >, nveTM,
lv]=1

implies that
[D*7* (0| = max < v.D*F @k >
Represent v = v; + vy, where v; € S, and v, € U,.
Since Ut is 7*-invariant,
D*f(x)€ € (U™,
and < vy, D*f*(x)€ >= 0. It follows that

ID*f*(0)E| = max < v, D*ff(x)E >= max < £, Df*(x)v; >< CAM|g|.

‘= V] ‘=l
In the last inequality, we used inequality (HSD2.3) and the obvious relation
<& v>=[§]v].
A similar reasoning shows that

D (0] < CATFE|

forf e (ka(x))l and k < 0. O

Now we prove that the analytic strong transversality condition implies that, in a
sense, 7* does not have nontrivial bounded trajectories. Fix a point (x, v) € TM and
define the sequence (x;, vx) = (%) (x, v).
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Lemma 2.2.5 If

sup |v| < oo, (2.27)
keZ

thenv = 0.

Proof The obvious equalities

x=fF(f'w) and u=Df* () DF @

which are valid for all x € M, u € T:M, and k € Z imply that
<§u>=<&Df (') DfFf u >=< D*f* (f* ) & DfF (X)u >

forall £,u € T:M and k.

Assume that a point (x, v) satisfies condition (2.27).

By the analytic strong transversality condition, we can represent any vector § €
TM in the form § = & +§&, for which there exist sequences [, — oo and m,, — —o0
as n — oo such that

IDf"(x)&1| = 0 and |Df"(0)&| >0, n— .
Let us write
<vE>=<v.b + & >=<v,Df " (f"(0)) D" ()& > +
+ <v.Df " (" (x) Df" (0§ >=

=< D*f7" (f"(x)) v.Df" ()& > + < D" (f™(x)) v, D" ()& > .
(2.28)

By condition (2.27), both values \D*f_l" (f" (x))v| and |D*f""" (fm (x))v\ are
bounded; hence, both terms in (2.28) tend to 0 as n — oo. Thus, < &, v >= 0 for
any &, which means that v = 0. O

To simplify notation, let us denote 7* by p and write

p(x. v) = (¢(x), P(x)v),

so that ¢(x) = f~'(x) and @(x) is the linear mapping T\M — TyM, D(x) =
D*f(x). Let

F(0,x) = Id,

F(k,x) = ®(¢*'(x))---®d(x), k>0,
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and
F(—k,x) = @ (¢ () --- @7 '(x), k>0.

Obviously, the mapping p is continuous. By Lemma 2.2.5, it satisfies the
following Condition B: If

sup | F(k,x)v| < oo
kez

for some (x,v) € TM, then v = 0.
Let us define the following two subbundles in TM: V = {(x,V,)} and W =
{(x, W,)}. We agree that

e v € T:M belongs to V. if | F(k,x)v| — 0 as k — oo
and
e v € T:M belongs to W, if | F(k,x)v| — 0 as k - —oo.

Clearly, the subbundles V and W are p-invariant.
Lemma 2.2.6 Let a sequence (X, vy) € TM be such that

(1) (X, V) = (x,0) asm —> oco;
(2) there exists a number L > 0 and a sequence k,, — oo as m — oo such that

| F(k,Xm)vm| <L, 0 =<k <=<ky. (2.29)

Then (x,v) € V.

Proof Fix an arbitrary / > 0. There exists an myg such that k,, > [ for m > my. Then
it follows from (2.29) that

| F(I, Xm)vm| < L. (2.30)

Since F(/,y)w is continuous in y and w, we may pass to the limit in (2.30) as
m — oo; thus,

| F(l,x)v| < L.
Since [ is arbitrary, this means that
| F(k,x)v| <L, k=>0. (2.31)

Let (xo, vo) be a limit point of the sequence ((;Sk (%), F(k, x)v), i.e., the limit of the
sequence

(¢" (x). F(tm, X)v) (2.32)

for some sequence f,, — oQ.
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Take an arbitrary k € Z. Since
¢"(x) > x9 and F(t,,x)v — vy, m—> 00,
¢t (x) = ¢*(xo) and  F(k + t,, x)v — F(k,xo)vo, m — oo. (2.33)

For large m, k + t,, > 0, and it follows from (2.31) and the second relation in
(2.33) that

| F(k, x0)vo| < L. (2.34)

Since (2.34) is valid for any k € Z, Condition B implies that vy = 0. Thus, in
any convergent sequence of the form (2.32) with ¢,, — oo,

| F(ty, x)v| — 0,

which means that (x,v) € V. O

Remark 2.2.2 A similar reasoning shows that if we take k,, - —oco and k,, <k <0
in condition (2) of Lemma 2.2.6, then (x, v) € W. In what follows, we do not make
such comments and only consider the case of the subbundle V.

Define the set

A={(x,v) eTM: |Flk,x)v| <1 for k=>1}.

Clearly, the set A is positively p-invariant, i.e., if (x,v) € A and k& > 0, then
(d)k(x), F(k,x)v) €A.
Let us say that a set C = {(x, v) € TM} is bounded if

sup |v| < oo.
(x,v)eC

Since the manifold M is compact, any closed and bounded subset C of TM is
(sequentially) compact, i.e., any sequence in C has a convergent subsequence, and
the limit of this subsequence belongs to C.

Lemma 2.2.7 The set A is a compact subset of V.

Proof It was shown in the proof of Lemma 2.2.6 that inequality (2.31) implies the
inclusion (x,v) € V; thus, A C V. Since F(0,x)v = v, A is bounded. Consider a
sequence (X, V) € A such that (x,,, v,,) = (x,v), m — oo. For any fixed k > 0,

| F(k,x)v| = lim | F(k, Xn)vm| < 1.
m—00

Hence, (x,v) € A, and A is closed. O
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Lemma 2.2.8 For any i > 0 there exists a K > 0 such that if (x,v) € A, then
| F(k,x)v| <, k=>K. (2.35)

Proof Assuming the converse, let us find sequences (x,,, v,) € A and k,, — oo and
anumber p > 0 such that

| F(kp, Xm)V| > . (2.36)
Since A is positively p-invariant,

(6 (), F (K X)) € A

since A is compact, the above sequence has a convergent subsequence. Assume, for
definiteness, that

(@ Cn). F (ks Xm)Vi) = (x, v).

Then it follows from (2.36) that |v| > . Fix a number k € Z. Since k + k,, > 0 for
large m,

(@7 ), F(k + Ky Xn)Um) = (¢*(x), Fk, x)v) ,  m — o0,
and
| F(k + ki, Xm)vm)| < 1,
we conclude that
|Flk,x)v)| <1, keZ.

Condition B implies that v = 0. The contradiction with (2.36) completes the proof.
|

Lemma 2.2.9 There exists a number (& > 0 such that if (x,v) € V and |v| < u,
then (x,v) € A.

Proof Assuming the contrary, we can find a sequence (x,,, v,,) € V such that |v,,| —
0, m — oo, and (x,,, v,,) € A.
Then

W = max | F(k, Xp) V| > 1
k>0

(we take into account that | F(k, x,,)v,,| — 0, k — 00).
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Find numbers k,, > 0 such that
| (ks Xim) V| = fm-
Since
| F(k, xm) (Um/ )| = 1, k=0,

(Xm, Vm/ ) € A.
The mapping p is continuous and F'(k, x)0 = 0; hence,

max | F(k, x,)(Vp/tm)| = 0, m — oo,
0<k<K

for any fixed K (note that x,, € M, M is compact, |v,,| — 0, and p,, > 1).
Hence, k,, — 0o, m — oo. Lemma 2.2.8 implies now that the relations

(X Um/im) €A and [ F (K, Xin) (U / )| = 1

are contradictory. O

Lemma 2.2.10 There exists a number K > 0 such that if (x,v) € V, then
| F(k,x)v| < (1/2)|v], k> K. (2.37)
Proof Apply Lemma 2.2.8 to find a number K such that
|Fk,x)v'| < /2, k=K,
for any (x,v’) € A (where p is the number from Lemma 2.2.9).

Take any (x,v) € V.If v # 0, set v/ = u(v/|v|). Then (x,v") € A by
Lemma 2.2.9, and it follows from Lemma 2.2.8 that

| F(k.0v'| = (/o) | F(k.x)v| < 1/2, k=K,
which obviously implies the desired relation (2.37). If v = 0, we have nothing to
prove. O
Lemma 2.2.11

(1) The subbundles V and W are closed.
(2) There exist numbers C > 0 and A € (0, 1) such that
if (x,v) €V, then

| F(k,x)v| < CA*v|, k> 0; (2.38)
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if (x,v) € W, then
| F(k,x)v| < CA*]v|, k <0. (2.39)
Proof We prove the statements for the subbundle V; for W, the proofs are similar.
To prove statement (1), consider a sequence (xi, vx) € V such that (xg, vy) —
(x,v) as k — oo.

If v = 0, then, obviously, (x,v) € V. Assume that v # 0; then v; # 0 for large
k, and, by Lemma 2.2.9 there exists a ;& > 0 such that

(xk, ,ka/|vk|) € A.
Since A is closed (see Lemma 2.2.7),
(x, pv/|v]) € A,

and (x,v) € V by Lemma 2.2.7. This proves the first statement of our lemma.
To prove the second one, apply Lemma 2.2.10 and find a number K such that

| F(k,x)v| < (1/2)|v|, k=K, (2.40)

for any (x,v) € V.
It follows from (2.40) and from the p-invariance of V that

| FK, x)v| < (1/2)%|v],.... | F(kK, )v] < (1/2) ]|, k=>0. (2.41)
There exists a number Cy > 0 such that

max || F(k,x)|| < Co. (2.42)
0<k<K, xeM

Let us show that inequality (2.38) holds with C = 2Cy and A = 2!/X. We can
represent any k > 0 in the form k = koK + kj, where kg > O and 0 < k; < K. If
(x,v) € V, then it follows from (2.41) and (2.42) that

| F(k,x)v| = | F(ki. ¢ ())F (koK. x)v| < Co(1/2)*[],
but since kg + 1 > k/K, —kg < —k/K + 1, and 2% < 2)¥ we conclude that

| F(k, x)v| < C/\k|v|,

as required. O

Remark 2.2.3 Inequalities (2.38) and (2.39) have the same form as inequalities
(HSD2.3) and (HSD2.4) in the definition of a hyperbolic set. Thus, if we want to



2.2 Maiié Theorem 61

show that some compact, p-invariant subset My of M is a hyperbolic set of p with
subbundles V and W, we only have to show that

Vi+ W, =TM, xeM,. (2.43)

Lemma 2.2.12 Assume that for a sequence (Xp, V) € TM there exists a sequence
k,, — o0 as m — oo and a number r > 0 such that

V| <r and | F(ky, Xpm)Vp| <.
Then there exists a number R > 0 such that
| F(k,xp)vm| <R, 0<k<k,.

Proof Assume the contrary, and let there exist (x,,, v,,) € TM and k,, — oo such
that

by := max |F(k,x,)v,| — o0, m— oo.
0<k=<km

Find numbers /,, € [0, k] such that b,, = | F(l,,, X,,) v |. Since p is continuous, it is
obvious that

l,—>o0 and k,—1, > o0, m— oo. (2.44)
Set
Wi = F(ly, X)) O/ bn).
Let (x,v) be a limit point of the sequence (¢ (x,),w,,); then |[v| = 1. The
inequality

| F(k, ¢ (x))win| < 1

holds for k € [—I,,0] U [0, k,, — I,,]. We apply relations (2.44) and Lemma 2.2.6
(and its analog for W) to conclude that v € V, N W,, but then v = 0 by
Condition B. O

Remark 2.2.4 A similar statement is valid if k,, — —oo. In this case,
| F(k,Xp)Vm| <R, ky <k <0.

Lemma 2.2.13 [f x is a nonwandering point of the diffeomorphism f, then equality
(2.43) holds.
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Proof By the definition of a nonwandering point, there exist sequences of points
X, € M and numbers k,, such that

Xy =X, () = X, k| = 00

as m — oo. We may assume that k,, - —oo.

Consider the linear subspace W, and let Q be its orthogonal complement. Let
dimQ = s. Fix an orthonormal base vy,...,vs; in Q. Clearly, we can find s
orthonormal vectors v{',...,v{" in Ty, M such that v{" — v; as m — oo for
j=1,...,s.

Let O,, be the subspace of T,, M spanned by v, ..., vy". Introduce the numbers

Um = min{| F(ky, Xm)V| : v € O, |v] = 1}.

We claim that

Um —> 0O, m — 00. (2.45)

If we assume the contrary, we can find a number » > 0 and sequences w,, € O,
[ww| = 1, and k,, = —o0 such that

| F(kppy X)) Wia| < 1.
By the remark to Lemma 2.2.12, there exists a number R such that
| F(k, xp)Wi| <R, k € [ky,O0].
By Lemma 2.2.6, in this case, any limit point (x, v) of the sequence (x,,, w;,) belongs
to W, i.e., v € W,. This relation contradicts our construction since w,, € Q,,, which

implies that v is orthogonal to Q (note that |v| = 1). This proves (2.45).
Consider the linear space

K = F(ky, X)) O
Clearly, K, C T, M, where y,, = f*(x,,), and dimK,,, = s.

Consider a vector w € K, [w| = 1. Let w = F(ky, x,,)v. It follows from the
definition of the numbers p,, that

o] < pmlwl = pm. (2.46)

Inequalities (2.46), relations (2.45), and Lemma 2.2.12 imply that for any

sequence (y,;, Wy,), where w,, € K, and |w,,| = 1, there exists a number R such
that

| F(k, Xp)Wu| <R,k € [0, k.
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Now Lemma 2.2.6 implies that any limit point (x, w) of such a sequence (y,;,, w;,)
belongsto V,ie.,w € V..

Select an orthonormal basis wY',...,w{" in K,. We may assume that all the
sequences wY', ..., wy' converge for some sequence of indices. For definiteness, let
wi' = wi, .. W= w,  m— 00,

The vectors wy, . .., w, are pairwise orthogonal unit vectors in V,; hence,
dimV, > s. (2.47)

By the definition of the spaces Q and Q,,,
dimW, = n —s.
Combining this with inequality (2.47), we see that
dimV, + dimW, > n.
Since V, N W, = {0} by Condition B, we conclude that
Vi+ W, =TM,

as claimed. O

The nonwandering set of the diffeomorphism f coincides with the nonwandering
set of the diffeomorphism ¢ = f~!. Combining Lemma 2.2.1 with Lemma 2.2.4
applied to the mapping p, we conclude that the following statement holds.

Theorem 2.2.2 If a diffeomorphism f satisfies the analytic strong transversality
condition, then the nonwandering set of f is hyperbolic.

Now we show that the analytic strong transversality condition implies the second
part of Axiom A, the density of periodic points in the nonwandering set £2(f) of the
diffeomorphismf.

Since we are going to use the Mafé theorem in the proof of the implication (the
analytic strong transversality condition) = (structural stability) for a diffeomor-
phism f having the Lipschitz shadowing property, we can essentially simplify this
proof (compared to the original Maiié¢ proof) assuming that f has the shadowing
property.

Thus, now we prove the following statement.

Theorem 2.2.3 If a diffeomorphism f has the shadowing property and the nonwan-
dering set 2(f) of f is hyperbolic, then periodic points are dense in 2(f).

In this proof, we apply the following two well-known results (see, for example,
[71] for their proofs).

First we recall a known definition.
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Definition 2.2.2 A homeomorphism f of a metric space (M, dist) is called expan-
sive on a set A with expansivity constant a > 0 if the relations

. () €A ke,

and

dist (f*(0).f*(y)) <a. ke,

imply that x = y.

Theorem 2.2.4 If A is a hyperbolic set of a diffeomorphism f, then there exists a
neighborhood of A on which f is expansive.
Denote by cardA the cardinality of a finite or countable set A.

Theorem 2.2.5 (The Birkhoff Constant Theorem) If the phase space X of a
homeomorphism f is compact and U is a neighborhood of the nonwandering set
2(f) of f, then there exists a constant T = T(U) such that for any point x € X, the
inequality

card{ke Z: ff(x) ¢ U} <T

holds.

Proof (of Theorem 2.2.3) Fix an arbitrary point z € £2(f). There exist sequences of
points z,, and numbers [, — oo such that

2 —z and f"(z,) =z, n— oo.

Let U be a neighborhood of the set §£2(f) on which f is expansive and let a be the
corresponding expansivity constant.

Fix an & > 0 such that the 3e-neighborhood of £2(f) is a subset of U. Denote by
U’ the 2¢-neighborhood of £2(f). We assume, in addition, that 2¢ < a.

For this ¢ there exists ad > 0 such that any d-pseudotrajectory of f is e-shadowed
by an exact trajectory.

Fix an index n such that

dist(z, z,), dist(z, " (zy)) < d/2.

Construct a sequence {x;} as follows. Represent k € Z in the form k = ko + k11,,,
where k; € Z and 0 < k¢ < [, and set x; =fk° (zn)-

Clearly, the sequence {x;} is periodic with period /,; the choice of n implies that
this sequence is a d-pseudotrajectory of f.

We claim that

) cU. (2.48)
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Assuming the contrary, we can find an index m such that x,, ¢ U’, i.e.,
dist (x, $2(f)) > 2e,
but then
dist (X411, $2(f)) > 2¢, keZ. (2.49)
Let p € M be a point whose trajectory e-shadows {x;}, i.e.,
dist (f*(p).x) <e, keZ;

let pr = f*(p).
Then it follows from inequalities (2.49) that

dist (pm+u,, $2(f)) > &, keZ,

which contradicts Theorem 2.2.5. Thus, we have established inclusion (2.48).
Set r = f"(p). Since x; = x;+4,, the following inequalities hold:

dist (f*(r). x¢) = dist (""" (p).xi4s,) <&, ke L.
Then
dist (f*(r).f*(p)) <26 <a, ke
in addition, inclusion (2.48) implies that

0. (p)eU. kel

Since f is expansive on U, r = p.

Thus, p is a periodic point of f.

Since ¢ and d can be taken arbitrarily small, there is such a point p in an arbitrarily
small neighborhood of the point z. O

Thus, it remains to show that the analytic strong transversality condition implies
the strong transversality condition (stable and unstable manifolds of nonwandering
points are transverse).

For this purpose, we apply the following well-known theorem on the behavior of
trajectories of a diffeomorphism in a neighborhood of a hyperbolic set (its proof can
be easily reduced to Theorem 6.4.9 in the book [28]).

Theorem 2.2.6 Let A be a hyperbolic set of a diffeomorphism f with hyperbolicity
constants C, A. For any C; > C and A € (A, 1) there exists a neighborhood U of
A with the following property. If x € W'(p), p € A, and f*(x) € U for k > 0,
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then there exist two complementary linear subspaces L™ (x) and L™ (x) of T.M such
that

(1)
LY (x) = TW'(p). L™ (x) = TW"(p):
(2)
IDff(x)v| < CiAf[v]l, k=0, v el (),
and
IDFf(v| = (1/COAT vl k=0, v e L™ ().

Remark 2.2.5 Of course, a similar statement holds if x € W¥(p), p € A, and f*(x)
belongs to a small neighborhood of A for k < 0.

Clearly, it is enough for us to prove that if r € W*(p)NW"(q), where p, g € 2(f),
then

BT (r) C T,W*(p) and B (r) C T,W"(q). (2.50)
We prove the first inclusion in (2.50) by proving that
BT (r) C LT (r) (2.51)

and applying Theorem 2.2.6; the second inclusion is proved in a similar way.

Any trajectory of a diffeomorphism satisfying Axiom A tends to one of the basic
sets as time tends to 00 (see Theorem 1.3.2).

Take as A the basic set to which f(r) tends as k — oo; obviously, p belongs
to this basic set. Of course, we may assume that the positive semitrajectory of r
belongs to a neighborhood of A having the properties described in Theorem 2.2.6.

Assume that inclusion (2.51) does not hold; take v € B¥ (r)\ L " (r) and represent

v=0v"+0v" v eLt(r), v el (r);

then v* # 0.
Then

‘kav‘ > ‘kavu‘ — ‘kavy‘ > (1/CHA ! — CLAM Y| = 00, k — o0,

which contradicts the relation defining B (r).
We have completely proved the Mafié theorem.
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Historical Remarks In his paper [39], R. Maiié gave several equivalent character-
izations of structural stability of a diffeomorphism; Theorem 1.3.7 of this book is
just one of them.

The property of expansivity of a dynamical system with discrete time is now
one of the classical properties studied in the global theory of dynamical systems.
Theorem 2.2.4 is folklore. Let us mention J. Ombach’s paper [49] in which it was
shown (see Proposition 9) that a compact invariant set A of a diffeomorphism f is
hyperbolic if and only if f| 4 is expansive and has the (standard) shadowing property
(compare with Sect. 4.1).

Theorem 2.2.5 was proved in G. Birkhoff’s book [10].

2.3 Diffeomorphisms with Lipschitz Shadowing

Our main result in this section is as follows.

Theorem 2.3.1 If a diffeomorphism of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, then f is structurally stable.

As stated in Theorem 1.4.1 (1), a structurally stable diffeomorphism f has the
Lipschitz shadowing property. Combining this statement with Theorem 2.3.1, we
conclude that for diffeomorphisms, structural stability is equivalent to Lipschitz
shadowing.

Proof (of Theorem 2.3.1) Let us first explain the main idea of the proof.

Fix an arbitrary point p € M, consider its trajectory { p; = f*(p) : k € Z}, and
denote Ay = Df(px). Consider the sequence o7 = {A; : k € Z}.

In Sect. 2.1 devoted to the Maizel’ and Pliss theorems, we worked with sequences
&/ of isomorphisms of Euclidean spaces. Here we apply these theorems (and all the
corresponding notions of the Perron property etc.) to the sequences .7 = {Df (py)}
(see the remark concluding Sect. 3.1).

We claim that if f has the Lipschitz shadowing property, then 7' has the Perron
property on Z.

By the Maizel’ theorem, the Perron property on Z implies that the sequence <7 is
hyperbolic on both “rays” Z_ and Z.. Denote by S;", U, , k € Z_ and S,j', U,;" ke
Z+ the corresponding stable and unstable subspaces.

Then, by the Pliss theorem, the subspaces U and Sg' are transverse.

Clearly,

|Ayo---0Agv] =0, veS; k— oo,
and

|(A) " o0 (A0)'v| > 0, e Uy, k— —oo,
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which means that U; C B~(p) and S§ C BT (p), where B~(p) and B (p) are the
subspaces from the analytic transversality condition.

The transversality of the subspaces U; and Sg' implies the transversality of the
subspaces B~ (x) and B (x). Since x is arbitrary, f is structurally stable by the Mafié
theorem.

Now we prove our claim.

To clarify the reasoning, we first prove an analog of this result, Lemma 2.3.2,
for a diffeomorphism of the Euclidean space R". Of course, R” is not compact, but
we avoid the appearing difficulty making the following additional assumption (and
noting that an analog of this assumption is certainly valid for a diffeomorphism of
class C! of a closed smooth manifold). We call the condition below Condition S.

Thus, we assume that for any & > 0 we can find a § = §(i) > 0 (independent
of k) such that if |v| < &, then

[f(Pk +v) —Akv — pra| < pfol,  k€Z (2.52)

The basic technical part of the proof of Lemma 2.3.2 is the following statement
(Lemma 2.3.1). In the following two Lemmas, 2.3.1 and 2.3.2, f is a diffeomorphism
of R” that has the Lipschitz shadowing property with constants .2, dy > 0, { px =
f*(p)} is an arbitrary trajectory of f, Ay = Df(py), and it is assumed that Condition
S is satisfied.

Lemma 2.3.1 Fix a natural number N. For any sequence
wy € R", keZ,

with |wy| < 1 there exists a sequence

zeR", kelZ,
such that
ol < Z+1, keZ, (2.53)
and
Zk+1 = A2k + wir1, —N <k <N. (2.54)

Proof Thus, we assume that f has the Lipschitz shadowing property with constants
A y d() > 0.
Define vectors

AyeR", —-N<k<N+1,
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by the following relations:
A_y =0 and Ap4; = ArAr +wigr1, —N <k =<N. (2.55)
Clearly, there exists a number Q (depending on N, <7, and wy) such that
Al <Q. -N<k<N+1. (2.56)

Fix a small number d € (0,dy) (we will reduce this number during the proof)
and consider the following sequence § = {x; € R" : k € Z}:

FHN(p-w), k < —N;
Xk = § pr + dAyg, —N<k<N+1;
fk_N_l(pN_H + dAN_H), k>N + 1.

Note that if —N < k < N, then
X1 —f )| = | prt1 + dAirr — f(pr + dAY)| <
< d|Akp1 — AkAi| + | f(pk + dAk) — pr1 — dAKAK] -
Since we consider a finite number of wy, the condition |wy| < 1 implies that there
is a ;€ (0,1) such that the first term above does not exceed pud; by Condition S,
the second term is less than (1 — w)d if d is small. Hence, in this case, the sum is

less than d.
For the remaining values of &,

[Xe+1 —f ()| = 0.

Thus, we may take d < dj so small that £ is a d-pseudotrajectory of f. Then there
exists a trajectory n = {yx : k € Z} of f such that

|xe — k| < Zd, keZ. (2.57)
Denote t; = (yx — px)/d. Since Ay = (xx — pr)/d, it follows from (2.57) that
| Ay —t| = |xx —yil/d < L, kel (2.58)
It follows from (2.56) and (2.57) that
Iy —pil < |y — k] + e —pel < (L + Q)d, ke
Hence,

Wl <L +0Q. kel (2.59)
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Now we define a finite sequence
breR", —-N=<k<N+I,
by the following relations:
b_y=t_y and byy; =Aby, —N<k<N. (2.60)
Take 11 € (0, 1) such that
(K+ DN +EK+DN 't ) <1, (2.61)
where K = sup ||Ag||. Set

K1

=210

and consider d so small that inequality (2.52) holds for |[v| < § with § = (£ + Q)d.
The definition of the vectors #; implies that

dti+1 = Yi+1 — Pr+1 = f(v1) —f(p) = f(pr + dtr) — f(po)-

Since |dty] < (£ + Q)d by (2.59), it follows from Condition S and from the
above choice of d that

|dtip1 — dAxte| = | f(pr + die) — f(pr) — dAxte| <
< pldiy| = p(Z + Q)d = pid.

Hence,

frr1 = Axty + O,  where |6 < u;. (2.62)
Consider the vectors

cy =ty — by.
Note that c_y = 0 by (2.60) and
Cr41 = Agcr + 6k,  where |6 <

by (2.62).
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Thus,
le—n+1] = 10-n| < 1,

le-ns2| S JAnyricony1 + O-nt1| < (K + Dy,

and so on, which implies the estimate

lee < (K+ DM+ (K+ D"+t 1)y <1, —N<k<N.

Hence,
[tx —bi] <1, —N <k <=N.

Finally, we consider the sequence

0, k < —N,;
k=19 A—br, -N<k<N+1,
0, k>N+1.

71

(2.63)

Relations (2.55) and (2.60) imply relations (2.54); estimates (2.58) and (2.63)

imply estimate (2.53).
Lemma 2.3.2 The sequence o/ = {Ay} has the Perron property.

Proof Take an arbitrary sequence
wy R, keZ,
with [wg| < 1 and prove that an analog of Eq. (2.54) has a solution
weR", kelZ,
with
ol < Z+1, kel
Fix a natural N and consider the sequence

W™ = ] We —N <k =<N;
10, k| =N+ 1.
By Lemma 2.3.1, there exists a sequence {z,((N) , ke Z} such that

Z,(fi)l = AkZ/((N) + w,((N), —N<k=N,

O

(2.64)
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and

‘z,iN)) < %41, kel (2.65)

Passing to a subsequence of {z,((N)}, we can find a sequence {v} such that

w= lim 2V, keZ

(Note that do not assume uniform convergence.) Passing to the limit in (2.64) and
(2.65) as N — oo, we see that

Vpr1 = Ak +wi, k€Z,
and
| < Z+1, kel

Thus, we have shown that the sequence .7 has the Perron property. O
Now let us explain how to prove the required statement in the case of a smooth
closed manifold M.

Lemma 2.3.3 If a diffeomorphism of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, {pk =fk(p)} is an arbitrary
trajectory of f, and Ay = Df(px), then the sequence o/ = {A} has the Perron
property.

Proof Let exp be the standard exponential mapping on the tangent bundle of M
generated by the fixed Riemannian metric dist. Let

exp, : I\M — M

be the corresponding exponential mapping at a point x € M.

Denote (just for this proof) by B(r, x) the ball in M of radius r centered at a point
x; let By(r, x) be the ball in T, M of radius r centered at the origin.

It is well known that there exists an r > 0 such that for any x € M, exp, is a
diffeomorphism of Br(r, x) onto its image and exp, ! is a diffeomorphism of B(r, x)
onto its image; in addition, D exp,(0) = Id.

Thus, we may assume that r is chosen so that the following inequalities hold for
any x € M:

dist(exp,(v), exp,(w)) < 2|v —w|, v,w € Br(r,x), (2.66)

and

lexp; ! (y) —exp; ! (2)| < 2dist(y.2).  y.z € B(r.x). (2.67)
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These inequalities mean that distances are distorted not more than twice when
we pass from the manifold to its tangent space or from the tangent space to the
manifold (if we work in a small neighborhood of a point of the manifold or in a
small neighborhood of the origin of the tangent space).

In our reasoning below, we always assume that d is so small that the correspond-
ing points belong to such small neighborhoods.

Now we fix a trajectory { i =15 p)} of our diffeomorphism f and introduce the
mappings

Fr = exp;lirl of oexp,, : TypM — Ty, M.
Clearly,
DF(0) = A;.

The analog of Condition S is as follows: For any # > 0 we can finda § > 0
(independent of k) such that if |v| < §, then

| F(v) — Agv| = pfvl. ke Z. (2.68)

Of course, this condition is satisfied automatically since f is of class C! and the
manifold M is compact.

To prove that the sequence .o/ has the Perron property, let us consider the
difference equations

U1 = Ak +wi, k€ Z, (2.69)

where vy € Ty, M and wy € T, |\ M.

We assume that |wi| < 1, k € Z. Let us “translate” the reasoning of Lemma 2.3.1
to the “manifold language.”
We fix a natural N and consider the sequence

Ay €TyM, —N<k<N+1,

defined by relations (2.55). Let Q satisfy (2.56).
We fix a small d and define the sequence £ = {x; € M : k € Z} by

SN (pw), k < —N;
X = exppk(dAk), —-N<k<N+1;
fk_N_l(eXPpNH(dANH)), k>N+1.

This definition and inequalities (2.66) imply that if 4 is small enough, then

dist ()Ck_H, exple (dAkAk)) < 2d.
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Since
S ) = expy, , (Fi(dAy)),
condition (2.68) with u < 1 implies that
dist (exppH_l (dAA), f(xk)) <2d,
and we see that

dist (f(x), xx+1) < 4d.

Thus, there exists an exact trajectory n = {y; : k € Z} of f such that

dist(u, yx) < 4.2d, k€ Z.

Now we consider the finite sequence

= :lexp;k‘(yk), —-N <k <N.
Inequalities (2.70) and (2.67) imply that
|[Ar—t| <8%, kel
Note that
dist(ye, pr) < dist(yx, xx) + dist(xe, pr) < (42 + 20)d,
Hence,
lte] <8Z + 40, kel
Now we define a finite sequence
byeT,M, —N<=<k=<N-+1,
by relations (2.60) and repeat the reasoning of Lemma 2.3.1 with

M1

K= sy 140

where jt; is the same as above (see relation (2.61)).

kelZ.

(2.70)

Q2.71)
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The rest of the proof is literally the same (with natural replacement of R” by the
corresponding tangent spaces), and we get the relation

|t — bi| < 1

similar to (2.63).
Finally, we get the estimate

lze] < 8Z + 1,

which completes the proof of the analog of Lemma 2.3.1.

The rest of the proof of the implication “Lipschitz shadowing property implies
the Perron property of the sequence .o almost literally repeats the proof of
Lemma 2.3.2. O

Historical Remarks Theorem 2.3.1 was published by the first author and S. B.
Tikhomirov in the paper [68]. Let us mention that the paper [67] contained the first
proof of the fact that structural stability follows from certain shadowing property
based on a combination of the Maizel’, Pliss, and Maifié theorems.

2.4 Lipschitz Periodic Shadowing for Diffeomorphisms

The main result of this section is as follows.

Theorem 2.4.1 A diffeomorphism f of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz periodic shadowing property if and only if f is §2-
stable.

First we prove the “if” statement of Theorem 2.4.1.

Theorem 2.4.2 If a diffeomorphism f is §2-stable, then f has the Lipschitz periodic
shadowing property.
Let us give one more definition.

Definition 2.4.1 We say that a diffeomorphism f has the Lipschitz shadowing
property on a set U if there exist positive constants .2, dy such that if § = {x; :
i € Z} C U is a d-pseudotrajectory with d < dy, then there exists a point p € U
such that inequalities (1.5) hold.

Remark 2.4.1 Ttfollows from Theorems 1.4.2 and 2.2.4 that we can find a neighbor-
hood U of a hyperbolic set A of a diffeomorphism f having the above-formulated
property and such that f is expansive on U.

We start by proving several auxiliary results.

Lemma 2.4.1 Let f be a homeomorpism of a compact metric space (M, dist). For
any neighborhood U of the nonwandering set §2(f) there exist positive numbers
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1,8, such thatif ¢ = {x; : i € Z} is a d-pseudotrajectory of f with d < 8, and

X, X1y - Xt €U

forsome k € Z andl > 0, thenl <T.

Proof Take a neighborhood U of the nonwandering set £2(f) and let T be the
Birkhoff constant for the homeomorphism f given for this neighborhood by
Theorem 2.2.5. Assume that there does not exist a number §; with the desired
property; then there exists a sequence d; — 0 as j — oo and a sequence of d;-

pseudotrajectories {x,((‘i) : k € Z} of f such that
(0 oksT-1fnU=0

for all j.
The set M’ = M \ U is compact. Passing to a subsequence, if necessary, we may

assume that xf)j) — Xo as j — oo. In this case,

Sy eM, 0<k<T-—1,

and we get a contradiction with the choice of 7. O

Now let us recall some basic properties of §2-stable diffeomorphisms. It was
noted in Sect. 1.3 that a diffeomorphism f is §2-stable if and only if f satisfies
Axiom A and the no cycle condition (Theorem 1.3.3).

Let £21,..., £2,, be the basic sets in decomposition (1.15) of the nonwandering
set of an §2-stable diffeomorphism f.

Below we need one folklore technical statement. Recall that we write £2; — £2;
if there is a point x ¢ £2(f) such that

) — 2iand ff(x) — £2;, k — oo.
Theorem 2.4.3 Assume that a diffeomorphism f is §2-stable. For any family of
neighborhoods U; of the basic sets §2; one can find neighborhoods V; C U; such
that if a point x belongs to some V; and there exist indices 0 < | < m such that
£ ¢ Uyand ") € v,
then there exist basic sets $2;,, . .., §2;, such that

2; = 2y == 2, > 82 (2.72)

Proof Reducing the given neighborhoods U;, we may assume that the compact sets
U! = f(CL(U;)) U CI(U);) are disjoint.
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Assume that our statement does not hold. In this case, there exist sequences of
points xx, kK > 0, and indices /(k) < m(k) such that

= 2 P ¢l Y > 2 k> oo
Clearly, we may assume that

xk,f(xk), e ,fl(k)_l(xk) (S Ui

while

Yk 3:fl(k)(xk) ¢ U
Then y, € U/, and, passing to a subsequence, if necessary, we may assume that
vk >y € U ask — oo.
Since £2; is a compact f-invariant set, /(k) — oo as k — oco. Thus, for any ¢ < 0,
f'(yx) € U; for large k, and it follows that f*(y) € CI(U;) for any ¢t < 0. We note

that the set C1(U;) intersects a single basic set, £2;, and refer to (1.16) to conclude
that

Vv e W (82,). 2.73)

By the same relation (1.16), there exists a basic set £2;, such that

y € W'(82;). (2.74)

By our choice of U, the sets CI1(f(U;)) \ U; do not contain nonwandering points.
Thus, if i} = i, inclusions (2.73) and (2.74) mean the existence of a 1-cycle, and we
get the desired contradiction.

Hence, i # i and £2; — £2;,. Consider the compact set

Y={f"(»):k=0}U,.
Clearly, the set Y has a neighborhood Z such that U;, C Z and Z does not intersect

a small neighborhood of £2,.
Since y; = f*(x;) — y, there exist indices /; (k) such that

[y =O%w) ez, 0=1=h(k),
for large k, and

xip =190 = OTO) - 2i, k— oo,
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At the same time, the positive trajectories of the points y; (and hence, of the
points x; ;) must leave Z (and hence, Uj,) since the sequence

070 (3 = 70 )

tends to £2;.

Thus, we can repeat the above reasoning with the points x; 4 and the basic set £2;,
instead of x; and £2;.

Such a process will produce basic sets £2;,, §2;,, ... such that

i — 2 = Qi > ...

Since f has no cycles, this process is finite, and, as a result, we conclude that
there exist basic sets £2; , ..., §2;, such that relations (2.72) hold. |

Now we apply the above theorem to prove a statement concerning periodic
pseudotrajectories of £2-stable diffeomorphisms.

Lemma 2.4.2 Assume that a diffeomorphism f is §2-stable. For any family of
disjoint neighborhoods W; of the basic sets $2; there exists a number §; > 0 such that
any periodic d-pseudotrjectory & of f with d < &, belongs to a single neighborhood
W,.

Proof Fix arbitrary disjoint neighborhoods W; of the basic sets £2; and find a number
& > 0 and neighborhoods U; of §2; such that

N(&‘,U,')CW,’, i=1,...,m.

Apply Theorem 2.4.3 to find for U; the corresponding neighborhoods V; of £2;.
Reducing &, if necessary, we can find neighborhoods V! of §2; such that

NEV)CVi i=1,....m

By Lemma 2.4.1, there exist positive numbers 7, §; such that if § = {x;} is a
d-pseudotrajectory of f with d < §; and

m

. 7

Xy Xkt 1y oo Xkt €V 1= UV,-
i=1

forsomek € Zand! > 0,then! <T.
Find a number 6, € (0, §;) such thatif £ = {x;} is a d-pseudotrajectory of f with
d < §,, then
dist(f' (). xeqr) <&, 0<I<T+1,

for any k € Z.
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Now let £ = {x;} be a periodic d-pseudotrajectory of f of period p with d < 8.
Let us call a V-block of £ a finite segment

Eem = X Xkt 1o Xty kE€EZ, m>0,

such that x, x¢+,, € V while x4, ¢ V for 0 < [ < m. Note that in this case,
m<T+1.

Let us note simple properties of V-blocks.

It follows from the choice of §;, that if &, is a V-block for which there exist
indices i,j € {1,...,m} such that x; € V] and x4, € VJ, then dist(f™ (x), Xetm) <
&; hence, [ (x;) € V;.

At the same time, if for such a V-block there exists an index [ € (0, m) such that
X1 & W;, then dist(fl(xk),ka) <é; hence,f’(xk) ¢ U,.

It follows from Theorem 2.4.3 that in this case, there exists a relation of the form
(2.72); the absence of cycles implies that j # i.

Since 8, < &1, there exists a neighborhood V/ such that £ intersects V.

Changing indices of £, we may assume that xo € V.

If either x; € W; for k > 0 or any V-block &, with k& > 0 belongs to W;, then
the statement of our lemma follows from the periodicity of &.

It was noted above that if &, be a V-block with x; € V; for k > 0 for which
there exists an index / € (0, m) such that x;, ¢ W;, then there exists an index j' # j
for which we have a relation

of the form (2.72).
Thus, if we assume that there exists a V-block & ,, with k > 0 such that &, \
W; # @, then we get an index j; # i such that we have a relation

Qi—>"'—>9j1

of the form (2.72).

Going to “the right” of this V-block & ,, and continuing this process, we construct
a sequence of pairs of indices (i, 1), (j1,/2), ... such that

i = > 82, 82 > 82,

In this case, it follows from the absence of cycles that all the indices i, ji, s, . . .
are different.

But the p-periodicity of & implies that if &, is a V-block and n is a natural
number, then &y, is an identical V-block, and the existence of the above

sequence with different i, jj, j», . .. is impossible.
Now we prove Theorem 2.4.2.
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By Remark 2.4.1, there exist disjoint neighborhoods Uy, ... ., U,, of the basic sets
£21,...,582, such that

(i) f has the Lipschitz shadowing property on any of U; with the same constants
Z.dy;
(ii) f is expansive on any of U; with the same expansivity constant a.

Find neighborhoods W; of §2; (and reduce dj, if necessary) so that the Zd;-
neighborhoods of W; belong to U;. Apply Lemma 2.4.2 to find the corresponding
constant §,.

We claim that f has the Lipschitz periodic shadowing property with constants
£, dy, where

a
dy = min (d;';,az, 23) .

Take a p-periodic d-pseudotrajectory £ = {x;} of f with d < dy. Lemma 2.4.2
implies that there exists a neighborhood W; such that ¢ C W; C U,.

Thus, there exists a point p such that inequalities (1.5) hold. Let us show that p
is a periodic point of f. By the choice of U; and W;, f*(p) € U; for all k € Z. Let
q = f*(p). Inequalities (1.5) and the periodicity of £ imply that

dist (f*(g). xx) = dist (FT*(p).xe) = dist (T (p). xqp) < Zd, k€.
Thus,
dist (f*(q).f"(p)) <2Ld <a, ke,

which implies that f*( p) = ¢ = p. This completes the proof. O
Now we prove the “only if”” statement of Theorem 2.4.1.

Theorem 2.4.4 If a diffeomorphism f has the Lipschitz periodic shadowing prop-
erty, then f is §2-stable.

Thus, let us assume that f has the Lipschitz periodic shadowing property (with
constants . > 1,dy > 0). Clearly, in this case f_l has the Lipschitz periodic
shadowing property as well (and we assume that the constants ., dy are the same
for f and f1).

To clarify the presentation, in the construction of pseudotrajectories in the
following Lemmas 2.4.3 and 2.4.4, we assume that f is a diffeomorphism of R”
(and leave to the reader consideration of the case of a manifold).

We also assume that there exists a number N > 0 such that |Df (x)|| < N for all
considered points x (an analog of this assumption is satisfied in the case of a closed
manifold).

Recall that we denote by Per(f) the set of periodic points of f.

Lemma 2.4.3 Every point p € Per(f) is hyperbolic.



2.4 Lipschitz Periodic Shadowing for Diffeomorphisms 81

Proof To get a contradiction, let us assume that f has a nonhyperbolic periodic point
p (to simplify notation, we assume that p is a fixed point; literally the same reasoning
can be applied to a periodic point of period m > 1). In addition, we assume that
p=0.

In this case, we can represent

f(v) = Av + F(v),

where A = Df(0) and F'(v) = o(v) as v — O.
By our assumption, A is a nonhyperbolic matrix. The following two cases are
possible:

Case 1: A has a real eigenvalue A with [A| = 1;
Case 2: A has a complex eigenvalue A with |A| = 1.

We treat in detail only Case 1 and give a comment concerning Case 2. To simplify
presentation, we assume that 1 is an eigenvalue of A; the case of eigenvalue —1 is
treated similarly.

We can introduce coordinate v such that, with respect to this coordinate, the
matrix A has block-diagonal form,

A = diag(B, P), (2.75)

where B is a Jordan block of size [ x [:

110...0

011...0
B =

000...1

Of course, introducing new coordinates, we have to change the constants . and
dy; we denote the new constants by the same symbols. In addition, we assume that
Z is integer.

We start considering the case [ = 2; in this case,

7= (o1)

ey = (1,0,0,...,0)and e, = (0, 1,0,...,0)

Let

be the first two vectors of the standard orthonormal basis.
LetK =7%.
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Take a small d > 0 and construct a finite sequence Yy, . .., yo of points (where Q
is determined later) as follows: yp = 0 and

Vig1 = Ay +des, k=0,... . K—1. (2.76)
Then
vk = (Z1(K)d,Kd,0,...,0),

where the natural number Z;(K) is determined by K (we do not write Z;(K)
explicitly). Now we set

Viel = Ay —der, k=K,...,2K—1.
Then
Yok = (Zz(K)d, 0, 0, ey 0),

where the natural number Z,(K) is determined by K as well. Take Q = 2K + Z,(K);
if we set

Vit1 = Ay —de;, k=2K,...,0—1,

then yp = 0. Let us note that both numbers Q and

_ MaXo<k<o-1 | il
B d
are determined by K (and hence, by .%).
Now we construct a Q-periodic sequence xi, k € Z, that coincides with the above
sequence fork = 0,..., Q.
We claim that if d is small enough, then § = {x;} is a 2d-pseudotrajectory of f
(and this pseudotrajectory is Q-periodic by construction).
Indeed, we know that |x;| < Yd for k € Z. Since F(v) = o(|v]) as |[v| — 0,

|F(a)| <d, keZ, (2.77)

if d is small enough.
The definition of x; implies that

|Xe41 —Axg| =d, k€. (2.78)
It follows from (2.77) and (2.78) that
X1 —f )] < 1 — Axe] + | F(x)| < 24,

which implies that § = {x;} is a 2d-pseudotrajectory of f if d is small enough.
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Now we estimate the distances between points of trajectories of the diffeomor-
phism f and its linearization at zero.

Let us take a vector po and assume that the sequence p; = f*( po) belongs to the
ball [v| < (Y + 2%)d for 0 < k < K. Let r, = A*py (we impose no conditions on
r since below we estimate F at points g only).

Take a small number p € (0, 1) (to be chosen later) and assume that d is small
enough, so that the inequality

| F()] < plv]

holds for [v| < (Y + 2.%)d.
By our assumption, ||A|| = ||Df(0)|| < N. Then

|p1l = |Apol + | F(po)| < (N + Dl pol, ...,
|pil < [Api—i| + | F(pi—1)| < (N + 1| po
forl <k <K, and
|p1 — 1l = |Apo + F(po) — Apo| < 1| pol,
|p2 — 2| = |Ap1 4+ F(p1) —Ani| = Nlpy — n| + pulpi| = (2N + 1)| pol,
|p3 —r3l < N|py—ra + plpal < W(N@N + 1) + (N + 1)*)| pol.

and so on.
Thus, there exists a number v = v(K, N) such that

|pk =il < uvlpol. 0=k=K.
We take u = 1/v, note that © = p(K, N), and get the inequalities
[P — 1l <1|pol, 0=<k =<K, (2.79)
for d small enough.
Since f has the Lipschitz periodic shadowing property, for d small enough, the
Q-periodic 2d-pseudotrajectory & is 2.7 d-shadowed by a periodic trajectory. Let po
be a point of this trajectory such that

Ipk— x| < Zd, kel, (2.80)

where pr = f*(po).
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The inequalities |xx| < Yd and (2.80) imply that
|pel < el + | pe— 2l = (Y +22)d, ke (2.81)

Note that | py| < 2.Zd.
Set ry = A*py; we deduce from estimate (2.79) that if d is small enough, then

|px — k| < |po| <22d. (2.82)

Denote by v® the second coordinate of a vector v.
It follows from the structure of the matrix A that

2| = || = 224, (2.83)
The relations
‘yﬁ?" = Kdand |px — yx| < 2.%d
imply that
) p}?)‘ > Kd—2.%d = 5.2d (2.84)

(recall that K = 7.%).

Estimates (2.82)—(2.84) are contradictory. Our lemma is proved in Case 1 for
=2

If I = 1, then the proof is simpler; the first coordinate of A*v equals the first
coordinate of v, and we construct the periodic pseudotrajectory perturbing the first
coordinate only.

If [ > 2, the reasoning is parallel to that above; we first perturb the /th coordinate
to make it Kd, and then produce a periodic sequence consequently making zero the
Ith coordinate, the (I — 1)st coordinate, and so on.

If A is a complex eigenvalue, A = a + bi, we take a real 2 x 2 matrix

(57

and assume that in representation (2.75), B is a real 2/ x 2[ Jordan block:

RE, 0 ...0

ORE,...O
B = . . . )

00 0...R

where E» is the 2 x 2 identity matrix.
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After that, almost the same reasoning works; we note that |[Rv| = |v| for any
2-dimensional vector v and construct periodic pseudotrajectories replacing, for
example, formulas (2.76) by the formulas

Vi1 = Ayr +dwg, k=0,...,K—1,

where jth coordinates of the vector wy, are zero forj = 1,...,21—2,2[+1,...,n,
while the 2-dimensional vector corresponding to (2/ — 1)st and 2/th coordinates has
the form R¥w with |[w| = 1, and so on. We leave details to the reader. The lemma is
proved. O

Lemma 2.4.4 There exist constants C > 0 and A € (0, 1) depending only on N and
L and such that, for any point p € Per(f), there exist complementary subspaces
S(p) and U(p) of R" that are Df-invariant, i.e.,

(HI) Df(p)S(p) = S(f(p)) and Df (p)U(p) = U(f(p)),

and the inequalities

(H2.1) |Dfi(p)v| < CM|v|, v eS(p).j=0,
and

(H2.2) |Df 7 (p)v| < CH|v], veU(p).j=0,
hold.

Remark 2.4.2 This lemma means that the set Per(f) has all the standard properties
of a hyperbolic set, with the exception of compactness.

Proof Take a periodic point p € Per(f); let m be the minimal period of p.

Denote p; = f'(p), A; = Df(p;), and B = Df"(p). It follows from Lemma 2.4.3
that the matrix B is hyperbolic. Denote by S(p) and U(p) the invariant subspaces
of B corresponding to parts of its spectrum inside and outside the unit disk,
respectively. Clearly, S(p) and U(p) are invariant with respect to Df, they are
complementary subspaces of R”, and the following relations hold:

lim B'vy= lim B "v, =0, vse€S8(p),v, € U(p). (2.85)

n——+00 n—-+00

We prove that inequalities (H2.2) hold with C = 4Z and A = 1 + 1/2%)
(inequalities (H2.1) are established by similar reasoning applied to f ! instead of f).

Consider an arbitrary nonzero vector v, € U(p) and an integer j > 0. Define
sequences of vectors v;, ¢; and numbers A; > 0 for i > 0 as follows:

Vi [V
Vo=V, Vg1 =Aw, e= ., A= =|Ael
[vil il

Let

Ao A+ At Ao+ o+ A 1
Am—1*..."Ag ’

T =
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Consider the sequence {a; € R : i > 0} defined by the following formulas:
ap =71, a4 = Aia;— 1. (2.86)
Note that
amw=0 and a; >0, ie[0,m—1]. (2.87)

Indeed, if a; < 0 for some i € [0,m — 1], then a; < O fork € [i + 1, m].
It follows from (2.85) that there exists an n > 0 such that

|B"teg| < 1. (2.88)
Consider the finite sequence of vectors {w; : i € [0,m(n + 1)]} defined as
follows:
wi = ajej, i€[0,m—1];
W, = B™'teyp;
Wint1+i = AiWpti, 1 € [0,mn—1].
Clearly,

Wi = B rey, ke [1,n+ 1],

which means that we can consider {w;} as an m(n 4 1)-periodic sequence defined
fori € Z.
Let us note that

v
Aiwi = aiAiei = a; |;|_|1 , L€ [O,m — 2],
1
Vi+1 Vi+1 .
Wit = (A,’Cl,’ — 1) ! = q; ' —€i+1, 1€ [O,m— 2],
Vi1 |vil
and
Um Um
Ap—1Win—1 = Qp— = —¢
m—1Wm—1 m llvm—ll Am—1|vm—1| m

(in the last relation, we take into account that a,,—A,,—; = 1 since a,, = 0).
The above relations and condition (2.88) imply that

|W,'+1 —A,'Wil <2, €. (2.89)
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Now we take a small d > 0 and consider the m(n + 1)-periodic sequence
E={x=pi+dw:iel}

We claim that if d is small enough, then £ is a 2d-pseudotrajectory of f.
Represent

fxi) =f(p:i) + Df(pidw; + Fi(dw;) = pi+1 + Aidw; + Fi(dw;),

where F;(v) = o(|v|) as v — 0.
It follows from estimates (2.77) that

| f(xi) — xiv1]| < 2d

for small d.

By Lemma 2.4.3, the m-periodic trajectory { p;} is hyperbolic; hence, { p;} has a
neighborhood in which { p;} is the unique periodic trajectory. It follows that if d is
small enough, then the pseudotrajectory {x;} is 2.Zd-shadowed by { p;}.

The inequalities |x; —p;| < 2.Zd imply that |a;| = |w;| <2.Zfor0 <i<m—1.

Now the equalities A; = (a;+1 + 1)/a; imply thatif 0 < i < m — 1, then

ar+1la;+1 ai+1_
a  ar  ain

a; + 1 1 1
= 1+ N >
ap ay aj—1

o1 1+1 "‘1>1 1+1i
A% 2.7 47 2.7

(we take into account that 1 + 1/(2.%) < 2 since .Z > 1).
It remains to note that

AoseirAimg =

[DF (p)vu] = Aimi - 2ol O <i=m—1,

and that we started with an arbitrary vector v, € U(p).
This proves our statement for j < m — 1. If j > m, we take an integer k > 0 such

that km > j and repeat the above reasoning for the periodic trajectory po, . . . , Pkm—1
(note that we have not used the condition that m is the minimal period). The lemma
is proved. O

In the following lemmas, we return to the case of a diffeomorphism f of a smooth
closed manifold M since the reasoning becomes “global.” We still assume that f has
the Lipschitz periodic shadowing property and apply analogs of Lemmas 2.4.3 and
2.4.4 for the case of a manifold.
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Lemma 2.4.5 The diffeomorphism f satisfies Axiom A.

Proof Denote by P, the set of points p € Per(f) of index / (as usual, the index of a
hyperbolic periodic point is the dimension of its stable manifold).

Let R be the closure of P;. Clearly, R; is a compact f-invariant set. We claim that
any R; is a hyperbolic set. Let n = dimM.

Consider a point g € R; and fix a sequence of points p,, € P; such that p,, — g as
m — oo. By an analog of Lemma 2.4 .4, there exist complementary subspaces S( p,,)
and U(pm) of T, M (of dimensions / and n — I, respectively) for which estimates
(H2.1) and (H2.2) hold.

Standard reasoning shows that, introducing local coordinates in a neighborhood
of (g,T,M) in the tangent bundle of M, we can select a subsequence p,, for
which the sequences S(p,,,) and U(py,) converge (in the Grassmann topology) to
subspaces of T,M (let Sp and Uy be the corresponding limit subspaces).

The limit subspaces So and Up are complementary in 7,M. Indeed, consider
the “angle” B,, between the subspaces S(p,,,) and U(p,) which is defined (with
respect to the introduced local coordinates in a neighborhood of (g, T,M)) as
follows:

Bm, = min |[v° —v"|,

where the minimum is taken over all possible pairs of unit vectors v* € S(p.,) and
v € U(pm).

The same reasoning as in the proof of Lemma 2.1.5 shows that the values 3, are
estimated from below by a positive constant « = «a(N, C, 1). Clearly, this implies
that the subspaces Sy and U, are complementary.

It is easy to show that the limit subspaces Sy and Uy are unique (which means, of
course, that the sequences S(p,,) and U(p,,) converge). For the convenience of the
reader, we prove this statement.

To get a contradiction, assume that there is a subsequence p,, for which the
sequences S(py,,) and U(p,,) converge to complementary subspaces S; and U
different from Sy and U, (for definiteness, we assume that Sy \ S; # @).

Due to the continuity of Df, the inequalities

IDF (g)v] < CH|v|, v eSUS,
and
IDf (q)v] = CT'A7v], veUpU U,

hold forj > 0.
Since

TqMZSOEBUo:SIEBUh
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our assumption implies that there is a vector v € Sy such that
v=2ov'4+v" v eS,v"eU,v" #£0.
Then
IDf (q)v] < C¥Jv] > 0. j— oo,
and
|Dfi(q)v‘ > C AT — CA | = 00, j— o0,

and we get the desired contradiction.

It follows that there are uniquely defined complementary subspaces S(g) and
U(q) for g € R; with proper hyperbolicity estimates; the Df-invariance of these
subspaces is obvious. We have shown that each R; is a hyperbolic set with
dimS(g) =/ and dimU(q) = n—1[forq € R;.

If r € £2(f), then there exists a sequence of points r,, — r asm — 0o and a
sequence of indices k,, — 0o as m — oo such that f* (r,,) — r.

Clearly, if we continue the sequence

rm,f(rm), s vfkm_l(rWl)

periodically with period k,,, we get a periodic d,-pseudotrajectory of f with d,, — 0
as m — oo.

Since f has the Lipschitz periodic shadowing property, for large m there exist
periodic points p,, such that dist( p,,, r,) — 0 as m — oo. Thus, periodic points are
dense in £2(f).

Since hyperbolic sets with different dimensions of the subspaces U(g) are
disjoint, we get the equality

2(f)=RoyU---UR,,
which implies that £2(f) is hyperbolic. The lemma is proved. O

Thus, to prove Theorem 2.4.4, it remains to prove the following lemma.

Lemma 2.4.6 If f has the Lipschitz periodic shadowing property, then f satisfies
the no cycle condition.

Proof To simplify presentation, we prove that f has no 1-cycles (in the general
case, the idea is literally the same, but the notation is heavy; we leave this case to
the reader).

To get a contradiction, assume that

p € (WH(s2) N W*(82)) \ L2(f).
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In this case, there are sequences of indices j,,, k,, = 00 as m — oo such that

S (). ff(p) = 21, m— oo
Since the set §2; is compact, we may assume that
F7"(p) = q € 2; and f*"(p) — r € 2.

Since £2; contains a dense positive semitrajectory, there exist points s,, — r and
indices [,, > 0 such that f' (s,,) — q as m — oo.
Clearly, if we continue the sequence

) B e 0 ) B L N s () BN A 1)

periodically with period k,, + [, 4 j,, we get a periodic d,,-pseudotrajectory of f
with d,, — 0 as m — oo.

Since f has the Lipschitz periodic shadowing property, there exist periodic points
pm (for m large enough) such that p,, — p as m — oo, and we get the desired
contradiction with the assumption that p ¢ £2(f). The lemma is proved. O

Historical Remarks Theorem 2.4.1 was published by A. V. Osipov, the first author,
and S. B. Tikhomirov in [50].

2.5 Holder Shadowing for Diffeomorphisms

In this section, we explain the main ideas of the proof of the following result.

Theorem 2.5.1 Assume that a diffeomorphism f of class C? of a smooth closed
manifold has the Holder shadowing property on finite intervals with constants
Z,C,dy, 0, w and that

0e(/2,1)and b + w > 1. (2.90)

Then f is structurally stable.

The proof of Theorem 2.5.1 is quite complicated. For that reason, we try to
simplify the presentation and omit inessential technical details; the reader can find
the original Tikhomirov’s proof in the paper [101].

The main two steps of the proof of Theorem 2.5.1 are as follows.

First one considers a trajectory { p = f*(p)} of f, denotes Ay = Df(py), and
shows that under conditions of Theorem 2.5.1, the sequence .o = {A;} has a
weak analog of the Perron property (in which the existence of bounded solutions
of the inhomogeneous difference equations is replaced by the existence of “slowly
growing” solutions).
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We reproduce this part of the proof in Theorem 2.5.2 in which we restrict our
consideration to the case of a diffeomorphism f of the Euclidean space R”.

After that, it is shown that the above-mentioned weak analog of the Perron
property implies then f satisfies the analytic strong transversality condition (with
exponential estimates) and, hence, by the Maifié theorem, f is structurally stable. To
explain the basic techniques of that part of the proof, we prove the above statement
in Theorem 2.5.3 in the case of a one-dimensional phase space (and note that the
reasoning in the proof of Theorem 2.5.3 reproduces the most important part of the
proof given by Tikhomirov). We again refer the reader to [101] for the proof of the
general case.

Theorem 2.5.2 Assume that a diffeomorphism f of the Euclidean space R" has the
Holder shadowing property on finite intervals with constants £, C, dy, 6, @ and that
condition (2.90) is satisfied.

Assume, in addition, that there exist constants S, € > 0 such that

|f(px + V) —prg1 —Arv| < S|v|?, k€Z, |v] <e. (2.91)

Then there exist constants L > 0 and y € (0,1) such that for any i € Z and
N > 0 and any sequence

W={weR':i+1<k<i+N+1} (2.92)

with |wg| < 1, the difference equations

Ukt1 = Ak + wi1, <k <i+N, (2.93)
have a solution
V=A{v:i<k<i+N+1} (2.94)
such that the value
Vi = o max v (2.95)

satisfies the estimate
VI < LN”. (2.96)

Remark 2.5.1 Clearly, an analog of condition (2.91) is satisfied if we consider a
diffeomorphism of class C? for which the trajectory { p;} is contained in a bounded
subset of R” (or a diffeomorphism of class C? of a smooth closed manifold studied
in the original paper [101]). In fact, it was noted by Tikhomirov that one can prove
a similar result in the case where exponent 2 in (2.91) is replaced by any v > 1. The
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reasoning remains almost the same, but calculations become very cumbersome. For

that reason, we follow the proof given in [101] (with exponent 2).

Proof (of Theorem 2.5.2) Denote
a=0-1/2.
Inequalities (2.90) imply that
a€(0,1/2)and 1/2 —a < w.
Consider two auxiliary linear functions of 8 > 0,
g1(f) = 2+ P)(1/2—a) and g1(B) = (2 + Po.
By inequalities (2.97),
$20) =20 >1-20 =g(0) € (0,1)
and
8 (B) =w >1/2—a =g|(B).
Hence, there exists a § > 0 such that
g1(B) € (0. 1) and g2(B) > 1.
We fix such a B and write the above relations in the form
0<2+4+p8)(1/2—a) <land 2+ o > 1.
Introduce the values
y=(2+po) " andy; =1-2+p)(1/2~a).
Then it follows from (2.98) that

0<y<landy >0.

(2.97)

(2.98)

(2.99)

Now we fix a sequence W of the form (2.92) and denote by E(W) the set of
all sequences V of the form (2.94) that satisfy Egs. (2.93). The function ||V| is
continuous on the linear space of sequences V; the set E(W) is closed. Hence, the
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value

F(W) = ,min_ v (2.100)

is defined.
The set of finite sequences W of the form (2.92) with

W= max |w| <1
i+1<k<N+1

is compact. The function F(W) is continuous in W; thus, there exists the number

0= mvng(W).

Let us fix sequences Wy and V € E(W)) such that
Q=FWy) = [[Vol. (2.101)

Note the following two properties of the number Q. They follow from the
definition of Q and from the linearity of Eqs. (2.93).

(Q1) Any sequence V € E(W,) satisfies the inequality

vl = Q.

(Q2) For any sequence W of the form (2.92) there exists a sequence V € E(W) such
that

IVl < olw].
It follows from property (Q2) that to complete the proof of our theorem, it is
enough to prove the following statement:
There exists a number L independent of i and N such that
Q <LN”. (2.102)
Define the number

d=eQ FhH, (2.103)

Let us consider the following two cases.

Case 1: C((S + 1)d)~® < N. In this case,

0 < (E"(S+1D"/C) N,
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which proves inequalities (2.103) with
L=(E"(S+1)”/0).

Case 2: C((S + 1)d)™ = N. In this case, we prove a stronger statement: There
exists a number L independent of i and N such that

0<L (2.104)

Treating Case 2, we assume without loss of generality that i = 0.

Also, without loss of generality, we assume that ¢ < 1 and Q > 2. Concerning
the latter assumption, we note that if there exists a fixed number L independent of
N such that Q < L, then estimate (2.104) is obviously valid. Thus, we may assume
that Q is larger than any prescribed number independent of N. Applying the same
reasoning, we assume that Q is so large that

0 > ((S+ )e/dy)"/ P (2.105)
and
LS+ De/0*P) <¢/2. (2.106)

Fix sequences Wy and V,, for which relation (2.101) is valid. To simplify notation,
write Vo = {vi}.

Consider the sequence of points

Vi =pr+dv, 0=<k=<N+1.

We claim that this sequence is an (S + 1)d-pseudotrajectory of f.
Let us first note that |vi| < Q; hence,

ldvi| < Q7P = Q7P < ¢/2. (2.107)
In addition,
(d0)* = (eQ~1P)2 < ¢0C+F) = g (2.108)
Now we estimate
[f () — Yit1] = |f(pr + dvk) — (prt1 + dvigr)| =

= |f(pr + dvr) — (pr+1 + dAgvr + dwiy)| <
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< |f(pr + dvr) = (i1 + dAw)| + dlwigr| <
< Sldu]* +d < (S+ 1)d.

We estimate the first term of the third line taking into account condition (2.91) and
inequality (2.107); estimating the first term of the last line, we refer to inequality
(2.108).

Inequality (2.105) implies that

O > (S + De/do;
hence,
S+ Dd = (S+ 1)eQ~ P < 4.
Since we treat Case 2,

N <C((S+ 1)d)~® < cd™®,

and we can apply the Holder shadowing property on finite intervals to conclude that
there exists an exact trajectory {x;} of f such that

Iye —xil < Z2(S+ Dd)f, 0<k<N+1.
Denote x; = py + ¢x and & = Z(S + 1)?. Then
|dvi —ci| < |y — x| < Ad’, 0<k<N+1, (2.109)
and
lex| < Qd + £d°, 0<k<N+1. (2.110)
Inequalities (2.107) and (2.106) imply that
lex] < e.
By the first inequality in (2.98),
0> Q2D — (¢/q)l/2-a = gl/2=aga=1/2,
Hence,

Qd > sl/z—ada+1/2 — 51/2_ad0.
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Now it follows from (2.110) that there exists an .%5 independent of N such that
lex| < £0Qd.
Since pr+1 + ck+1 = f(pr + cr), we can estimate
|ckrr — Axeil = | f(pi + ) — (pra1 + Avei| < Slen)|” < S25(Qd)°.
Denote t;4+1 = cx+1 — Akcy; then
|l < Slexl” < £3(0d)?,

where the constant %5 does not depend on N. By property (Q2), there exists a
sequence zx such that

Zer1 = Arzk + fir and |z < QA(Qd), 0 <k <N.
Consider the sequence r;, = ¢ — zx. Clearly,
riea1 = Agr and |r — o] < Q.%4(0d)>, 0 <k <N. (2.111)

Now we define the sequence ¢, = (dvy — r)/d. Relations (2.109) and (2.111)
imply that

e+1 = Arer + wir1, 0<k=N, (2.112)
and
lee] = [((dvi — i) — (e — ) /d| < Ld°™" + £30°d, 0<k <N.
Property (Q1) implies that
LdT + B0 = £dT + £0% > 0.

We can apply (2.103) and find %%, % > 0 independent of N and such that this
inequality takes the form

$4Q—(2+ﬂ)(a—1/2) +$5Ql_ﬁ >0,
or
2,07 + 20" = 0.
It follows that either

£ > )2
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or
207 = 0/2,
which implies that
0 < max (22", 2.%5)'/P) .

The theorem is proved. O
Now we assume, in addition, that there exists a constant R > 0 such that

Akl <R, ke (2.113)

Remark 2.5.2 Of course, an estimate of the form (2.113) holds for Ay = Df(py) in
the case of a diffeomorphism f of a closed manifold.

Theorem 2.5.3 Let f be a diffeomorphism of the line R having the Holder
shadowing property on finite intervals. Assume that conditions (2.91) and (2.113)
are satisfied for a trajectory { px = f*(p)}. There exists a constant 1 € (0, 1) with
the following property.

For any k € Z there exists a constant C > 0 and subspaces S(py) and U(pi) of
R such that

S(p) + U(pr) =R, (2.114)
[Akti-1 - Ao < Cpllvl, v € S(pa), 120, (2.115)
AL A vl < Culvl, v e U(pr). 1= 0. (2.116)

The essential part of the proof of Theorem 2.5.3 is contained in the following
lemma.
Let us first introduce some notation. Consider a one-dimensional vector (i.e., a
real number) ey with |eg| = 1 and define a sequence {e; : k € Z} as follows:
ex+1 = Arer/Arer|,  e—y—1 = Ai_je—i/|ATi_je—|, k>0. (2.117)
Set
Ax = |Agex].
It follows from inequalities (2.113) that
A € [1/R,R], keZ. (2.118)
Set also

Ok = A Appimr, keZ, 1> 1. (2.119)
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Lemma 2.5.1 If the sequence </ satisfies the conclusion of Theorem 2.5.2, then
there exists a number N depending only on L, y, and R (see inequality (2.113)) and
such that, for any i € Z, one of the following alternatives is valid:

either I[T(i, N) >2 orII(i + N,N) < 1/2. (2.120)
Proof Fix numbers i € Z and N > 0 and consider the sequence

Wy = —e;, 1<k<i+2N+1.

It follows from the conclusion of Theorem 2.5.2 that there exists a sequence
{op: i<k <i+2N}
such that
Uk41 = Arvg + w1 and |vg| < L2N + 1)Y, i<k <i+ 2N.
Set vy = ayer, where a; € R. Then
ar+1 = Mag — 1 and |ag] < LGN 4+ 1)Y, i<k <i+2N. (2.121)

Now we show that there exists a large enough number N (depending only on
L, y, and R) such that if @,y > 0, then IT(i, N) > 2, and if a;+y < O, then
IT(i+ N,N) <1/2.

Let us prove the existence of N for the first case (i.e., for the case where
aiyn > 0).

Since Ay > 0, it follows from relations (2.121) that if aqp < 0 for
some k € [i,i+2N—1], then a+; < 0. Thus, if a4y > 0, then
Ajy oo vy a,-+N_1>O.

Relations (2.121) imply that in this case,

!
PP e S
ag

Hence,

ait1 +1laipr+1  apqy+1

II(i,N) =
a; ai+1 ai+N—1
1 a1 +1a4,+1 ai+n—1 + 1
_ i+1 i+2 L GiEN—d (ai+N + 1) _
ai  djt1 ai+2 Ai+N—1
+N—1 a+ 1

i

_aipn +1 l—[

- )
i iy %
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and it follows from relations (2.121) that

g, (2.122)

1 N—1
M= on 41y (1 LN + 1)V) :

Denote the expression on the right in (2.122) by G;(y, N). Since

1
log G1(y,N) = —y log(L(2N + 1)) + (N — 1) log (1 + LON + l)y) ’

log (1 + ) ~ (L2N + 1))

1
L2N + 1)
for large N, and y € (0, 1), we conclude that

Gi(y,N) — 0o, N — oo.
Hence, there exists an N; depending only on L and y such that G,(y,N) > 2 for
N > Nj.

Now we consider the second case, i.e., we assume that a;+y < 0. In this case, it
follows from relations (2.121) that

ar € (-L2N + 1)",—-1), i+ N <k <i+?2N. (2.123)
As above, we set

ar+1 + 1
ay ’

A =

Now we write

i 1 a 1 i 1
H(i+N+1,N—1):a+N+2+ dgitn+3 + 1 apoy+1
it N+1 AitN+2 Ai+2N—1

I aipnr + 1 aipyys + 1 aiov—1 +1

= (@iton + 1)
Ai+N+1  Ai+N+2 AitN+3 ai4oN—1
and conclude that
i+2N—1
; 1 1
MG+N+1LN—1)= N %+ 1 (2.124)
GANFL iynyr
Inclusions (2.123) imply that
ap + 1 1

0< iI+N+2<k<i+2N-1,

<1- ,
ax LN + 1)
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and

aiton + 1

0< <L(2N + 1)".

Ai+N+1

Combining these inequalities with (2.124), we conclude that

1 N—=2
OG+N+1LN—1) <LeN+1)" 1 .
@ +N+ ) <LeN+1) ( L(2N+1)V)

Denote the right-hand side of the above inequality by G, (y, N). Clearly, G2 (y, N) —
0 as N — oo; hence, there exists an N, depending only on L, y, and R such
that

1
G(y,N) <
(y.N) )

, N>N,.
R

If N > N,, then
1
HGi+N,N)=Agn[Ii+N+1,N—-1) <R2R =1/2.

Hence, the conclusion of our lemma holds for N = max(N;, N).
O

Proof (of Theorem 2.5.3) Take an arbitrary i € Z and the number N given by
Lemma 2.5.1. The following statements hold:

(@) IfI1(i,N) > 2,then [1(i — N,N) > 2;
(b) If I1(i,N) < 1/2,then I1(i + N,N) < 1/2.

Let us prove statement (a); the proof of statement (b) is similar.

By Lemma 2.5.1 applied to i—N, either [1(i—N,N) > 2 or [1(i,N) < 1/2.By the
assumption of statement (a), the second case is impossible; thus, I7(i — N,N) > 2.

It follows from these statements that only one of the following cases is realized:

Case 1. [1(i,N) > 2 foralli € Z.
Case 2. I[1(i,N) < 1/2forall i € Z.
Case 3. There exist indices i, j € Z such that I1(i, N) > 2 and I1(j,N) < 1/2.

Now we show that Theorem 2.5.3 is valid with g = 271/V,

Consider Case 1. Take ¢y with |eg] = 1 and define ¢;, k € Z, by formulas
(2.117). Represent any integer [ > 0 in the form

l=nN+ 1, n€Z+,0§ll<N.
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Then
(i, 1) = IT(i,nN)IT(i +nN,1}) > 2"R™"

(in the last estimate, we take into account inequalities (2.118)).
Hence, in Case 1,

(.0 > R (271/N) (21/N)l >Cou™l, i€z, 1>0, (2.125)
where
Co=R")2.

Now we fix a point py of the trajectory { pi} and set S(py) = {0} and U(py)=R.
Clearly, in this case, relations (2.114) and (2.115) are satisfied. Let us prove
inequalities (2.116). Take any v € R = U(py) and [ > 0. Let

w=Al Al v
Then
V=Ap_1--Ar—w.
Hence,
[v] = Akt -+ Agmr|w] = TT(k — 1, D)[w,
and it follows from (2.125) that
wl < C'lvl,
where C = (Cy) ™!, as required.
In Case 2, we set U(py) = {0} and S(px) = R and apply a similar reasoning.
Let us now consider Case 3. By our remark at the beginning of the proof,
I(i—nN,N)>2and I1(j+nN,N) <1/2, neZy.
In this case, we set S(px) = U(pr) = R. Clearly, in this case, relation (2.114) is

satisfied. Let us show how to prove inequalities (2.115).
We treat in detail two cases:

Case (I).k+1<j
and
Case (Il). k <jandk+ 1>
(the remaining cases and the proof of inequalities (2.116) are left to the reader).
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In Case (I), we note that [ < j — k and estimate
M(k,]) < =% = R=*2!Ny=IIN <yl
where C = R*20U=0/N Hence,
|Ariot - -Aw] < Cu'lol. v € S(p).

In Case (II), we represent k + [ = j + nN + [, wheren € Z4 and 0 < [; < N.
Then

(k1) = I(k,j— k) IT(j,naN)ITI(j + nN, 1).
We note that IT(k,j — k) < RF,

I1(j,nN) < 27" = 20/N !
and

I1(j+nN,l}) <R" <RV,

which gives us the desired estimate I7(k, ) < Cyu' (and, hence, inequalities (2.115))
with C = 2R/*F+N, O

Historical Remarks Theorem 2.5.1 was published by S. B. Tikhomirov in [101].

Let us mention that earlier S. M. Hammel, J. A. Yorke, and C. Grebogi, based on
results of numerical experiments, conjectured that a generic dissipative mapping f :
R? —» R2 belongs to a class FHSPp(.Z, C, dy, 1/2,1/2) [23, 24]. If this conjecture
is true, then, in a sense, Theorem 2.5.1 cannot be improved.

2.6 A Homeomorphism with Lipschitz Shadowing
and a Nonisolated Fixed Point

Consider the segment
Iy = [-7/6,4/3]
and a mapping fy : Iy — Iy defined as follows:

1+x—-1)/2, xe][1/3,4/3];
fo(x) = 3 2x, x e (—1/3,1/3);
1+ &+ 1)/2,xe[-7/6,—1/3].
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Clearly, the restriction f* of f to [—1, 1] is a homeomorphism of [—1, 1] having
three fixed points: the points x = +1 are attracting and the point x = 0 is repelling
(and this homeomorphism f* is an example of the so-called “North Pole — South
Pole” dynamical system; every trajectory starting at a point x # 0, +1 tends to an
attractive fixed point as time tends to 4+-0o and to the repelling fixed point as time
tends to —o0).

Now we define a homeomorphism f : [—1,1] — [—1, 1]. For an integer n > 0,
denote .4, = 272 and set

) = Mfo( N7 & =3M)) + 30, x € (24, 44]. (2.126)

This defines f on (0, 1]. Set f(0) = 0 and f(x) = —f(—x) forx € [—1,0).

Clearly, f is a homeomorphism with a nonisolated fixed point x = 0 (for example,
every pointx = £27" is fixed). Let us note that in a neighborhood of any fixed point
(with the exception of x = 0), f is either linearly expanding with coefficient 2 or
linearly contracting with coefficient 1/2.

Theorem 2.6.1 The homeomorphism f has the Lipschitz shadowing property.
Before proving Theorem 2.6.1, we prove two auxiliary lemmas.

Lemma 2.6.1 The mapping fy has the Lipschitz shadowing property on Iy.
Proof Let

Gy =(—1/3,1/3)
and
G, =(-7/6,—-1/3)U (1/3,4/3).

We take dp small enough and d < dp; in fact, we write below several explicit
conditions on d and assume that they are satisfied.

There exist trivial cases where £ is a subset of one of the segments J; =
[-7/6,—1/3],J, =[-1/3,1/3],0r J5 = [1/3,4/3].

Let, for example, & C J3. The inequalities 1/3 < x; < 4/3 imply that

1/2<2/3—d <fox) —d < xep1 < folxx) +d <7/6 +d < 15/12.

These inequalities are satisfied for an arbitrary k; hence, £ belongs to a domain in
which f; is a hyperbolic diffeomorphism (and £ is uniformly separated from the
boundaries of the domain); by Theorem 1.4.2 (which, of course, is valid for infinite
pseudotrajectories as well), there exist .2, dy > 0 such that if d < dy, then £ is
Zd-shadowed by an exact trajectory of f.

A similar reasoning can be applied if § C J; or § C Ja.

To consider “nontrivial” cases, let us first describe possible positions of d-
pseudotrajectories & of fy with small d with respect to Jy, ..., J3.
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First we show that such a pseudotrajectory cannot intersect both J; and J3.
Indeed, if we assume that ENJ3 # @, i.e., there exists an index m such that x,,, > 1/3,
then

Yot = fo(1/3) —d =2/3—d > 1/3
and, consequently,
Xmti > 1/3, i>0.
Similarly, if there exists an index / such that x; < —1/3, then
X1 <-2/3+d<-1/3
and
X4 <—=1/3, i>0,

and we get a contradiction.
Thus, it remains to consider the cases where either

ECHLUJ;, ENndnt(Jy) #6@, ENint(Jz) # 0,
or

EC U, ENnInt(Jy) #0, ENInt(Jy) # 0.

We consider the first case; the reasoning in the second case is similar.
We claim that in the case considered, £ contains two points x, x; such that

0<x <1/3<ux. (2.127)

The existence of the point x; follows directly from our assumption; it is easily
seen that

X4 >2/3—d>1/2, i>0. (2.128)
Thus, either the set

{m: x,, € Int(J2),x,, <0}

is empty (which implies that there exists an index k for which inequality (2.127) is
valid) or it is nonempty and bounded from above. In the latter case, let my be its
maximal element. Then

Xmg+1 = folxmy) +d < d

(i.e., Xmo+1 € J2) and x,,,y 41 > 0; thus, we get the required k = mg + 1.
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Obviously, I > k (see (2.128)). Consider the finite set of indices
k={ielkl—1]: x; <1/3}.

This set is nonempty (k € «) and finite; hence, it contains the maximal element. Let
it be xy,; clearly,

Xk < 1/3 < Xpot1-
To simplify notation, let us assume that ky = 0. Thus,
xo <1/3 <x.
In this case,
X >2/3—-d>1/2, i>2. (2.129)
On the other hand,
x1 <2/3+d<1,
and one easily shows that
xi<14+2d, i>2. (2.130)
Since fo_1 has Lipschitz constant 2, £ is a 2d-pseudotrajectory of fo_l; hence,
X1 <1/64+2d <2/9,
and, applying the same reasoning as above, we conclude that
—4d <x;<1/64+2d<2/9, i<O. (2.131)
Now we show that there exists a d such that if d < dy and p = xp, then
|f5(p) — x| <3d, ke (2.132)
First, clearly,

|fo(p) —x1| <d.

Since the Lipschitz constant of fj is 2,

|3(p) —x2| < 1F(F(P)) = fGxD)| + | f(x1) —x2| < 2d +d = 3d.
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It follows from (2.129) that
fi(p)>1/2-3d>1/3,

and then

fip)y>1/3, k=>2.

Hence,

|/5(p) — x3| < | () —folxa)| + | folxa) —x3] < 3d/2 4 d < 3d.

Repeating these estimates, we establish inequalities (2.132) for k > 2.
On the other hand, the inclusion p € J, implies that fé‘( p) € J, for k < 0. Since
£ (x) = x/2 for x € J, and (2.131) holds, the inequality

lfolx) —pl <d

implies that
= f5 ()] < d/2.
After that, we estimate
b2 =152 (P)| = P2 = fo )| + [ fo o) = fy ' (5 ()| < d/2+ d )2,

and so on, which shows that an analog of (2.132) with 3d replaced by d holds for
k<0. O
The following statement is almost obvious.

Lemma 2.6.2 Let g be a mapping of a segment J and let numbers M > 0 and m be
given. Consider the mapping

gy =M"gM(y—m)+m
on the set
J={y: M(y—m)eJ}.

If g has the Lipschitz shadowing property with constants £, dy, then g' has the
Lipschitz shadowing property with constants £, M~ d,.
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Proof First we note that if {y;} is a d-pseudotrajectory of g’ with d < dy/M and
Xy = M(yr —m), then

g0x) —xe1 = M(g' (y1) — yis1)-

Hence, {x;} is an Md-pseudotrajectory of g.
Since Md < d, there exists a point p such that

8°(p) — x| < ZMad.
Setp’ = M~'p + m. Then, obviously,

(P =y =M g (p) — x| < Za.

Let us prove Theorem 2.6.1.
Proof For a natural n, define the segment
L, = [an, Bu] = [114,,/6,13.4,/3]
and note that formula (2.126) defining f for x € (2.4;,4.4;] is, in fact, valid for
x € 1,.
To prove Theorem 2.6.1, we first claim that there exists a constant ¢ independent
of n such that if d satisfies a condition of the form
d=<cH, (2.133)
and & = {x;} is a d-pseudotrajectory of f that intersects /,, then £ is a subset of one
of the segments I,,_, I, I, +1.
In fact, all the conditions imposed below on d have the form (2.133).
It follows from the inequalities
flon) =23 M /12> o, f(Bn) = 25.4,/6 < Bu
that if ¢ is small enough (we do not repeat this assumption below), then
CIINd,f(Ip) Cly, m=n—1,nn+1. (2.134)
Thus, if x; € I, for some m = n — 1,n,n + 1, then it follows from (2.134) that

Xpti €Ly, 1>0. (2.135)

Let xy € I,.
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We assume that
CINQd. [~ (1)) C Iim1 U Ly U Ly
(note that this condition on d has precisely form (2.133)).

By (2.135), x;, € I, for k > 0. Thus, if the inclusion £ C I, does not hold, there
exists an index / < O such that

X € (In—l Ulut1) \In
(recall that £ is a 2d-pseudotrajectory of f~1).
Assume, for definiteness, that x; € I,,_; (the remaining case is treated similarly).
In this case, the same inclusions (2.135) imply that
Xi4i € L1, i20.
To show that
Xigi €1, <0,
take an index m < [ and assume that x,, € I,,. Then inclusions (2.135) imply that
Xo, X1 € 1y;
hence,
IL,NL,#@andl,N1,— # 0,
from which it follows that either v = norv = n — 1. But since x; ¢ I,,, v # n, and
we conclude that £ C [,,_, as claimed.
Of course, a similar statement holds for the segments I}, = [—f,, —a,].
Without loss of generality, we assume that

¢ <dy/2, (2.136)

where dj is given by Lemma 2.6.1. Let §(m) = c.A4;,.
Consider a d-pseudotrajectory &€ = {x;} C [—1, 1] of f with d < dp. If

d>35(0) =cAH =c/4,

then 1 < 4d/c, and £ is 4d/c-shadowed by the fixed point x = 0.
Otherwise, we find the maximal index m for which d < §(my). In this case,

d > 8(my + 1) = §(mp)/2. (2.137)
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First we assume that
& NI, # @ for some m < my (2.138)

(the case of I/, is similar).
In this case, the inequalities

d < 8(mg) = 8(m)

imply that £ is a subset of one of the segments 1,1, I, I,,+1. We assume that § C
I,,+1; in the remaining cases, the same estimates work.
Since

d < 8(m) = cHy < doNn/2 = doNmt1

(we refer to (2.136)), Lemma 2.6.2 implies that § is .Z-shadowed.
If relation (2.138) does not hold, then

1Ny, _ 118(mo) _ 11
6  6c ~ 3¢

d

IxXk| < oy =

(we take into account inequality (2.137) in the last estimate). Thus, in this case, £ is
11d/(3c)-shadowed by the fixed point x = 0. O

Historical Remarks In this section, we give a simplified proof of Theorem 2.6.1
compared to the original variant published by A. A. Petrov and the first author in
[59].

2.7 Lipschitz Shadowing Implies Structural Stability: The
Case of a Vector Field

Let M be a smooth closed manifold with Riemannian metric dist and let X be a
vector field on M of class C'. Denote by ¢(t, x) the flow on M generated by the
vector field X.

Our main goal in this section is to prove the following statement.

Theorem 2.7.1 If a vector field X has the Lipschitz shadowing property, then X is
structurally stable.

In the proof of Theorem 2.7.1, we refer to Theorem 1.3.14.

Define a diffeomorphism f on M by setting f(x) = ¢ (1, x).

It is an easy exercise to show that the chain recurrent set % (¢) of the flow ¢ (see
Definition 1.3.22) coincides with the chain recurrent set of the diffeomorphism f.
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2.7.1 Discrete Lipschitz Shadowing for Flows

In this section, we introduce the notion of discrete Lipschitz shadowing for a vector
field in terms of the diffeomorphism f(x) = ¢ (1, x) introduced above and show that
the Lipschitz shadowing property of ¢ implies the discrete Lipschitz shadowing.

Definition 2.7.1 A vector field X has the discrete Lipschitz shadowing property if
there exist dyp, L > 0 such that if y; € M is a sequence with

dist(yx+1,/ () <d <do, k€Z, (2.139)
then there exist sequences x; € M and #; € R such that
[t — 1] < Ld, dist(x, yi) < Ld, Xp+1 = ¢(te. Xz),  k € Z. (2.140)

Lemma 2.7.1 The Lipschitz shadowing property of ¢ implies the discrete Lipschitz
shadowing of X.

Proof First we note that since M is compact and X is C!-smooth, there exists a
v > 0 such that

dist(¢p (1, x), ¢(¢,y)) < vdist(x,y), x,ye M, t<][0,1]. (2.141)

Consider a sequence y; that satisfies inequalities (2.139) and define a mapping
y: R — M by setting

y@O) = ¢p(t—k,y), k<t<k+1, keZ
Fixatelk,k+1).Iftre[0,1]and t + ¢ < k + 1, then
dist (y(z + 1), ¢ (2. y(1))) = dist (¢(x + 1 — k. i), (1. ¢(x — k. y))) = 0.

Ifk+1<7t+1¢then

dist(y(x + 1), ¢ (1, 9(1))) = dist(@ (v + 1 — k — 1, y1), $(x + 1 — k. yp) =

= disP(z + 1 —k — L ye1). §(z + 1 — k= L.p(1.3))) < vd.

Thus, y(¢) is a (v 4+ 1)d-pseudotrajectory of ¢p. Hence, if d < dy/(v + 1), where

dy is from the definition of the Lipschitz shadowing property for ¢, then there exists

a trajectory x(¢) of X and a reparametrization

a € Rep(Z (v + 1)d)
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such that
dist(y(2). x(a(1))) < ZL(v + 1)d, teR.
If we set
xe = x(a(k)) and t = a(k + 1) — a(k),
then

Xep1 = x(a(k + 1) = ¢lalk + 1) — ak), x(a (k) = ¢t xx),
dist(xx, ye) = dist(x(a(k)), y) < L (v + 1)d,
and

atk+ 1) —ak) B

h—1| =
e =11 k+1—k

1| < Zv+ Dd.

Taking L = .Z(v + 1) and dy in Definition 2.7.1 as dy/ (v + 1), we complete the
proof of the lemma. O

As in Sect. 2.3, we reduce our shadowing problem to the problem of existence
of bounded solutions of certain difference equations. To clarify the presentation,
we again first take M = R”", assume that the considered vector field X defines a
flow (every trajectory is defined for + € R), and assume that the diffeomorphism
f satisfies Condition S formulated in Sect.2.3 (see estimate (2.52)). To treat the
general case of a compact manifold M, one has to apply exponential mappings (see
Remark 2.7.1 below); we leave details to the reader.

As above, we denote

VIl = sup |vg|
kezZ

for a bounded sequence of vectors V = {v; : k € Z}.

Lemma 2.7.2 Assume that X has the discrete Lipschitz shadowing property with
constant L. Let x(t) be an arbitrary trajectory of X, let py = x(k), and set A, =
Df (py) (recall that f(x) = ¢(1,x)). Assume that f satisfies Condition S formulated
in Sect. 2.3. Let B = {b; € R"} be a bounded sequence and denote By = ||B|.

Then there exists a sequence of scalars s with

lsil < B =L(Bo+ 1)
such that the difference equation

Vi1 = Apvr + X(prt1)Sk + bit1 (2.142)
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has a solution V.= {v;} with
VI < B. (2.143)
Proof Fix a natural number N and define A, € R” as the solution of
Vi+1 = AxVx + b+, k= -—N,...,N—1,
with A_y = 0. Then
|Ak]l <C, k=-N,...,N, (2.144)

where C depends on N, B, and an upper bound of ||A,| fork = —N,...,N—1.
Fix a small number d > 0 and fix u in (2.52) so that

uC <1, (2.145)
Consider the sequence of points y; € R” defined as follows: y, = py fork < —N,
yi =pir +dA,, k=-N,...,N—1,
and yyx = fX(yy) fork > 0.

Then yi+1 = f(yx) fork < —N—1andk > N.
Since

Yit1 = Pkt + dAiy1 = prt1 + dAr Ak + dbiyy,
| Vi1 — D1 — dARAg| < d|bi41| < dPo. (2.146)
On the other hand, if dC < (), then it follows from (2.52) that
|f(¥i) = Pt — dArAr| = | f(pic + dA) —f(pi) — dAAL] <
< uldAy| < pdC < d (2.147)

(see (2.145)).
Combining (2.146) and (2.147), we see that

[Vi+1 —=f(y)| <d(Bo+ 1), keLZ,

if d is small enough. Let us emphasize that the required smallness of d depends on
Bo, N, and estimates on [|Ag||.



2.7 Lipschitz Shadowing Implies Structural Stability: The Case of a Vector Field 113

Now the assumptions of our lemma imply that there exist sequences x; and #
such that

e =11 = dB. |k =yl = dB, xer1 = ¢l xi), k€ Z.
If we represent

Xy = pr +dcyand ty, = 1 + dsy,

then
ldex — dAk| = e — yi| = dB.
Thus,
lek — Al < B, —N <k <N. (2.148)
Clearly,
lsel < B, kel (2.149)
Define mappings
G :RxR'"—=R" keZ,
by
Gi(t,v) = ¢(1 + 1. p + V) — pi+1-
Then

Gr(0,0) =0, D,Gi(t,v)|i=0,0=0 = X(pr+1), Dy Gi(t,v)|i=0,0=0 = Ax.
We can write the equality
X1 = @1 + disie, i)
in the form
Pir1 +deer = ¢(1 + dsi, pi + dc),
which is equivalent to

de.H = Gk(dsk,dck). (2150)
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Now we fix a sequence of values d = d™ — 0, m — oo. Let us denote by c,((m) ,
t,((m) , and s,im) the values ¢, i, and s defined above and corresponding to d = dm.

It follows from estimates (2.148) and (2.149) that || < C + B and |s\"| < B
for all m and —N < k < N — 1. The second inequality implies that ‘t,((m) ‘ <1 for

large m. Hence (passing to a subsequence, if necessary), we can assume that

(m)

— Cks I (m)

(m) 7 <
Ci — I, Sy —> Sk, m—> 00,

for—N <k <N-1.
Applying relations (2.150) and (2.149), we can write

duc™, = G, (dms;’”% dmc,ﬁ’”) = A" + X(prs1)dns™ + 0(dy).
Dividing these equalities by d,,, we get the relations
A = Al 4 X(prg)s” +o(l), —N<k<N-L
Letting m — oo, we arrive at the relations
Crt1 = Ak + X(pet )3k, —N <k <N-—1,
where
[Ax— el IS] =B, —N<k=<N-1,

due to (2.148) and (2.149).
Recall that N was fixed in the above reasoning. Denote the obtained 5; by s,((N).

Then v,((N) = Ay — ¢ is a solution of the equations

v,ﬁ)l = Akv;((N) +X(Pk+1)s;((N) +bey1, —N=<k=N-1,

such that ‘v,((N)‘ <B.

There exist subsequences v¥) — v/ and s/

assume uniform convergence) such that

— s, as N — oo (we do not

Vi1 = Awvy + X(prt1)s; + by, k€ Z,

and |v;|, |s;| < B. The lemma is proved. O

Remark 2.7.1 An analog of Lemma 2.7.2 is valid in the case of a smooth closed
manifold M. In this case, we denote .#; = T, M and consider the difference
equation (2.142) in which vy, by € .
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Proving an analog of Lemma 2.7.2 in the case of a closed manifold (and
replacing, for example, the formula y, = pyx + d A by yr = exp,, (dAx), compare
with the proof of Lemma 2.3.3 in Sec 2.3), one gets a similar statement with the
estimates |sg| < B := L(2B0 + 1) and ||V||eo < 28 (see the original paper [57]).

Thus, in what follows, we refer to Lemma 2.7.2 in the case of a vector field X on
a smooth closed manifold M (with B = {b; € R"} replaced by B = {b; € .#}} and
properly corrected estimates).

2.7.2 Rest Points

In this section, we show that if a vector field has the Lipschitz shadowing property,
then its rest points are hyperbolic and isolated in the chain recurrent set. Thus, in
what follows we assume that we work with a vector field X on a smooth closed
manifold M having the Lipschitz shadowing property.

Lemma 2.7.3 Every rest point of X is hyperbolic.

Proof Let x( be a rest point. Applying an analog of Lemma 2.7.2 for the case of a
manifold with p;y = xy and noting that X(p;) = 0, we conclude that the difference
equation

Vk+1 = Df (xo)vx + brt1

has a bounded solution for any bounded sequence by € .# (recall that .Z) =
T, M).

Then it follows from the Maizel’ theorem (see Theorem 2.1.1 of Sect.2.1) that
the constant sequence o/ = {A; = Df(xo)} is hyperbolic on Z ; in particular, every
bounded solution of the equation

Vi+1 = Df (xo)vr

tends to 0 as k — oo.

However, if the rest point xj is not hyperbolic, then the matrix Df(xy) has an
eigenvalue on the unit circle, in which case the above equation has a nontrivial
solution with constant norm. Thus, xj is hyperbolic. O

Lemma 2.7.4 Rest points are isolated in the chain recurrent set Z(¢).

Proof Let us assume that there exists a rest point xo that is not isolated in Z(¢).
First we want to show that there is a homoclinic trajectory x() associated with xg.
Since xg is hyperbolic by the previous lemma, there exists a small d > 0 and a
number a > 0 such that if dist(¢ (¢, y), x0) < Zd for |t| > a, then ¢(t,y) — x( as
[t] — oo.
Assume that there exists a point y € Z(¢) such that y is arbitrarily close to
xo and y # xo. Given any &p,6 > 0 we can find points yy, ..., yy and numbers
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To, ..., Ty > 6 such that
dist(¢ (To. y), y1) < &o,
dist(p(T;. yi). yiv1) < &0, i=1,....N,
and
dist(¢(Tn. yn), y1) < €o.

SetT = Ty + - -+ + Ty and define g* on [0, T| by

#(t,y), 0 <t =Ty;
g =13¢@y)To+- 4Ty <t<To+-+T;
y, t=T.

Clearly, for any ¢ > 0 we can find &y depending only on ¢ and v (see (2.141))
such that g*(7) is an e-pseudotrajectory of ¢ on [0, 7.
Now we define

xo, t=<0;
g)=1¢"®).0<t<T:
xo, t>T.

We want to choose y and ¢ in such a way that g(¢) is a d-pseudotrajectory of ¢.
We have to show that

dist(¢(t, g(7)),g(t + 1)) <d (2.151)

forall T and ¢ € [0, 1].

Clearly, (2.151) holds for (i) T < —1, (ii)) t > T, (iii) 7, 7 4+ ¢ € [-1, 0], and (iv)
T,t+t€[0,T]and e < d.

Ift € [-1,0] and T 4 ¢ > 0, then

dist(¢ (¢, g(1)), g(t + 7)) = dist(xg, g*(t + 1)) <
< dist(xp, ¢ (t + 7,y)) + dist(¢p (t + 7,¥), g* (¢ + 1)) < vdist(x,y) + ¢,

where v is as in (2.141). The last value is less than d if dist(xp, y) and & are small
enough. Note that, for a fixed y, we can decrease ¢ and increase N, Ty, ..., Ty
arbitrarily so that g(¢) remains a d-pseudotrajectory.

Similarly, (2.151) holdsif t € [0,T] and t + ¢ > T.

Thus, g(¢) is -Zd shadowed by a trajectory x() such that dist(x(z), xo) < .Zd if
|#] is sufficiently large; hence, x(f) — xo as |t| — co.
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Now we want to show that x(f) is a homoclinic trajectory if d is small enough.
For this purpose, we have to show that x(r) # xo.

There exists an &, > .Zd (provided that d is small enough) such that if y does not
belong to the local stable manifold of xy, then dist(¢ (%)), y) > &; for some £y > 0.
We can choose Ty > f; (not changing the point y). Then g(¢) contains the point
g* () = ¢(t,y) whose distance to xy is more than .Zd. Hence, x(f) contains a
point different from xy, as was claimed.

If y belongs to the local stable manifold of xy, then it does not belong to the
local unstable manifold of xj. In this case, considering the flow ¥ (¢, x) = ¢(—t, x),
we can apply the above reasoning to v noting that Z(y) = Z(¢) and ¢ has the
Lipschitz shadowing property as well.

Now we show that the existence of this homoclinic trajectory x(¢) leads to a
contradiction. Set p, = x(k). Since AxX(pr) = X(pi+1), it is easily verified that if
we consider two sequences f; and s; such that

Bi+1 = Bk + sk, k€L,
then u; = B X (py) is a solution of
U1 = Agu + X(pe+r sk, k € Z. (2.152)

In addition, if the sequence s is bounded, then the sequence ;X ( py) is bounded
as well since X(px) — 0 exponentially as |k| — oo (the trajectory x(f) tends to a
hyperbolic rest point as time goes to £00) and the sequence |B;|/ || is bounded).

By Lemma 2.7.2, for any bounded sequence by € .# there exists a bounded
scalar sequence sy such that Egs. (2.142) have a bounded solution v;. We have shown
that Egs. (2.152) have a bounded solution u;. Then the sequence wy = vr — uy is
bounded and satisfies the equations

wry = Agwi + bi+1, k€ Z.

Thus, the sequence & = {A;} has the Perron property on Z. It follows from
Theorems 2.1.1 and 2.1.2 that the sequence < is hyperbolic both on Z 4 and Z_ and
the corresponding spaces Sg' and U;, are transverse. But this leads to a contradiction
since

dimS; + dimU, = dimM
(because dimS(;r equals the dimension of the stable manifold of the hyperbolic rest

point xp and dimU;” equals the dimension of its unstable manifold), while any of the
spaces S(‘)F and U, contains the nonzero vector X (po). The lemma is proved. O
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2.7.3 Hpyperbolicity of the Chain Recurrent Set

We have shown that rest points of ¢ are hyperbolic and isolated in the chain recurrent
set Z(¢). Since M is compact, this implies that the set Z(¢) is the union of a finite
set of hyperbolic rest points and a compact set (let us denote it X') on which the
vector field X is nonzero.

To show that Z(¢) is hyperbolic, it remains to show that the set X' is hyperbolic.

Consider the subbundle 7' (X') of the tangent bundle TM| s defined in Sect. 1.3
before Theorem 1.3.15.

Let x(f) be a trajectory in X. Let us introduce the following notation. Put
pr = x(k) and let P, = P(px) and V, = V(py) (recall that P(x) is the orthogonal
projection in T,M with kernel spanned by X(x) and V(x) is the orthogonal
complement to X (x) in 7,,M). Introduce the operators

By = Pr1Ar 0 Vi = Vit

(recall that A, = Df (pr)).
Lemma 2.7.5 For every bounded sequence by € V. there exists a bounded solution
v € Vi Of

Vk+1 = Brvg + bi+1, k€ Z. (2.153)

Proof Fix a bounded sequence by € V;. There exist bounded sequences s of scalars
and wy, of vectors in T, M such that

Wit1 = Awi + X(prr1)sk + ber1, k€ Z, (2.154)

(see the remark after Lemma 2.7.2).
Note that Ay X (pr) = X(pi+1). Since (Id — Py)v € {X(pi)} for v € ., we see
that

Pi1Ar(Id — Py) = 0,
which gives us the equality
Pit1Ay = Pry1ArPy. (2.155)

The properties of the set X' imply that the projections Py are uniformly bounded.
Multiplying (2.154) by Pi+1, taking into account the equalities P+ 1X(pr+1) =
0 and Py41bx+1 = br+1, and applying (2.155), we conclude that v = Pywy is the
required bounded solution of (2.153). The lemma is proved. O
It follows from the above lemma that if we fix a trajectory x(¢) in X' and consider
the corresponding sequence of operators % = {B}, then 4 has the Perron property.
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By Theorems 2.1.1 and 2.1.2, the sequence 4 is hyperbolic both on Z_ and Z
and the corresponding spaces U, (%) and Sg' () are transverse.

Consider the mapping 7 on the normal bundle ¥ (X') defined in Sect. 1.3. Recall
that

7(x,v) = (f(x), B(x)v), where B(x) = P(f(x))Df (x)

(see Sect. 1.3).

In fact, we have shown that 7 satisfies an analog of the strong transversality
condition.

The same reasoning as in the proof of Lemma 2.2.5 shows that the dual mapping
* does not have nontrivial bounded trajectories. It is easy to show that if the flow
¢ has the shadowing property, then its nonwandering set coincides with its chain
recurrent set.

Hence, we can repeat the reasoning of the proof of Theorem 2.2.2 to conclude
that the mapping = is hyperbolic.

It remains to refer to Theorem 1.3.15 to conclude that X' is a hyperbolic set of
the flow ¢.

2.7.4 Transversality of Stable and Unstable Manifolds

Let x(7) be a trajectory that belongs to the intersection of the stable and unstable
manifolds of two trajectories, x4 (f) and x_(¢), respectively, lying in the chain
recurrent set of ¢.

Without loss of generality, we may assume that

dist(x(0), x4+ (0)) — 0, t— oo,
and
dist(x(0),x-(0)) - 0, t— —oo.

Denote py = x(k), k € Z; let W*(po) and W"(po) be the stable and unstable
manifolds of py, respectively. Then, of course, W*(py) = W*(x+(0)) and W*(pg) =
W"(x—-(0)). Denote by E® and E* the tangent spaces of W*( pg) and W*(py) at po.

We use the notation introduced before Lemma 2.7.5.

By Lemma 2.7.5, for any bounded sequence b, € Vj there exists a bounded
solution v, € Vi of (2.153). By the Maizel’ theorem (Theorem 2.1.1), the sequence
By is hyperbolicon Z_ and Z .

By the Pliss theorem (Theorem 2.1.2),

E + E =V, (2.156)
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where

& ={wy : wrt1 = By, |wi| — 0, kK — o0}
and

E" = {wo : wit1 = Bowy, |wi| = 0,k — —o0}.

Clearly, it follows from the hyperbolicity of the sequence By on Z_ and Z that
the following equalities hold:

& = {W() D Wikl = Bka, sup |Wk| < OO}
k>0

and

&' = {W() D Wikl = Bka, sup |Wk| < OO}
k=<0

We claim that
& C E*and E* C & (2.157)

First we note that (2.157) implies the desired transversality of W*(py) and

W*(po) at po.
Indeed, combining equality (2.156) with inclusions (2.157) and the trivial
relations

E'=VoNE +{X(po)} and E" = Vo N E" + {X(po)},
we conclude that
E'+E" =Ty M,

which gives us the transversality of W*( po) and W*( po) at po.
Thus, it remains to prove inclusions (2.157). We prove the first inclusion; for the
second one, the proof is similar.

Case 1: The limit trajectory xo(f) = xp is a rest point of X. In this case, the stable
manifold of the rest point xy in the flow ¢ coincides with the stable manifold of
the fixed point x for the time-one diffeomorphism f(x) = ¢ (1, x).

It is clear that if py is a trajectory of f belonging to the stable manifold of xy, then
the tangent space to the stable manifold at py is the subspace E® of the initial values
of bounded solutions of

Vk+1 = Agvg, k> 0. (2.158)
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Let us prove that & C E*. Fix an arbitrary sequence wy such that wy4| = Bywy
and wy € &*. Consider the sequence

v = MX(p)/IX(pi)| + wi,

where the A, satisfy the relations

_ |X(l’k+1)|)L X(pr+1)*

2.159
X0l T K (g 159

(we denote by X* the row-vector corresponding to the column-vector X) and Ao = 0.
It is easy to see that the sequence vy satisfies (2.158).

Since x(¢) is in the stable manifold of the hyperbolic rest point xo, there exist
positive constants K and « such that

dx
‘ 0

, 0<s<ut.

< Kexp(a(i —s)) ‘fl’t‘ s)

This implies that
IX(pi)| = Kexp(a(k —m)) [X(pm)|. O=m=k
Thus, the scalar difference equation

st = |X(pr+1)] .
IX(po)l

is hyperbolic on Z, and is, in fact, stable. Since the second term on the right in
(2.159) is bounded as k — oo (recall that we take wy € &), it follows that the A;
are bounded for any choice of A,.

We conclude that vy is a bounded solution of (2.158), and vy = wy € E°. Thus,
we have shown that & C E*, which completes the proof in Case 1.

Case 2: The limit trajectory is in the set X' (the chain recurrent set minus rest points).
We know that the set X is hyperbolic. Our goal is to find the intersection of its
stable manifold near py = x(0) with the cross-section at py orthogonal to the
vector field (in local coordinates generated by the exponential mapping). To do
this, we discretize the problem and note that there exists a number o > 0 such
that a point p close to py belongs to W*(po) if and only if the distances of the
consecutive points of intersections of the positive semitrajectory of p to the points
pr do not exceed 0.
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For suitably small i > 0 we find all the sequences of numbers #; and vectors
7k € Vi (recall that Vj is the orthogonal complement to {X(px)} at py) such that

[t — 1] < w, |zl <y Yer1 = @k y0), k=0,

where y;, = pr + .
Thus, we have to solve the equations

Pi+1 = ¢(te.pr +vi), k>0,
for numbers #, and vectors z; € Vj such that |t — 1| < p and |z| < .

We reduce this problem to an equation in a Banach space. It was mentioned above
that the sequence {By} generating the difference equation

% = Bz, k=0,
(where By = Pi4+1Ax and Py is the orthogonal projection with range Vi) is
hyperbolic on Z4. Denote by Oy : Vi — Vi the corresponding projections to
the stable subspaces and by Z(Qy) the range of Q (note that Z(Qy) = &*).
Fix a positive number 119 and denote by ¥ the space of sequences
YV ={w € Vi |l < o, ke Zy}.
Let [°° (Z+, {#+1}) be the space of sequences {; € M+ : k € Z4} with the
usual norm.
Define a C' function
G: (1= po. 1+ pol™ XV x Z(Qo) — I°(Zy . { Miy1}) x Z(Qo)
by
G(t,z,n) = A prt1 + 21 — @t pr + 20)}, Qozo — 1).

This function is defined if w is small enough.
We want to solve the equation

G(t,z,m) =0
for (, z) as a function of 7. It is clear that
G(1,0,0) =0,

where the first argument of G is {1, 1,...}, the second argument is {0,0, ...}, and
the right-hand side is ({0,0, ...}, 0).
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To apply the implicit function theorem, we must verify that the operator

T =

G 1.0.0
Z

9(t.2)

is invertible.
First we note that if (s, w) € [®°(Z+, { #}+1}) x ¥, then

T(s,w) = ({wi+1 — X(pr+1)Sk — Axwi, Qowo).

To show that T is invertible, we have to show that the equation

T(s,w) = (g,

has a unique solution for any (g, n) € I°(Z+, { #+1}) X Z(Qyp). Thus, we have to
solve the equation

w1 = Awwr + X(prt1)sk = g, k>0, (2.160)
subject to the condition

Qowo = 1.
If we multiply Eq. (2.160) by X(pi+1)* and solve for s;, we get the equalities

X(pes1)*

X (pg A T8 K20

Sk =

and if we multiply Eq. (2.160) by Py, we get the equalities
Wit1 = Prp1Awwi + P18k = Biw + Pryigr, k= 0.

Now we know that the last equations have a unique bounded solution wy, € Vi, k >
0, that satisfies Qowo = 7. Thus, T is invertible.

Hence, we can apply the implicit function theorem to show that there exists a
@ > 0 such that if |n| is sufficiently small, then the equation G(¢,z,17) = 0 has
a unique solution (2(n), z(n)) such that || — 1]lcc < p and ||z]lcc < p. Moreover,
t(0) = 1, z(0) = 0, and the functions #(1)) and z(n) are of class C'.

The points po+zo(n) form a submanifold containing py and contained in W*( py).
Thus, the range of the derivative z;(0) is contained in E*.

Take an arbitrary vector £ € & and consider n = t£, t € R. Differentiating the
equalities

Pi+1 + 2+1(té) = ¢ (a(t8), pr + u(z§)), k>0,
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and

Qo(t§) = 7§
with respect to T at T = 0, we see that

_ al‘k

0zk
Sk = an ly=0& and wy = an ly=0€ € Vi

are bounded sequences satisfying the equalities
Wit = Agwi + X(pry1)sk and Qowy = €.
Multiplying by P41, we conclude that
Wi+1 = Bywyg and Qowo = §.

It follows that wy € &° = Z(Qp). Then wy = Qowy = £.
We have shown that the range of z;,(0) is exactly &°. Thus, &° C E°.

Historical Remarks Theorem 2.7.1 was published by K. Palmer, the first author,
and S. B. Tikhomirov in [57].
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