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Preface

The theory of shadowing of approximate trajectories (pseudotrajectories) in dynami-
cal systems is now an important and rapidly developing branch of the modern global
theory of dynamical systems.

The notion of a pseudotrajectory goes back to Birkhoff [9]. The real development
of the shadowing theory started after the classical results of Anosov [4] and Bowen
[12]. The main results obtained in the 20th century were reflected in the monographs
[64] and [56]; one can find a survey of recent results in [70].

In fact, the modern shadowing theory has been developing on the powerful basis
of the theory of structural stability, one of the main parts of the global theory of
dynamical systems in the second half of the 20th century.

Undoubtedly, the notions of hyperbolicity and transversality, which are the key
notions of the theory of structural stability, have become the basic notions of the
shadowing theory as well.

This book is devoted to several recent results relating various shadowing prop-
erties to structural stability. It was understood in the 1970s that structural stability
implies shadowing. In fact, both monographs [64] and [56] were mostly devoted
to various proofs of the general statement: “Hyperbolicity (structural stability)
implies shadowing.” At the same time, simple examples show that shadowing is
not equivalent to structural stability.

Nevertheless, all such examples are, in a sense, “degenerate,” and it is natural
to assume that in “nondegenerate” cases, shadowing and structural stability are
equivalent. In a precise form, this assumption was formulated as a conjecture by
Abdenur and Diaz in [1]; in fact, they conjectured that a C'-generic diffeomorphism
with shadowing is structurally stable and proved this conjecture for so-called tame
diffeomorphisms.

Two more possible approaches to the problem of equivalence of shadowing and
structural stability are related to the passage to C' interiors of the sets of dynamical
systems having various shadowing properties or to study of special shadowing
properties (such as Lipschitz and Holder).

vii



viii Preface

This book is devoted to the main results related to the above-mentioned two
approaches, which, in our opinion, may be of interest for specialists in the global
theory of dynamical systems.

One of our main goals was to give either complete proofs of some results which
are not easily available (for example, the Pliss theorem used in Chap.2 was only
published in Russian long ago in proceedings of a Kiev conference and was never
reproduced) or detailed expositions of some heavy proofs (for example, we do not
reproduce the Tikhomirov’s paper devoted to Holder shadowing but instead explain
in detail the not so heavy one-dimensional case to help the reader to understand the
original proof).

Let us describe the contents of the book.

The book consists of four chapters.

Chapter 1 is preliminary. In this chapter, we define pseudotrajectories and various
shadowing properties for dynamical systems with discrete and continuous time
(Sects. 1.1 and 1.2), study the notion of chain transitivity (Sect. 1.1), describe
hyperbolicity, §2-stability, and structural stability (Sect. 1.3), and prove a lemma
on finite Lipschitz shadowing in a neighborhood of a hyperbolic set (Sect. 1.4).

In Chap. 2, we give either complete proofs or schemes of proof of the following
main results:

 If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

* adiffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is §2-stable (Theorem 2.4.1);

« if a diffeomorphism f of class C? has the Holder shadowing property on finite
intervals with constants .Z, C, dy, 0, w, where 6 € (1/2,1) and 6 + w > 1, then
f is structurally stable (Theorem 2.5.1);

* there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

» if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

Since Theorem 2.3.1 is one of the basic results related to the study of Lipschitz
shadowing property for diffeomorphisms, we include in the book complete versions
of the main ingredients of its proof: in Sect. 2.1, we prove Maizel’ and Pliss theo-
rems relating the so-called Perron property of difference equations and hyperbolicity
of sequences of linear automorphisms, Sect.2.2 is devoted to the Mafié theorem
characterizing structural stability in terms of the so-called analytic transversality
condition (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof of Theorem 2.3.1
to results of the previous two sections.

In Chap. 3, we study the structure of C' interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

» The C' interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result combined with a well-known statement (structurally stable
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diffeomorphisms have the standard shadowing property) implies that the C!
interior of the set of diffeomorphisms having the standard shadowing property
coincides with the set of structurally stable diffeomorphisms;

* the C! interior of the set of vector fields having the oriented shadowing property
minus some special set # of vector fields (consisting of vector fields that have
a couple of rest points connected by a trajectory of nontransverse intersection
of their stable and unstable manifolds; of course, such vector fields are not
structurally stable) is a subset of the set of structurally stable vector fields
(Theorem 3.3.1); similarly to the case of diffeomorphisms, this result combined
with a well-known statement (structurally stable vector fields have the shadowing
property) implies that the C! interior of the set of vector fields having the oriented
shadowing property minus the set % coincides with the set of structurally stable
vector fields;

« the C! interior of the set of vector fields having the oriented shadowing property
contains vector fields that are not structurally stable (Theorem 3.4.1).

The structure of the chapter is as follows.

Section 3.1 is devoted to the proof of Theorem 3.1.1. Our proof of Theorem 3.1.1
is based on reduction to the theorem stating that the C' interior of the set
of Kupka—Smale diffeomorphisms coincides with the set of structurally stable
diffeomorphisms.

We give a detailed proof of the fact that any periodic point of a diffeomorphism
in the C! interior of the set of diffeomorphisms having the standard shadowing
property is hyperbolic. Concerning the proof of transversality of stable and unstable
manifolds of periodic points of such a diffeomorphism, we refer the reader to
Sect. 3.3 where a similar statement is proved in a more complicated case of flows on
manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect.3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If a diffeomorphism f belongs to the C! interior
of the set of diffeomorphisms having the standard shadowing property, then f
satisfies Axiom A. Our proof uses neither Mafié’s ergodic closing lemma [42] nor
the techniques of creating homoclinic orbits developed in [44]. Instead, we refer to
a sifting type lemma of Wen—Gan—Wen [109] influenced by Liao’s work and apply
it to Liao’s closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C! interior of the set of vector
fields having the oriented shadowing property. We introduce the above-mentioned
class % and prove Theorem 3.3.1.

In Sect. 3.4, we show that the C! interior of the set of vector fields having the
oriented shadowing property contains vector fields belonging to %. The complete
description of the corresponding example given in [69] is quite complicated, and we
describe a “model” suggested in [100].

In Chap.4, we study relations between the shadowing property of diffeo-
morphisms on their chain transitive sets and the hyperbolicity of such sets.
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We prove the following two main results:

» Let A be a closed invariant set of f € Diff! (M). Then f| 4 is chain transitive and
C'-stably shadowing in a neighborhood of A if and only if A is a hyperbolic
basic set (Theorem 4.2.1);

* there is a residual set #Z C Diff!(M) such that if f € % and A is a locally
maximal chain transitive set of f, then A is hyperbolic if and only if f|,4 is
shadowing (Theorem 4.3.1).

The structure of the chapter is as follows.

In Sect. 4.1, we discuss several examples of chain transitive sets. Section 4.2 is
devoted to the proof of Theorem 4.2.1. In Sect. 4.3, we prove Theorem 4.3.1.

Each section of the book contains Historical Remarks.

The authors are really grateful to A. A. Rodionova who put a lot of time and
effort into preparation of this book for publication.

St. Petersburg, Russia Sergei Yu. Pilyugin
Utsunomiya, Japan Kazuhiro Sakai
June 2017
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Chapter 1
Main Definitions and Basic Results

In this preliminary chapter, we define pseudotrajectories and various shadowing
properties for dynamical systems with discrete and continuous time (Sects. 1.1
and 1.2), study the notion of chain transitivity (Sect. 1.1), describe hyperbolicity,
§2-stability, and structural stability (Sect. 1.3), and prove a lemma on finite Lipschitz
shadowing in a neighborhood of a hyperbolic set (Sect. 1.4).

1.1 Pseudotrajectories and Shadowing in Dynamical Systems
with Discrete Time: Chain Transitive Sets

Consider a metric space (M, dist). Everywhere below (if otherwise is not stated), we
denote by N(a, x) and N(a, A) the open a-neighborhoods of a point x € M and a set
A C M, respectively. For a set A C M, Int(A), Cl(A), and 0A denote the interior,
closure, and boundary of A, respectively.

Let f be a homeomorphism of the metric space M. As usual, we identify the
homeomorphism f with the dynamical system with discrete time generated by f
on M.

We denote by

O(x.f) = {1* () : ke

the trajectory (orbit) of a point x € M in the dynamical system f.
We also consider positive and negative semitrajectories of a point x,

Ot (x.f) = {f(x): k=0} and O (x.f) = {f*(x): k<0}.

© Springer International Publishing AG 2017 1
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
in Mathematics 2193, DOI 10.1007/978-3-319-65184-2_1



2 1 Main Definitions and Basic Results

Similar notation is used for trajectories of sets;

OA.f) ={ffA): keZ}

is the trajectory of a set A C M in the dynamical system f, etc.
We denote by Per(f) the set of periodic points of f.

Remark 1.1.1 We give the main definitions in this section for the most general case
of dynamical system with discrete time generated by homeomorphisms; in fact, the
main results of this book are related to smooth dynamical systems — either to systems
with discrete time generated by diffeomorphisms or to systems with continuous time
(flows) generated by smooth vector fields on manifolds.

If M is a smooth closed (i.e., compact and boundaryless) manifold with Rieman-
nian metric dist, we denote by TM the tangent bundle of M and by 7 M the tangent
space of M at a point x, respectively. For a vector v € T M, |v] is its norm induced
by the metric dist.

If f is a diffeomorphism of a smooth manifold M, we denote by

Df(x) : TM — Y}(X)M

its derivative at a pointx € M.
Let us give the main definition in the case of a homeomorphism of a metric space
(M, dist).

Definition 1.1.1 Fix ad > 0. A sequence
E={xeM: keZ} (1.1)

is called a d-pseudotrajectory of the dynamical system f if the following inequalities
hold:

distug1.f () <d, k€ Z. (1.2)

Sometimes, d-pseudotrajectories are called d-orbits.
The basic property of dynamical systems related to the notion of a pseudotrajec-
tory is called shadowing (or tracing).

Definition 1.1.2 We say that a dynamical system f has the shadowing property if
for any ¢ > 0 we can find a d > 0 such that for any d-pseudotrajectory & of f there
exists a point p € M such that

dist (ve.f*(p)) <&, ke (1.3)

In this case, we say that the pseudotrajectory £ is e-shadowed by the exact trajectory
of the point p, and the trajectory O(p,f) is called the shadowing trajectory.
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Sometimes, this property is called the standard shadowing property or the POTP
(pseudoorbit tracing property, see [S] and [6]).

In addition to infinite pseudotrajectories, we consider also finite pseudotrajecto-
ries, i.e., sets of points

E={xeM: I <k<m}

such that analogs of inequalities (1.2) hold for/ <k <m — 1.

The corresponding shadowing property called finite shadowing property means
that for any ¢ > 0 we can find a d > 0 such that for any finite d-pseudotrajectory &
of f as above there exists a point p € M such that analogs of inequalities (1.3) hold
for ! < k < m — 1. Here it is important to emphasize that d depends on ¢ and does
not depend on the number m — .

In what follows, it will be convenient for us to introduce special notation for sets
of dynamical systems having some shadowing properties. Let us denote by SSPp
the set of systems with discrete time having the standard shadowing property (of
course, any time, using a notation of that kind, we will indicate the phase space and
the class of smoothness of the considered dynamical systems).

In this book, we also consider several modifications of the standard shadowing
property.

The first of these modifications is a property that is weaker than the standard
shadowing property. First let us recall the definition of the Hausdorff metric.

Denote by €' (M) the set of all nonempty compact subsets of M. Let x € M and
K € €(M); set

dist(x, K) = mindist(x, y).
yeEK
The Hausdorff metric disty on € (X) is defined as follows:
disty (A, B) = max (max dist(a, B), max dist(b,A))
a€A beEB

for A, B € ¥ (X).
The next result which we use below is well known (see p. 47 of [32]).

Lemma 1.1.1 If the space M is compact, then (¢ (M), disty) is a compact metric
space.

Definition 1.1.3 We say that a dynamical system f has the orbital shadowing
property if for any ¢ > 0 we can find a d > 0 such that for any d-pseudotrajectory &
of f there exists a point p € M such that

disty (CL(€), CL(O(p.[))) < &. (1.4)



4 1 Main Definitions and Basic Results

We denote by OSPp the set of systems with discrete time having the orbital
shadowing property.
One more shadowing property is defined below.

Definition 1.1.4 We say that f has the Lipschitz shadowing property if there exist
Z,dy > 0 such that for any d-pseudotrajectory {x;} with d < d, there exists an
exact trajectory { f*(p)} satisfying the inequalities

dist (x4, f“(p)) < Zd. ke (1.5)

One can define the finite Lipschitz shadowing property similarly to the finite
shadowing property (we leave details to the reader).

Let us denote by LSPp, the set of systems with discrete time having the Lipschitz
shadowing property.

Obviously, the following inclusions hold:

LSP, C SSPp C OSPp (1.6)

(of course, here we have in mind that we consider dynamical systems with the same
phase spaces).

Simple examples show that all the inclusions in (1.6) are strict.

To show that SSPp \ LSPp, # @, consider a North Pole — South Pole
diffeomorphism f of the circle S! that has two fixed points, an asymptotically stable
fixed point s and a completely unstable (i.e., asymptotically stable for f~') fixed
point « and such that f*(x) — s,k — oo, for any x # u, and f*(x) — u,k — —oo,
for any x # s. It is easy to show that such a diffeomorphism f has the standard
shadowing property. Theorem 1.4.1 (1) implies that if the fixed points s and u are
hyperbolic (in this case, f is structurally stable), then f has the Lipschitz shadowing
property. At the same time, it is an easy exercise to show that f does not have the
Lipschitz shadowing property if one of the fixed points s or u is not hyperbolic.

It is also an easy exercise to show that irrational rotation of the circle gives us an
example of a diffeomorphism belonging to OSPp \ SSPp.

It is possible to study shadowing properties dealing with pseudotrajectories that
are subjected to some additional restrictions. In this book, we consider the case of
periodic pseudotrajectories.

Definition 1.1.5 We say that f has the periodic shadowing property if for any ¢ > 0
we can find a d > 0 such that for any periodic d-pseudotrajectory £ of f there exists
a periodic point p of f such that inequalities (1.3) hold.

Remark 1.1.2 Note that it is not assumed in the above definition that the periods of
the pseudotrajectory & and periodic point p coincide.

Let us denote by PerSPp, the set of systems with discrete time having the periodic
shadowing property.

Definition 1.1.6 We say that f has the Lipschitz periodic shadowing property
if there exist positive constants %, dy such that if ¢ = {x} is a periodic
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d-pseudotrajectory with d < d, then there exists a periodic point p of f such that
inequalities (1.5) hold.

Let us denote by LPerSPp the set of systems with discrete time having the
Lipschitz periodic shadowing property.

As was mentioned, we also consider pseudotrajectories defined not on Z but on
some subsets of Z. Such pseudotrajectories will appear, for example, in the study of
the following property.

Definition 1.1.7 We say that f has the Holder shadowing property on finite
intervals with constants ., C, dy, 6, @ > 0 if for any d-pseudotrajectory

E={xn: 0<k<Cd*}
of f with d < d there exists a point p such that
dist (x¢, f5(p)) < Zd?, 0<k=<cd™. (1.7)

We denote by FHSPp(.Z, C,dy, 8, ) the set of systems with discrete time
having the property formulated in Definition 1.1.7.

An important application of pseudotrajectories defined on subsets of Z is the
theory of chain recurrence and chain transitivity.

The main tools in this theory are e-chains (finite e-trajectories joining points of
the phase space; following tradition, we preserve this terminology and use ¢ instead
of d in analogs of inequalities (1.2)).

Until the end of this section, we assume, in addition, that M is a compact metric
space.

Let C be a subset of M and let p,q € C.

Definition 1.1.8 For ¢ > 0, a sequence {xo, X1, . ..,X,} of points of the subset C
is called an e-chain in C of length m 4 1 from p to ¢q if xo = p, x,, = ¢, and
dist(f(x;), xi+1) < efor0 <i < m.
If there is an e-chain in C from p to g, then we write p ~¢ g.
Let us also write
p <w>( g if bothp v ¢ g and g v>¢ p,
p ~vc qifp »w¢ gforany e > 0,

p <wsc qif p «ws( g forany € > 0.

In the above notation, we omit C if C = M.

Definition 1.1.9 A point x € M is called a chain recurrent point if x <w> x.
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Definition 1.1.10 The set
Z(f) ={xeM: x <w> x}

of all chain recurrent points of f is called the chain recurrent set of f.

Definition 1.1.11 Two points x and y of M are called chain equivalent if x <w> y.
Note that if x,y € M and x <w> y, then x,y € Z(f).
Clearly, the chain equivalence is an equivalence relation on Z(f).

Definition 1.1.12 Each equivalence class of the above equivalence relation is called
a chain recurrence class.

We note that Z(f) and chain recurrence classes are closed f-invariant sets (see
Lemma 1.1.5 below).

Definition 1.1.13 We say that a closed f-invariant set A is chain transitive if x ~»> 4
yforanyx,y e A.

A chain recurrence class & is called a maximal chain transitive set if the
inclusion Z C C, where C is a chain transitive set, implies that #Z = C.

The main statement which we prove in this section is the following proposition.

Proposition 1.1.1 Any chain recurrence class is a maximal chain transitive set.
The next convention will be frequently used in this section. For ¢ > 0, §(¢)
denotes a real number such that 0 < §(¢) < ¢ and the inequality dist(x,y) < §(¢)
implies that dist(f(x),f(y)) < €.
We prove a sequence of lemmas which we need.

Lemma 1.1.2 The relation
() ={(x,y) EM XM :x~y}

is closed in M x M.

Proof Let a sequence {(x;,y;) : 1 <i < oo} in Z(~>) converge to (x,y) € M x M.
We show that (x,y) € Z(~). For e > 0, let § = §(¢/3). Fix an index i > 1 such
that max(dist(x;, x), dist(y;, ¥)) < 6. Since x; ~> y;, there is a §-chain {zo, ..., Zn}
from x; to y;. Assume that m = 1. Then

dist(f(x),y) = dist(f(x).f(z0)) + dist(f(z0),z1) + dist(z1,y) <
<eg/34+86+8<e.

Thus, x ~>€ y. Next assume that m > 2. Then it is easy to see that
{.X, 315325+« 7Zm—lvy}

is an e-chain from x to y. Hence, x ~>¢ y in any case. Since ¢ > 0 is arbitrary, x > y,
and (x,y) € Z(~>). O
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The following statement is an obvious corollary of Lemma 1.1.2.

Lemma 1.1.3 The relation
H(<w>) = {(x,y) E M XM : x <~ y}

is closedin M x M.

Lemma 1.1.4
(f XIZ () C Z(v>)
and
(f XIWZ(ew>)) C R (<w>).

Proof 1t is enough to prove the first inclusion. Let (x,y) € Z(~>); we show that
(fx),f(y) € Z(~>).Fixane > 0 and let § = 6(¢). Since x > y, there is a §-chain
{x0,...,%n} from x to y. It is easy to see that { f(xo), ...,f(xx)} is an e-chain from

f(x) tof(y). Thus, f(x) » f(y). Since € > 0 is arbitrary, (f(x),f(y)) € Z(~). O

Lemma 1.1.5 The set Z(f) and each chain recurrence class are closed f-invariant
sets.

Proof Let A be a chain recurrence class of f. It follows directly from Lemma 1.1.3
that both Z(f) and A are closed. Since Z(f) is a disjoint union of chain recurrence
classes, it is enough to show that A is f-invariant.

Let x € A. Then for each n > 1 there is a (1/n)-chain {xg, ..., x; } from x to
itself. Put y, = xj, _;, n > 1, and let y be one of the limit points of the sequence
{y, : n > 1}. It is easy to see that x ~> y. Since dist(f(y),x) < 1/nforn > 1,
we get the equality f(y) = x. Hence, f(x) » f(y) = x by Lemma 1.1.4. Since
y » f(y) = x » f(x), we conclude that x «w> y and x <»> f(x). Thus, both y and
f(x) are chain recurrent points and belong to A. Since x € A is arbitrary, it follows
that f(A) D A D f(A),i.e., f(A) = A. O

Let, as above, €’ (M) be the set of all nonempty compact subsets of M with the
Hausdorff metric disty (by Lemma 1.1.1, (¥’ (M), disty) is a compact metric space).

Consider the map €(f) : €¥(M) — € (M) defined by €(f)(A) = f(A) for
A € ¥(X). Clearly, this map is continuous.

Recall that a closed f-invariant subset A is chain transitive if x <ws4 y for all
X,y € A.

Proof (of Proposition 1.1.1) Let A be a chain recurrence class.

By Lemma 1.1.5, A is closed and f(A) = A. We prove the proposition modifying
the proof of the result of Robinson [84]. Let x,y € A. For each integer n > 1, take
a (1/n)-chain C, = {x(,...,x,, } from x through y to x. In particular, x,y € C,.
Since C, € € (M) for any n, there is a subsequence n; such that limy_, o, C,, = C
for some C € ¢'(M). Note that x,y € C. We show that f(C) = C. Since xj = x,, ,
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we see that distg (f(C,), C,) < 1/n. Thus,

disty (f(C), C) < disty(f(C).f(Cn))+

+disty (£(Cy). Co) + disty(Cp, C) <
1

< disty (F(O).f(Co)) +  + dista(Cyy. ©).
k

Letting k — oo, we conclude that disty (f(C), C) = 0, i.e., f(C) = C.
Next we show that C is chain transitive. Let z,w € C, and fix any ¢ > 0. Let
8 = 8(e/3) and take n = ny such that 1/n < ¢/3 and disty (C, C,) < 8. Then

My

cclJne.x

i=0

(recall that N(6,x) = {y € M : dist(y, x) < §}).

Take i,j with 0 < i,j < m, such that dist(z,x!) < & and dist(w,xl’.’) < 6.
Since xj = x;, , there is a (1/n)-chain {yo,y1....,yu} C C fromx} to x;. We now
construct an g-chain {z9,zy,..., %y} in C from z to w. For 0 < k < m, take zz € C
such that z; € N(8, yx), and let zg = z, z,, = w. Since dist(zx, y¢) < 8 = 8(g/3), it
follows that

dist(f(zx), zx+1) =< dist(f(zx), f(y)) + dist(f (ye), Ye+1)+
+dist(yit1. z%1) < /3 + ’11 +8<e

foreach 0 < k < m. Thus, {z9, ..., Zu} is an e-chain in C from z to w. Since & > 0 is

arbitrary, z »>¢ w. Since z, w € C are arbitrary, z <w>¢ wforany z,w € C, i.e., Cis

chain transitive. If we take x = z, then x <w> wfor all w € C. Thus, C C A. Since

x <w>c y, we conclude that x <w>,4 y. Hence, A is chain transitive, as desired. The

maximality of A is obvious. O
It is easy to see that the following statement holds (we omit the proof).

Lemma 1.1.6 For any x € M, the omega-limit set wy(x) of x and alpha-limit set
oy (x) of x are chain transitive.

Historical Remarks Pseudotrajectories of a special kind (called §-chains) were
considered by G. D. Birkhoff in his study of the last Poincaré geometric theorem [9].

The first basic results related to shadowing were obtained by D. V. Anosov and
R. Bowen in [4] and [12] for hyperbolic sets of diffeomorphisms. It is easily seen
that both Anosov’s and Bowen’s proofs, in fact, give Lipschitz shadowing in a
neighborhood of a hyperbolic set of a diffeomorphism.

The orbital shadowing property was first considered in the joint paper [65] of the
authors of this book and A. A. Rodionova.
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The periodic and Lipschitz periodic shadowing were studied by A. V. Osipov, the
first author of this book, and S. B. Tikhomirov in [50].

S. B. Tikhomirov studied the Holder shadowing property on finite intervals in the
paper [101].

C. Conley introduced the notion of chain recurrence in [14] and [15]. Most of the
results of this section devoted to chain recurrence and chain transitivity, which were
reformulated for discrete dynamical systems in Shimomura [93], can be found in
[14] and [15] in the case of flows. As far as we know, chain transitive sets of discrete
dynamical systems with the standard shadowing property were first considered in
[93] from the view point of topological entropy.

1.2 Pseudotrajectories and Shadowing in Dynamical Systems
with Continuous Time

Let M be a smooth closed manifold. Consider a C! vector field X on M and denote
by ¢ the flow of X. We denote by

O(x.¢) ={¢(1.x): te R}
the trajectory of a point x in the flow ¢; O™ (x, ¢) and O~ (x, ¢) are the positive and
negative semitrajectories, respectively.
Definition 1.2.1 Fix a number d > 0. We say that a mapping g : R — M (not
necessarily continuous) is a d-pseudotrajectory (both for the field X and flow ¢) if

dist(g(t +1),¢(t,g(r))) <d for 7 eR, re]0,1]. (1.8)

Of course, one can also define finite pseudotrajectories defined not on R but on
finite segments [a, b]. We leave details to the reader.

It is easy to understand that, defining shadowing properties in the case of flows,
it is not reasonable to give a definition parallel to Definition 1.1.2 just replacing
inequality (1.3) by an inequality of the form

dist(g(r), ¢ (t,p)) <e, teR. (1.9

Indeed, consider the following simple example.

Example 1.2.1 Let M be the two-dimensional sphere S?; consider in a coordinate
neighborhood U homeomorphic to R? a vector field X having an isolated closed
trajectory y parametrized by

£(t) = (sint,cost), te€R.
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Take a small d > 0 and let
g() =E(t+kd/2), te[2nk 2n(k+1)), ke Z.

Since |X(x)] = 1 at points of y, it is easy to understand that g is a d-
pseudotrajectory of X.

Assume that there exists a point p such that inequality (1.9) holds with ¢ =
e(d) — 0 as d — 0. Since the trajectory y is isolated, this is possible (for & small
enough) only if p € y. In this case, there exists a 6 such that

¢(1,p) = §(1+ 0).
Note that
¢Q2rk,p) =§Q2nk+0) =§(0). ke,
while the set of points
g(rk) = EQuk + kd/2) = £(kd/2)

is d-dense in y. Hence, for any d small enough there exists a k such that the distance
between g(27k) and €2k + 0) = £(0) is larger than 7/2, which contradicts our
assumption.
Clearly, a similar construction can be realized in any flow having an isolated closed
trajectory, and the set of such flows is large enough.

To avoid problems of that kind, one has to change parametrization of the
shadowing trajectories. We introduce the following notion.

Definition 1.2.2 A reparametrization is an increasing homeomorphism % of the line
R; we denote by Rep the set of all reparametrizations.
For a > 0, we denote

h(t) —h(s)

r—s

Rep(a):{heRep:) l|<a, t,seR t#s

Definition 1.2.3 We say that a vector field X has the standard shadowing property
if for any ¢ > 0 we can find d > 0 such that for any d-pseudotrajectory g(¢) of X
there exists a point p € M and a reparametrization 2 € Rep(e) such that

dist(g(1). ¢ (h(t).p)) <& for teR. (1.10)

We denote by SSPr the set of vector fields having the standard shadowing
property.

Definition 1.2.4 We say that a vector field X has the Lipschitz shadowing property
if there exist dy > 0 and .Z > 0 such that for any d-pseudotrajectory g(¢) of X with
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d < d, there exists a point p € M and a reparametrization 4 € Rep(.Zd) such that
dist(g(?), p(h(2),p)) < Ld for reR. (1.11)

We denote by LSPr the set of vector fields having the Lipschitz shadowing
property.

Definition 1.2.5 We say that a vector field X has the oriented shadowing property if
for any & > 0 we can find d > 0 such that for any d-pseudotrajectory g(r) of X there
exists a point p € M and a reparametrization 4 € Rep such that inequalities (1.10)
hold (we emphasize that in this case, it is not assumed that the reparametrization h
is close to identity).

We denote by OrientSPr the set of vector fields having the oriented shadowing
property.

Definition 1.2.6 We say that a vector field X has the orbital shadowing property if
for any & > 0 we can find d > 0 such that for any d-pseudotrajectory g(f) of X there
exists a point p € M such that

disty (Cl({g(1) : 1 € R}).Cl(O(p.9))) < &.
We denote by OrbitSPy the set of vector fields having the orbital shadowing

property.
Obviously, the following inclusions hold:

OrbitSPxr O OrientSPr D SSPr D LSPr

(of course, here we have in mind that we consider vector fields on the same
manifold).
It is easy to show that

SSPr \ LSPr # @.
It was recently shown by Tikhomirov [100] that
OrientSPr \ SSPr # @

(this solved the old problem posed by M. Komuro in [29]).

Historical Remarks Let us note that the standard shadowing property of vector
fields (and their flows) is equivalent to the strong pseudo orbit tracing property
(POTP) in the sense of M. Komuro [29] and [30]; the oriented shadowing property
was called the normal POTP by M. Komuro [29] and the POTP for flows by R. F.
Thomas in [102].
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1.3 Hyperbolicity, §2 -Stability, Structural Stability,
Dominated Splittings

Let us shortly recall the definitions of basic notions of the theory of structural
stability of dynamical systems which we use in this book.

Let M be a smooth closed manifold and let f be a diffeomorphism of M of class
C'.

Definition 1.3.1 We say that a set I C M is a hyperbolic set of a diffeomorphism f
if the following conditions hold:

(HSD1) the set I is compact and f-invariant;

(HSD2) there exist numbers C > 0 and A € (0, 1) and linear subspaces S(p) and
U(p) of the tangent space T,M defined for any point p € I such that

(HSD2.1) S(p) @ U(p) = T,M;

(HSD2.2) Df (p)S(p) = S(f(p)) and Df(p)U(p) = U(f(p));

(HSD2.3) if v € S(p), then |Df *(p)v| < CAK|v| fork > 0;

(HSD2.4) if v € U(p), then |Df *(p)v| < CA*|v| for k < 0.

The numbers C > 0 and A € (0, 1) are usually called hyperbolicity constants of
the set I; the families S(p) and U( p) are called the hyperbolic structure on I.

The main objects related to a hyperbolic set I are stable and unstable manifolds
of its points.

Definition 1.3.2 The stable and unstable manifolds of a point p € [ are the sets
defined by the equalities

Wi (p) = {x € M : dist (f*(x).f*(p)) > 0. k — oo}
and
W (p) = {x e M : dist (f*(x).f*(p)) > 0, k > —o0},
respectively.
The classical stable manifold theorem (see, for example, [27, 108]) states that if
p is a point of a hyperbolic set I as above and o (p) = dimS(p), then W*(p) is the

image of the Euclidean space R°? under a C! immersion a,; this means that the
map

s . mo(p) )
a, R — W*(p)
is one-to-one and that

rankDa,(x) = o(p), x€ RO,
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In addition, a,, (0) =pand

T,W*(p) = S(p).

A similar statement (with o (p) = dimU( p)) is valid for WY (p).
One more classical definition which we need is the definition of the nonwander-
ing set of a diffeomorphism f.

Definition 1.3.3 A point x is called a nonwandering point of f if for any neigh-
borhood U of x and for any number N there exists a number n, |n| > N, such that
1 U)NU # @. We denote by £2(f) the set of nonwandering points of f (sometimes,
the set £2(f) is called the nonwandering set of f).

It is not difficult to show that the set £2(f) is nonempty, compact, and f-invariant
(see, for example, [71]).

Now we recall the two basic definitions of the theory of structural stability of
diffeomorphisms, the definitions of §2-stability and structural stability.

Let us start with the definition of the C! topology on the space of diffeomor-
phisms of a smooth closed manifold M.

First we define a C° metric po on the space of homeomorphisms of a compact
metric space.

Let (M, dist) be a compact metric space. If f and g are two homeomorphisms of
the space M, we set

po(f.8) = maxmax (dist(f(x), g(x)), dist(f ™" (x), 7' (x))) - (1.12)

It is easy to show that py is a metric on the space of homeomorphisms of the space
M.

We denote by H(M) the space of homeomorphisms of the space M with the
metric po; the topology induced by the metric py is called the C° topology.

It is not difficult to show that the metric space H(M) is complete (see, for
example, [71]). At the same time, if we consider the topology on the space of
homeomorphisms induced by the standard uniform metric

max dist(f(x), g(x)), (1.13)

then the resulting space is not necessarily complete (see [71]).

Let now M be a smooth closed n-dimensional manifold. To introduce the C!
topology on the space of diffeomorphisms of M, we assume that M is a submanifold
of the Euclidean space R" (a different, equivalent, approach to definition of the C!
topology based on local coordinates is described in [60]).

No generality is lost assuming that M is a submanifold of a Euclidean space since,
by the classical Whitney theorem, any smooth closed manifold can be embedded
into a Euclidean space of appropriate dimension.

If M is a submanifold of R, for any point x € M we can identify the tangent
space T,M of M at x with a linear subspace of R". Consider the metric dist on M
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induced by the Euclidean metric of the space RV. For a vector v € T,M we denote
by |v| its norm as the norm in the space RY.

Let f and g be two diffeomorphisms of the manifold M. Define the value py(f, g)
by the same formula (1.12) as for homeomorphisms of a compact metric space.

Take a point x of the manifold M and a vector v from the tangent space 7T,.M. We
consider the vectors Df (x)v € TpyM and Dg(x)v € TyM as vectors of the same
Euclidean space RY. Hence, the following values are defined: |Df (x)v — Dg(x)v|
and

IDf(x) —Dg(¥) | = max |Df(x)v — Dg(x)v|.
veT M, |v|=1

Introduce the number
p1(f.8) = po(f.8) + max max (IDf (x) = Dg@)II. |1Df " (x) = Dg~' W) ]) -

Clearly, p; is a metric on the space of diffeomorphisms of the manifold M. We
denote by Diff ! (M) the space of diffeomorphisms of M with the metric p;; the
topology induced by the metric p; is called the C! topology.

The standard reasoning shows that the topology on Diff ! (M) does not depend on
the embedding of M into a Euclidean space and that (Diff ' (M), p;) is a complete
metric space.

Remark 1.3.1 To explain why it is reasonable to include the term ||Df~'(x) —
Dg~'(x)|| in the definition of the C' topology on the space of diffeomorphisms,
let us consider the following example.
Let M = S! with coordinate x € [0, 1), fix a small # > 0 and define a mapping
fi: St > st
by the formula
fi0) = e+ 2+ hy (),
where A, is of class C' in x,
h(x) =0, x<1/3,
and
hi(x) =3x(1—x)—1t, x>2/3.

Then

fi)=m+x, x<1/3,
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and
) =14+1x—1)+@x—-1)> x>2/3.
Clearly, one can construct £, so that

() >0
for small # > 0 and for all x (thus, any f;, with such ¢ is a diffeomorphism of S') and

sup (|hi(x) — he(x)| + |Hj(x) — K. (x)]) = 0, £,T — 0. (1.14)

0<x<l

It follows from (1.14) that the family {f;} is a Cauchy sequence as t — 0 with
respect to the metric

p(f.8) = sup (If(x)—g@)|+ |f'(x) — &' W)

0<x<l

but, clearly, its limit as ¢ — 0 is not a diffeomorphism of S'.

Thus, the space of diffeomorphisms of S with the metric p is not complete.

In what follows, if A is a subset of Diff ' (M), then Int ' (A) denotes the interior of
A in Diff ' (M).
Definition 1.3.4 A diffeomorphism f is called structurally stable if there exists a
neighborhood W of the diffeomorphism f in Diff ! (M) such that any diffeomorphism
g € W is topologically conjugate to f (i.e., there exists a homeomorphism / : M —
M suchthat hof = goh).

We denote by .7 (M) the set of structurally stable diffeomorphisms in Diff ! (M).
We agree to write Diff ! and .7}, instead of Diff ' (M) and .5 (M), respectively, if it
is not important for us to indicate the manifold M (as in the remark below).

Remark 1.3.2 Clearly, the set .%p is open in Diff !

Definition 1.3.5 A diffeomorphism f is called §2-stable if there exists a neighbor-
hood W of the diffeomorphism f in Diff ' (M) such that for any diffeomorphism
g € W there exists a homeomorphism £ : £2(f) — £2(g) such that

hoflew = gohle):
We denote by £2.9p(M) (or simply £2.7p) the set of §2-stable diffeomorphisms.
The following statements are also obvious.
Remark 1.3.3

(1) The set 2.7p is open in Diff .
2) Sp C 2.
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Now we pass to characterization of §2-stability and structural stability.
S. Smale introduced the following condition.

Axiom A

(AAa) The nonwandering set £2(f) is hyperbolic.
(AAD) Periodic points of f are dense in £2(f).

This condition played a very important role in the development of the theory
of structural stability. First we describe the structure of the nonwandering set of a
diffeomorphism that satisfies Axiom A. Smale proved the following statement.

Theorem 1.3.1 (Spectral Decomposition Theorem) If a diffeomorphism f satis-
fies Axiom A, then its nonwandering set can be represented in the form

Q(f)=2,U---U £, (1.15)

where the §2; are disjoint, compact, invariant sets such that each of these sets
contains a dense positive semitrajectory. Representation of the form (1.15) s
unique.

The sets §2; in representation (1.15) are called basic.

We can define analogs of stable and unstable manifolds for basic sets £2;:

Wi (2) = {xeM: dist(f*(x).£2;) > 0. k— oo}
and
WU(2) = {xeM: dist(f'(x), 2) >0, k— —o0}.

The following statement holds (one can find a proof, for example, in [60]).

Theorem 1.3.2 If a diffeomorphism f satisfies Axiom A, then
M= w2y = w ). (1.16)
i=1 i=1

Thus, any trajectory f*(x) of a diffeomorphism that satisfies Axiom A tends to a
basic set as |k| — oo.

Now we give definitions which we need to formulate necessary and sufficient
conditions of §2-stability and structural stability of diffeomorphisms.

Let £2; and £2; be two (not necessarily different) basic sets of a diffeomorphism
that satisfies Axiom A. We write £2; — 2, if there is a pointx ¢ £2(f) such that

5 ) — 2 and ff(x) — £2;, k — oo.

Definition 1.3.6 We say that a diffeomorphism f has a 1-cycle if there exists a basic
set §2; such that £2; — £2;.
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We say that a diffeomorphism f has a k-cycle, k > 1, if there exist k different
basic sets £2;,, . .., £2;, such that

Qil _>"'_)Qik_>9i1'

We say that a diffeomorphism satisfies the no cycle condition if it does not have
k-cycles with k > 1.

Theorem 1.3.3 A diffeomorphism f is §2-stable if and only if f satisfies Axiom A
and the no cycle condition.

Definition 1.3.7 Let f be a diffeomorphism satisfying Axiom A. We say that
f satisfies the geometric strong transversality condition if stable and unstable
manifolds of nonwandering points are transverse, i.e., if p,g € $2(f) and x €
W“(p) N W*(gq), then

T.W*(p) + T.W'(q) = T.M. (1.17)

Remark 1.3.4 Usually, the condition introduced in Definition 1.3.7 is called the
strong transversality condition; we add the term geometric to distinguish this
condition and the analytic strong transversality condition introduced below, in
Definition 1.3.11.

Theorem 1.3.4 A diffeomorphism f is structurally stable if and only if f satisfies
Axiom A and the geometric strong transversality condition.

Theorems 1.3.3 and 1.3.4 are classical basic results of the theory of structural
stability. Nevertheless, sometimes it is more convenient to use different statements
which characterize §2-stability and structural stability (as we do in this book). Let
us formulate some of them.

Recall that Per(f) denotes the set of periodic points of a diffeomorphism f.

Definition 1.3.8 A periodic point p is called hyperbolic if its trajectory O(p,f) is
a hyperbolic set. It is easy to see that if p is a periodic point of period m, then p
is hyperbolic if and only if the derivative Df" (p) does not have eigenvalues A with
Al = 1.

Denote by HPp, the set of diffeomorphisms f such that any periodic point of f is
hyperbolic.

Theorem 1.3.5 The sets Int' (HPp) and 2.%p coincide.
Sometimes, the set Int ' (HPp) is denoted by .% and its elements are called star
systems.

Remark 1.3.5 1t follows from Theorem 1.3.5 that to establish the §2-stability of a
diffeomorphism f, it is enough to show that f and its C'-small perturbations do not
have nonhyperbolic periodic points.
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Definition 1.3.9 A diffeomorphism f € HPp is called Kupka—Smale if stable and
unstable manifolds of its periodic points are transverse. We denote by KSj, the set
of Kupka—Smale diffeomorphisms.

Definition 1.3.10 A subset A of a topological space X is called residual if A
contains the intersection of a countable family of open and dense subsets of X. A
property P of elements of X is called generic if the set

{x € X : xsatisfies P}

is residual.
Theorem 1.3.6

(1) The set KSp is residual in Diff".
(2) The sets Int'(KSp) and %) coincide.

Remark 1.3.6 It follows from the second statement of Theorem 1.3.6 that to
establish that a diffeomorphism f is structurally stable, it is enough to show that
f has a C! neighborhood belonging to KSp.
One more way of proving that a diffeomorphism is structurally stable is based on
the result of Theorem 1.3.7 (Maiié’s theorem) below. Let us start with a definition.
Fix a point x € M and consider the following two subspaces of T, M:

BT (x) = {v € T,M : lim inf |Dff ()| = o}
and
B~ (x) = {v € T\M: lim inf IDff (x| = o} )

Definition 1.3.11 We say that a diffeomorphism f satisfies the analytic strong
transversality condition if

BT(x) + B (x) =T,M forany xe M. (1.18)

Theorem 1.3.7 A diffeomorphism f is structurally stable if and only if f satisfies
the analytic strong transversality condition.

A detailed proof of Theorem 1.3.7 is given in Chap. 2 of this book.

Let us define one more important for us property of invariant sets of diffeomor-
phisms.

Let A be a compact invariant set of a diffeomorphism f.

Definition 1.3.12 We say that f admits a dominated splitting on A if there exist
continuous families of linear subspaces E(p) and F(p) of the tangent spaces 7,M
for p € A such that
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(DS E(p) @ F(p) =T,M, p € A;

(DS2) the subspaces E(p) and F(p) are Df-invariant (i.e., analogs of equalities
(HSD2.2) from Definition 1.3.1 with S(p) and U( p) replaced by E(p) and F(p)
are satisfied);

(DS3) there exist numbers C > 0 and A € (0, 1) such that

[DF e |- 1O e = €A% pe A k=0, (1.19)

One more notion which we use in this book is the notion of a homoclinic point
(and homoclinic trajectory).
Let p be a hyperbolic periodic point of a diffeomorphism f.

Definition 1.3.13 A point g # p such that

g€ W'(p) N W(p)

is called a homoclinic point of the periodic point p.
A homoclinic point g of p is called transverse if the stable and unstable manifolds
W*(p) and W"(q) are transverse at q.

Theorem 1.3.8 Any neighborhood of a transverse homoclinic point contains an
infinite set of different hyperbolic periodic points of f.

Many notions and statements formulated above for diffeomorphisms have
analogs for flows generated by smooth vector fields. Let us give the corresponding
definitions and state theorems which we need in what follows (in the case of similar
objects, for example, such as the nonwandering set etc., we do not repeat the
definitions and leave details to the reader).

Let X be a smooth (of class C') vector field on a smooth closed manifold M. Let

¢:RxM—->M

be the flow generated by X and let, as above,

Ox,9) ={o(t,x) : t e R}

be the trajectory of a point x € M in the flow ¢.
We denote by @(t, p) the derivative (in p) of ¢ (z, p); thus,

o@t.p) : TyM — TyapM.
Definition 1.3.14 We say that a set I C M is a hyperbolic set of the vector field X

(and its flow ¢) if I has the following properties:

(HSF1) the set I is compact and ¢-invariant;
(HSF2) there exist numbers C > 0 and A > 0 and linear subspaces S(p) and U(p)
of the tangent space T,M defined for any point p € I such that
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(HSF2.1) S(p) @ U(p) ® {X(p)} = T,M, where {X(p)} is the subspace spanned
by the vector X(p);
(HSF2.2)

@(t,p)S(p) = S(¢(t,p)) and @(t,p)U(p) = U($(t,p)), teR;

(HSF2.3) if v € S(p), then |@(z, p)v| < Cexp(—Ar)|v]| fort > 0;
(HSF2.4)if v € U(p), then |@(t, p)v| < Cexp(Af)|v]| fort < 0.

Similarly to the case of diffeomorphisms, the main objects related to a hyperbolic
set I of a flow ¢ are stable and unstable manifolds of its points (and its trajectories).

Definition 1.3.15 The stable and unstable manifolds of a point p are the sets
defined by the equalities

Wi(p) ={x e M :dist(¢(t,x),p(t,p)) = 0, t - oo}
and
W'(p) = {x e M : dist(¢(t,x),p(t,p)) — 0, t —> —o0},

respectively.
One uses these objects to define the stable and unstable manifolds of the
trajectory of a point p:

W' (O(p.¢)) =W (@)

tER

and

W' (O(p. ) = | W' (¢(.p)).

teR

The stable manifold theorem for flows states that if p is a point of a hyperbolic set
I as above and o (p) = dimS(p), then the structure of W*(O(p, ¢)) can be described
as follows:

e if pis arest point (i.e., ¢(t,p) = p, t € R), then W (O(p, p)) = W*(p) is the
image of the Euclidean space R°? under a C' immersion;

* if O(p, ¢) is a closed trajectory that is not a rest point (i.e., ¢ (¢, p) is periodic
in ¢ with a nonzero minimal period), then W*(O(p, ¢)) is the image under a C!
immersion of a fiber bundle over the circle with fibers R%®);

o if O(p,¢) is a trajectory such that ¢(t;,p) # ¢(t2,p) for t; # 1, then
W*(O(p, ¢)) is the image of the Euclidean space R??*! under a C! immersion.

Similar statements hold for the unstable manifolds of trajectories of a hyperbolic
set.
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Now we recall the two basic definitions of the theory of structural stability of
vector fields, the definitions of §2-stability and structural stability.

Let us start with the definition of the C' topology on the space of vector fields
of class C' on a smooth closed manifold M (everywhere below, a vector field is a
vector field of class C).

Let X and Y be two such vector fields; define the number

pi(X.¥) = max (|X(x) Y|+ H - H) .

It is easily seen that p; is a metric on the space of vector fields of class C'; we
denote by 2! (M) (or simply by 2°!) the space of vector fields with this metric
(and with the induced topology which we call C! topology). As in the case of
diffeomorphisms, if A is a subset of 2! (M), then Int'(A) denotes the interior of
Ain Z7Y(M).

Remark 1.3.7 Let X and Y be two vector fields and let ¢ and i be their flows,
respectively. Consider the diffeomorphisms f(x) = ¢(1,x) and g(x) = ¥ (1,x). It
is not difficult to show that if p;(X,Y) — 0, then p;(f,g) — O (see, for example,
Chap. 2 of [71]).

Let us denote by Per(X) (or Per(¢)) the set of rest points and closed trajectories

of X (and its flow ¢) and by £2(X) (£2(¢)) the nonwandering set (the definition of
the nonwandering set for a flow is similar to that for a diffeomorphism, and we omit
it).
Definition 1.3.16 A vector field X (and its flow ¢) is called structurally stable
if there exists a neighborhood W of X in 2! (M) such that for any vector field
Y € W, its flow ¥ is topologically equivalent to the flow ¢, i.e., there exists
a homeomorphism # : M — M that maps trajectories of X to trajectories of Y
preserving the orientation of trajectories.

Let us denote by .##(M) (or .F) the set of structurally stable vector fields (and
flows).

Remark 1.3.8 Let us note that, in contrast to Definition 1.3.4, it is not assumed in
Definition 1.3.16 that & is a topological conjugacy of the flows ¢ and ¥ of X and Y
(the latter means that

h(@ (1. x)) = ¢ (1. h(x))

for all ¢ and x).
In fact, the homeomorphism £ in Definition 1.3.16 must have the following
property: There exists a function t : R x M — R such that

(1) for any x € M, the function 7(-, x) increases and maps R onto R;
(2) 7(0,x) = x forany x € M;
(3) h(¢(t,x)) = ¥(z(t,x), h(x)) for any (z,x) € R x M.
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Clearly, the necessity of time reparametrization of shadowing trajectories in
the case of shadowing for flows (see Sect. 1.2) is caused by the same reasons as
the replacement of topological conjugacy by topological equivalence in Defini-
tion 1.3.16.

Definition 1.3.17 A vector field X (and its flow ¢) is called §2-stable if there exists
aneighborhood W of X in .2"! (M) such that for any vector field Y € W, its flow ¥ is
§2-equivalent to the flow ¢, i.e., there exists a homeomorphism % : 2(¢) — ()
that maps trajectories of £2(¢) to trajectories of £2() preserving the orientation of
trajectories.

Let us denote by £2.%F(M) (or £2.%F) the set of §2-stable vector fields (and flows).

The following condition (also introduced by Smale) is an analog of Axiom A for
the case of vector fields and flows.

Axiom A’

(AA’a) The nonwandering set §2(¢b) of the flow ¢ is hyperbolic.

(AA’b) The set £2(¢) is the union of two disjoint compact ¢-invariant sets Q; and
0,, where O consists of a finite number of rest points, while O, does not contain
rest points, and points of closed trajectories are dense in Q5.

If a flow ¢ satisfies Axiom A’, then the following analog of Theorem 1.3.1 holds.

Theorem 1.3.9 The nonwandering set §2(¢) has a unique representation of the
form

() =2,U---U 2,

where the §2; are disjoint, compact, ¢p-invariant sets such that each of these sets
contains a dense positive semitrajectory.

As in the case of a diffeomorphism, the sets §2; are called basic. A basic set of a
flow ¢ that satisfies Axiom A’ is either a rest point or a closed invariant set that does
not contain rest points and such that points of closed trajectories are dense in it.

Let £2; and £2; be two different basic sets of a flow ¢ that satisfies Axiom A’. We
write £2; — £2; if there exists a point x such that

¢(t,x) = $2;, t > —oco, and ¢(t,x) = £2j, t — oo.

The no cycle condition for a flow ¢ literally repeats the corresponding condition for
a diffeomorphism.
The following statement is an analog of Theorem 1.3.3.

Theorem 1.3.10 A flow ¢ is 2-stable if and only if ¢ satisfies Axiom A’ and the no
cycle condition.

If a flow ¢ satisfies Axiom A’, then hyperbolic trajectories ¢ (¢, p), p € 2(¢),
have stable and unstable manifolds W*(O(p, ¢)) and W*(O(p, ¢)), respectively.
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Definition 1.3.18 We say that such a flow ¢ satisfies the geometric strong transver-
sality condition if for any points p,q € £2(¢), the manifolds W*(O(q, ¢)) and
W*(O(p, ¢)) are transverse at any point of their intersection.

The following statement is an analog of Theorem 1.3.4.

Theorem 1.3.11 A flow ¢ is structurally stable if and only if ¢ satisfies Axiom A’
and the geometric strong transversality condition.

Definition 1.3.19 A rest point or a closed trajectory of a flow ¢ is called hyperbolic
if it is a hyperbolic set of ¢.

Remark 1.3.9 Condition under which a rest point or a closed trajectory is hyper-
bolic are well-known:

* arest point p of a flow ¢ generated by a vector field X is hyperbolic if and only
if any eigenvalue of the Jacobi matrix DX ( p) has nonzero real part;

* a closed trajectory y of a flow ¢ is hyperbolic if and only if, for any transverse
section X' at any point of y, the zero point of the section (corresponding to
the intersection of y with X') is a hyperbolic fixed point of the Poincaré map
generated by X' (see [71] for details).

Denote by HP the set of flows ¢ such that any rest point and closed trajectory
of ¢ is hyperbolic.

A complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct
(see Historical Remarks at the end of this section). Only the following partial analog
is valid.

Theorem 1.3.12 A nonsingular vector field in Int'(HPf) belongs to ..

Definition 1.3.20 A flow ¢ € HPy is called Kupka—Smale if stable and unstable
manifolds of its rest points and closed trajectories are transverse. We denote by KSr
the set of Kupka—Smale flows.

The following statement is an analog of Theorem 1.3.6.

Theorem 1.3.13

(1) The set KSg is residual in 2.
(2) The sets Int"(KSp) and S coincide.

Let us describe one more approach for establishing the structural stability of a
flow.
Let, as above, ¢ be the flow generated by a vector field X.

Definition 1.3.21 A point x € M is called a chain recurrent point of the flow
¢ if for any d,T > O there exists a d-pseudotrajectory g of ¢ (in the sense of
Definition 1.2.1) such that g(0) = x and g(f) = x for some ¢ > T.

In this case, similarly to Sect. 1.1, we write x <w> x.

Definition 1.3.22 The set

Z(P) ={x €M : x <~ x}
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of all chain recurrent points of ¢ is called the chain recurrent set of ¢.

It is easy to show (compare with Sect. 1.1) that in our case (where M is a compact
manifold), the set Z(¢) is nonempty, compact, and ¢-invariant.

In Sect. 2.7, we refer to the following two results.

Theorem 1.3.14 If X is a vector field of class C' such that the chain recurrent set
Z(p) of its flow ¢ is hyperbolic and stable and unstable manifolds of trajectories
in Z(¢) are transverse, then X is structurally stable.

Now we formulate a theorem which allows one to show that components of the
set Z(¢) are hyperbolic.

Let X' be a compact, ¢-invariant component of Z(¢) that does not contain rest
points of ¢. Denote f(x) = ¢(1, x).

For a point x € X, denote by P(x) the orthogonal projection in 7,,M with kernel
spanned by X(x) and by V(x) the orthogonal complement to X (x) in 7,M. Consider
the normal subbundle ¥ (X) of the tangent bundle TM|x which is the set of pairs
(x,V(x)), where x € X.

Define a mapping 7 on the normal subbundle ¥ (X') over X' by

7(x,v) = (f(x), B(x)v) , where B(x) = P(f(x))Df (x)

(recall that f(x) = ¢ (1,x)).

The hyperbolicity of w on ¥'(X) is defined similarly to the usual hyperbolicity
of a diffeomorphism on a compact invariant set. It means that there exist numbers
C > 0and A € (0,1) and linear subspaces S(p), U(p) of V(p) for p € X such
that

* S(poU(p) =Vip);

* B(p)S(p) =S(f(p)) and B(p)U(p) = U(f(p));
e if v € S(p), then |Bk(p)v| < CAMv| for k > 0;

* if v e U(p), then |Bk(p)v| < CA7Kv| fork < 0.

Theorem 1.3.15 [f 7w is hyperbolic on ¥ (X)), then X is a hyperbolic set of the flow

o.
If p is a rest point of a flow ¢ (i.e., O(p, ¢) = {p}), then we denote by W*( p) and

W“(p) (instead of W*(O(p, ¢)) etc.) its stable and unstable manifolds, respectively.
If y is a closed trajectory of a flow ¢ (i.e., O(p,¢) = y for any p € y), then we
denote by W*(y) and W*(y) its stable and unstable manifolds, respectively.
Let p be a hyperbolic rest point (or let y be a hyperbolic closed trajectory) of a
flow ¢.

Definition 1.3.23 A point g # p such that

g€ W'(p)nW(p)

is called a homoclinic point of the rest point p.
A point g ¢ y such that

g€ W'(y) N Wi(y)
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is called a homoclinic point of the closed trajectory y.
A homoclinic point g of y is called transverse if the stable and unstable manifolds
W#(p) and W"(q) are transverse at q.

Remark 1.3.10 Let us note that a homoclinic point g of a hyperbolic rest point p
cannot be transverse. Indeed, such a point ¢ cannot be a rest point (otherwise, g =
p); hence, X(g) # 0 (where X is the vector field which generates the flow ¢).

Since

dimW*(p) + dimW*(p) = dimM
and
0 # X(q) € T,W'(p) N T,W*(p),
the equality
W (p) + T,W(p) = T,M

is impossible.
An analog of Theorem 1.3.8 for flows can be formulated as follows.

Theorem 1.3.16 If g is a transverse homoclinic point of a hyperbolic closed
trajectory y of a flow ¢, then any neighborhood of O(q, ¢) contains an infinite set
of different hyperbolic closed trajectories of ¢.

Historical Remarks The general definition of a hyperbolic set is usually attributed
to D. V. Anosov [3].

The stable manifold theorem has a long history; usually, one refers to the names
of J. Hadamard and O. Perron (one can find an interesting discussion concerning the
theory of stable and unstable manifolds in D. V. Anosov’s monograph [3]; there he
mentiones also G. Darboux, H. Poincaré, and A. M. Lyapunov).

The notions of nonwandering points and other classical objects of the global
theory of dynamical systems were introduced and studied by G. Birkhoff [10].

The theory of structural stability originates from the A. A. Andronov and L. S.
Pontryagin’s paper [2] in which they defined a kind of such a property for vector
fields in a two-dimensional disk or on the two-dimensional sphere.

A very important role was played by S. Smale’s paper [95] in which he
introduced the notions of §2-stability, Axioms A and A’, proved the spectral
decomposition theorem (Theorem 1.3.1), gave first sufficient conditions of §2-
stability, etc.

Later, S. Smale proved the sufficiency of conditions of Theorem 1.3.3 [98].

The basic results of the theory of §2-stability and structural stability were
formulated as conjectures by J. Palis and S. Smale [52].

The sufficiency statement in Theorem 1.3.4 was first proved by J. Robbin in [78]
for diffeomorphisms of class C? and later by C. Robinson [81] in the general case.
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The necessity of conditions of Theorem 1.3.4 was established by R. Maifié in
[45]; later, the necessity of conditions of Theorem 1.3.5 was proved by J. Palis [53].

The set HP was studied by many authors; the set Int! (HP) is sometimes denoted
by .# (or .#'), and its elements are called star systems (both in the case of
diffeomorphisms and in the case of vector fields).

Theorem 1.3.5 was proved by Aoki [7] and S. Hayashi [25].

The complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct.
A vector field in Int! (HPF) may fail to have a hyperbolic nonwandering set, as the
famous Lorenz attractor shows [22], or fail to have rest points and closed trajectories
dense in the nonwandering set [17], or, even if Axiom A’ is satisfied, still fail to
satisfy the no cycle condition [37].

R. Maiié proved Theorem 1.3.7 in [39].

Theorem 1.3.12 was proved S. Gan and L. Wen in [21].

Kupka—Smale systems were independently defined and studied by 1. Kupka [31]
and S. Smale [94]. They proved Theorem 1.3.6 (1) and Theorem 1.3.13 (1).

Theorem 1.3.6 (2) follows from the results of [7] (where it was proved that
Int' (KSp) C .%p) and [82], where the inverse inclusion was established.

The inclusion Int'(KSp) C % was proved by H. Toyoshiba [103] and C.
Robinson [80]; the inverse inclusion was established by C. Robinson [79] and S.
Hayashi [26].

Homoclinic points were first studied by H. Poincaré [75]; Theorem 1.3.8 (as well
as Theorem 1.3.13) belongs to S. Smale [96, 97].

The sufficiency of conditions of Theorem 1.3.10 was established by C. Pugh and
M. Shub [76]; the sufficiency of conditions of Theorem 1.3.11 was proved by C.
Robinson [79].

The necessity of conditions in these theorems follows from results of L. Wen
[106] and S. Hayashi [26].

It was shown by J. E. Franke and J. F. Selgrade in [18] that for a flow ¢, the set
Z(¢) is hyperbolic if and only if ¢ satisfies Axiom A’ and the no cycle condition.
Theorem 1.3.14 follows from this result combined with Theorem 1.3.11.

R. Sacker and G. Sell studied in detail dichotomies and invariant splittings in
linear differential systems [86]; in particular, they proved Theorem 1.3.15 in [85].

1.4 Hyperbolic Shadowing

As we wrote in the Preface, one of the main goals of this book is to study relations
between shadowing and basic notions of the theory of structural stability. It was
known that structural stability implies Lipschitz shadowing both for diffeomor-
phisms and vector fields; let us formulate this as a theorem.

Theorem 1.4.1 The following inclusions hold:

(1) p C LSPp;
(2) Sr C LSPp.
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We show in Chap.2 that the inverse inclusions hold as well, so that structural
stability is equivalent to Lipschitz shadowing.

An important part in the proof of Theorem 1.4.1 is the statement that a diffeo-
morphism or a vector field has the Lipschitz shadowing property in a neighborhood
of its hyperbolic set.

In this section, we prove that a diffeomorphism has the finite Lipschitz shadowing
property in a neighborhood of a hyperbolic set (in this book, we refer to this
statement in Sect. 2.4). This is a classical result having a lot of different proofs. The
proof which we give here is of a geometric origin; its modification can be applied in
the absence of hyperbolicity as well (see, for example, [58]).

To simplify presentation, we consider a diffeomorphism f of R" and its hyper-
bolic set A.

Our proof applies the existence of a so-called adapted (or Lyapunov) norm in
a neighborhood of A (with respect to this norm, the constant C in inequalities
(HSD2.3) and (HSD2.4) of Sect. 1.3 equals 1); a proof of this result can be found in
[71].

Lemma 1.4.1 Let A be a hyperbolic set of a diffeomorphism f. There exist
constants v > 1 and A € (0, 1) such that for any € > 0 we can find a neighborhood
W of the set A having the following property. There exists a positive constant §,
a C*® norm | - |y for x € W, and continuous (but not necessarily Df-invariant)
extensions S' and U’ of the families S and U of the given hyperbolic structure to the
neighborhood W such that

(1) S(pp@U(p)=R". peW;
(2) ifp.g € W, |f(p) — q| < 8, and P(q) is the projection onto S'(q) parallel to
U'(q), then the mapping P(q)Df (p) is a linear isomorphism between S'(p) and

S'(q) (respectively, if Q(q) = Id—P(q), then the mapping Q(q)Df (p) is a linear
isomorphism between U'(p) and U’ (q)) and the following inequalities hold:

| P(q)Df (p)vly < Alvl, and |Q(q)Df (p)vly < elvlp, v €S (p),  (1.20)
and
MQ(@)Df (p)vly = Ivl, and | P(@)Df (p)vly < elvl,, v eU(p):  (1.21)
(3)

1
v, < v] < vlvl,, peW, velR" (1.22)
v

(4)
IP(PIL QP <v. peW (1.23)

(in inequalities (1.23), we have in mind the operator norm related to the norm

I-lp)-
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Remark 1.4.1

(1) Since the adapted norm is Lipschitz equivalent to the standard norm (see
inequalities (1.22)), f has (or does not have) the finite Lipschitz shadowing
property with respect to these norms simultaneously. For that reason, to simplify
presentation, we assume that the standard Euclidean norm is adapted. Similarly,
we write S(p) and Q(p) instead of §'(p) and U’ (p) forp € W.

(2) In addition, we may assume that the neighborhoods W corresponding to small
enough ¢ are subsets of a fixed closed neighborhood of A.

This allows us to assume that the norm ||Df(p)|| is bounded for p € W and to
use uniform estimates of the remainder term of the first-order Taylor formula for f
in the proof of property (P’4) and in formula (1.35).

Thus, we assume that

IDf(p)| = Mo, pEW,

and set M = v(1 + 12M).
Take

Z=2v/(1-2) (1.24)
and note that
L>AL+v>1land L/A > L +v. (1.25)
There exists an &€ > 0 such that

ZL>v+eM(l+v)Z, (1.26)
L>AZL +v+e(l+20)2. (1.27)

Note that (1.27) implies the inequality
ZLIA>ZL+v+e(1+20)2. (1.28)

Let W be a neighborhood of A corresponding by Lemma 1.4.1 to this ¢.
Our main result in this section is as follows.

Theorem 1.4.2 The diffeomorphism f has the finite Lipschitz shadowing property
inW.

Proof First we define several geometric objects related to the introduced structure.
Fix a point p in W; we represent points g close to p in the form p 4 v and define
our objects by imposing conditions on the projections P(p)v and Q(p)v.
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Let A’ and A be positive numbers; consider the sets
R(A, Ap)={g=p+v: |P(pv| <A, |0(p)v| < A};
we write R(A, p) instead of R(A, A, p). Let
V(A.p) ={g=p+veR(A.p): [Q(pv|= A4}
and
T(A.p) ={g=p+veR.p): Q(pv =0}

Let us note several obvious geometric properties of the introduced objects.

(P1) V(A,p)isnotaretract of R(A, p).
(P2) V(A,p)isaretractof R(A,p) \ T(A,p).
(P3) If A’ > A, then there exists a retraction

o :R(A".p) > R(4A.p)
such that if
g=p-+vand Q(p)v # 0,
then
o(g) = p+v', where Q(p)v’ # 0.
Now we prove several properties of the images of the introduced sets under
f.

(P4) Thereexistsa A; > Osuchthatifp,r,f(p) € W, A < Ay, and |[r—f(p)| < A,
then

f(R(A,p)) CR(M A, r) (1.29)
and
FUR(A,r)) CRM, A, p), (1.30)
where M| = 4v M.
We prove only the part of property (P4) related to inclusion (1.29); the part

related to inclusion (1.30) is proved by a similar reasoning (possibly, with
different constants M; and Ay).
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First we prove an auxiliary statement:
(P4’) There exists a Ay > 0 such that if p,f(p) € Wand A < Ay, then

where M; = 4vM,.
Indeed, take a point g = p 4+ v € R(A, p); then

[v] = [P(p)v] + [Q(p)v]| < 24A.

Since
(@) =f(p) + Df(p)v + o(p,v),
where
lo(p.v)|/[v] =0, |v] =0,
uniformly in p and ||Df (p)|| < Mo, there exists a A; > 0 such that if A < Ay, then
|f(q) —f(p)| < 2Molv|, [v] <2A.
If f(q) = f(p) + w, then
[ P(f(p)w]. 1Q(f(P))w| < 2vMy|v| < 4vMoA,
which proves (P4') with M; = 4v M.

Now we prove (1.29). Since the projections P and Q are uniformly continuous,
we can reduce, if necessary, A; so that

IPG) =PI QX)) =@ < 1. x.yeW, [x—y| <A, (1.32)
Let A < A;. Take a point ¢ € f(R(A, p)) and let
g=f(p)+v=r+w
Then |[v —w| < A and

| P(f(p)v]. 1Q(f(p))v] = M1 A

by (P4').
Let us estimate

| P(r)w| < | P(n)w — P(r)v] + | P(r)v = P(f(p))v| + | P(f(p))v] =

<VA+2MA+MA= (v +3M)A =MA
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(estimating the second term, we take the inequality |v| < 2M;A and (1.32) into
account).

A similar estimate holds for |Q(r)w|, which proves (1.29).

Of course, without loss of generality, we may assume that

M=>1. (1.33)
Now we fix a
do €(0,A,/2)

with the following properties:

1) if p,f(p),r € Wand |r —f(p)| < do, then inequalities (1.20) and (1.21) are
satisfied with the chosen ¢;
(2) in the representation

f(p+v)=f(p)+Df(p)v+o(p.v), (1.34)
the estimate
lo(p,v)| < slv|, |v]| <2MZd,, (1.35)

holds.
Now we prove one more statement.

(P5) Ifd < do, p.f(p).r € W, |r —f(p)| < d, and A = Zd, then

f(T(MA,p)) N V(A,r) =0, (1.36)
f(T(A,p)) C Int(R(A, 7)), (1.37)
F(R(A,p) NAR(A,r) C V(A,r), (1.38)
and
F(V(A,p) NR(A,r) = 0. (1.39)

First we prove relation (1.36).

Ifg=p+veTMA,p),thenv = P(p)v € S(p), | P(p)v]| < MA = MZd,
and Q(p)v = 0. Hence, it follows from representation (1.34) and estimates (1.26)
and (1.35) that

10(N(f(@) =N = 12N (f(p) = NI+ 1QNDf(P)P(p)v| + [Q(r)o(p, v)| =

<vd+eMZd+veMLd = (v +eM(1 +v).L)d < Ld = A,



32 1 Main Definitions and Basic Results

which proves relation (1.36).
Let us prove relations (1.37) and (1.38).
First we note that inequality (1.33) implies the inclusion
T(A.p) CT(MA,p),
and it follows from the above inequality that

10N (f@) —nl <A, qeT(A.p). (1.40)

Now we consider a pointg = p + v € R(A, p), represent v = P(p)v + Q(p)v,
and estimate

| P()(f(q) = | = [ P(N(f(p) =l + | P(Df(p)P(p)v|+
+IP(NDf(p)Q(p)v| + [ P(r)o(p.v)| =
<vd+AZd+eld+2veLd= v+ AL +e(1+20V)L)d < Ld= A
(here we refer to the estimate |v| < 2.%d and to inequality (1.27)).
The above inequality proves relation (1.38). Combining it with inequality (1.40),
we get a proof of relation (1.37).

Finally, we prove relation (1.39). If g = p + v € V(A,p), then | P(p)v| < A =
Zdand |Q(p)v]| = A = Zd. Then

(N (flg) — 1l =
= 1(Df(p)(P(p)v + Q(p)v)| = QN (f(p) = NI = |@(o(p.v)| =
= |(NDf(P)Q(p)v| = QD (P)Q(p)v] = [Q(N(f(p) — N| = [Q(r)o(p, v)| =
> ZLd/A—eZLd—vd—-2evLd = (LA —v—e(1+2v))d>Ld=A

(here we refer to inequality (1.28)). This proves relation (1.39).
Now we consider points py, ..., p, € W such that

f(pr)eW, k=0,....m—1, (1.41)
and
[f(po) —prs1l <d <do, k=0,....m—1,
and prove that there exists a point r € R(A, pp) such that

A eRA.p), k=1.....m, (1.42)
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where A = Zd.

Let us note that condition (1.41) is not a real restriction since we can guarantee
it reducing W, if necessary.

For brevity, we denote Ry = R(A, pr), Vi = V(A,pr), Tx = T(A, pi).

Consider the sets

Ac=R\ () fPnRy)). k=0.....m—1.
I=k+1

It follows from equality (1.39) that
f(Vi) NRyy = 0.

Hence, V. C Ay.
‘We claim that there exist retractions

kaAk—>Vk, k=0,...,m—l.
This is enough to prove our statement since the existence of pp means that
m
(f ' (nt(R)) # @
1=0

(otherwise there exists a retraction of Ry to Vp, which is impossible by property
(P1)), which, in turn, means that there exists a point r € Ry such that

fk(r) eR,, k=0,....m,
or
|F5(r)—pe| =2v%d, k=0,....m.

Thus, our claim implies the finite Lipschitz shadowing property of f in W with
constants dy and 2v.Z.

Let us prove our claim. The existence of p,,—; is obvious since inclusion (1.37)
implies that

Tt Cf~'(Int(Ry)),

and hence,

Rm—l \f_l (Int(Rm)) - Rm—l \ Tm—lv

while V,,_; is a retract of the latter set by property (P2).
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Let us assume that the existence of retractions px+1, ..., pm—1 has been proved.
Let us prove the existence of py.
The definition of the sets Ay implies that

AN f (Rer) CF 7 (Arrn) (1.43)
since
f(A) N~ R ((Ant(R)) = @ for I > k + 2.
Define a mapping 6 on A; by setting
0(q) =" o prt10f(q), g €A NS (Ritr),
and
0@) =g, q€AN\f Ritr).

Inclusion (1.43) shows that the mapping 6 is properly defined.
Let us show that this mapping is continuous. Clearly, it is enough to show that

Pir1(r) = rforr € f(Ax Nf~ (ORk41)).
For this purpose, we note that

FA N OR41)) = f(Ar) N ORt1 C f(Ri) N OR41 C Vit

(we refer to inclusion (1.38)) and px41(r) = r for r € Viy,.
Clearly, 6 maps Ay into the set

Bi = [Re \ /™ R )] U™ (Viewn). (1.44)
Since d < A by our choice of dy, it follows from property (P4) that
By CR(MA, py).
Let us consider a retraction
o0: RIMA,py) > R

given by property (P3).
If

g=pi +vef (Vir) \ Ri.,
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then g ¢ T(MA, pi) by (1.36); thus, Q(p)v # 0. It follows from property (P3) that
in this case,

0(q) € Cr := R \T(A,py).

If

q € R\~ (Ris).

then the above inclusion follows from (1.37).
Condition (P2) implies that there exists a retraction

p: Cp —> Vi
It remains to note that 8(g) = g for ¢ € V} due to relation (1.39). Thus,
pk=pocol: Ay — Vg

is the required retraction. O

Historical Remarks There exist several proofs of the inclusion
“p C SSPp

based on different ideas.

This statement was proved by A. Morimoto [46], K. Sawada [92], and C.
Robinson [83] (note that the proof in [83] is not complete).

As far as the authors know, the first statement of Theorem 1.4.1 was first proved
in the book [61] of the first author, and the second statement was proved in his paper
[62].

Lemma 1.4.1 belongs to D. V. Anosov [3].

As was mentioned in Historical Remarks to Sect. 1.1, both classical proofs of
the shadowing property in a neighborhood of a hyperbolic set of a diffeomorphism
given by D. V. Anosov in [4] and R. Bowen in [12] show that shadowing is Lipschitz.

Our proof of Theorem 1.4.2 published in the joint paper [58] of the first author
and A. A. Petrov mostly follows the ideas of the joint paper [63] of the first author
and O. B. Plamenevskaya.



Chapter 2
Lipschitz and Holder Shadowing and Structural
Stability

In this chapter, we give either complete proofs or schemes of proof of the following
main results:

If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

a diffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is §2-stable (Theorem 2.4.1);

if a diffeomorphism f of class C? has the Holder shadowing property on finite
intervals with constants .2, C, dy, 6, w, where 6 € (1/2,1) and 6 + w > 1, then
f is structurally stable (Theorem 2.5.1);

there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

The structure of the chapter is as follows.
We devote Sects.2.1-2.3 to the proof of Theorem 2.3.1. In Sect. 2.1, we prove

theorems of Maizel’ and Pliss relating the so-called Perron property of difference
equations and hyperbolicity of sequences of linear automorphisms, Sect.2.2 is
devoted to the Mafié theorem (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof
of Theorem 2.3.1 to results of the previous two sections.

Theorem 2.4.1 is proved in Sect.2.4; Theorem 2.5.1 is proved in Sect.2.5;

Theorem 2.6.1 is proved in Sect. 2.6.

Finally, Sect. 2.7 is devoted to the proof of Theorem 2.7.1.
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2.1 Maizel’ and Pliss Theorems

Let/] = {k € Z: k > 0}. Let & = {Ay, k € I} be a sequence of linear
isomorphisms

Ap: R" - R
We assume that there exists a constant N > 1 such that
IAll 1A <N, kel (2.1)
We relate to this sequence two difference equations, the homogeneous one,
X1 = Apxx, ke, 2.2)
and the inhomogeneous one,
Xk+1 = Apxk + fiv1, keL (2.3)

Definition 2.1.1 We say that the sequence .2/ has the Perron property on I if for
any bounded sequence fi, Eq. (2.3) has a bounded solution.
Set

Ag—10---0A;, k>1
F(k,1) = § Id, k=1
Ailo-0Al k<L

Definition 2.1.2 We say that the sequence .o/ is hyperbolic on I if there exist
constants C > 0 and A € (0, 1) and projections Py, O, k € I, such that if Sy = PR"
and U, = QR", then

Sk ® Ur = R"; (2.4)

ApSk = Sk+1, AkUp = Upyrs (2.5)
|F(k,)v| < CA*|v|, vesS, k=1 (2.6)
|F(k,)v| < CA™ |, veU, k<l .7)
I Pell, 1Okl = C. (2.8)

In the relations above, k, [ € 1.
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Our first main result in this section is the following statement.

Theorem 2.1.1 (Maizel’) If the sequence </ has the Perron property on I, then
this sequence is hyperbolic on 1.

Remark 2.1.1 Of course, it is well known that a hyperbolic sequence .7 has the
Perron property on I (see Lemma 2.1.6 below), so the properties of .7 in the above
theorem are equivalent. We formulate it in the above form since this implication is
what we really need (and since precisely this statement was proved by Maizel’).

Proof Thus, we assume that the sequence 7 has the Perron property on 1.
Let us denote by & the Banach space of bounded sequences x = {x;}, where
x; € R" and k € I, with the usual norm

X[l = sup |xe].
kel

A sequence x € Z that satisfies Eq. (2.2) (or (2.3)) will be called a #-solution
of the corresponding equation.
Denote

Vi={x: x= (x0,x1,...) isaZ% —solutionof (2.2)}.

Since Eq.(2.2) is linear and 4 is a linear space, V) is a linear space as well.
Denote by V, the orthogonal complement of V| in R" and by P the orthogonal
projection to V.

The difference of any two %-solutions of Eq.(2.3) with a fixed f € £ is a
AB-solution of Eq. (2.2). It is easily seen that for any f € 2 there exists a unique
AB-solution of Eq. (2.3) (we denote it T(f)) such that (T'(f))o € Va.

The defined operator

T: B—> XA

plays an important role in the proof. Clearly, the operator T is linear.
Lemma 2.1.1 The operator T is continuous.

Proof Since we know that the operator T is linear, it is enough to show that the
graph of T is closed; then our statement follows from the closed graph theorem.
Thus, assume that

=) eB. yu=(¥5...) € B,

Yn = T(fn)’fn _)f’ andyn —>y = (y(),.--) 11’133.
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Then, clearly, yg € V>.
Fix k € I and pass in the equality

Yer1 = Ak +iq
to the limit as n — oo to show that
Vi+1 = Ay + fit1-

Hence, y = T(f), and the graph of T is closed. O
Lemma 2.1.1 implies that there exists a constant r > 0 such that

ITHOI = rllfIl - f € 2. 2.9

Without loss of generality, we assume that

rN > 1, (2.10)
where N is the constant in (2.1).
Denote
F(k,0), k>0;
X(k) = 4 1Id, k=0;
F(0,—k), k <O0.

Straightforward calculations show that the formula

k oo
e =) XWPX(~u)fy = Y X(k)(1d— P)X(-u)f, (2.11)
u=0 u=k+1

represents a solution of Eq. (2.3) provided that the series in the second summand
converges.

We can obtain a shorter variant of formula (2.11) by introducing the “Green
function”

X(k)PX(—u), 0<u<k

Glh,u) = { —X(k)(Id — P)X(~u), 0 < k < u.

Then formula (2.11) becomes

=Y Glk.wf. (2.12)

u=0
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Lemma 2.1.2 Let ko, k1, k € I and let §¢ € R" be a nonzero vector with || < 1.
Then

k
IX(PE| Y IX@E™ <0<k <Kk (2.13)
u=ko
and
k1
IX(K)(Id— P)E| Y |IXW)E[™ <2V, 0 <k <. (2.14)
u=k

Proof Without loss of generality, we may take fy = 0. Fix [y, /; € I suchthatly < ;.
Take a sequence f with f; = 0, i > [;. Then formula (2.12) takes the form

I
Y= Z G(ls u)fu

u=0

For I > [, all the indices u in this sum do not exceed [;, and we apply the first
line in the definition of G. Thus,

0
y=XDPY X(-u)f,.

u=0

Hence, if [ > [}, then y; is the image under X (/) of a vector from V; that does not
depend on /. It follows that the sequence y (with the exception of a finite number of
entries) is a solution of Eq. (2.2) with initial value from V;. Hence, y € 2. Since

Jo=0,

)
Yo =—(d=P) Y X(-u)f, € Va.

u=0

Thus, y = T(f), and || y[| < 7| f].
Now we specify the choice of f. Let x; = X(i)&; since £ # 0, x # 0 as well. Set

O, i<lo;
fi= 3 xi/lxl o <i <l
O, i>ll.

Since || f|| = 1, inequality (2.9) implies that

I
> Gk, uxi/ |xi

u=ly

=|yl=r (2.15)
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We take [ = I} = k and [y = ko in (2.15) and conclude that

r=

k
Y X(PX(—u)X )&/ |X (w)§]| =

u=ko

k
> Glk,u)x,/|x.|

u=ko

k
= [X(k)PE| Y IX k[,

u=ko

which is precisely inequality (2.13).

We prove inequality (2.14) using a similar reasoning.

First we consider 0 < k < k;. Wetakel = k— 1,1y = k, and [y = k; in (2.15)
and get the estimates

ki
Y X(k—1)(Ad - P)X ()X (w)é/ X (w)E|| =

u=k

k1
Y Gk ux/ x|

u=k

r=

k1 ki
= [X(k— D= P)E| Y (X" = |4, X () (d - P)E| D Xl =

u=k u=k

ki
> A7 X () (1d = P)E D X )|

u=k

Applying inequality (2.1), we see that in this case,

k1
X (k)(Id — P)E| Y " [X(w)g| " < rN.

u=k

Now we consider 0 = k < k; and apply the previous estimate with k = 1:

ki ki
IX(0)(Id — P)&| Y |[X(wE|™" = [X(0)(Id — P)E| Y (X)€" + |(1d — P)§| <

u=0 u=1

ki
< [lAolI 7' 1X(1)(1d = P)E] Y IX@)E[ + 1 <N +1 < 2N

u=1

(recall that |§] < 1 and N > 1).
For k = k; = 0, our inequality is trivial. O
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Lemma 2.1.3 Let ko, k1, k,s € I and let & € R" be a unit vector. Denote
w=1-@QN)"".

Then the following inequalities are satisfied:
if PE #£ 0, then

s k
Y IX@PE[T < @Y T IX@PET, ko <5 <k; (2.16)

u=ko u=ko

if (Id — P)§ # 0, then

k1 ki
D X@Ud—=PE™ = T Y IX@Ud =P k<=s<hk. (217

u=s u=k

Proof Denote

¢ =) IX@PE™', P>k,

u=ko

and

ki

vi= ) IX@Ad-PE[T, i<k

Let us prove inequality (2.16). Since P§ # 0, ¢; > 0. Clearly, ¢; — i1 =
|X(i)P£|~". Replacing £ by P (and noting that | P£| < 1) in (2.13), we see that
¢ <r <2rN.
éi — di-1

Hence,

i1
o

¢ — Pi—1 1

@rN) ! < 5

3

and

pi-1 < (1—@2rN) D¢,
Iterating this inequality, we conclude that

¢ < (1= QN "), k>
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We prove inequality (2.17) similarly. We note that ¥; > 0 and that ¥, — ¥, =
|X(i)(Id — P)&|~". After that, we replace £ by (Id — P)£ in (2.14) and show that

Vi1 < (1= @2rN) Hy

Iterating this inequality, we get (2.17). O
Now we prove that the sequence <7 is hyperbolic.

Lemma 2.1.4 The following inequalities are satisfied:
IX®WPX(=9)| <P~ 0<s<k
and
IX(k)(d — P)X(=s)|| < 2°N* '™, 0 <k<s.
Proof Fix a natural s and a unit vector £. Define a sequence y = {y;} by

_ { —X(k)(Id — P)X(—$)€, 0 < k < s;
YE XWX (—s)E, k>s.

The sequence y coincides (up to a finite number of terms) with a solution of
Eq. (2.2) with initial point from V;; hence, y € A.
Now we define a sequence f by

{0, k#s;
fk_{g,kzs.

It is easily seen that the above sequence y is a solution of Eq. (2.3) with
inhomogeneity f. Hence, y = T(f), and || y|| < r.
The definition of y implies that

IX()PX(—=s)§| = |yl =r. 0=s=<k

Since £ is an arbitrary unit vector, || X (k)PX(—s)|| < rfor0 <s <k.
We replace £ by the solution of the equation x; = X(s)& to show that

IX(K)PE| = [X()PX(—s)x| < rlx], 0<s<k (2.18)

Using inequalities (2.13), (2.16) with ky = s, and (2.18) with k = s, we see that

k

—1
IX(K)PX(—s)xs| = [X(k)P§| < r (Z X (u)P§ I_l) <

U=s

< (P IXPET) T = X ()PE] < Pk,
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If PE€ = 0, then the resulting estimate is obvious. Since x; = X(s)& and X(s) is
an isomorphism, we get the following estimate for the operator norm:

IX(RPX(=s)|| < Pp*™, 1<s<k

In this reasoning, we have used inequality (2.18) with s = k. It is also true for
s = k = 0 since || P|| < 1. Therefore, the first estimate of our lemma is proved for
0<s<k.

The proof of the second estimate is quite similar. The only difference is as
follows. We cannot use an analog of (2.18) with k = s since k # s in the definition
of the sequence y. The following inequality is proved by the same reasoning as
above:

[X(k)(Ad — P)§| = |X(k)(Id — P)X(—=s)xs| < rlxs], s> k.
In the case k = s — 1, we write
[X(s)(Id — P)é| = |A;—1X(s — ) (Id — P)X(—s)x,| <

< [[As—1 11X (s = DA = P)X(=s)xs| < rN|xs],

and then repeat the reasoning of the first case. O
Lemma 2.1.4 shows that if we take constants Cp = 7N and A = p and
projections

Py = X(K)PX(—k) and Qy = X(k)(Id — P)X(—F),

then the operators F(k, [) generated by the sequence .7 satisfy estimates (2.6) and
(2.7) with C = Cj and A. Clearly, relations (2.4) and (2.5) are valid.

Thus, to show that .o/ is hyperbolic on /, it remains to prove the following
statement.

Lemma 2.1.5 There exists a constant C = C(N, Cy, L) > Cy such that inequalities
(2.8) are fulfilled.

Proof Let L) and L, be two linear subspaces of R". Introduce the value
Z(Ly, L) = min|v; — vy,

where the minimum is taken over all pairs of unit vectors v; € Lj, v, € L.
We claim that there exists a constant C; = C{(N, Cp, A) such that

(S, Uy) = Cy, kel (2.19)
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Fix an index k € I, take unit vectors v; € S; and v, € Uy for which Z(Sy, Uy) =
|v; — v2|, and denote

a = |FLk)(vi —v)|, >k
Inequalities (2.6) and (2.7) imply that
@ = | F(Lk)va| = | F(Lk)vi| = A1/ Co = CoA™™.
Hence, there exists a constant m = m(Cy, A) such that
Qp+m = 1.
At the same time, it follows from (2.1) that
Qetm < N" .
Combining the above two inequalities, we see that
£(Sk Uy) = ax = C1(N, Co. A) := N7,

which proves (2.19).

Clearly, if v; and v, are two unit vectors, then the usual angle (v;, vy) satisfies
the relation

|v; — vo| = 2sin({vy, v2)/2),

and we see that estimate (2.19) implies the existence of § = B(N, Cp, A) such that
if y is the usual angle between S; and Uy, then

sin(y) = B.

Now we take an arbitrary unit vector v € R” and denote vy = Pyv. If y; is the angle
between v and vy, then the sine law implies that

ol

= > |vgl,
sin(y) — sin(yo) =

and we conclude that

lvs| = [ Prv] = 1/8,
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which implies that
I Pell = € = max(Co. 1/B).

A similar estimate holds for || Q]|. O
As we said above, the following statement holds.

Lemma 2.1.6 A hyperbolic sequence <f has the Perron property on I.

Proof Assume that the sequence .27 has properties stated in relations (2.4)—(2.8).
Take a sequence

f={fieR": kel}

such that || f|| = v < oo and consider the sequence y defined by formula (2.11).
Then

IX(k)PX (—w)f,| < CA*™v, 0 <u<k,
and
X (k)(Id — P)X (—u)f,| < CA* %y, k41 <u < oo,

which implies that the second term in (2.11) is a convergent series (hence, the
sequence y is a solution of (2.3)) and the estimate

1+

Iyl SCA+A4+22 w+CA+A1.. )= L

Cv
holds. O
Now we pass to the Pliss theorem.
This time, ] = Z,and wedenote I+ = {ke€ Z: k> 0}andI- ={k e Z:
k < 03.
Now 7 is a sequence of linear isomorphisms

Ay R" >R, kel=27Z.

It is again assumed that an analog of inequalities (2.1) holds, and we consider
difference equations (2.2) and (2.3).

The Perron property of (2.2) on Z is defined literally as in the case of I = {k €
Z: k=>0}.

It follows from the Maizel’ theorem and its obvious analog for the case of I =
{k € Z : k < 0} that the sequence .2/ is hyperbolic on both /1 and /_ (the definition
of hyperbolicity in the case of I_ is literally the same).
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Without loss of generality, we assume that C and A are the same for the
hyperbolicity on /4 and I_ and denote by S,j', U,;",k € ly,and S, U,k € I,
the corresponding subspaces of R”.

Theorem 2.1.2 (Pliss) If <7 has the Perron property on I = Z, then the subspaces
U, and Sg' are transverse.

Remark 2.1.2 1In fact, Pliss proved in [74] that the transversality of U and S(‘)F is
equivalent to the Perron property of &/ on I = Z, but we need only the implication
stated above.

Remark 2.1.3 Note that there exist sequences .« that are separately hyperbolic on
I, and I for which the subspaces U, and Sg' are transverse and such that these
sequences are not hyperbolic on I = Z. It is easy to construct such a sequence with
SE =R UF = {0}k €Iy, and S; = {0}, U, = R", k € I_ (we leave details to
the reader).

Proof To get a contradiction, assume that the subspaces U; and Sg' are not
transverse. Then there exists a vector x € R" such that

xF#Fyi+y (2.20)

forany y; € Uy and y; € S .
Since the subspaces UJ' and Sg' are complementary (see (2.4)), we can represent

x=£E+n &S, neUJ’.
Then it follows from (2.20) that
n#Fu+a (2.21)

forany z; € S(‘)F and z; € Uy . We may assume that 5| = 1.
Consider the sequence

g 10 k=0
“TlLk>o.
Since n # 0in (2.21), X(k)n # 0 for k € I. Define a sequence f = {fi, k € I}
by

_ X(n
fi = Xon ™ kel (2.22)

Clearly, ||f|| = 1. We claim that the corresponding Eq.(2.3) does not have
bounded solutions.
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Consider the sequence

o0

¢e=— Y X((1d—P)X(—uwfs, k=0.

u=k+1

In this formula, P is the projection defined for Eq. (2.2).
The sequence {¢y} is bounded for k > 0. Indeed, f,, € U,j‘ for u > 0; hence,

[e.0]

el = | Y X(R)(1d = P)X(—w)f,| <
u=k+1
> A
< crk=c .
ME;;I 1_-A

We know that since the series defining ¢ is convergent, the sequence {¢;} is a
solution of the homogeneous equation (2.2) for k > 0.
Clearly,

(o]

S
$o=—y (1d—P)X(—u)f, = — =,
=2 ; X (u)|

u=1

where

1
’ ‘_; X |

Deriving these relations, we take into account the definition of f and the equality
(Id — P)n = n. In addition, the value v is finite since

1
<CA, k>0,
[X (k)

due to inequalities (2.7).
It follows from (2.21) that

$o # y1 +y2 (2.23)

forany y; € Sf and y, € Uj .
Now let us assume that Eq.(2.2) has a solution ¥ = {yy} that is bounded on
I =7.Then ¢ € Uy .
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On the other hand,
Vi = X(k) (Yo — o) + go.
Since ¢y are bounded for k > 0, 1 can be bounded for £k > 0 only if

X(k)(Yo — ¢o)

are bounded for k > 0, which implies that

Yo — o € Sy -
Set
yi=g¢o—VYo €Sy and y, =1y € Up.
Then ¢p = y; + y», and we get a contradiction with (2.23). O

Remark 2.1.4 We will apply the Maizel’ and Pliss theorems proved in this section
in a slightly different situation.

We consider a diffeomorphism f of a smooth closed manifold M, fix a point
x € M and the trajectory {x; = f*(x) : k € Z} of this point and define linear
isomorphisms

Ak = Df(xk) : Tka — Txk+1M'

To the sequence &/ = {A;} we assign difference equations
Vk+1 = Akvk, Vg € Tkas
and

Vir1 = AgVk + fit1, Ok € ToM, fit1 € Ty M.
Clearly, these difference equations are completely similar to Egs. (2.2) and (2.3),
and analogs of the Maizel” and Pliss theorems are valid for them.

Historical Remarks Theorem 2.1.1 was proved by A. D. Maizel’ in [38]. See also
the classical W. A. Coppel’s book [13].

The Pliss theorem (Theorem 2.1.2) was published in [74]. Later, it was gener-
alized by many authors; let us mention, for example, K. Palmer [55] who studied
Fredholm properties of the corresponding operators.
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2.2 Maiié Theorem

In this section, we prove Theorem 1.3.7.

Remark 2.2.1 In several papers, the analytic strong transversality condition is
formulated in the following form, which is obviously stronger than the condition
formulated in Definition 1.3.11: it is assumed that

BY(x)+B (x) =T:M, xeM,

where the subspaces B (x) and B~ (x) are defined by the equalities
Bt (x) = {v e T.M: lim |Dff(x)v| = o}
k—>00
and
B~ (x) = {v eT.M: lim |Dff(xpv|= o} )
k—>—00

In fact, it is easily seen from our proof below that the structural stability of f
implies this form of the analytic strong transversality condition as well, so that both
conditions are equivalent.

The main part of our proof of Theorem 1.3.7 is contained in the following
statement.

Theorem 2.2.1 The analytic strong transversality condition implies Axiom A.

First we prove that the analytic strong transversality condition implies the
hyperbolicity of the nonwandering set £2.

We assign to a diffeomorphism f : M — M the mapping = : TM — TM (where
TM is the tangent bundle of M) which maps a pair (x,v) € TM (where x € M and
v € T,M) to the pair (f(x), Df (x)v).

A subbundle Y of TM is a set of pairs (x, Y;), where x € M and Y, is a linear
subspace of T, M.

Definition 2.2.1 A subbundle Y is called w-invariant if
Df(x)Yx = Yf(x) for xe M.

Assuming that f satisfies the analytic strong transversality condition, we define
two subbundles BT and B~ of TM by setting

Bf =B*(x) and B, =B (x) for xeM.
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Since
lim inf [Df*(x)v| =0
k—o00
if and only if

lim inf |Df*(FONDI @] =0,

the subbundle BT is m-invariant. A similar reasoning shows that the subbundle
B~ is w-invariant as well.

The main object in the proof is the mapping 7 *, dual to the mapping 7.

Denote by <, > the scalar product in T,M. Let D*f(x) : TyyM — T.M be
defined as follows:

< £, Df(x)v >=< D*f(x)€, v >

forall v € TyM and & € TyyM (thus, D*f(x) is the adjoint of Df (x)). We define 7*
as follows: a pair (f(x), &), § € TyM, is mapped to

7 (f(x),€) = (x. D*f(0)§) .
If p : TM — M is the projection to the first coordinate (i.e., p(x, v) = x), then
p(m(x,v)) = f(x) (in this case, one says that 7 covers f); since p(7*(x,v)) =

—1(x), m* covers f~L.
f
Clearly, the definition of 7* implies the following statement.

Lemma 2.2.1
(*)* = .
If Y is a subbundle of TM, we define the orthogonal subbundle Y as follows:
Yr={t:<&v>=0 foral veY), xeM.

Lemma 2.2.2 [fa subbundle Y is w-invariant, then YLt is w*-invariant.
Proof Consider vectors £ € YfJ(-X) and D*f(x)é € M. If v € Y,, then
< v, D*f(x)€ >=< £, Df(x)v >=0

since Df (x)v € Y(x), which means that D*f(x)§ € Yt O
We call two subbundles Y' and ¥? complementary if

Y!®Y?=TM forany xeM. (2.24)
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Lemma 2.2.3 If Y' and Y? are complementary subbundles that are m-invariant,
then (YI)J' and (Yz)l are complementary subbundles that are w*-invariant.
Proof The subbundles (Yl)J' and (YZ)J' are m*-invariant by Lemma 2.2.2. If
dimY! = k, then equality (2.24) implies that dim¥Y? = n — k. Clearly,
. L . L
dim(Y') " =n—k and dim(Y?) =k (2.25)

Consider a vector £ € (Yl )j’ N (Yz)j'. Due to (2.24), any vector v € T, M is
representable as

v = v + vy, vleYi, vzer.

Then < £,v >=< &,v; > + < &, vy >= 0. Since v is arbitrary, § = 0. The
equality

(Y)Fn ()7 =0

and (2.25) imply the statement of our lemma. O

Let My C M be a hyperbolic set of f. Then S and U defined by S, = S(x) and
U, = U(x) for x € My are two complementary r-invariant subbundles on M, such
that inequalities (HSD2.3) and (HSD2.4) hold (see Definition 1.3.1). In this case, we
say that My is hyperbolic with respect to 7 with subbundles S and U and constants
Cand A.

Lemma 2.2.4 [f a set M is hyperbolic with respect to w with subbundles S and U
and constants C and A, then My is hyperbolic with respect to w* with subbundles
UL and S* and the same constants C and A.

Proof If A and B are linear operators, then (AB)* = B*A*; hence,
(DF(fC)Df )" = D* D™ (f (X))
If we take v € ToM and § € Tpo(, M, then
< DFA(x)v. £ >=< DF(f())Df (x)v. § >=
=< Df (), D*f(f(x)E >=< v, DD f(f(0)E >=< v, D*f*()§ > .
Applying induction, it is easy to show that

< v, D*f*(0)E >=< £, Dff(x)v >, keZ, (2.26)
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forv € TxM and § € Ty, M, where

D*f*(x) = D*f()D*f(f(x) ... D*f (/7' (x)

and

Df(x) = Df (S ()DF(f 2 () ... DF ().

By Lemma 2.2.3, the subbundles S+ and U' are complementary and 7*-
invariant.

Fix k > 0 and a vector £ € ([]fk(x))l. Then D*f*(x)é € T.M. The obvious
equality

|n] = max < n,v >, nveTM,
lv]=1

implies that
[D*7* (0| = max < v.D*F @k >
Represent v = v; + vy, where v; € S, and v, € U,.
Since Ut is 7*-invariant,
D*f(x)€ € (U™,
and < vy, D*f*(x)€ >= 0. It follows that

ID*f*(0)E| = max < v, D*ff(x)E >= max < £, Df*(x)v; >< CAM|g|.

‘= V] ‘=l
In the last inequality, we used inequality (HSD2.3) and the obvious relation
<& v>=[§]v].
A similar reasoning shows that

D (0] < CATFE|

forf e (ka(x))l and k < 0. O

Now we prove that the analytic strong transversality condition implies that, in a
sense, 7* does not have nontrivial bounded trajectories. Fix a point (x, v) € TM and
define the sequence (x;, vx) = (%) (x, v).
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Lemma 2.2.5 If

sup |v| < oo, (2.27)
keZ

thenv = 0.

Proof The obvious equalities

x=fF(f'w) and u=Df* () DF @

which are valid for all x € M, u € T:M, and k € Z imply that
<§u>=<&Df (') DfFf u >=< D*f* (f* ) & DfF (X)u >

forall £,u € T:M and k.

Assume that a point (x, v) satisfies condition (2.27).

By the analytic strong transversality condition, we can represent any vector § €
TM in the form § = & +§&, for which there exist sequences [, — oo and m,, — —o0
as n — oo such that

IDf"(x)&1| = 0 and |Df"(0)&| >0, n— .
Let us write
<vE>=<v.b + & >=<v,Df " (f"(0)) D" ()& > +
+ <v.Df " (" (x) Df" (0§ >=

=< D*f7" (f"(x)) v.Df" ()& > + < D" (f™(x)) v, D" ()& > .
(2.28)

By condition (2.27), both values \D*f_l" (f" (x))v| and |D*f""" (fm (x))v\ are
bounded; hence, both terms in (2.28) tend to 0 as n — oo. Thus, < &, v >= 0 for
any &, which means that v = 0. O

To simplify notation, let us denote 7* by p and write

p(x. v) = (¢(x), P(x)v),

so that ¢(x) = f~'(x) and @(x) is the linear mapping T\M — TyM, D(x) =
D*f(x). Let

F(0,x) = Id,

F(k,x) = ®(¢*'(x))---®d(x), k>0,
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and
F(—k,x) = @ (¢ () --- @7 '(x), k>0.

Obviously, the mapping p is continuous. By Lemma 2.2.5, it satisfies the
following Condition B: If

sup | F(k,x)v| < oo
kez

for some (x,v) € TM, then v = 0.
Let us define the following two subbundles in TM: V = {(x,V,)} and W =
{(x, W,)}. We agree that

e v € T:M belongs to V. if | F(k,x)v| — 0 as k — oo
and
e v € T:M belongs to W, if | F(k,x)v| — 0 as k - —oo.

Clearly, the subbundles V and W are p-invariant.
Lemma 2.2.6 Let a sequence (X, vy) € TM be such that

(1) (X, V) = (x,0) asm —> oco;
(2) there exists a number L > 0 and a sequence k,, — oo as m — oo such that

| F(k,Xm)vm| <L, 0 =<k <=<ky. (2.29)

Then (x,v) € V.

Proof Fix an arbitrary / > 0. There exists an myg such that k,, > [ for m > my. Then
it follows from (2.29) that

| F(I, Xm)vm| < L. (2.30)

Since F(/,y)w is continuous in y and w, we may pass to the limit in (2.30) as
m — oo; thus,

| F(l,x)v| < L.
Since [ is arbitrary, this means that
| F(k,x)v| <L, k=>0. (2.31)

Let (xo, vo) be a limit point of the sequence ((;Sk (%), F(k, x)v), i.e., the limit of the
sequence

(¢" (x). F(tm, X)v) (2.32)

for some sequence f,, — oQ.
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Take an arbitrary k € Z. Since
¢"(x) > x9 and F(t,,x)v — vy, m—> 00,
¢t (x) = ¢*(xo) and  F(k + t,, x)v — F(k,xo)vo, m — oo. (2.33)

For large m, k + t,, > 0, and it follows from (2.31) and the second relation in
(2.33) that

| F(k, x0)vo| < L. (2.34)

Since (2.34) is valid for any k € Z, Condition B implies that vy = 0. Thus, in
any convergent sequence of the form (2.32) with ¢,, — oo,

| F(ty, x)v| — 0,

which means that (x,v) € V. O

Remark 2.2.2 A similar reasoning shows that if we take k,, - —oco and k,, <k <0
in condition (2) of Lemma 2.2.6, then (x, v) € W. In what follows, we do not make
such comments and only consider the case of the subbundle V.

Define the set

A={(x,v) eTM: |F(k,x)v| <1 for k=>1}.

Clearly, the set A is positively p-invariant, i.e., if (x,v) € A and k& > 0, then
(d)k(x), F(k,x)v) €A.
Let us say that a set C = {(x, v) € TM} is bounded if

sup |v| < oo.
(x,v)eC

Since the manifold M is compact, any closed and bounded subset C of TM is
(sequentially) compact, i.e., any sequence in C has a convergent subsequence, and
the limit of this subsequence belongs to C.

Lemma 2.2.7 The set A is a compact subset of V.

Proof It was shown in the proof of Lemma 2.2.6 that inequality (2.31) implies the
inclusion (x,v) € V; thus, A C V. Since F(0,x)v = v, A is bounded. Consider a
sequence (X, V) € A such that (x,,, v,,) = (x,v), m — oo. For any fixed k > 0,

| F(k,x)v| = lim | F(k, Xn)vm| < 1.
m—00

Hence, (x,v) € A, and A is closed. O
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Lemma 2.2.8 For any i > 0 there exists a K > 0 such that if (x,v) € A, then
| F(k,x)v| <, k=>K. (2.35)

Proof Assuming the converse, let us find sequences (x,,, v,) € A and k,, — oo and
anumber p > 0 such that

| F(kp, Xm)V| > . (2.36)
Since A is positively p-invariant,

(6 (), F (K X)) € A

since A is compact, the above sequence has a convergent subsequence. Assume, for
definiteness, that

(@ Cn). F (ks Xm)Vi) = (x, v).

Then it follows from (2.36) that |v| > . Fix a number k € Z. Since k + k,, > 0 for
large m,

(@7 ), F(k + Ky Xn)Um) = (¢*(x), Fk, x)v) ,  m — o0,
and
| F(k + ki, Xm)vm)| < 1,
we conclude that
|Flk,x)v)| <1, keZ.

Condition B implies that v = 0. The contradiction with (2.36) completes the proof.
|

Lemma 2.2.9 There exists a number (& > 0 such that if (x,v) € V and |v| < u,
then (x,v) € A.

Proof Assuming the contrary, we can find a sequence (x,,, v,,) € V such that |v,,| —
0, m — oo, and (x,,, v,,) € A.
Then

W = max | F(k, Xp) V| > 1
k>0

(we take into account that | F(k, x,,)v,,| — 0, k — 00).
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Find numbers k,, > 0 such that
| (ks Xim) V| = fm-
Since
| F(k, xm) (Um/ )| = 1, k=0,

(Xm, Vm/ ) € A.
The mapping p is continuous and F'(k, x)0 = 0; hence,

max | F(k, x,)(Vn/tm)| = 0, m — oo,
0<k<K

for any fixed K (note that x,, € M, M is compact, |v,,| — 0, and p,, > 1).
Hence, k,, — 0o, m — oo. Lemma 2.2.8 implies now that the relations

(X Um/im) €A and [ F (K, Xin) (U / )| = 1

are contradictory. O

Lemma 2.2.10 There exists a number K > 0 such that if (x,v) € V, then
| F(k,x)v| < (1/2)|v], k> K. (2.37)
Proof Apply Lemma 2.2.8 to find a number K such that
|Fk,x)v'| < /2, k=K,
for any (x, v’) € A (where p is the number from Lemma 2.2.9).

Take any (x,v) € V.If v # 0, set v/ = u(v/|v|). Then (x,v") € A by
Lemma 2.2.9, and it follows from Lemma 2.2.8 that

| F(k.0v'| = (/o) | F(k.x)v| < 1/2, k=K,
which obviously implies the desired relation (2.37). If v = 0, we have nothing to
prove. O
Lemma 2.2.11

(1) The subbundles V and W are closed.
(2) There exist numbers C > 0 and A € (0, 1) such that
if (x,v) €V, then

| F(k,x)v| < CA*v|, k> 0; (2.38)
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if (x,v) € W, then
| F(k,x)v| < CA*]v|, k <0. (2.39)
Proof We prove the statements for the subbundle V; for W, the proofs are similar.
To prove statement (1), consider a sequence (xi, vx) € V such that (xg, vy) —
(x,v) as k — oo.

If v = 0, then, obviously, (x,v) € V. Assume that v # 0; then v; # 0 for large
k, and, by Lemma 2.2.9 there exists a ;& > 0 such that

(xk, ,ka/|vk|) € A.
Since A is closed (see Lemma 2.2.7),
(x, pv/|v]) € A,

and (x,v) € V by Lemma 2.2.7. This proves the first statement of our lemma.
To prove the second one, apply Lemma 2.2.10 and find a number K such that

| F(k,x)v| < (1/2)|v|, k=K, (2.40)

for any (x,v) € V.
It follows from (2.40) and from the p-invariance of V that

| FK, x)v| < (1/2)%|v],.... | F(kK, )v] < (1/2) ]|, k=0. (2.41)
There exists a number Cy > 0 such that

max || F(k,x)|| < Co. (2.42)
0<k<K, xeM

Let us show that inequality (2.38) holds with C = 2Cy and A = 2!/X. We can
represent any k > 0 in the form k = koK + kj, where kg > O and 0 < k; < K. If
(x,v) € V, then it follows from (2.41) and (2.42) that

| F(k,x)v| = | F(ki. ¢ ())F (koK. x)v| < Co(1/2)*[],
but since kg + 1 > k/K, —kg < —k/K + 1, and 2% < 2)¥ we conclude that

| F(k, x)v| < C/\k|v|,

as required. O

Remark 2.2.3 Inequalities (2.38) and (2.39) have the same form as inequalities
(HSD2.3) and (HSD2.4) in the definition of a hyperbolic set. Thus, if we want to
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show that some compact, p-invariant subset My of M is a hyperbolic set of p with
subbundles V and W, we only have to show that

Vi+ W, =TM, xeM,. (2.43)

Lemma 2.2.12 Assume that for a sequence (Xp, V) € TM there exists a sequence
k,, — o0 as m — oo and a number r > 0 such that

V| <r and | F(ky, Xpm)Vp| <.
Then there exists a number R > 0 such that
| F(k,xp)vm| <R, 0<k<k,.

Proof Assume the contrary, and let there exist (x,,, v,,) € TM and k,, — oo such
that

by := max |F(k,x,)v,| — o0, m— oo.
0<k=<km

Find numbers /,, € [0, k] such that b,, = | F(l,,, X,,) v |. Since p is continuous, it is
obvious that

l,—>o0 and k,—1, > o0, m— oo. (2.44)
Set
Wi = F(ly, X)) O/ bn).
Let (x,v) be a limit point of the sequence (¢ (x,),w,,); then |[v| = 1. The
inequality

| F(k, ¢ (x))win| < 1

holds for k € [—I,,0] U [0, k,, — I,,]. We apply relations (2.44) and Lemma 2.2.6
(and its analog for W) to conclude that v € V, N W,, but then v = 0 by
Condition B. O

Remark 2.2.4 A similar statement is valid if k,, — —oo. In this case,
| F(k,Xp)Vm| <R, ky <k <0.

Lemma 2.2.13 [f x is a nonwandering point of the diffeomorphism f, then equality
(2.43) holds.
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Proof By the definition of a nonwandering point, there exist sequences of points
X, € M and numbers k,, such that

Xy =X, () = X, k| = 00

as m — oo. We may assume that k,, - —oo.

Consider the linear subspace W, and let Q be its orthogonal complement. Let
dimQ = s. Fix an orthonormal base vy,...,vs; in Q. Clearly, we can find s
orthonormal vectors v{',...,v{" in Ty, M such that v{" — v; as m — oo for
j=1,...,s.

Let O,, be the subspace of T,, M spanned by v, ..., vy". Introduce the numbers

Um = min{| F(ky, Xm)V| : v € O, |v] = 1}.

We claim that

Um —> 0O, m — 00. (2.45)

If we assume the contrary, we can find a number » > 0 and sequences w,, € O,
[ww| = 1, and k,, = —o0 such that

| F(kppy X)) Wia| < 1.
By the remark to Lemma 2.2.12, there exists a number R such that
| F(k, xp)Wi| <R, k € [ky,O0].
By Lemma 2.2.6, in this case, any limit point (x, v) of the sequence (x,,, w;,) belongs
to W, i.e., v € W,. This relation contradicts our construction since w,, € Q,,, which

implies that v is orthogonal to Q (note that |v| = 1). This proves (2.45).
Consider the linear space

K = F(ky, X)) O
Clearly, K, C T, M, where y,, = f*(x,,), and dimK,,, = s.

Consider a vector w € K, [w| = 1. Let w = F(ky, x,,)v. It follows from the
definition of the numbers p,, that

o] < pmlwl = pm. (2.46)

Inequalities (2.46), relations (2.45), and Lemma 2.2.12 imply that for any

sequence (y,;, Wy,), where w,, € K, and |w,,| = 1, there exists a number R such
that

| F(k, Xp)Wu| <R,k € [0, k.
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Now Lemma 2.2.6 implies that any limit point (x, w) of such a sequence (y,;,, w;,)
belongsto V,ie.,w € V..

Select an orthonormal basis wY',...,w{" in K,. We may assume that all the
sequences wY', ..., wy' converge for some sequence of indices. For definiteness, let
wi' = wi, .. W= w,  m— 00,

The vectors wy, . .., w, are pairwise orthogonal unit vectors in V,; hence,
dimV, > s. (2.47)

By the definition of the spaces Q and Q,,,
dimW, = n —s.
Combining this with inequality (2.47), we see that
dimV, + dimW, > n.
Since V, N W, = {0} by Condition B, we conclude that
Vi+ W, =TM,

as claimed. O

The nonwandering set of the diffeomorphism f coincides with the nonwandering
set of the diffeomorphism ¢ = f~!. Combining Lemma 2.2.1 with Lemma 2.2.4
applied to the mapping p, we conclude that the following statement holds.

Theorem 2.2.2 If a diffeomorphism f satisfies the analytic strong transversality
condition, then the nonwandering set of f is hyperbolic.

Now we show that the analytic strong transversality condition implies the second
part of Axiom A, the density of periodic points in the nonwandering set £2(f) of the
diffeomorphismf.

Since we are going to use the Mafé theorem in the proof of the implication (the
analytic strong transversality condition) = (structural stability) for a diffeomor-
phism f having the Lipschitz shadowing property, we can essentially simplify this
proof (compared to the original Maiié¢ proof) assuming that f has the shadowing
property.

Thus, now we prove the following statement.

Theorem 2.2.3 If a diffeomorphism f has the shadowing property and the nonwan-
dering set 2(f) of f is hyperbolic, then periodic points are dense in 2(f).

In this proof, we apply the following two well-known results (see, for example,
[71] for their proofs).

First we recall a known definition.



64 2 Lipschitz and Holder Shadowing and Structural Stability

Definition 2.2.2 A homeomorphism f of a metric space (M, dist) is called expan-
sive on a set A with expansivity constant a > 0 if the relations

. () €A ke,

and

dist (f*(0).f*(y)) <a. ke,

imply that x = y.

Theorem 2.2.4 If A is a hyperbolic set of a diffeomorphism f, then there exists a
neighborhood of A on which f is expansive.
Denote by cardA the cardinality of a finite or countable set A.

Theorem 2.2.5 (The Birkhoff Constant Theorem) If the phase space X of a
homeomorphism f is compact and U is a neighborhood of the nonwandering set
2(f) of f, then there exists a constant T = T(U) such that for any point x € X, the
inequality

card{ke Z: ff(x) ¢ U} <T

holds.

Proof (of Theorem 2.2.3) Fix an arbitrary point z € £2(f). There exist sequences of
points z,, and numbers [, — oo such that

2 —z and f"(z,) =z, n— oo.

Let U be a neighborhood of the set §£2(f) on which f is expansive and let a be the
corresponding expansivity constant.

Fix an & > 0 such that the 3e-neighborhood of £2(f) is a subset of U. Denote by
U’ the 2¢-neighborhood of £2(f). We assume, in addition, that 2¢ < a.

For this ¢ there exists ad > 0 such that any d-pseudotrajectory of f is e-shadowed
by an exact trajectory.

Fix an index n such that

dist(z, z,), dist(z, " (zy)) < d/2.

Construct a sequence {x;} as follows. Represent k € Z in the form k = ko + k11,,,
where k; € Z and 0 < k¢ < [, and set x; =fk° (zn)-

Clearly, the sequence {x;} is periodic with period /,; the choice of n implies that
this sequence is a d-pseudotrajectory of f.

We claim that

) cU. (2.48)
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Assuming the contrary, we can find an index m such that x,, ¢ U’, i.e.,
dist (x, $2(f)) > 2e,
but then
dist (X411, $2(f)) > 2¢, keZ. (2.49)
Let p € M be a point whose trajectory e-shadows {x;}, i.e.,
dist (f*(p).x) <e, keZ;

let pr = f*(p).
Then it follows from inequalities (2.49) that

dist (pm+u,, $2(f)) > &, keZ,

which contradicts Theorem 2.2.5. Thus, we have established inclusion (2.48).
Set r = f"(p). Since x; = x;+4,, the following inequalities hold:

dist (f*(r). x¢) = dist (""" (p).xi4s,) <&, ke L.
Then
dist (f*(r).f*(p)) <26 <a, ke
in addition, inclusion (2.48) implies that

0. (p)eU. kel

Since f is expansive on U, r = p.

Thus, p is a periodic point of f.

Since ¢ and d can be taken arbitrarily small, there is such a point p in an arbitrarily
small neighborhood of the point z. O

Thus, it remains to show that the analytic strong transversality condition implies
the strong transversality condition (stable and unstable manifolds of nonwandering
points are transverse).

For this purpose, we apply the following well-known theorem on the behavior of
trajectories of a diffeomorphism in a neighborhood of a hyperbolic set (its proof can
be easily reduced to Theorem 6.4.9 in the book [28]).

Theorem 2.2.6 Let A be a hyperbolic set of a diffeomorphism f with hyperbolicity
constants C, A. For any C; > C and A € (A, 1) there exists a neighborhood U of
A with the following property. If x € W'(p), p € A, and f*(x) € U for k > 0,
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then there exist two complementary linear subspaces L™ (x) and L™ (x) of T.M such
that

(1)
LY (x) = TW'(p). L™ (x) = TW"(p):
(2)
IDff(x)v| < CiAf[v]l, k=0, v el (),
and
IDFf(v| = (1/COAT vl k=0, v e L™ ().

Remark 2.2.5 Of course, a similar statement holds if x € W¥(p), p € A, and f*(x)
belongs to a small neighborhood of A for k < 0.

Clearly, it is enough for us to prove that if r € W*(p)NW"(q), where p, g € 2(f),
then

BT (r) C T,W*(p) and B (r) C T,W"(q). (2.50)
We prove the first inclusion in (2.50) by proving that
BT (r) C LT (r) (2.51)

and applying Theorem 2.2.6; the second inclusion is proved in a similar way.

Any trajectory of a diffeomorphism satisfying Axiom A tends to one of the basic
sets as time tends to o0 (see Theorem 1.3.2).

Take as A the basic set to which f¥(r) tends as k — oo; obviously, p belongs
to this basic set. Of course, we may assume that the positive semitrajectory of r
belongs to a neighborhood of A having the properties described in Theorem 2.2.6.

Assume that inclusion (2.51) does not hold; take v € B¥ (r)\ L " (r) and represent

v=0v"+0v" v eLt(r), v el (r);

then v* # 0.
Then

‘kav‘ > ‘kavu‘ — ‘kavy‘ > (1/CHA ! — CLAM Y| = 00, k — o0,

which contradicts the relation defining B (r).
We have completely proved the Mafié theorem.
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Historical Remarks In his paper [39], R. Maifié gave several equivalent character-
izations of structural stability of a diffeomorphism; Theorem 1.3.7 of this book is
just one of them.

The property of expansivity of a dynamical system with discrete time is now
one of the classical properties studied in the global theory of dynamical systems.
Theorem 2.2.4 is folklore. Let us mention J. Ombach’s paper [49] in which it was
shown (see Proposition 9) that a compact invariant set A of a diffeomorphism f is
hyperbolic if and only if f| 4 is expansive and has the (standard) shadowing property
(compare with Sect. 4.1).

Theorem 2.2.5 was proved in G. Birkhoff’s book [10].

2.3 Diffeomorphisms with Lipschitz Shadowing

Our main result in this section is as follows.

Theorem 2.3.1 If a diffeomorphism of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, then f is structurally stable.

As stated in Theorem 1.4.1 (1), a structurally stable diffeomorphism f has the
Lipschitz shadowing property. Combining this statement with Theorem 2.3.1, we
conclude that for diffeomorphisms, structural stability is equivalent to Lipschitz
shadowing.

Proof (of Theorem 2.3.1) Let us first explain the main idea of the proof.

Fix an arbitrary point p € M, consider its trajectory { p; = f*(p) : k € Z}, and
denote Ay = Df(px). Consider the sequence o7 = {A; : k € Z}.

In Sect. 2.1 devoted to the Maizel’ and Pliss theorems, we worked with sequences
&/ of isomorphisms of Euclidean spaces. Here we apply these theorems (and all the
corresponding notions of the Perron property etc.) to the sequences .7 = {Df (py)}
(see the remark concluding Sect. 3.1).

We claim that if f has the Lipschitz shadowing property, then .27 has the Perron
property on Z.

By the Maizel’ theorem, the Perron property on Z implies that the sequence <7 is
hyperbolic on both “rays” Z_ and Z.. Denote by S;", U, , k € Z_ and S,j', U,;" ke
Z+ the corresponding stable and unstable subspaces.

Then, by the Pliss theorem, the subspaces U and Sg' are transverse.

Clearly,

|Ayo---0Agv] =0, veS; k— oo,
and

|(A) " o0 (A0)'v| > 0, e Uy, k— —oo,
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which means that U; C B~(p) and S§ C BT (p), where B~(p) and B (p) are the
subspaces from the analytic transversality condition.

The transversality of the subspaces U; and Sg' implies the transversality of the
subspaces B~ (x) and B (x). Since x is arbitrary, f is structurally stable by the Mafié
theorem.

Now we prove our claim.

To clarify the reasoning, we first prove an analog of this result, Lemma 2.3.2,
for a diffeomorphism of the Euclidean space R". Of course, R” is not compact, but
we avoid the appearing difficulty making the following additional assumption (and
noting that an analog of this assumption is certainly valid for a diffeomorphism of
class C! of a closed smooth manifold). We call the condition below Condition S.

Thus, we assume that for any & > 0 we can find a § = §(i) > 0 (independent
of k) such that if |v| < &, then

[f(Pk +v) —Akv — pra| < pfol,  k€Z (2.52)

The basic technical part of the proof of Lemma 2.3.2 is the following statement
(Lemma 2.3.1). In the following two Lemmas, 2.3.1 and 2.3.2, f is a diffeomorphism
of R” that has the Lipschitz shadowing property with constants .2, dy > 0, { px =
f*(p)} is an arbitrary trajectory of f, Ay = Df(py), and it is assumed that Condition
S is satisfied.

Lemma 2.3.1 Fix a natural number N. For any sequence
wy € R", keZ,

with |wy| < 1 there exists a sequence

zeR", kelZ,
such that
ol < Z+1, keZ, (2.53)
and
Zk+1 = A2k + wir1, —N <k <N. (2.54)

Proof Thus, we assume that f has the Lipschitz shadowing property with constants
A y d() > 0.
Define vectors

AyeR", —-N<k<N+1,
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by the following relations:
A_y =0 and Ap4; = ArAr +wigr1, —N <k =<N. (2.55)
Clearly, there exists a number Q (depending on N, <7, and wy) such that
Al <Q. -N<k<N+1. (2.56)

Fix a small number d € (0,dy) (we will reduce this number during the proof)
and consider the following sequence § = {x; € R" : k € Z}:

FHN(p-w), k < —N;
Xk = § pr + dAyg, —N<k<N+1;
fk_N_l(pN_H + dAN_H), k>N + 1.

Note that if —N < k < N, then
X1 —f )| = | prt1 + dAirr — f(pr + dAY)| <
< d|Akp1 — AkAi| + | f(pk + dAk) — pr1 — dAKAK] -
Since we consider a finite number of wy, the condition |wy| < 1 implies that there
is a ;€ (0,1) such that the first term above does not exceed pud; by Condition S,
the second term is less than (1 — w)d if d is small. Hence, in this case, the sum is

less than d.
For the remaining values of &,

[Xe+1 —f ()| = 0.

Thus, we may take d < dj so small that £ is a d-pseudotrajectory of f. Then there
exists a trajectory n = {yx : k € Z} of f such that

|xe — k| < Zd, keZ. (2.57)
Denote t; = (yx — px)/d. Since Ay = (xx — pr)/d, it follows from (2.57) that
| Ay —t| = |xx —yil/d < L, kel (2.58)
It follows from (2.56) and (2.57) that
Iy —pil < |y — k] + e —pel < (L + Q)d, ke
Hence,

Wl <L +0Q. kel (2.59)
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Now we define a finite sequence
breR", —-N=<k<N+I,
by the following relations:
b_y=t_y and byy; =Aby, —N<k<N. (2.60)
Take 11 € (0, 1) such that
(K+ DN +EK+DN 't ) <1, (2.61)
where K = sup ||Ag||. Set

K1

=210

and consider d so small that inequality (2.52) holds for |[v| < § with § = (£ + Q)d.
The definition of the vectors #; implies that

dti+1 = Yi+1 — Pr+1 = f(v1) —f(p) = f(pr + dtr) — f(po)-

Since |dty] < (£ + Q)d by (2.59), it follows from Condition S and from the
above choice of d that

|dtip1 — dAxte| = | f(pr + die) — f(pr) — dAxte| <
< pldiy| = p(Z + Q)d = pid.

Hence,

frr1 = Axty + O,  where |6 < u;. (2.62)
Consider the vectors

cy =ty — by.
Note that c_y = 0 by (2.60) and
Cr41 = Agcr + 6k,  where |6 <

by (2.62).
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Thus,
le—n+1] = 10-n| < 1,

le-ns2| S JAnyricony1 + O-nt1| < (K + Dy,

and so on, which implies the estimate

lee < (K+ DM+ (K+ D"+t 1)y <1, —N<k<N.

Hence,
[tx —bi] <1, —N <k <=N.

Finally, we consider the sequence

0, k < —N,;
k=19 A—br, -N<k<N+1,
0, k>N+1.

71

(2.63)

Relations (2.55) and (2.60) imply relations (2.54); estimates (2.58) and (2.63)

imply estimate (2.53).
Lemma 2.3.2 The sequence o/ = {Ay} has the Perron property.

Proof Take an arbitrary sequence
wy R, keZ,
with [wg| < 1 and prove that an analog of Eq. (2.54) has a solution
weR", kelZ,
with
ol < Z+1, kel
Fix a natural N and consider the sequence

W™ = ] We —N <k =<N;
10, k| =N+ 1.
By Lemma 2.3.1, there exists a sequence {z,((N) , ke Z} such that

Z,(fi)l = AkZ/((N) + w,((N), —N<k=N,

O

(2.64)
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and

‘z,iN)) < %41, kel (2.65)

Passing to a subsequence of {z,((N)}, we can find a sequence {v} such that

w= lim 2V, keZ

(Note that do not assume uniform convergence.) Passing to the limit in (2.64) and
(2.65) as N — oo, we see that

Vpr1 = Ak +wi, k€Z,
and
| < Z+1, kel

Thus, we have shown that the sequence .7 has the Perron property. O
Now let us explain how to prove the required statement in the case of a smooth
closed manifold M.

Lemma 2.3.3 If a diffeomorphism of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, {pk =fk(p)} is an arbitrary
trajectory of f, and Ay = Df(px), then the sequence o/ = {A} has the Perron
property.

Proof Let exp be the standard exponential mapping on the tangent bundle of M
generated by the fixed Riemannian metric dist. Let

exp, : I\M — M

be the corresponding exponential mapping at a point x € M.

Denote (just for this proof) by B(r, x) the ball in M of radius r centered at a point
x; let By(r, x) be the ball in T, M of radius r centered at the origin.

It is well known that there exists an r > 0 such that for any x € M, exp, is a
diffeomorphism of Br(r, x) onto its image and exp, ! is a diffeomorphism of B(r, x)
onto its image; in addition, D exp,(0) = Id.

Thus, we may assume that r is chosen so that the following inequalities hold for
any x € M:

dist(exp,(v), exp,(w)) < 2|v —w|, v,w € Br(r,x), (2.66)

and

lexp; ! (y) —exp; ! (2)| < 2dist(y.2).  y.z € B(r.x). (2.67)
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These inequalities mean that distances are distorted not more than twice when
we pass from the manifold to its tangent space or from the tangent space to the
manifold (if we work in a small neighborhood of a point of the manifold or in a
small neighborhood of the origin of the tangent space).

In our reasoning below, we always assume that d is so small that the correspond-
ing points belong to such small neighborhoods.

Now we fix a trajectory { i =15 p)} of our diffeomorphism f and introduce the
mappings

Fr = exp;lirl of oexp,, : TypM — Ty, M.
Clearly,
DF(0) = A;.

The analog of Condition S is as follows: For any # > 0 we can finda § > 0
(independent of k) such that if |v| < §, then

| F(v) — Agv| = pfvl. ke Z. (2.68)

Of course, this condition is satisfied automatically since f is of class C! and the
manifold M is compact.

To prove that the sequence .o/ has the Perron property, let us consider the
difference equations

U1 = Ak +wi, k€ Z, (2.69)

where vy € Ty, M and wy € T, |\ M.

We assume that |wi| < 1, k € Z. Let us “translate” the reasoning of Lemma 2.3.1
to the “manifold language.”
We fix a natural N and consider the sequence

Ay €TyM, —N<k<N+1,

defined by relations (2.55). Let Q satisfy (2.56).
We fix a small d and define the sequence £ = {x; € M : k € Z} by

SN (pw), k < —N;
X = exppk(dAk), —-N<k<N+1;
fk_N_l(eXPpNH(dANH)), k>N+1.

This definition and inequalities (2.66) imply that if 4 is small enough, then

dist ()Ck_H, exple (dAkAk)) < 2d.



74 2 Lipschitz and Holder Shadowing and Structural Stability

Since
S ) = expy, , (Fi(dAy)),
condition (2.68) with u < 1 implies that
dist (exppH_l (dAA), f(xk)) <2d,
and we see that

dist (f(x), xx+1) < 4d.

Thus, there exists an exact trajectory n = {y; : k € Z} of f such that

dist(u, yx) < 4.2d, k€ Z.

Now we consider the finite sequence

= :lexp;k‘(yk), —-N <k <N.
Inequalities (2.70) and (2.67) imply that
|[Ar—t| <8%, kel
Note that
dist(ye, pr) < dist(yx, xx) + dist(xe, pr) < (42 + 20)d,
Hence,
lte] <8Z + 40, kel
Now we define a finite sequence
byeT,M, —N<=<k=<N-+1,
by relations (2.60) and repeat the reasoning of Lemma 2.3.1 with

M1

K= sy 140

where jt; is the same as above (see relation (2.61)).

kelZ.

(2.70)

Q2.71)
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The rest of the proof is literally the same (with natural replacement of R” by the
corresponding tangent spaces), and we get the relation

|t — bi| < 1

similar to (2.63).
Finally, we get the estimate

lze] < 8Z + 1,

which completes the proof of the analog of Lemma 2.3.1.

The rest of the proof of the implication “Lipschitz shadowing property implies
the Perron property of the sequence .o almost literally repeats the proof of
Lemma 2.3.2. O

Historical Remarks Theorem 2.3.1 was published by the first author and S. B.
Tikhomirov in the paper [68]. Let us mention that the paper [67] contained the first
proof of the fact that structural stability follows from certain shadowing property
based on a combination of the Maizel’, Pliss, and Maifié theorems.

2.4 Lipschitz Periodic Shadowing for Diffeomorphisms

The main result of this section is as follows.

Theorem 2.4.1 A diffeomorphism f of class C' of a smooth closed n-dimensional
manifold M has the Lipschitz periodic shadowing property if and only if f is §2-
stable.

First we prove the “if” statement of Theorem 2.4.1.

Theorem 2.4.2 If a diffeomorphism f is §2-stable, then f has the Lipschitz periodic
shadowing property.
Let us give one more definition.

Definition 2.4.1 We say that a diffeomorphism f has the Lipschitz shadowing
property on a set U if there exist positive constants .2, dy such that if § = {x; :
i € Z} C U is a d-pseudotrajectory with d < dy, then there exists a point p € U
such that inequalities (1.5) hold.

Remark 2.4.1 Ttfollows from Theorems 1.4.2 and 2.2.4 that we can find a neighbor-
hood U of a hyperbolic set A of a diffeomorphism f having the above-formulated
property and such that f is expansive on U.

We start by proving several auxiliary results.

Lemma 2.4.1 Let f be a homeomorpism of a compact metric space (M, dist). For
any neighborhood U of the nonwandering set §2(f) there exist positive numbers
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1,8, such thatif ¢ = {x; : i € Z} is a d-pseudotrajectory of f with d < 8, and

X, X1y - Xt €U

forsome k € Z andl > 0, thenl <T.

Proof Take a neighborhood U of the nonwandering set £2(f) and let T be the
Birkhoff constant for the homeomorphism f given for this neighborhood by
Theorem 2.2.5. Assume that there does not exist a number §; with the desired
property; then there exists a sequence d; — 0 as j — oo and a sequence of d;-

pseudotrajectories {x,((‘i) : k € Z} of f such that
(0 oksT-1fnU=0

for all j.
The set M’ = M \ U is compact. Passing to a subsequence, if necessary, we may

assume that xf)j) — Xo as j — oo. In this case,

Sy eM, 0<k<T-—1,

and we get a contradiction with the choice of 7. O

Now let us recall some basic properties of §2-stable diffeomorphisms. It was
noted in Sect. 1.3 that a diffeomorphism f is §2-stable if and only if f satisfies
Axiom A and the no cycle condition (Theorem 1.3.3).

Let £21,..., £2,, be the basic sets in decomposition (1.15) of the nonwandering
set of an £2-stable diffeomorphism f.

Below we need one folklore technical statement. Recall that we write £2; — £2;
if there is a point x ¢ £2(f) such that

) — 2iand ff(x) — £2;, k — oo.
Theorem 2.4.3 Assume that a diffeomorphism f is §2-stable. For any family of
neighborhoods U; of the basic sets §2; one can find neighborhoods V; C U; such
that if a point x belongs to some V; and there exist indices 0 < | < m such that
£ ¢ Uyand ") € v,
then there exist basic sets $2;,, . .., §2;, such that

2; = 2y == 2, > 82 (2.72)

Proof Reducing the given neighborhoods U;, we may assume that the compact sets
U! = f(CL(U;)) U CI(U);) are disjoint.
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Assume that our statement does not hold. In this case, there exist sequences of
points xi, k > 0, and indices /(k) < m(k) such that

= 2 P ¢l Y > 2 k> oo
Clearly, we may assume that

xk,f(xk), e ,fl(k)_l(xk) (S Ui

while

Yk 3:fl(k)(xk) ¢ U
Then y, € U/, and, passing to a subsequence, if necessary, we may assume that
vk >y € U ask — oo.
Since £2; is a compact f-invariant set, /(k) — oo as k — oco. Thus, for any ¢ < 0,
f'(yx) € U; for large k, and it follows that f*(y) € CI(U;) for any ¢t < 0. We note

that the set C1(U;) intersects a single basic set, £2;, and refer to (1.16) to conclude
that

Ve W (82,). 2.73)

By the same relation (1.16), there exists a basic set £2;, such that

y € W'(82;). (2.74)

By our choice of U, the sets CI1(f(U;)) \ U; do not contain nonwandering points.
Thus, if i} = i, inclusions (2.73) and (2.74) mean the existence of a 1-cycle, and we
get the desired contradiction.

Hence, i # i and £2; — £2;,. Consider the compact set

Y={f"(»):k=0}U,.
Clearly, the set Y has a neighborhood Z such that U;, C Z and Z does not intersect

a small neighborhood of £2,.
Since y; = f*(x;) — y, there exist indices /; (k) such that

[y =O%w) ez, 0=1=h(k),
for large k, and

xip =190 = OTO) - 2i, k— oo,
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At the same time, the positive trajectories of the points y; (and hence, of the
points x; ;) must leave Z (and hence, Uj,) since the sequence

070 (3 = 70 )

tends to £2;.

Thus, we can repeat the above reasoning with the points x; 4 and the basic set £2;,
instead of x; and £2;.

Such a process will produce basic sets £2;,, §2;,, ... such that

i — 2 = Qi > ...

Since f has no cycles, this process is finite, and, as a result, we conclude that
there exist basic sets £2; , ..., §2;, such that relations (2.72) hold. |

Now we apply the above theorem to prove a statement concerning periodic
pseudotrajectories of £2-stable diffeomorphisms.

Lemma 2.4.2 Assume that a diffeomorphism f is §2-stable. For any family of
disjoint neighborhoods W; of the basic sets $2; there exists a number §; > 0 such that
any periodic d-pseudotrjectory & of f with d < &, belongs to a single neighborhood
W,.

Proof Fix arbitrary disjoint neighborhoods W; of the basic sets £2; and find a number
& > 0 and neighborhoods U; of §2; such that

N(&‘,U,')CW,’, i=1,...,m.

Apply Theorem 2.4.3 to find for U; the corresponding neighborhoods V; of £2;.
Reducing &, if necessary, we can find neighborhoods V! of §2; such that

NEV)CVi i=1,....m

By Lemma 2.4.1, there exist positive numbers 7, §; such that if § = {x;} is a
d-pseudotrajectory of f with d < §; and

m

. 7

Xy Xkt 1y oo Xkt €V 1= UV,-
i=1

forsomek € Zand! > 0,then! <T.
Find a number 6, € (0, §;) such thatif £ = {x;} is a d-pseudotrajectory of f with
d < §,, then
dist(f' (). xeqr) <&, 0<I<T+1,

for any k € Z.
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Now let £ = {x;} be a periodic d-pseudotrajectory of f of period p with d < 8.
Let us call a V-block of £ a finite segment

Eem = X Xkt 1o Xty kE€EZ, m>0,

such that x, x¢+,, € V while x4, ¢ V for 0 < [ < m. Note that in this case,
m<T+1.

Let us note simple properties of V-blocks.

It follows from the choice of §;, that if &, is a V-block for which there exist
indices i,j € {1,...,m} such that x; € V] and x4, € VJ, then dist(f™ (x), Xetm) <
&; hence, [ (x;) € V;.

At the same time, if for such a V-block there exists an index [ € (0, m) such that
X1 & W;, then dist(fl(xk),ka) <é; hence,f’(xk) ¢ U,.

It follows from Theorem 2.4.3 that in this case, there exists a relation of the form
(2.72); the absence of cycles implies that j # i.

Since 8, < &1, there exists a neighborhood V/ such that £ intersects V.

Changing indices of £, we may assume that xo € V.

If either x; € W; for k > 0 or any V-block &, with k& > 0 belongs to W;, then
the statement of our lemma follows from the periodicity of &.

It was noted above that if &, be a V-block with x; € V; for k > 0 for which
there exists an index / € (0, m) such that x;, ¢ W;, then there exists an index j' # j
for which we have a relation

of the form (2.72).
Thus, if we assume that there exists a V-block & ,, with k > 0 such that &, \
W; # @, then we get an index j; # i such that we have a relation

Qi—>"'—>9j1

of the form (2.72).

Going to “the right” of this V-block & ,, and continuing this process, we construct
a sequence of pairs of indices (i, 1), (j1,/2), ... such that

i = > 82, 82 > 82,

In this case, it follows from the absence of cycles that all the indices i, ji, s, . . .
are different.

But the p-periodicity of & implies that if &, is a V-block and n is a natural
number, then &y, is an identical V-block, and the existence of the above

sequence with different i, jj, j», . .. is impossible.
Now we prove Theorem 2.4.2.
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By Remark 2.4.1, there exist disjoint neighborhoods Uy, ... ., U,, of the basic sets
£21,...,582, such that

(i) f has the Lipschitz shadowing property on any of U; with the same constants
Z.dy;
(ii) f is expansive on any of U; with the same expansivity constant a.

Find neighborhoods W; of §2; (and reduce dj, if necessary) so that the Zd;-
neighborhoods of W; belong to U;. Apply Lemma 2.4.2 to find the corresponding
constant §,.

We claim that f has the Lipschitz periodic shadowing property with constants
£, dy, where

a
dy = min (d;';,az, 23) .

Take a p-periodic d-pseudotrajectory £ = {x;} of f with d < dy. Lemma 2.4.2
implies that there exists a neighborhood W; such that ¢ C W; C U,.

Thus, there exists a point p such that inequalities (1.5) hold. Let us show that p
is a periodic point of f. By the choice of U; and W;, f*(p) € U; for all k € Z. Let
q = f*(p). Inequalities (1.5) and the periodicity of £ imply that

dist (f*(g). xx) = dist (FT*(p).xe) = dist (T (p). xqp) < Zd, k€.
Thus,
dist (f*(q).f"(p)) <2Ld <a, ke,

which implies that f*( p) = ¢ = p. This completes the proof. O
Now we prove the “only if”” statement of Theorem 2.4.1.

Theorem 2.4.4 If a diffeomorphism f has the Lipschitz periodic shadowing prop-
erty, then f is §2-stable.

Thus, let us assume that f has the Lipschitz periodic shadowing property (with
constants . > 1,dy > 0). Clearly, in this case f_l has the Lipschitz periodic
shadowing property as well (and we assume that the constants ., dy are the same
for f and f1).

To clarify the presentation, in the construction of pseudotrajectories in the
following Lemmas 2.4.3 and 2.4.4, we assume that f is a diffeomorphism of R”
(and leave to the reader consideration of the case of a manifold).

We also assume that there exists a number N > 0 such that |Df (x)|| < N for all
considered points x (an analog of this assumption is satisfied in the case of a closed
manifold).

Recall that we denote by Per(f) the set of periodic points of f.

Lemma 2.4.3 Every point p € Per(f) is hyperbolic.
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Proof To get a contradiction, let us assume that f has a nonhyperbolic periodic point
p (to simplify notation, we assume that p is a fixed point; literally the same reasoning
can be applied to a periodic point of period m > 1). In addition, we assume that
p=0.

In this case, we can represent

f(v) = Av + F(v),

where A = Df(0) and F'(v) = o(v) as v — O.
By our assumption, A is a nonhyperbolic matrix. The following two cases are
possible:

Case 1: A has a real eigenvalue A with [A| = 1;
Case 2: A has a complex eigenvalue A with |A| = 1.

We treat in detail only Case 1 and give a comment concerning Case 2. To simplify
presentation, we assume that 1 is an eigenvalue of A; the case of eigenvalue —1 is
treated similarly.

We can introduce coordinate v such that, with respect to this coordinate, the
matrix A has block-diagonal form,

A = diag(B, P), (2.75)

where B is a Jordan block of size [ x [:

110...0

011...0
B =

000...1

Of course, introducing new coordinates, we have to change the constants . and
dy; we denote the new constants by the same symbols. In addition, we assume that
Z is integer.

We start considering the case [ = 2; in this case,

7= (o1)

ey = (1,0,0,...,0)and e, = (0, 1,0,...,0)

Let

be the first two vectors of the standard orthonormal basis.
LetK =7%.
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Take a small d > 0 and construct a finite sequence Yy, . .., yo of points (where Q
is determined later) as follows: yp = 0 and

Vig1 = Ay +des, k=0,... . K—1. (2.76)
Then
vk = (Z1(K)d,Kd,0,...,0),

where the natural number Z;(K) is determined by K (we do not write Z;(K)
explicitly). Now we set

Viel = Ay —der, k=K,...,2K—1.
Then
Yok = (Zz(K)d, 0, 0, ey 0),

where the natural number Z,(K) is determined by K as well. Take Q = 2K + Z,(K);
if we set

Vit1 = Ay —de;, k=2K,...,0—1,

then yp = 0. Let us note that both numbers Q and

_ MaXo<k<o-1 | il
B d
are determined by K (and hence, by .%).
Now we construct a Q-periodic sequence xi, k € Z, that coincides with the above
sequence fork = 0,..., Q.
We claim that if d is small enough, then § = {x;} is a 2d-pseudotrajectory of f
(and this pseudotrajectory is Q-periodic by construction).
Indeed, we know that |x;| < Yd for k € Z. Since F(v) = o(|v]) as |[v| — 0,

|F(a)| <d, keZ, (2.77)

if d is small enough.
The definition of x; implies that

|Xe41 —Axg| =d, k€. (2.78)
It follows from (2.77) and (2.78) that
X1 —f )] < 1 — Axe] + | F(x)| < 24,

which implies that § = {x;} is a 2d-pseudotrajectory of f if d is small enough.
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Now we estimate the distances between points of trajectories of the diffeomor-
phism f and its linearization at zero.

Let us take a vector po and assume that the sequence p; = f*( po) belongs to the
ball [v| < (Y + 2%)d for 0 < k < K. Let r, = A*py (we impose no conditions on
r since below we estimate F at points g only).

Take a small number p € (0, 1) (to be chosen later) and assume that d is small
enough, so that the inequality

| F()] < plv]

holds for [v| < (Y + 2.%)d.
By our assumption, ||A|| = ||Df(0)|| < N. Then

|p1l = |Apol + | F(po)| < (N + Dl pol, ...,
|pil < [Api—i| + | F(pi—1)| < (N + 1| po
forl <k <K, and
|p1 — 1l = |Apo + F(po) — Apo| < 1| pol,
|p2 — 2| = |Ap1 4+ F(p1) —Ani| = Nlpy — n| + pulpi| = (2N + 1)| pol,
|p3 —r3l < N|py—ra + plpal < W(N@N + 1) + (N + 1)*)| pol.

and so on.
Thus, there exists a number v = v(K, N) such that

|pk =il < uvlpol. 0=k=K.
We take u = 1/v, note that © = p(K, N), and get the inequalities
[P — 1l <1|pol, 0=<k =<K, (2.79)
for d small enough.
Since f has the Lipschitz periodic shadowing property, for d small enough, the
Q-periodic 2d-pseudotrajectory & is 2.7 d-shadowed by a periodic trajectory. Let po
be a point of this trajectory such that

Ipk— x| < Zd, kel, (2.80)

where pr = f*(po).
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The inequalities |xx| < Yd and (2.80) imply that
|pel < el + | pe— 2l = (Y +22)d, ke (2.81)

Note that | py| < 2.Zd.
Set ry = A*py; we deduce from estimate (2.79) that if d is small enough, then

|px — k| < |po| <22d. (2.82)

Denote by v® the second coordinate of a vector v.
It follows from the structure of the matrix A that

2| = || = 224, (2.83)
The relations
‘yﬁ?" = Kdand |px — yx| < 2.%d
imply that
) p}?)‘ > Kd—2.%d = 5.2d (2.84)

(recall that K = 7.%).

Estimates (2.82)—(2.84) are contradictory. Our lemma is proved in Case 1 for
=2

If I = 1, then the proof is simpler; the first coordinate of A*v equals the first
coordinate of v, and we construct the periodic pseudotrajectory perturbing the first
coordinate only.

If [ > 2, the reasoning is parallel to that above; we first perturb the /th coordinate
to make it Kd, and then produce a periodic sequence consequently making zero the
Ith coordinate, the (I — 1)st coordinate, and so on.

If A is a complex eigenvalue, A = a + bi, we take a real 2 x 2 matrix

(57

and assume that in representation (2.75), B is a real 2/ x 2[ Jordan block:

RE, 0 ...0

ORE,...O
B = . . . )

00 0...R

where E» is the 2 x 2 identity matrix.
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After that, almost the same reasoning works; we note that |[Rv| = |v| for any
2-dimensional vector v and construct periodic pseudotrajectories replacing, for
example, formulas (2.76) by the formulas

Vi1 = Ayr +dwg, k=0,...,K—1,

where jth coordinates of the vector wy, are zero forj = 1,...,21—2,2[+1,...,n,
while the 2-dimensional vector corresponding to (2/ — 1)st and 2/th coordinates has
the form R¥w with |[w| = 1, and so on. We leave details to the reader. The lemma is
proved. O

Lemma 2.4.4 There exist constants C > 0 and A € (0, 1) depending only on N and
L and such that, for any point p € Per(f), there exist complementary subspaces
S(p) and U(p) of R" that are Df-invariant, i.e.,

(HI) Df(p)S(p) = S(f(p)) and Df (p)U(p) = U(f(p)),

and the inequalities

(H2.1) |Dfi(p)v| < CM|v|, v eS(p).j=0,
and

(H2.2) |Df 7 (p)v| < CH|v], veU(p).j=0,
hold.

Remark 2.4.2 This lemma means that the set Per(f) has all the standard properties
of a hyperbolic set, with the exception of compactness.

Proof Take a periodic point p € Per(f); let m be the minimal period of p.

Denote p; = f'(p), A; = Df(p;), and B = Df"(p). It follows from Lemma 2.4.3
that the matrix B is hyperbolic. Denote by S(p) and U(p) the invariant subspaces
of B corresponding to parts of its spectrum inside and outside the unit disk,
respectively. Clearly, S(p) and U(p) are invariant with respect to Df, they are
complementary subspaces of R”, and the following relations hold:

lim B'vy= lim B "v, =0, vse€S8(p),v, € U(p). (2.85)

n——+00 n—-+00

We prove that inequalities (H2.2) hold with C = 4Z and A = 1 + 1/2%)
(inequalities (H2.1) are established by similar reasoning applied to f ! instead of f).

Consider an arbitrary nonzero vector v, € U(p) and an integer j > 0. Define
sequences of vectors v;, ¢; and numbers A; > 0 for i > 0 as follows:

Vi [V
Vo=V, Vg1 =Aw, e= ., A= =|Ael
[vil il

Let

Ao A+ At Ao+ o+ A 1
Am—1*..."Ag ’

T =



86 2 Lipschitz and Holder Shadowing and Structural Stability

Consider the sequence {a; € R : i > 0} defined by the following formulas:
ap =71, a4 = Aia;— 1. (2.86)
Note that
amw=0 and a; >0, ie[0,m—1]. (2.87)

Indeed, if a; < 0 for some i € [0,m — 1], then a; < O fork € [i + 1, m].
It follows from (2.85) that there exists an n > 0 such that

|B"teg| < 1. (2.88)
Consider the finite sequence of vectors {w; : i € [0,m(n + 1)]} defined as
follows:
wi = ajej, i€[0,m—1];
W, = B™'teyp;
Wint1+i = AiWpti, 1 € [0,mn—1].
Clearly,

Wi = B rey, ke [1,n+ 1],

which means that we can consider {w;} as an m(n 4 1)-periodic sequence defined
fori € Z.
Let us note that

v
Aiwi = aiAiei = a; |;|_|1 , L€ [O,m — 2],
1
Vi+1 Vi+1 .
Wit = (A,’Cl,’ — 1) ! = q; ' —€i+1, 1€ [O,m— 2],
Vi1 |vil
and
Um Um
Ap—1Win—1 = Qp— = —¢
m—1Wm—1 m llvm—ll Am—1|vm—1| m

(in the last relation, we take into account that a,,—A,,—; = 1 since a,, = 0).
The above relations and condition (2.88) imply that

|W,'+1 —A,'Wil <2, €. (2.89)
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Now we take a small d > 0 and consider the m(n + 1)-periodic sequence
E={x=pi+dw:iel}

We claim that if d is small enough, then £ is a 2d-pseudotrajectory of f.
Represent

fxi) =f(p:i) + Df(pidw; + Fi(dw;) = pi+1 + Aidw; + Fi(dw;),

where F;(v) = o(|v|) as v — 0.
It follows from estimates (2.77) that

| f(xi) — xiv1]| < 2d

for small d.

By Lemma 2.4.3, the m-periodic trajectory { p;} is hyperbolic; hence, { p;} has a
neighborhood in which { p;} is the unique periodic trajectory. It follows that if d is
small enough, then the pseudotrajectory {x;} is 2.Zd-shadowed by { p;}.

The inequalities |x; —p;| < 2.Zd imply that |a;| = |w;| <2.Zfor0 <i<m—1.

Now the equalities A; = (a;+1 + 1)/a; imply thatif 0 < i < m — 1, then

ar+1la;+1 ai+1_
a  ar  ain

a; + 1 1 1
= 1+ N >
ap ay aj—1

o1 1+1 "‘1>1 1+1i
A% 2.7 47 2.7

(we take into account that 1 + 1/(2.%) < 2 since .Z > 1).
It remains to note that

AoseirAimg =

[DF (p)vu] = Aimi - 2ol O <i=m—1,

and that we started with an arbitrary vector v, € U(p).
This proves our statement for j < m — 1. If j > m, we take an integer k > 0 such

that km > j and repeat the above reasoning for the periodic trajectory po, . . . , Pkm—1
(note that we have not used the condition that m is the minimal period). The lemma
is proved. O

In the following lemmas, we return to the case of a diffeomorphism f of a smooth
closed manifold M since the reasoning becomes “global.” We still assume that f has
the Lipschitz periodic shadowing property and apply analogs of Lemmas 2.4.3 and
2.4.4 for the case of a manifold.
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Lemma 2.4.5 The diffeomorphism f satisfies Axiom A.

Proof Denote by P, the set of points p € Per(f) of index / (as usual, the index of a
hyperbolic periodic point is the dimension of its stable manifold).

Let R be the closure of P;. Clearly, R; is a compact f-invariant set. We claim that
any R; is a hyperbolic set. Let n = dimM.

Consider a point g € R; and fix a sequence of points p,, € P; such that p,, — g as
m — oo. By an analog of Lemma 2.4 .4, there exist complementary subspaces S( p,,)
and U(pm) of T, M (of dimensions / and n — I, respectively) for which estimates
(H2.1) and (H2.2) hold.

Standard reasoning shows that, introducing local coordinates in a neighborhood
of (g,T,M) in the tangent bundle of M, we can select a subsequence p,, for
which the sequences S(p,,,) and U(py,) converge (in the Grassmann topology) to
subspaces of T,M (let Sp and Uy be the corresponding limit subspaces).

The limit subspaces So and Up are complementary in 7,M. Indeed, consider
the “angle” B,, between the subspaces S(p,,,) and U(p,) which is defined (with
respect to the introduced local coordinates in a neighborhood of (g, T,M)) as
follows:

Bm, = min |[v° —v"|,

where the minimum is taken over all possible pairs of unit vectors v* € S(p.,) and
v € U(pm).

The same reasoning as in the proof of Lemma 2.1.5 shows that the values 3, are
estimated from below by a positive constant « = «a(N, C, 1). Clearly, this implies
that the subspaces Sy and U, are complementary.

It is easy to show that the limit subspaces Sy and Uy are unique (which means, of
course, that the sequences S(p,,) and U(p,,) converge). For the convenience of the
reader, we prove this statement.

To get a contradiction, assume that there is a subsequence p,, for which the
sequences S(py,,) and U(p,,) converge to complementary subspaces S; and U
different from Sy and U, (for definiteness, we assume that Sy \ S; # @).

Due to the continuity of Df, the inequalities

IDF (g)v] < CH|v|, v eSUS,
and
IDf (q)v] = CT'A7v], veUpU U,

hold forj > 0.
Since

TqMZSOEBUo:SIEBUh
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our assumption implies that there is a vector v € Sy such that
v=2ov'4+v" v eS,v"eU,v" #£0.
Then
IDf (q)v] < C¥Jv] > 0. j— oo,
and
|Dfi(q)v‘ > C AT — CA | = 00, j— o0,

and we get the desired contradiction.

It follows that there are uniquely defined complementary subspaces S(g) and
U(q) for g € R; with proper hyperbolicity estimates; the Df-invariance of these
subspaces is obvious. We have shown that each R; is a hyperbolic set with
dimS(g) =/ and dimU(q) = n—1[forq € R;.

If r € £2(f), then there exists a sequence of points r,, — r asm — 0o and a
sequence of indices k,, — 0o as m — oo such that f* (r,,) — r.

Clearly, if we continue the sequence

rm,f(rm), s vfkm_l(rWl)

periodically with period k,,, we get a periodic d,-pseudotrajectory of f with d,, — 0
as m — oo.

Since f has the Lipschitz periodic shadowing property, for large m there exist
periodic points p,, such that dist( p,,, r,) — 0 as m — oo. Thus, periodic points are
dense in £2(f).

Since hyperbolic sets with different dimensions of the subspaces U(g) are
disjoint, we get the equality

2(f)=RoyU---UR,,
which implies that £2(f) is hyperbolic. The lemma is proved. O

Thus, to prove Theorem 2.4.4, it remains to prove the following lemma.

Lemma 2.4.6 If f has the Lipschitz periodic shadowing property, then f satisfies
the no cycle condition.

Proof To simplify presentation, we prove that f has no 1-cycles (in the general
case, the idea is literally the same, but the notation is heavy; we leave this case to
the reader).

To get a contradiction, assume that

p € (WH(s2) N W*(82)) \ L2(f).
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In this case, there are sequences of indices j,,, k,, = 00 as m — oo such that

S (). ff(p) = 21, m— oo
Since the set §2; is compact, we may assume that
F7"(p) = q € 2; and f*"(p) — r € 2.

Since £2; contains a dense positive semitrajectory, there exist points s,, — r and
indices [,, > 0 such that f' (s,,) — q as m — oo.
Clearly, if we continue the sequence

) B e 0 ) B L N s () BN A 1)

periodically with period k,, + [, 4 j,, we get a periodic d,,-pseudotrajectory of f
with d,, — 0 as m — oo.

Since f has the Lipschitz periodic shadowing property, there exist periodic points
pm (for m large enough) such that p,, — p as m — oo, and we get the desired
contradiction with the assumption that p ¢ £2(f). The lemma is proved. O

Historical Remarks Theorem 2.4.1 was published by A. V. Osipov, the first author,
and S. B. Tikhomirov in [50].

2.5 Holder Shadowing for Diffeomorphisms

In this section, we explain the main ideas of the proof of the following result.

Theorem 2.5.1 Assume that a diffeomorphism f of class C? of a smooth closed
manifold has the Holder shadowing property on finite intervals with constants
Z,C,dy, 0, w and that

0e(/2,1)and b + w > 1. (2.90)

Then f is structurally stable.

The proof of Theorem 2.5.1 is quite complicated. For that reason, we try to
simplify the presentation and omit inessential technical details; the reader can find
the original Tikhomirov’s proof in the paper [101].

The main two steps of the proof of Theorem 2.5.1 are as follows.

First one considers a trajectory { p = f*(p)} of f, denotes Ay = Df(py), and
shows that under conditions of Theorem 2.5.1, the sequence .o = {A;} has a
weak analog of the Perron property (in which the existence of bounded solutions
of the inhomogeneous difference equations is replaced by the existence of “slowly
growing” solutions).
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We reproduce this part of the proof in Theorem 2.5.2 in which we restrict our
consideration to the case of a diffeomorphism f of the Euclidean space R”.

After that, it is shown that the above-mentioned weak analog of the Perron
property implies then f satisfies the analytic strong transversality condition (with
exponential estimates) and, hence, by the Maifié theorem, f is structurally stable. To
explain the basic techniques of that part of the proof, we prove the above statement
in Theorem 2.5.3 in the case of a one-dimensional phase space (and note that the
reasoning in the proof of Theorem 2.5.3 reproduces the most important part of the
proof given by Tikhomirov). We again refer the reader to [101] for the proof of the
general case.

Theorem 2.5.2 Assume that a diffeomorphism f of the Euclidean space R" has the
Holder shadowing property on finite intervals with constants £, C, dy, 6, @ and that
condition (2.90) is satisfied.

Assume, in addition, that there exist constants S, € > 0 such that

|f(px + V) —prg1 —Arv| < S|v|?, k€Z, |v] <e. (2.91)

Then there exist constants L > 0 and y € (0,1) such that for any i € Z and
N > 0 and any sequence

W={weR':i+1<k<i+N+1} (2.92)

with |wg| < 1, the difference equations

Ukt1 = Ak + wi1, <k <i+N, (2.93)
have a solution
V=A{v:i<k<i+N+1} (2.94)
such that the value
Vi = o max v (2.95)

satisfies the estimate
VI < LN”. (2.96)

Remark 2.5.1 Clearly, an analog of condition (2.91) is satisfied if we consider a
diffeomorphism of class C? for which the trajectory { p;} is contained in a bounded
subset of R” (or a diffeomorphism of class C? of a smooth closed manifold studied
in the original paper [101]). In fact, it was noted by Tikhomirov that one can prove
a similar result in the case where exponent 2 in (2.91) is replaced by any v > 1. The
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reasoning remains almost the same, but calculations become very cumbersome. For

that reason, we follow the proof given in [101] (with exponent 2).

Proof (of Theorem 2.5.2) Denote
a=0-1/2.
Inequalities (2.90) imply that
a€(0,1/2)and 1/2 —a < w.
Consider two auxiliary linear functions of 8 > 0,
g1(f) = 2+ P)(1/2—a) and g1(B) = (2 + Po.
By inequalities (2.97),
$20) =20 >1-20 =g(0) € (0,1)
and
8 (B) =w >1/2—a =g|(B).
Hence, there exists a § > 0 such that
g1(B) € (0. 1) and g2(B) > 1.
We fix such a B and write the above relations in the form
0<2+4+p8)(1/2—a) <land 2+ o > 1.
Introduce the values
y=(2+po) " andy; =1-2+p)(1/2~a).
Then it follows from (2.98) that

0<y<landy >0.

(2.97)

(2.98)

(2.99)

Now we fix a sequence W of the form (2.92) and denote by E(W) the set of
all sequences V of the form (2.94) that satisfy Egs. (2.93). The function ||V| is
continuous on the linear space of sequences V; the set E(W) is closed. Hence, the
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value

F(W) = ,min_ v (2.100)

is defined.
The set of finite sequences W of the form (2.92) with

W= max |w| <1
i+1<k<N+1

is compact. The function F(W) is continuous in W; thus, there exists the number

0= mvng(W).

Let us fix sequences Wy and V € E(W)) such that
Q=FWy) = [[Vol. (2.101)

Note the following two properties of the number Q. They follow from the
definition of Q and from the linearity of Eqs. (2.93).

(Q1) Any sequence V € E(W,) satisfies the inequality

vl = Q.

(Q2) For any sequence W of the form (2.92) there exists a sequence V € E(W) such
that

IVl < olw].
It follows from property (Q2) that to complete the proof of our theorem, it is
enough to prove the following statement:
There exists a number L independent of i and N such that
Q <LN”. (2.102)
Define the number

d=eQ FhH, (2.103)

Let us consider the following two cases.

Case 1: C((S + 1)d)~® < N. In this case,

0 < (E"(S+1D"/C) N,
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which proves inequalities (2.103) with
L=(E"(S+1)”/0).

Case 2: C((S + 1)d)™ = N. In this case, we prove a stronger statement: There
exists a number L independent of i and N such that

0<L (2.104)

Treating Case 2, we assume without loss of generality that i = 0.

Also, without loss of generality, we assume that ¢ < 1 and Q > 2. Concerning
the latter assumption, we note that if there exists a fixed number L independent of
N such that Q < L, then estimate (2.104) is obviously valid. Thus, we may assume
that Q is larger than any prescribed number independent of N. Applying the same
reasoning, we assume that Q is so large that

0 > ((S+ )e/dy)"/ P (2.105)
and
LS+ De/0*P) <¢/2. (2.106)

Fix sequences Wy and V,, for which relation (2.101) is valid. To simplify notation,
write Vo = {vi}.

Consider the sequence of points

Vi =pr+dv, 0=<k=<N+1.

We claim that this sequence is an (S + 1)d-pseudotrajectory of f.
Let us first note that |vi| < Q; hence,

ldvi| < Q7P = Q7P < ¢/2. (2.107)
In addition,
(d0)* = (eQ~1P)2 < ¢0C+F) = g (2.108)
Now we estimate
[f () — Yit1] = |f(pr + dvk) — (prt1 + dvigr)| =

= |f(pr + dvr) — (pr+1 + dAgvr + dwiy)| <



2.5 Holder Shadowing for Diffeomorphisms 95

< |f(pr + dvr) = (i1 + dAw)| + dlwigr| <
< Sldu]* +d < (S+ 1)d.

We estimate the first term of the third line taking into account condition (2.91) and
inequality (2.107); estimating the first term of the last line, we refer to inequality
(2.108).

Inequality (2.105) implies that

O > (S + De/do;
hence,
S+ Dd = (S+ 1)eQ~ P < 4.
Since we treat Case 2,

N <C((S+ 1)d)~® < cd™®,

and we can apply the Holder shadowing property on finite intervals to conclude that
there exists an exact trajectory {x;} of f such that

Iye —xil < Z2(S+ Dd)f, 0<k<N+1.
Denote x; = py + ¢x and & = Z(S + 1)?. Then
|dvi —ci| < |y — x| < Ad’, 0<k<N+1, (2.109)
and
lex| < Qd + £d°, 0<k<N+1. (2.110)
Inequalities (2.107) and (2.106) imply that
lex] < e.
By the first inequality in (2.98),
0> Q2O — (¢/q)l/2-a = gl/2=aga=1/2,
Hence,

Qd > sl/z—ada+1/2 — 51/2_ad0.
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Now it follows from (2.110) that there exists an .%5 independent of N such that
lex| < £0Qd.
Since pr+1 + ck+1 = f(pr + cr), we can estimate
|ckrr — Axeil = | f(pi + ) — (pra1 + Avei| < Slen)|” < S25(Qd)°.
Denote t;4+1 = cx+1 — Akcy; then
|l < Slexl” < £3(0d)?,

where the constant %5 does not depend on N. By property (Q2), there exists a
sequence zx such that

Zer1 = Arzk + fir and |z < QA(Qd), 0 <k <N.
Consider the sequence r;, = ¢ — zx. Clearly,
riea1 = Agr and |r — o] < Q.%4(0d)>, 0 <k <N. (2.111)

Now we define the sequence ¢, = (dvy — r)/d. Relations (2.109) and (2.111)
imply that

e+1 = Arer + wir1, 0<k=N, (2.112)
and
lee] = [((dvi — i) — (e — ) /d| < Ld°™" + £30°d, 0<k <N.
Property (Q1) implies that
LdT + B0 = £dT + £0% > 0.

We can apply (2.103) and find %%, % > 0 independent of N and such that this
inequality takes the form

$4Q—(2+ﬂ)(a—1/2) +$5Ql_ﬁ >0,
or
2,07 + 20" = 0.
It follows that either

£ > )2
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or
207 = 0/2,
which implies that
0 < max (22", 2.%5)'/P) .

The theorem is proved. O
Now we assume, in addition, that there exists a constant R > 0 such that

Akl <R, ke (2.113)

Remark 2.5.2 Of course, an estimate of the form (2.113) holds for Ay = Df(py) in
the case of a diffeomorphism f of a closed manifold.

Theorem 2.5.3 Let f be a diffeomorphism of the line R having the Holder
shadowing property on finite intervals. Assume that conditions (2.91) and (2.113)
are satisfied for a trajectory { px = f*(p)}. There exists a constant 1 € (0, 1) with
the following property.

For any k € Z there exists a constant C > 0 and subspaces S(py) and U(pi) of
R such that

S(p) + U(pr) =R, (2.114)
[Akti-1 - Ao < Cpllvl, v € S(pa), 120, (2.115)
AL A vl < Culvl, v e U(pr). 1= 0. (2.116)

The essential part of the proof of Theorem 2.5.3 is contained in the following
lemma.
Let us first introduce some notation. Consider a one-dimensional vector (i.e., a
real number) ey with |eg| = 1 and define a sequence {e; : k € Z} as follows:
ex+1 = Arer/Arer|,  e—y—1 = Ai_je—i/|ATi_je—|, k>0. (2.117)
Set
Ax = |Agex].
It follows from inequalities (2.113) that
A € [1/R,R], keZ. (2.118)
Set also

Ok = A Appimr, keZ, 1> 1. (2.119)
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Lemma 2.5.1 If the sequence </ satisfies the conclusion of Theorem 2.5.2, then
there exists a number N depending only on L, y, and R (see inequality (2.113)) and
such that, for any i € Z, one of the following alternatives is valid:

either I[T(i, N) >2 orII(i + N,N) < 1/2. (2.120)
Proof Fix numbers i € Z and N > 0 and consider the sequence

Wy = —e;, 1<k<i+2N+1.

It follows from the conclusion of Theorem 2.5.2 that there exists a sequence
{op: i<k <i+2N}
such that
Uk41 = Arvg + w1 and |vg| < L2N + 1)Y, i<k <i+ 2N.
Set vy = ayer, where a; € R. Then
ar+1 = Mag — 1 and |ag] < LGN 4+ 1)Y, i<k <i+2N. (2.121)

Now we show that there exists a large enough number N (depending only on
L, y, and R) such that if @,y > 0, then IT(i, N) > 2, and if a;+y < O, then
IT(i+ N,N) <1/2.

Let us prove the existence of N for the first case (i.e., for the case where
aiyn > 0).

Since Ay > 0, it follows from relations (2.121) that if aqp < 0 for
some k € [i,i+2N—1], then a+; < 0. Thus, if a4y > 0, then
Ajy oo vy a,-+N_1>O.

Relations (2.121) imply that in this case,

!
PP e S
ag

Hence,

ait1 +1laipr+1  apqy+1

II(i,N) =
a; ai+1 ai+N—1
1 a1 +1a4,+1 ai+n—1 + 1
_ i+1 i+2 L GiEN—d (ai+N + 1) _
ai  djt1 ai+2 Ai+N—1
+N—1 a+ 1

i

_aipn +1 l—[

- )
i iy %
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and it follows from relations (2.121) that

g, (2.122)

1 N—1
M= on 41y (1 LN + 1)V) :

Denote the expression on the right in (2.122) by G;(y, N). Since

1
log G1(y,N) = —y log(L(2N + 1)) + (N — 1) log (1 + LON + l)y) ’

log (1 + ) ~ (L2N + 1))

1
L2N + 1)
for large N, and y € (0, 1), we conclude that

Gi(y,N) — 0o, N — oo.
Hence, there exists an N; depending only on L and y such that G,(y,N) > 2 for
N > Nj.

Now we consider the second case, i.e., we assume that a;+y < 0. In this case, it
follows from relations (2.121) that

ar € (-L2N + 1)",—-1), i+ N <k <i+?2N. (2.123)
As above, we set

ar+1 + 1
ay ’

A =

Now we write

i 1 a 1 i 1
H(i+N+1,N—1):a+N+2+ dgitn+3 + 1 apoy+1
it N+1 AitN+2 Ai+2N—1

I aipnr + 1 aipyys + 1 aiov—1 +1

= (@iton + 1)
Ai+N+1  Ai+N+2 AitN+3 ai4oN—1
and conclude that
i+2N—1
; 1 1
MG+N+1LN—1)= N %+ 1 (2.124)
GANFL iynyr
Inclusions (2.123) imply that
ap + 1 1

0< iI+N+2<k<i+2N-1,

<1- ,
ax LN + 1)
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and

aiton + 1

0< <L(2N + 1)".

Ai+N+1

Combining these inequalities with (2.124), we conclude that

1 N—=2
OG+N+1LN—1) <LeN+1)" 1 .
@ +N+ ) <LeN+1) ( L(2N+1)V)

Denote the right-hand side of the above inequality by G, (y, N). Clearly, G2 (y, N) —
0 as N — oo; hence, there exists an N, depending only on L, y, and R such
that

1
G(y,N) <
(y.N) )

, N>N,.
R

If N > N,, then
1
HGi+N,N)=Agn[Ii+N+1,N—-1) <R2R =1/2.

Hence, the conclusion of our lemma holds for N = max(N;, N).
O

Proof (of Theorem 2.5.3) Take an arbitrary i € Z and the number N given by
Lemma 2.5.1. The following statements hold:

(@) IfI1(i,N) > 2,then [1(i — N,N) > 2;
(b) If I1(i,N) < 1/2,then I1(i + N,N) < 1/2.

Let us prove statement (a); the proof of statement (b) is similar.

By Lemma 2.5.1 applied to i—N, either [1(i—N,N) > 2 or [1(i,N) < 1/2.By the
assumption of statement (a), the second case is impossible; thus, I7(i — N,N) > 2.

It follows from these statements that only one of the following cases is realized:

Case 1. [1(i,N) > 2 foralli € Z.
Case 2. I[1(i,N) < 1/2forall i € Z.
Case 3. There exist indices i, j € Z such that I1(i, N) > 2 and I1(j,N) < 1/2.

Now we show that Theorem 2.5.3 is valid with g = 271/V,

Consider Case 1. Take ¢y with |eg] = 1 and define ¢;, k € Z, by formulas
(2.117). Represent any integer [ > 0 in the form

l=nN+ 1, n€Z+,0§ll<N.



2.5 Holder Shadowing for Diffeomorphisms 101

Then
(i, 1) = IT(i,nN)IT(i +nN,1}) > 2"R™"

(in the last estimate, we take into account inequalities (2.118)).
Hence, in Case 1,

(.0 > R (271/N) (21/N)l >Cou™l, i€z, 1>0, (2.125)
where
Co=R")2.

Now we fix a point py of the trajectory { pi} and set S(py) = {0} and U(py)=R.
Clearly, in this case, relations (2.114) and (2.115) are satisfied. Let us prove
inequalities (2.116). Take any v € R = U(py) and [ > 0. Let

w=Al Al v
Then
V=Ap_1--Ar—w.
Hence,
[v] = Akt -+ Agmr|w] = TT(k — 1, D)[w,
and it follows from (2.125) that
wl < C'lvl,
where C = (Cy) ™!, as required.
In Case 2, we set U(py) = {0} and S(px) = R and apply a similar reasoning.
Let us now consider Case 3. By our remark at the beginning of the proof,
I(i—nN,N)>2and I1(j+nN,N) <1/2, neZy.
In this case, we set S(px) = U(pr) = R. Clearly, in this case, relation (2.114) is

satisfied. Let us show how to prove inequalities (2.115).
We treat in detail two cases:

Case (I).k+1<j
and
Case (Il). k <jandk+ 1>
(the remaining cases and the proof of inequalities (2.116) are left to the reader).
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In Case (I), we note that [ < j — k and estimate
M(k,]) < =% = R=*2!Ny=IIN <yl
where C = R*20U=0/N Hence,
|Ariot - -Aw] < Cu'lol. v € S(p).

In Case (II), we represent k + [ = j + nN + [, wheren € Z4 and 0 < [; < N.
Then

(k1) = I(k,j— k) IT(j,naN)ITI(j + nN, 1).
We note that IT(k,j — k) < RF,

I1(j,nN) < 27" = 20/N !
and

I1(j+nN,l}) <R" <RV,

which gives us the desired estimate I7(k, ) < Cyu' (and, hence, inequalities (2.115))
with C = 2R/*F+N, O

Historical Remarks Theorem 2.5.1 was published by S. B. Tikhomirov in [101].

Let us mention that earlier S. M. Hammel, J. A. Yorke, and C. Grebogi, based on
results of numerical experiments, conjectured that a generic dissipative mapping f :
R? —» R2 belongs to a class FHSPp(.Z, C, dy, 1/2,1/2) [23, 24]. If this conjecture
is true, then, in a sense, Theorem 2.5.1 cannot be improved.

2.6 A Homeomorphism with Lipschitz Shadowing
and a Nonisolated Fixed Point

Consider the segment
Iy = [-7/6,4/3]
and a mapping fy : Iy — Iy defined as follows:

1+x—-1)/2, xe][1/3,4/3];
fo(x) = 3 2x, x e (—1/3,1/3);
1+ &+ 1)/2,xe[-7/6,—1/3].
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Clearly, the restriction f* of f to [—1, 1] is a homeomorphism of [—1, 1] having
three fixed points: the points x = +1 are attracting and the point x = 0 is repelling
(and this homeomorphism f* is an example of the so-called “North Pole — South
Pole” dynamical system; every trajectory starting at a point x # 0, +1 tends to an
attractive fixed point as time tends to 4+-0o and to the repelling fixed point as time
tends to —o0).

Now we define a homeomorphism f : [—1,1] — [—1, 1]. For an integer n > 0,
denote .4, = 272 and set

) = Mfo( N7 & =3M)) + 30, x € (24, 44]. (2.126)

This defines f on (0, 1]. Set f(0) = 0 and f(x) = —f(—x) forx € [—1,0).

Clearly, f is a homeomorphism with a nonisolated fixed point x = 0 (for example,
every pointx = £27" is fixed). Let us note that in a neighborhood of any fixed point
(with the exception of x = 0), f is either linearly expanding with coefficient 2 or
linearly contracting with coefficient 1/2.

Theorem 2.6.1 The homeomorphism f has the Lipschitz shadowing property.
Before proving Theorem 2.6.1, we prove two auxiliary lemmas.

Lemma 2.6.1 The mapping fy has the Lipschitz shadowing property on Iy.
Proof Let

Gy =(—1/3,1/3)
and
G, =(-7/6,—-1/3)U (1/3,4/3).

We take dp small enough and d < dp; in fact, we write below several explicit
conditions on d and assume that they are satisfied.

There exist trivial cases where £ is a subset of one of the segments J; =
[-7/6,—1/3],J, =[-1/3,1/3],0r J5 = [1/3,4/3].

Let, for example, & C J3. The inequalities 1/3 < x; < 4/3 imply that

1/2<2/3—d <fox) —d < xep1 < folxx) +d <7/6 +d < 15/12.

These inequalities are satisfied for an arbitrary k; hence, £ belongs to a domain in
which f; is a hyperbolic diffeomorphism (and £ is uniformly separated from the
boundaries of the domain); by Theorem 1.4.2 (which, of course, is valid for infinite
pseudotrajectories as well), there exist .2, dy > 0 such that if d < dy, then £ is
Zd-shadowed by an exact trajectory of f.

A similar reasoning can be applied if § C J; or § C Ja.

To consider “nontrivial” cases, let us first describe possible positions of d-
pseudotrajectories & of fy with small d with respect to Jy, ..., J3.
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First we show that such a pseudotrajectory cannot intersect both J; and J3.
Indeed, if we assume that ENJ3 # @, i.e., there exists an index m such that x,,, > 1/3,
then

Yot = fo(1/3) —d =2/3—d > 1/3
and, consequently,
Xmti > 1/3, i>0.
Similarly, if there exists an index / such that x; < —1/3, then
X1 <-2/3+d<-1/3
and
X4 <—=1/3, i>0,

and we get a contradiction.
Thus, it remains to consider the cases where either

ECHLUJ;, ENndnt(Jy) #6@, ENint(Jz) # 0,
or

EC U, ENnInt(Jy) #0, ENInt(Jy) # 0.

We consider the first case; the reasoning in the second case is similar.
We claim that in the case considered, £ contains two points x, x; such that

0<x <1/3<ux. (2.127)

The existence of the point x; follows directly from our assumption; it is easily
seen that

X4 >2/3—d>1/2, i>0. (2.128)
Thus, either the set

{m: x,, € Int(J2),x,, <0}

is empty (which implies that there exists an index k for which inequality (2.127) is
valid) or it is nonempty and bounded from above. In the latter case, let my be its
maximal element. Then

Xmg+1 = folxmy) +d < d

(i.e., Xmo+1 € J2) and x,,,y 41 > 0; thus, we get the required k = mg + 1.
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Obviously, I > k (see (2.128)). Consider the finite set of indices
k={ielkl—1]: x; <1/3}.

This set is nonempty (k € «) and finite; hence, it contains the maximal element. Let
it be xy,; clearly,

Xk < 1/3 < Xpot1-
To simplify notation, let us assume that ky = 0. Thus,
xo <1/3 <x.
In this case,
X >2/3—-d>1/2, i>2. (2.129)
On the other hand,
x1 <2/3+d<1,
and one easily shows that
xi<14+2d, i>2. (2.130)
Since fo_1 has Lipschitz constant 2, £ is a 2d-pseudotrajectory of fo_l; hence,
X1 <1/64+2d <2/9,
and, applying the same reasoning as above, we conclude that
—4d <x;<1/64+2d<2/9, i<O. (2.131)
Now we show that there exists a d such that if d < dy and p = xp, then
|f5(p) — x| <3d, ke (2.132)
First, clearly,

|fo(p) —x1| <d.

Since the Lipschitz constant of fj is 2,

|3(p) —x2| < 1F(F(P)) = fGxD)| + | f(x1) —x2| < 2d +d = 3d.
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It follows from (2.129) that
fi(p)>1/2-3d>1/3,

and then

fip)y>1/3, k=>2.

Hence,

|/5(p) — x3| < | () —folxa)| + | folxa) —x3] < 3d/2 4 d < 3d.

Repeating these estimates, we establish inequalities (2.132) for k > 2.
On the other hand, the inclusion p € J, implies that fé‘( p) € J, for k < 0. Since
£ (x) = x/2 for x € J, and (2.131) holds, the inequality

lfolx) —pl <d

implies that
= f5 ()] < d/2.
After that, we estimate
b2 =152 (P)| = P2 = fo )| + [ fo o) = fy ' (5 ()| < d/2+ d )2,

and so on, which shows that an analog of (2.132) with 3d replaced by d holds for
k<0. O
The following statement is almost obvious.

Lemma 2.6.2 Let g be a mapping of a segment J and let numbers M > 0 and m be
given. Consider the mapping

gy =M"gM(y—m)+m
on the set
J={y: M(y—m)eJ}.

If g has the Lipschitz shadowing property with constants £, dy, then g' has the
Lipschitz shadowing property with constants £, M~ d,.
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Proof First we note that if {y;} is a d-pseudotrajectory of g’ with d < dy/M and
Xy = M(yr —m), then

g0x) —xe1 = M(g' (y1) — yis1)-

Hence, {x;} is an Md-pseudotrajectory of g.
Since Md < d, there exists a point p such that

8°(p) — x| < ZMad.
Setp’ = M~'p + m. Then, obviously,

(P =y =M g (p) — x| < Za.

Let us prove Theorem 2.6.1.
Proof For a natural n, define the segment
L, = [an, Bu] = [114,,/6,13.4,/3]
and note that formula (2.126) defining f for x € (2.4;,4.4;] is, in fact, valid for
x € 1,.
To prove Theorem 2.6.1, we first claim that there exists a constant ¢ independent
of n such that if d satisfies a condition of the form
d=<cH, (2.133)
and & = {x;} is a d-pseudotrajectory of f that intersects /,, then £ is a subset of one
of the segments I,,_, I, I, +1.
In fact, all the conditions imposed below on d have the form (2.133).
It follows from the inequalities
flon) =23 M /12> o, f(Bn) = 25.4,/6 < Bu
that if ¢ is small enough (we do not repeat this assumption below), then
CIINd,f(Ip) Cly, m=n—1,nn+1. (2.134)
Thus, if x; € I, for some m = n — 1,n,n + 1, then it follows from (2.134) that

Xpti €Ly, 1>0. (2.135)

Let xy € I,.
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We assume that
CINQd. [~ (1)) C Iim1 U Ly U Ly
(note that this condition on d has precisely form (2.133)).

By (2.135), x;, € I, for k > 0. Thus, if the inclusion £ C I, does not hold, there
exists an index / < O such that

X € (In—l Ulut1) \In
(recall that £ is a 2d-pseudotrajectory of f~1).
Assume, for definiteness, that x; € I,,_; (the remaining case is treated similarly).
In this case, the same inclusions (2.135) imply that
Xi4i € L1, i20.
To show that
Xigi €1, <0,
take an index m < [ and assume that x,, € I,,. Then inclusions (2.135) imply that
Xo, X1 € 1y;
hence,
IL,NL,#@andl,N1,— # 0,
from which it follows that either v = norv = n — 1. But since x; ¢ I,,, v # n, and
we conclude that £ C [,,_, as claimed.
Of course, a similar statement holds for the segments I}, = [—f,, —a,].
Without loss of generality, we assume that

¢ <dy/2, (2.136)

where dj is given by Lemma 2.6.1. Let §(m) = c.A4;,.
Consider a d-pseudotrajectory &€ = {x;} C [—1, 1] of f with d < dp. If

d>35(0) =cAH =c/4,

then 1 < 4d/c, and £ is 4d/c-shadowed by the fixed point x = 0.
Otherwise, we find the maximal index m for which d < §(my). In this case,

d > 8(my + 1) = §(mp)/2. (2.137)
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First we assume that
& NI, # @ for some m < my (2.138)

(the case of I/, is similar).
In this case, the inequalities

d < 8(mg) = 8(m)

imply that £ is a subset of one of the segments 1,1, I, I,,+1. We assume that § C
I,,+1; in the remaining cases, the same estimates work.
Since

d < 8(m) = cHy < doNn/2 = doNmt1

(we refer to (2.136)), Lemma 2.6.2 implies that § is .Z-shadowed.
If relation (2.138) does not hold, then

1Ny, _ 118(mo) _ 11
6  6c ~ 3¢

d

IxXk| < oy =

(we take into account inequality (2.137) in the last estimate). Thus, in this case, £ is
11d/(3c)-shadowed by the fixed point x = 0. O

Historical Remarks In this section, we give a simplified proof of Theorem 2.6.1
compared to the original variant published by A. A. Petrov and the first author in
[59].

2.7 Lipschitz Shadowing Implies Structural Stability: The
Case of a Vector Field

Let M be a smooth closed manifold with Riemannian metric dist and let X be a
vector field on M of class C'. Denote by ¢(t, x) the flow on M generated by the
vector field X.

Our main goal in this section is to prove the following statement.

Theorem 2.7.1 If a vector field X has the Lipschitz shadowing property, then X is
structurally stable.

In the proof of Theorem 2.7.1, we refer to Theorem 1.3.14.

Define a diffeomorphism f on M by setting f(x) = ¢ (1, x).

It is an easy exercise to show that the chain recurrent set % (¢) of the flow ¢ (see
Definition 1.3.22) coincides with the chain recurrent set of the diffeomorphism f.
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2.7.1 Discrete Lipschitz Shadowing for Flows

In this section, we introduce the notion of discrete Lipschitz shadowing for a vector
field in terms of the diffeomorphism f(x) = ¢ (1, x) introduced above and show that
the Lipschitz shadowing property of ¢ implies the discrete Lipschitz shadowing.

Definition 2.7.1 A vector field X has the discrete Lipschitz shadowing property if
there exist dyp, L > 0 such that if y; € M is a sequence with

dist(yx+1,/ () <d <do, k€Z, (2.139)
then there exist sequences x; € M and #; € R such that
[t — 1] < Ld, dist(x, yi) < Ld, Xp+1 = ¢(te. Xz),  k € Z. (2.140)

Lemma 2.7.1 The Lipschitz shadowing property of ¢ implies the discrete Lipschitz
shadowing of X.

Proof First we note that since M is compact and X is C!-smooth, there exists a
v > 0 such that

dist(¢p (1, x), ¢(¢,y)) < vdist(x,y), x,ye M, t<][0,1]. (2.141)

Consider a sequence y; that satisfies inequalities (2.139) and define a mapping
y: R — M by setting

y@O) = ¢p(t—k,y), k<t<k+1, keZ
Fixate[k,k+1).Iftre[0,1]and t +¢ < k+ 1, then
dist (y(z + 1), ¢ (2. y(1))) = dist (¢(x + 1 — k. i), (1. ¢(x — k. y))) = 0.

Ifk+1<7t+1¢then

dist(y(x + 1), ¢ (1, 9(1))) = dist(@ (v + 1 — k — 1, y1), $(x + 1 — k. yp) =

= disP(z + 1 —k — L ye1). §(z + 1 — k= L.p(1.3))) < vd.

Thus, y(¢) is a (v 4+ 1)d-pseudotrajectory of ¢p. Hence, if d < dy/(v + 1), where

dy is from the definition of the Lipschitz shadowing property for ¢, then there exists

a trajectory x(¢) of X and a reparametrization

a € Rep(Z (v + 1)d)
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such that
dist(y(2). x(a(1))) < ZL(v + 1)d, teR.
If we set
xe = x(a(k)) and t = a(k + 1) — a(k),
then

Xep1 = x(a(k + 1) = ¢lalk + 1) — ak), x(a (k) = ¢t xx),
dist(xx, ye) = dist(x(a(k)), y) < L (v + 1)d,
and

atk+ 1) —ak) B

h—1| =
e =11 k+1—k

1| < Zv+ Dd.

Taking L = .Z(v + 1) and dy in Definition 2.7.1 as dy/ (v + 1), we complete the
proof of the lemma. O

As in Sect. 2.3, we reduce our shadowing problem to the problem of existence
of bounded solutions of certain difference equations. To clarify the presentation,
we again first take M = R”", assume that the considered vector field X defines a
flow (every trajectory is defined for + € R), and assume that the diffeomorphism
f satisfies Condition S formulated in Sect.2.3 (see estimate (2.52)). To treat the
general case of a compact manifold M, one has to apply exponential mappings (see
Remark 2.7.1 below); we leave details to the reader.

As above, we denote

VIl = sup |vg|
kezZ

for a bounded sequence of vectors V = {v; : k € Z}.

Lemma 2.7.2 Assume that X has the discrete Lipschitz shadowing property with
constant L. Let x(t) be an arbitrary trajectory of X, let py = x(k), and set A, =
Df (py) (recall that f(x) = ¢(1,x)). Assume that f satisfies Condition S formulated
in Sect. 2.3. Let B = {b; € R"} be a bounded sequence and denote By = ||B|.

Then there exists a sequence of scalars s with

lsil < B =L(Bo+ 1)
such that the difference equation

Vi1 = Apvr + X(prt1)Sk + bit1 (2.142)
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has a solution V.= {v;} with
VI < B. (2.143)
Proof Fix a natural number N and define A, € R” as the solution of
Vi+1 = AxVx + b+, k= -—N,...,N—1,
with A_y = 0. Then
|Ak]l <C, k=-N,...,N, (2.144)

where C depends on N, B, and an upper bound of ||A,| fork = —N,...,N—1.
Fix a small number d > 0 and fix u in (2.52) so that

uC <1, (2.145)
Consider the sequence of points y; € R” defined as follows: y, = py fork < —N,
yi =pir +dA,, k=-N,...,N—1,
and yyx = fX(yy) fork > 0.

Then yi+1 = f(yx) fork < —N—1andk > N.
Since

Yit1 = Pkt + dAiy1 = prt1 + dAr Ak + dbiyy,
| Vi1 — D1 — dARAg| < d|bi41| < dPo. (2.146)
On the other hand, if dC < (), then it follows from (2.52) that
|f(¥i) = Pt — dArAr| = | f(pic + dA) —f(pi) — dAAL] <
< uldAy| < pdC < d (2.147)

(see (2.145)).
Combining (2.146) and (2.147), we see that

[Vi+1 —=f(y)| <d(Bo+ 1), keLZ,

if d is small enough. Let us emphasize that the required smallness of d depends on
Bo, N, and estimates on [|Ag||.
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Now the assumptions of our lemma imply that there exist sequences x; and #
such that

e =11 = dB. |k =yl = dB, xer1 = ¢l xi), k€ Z.
If we represent

Xy = pr +dcyand ty, = 1 + dsy,

then
ldex — dAk| = e — yi| = dB.
Thus,
lek — Al < B, —N <k <N. (2.148)
Clearly,
lsel < B, kel (2.149)
Define mappings
G :RxR'"—=R" keZ,
by
Gi(t,v) = ¢(1 + 1. p + V) — pi+1-
Then

Gr(0,0) =0, D,Gi(t,v)|i=0,0=0 = X(pr+1), Dy Gi(t,v)|i=0,0=0 = Ax.
We can write the equality
X1 = @1 + disie, i)
in the form
Pir1 +deer = ¢(1 + dsi, pi + dc),
which is equivalent to

de.H = Gk(dsk,dck). (2150)
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Now we fix a sequence of values d = d™ — 0, m — oo. Let us denote by c,((m) ,
t,((m) , and s,im) the values ¢, i, and s defined above and corresponding to d = dm.

It follows from estimates (2.148) and (2.149) that || < C + B and |s\"| < B
for all m and —N < k < N — 1. The second inequality implies that ‘t,((m) ‘ <1 for

large m. Hence (passing to a subsequence, if necessary), we can assume that

(m)

— Cks I (m)

(m) 7 <
Ci — I, Sy —> Sk, m—> 00,

for—N <k <N-1.
Applying relations (2.150) and (2.149), we can write

duc™, = G, (dms;’”% dmc,ﬁ’”) = A" + X(prs1)dns™ + 0(dy).
Dividing these equalities by d,,, we get the relations
A = Al 4 X(prg)s” +o(l), —N<k<N-L
Letting m — oo, we arrive at the relations
Crt1 = Ak + X(pet )3k, —N <k <N-—1,
where
[Ax— el IS] =B, —N<k=<N-1,

due to (2.148) and (2.149).
Recall that N was fixed in the above reasoning. Denote the obtained 5; by s,((N).

Then v,((N) = Ay — ¢ is a solution of the equations

v,ﬁ)l = Akv;((N) +X(Pk+1)s;((N) +bey1, —N=<k=N-1,

such that ‘v,((N)‘ <B.

There exist subsequences v¥) — v/ and s/

assume uniform convergence) such that

— s, as N — oo (we do not

Vi1 = Awvy + X(prt1)s; + by, k€ Z,

and |v;|, |s;| < B. The lemma is proved. O

Remark 2.7.1 An analog of Lemma 2.7.2 is valid in the case of a smooth closed
manifold M. In this case, we denote .#; = T, M and consider the difference
equation (2.142) in which vy, by € .
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Proving an analog of Lemma 2.7.2 in the case of a closed manifold (and
replacing, for example, the formula y, = pyx + d A by yr = exp,, (dAx), compare
with the proof of Lemma 2.3.3 in Sec 2.3), one gets a similar statement with the
estimates |sg| < B := L(2B0 + 1) and ||V||eo < 28 (see the original paper [57]).

Thus, in what follows, we refer to Lemma 2.7.2 in the case of a vector field X on
a smooth closed manifold M (with B = {b; € R"} replaced by B = {b; € .#}} and
properly corrected estimates).

2.7.2 Rest Points

In this section, we show that if a vector field has the Lipschitz shadowing property,
then its rest points are hyperbolic and isolated in the chain recurrent set. Thus, in
what follows we assume that we work with a vector field X on a smooth closed
manifold M having the Lipschitz shadowing property.

Lemma 2.7.3 Every rest point of X is hyperbolic.

Proof Let x( be a rest point. Applying an analog of Lemma 2.7.2 for the case of a
manifold with p;y = xy and noting that X(p;) = 0, we conclude that the difference
equation

Vk+1 = Df (xo)vx + brt1

has a bounded solution for any bounded sequence by € .# (recall that .Z) =
T, M).

Then it follows from the Maizel’ theorem (see Theorem 2.1.1 of Sect.2.1) that
the constant sequence o/ = {A; = Df(xo)} is hyperbolic on Z ; in particular, every
bounded solution of the equation

Vi+1 = Df (xo)vr

tends to 0 as k — oo.

However, if the rest point xj is not hyperbolic, then the matrix Df(xy) has an
eigenvalue on the unit circle, in which case the above equation has a nontrivial
solution with constant norm. Thus, xj is hyperbolic. O

Lemma 2.7.4 Rest points are isolated in the chain recurrent set Z(¢).

Proof Let us assume that there exists a rest point xo that is not isolated in Z(¢).
First we want to show that there is a homoclinic trajectory x() associated with xg.
Since xg is hyperbolic by the previous lemma, there exists a small d > 0 and a
number a > 0 such that if dist(¢ (¢, y), x0) < Zd for |t| > a, then ¢(t,y) — x( as
[t] — oo.
Assume that there exists a point y € Z(¢) such that y is arbitrarily close to
xo and y # xo. Given any &p,6 > 0 we can find points yy, ..., yy and numbers
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To, ..., Ty > 6 such that
dist(¢ (To. y), y1) < &o,
dist(p(T;. yi). yiv1) < &0, i=1,....N,
and
dist(¢(Tn. yn), y1) < €o.

SetT = Ty + - -+ + Ty and define g* on [0, T| by

#(t,y), 0 <t =Ty;
g =13¢@y)To+- 4Ty <t<To+-+T;
y, t=T.

Clearly, for any ¢ > 0 we can find &y depending only on ¢ and v (see (2.141))
such that g*(7) is an e-pseudotrajectory of ¢ on [0, 7.
Now we define

xo, t=<0;
g)=1¢"®).0<t<T:
xo, t>T.

We want to choose y and ¢ in such a way that g(¢) is a d-pseudotrajectory of ¢.
We have to show that

dist(¢(t, g(7)),g(t + 1)) <d (2.151)

forall T and ¢ € [0, 1].

Clearly, (2.151) holds for (i) T < —1, (ii)) t > T, (iii) 7, 7 4+ ¢ € [-1, 0], and (iv)
T,t+t€[0,T]and e < d.

Ift € [-1,0] and T 4+ ¢ > 0, then

dist(¢ (¢, g(1)), g(t + 7)) = dist(xg, g*(t + 1)) <
< dist(xp, ¢ (t + 7,y)) + dist(¢p (t + 7,¥), g* (¢ + 1)) < vdist(x,y) + ¢,

where v is as in (2.141). The last value is less than d if dist(xp, y) and & are small
enough. Note that, for a fixed y, we can decrease ¢ and increase N, Ty, ..., Ty
arbitrarily so that g(¢) remains a d-pseudotrajectory.

Similarly, (2.151) holdsif t € [0,T] and t + ¢ > T.

Thus, g(¢) is -Zd shadowed by a trajectory x() such that dist(x(z), xo) < .Zd if
|#] is sufficiently large; hence, x(f) — xo as |t| — co.
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Now we want to show that x(f) is a homoclinic trajectory if d is small enough.
For this purpose, we have to show that x(r) # xo.

There exists an &, > .Zd (provided that d is small enough) such that if y does not
belong to the local stable manifold of xy, then dist(¢ (%)), y) > &; for some £y > 0.
We can choose Ty > f; (not changing the point y). Then g(¢) contains the point
g* () = ¢(t,y) whose distance to xy is more than .Zd. Hence, x(f) contains a
point different from xy, as was claimed.

If y belongs to the local stable manifold of xy, then it does not belong to the
local unstable manifold of xj. In this case, considering the flow ¥ (¢, x) = ¢(—t, x),
we can apply the above reasoning to v noting that Z(y) = Z(¢) and ¢ has the
Lipschitz shadowing property as well.

Now we show that the existence of this homoclinic trajectory x(¢) leads to a
contradiction. Set p, = x(k). Since AxX(pr) = X(pi+1), it is easily verified that if
we consider two sequences f; and s; such that

Bi+1 = Bk + sk, k€L,
then u; = B X (py) is a solution of
U1 = Agu + X(pe+r sk, k € Z. (2.152)

In addition, if the sequence s is bounded, then the sequence ;X ( py) is bounded
as well since X(px) — 0 exponentially as |k| — oo (the trajectory x(f) tends to a
hyperbolic rest point as time goes to £00) and the sequence |B;|/ || is bounded).

By Lemma 2.7.2, for any bounded sequence by € .# there exists a bounded
scalar sequence sy such that Egs. (2.142) have a bounded solution v;. We have shown
that Egs. (2.152) have a bounded solution u;. Then the sequence wy = vr — uy is
bounded and satisfies the equations

wr = Agwi + b+, k€ Z.

Thus, the sequence & = {A;} has the Perron property on Z. It follows from
Theorems 2.1.1 and 2.1.2 that the sequence < is hyperbolic both on Z 4 and Z_ and
the corresponding spaces Sg' and U;, are transverse. But this leads to a contradiction
since

dimS; + dimU, = dimM
(because dimS(;r equals the dimension of the stable manifold of the hyperbolic rest

point xp and dimU;” equals the dimension of its unstable manifold), while any of the
spaces S(‘)F and U, contains the nonzero vector X (po). The lemma is proved. O
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2.7.3 Hpyperbolicity of the Chain Recurrent Set

We have shown that rest points of ¢ are hyperbolic and isolated in the chain recurrent
set Z(¢). Since M is compact, this implies that the set Z(¢) is the union of a finite
set of hyperbolic rest points and a compact set (let us denote it X') on which the
vector field X is nonzero.

To show that Z(¢) is hyperbolic, it remains to show that the set X' is hyperbolic.

Consider the subbundle 7' (X') of the tangent bundle TM| s defined in Sect. 1.3
before Theorem 1.3.15.

Let x(f) be a trajectory in X. Let us introduce the following notation. Put
pr = x(k) and let P, = P(px) and V, = V(py) (recall that P(x) is the orthogonal
projection in T,M with kernel spanned by X(x) and V(x) is the orthogonal
complement to X (x) in 7,,M). Introduce the operators

By = Pr1Ar 0 Vi = Vit

(recall that A, = Df (pr)).
Lemma 2.7.5 For every bounded sequence by € V. there exists a bounded solution
v € Vi Of

Vk+1 = Brvg + bi+1, k€ Z. (2.153)

Proof Fix a bounded sequence by € V;. There exist bounded sequences s of scalars
and wy, of vectors in T, M such that

Wit1 = Awi + X(prr1)sk + ber1, k€ Z, (2.154)

(see the remark after Lemma 2.7.2).
Note that Ay X (pr) = X(pi+1). Since (Id — Py)v € {X(pi)} for v € ., we see
that

Pi1Ar(Id — Py) = 0,
which gives us the equality
Pit1Ay = Pry1ArPy. (2.155)

The properties of the set X' imply that the projections Py are uniformly bounded.
Multiplying (2.154) by Pi+1, taking into account the equalities P+ 1X(pr+1) =
0 and Py41bx+1 = br+1, and applying (2.155), we conclude that v = Pywy is the
required bounded solution of (2.153). The lemma is proved. O
It follows from the above lemma that if we fix a trajectory x(¢) in X' and consider
the corresponding sequence of operators % = {B}, then 4 has the Perron property.
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By Theorems 2.1.1 and 2.1.2, the sequence 4 is hyperbolic both on Z_ and Z
and the corresponding spaces U, (%) and Sg' () are transverse.

Consider the mapping 7 on the normal bundle ¥ (X') defined in Sect. 1.3. Recall
that

m(x,v) = (f(x), B(x)v), where B(x) = P(f(x))Df (x)

(see Sect. 1.3).

In fact, we have shown that 7 satisfies an analog of the strong transversality
condition.

The same reasoning as in the proof of Lemma 2.2.5 shows that the dual mapping
* does not have nontrivial bounded trajectories. It is easy to show that if the flow
¢ has the shadowing property, then its nonwandering set coincides with its chain
recurrent set.

Hence, we can repeat the reasoning of the proof of Theorem 2.2.2 to conclude
that the mapping = is hyperbolic.

It remains to refer to Theorem 1.3.15 to conclude that X' is a hyperbolic set of
the flow ¢.

2.7.4 Transversality of Stable and Unstable Manifolds

Let x(7) be a trajectory that belongs to the intersection of the stable and unstable
manifolds of two trajectories, x4 (f) and x_(¢), respectively, lying in the chain
recurrent set of ¢.

Without loss of generality, we may assume that

dist(x(0), x4+ (0)) — 0, t— oo,
and
dist(x(0),x-(0)) - 0, t— —oo.

Denote py = x(k), k € Z; let W*(po) and W"(po) be the stable and unstable
manifolds of py, respectively. Then, of course, W*(py) = W*(x+(0)) and W*(pg) =
W"(x—-(0)). Denote by E® and E* the tangent spaces of W*( pg) and W*(py) at po.

We use the notation introduced before Lemma 2.7.5.

By Lemma 2.7.5, for any bounded sequence b, € Vj there exists a bounded
solution v, € Vi of (2.153). By the Maizel’ theorem (Theorem 2.1.1), the sequence
By is hyperbolicon Z_ and Z .

By the Pliss theorem (Theorem 2.1.2),

E + E =V, (2.156)
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where

& ={wy : wrt1 = By, |wi| — 0, kK — o0}
and

E" = {wo : wit1 = Bowy, |wi| = 0,k — —o0}.

Clearly, it follows from the hyperbolicity of the sequence By on Z_ and Z that
the following equalities hold:

& = {W() D Wikl = Bka, sup |Wk| < OO}
k>0

and

&' = {W() D Wikl = Bka, sup |Wk| < OO}
k=<0

We claim that
& C E*and E* C & (2.157)

First we note that (2.157) implies the desired transversality of W*(py) and

W*(po) at po.
Indeed, combining equality (2.156) with inclusions (2.157) and the trivial
relations

E'=VoNE +{X(po)} and E" = Vo N E" + {X(po)},
we conclude that
E'+E" =Ty M,

which gives us the transversality of W*( po) and W*( po) at po.
Thus, it remains to prove inclusions (2.157). We prove the first inclusion; for the
second one, the proof is similar.

Case 1: The limit trajectory xo(f) = xp is a rest point of X. In this case, the stable
manifold of the rest point xy in the flow ¢ coincides with the stable manifold of
the fixed point x for the time-one diffeomorphism f(x) = ¢ (1, x).

It is clear that if py is a trajectory of f belonging to the stable manifold of xy, then
the tangent space to the stable manifold at py is the subspace E® of the initial values
of bounded solutions of

Vk+1 = Agvg, k> 0. (2.158)
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Let us prove that & C E*. Fix an arbitrary sequence wy such that wy4| = Bywy
and wy € &*. Consider the sequence

v = MX(p)/IX(pi)| + wi,

where the A, satisfy the relations

_ |X(l’k+1)|)L X(pr+1)*

2.159
X0l T K (g 159

(we denote by X* the row-vector corresponding to the column-vector X) and Ao = 0.
It is easy to see that the sequence vy satisfies (2.158).

Since x(¢) is in the stable manifold of the hyperbolic rest point xo, there exist
positive constants K and « such that

dx
‘ 0

, 0<s<ut.

< Kexp(a(i —s)) ‘fl’t‘ s)

This implies that
IX(pi)| = Kexp(a(k —m)) [X(pm)|. O=m=k
Thus, the scalar difference equation

st = |X(pr+1)] .
IX(po)l

is hyperbolic on Z, and is, in fact, stable. Since the second term on the right in
(2.159) is bounded as k — oo (recall that we take wy € &), it follows that the A;
are bounded for any choice of A,.

We conclude that vy is a bounded solution of (2.158), and vy = wy € E°. Thus,
we have shown that & C E*, which completes the proof in Case 1.

Case 2: The limit trajectory is in the set X' (the chain recurrent set minus rest points).
We know that the set X is hyperbolic. Our goal is to find the intersection of its
stable manifold near py = x(0) with the cross-section at py orthogonal to the
vector field (in local coordinates generated by the exponential mapping). To do
this, we discretize the problem and note that there exists a number o > 0 such
that a point p close to py belongs to W*(po) if and only if the distances of the
consecutive points of intersections of the positive semitrajectory of p to the points
pr do not exceed 0.
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For suitably small i > 0 we find all the sequences of numbers #; and vectors
7k € Vi (recall that Vj is the orthogonal complement to {X(px)} at py) such that

[t — 1] < w, |zl <y Yer1 = @k y0), k=0,

where y;, = pr + .
Thus, we have to solve the equations

Pi+1 = ¢(te.pr +vi), k>0,
for numbers #, and vectors z; € Vj such that |t — 1| < p and |z| < .

We reduce this problem to an equation in a Banach space. It was mentioned above
that the sequence {By} generating the difference equation

% = Bz, k=0,
(where By = Pi4+1Ax and Py is the orthogonal projection with range Vi) is
hyperbolic on Z4. Denote by Oy : Vi — Vi the corresponding projections to
the stable subspaces and by Z(Qy) the range of Q (note that Z(Qy) = &*).
Fix a positive number 119 and denote by ¥ the space of sequences
YV ={w € Vi |l < o, ke Zy}.
Let [°° (Z+, {#+1}) be the space of sequences {; € M+ : k € Z4} with the
usual norm.
Define a C' function
G: (1= po. 1+ pol™ XV x Z(Qo) — I°(Zy . { Miy1}) x Z(Qo)
by
G(t,z,n) = A prt1 + 21 — @t pr + 20)}, Qozo — 1).

This function is defined if w is small enough.
We want to solve the equation

G(t,z,m) =0
for (, z) as a function of 7. It is clear that
G(1,0,0) =0,

where the first argument of G is {1, 1,...}, the second argument is {0,0, ...}, and
the right-hand side is ({0,0, ...}, 0).
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To apply the implicit function theorem, we must verify that the operator

T =

G 1.0.0
Z

9(t.2)

is invertible.
First we note that if (s, w) € [®°(Z+, { #}+1}) x ¥, then

T(s,w) = ({wi+1 — X(pr+1)Sk — Axwi, Qowo).

To show that T is invertible, we have to show that the equation

T(s,w) = (g,

has a unique solution for any (g, n) € I°(Z+, { #+1}) X Z(Qyp). Thus, we have to
solve the equation

w1 = Awwr + X(prt1)sk = g, k>0, (2.160)
subject to the condition

Qowo = 1.
If we multiply Eq. (2.160) by X(pi+1)* and solve for s;, we get the equalities

X(pes1)*

X (pg A T8 K20

Sk =

and if we multiply Eq. (2.160) by Py, we get the equalities
Wit1 = Prp1Awwi + P18k = Biw + Pryigr, k= 0.

Now we know that the last equations have a unique bounded solution wy, € Vi, k >
0, that satisfies Qowo = 7. Thus, T is invertible.

Hence, we can apply the implicit function theorem to show that there exists a
@ > 0 such that if |n| is sufficiently small, then the equation G(¢,z,17) = 0 has
a unique solution (2(n), z(n)) such that || — 1]lcc < p and ||z]lcc < p. Moreover,
t(0) = 1, z(0) = 0, and the functions #(1)) and z(n) are of class C'.

The points po+zo(n) form a submanifold containing py and contained in W*( py).
Thus, the range of the derivative z;(0) is contained in E*.

Take an arbitrary vector £ € & and consider n = t£, t € R. Differentiating the
equalities

Pi+1 + 2+1(té) = ¢ (a(t8), pr + u(z§)), k>0,
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and

Qo(t§) = 7§
with respect to T at T = 0, we see that

_ al‘k

0zk
Sk = an ly=0& and wy = an ly=0€ € Vi

are bounded sequences satisfying the equalities
Wit = Agwi + X(pry1)sk and Qowy = €.
Multiplying by P41, we conclude that
Wi+1 = Bywyg and Qowo = §.

It follows that wy € &° = Z(Qp). Then wy = Qowy = £.
We have shown that the range of z;,(0) is exactly &°. Thus, &° C E°.

Historical Remarks Theorem 2.7.1 was published by K. Palmer, the first author,
and S. B. Tikhomirov in [57].



Chapter 3
C' Interiors of Sets of Systems with Various
Shadowing Properties

In this chapter, we study the structure of C! interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

The C! interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result and Theorem 1.4.1 (a) imply that the C! interior of the
set of diffeomorphisms having the standard shadowing property coincides with
the set of structurally stable diffeomorphisms;

the set Int' (OrientSPr \ ) is a subset of the set of structurally stable vector
fields (Theorem 3.3.1); similarly to the case of diffeomorphisms, this result and
Theorem 1.4.1 (b) imply that the set Int! (OrientSPr \ %) coincides with the set
of structurally stable vector fields;

the set Int!(OrientSPr) contains vector fields that are not structurally stable
(Theorem 3.4.1).

The structure of the chapter is as follows.
Section 3.1 is devoted to the proof of Theorem 3.1.1:

Int! (SSPD) c Yp.

Our proof of Theorem 3.1.1 is based on reduction to Theorem 1.3.6 (2) (the C!
interior of the set of Kupka—Smale diffeomorphisms coincides with the set of
structurally stable diffeomorphisms).

We give a detailed proof of the inclusion

Int' (SSPp) C HP)p
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(thus, any periodic point of a diffeomorphism f € Int' (SSPp) is hyperbolic).
Concerning the proof of transversality of stable and unstable manifolds of periodic
points of a diffeomorphism f € Int' (SSPp), we refer the reader to Sect. 3.3 where
a similar statement is proved in a more complicated case of flows on manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect.3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If f € Int' (SSPp), then f satisfies Axiom A.
Our proof uses neither Mafié’s ergodic closing lemma [42] nor the techniques of
creating homoclinic orbits developed in [44]. Instead, we refer to a sifting type
lemma of Wen—Gan—Wen [109] influenced by Liao’s work and apply it to Liao’s
closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C' interior of the set of
vector fields having the oriented shadowing property. We introduce a special class
% of vector fields having two rest points p and ¢ for which there exists a trajectory
of nontransverse intersection of the stable manifold W*(p) and W*(g). Of course,
vector fields in % are not structurally stable.

In Sect. 3.3, we prove Theorem 3.3.1: The set

Int' (OrientSP \ %)

is a subset of the set of structurally stable vector fields.

At the same time, we show in Sect.3.4 that the set Int!(OrientSPs) contains
vector fields belonging to . The complete description of the corresponding
example given in [69] is quite complicated, and we describe a “model” suggested
in [100].

3.1 C! Interior of SSP)

The main result of this section is the following theorem.

Theorem 3.1.1 Int' (SSPp) C .%)p.
It follows from Theorem 1.4.1 (a) that

p C LSPp C SSPp.
Since the set of structurally stable diffeomorphisms is C'-open,
p = Int' (%) C Int' (SSPp).
Combining this with Theorem 3.1.1, we conclude that the C! interior of the set

of diffeomorphisms having the standard shadowing property coincides with the set
of structurally stable diffeomorphisms.
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As was said at the beginning of this chapter, we reduce the proof of Theo-
rem 3.1.1 to Theorem 1.3.6 (2). Thus, we have to show that

Int! (SSPp) C Int' (KSp).
Of course, for this purpose, it is enough to show that
Int' (SSPp) C KSp. (3.1)
This means that we have to establish the inclusion
Int' (SSPp) C HPp (3.2)

(i.e., every periodic point of a diffeomorphism in Int! (SSPp) is hyperbolic) and to
show that, for a diffeomorphism in Int' (SSPp), stable and unstable manifolds of its
periodic points are transverse.

We prove inclusion (3.2) in Lemma 3.1.2.

We do not give here a proof of transversality of stable and unstable manifolds of
periodic points of a diffeomorphism in Int' (SSPp). Instead, we refer the reader to
Sect. 3.3 of this book; in this section, a similar statement is proved for the case of
vector fields (which is technically really more complicated). We advice the reader
to “transfer” the proof of Sect. 3.3 to the case of diffeomorphisms.

We start with a lemma proved by Franks in [19]; this lemma plays an essential
role in proofs of several theorems below.

If U is a domain in R™ with compact closure and f,g : U — R™ are
diffeomorphisms of U onto their images such that f(U) = g(U) = V, then we
define p; y(f, g) as the maximum of the following values:

sup |f(x) — g)|. sup |Df (x) — Dg(x)

)

sup o) —¢ ')

. sup [DFT' () —Dg”' )|
yev

(this definition corresponds to our definition of the C! topology of Diff ' (M), see
Sect. 1.3).

Lemma 3.1.1 Let U be a domain in R™ with compact closure, where m > 1, and
letf: U — R™ be a C' diffeomorphism of U onto its image.

Consider a finite set of different points {x;,x,, ..., x,} C U.

Then for any ¢ > 0, any neighborhood N of the set {x|,x,,...,x,}, and any
linear isomorphisms

LiIRm%Rm
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such that

ILi = DF Gl L7 — (DF )™ < /8, 1<i<n, (3.3)
there exists a number § > 0 and a C' diffeomorphism g : U — R" with f(U) =
g(U) and such that

(@) pru(f.g) <e
(b) g(x) =f(x), xe€U\N,
and
(c) g&x) =f(x)) + Lilx —x;), x€N(@/4,x), 1 <i<n.

Proof Standard reasoning shows that since U is a domain with compact closure,
there exists a number gy > 0 such that if g is a C' mapping of U such that f(U) =
g(U) and

sup |f(x) —g(x)], sup |Df (x) — Dg(x) || < o,

then g is a diffeomorphism of U onto g(U).
For a positive § > 0, let

Bs(x;))={yeU:|ly—x]| <6}, 1<i=<n.
We assume that § is small enough, so that the sets Bs(x;) with different i do not
intersect. In what follows, we reduce § if necessary.

Choose a C* real-valued function o : R — R such that 0 < o(x) < 1,

0if |x| > 6,
1if |x| < 8/4,

o(x) =

and 0 < |o’(x)| < 2/6 for all x.
Let p : [J._, Bs(x;) — R be defined by

p() =o(ly—xil), ye€Bs(x), 1 <i<n

Fix ¢ € (0, &) and take 0 < § < min(1, &) so small that

|JBs@) cN. (3.4)

i=1

1f() + Liy —x) —f ()] < j|y _ (3.5)
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and
&
|Liv — Df (y)v] < 4|v|, v eR"”, (3.6)

fory € Bs(x;), 1 <i < n (clearly, this is possible due to estimates (3.3)).
Define a mapping g : U — R" by

f) if y ¢ Uiz) Bs(x),
PO(f() + Lily —x) + (1 — pO)f ) if ¥y € U Bs(x).

It is easy to see thatif y € [ J/_, Bs(x;), then

IfO) =W = [pM(f(xi) + Li(y — x:)) — pOIf )| =

g =

= OIS0 + Ly —x) —f ) <1+ -8 <.
Let us estimate the differences of the derivatives. If y € Bs(x;) and v € R™, then
Dg()v = pO)Liv + (Dp(). v)(f () + Li(y — x:))+
+(1 = pODF G — (Dp(). V).

where

m

(Dp(y). v Z 0.

Thus,
IDf (y)v — Dg(y)v| =
= [pOMLiv — p(Df (y)v + (Dp(y), v) (f (xi) + Li(y — x:)) = (Dp(y), v)f (¥)] =
< pMILiv = Df ()| + (Dp(). v)|[f(x) + Li(y — xi) = f ()]

It is clear that if [y — x;| > &, then p(y) = 0, and if |y — x;| < &, then, by the
choice of § (see (3.6)),

p() - |ILiv — DF()V] < |Liv — Df()v] < j|v|.

If [y —x;| > 8, then Dp(y) = 0 (since p(y) = O for [y —x;| > 8). If |[y —x;| < 8, then
|Dp(y)| < 2/8 and

@) + Ly =x) —fO] < v —x|
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by the choice of § (see (3.5)) and the definition of p. Thus,

(Dp(y), v)[|f(x) + Li(y —xi) = f ()] =

2 ¢

2 ¢ )
< . —X; < . Sl = .
< vl = - sl =l

Hence,
g £
IDF )0 = Dgvl < ol + o] < efol.

It follows from the choice of ¢ < g that g is a diffeomorphism of U onto g(U) =

f().

Now a similar reasoning can be applied to estimate the values

If' ) — ¢~ )l and |Df' () — Dg~ W)

(reducing &, if necessary).
Inclusion (3.4) implies that g and f coincide outside N. The lemma is proved. O

Lemma 3.1.2 Inclusion (3.2) holds.

Proof Let us consider the case of an m-dimensional manifold M with m > 1. To
get a contradiction, assume that there exists a diffeomorphism f € Int' (SSPp(M))\
HPp(M).

Then f has a nonhyperbolic periodic point p of period 7 ( p).

Take a C! neighborhood % (f) of f lying in SSPp(M).

To simplify presentation, we assume that 7(p) = 1 (the case of a periodic point
of minimal period 7 (p) > 1 is considered similarly). Moreover, since the argument
is local, we assume further that f is defined on an open set of R™.

By the Franks lemma, it is possible to find a diffeomorphism g € %/ (f) with the
following properties:

— pis afixed point of g,
— g is linear in a neighborhood of p.

Indeed, let us introduce local coordinates x € R™ near p such that p is the origin.
Then, by the Franks lemma, for any r > 0 there exists a diffeomorphism f, such
that

— fr(x) = f(x) for x ¢ N(4r, p),
- f(x) = Df(p)x forx € N(r,p).

Note that f, converges to f with respect to the C! topology as r — 0. Fix ry > 0
such thatf,, € % (f) and write g instead of f;,,.

Since the point p = 0 is not hyperbolic, the matrix Dg(p) has an eigenvalue A
with |A| = 1. To simplify presentation, we assume that A = 1 (the proof in the
general case can be found in [87]).
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Applying a C'-small perturbation of g (so that the perturbed g still is in % (f))
and preserving the notation g for the perturbed diffeomorphism, we may assume
further that Dg( p) has an eigenvalue equal to 1, p is the origin with respect to some
local coordinates x = (xi, ..., X;), and g maps a pointx = (x,y) € N(ro,p), where
y = (x2,...,%n), to the point (x;, By), where B is a hyperbolic matrix.

In this case, the segment

= {(x1.0,...,0): 0 < |x;| < ro}

consists of fixed points of g.

Since it was assumed that g € SSPp(M), for ¢ = ry/2 there is the corresponding
0 < d < ¢ from the definition of the standard shadowing property. Take a natural
number / such that the sequence

E={x:kelZ}C I,
where

0 for k < 0;
xe =14 ("%.,0,....0) for 0 <k<I
(r0/2,0,...,0) for k> [,

is a d-pseudotrajectory of g.
Let x € N(g,x0) be a point such that

lgf(x) —xi| <€ for keZ.

Since the matrix B is hyperbolic, for any point (x;,y) with y # 0, its g-trajectory
leaves the set N(ro, p). Hence, if

g (@) — x| <& keZ,
then x = (b,0,...,0). Since
gx) = g(,0,...,0) = (b,0,...,0),
we see that |b| < ry/2, and then |b — ry| < ry/2. The obtained contradiction proves

our lemma. O

Historical Remarks One of the first results concerning C! interiors of sets of
diffeomorphisms with properties similar to shadowing was proved by K. Moriyasu
in [47].

Let us denote by TSy, the set of topologically stable diffeomorphisms. Recall that
a diffeomorphism f of a smooth manifold M is called topologically stable if for any
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& > 0 there is a d > 0 such that for any homeomorphism g satisfying the inequality
po(f,g) < d, there exists a continuous map s mapping M onto M and such that
po(h,id) < eandf oh = ho g (see [104]).

It is known that every topologically stable diffeomorphism has the standard
shadowing property (see [46, 105]); thus, SSPp C TSp. In addition, every expansive
diffeomorphism in SSPp, is in TS (see [64] for details).

K. Moriyasu proved in [47] that any diffeomorphism in Int' (TSp) satisfies
Axiom A. In fact, the paper [47] contains the proof of inclusion (3.2) (see
Proposition 1 in [47]).

Theorem 3.1.1 was proved by the second author in [87].

Later, a more general result (in which the set SSPp was replaced by a larger set
OSPp) was obtained by the first author, A. A. Rodionova, and the second author in
[65] (the method of proving transversality of the stable and unstable manifolds of
periodic points used in [65] was later applied in the case of vector fields [69]; see
Sect. 3.3 of this book).

In [88], the second author introduced the notion of C° transversality and showed
that for two-dimensional Axiom A diffeomorphisms, C° transversality of one-
dimensional stable and unstable manifolds is equivalent to shadowing. Later, the
authors related C° transversality to inverse shadowing in two-dimensional Axiom A
diffeomorphisms [66].

Let us mention here one more result of that type related to shadowing properties.
Let f be a homeomorphism of a metric space (M, dist). We say that f has the
weak shadowing property if for any ¢ > 0 there exists d > 0 such that for any
d-pseudotrajectory £ of f there is a point p € M such that

§ CN(e O(p.f)).

Denote by WSPp, the set of diffeomorphisms having the weak shadowing property.
It was shown by the second author in [89] that if M is a smooth two-dimensional
manifold, then

Int' (WSPp(M)) C 2.p(M).

Let us note that the above inclusion is strict; it was shown by O. B.
Plamenevskaya in [72] that there exist §2-stable diffeomorphisms of the two-
dimensional torus that do not have the weak shadowing property.

Let us also note that the result of [89] cannot be generalized to higher dimensions.
R. Mafié constructed in [40] an example of a C'-open subset .7 of the space of
diffeomorphisms of the three-dimensional torus such that

+ any diffeomorphismf € .7 has a dense orbit (thus, any f € .7 isin Int' (WSPp));
* any diffeomorphism f € .7 is not Anosov (and hence, it is not §2-stable).
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3.2 Diffeomorphisms in Int! (SSP)) Satisfy Axiom A

As was said at the beginning of this chapter, in this section we prove the following
statement.

Theorem 3.2.1 Iff € Int' (SSPp), then f satisfies Axiom A.
Remark 3.2.1

1. To get an independent proof of Theorem 3.1.1 using Theorem 3.2.1, one has to
show that if a diffeomorphism f € Int! (SSPp) satisfies Axiom A, then f also
satisfies the strong transversality condition.

This can be done by applying the following scheme. Assuming that the
stable manifold W*(p) and the unstable manifold W*(g) for two points p,q €
£2(f) have a point r of nontransverse intersection, one can approximate r by
points of intersection of periodic points of f and then, perturbing f, to get
a point of nontransverse intersection of periodic points of a diffeomorphism
g € Int! (SSPp). After that, one can apply the techniques described in Sect. 3.3
to get a contradiction. We leave details to the reader.

2. Of course, it has shown by Maiié and Hayashi [25, 42, 45] that a diffeomorphism
f € Int' (HP)) satisfies Axiom A, but we give a simpler proof of this result under
the assumption that f € Int! (SSPp); this proof uses neither Maifié’s ergodic
closing lemma [42] nor the techniques creating homoclinic orbits developed
in [44].

Let the phase space be a v-dimensional manifold M.

Denote, as above, by Per(f) the set of periodic points of a diffeomorphism f :
M — M. Let r(p) be the minimal period of a periodic point p € Per(f).

It is proved in [40] that if f € Int' (SSPp (M), then £2(f) = Cl(Per(f)).

Denote by P;(f), 0 < j < v, the set of hyperbolic periodic points of f whose
index (the dimension of the stable manifold) is equal to j. Let A; be the closure of
the set P;(f).

It has shown by Pliss [73] that the sets of sinks, P, (f), and of sources, Py(f),
of a diffeomorphism f € Int'(SSPp(M)) are finite sets (another proof can be found
in [36]).

The following lemma is a “globalized” variant of Frank’s lemma (Lemma 3.1.1)
for C' diffeomorphisms of a smooth closed manifold using exponential mappings.

Lemma 3.2.1 Letf € Diff ' (M) and let % (f) be a neighborhood of f.

Then there exists a number §g > 0 and a neighborhood ¥V (f) C % (f) such
that for any g € V' (f), any finite set {x1,x3, ..., Xy} consisting of pairwise different
points, any neighborhood U of the set {x\,x3, . .., Xy}, and any linear isomorphisms
L : TyM — TyyM such that

IL; — Dgx)|l, IL7' —Dg ' (xi)ll <80, 1<i<m,
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there exist &g > 0 and g € % (f) such that

(a) g(x) =g(x) fxe M\ U, and
(b) g(x) = expy, oLio expx_’,l(x) ifx € By (x;) foralll <i<m.

Note that assertion (b) implies that g(x) = g(x) if x € {x1,x2,...,x,} and that
Dy,g=Lforalll <i<m.

In what follows, we assume that f € Int! (SSPp); hence, by Lemma 3.1.1, f €
Int' (HPp).

Thus, there exists a neighborhood % (f) of f in Diff ! (M) such that every periodic
point p € Per(g) is hyperbolic for any g € Z (f).

Then there exists a C' neighborhood ¥ (f) of f such that the family of
periodic sequences of linear isomorphisms of tangent spaces of M generated by
the differentials Dg of diffeomorphisms g € #'(f) along hyperbolic periodic orbits
of points g € Per(g) is uniformly hyperbolic (see [42]).

To be exact, this means that there exists ¢ > 0 and a neighborhood ¥'(f) of f
such that for any g € ¥'(f), any g € Per(g), and any sequence of linear maps

Li: TagM = Ty M
with
||L,- —Dg (g’(q))H <e, i=1,...,m(q) —1,

]_[;;(%) s hyperbolic (here ¢ > 0 and 7' (f) correspond to % (f)) according to
Lemma 3.2.1.

The following result was proved by Mané [42, Proposition II.1]. Denote by
E*(g)(f) and E"(q)(f) the stable and unstable spaces of the hyperbolic structure
at a point g of a hyperbolic periodic orbit of f, respectively.

Proposition 3.2.1 Letf € Int' (HPp).
In the above notation, there are constants C > 0, m > 0, and 0 < A < 1 such
that:

(a) ifge YV (f), q € Per(g), and n(q) = m, then

kol k—1
g HDg"Zs(g,-m(q))(g) H = €M and 1:[0 HD 85 (=) &) H = cx,

where k = [r(q)/m].
(b) Forany g € V(f) and 0 < j < v, the set Aj(g) = CI(P;(g)) admits a
dominated splitting (see Definition 1.3.12)

Tr M = E(g) ® F(g)
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withdim E(g) = j, i.e.,

HDgIE(x)(g> H HDgwgm(x»(g) H =4

for all x € CI(Pj(g)) (note that E(x)(g) = E*(x)(g) and F(x)(g) = E"(x)(g) if
x € Pi(g)).

It is easy to see that the above proposition can be restated in the following way.

Proposition 3.2.2 In the notation and assumptions of Proposition 3.2.1, there exist
constants m > 0,0 < A < 1, and L > 0 such that:

(a) Ifg € V(f), q € Per(g), and m(q) > L, then
m(g)—1

7(q)
g H glEf(qu))(g)H <A™ and l_[ HD 8 (o W(q))(g)“ <4

(b) Forany g € V(f)and 0 < j < v, the set A;(g) admits a dominated splitting
Taj)M = E(g) ® F(g) with dim E(g) = j such that

HDgT’Eu)(g) 'HDgngu))(g)
Jor any x € Aj(g) (note that E(x)(g) = E*(x)(g) and F(x)(g) = E"(x)(g) if
x € Pj(g))-
In what follows, we need two technical lemmas (Lemmas 3.2.2 and 3.2.3).
Denote by A aset A; = CI(Pj(f)), where 0 <j < v.
Lemma 3.2.2 deals with extension of the dominated splitting to a small neigh-
borhood of A in M. Assume that A admits a dominated splitting TAM = E & F for
which there exist constants m > 0 and 0 < A < 1 such that

<A

HDf\Ew ' HDf\;(fw))
for all x € A. To simplify notation, denote f by f.
It is known (see [27]) that there exists a ne1ghborh00d U of A, a constant > 0,

A < A < 1, and a continuous splitting TyM = E & F with dimE = dimE such
that

— ElA = Eandl:"|A =

Df(x)E(x) E(f(x)) ifxe unf'(y;

Df_ X)F(x) = F(f '(x) if x e UNF(U);

<kifxe ﬂi=_kf‘(U) for k > 0.

h H Ew | H o
The continuity of the differential Df implies the following statement (in which
we have to shrink the neighborhood U of A if necessary).
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Lemma 3.2.2 In the above notation and assumptions of Proposition 3.2.1, there
exists a Df-invariant continuous splitting T s, )M = E & F with dimE = dimE

and 0 < A < 1 such that

- EM = Eandﬁm = F,'
—k

H f\E( )H ()

— foranye > 0 there exists § > O suchthatifx € Ap(U),y € A, and dist(x,y) <6,
then

< ikfor anyx € Ap(U) and k > 0;

| 10g [ Dz, |~ log [ DAy || < &
and

[1og |Dr7L | = Tog [ DAl || < .

In the statement above,

ArU) = (V).

ne€z

The second technical lemma (Lemma 3.2.3) is a variant of the so-called sifting
lemma first proved by Liao (see [36]). The statement which we prove belongs to
Wen-Gan-Wen [ 1 09]

Let Ta,pyM = E@® FbeasinLemma3.2.2andlet0 <A < 1.

An orbit string

ton) = f).....[" (0} C A (U)

is called a A-quasi-hyperbolic string with respect to the splitting E & F if the
following conditions are satisfied:

(1)
k—1
1_[ HDf\E(fi(x)) ‘ < lk for k=1,2,...,n;
i=0
(2
n—1
1_[ m (Df\i’(f"(x))> > M= for k= 1,2,...,n;
(3)

2 .
HDfIE(f"(x)) ‘ /m (Df|ﬁ(f"(x))) < A“forevery i =0,1,...,n—1.
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Here m(A) is the minimum norm of a linear map A, i.e.,

m(A) = inf ||Av].
lli=1

Lemma 3.2.3 (Sifting Lemma, [36, 107, 109]) Let {a;}?2, be an infinite sequence
for which there exists a constant K such that |a;| < K. Assume that

n—1 n—1

1 1
l > ai=&and liminf Y ai=¢.
im sup I_Oa & an imin i, izoa £

n—oo N °

where &' < E. Then for any &, and &, with & < £ < &, there is an infinite sequence
{mi}2, C N such that

1 m;+k—1 mijy1—1
k Z aj <& and r Z a; > &

J=mi j=mip1—k

foreveryi=1,2,... andeveryk =1,...,m; + 1 —m;.

Proof Let S(n) = Z::é a;.
Fix a small ¢ > 0 with

§-¢

> &.
2

(We determine ¢ at the end of the proof.)
Choose a large enough N € N such that

1S(n)<§+£
n

forany n > N.
By our assumption, the upper and lower limits are different; hence, there is an
infinite sequence

N<n <n <m<n,<m<n,<...
1 1 2 2 3 3

such that
1 / 1 1A
Sn) <& +e<b—e< ,Sn)
n; n;

foreveryi =1,2,....
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Take an integer n; < m; < n;4 such that

SH) = Smy) _
k—m,- -

E—c¢

foreveryk =m; + 1,m42...,n;4 and

S(m;) — Sk
(m)=S® _, _,
m,'—k
forevery k = nj,n; +1,...,m; — 1.

This is a crucial point of the proof. Roughly speaking, m; is the index at which
S(k) — S(n;) — (k — n;) (€ — &) attains maximum when & runs over the setn; + 1, n; +
2,..., ni41 (Flg 31)

Claim

—-& -2 —& -2
§-§ Smi andmi—ni>S § 5m

i+1 — M >
i K+§& +e¢ K—§ —¢

Proof (of the claim) By the choice of m;, it is easy to see that
S(mi) = S(ny) = (m; —n)(€ — ).
Hence,

S(mi) = mi(§ —e).

S(n)

m ml m2 WI3 n

S(”ll)
(1, S(ny))

E+e

("2, S(”z )

("3, S(n3 )

E+eg

(l’l4, S("4))

Fig. 3.1 The choice of m;
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Since |a;| < K, we get the inequalities

niv1(E +¢€) > S(ni + 1) > S(m;) — K(nixr —m) = mi(§ — ) — K(niy1 —m

and
ni(& + &) + K(m; — n) > S(ny) + K(m; — ny) > S(m;) > my(§ — ¢).
Hence,
K(nipr —m;) > (§ —e)m; — (§ + &)nipy =
= (& — & —2e)m; + (&' + &) (m; — niy1)
and
K(m; —n;) > mi(§ —e) —ni(§' +¢) =
=mi(§ — & —2¢) + (£ + &) (m; — ny).
Therefore,

Thus, the claim is proved.
Let us pass to the proof of Lemma 3.2.3.
Itis obvious that fork = 1,2, ..., ni+1 — m;,

L (SOm ) = Som)) < — e
FOI'kZI’li_H —m; + 1,...,mi+1 —m;,
1 1
i SO+ 1K) = S(m)) < (i + K)(E + &) —mi(§ — &) =

; K+¢
:g+e+2st <.§+(1+2 +e +€)

£—§ -2

Note that in the third inequality we have used the above claim.
Similarly, fork = 1,2,...,m; —n;,

(S~ S(m — ) = £~

139

i)
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andfork =m; —n; +1,...,m; —m;—q,

1 1
i SOmi) =S(mi —k)) > (mi(§ — &) — (m; —k)(§ + &) =

=&+e— Zen]:i > &+ (1 — 2;{__;/__288) e.

Now choose ¢ small enough so that

K+¢&+e¢
142
(1020 e <t
and
K—-§¢—
min{§—£,§+(1—2§_§_2i)s} > £1.
This proves Lemma 3.2.3. O

A proof of the following lemma (in fact of its generalized version) is given at the
end of this section (see Lemma 3.2.5).

Lemma 3.2.4 (Liao’s Closing Lemma [36]) Let TayM = E & F be a
continuous Df-invariant splitting. For any 0 < A < 1 and any ¢ > O there
is § > 0 such that for any A-quasi-hyperbolic string {x,n} of f in Ay(U) with
dist (f"(x),x) < 4, there is a periodic point p € M of f such that f"(p) = p and
dist (fi(p),fi(x)) <egforall0<i<n-—1.

In the following proposition, to simplify notation, we denote A (U), E® F, and
A by A, E @ F, and A, respectively. The next proposition is proved by applying
Lemmas 3.2.3 and 3.2.4.

Proposition 3.2.3 Let A be a compact f-invariant set, let 0 < A < 1 be given, and
assume that there is a continuous Df -invariant splitting TAM = E & F such that

H Df i

—1 2
' HDf\F(f(X)) ‘ <A

forany x € A.
Assume that there exists a pointy € A such that

n—1
. 1
logA <logi; = hrltIl)Solip ; ;log HDf‘E(fi(”) H <0
and

n—1
o1
11nn_1>101.3f i, ;log HDf‘E(f,-(y)) H < logA;.
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Then for any A, and Az with A < Ay < A1 < A3 < 1 and any neighborhood W
of A there is a hyperbolic periodic point q of index dim E such that O(q,f) C W,

k—1 w(g)—1

! r(g)—ct1
[ HDfIEX(ff(m) H =25, and ] HDf\ES(fi(m) H >4
i=0 i=k—1

forallk=1,2,...,7(q).

Furthermore, q can be chosen so that the period 1 (q) is arbitrarily large.

Our Theorem 3.2.1 follows from the next proposition (this kind of result was first
obtained in [109]).

Proposition 3.2.4 Let A be a compact f-invariant set, andlet0) < A < land L > 1
be given. Assume that f has the following properties (P.1)—(P.4).

(P.1) There is a homogeneous Df -invariant splitting TAM = E @ F such that

HDﬁE<x>

—1 2
' HDf\F(.f(X)) ‘ <A

forany x € A.
(P.2) There is a compact neighborhood U of A such that if g € Ar(U) N Per(f) and
w(q) > L, then

w(g)—1 m(g)—1

@ —1 @
l_[ HDf\ES(f'(q)) H <A™ and l_[ HD lE“(~i(q)) H <A™
i =0

i=0

(P3) A = Paime(f)-
(P.4) f has the standard shadowing property.

Then A is hyperbolic.

Proof Let A be a compact f-invariant set, let 0 < A < 1 and L > 0 be given, and
assume that f has properties (P.1)-(P.4). Let TyM = E®F be a Df-invariant splitting
as in (P.1) (recall that every dominated splitting is continuous). Thus, shrinking
the neighborhood U of A, we may assume further that there exists an extension
TaryM = E & F of the dominated splitting ToM = E @ F (see Lemma 3.2.2).

Let us prove that A is hyperbolic. Assuming that E is not contracting, we show
first that for any A < n < 1’ < I there is z € A¢(U) such that

' 1 n—1 )
‘ < logn < lim sup " Zlog HDfIE(ff'(z)) ‘ <logn'.
j=0

n—>o00

n—1

e

fimnf , 3 log 12150
<

After that, we derive a contradiction by applying Proposition 3.2.3.
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It is known that if there exists N > 0 such that for any x € A thereis 0 < n(x) <

N such that HDflrfE((X;)

Since E is not contracting, it is easy to see that there is yp € A such that

< 1, then E is contracting.

n—1
[T[2ecrom| = 1 foran n=1
j=0

(recall that A is compact).
Choose ¢ > 0 small enough with N(2¢, A) C U such that

(i) if dist(x,y) < & for some x,y € N(e, A), then
(1 , 1
‘ log HDf|E(x) || — log ”Df@(y) H‘ < min 2(log n —logn), 3 (logn —logA); .

Observe that item (i) follows from the continuity of E (recall that E a4 = E).

Since f has the standard shadowing property, there is 0 < § < & such that any
§-pseudotrajectory of f in M can be e-shadowed by a trajectory of f.

Denote the w-limit set of yy by wy(yo). It is well known that wy(yo) C A is an
f-invariant compact set, and for any neighborhood V = V(wr(y0)) of wr(yo) there is
N > 0 such that f"(yg) € V for any n > N. By the compactness, there exists a finite
set of points {xj}le in wr(yo) such that

l
o (v0) C | JN(8/2.x).

Jj=1

Since Pgim g(f) is dense in A, it is easy to see that for the chosen § there exists a
finite set of periodic points {pj}le C Paime(f) with dist(x;, pj) < g such that

{
oy (v0) C | JNG.py)

Jj=1

and thus, there is N’ > 0 such that

l
f"00) € | NG.py) € N(e, )

j=1
forany n > N'.
Assume that n > N’. Then
n—1 n—N'—1 N —1
[1 HDflE(ﬂow) ‘ = 11 HDflE(ﬂ(m) H 11 HDf\E(ff(yo)) H > 1.
j=0 j=N J=0
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Thus,

‘ Z e ki

n—l N'—1
I1 HDflE(fN/“‘f(yo)) H > I1 HDflE(ﬂow)
=0 =0
so that
1 ”‘11 _ kN
n 2(; o8 HDf‘E(fN/ﬂU’O)) H =
iz

Here K = max {|log | Df ()|
Hence,

log |IDf ' ()| : x € M}.

3

T = . KN\
(i) Timinf X(;log HDf‘E(fNur_,-(yO)) H = lim (=77 ) =o.
j=
We may assume that the period of p; satisfies the inequality 7 (p;) > L for any j,
and, finally, put

L

T = Hn(pj).

Jj=1

The set of periodic orbits

12
26 = Jowp;.N

J=1

forms a §-net of wy(yo), i.e., for any w € ws(yo), there is ¢ € £ 0 such that
dist(w,q) < &, and, conversely, for any g € &0, there is w € wy(yo) such that
dist(w, q) < 6.

Observe that for any for any g € Z0,

r—1
o 1 1
(iif) . Zlog )‘DﬁE(fj(q)) H < 2(log/\ + logn)
j=0
by the choice of § (see (P.2)).
We construct a §-pseudotrajectory {x;}iez C A of f composed of points of the

orbit O(yo,f) and of the set & by mimicking the procedure displayed in [109]
(the construction is by induction). Denote /' (yo) by yo for simplicity.

Step I Since yy € A, there is g;, € &2 such that dist(yo, g;,) < J. Set
X—1 = gj;—1, X=2 = gj;—=2, -+ X—g+1 = gjj—n+1,

X = Qs X—n—1 = Gji—15 X—z—2 = ;=2 ...
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Then dist(f(x—;), x—i+1) < & fori > 1, so that the negative part {x; i_=1_oo of {x;}iez
is constructed.

StepII Letn; = 1. Then

r—1

1 1

- nlg log HDﬁE(qlerj)H <2(logk+logn).
j=0

Obviously, this inequality is ensured by (iif).
Leti; = nym, putx; = gj,+; forj =0,1,...,ii —1 = 7 — 1, and put x; = yo.
Then dist(f(x;), xj+1) <6 forj=0,1,...,i; — 1, and

i1—1

1 1
) Zlog |Dfiecy || < 2(10g)k + log 7).

j=0
Put
o = 10g | Dy |
forj=0,1,...,i; — 1, and choose /; so that
1 i1—1 -1 1
P >4+ D log | Dfigcn]| | = , (logn +log ')
=0 =0
and
1 i1—1 -1 1
i+l > ai+ Y log|[Dfigron | | <, (ogn +logi)
=0 j=0

forany ! < [;.
The existence of /; is ensured by the choice of y, (recall the choice of yo and (ii)).
Set ji = i1 + I, let xy 41 = f(0). Xi42 = f2(00)s-. .. X1 = 17 () €
O(yOsf)’ and put

aj,+j = log HDﬁE(Xi1+j)

forj=0,1,...,; — 1.

Step III Let ir—1, ji—1, {Xi jl::(;_l, and {ai}jl::(;_l have been constructed in the
previous steps. Similarly with the choice of g;, and n;, we can choose g;, € Z 0 so
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that
dist (f(,)» gix) < 6,

and a positive number n; such that

1 Jk—1—1 n—1 1

i Z aj + ng Zlog HDf\E(qjkﬂ) H < 2(10g)& + logn),
Jj=0 J=0
where i, = ji—1 + m7 (the existence of ny is ensured by (iii)). Let

Kjp—1+1 = Gjr+15 X142 = G425 -+ -5 X1+ = Gjis
Xjp—1+m+1 = Gjr+1> Xjp—+7+2 = Gje+25 - - -5

and x;, = f(xj,_,—1) € O(yo.f).
Obviously,

dist(f (X, +)s Xje_y +j+1) < O

forj=0,1,...,mmx — 1. Put

ajy_,+j = log HDf\E(Xjk_lﬂ)
forj=0,1,...,n -7 — 1, and choose [} so that

ixr—1 k—1
1

1
- D a4+ ) log “DﬁE(ff<x,-k>> ‘ > (logy +logn).
L N = 2

and

i—1 ]
1

1
it D+ ) log HDflE(ffu,-k» ‘ <, (logn +log)
= =0

for any [ < I.

The existence of /i is ensured by the fact that x;, € O(yo,f) (recall the choice of
yo and (if)).

Let jr = iy + I and let Xig+1 = f(xik),xik+2 = fz(xik), v Xjp—1 = flk—l(xik).
Finally, we put

i+ = log HDﬁE(ffuik»

forj=0,1,...,L; — 1.
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This completes the construction of {x;};,ez C A.
Roughly speaking, the §-pseudotrajectory {x;};cz looks as follows:

{"'a gzﬁs '@ﬁs yOsf(yO)vfz(yO)v ---sfll(yO)v L@ﬁv
s 20, " Do), L TR0, 20, 20, )

Recall that K = max {|log ||[Df (x)[||. | log [ Df "' (x)|l| : x € M}.
It is easy to see that

1 ik—1—1 1 Ji—1 1
i Z a; < 2(log)k + logn) and i Zaj > 2(10g7] + log 1)
Jj=0 j=0

foreveryk =1,2,...,and
n—1
1 1/1 ,
Zaj< (logn+logn)y(n—n)+K-7m
n = n\2

foreveryn > .

Hence,
1 n—1 1 1 n—1 1
. _ / o '
11£igpn;aj_ 2(10g77+10g77) and hnlggfn;ajf 2(10g)&+logn).

Let z € M be a point whose f-trajectory e-shadows {x;};cz (see (P.4)). Note that
O(z.f) C N(2e, A) C U. Thus, by the choice of ¢ (see (i)),

<log7'.

n—>o0

n—l n—1

.1 . 1

hnn_l)logfn Z; log HDfIE(ff(z)) ‘ < logn < limsup , Z;log HDf\E(ﬂ'(z))
Jj= Jj=

By Proposition 3.2.3, there is a hyperbolic periodic point g of index dimFE
such that O(g,f) C U and the derivatives along the trajectory O(q,f) satisfy the
inequalities

= . 7(g)—1
[[12fega] <7 and T [Dfiega| > 7@
=0 i=k—1

forallk =1,2,...,7(q).
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Furthermore, g can be chosen so that (g) is arbitrarily large, and thus we may
assume that 7w(¢) > L. This is a contradiction because

m(g)—1

[T [P | < A7

i=0

by (P.2). Applying a similar reasoning, we can show that F' is expanding, and thus,
A is hyperbolic. O
Now we give a proof of a generalization of Liao’s closing lemma (Lemma 3.2.4)
proved by Gan [20].
Recall that a definition of a A-quasi-hyperbolic orbit string

{x,f(x),fz(x), e sfn(x)}

with respect to a splitting of 7,M = E(x) ®F (x) has been given before Lemma 3.2.3.
Let {x;}2_., be a sequence of points in M and let {n;}72___ be a sequence of
positive integers Denote

i=—00

{onit = {f(x):0<j<nm—1}

The sequence {x;, n;}2_ is called a A-quasi-hyperbolic §-pseudotrajectory with
respect to splittings 7,,M = E(x;) @ F(x;) if for any i, {x;, n;} is A-quasi-hyperbolic
with respect to Ty, M = E(x;) ® F(x;) and dist (f" (x;), x;4+1) < 6.
A point x &- shadows {xi, nib 2 _ oo if
dist (F/(x).fN(x))) <& for N; <j<Niy1—1,
where V; is defined as follows:

0, if i=0;
Ni=7no+n +---+n—, if i>0;
ni+nip+---+n_ if i<O.

In the following result, it is assumed that A is a compact invariant set of
f € Diff! (M) and there is a continuous Df-invariant splitting TAM = E @ F, i.e.,
Df(x)(E(x)) = E(f(x)) and Df (x)(F(x)) = F(f(x)).

Lemma 3.2.5 (Generalized Liao’s Closing Lemma [20]) Forany 0 < A < 1
there exist L > 0 and &9 > 0 such that for any 0 < § < & and any
A-quasi-hyperbolic §-pseudotrajectory {x;,n;}?2_., with respect to the splitting
TAM = E @ F there exists a point x that L§-shadows {x;,n;}?2__,. Moreover, if
the sequence{x;, n;j}32_ . is periodic, i.e., there exists an m > 0 such that X;,, = X;
and niy,, = n; for all i, then the point x can be chosen to be periodic with period
Ny
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Proof Let (X, || - ||) be a Banach space and let
X)) ={veX:|vll=ny n>0.

If X is the direct sum of two closed subspaces E and F, i.e., X = E @ F, then the
angle between E and F is defined as

LZ(E,F)=inf{|lu—v| :(ueE,veF,|ul|=1) or e E,veF,|v|=1}

Since E and F are closed, 0 < Z(E,F) < 1. O
The following lemma is well known (e.g., see [64]); we give a proof for complete-
ness.

Lemma 3.2.6 In the above notation, assume thatX = E®F and Z(E,F) > o > 0.
Let L : X — X be a linear automorphism of the form

A B
L= E®F—>E®F
(CD) OF—>LE®

such that
max{[A]. [D7'[} <A and max{|B|.||C|} <&

forsome 0 < A < 1ande > 0.

If

o264
Y T

then I — L is invertible, and

1+A

-1 _ =
[0=D7 T =sR=RO200= (231 —epy

A0 0B
Proof PutJ = (OD) and K = (CO).Then

o (u=a)"" 0
a0 = 0 o)

and -0y =

1
la-a) <! b

A, ’
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IfueE,v € Fand |u+ v| = 1, then, by the definition of Z(E, F),

1= |lu+v| = ZE F)llull = aful and u + v = «|v].

Thus,
_ _ _ 1+A
I =N+ )l < 10 =A) " ull + 10 =D)" "ol < :
a(l—24)
and hence,
1+A
-7 < :
la=n7= 0
A similar reasoning shows that
2¢
Ikl <.
o
Since
2e(14+A)
= 1
T -2y "

by assumption, I —L = (I-J)—K = (I-J)(I—(I—J)"'K) and |(I-J)"'K| < &;.
Hence, I — L is invertible, and

-~ =la-n"'a—a-HT"K)| <R,

which proves our lemma. O
The sequence version of the shadowing lemma is derived from the following

fixed point result. For completeness, we give a proof following the method of [64].
In the next proposition, we denote

1+ 24

R=R*e)= a-na-e)

L =2R, and §y = i
L

for0 <A <1,0 <a <1,and € > O such thate; = ffz((llti; <landn > 0.

The minimal Lipschitz constant of a map ¢ is denoted by Lip ¢.

Proposition 3.2.5 If0 < § < 8y and ® = N + ¢ : X(n) — X, where N is a linear
automorphism of the form

AB
N = EQF ->EDF
(£5):For—ro
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such that
max{[|A[l, ID7']}} < A,
max{[|B[| |C[|} < e.
Z(E,F)>a,Lipp < i, and ||¢(0)|| < 8, then @ has a unique fixed point z in X(n)

such that ||z|| < Lé.
Proof By Lemma 3.2.6, — N is invertible. Let

H=(I-N)"¢:X(n) — X.

The set of fixed points of H in X(7) coincides with the set of fixed points of @ in
X(n). If x € X(L§), then

[H@)[ = [[H(0) + (H(x) = H0))|| =

= T=NTp O + [ =N)"HpE) — O] <
<RS+RLS = LS.

Thus, H maps X (L§) to X(L$).
If x,y € X(n), then

IHG) —~ HO) = 1007 @0 — ol =R eyl = 1 @)

Hence, the map H : X(L§) — X(LJ) is contracting. Therefore, H has a unique
fixed point z in X(L§). Moreover, if 7 € X () is another fixed point of H, then z = 7/
by (3.7). O

In the following proposition, let X; = R" for integer i (where v = dim M) and
we assume that X; = E; @ F;. Let

be endowed with the supremum norm

vl = sup{lvil}, v = (vi).

Thus, Y is a Banach space.

We consideramap @ : Y — Y of the form (@ (v));+1 = ®;(v;), where @, : X; —
Xit1.

Applying Proposition 3.2.5to @ : Y — Y, we obtain the sequence version of the
shadowing lemma for hyperbolic pseudotrajectories in the following way.
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Proposition 3.2.6 Let us assume that conditions of Proposition 3.2.5 are satisfied
and use the above notation.
If 0 <6 <8pand @ : Y(n) — Y has the form

D =L + ¢ : Xi(n) = Xit1,

where
L= A; B;
Ci D;
with respect to the splitting X; = E; @ F; such that Z(E;, F;) > «,

_ . 1
max{[Aill, D7} < &, max{|[Bill. |Cill} <€, Lip¢ < L

and ||¢;(0)|| <6, then @ has a unique fixed point v € Y(n), and ||v|| < LS.
We need one more technical lemma. Fix 0 < A < 1.
A pair of sequences {a;, b;}_, of positive numbers is called A-hyperbolic if a; <
Aand by > A7 fork=1,2,....,n.
A pair of sequences {a;, b;}’_, of positive numbers is called A-quasi-hyperbolic
if the following three conditions are satisfied:

(M) Tz @ < A%

@) T by = A

() bifay = A7
fork=1,2,...,n.

A sequence {c;}"_, of positive numbers is called a balance sequence it

k n
=1 for k=12...n—=1 and [[e=1
=1 j=1

J

A balance sequence {c;}"_, is called adapted to a A-quasi-hyperbolic sequence
pair {a;, bi}l_, if {ai/ci,bi/ci}}—, is still A-quasi-hyperbolic. Moreover, if
{ai/ci, bi/ci}l—, is A-hyperbolic, then {c;}"_, is called well adapted.

If a balance sequence {c;}/_, is adapted to a A-quasi-hyperbolic sequence pair
{ai, bi}'_,, then we say that {a;/c;, b;/ci}l_, is derived from {a;, bi}!_, . If {a;, l_ai}l'f:l
is derived from {a;, b;}"_, and {@;, b;}"_, is derived from {a;, b;}"_, then {&;, b;}"_,
is derived from {a;, b;}’_, as well.

Lemma 3.2.7 Let 0 < A < 1. Then any A-quasi-hyperbolic pair of sequences
{ai, bi}i_, has a well adapted sequence {c;}'_,.

Proof First we show that {a;, b;}/_, has an adapted sequence {c;}/_, such that
aifci < Aforl <i<n.
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To get a contradiction, assume that
N = max{k : there exist {c;}/—, suchthat a;/c; <A,1=<i<k} <n.
Obviously, N > 1. Assume that {ci}?_, is such an adapted sequence. Let a; = a;/c;,

bl‘ = bi/Ci, i = 1,2,...,1’!. ThenZlN+1 > A.
Since ]_[f\:;l a; < ANt1 there exists 1 < m < N + 1 such that

N+l N+1
[Jai>A"""* for k=m+1.....N+1 and []a <AV
i=k i=m

Let¢;=ai/Afori=m+1,... . N+ land¢;=1fori <mandi> N+ 1.

Then {c;}/_, is a balance sequence. Let a; = a;/¢;and b; = b;/cifor1 <i<n

—1 _
and put ¢, = (]_[f\:;an Ei) .Obviously,a; = Aform+1<i<N+1,

= - - _ N+l -
am = le/Cm = dam (l_[i=m+l Ci) =

i (l—lgv:4;r3+l ai) A= N—m+1) — (I'I,NS,J g,i) A—N-mtD) < g

I
Qi

and b; = b;/¢; = Ab;/a; > A" form+ 1 <i <N + 1.

Thus, one can easily check that {a;, 1_9,-}:.’21 is a A-quasi-hyperbolic pair which is
derived from {a;, b;}_,. But a < Aforl <i < N+ 1, which contradicts the
maximality of N.

Similarly, {a;, b;}’_, has an adapted sequence {c;}?_, such that b;/c; > A~! for
1 < i < n. In what follows, we assume that {g;, b;}'_, itself has the property that
b; > A7 for 1 < i < n. We will repeat the proof of the above paragraph to show
that a well adapted sequence exists.

Let

N = max{k : there exist {c;}/—_, such that
aifci <A, 1 <i<k, andb;/c; > A,1 <i<n}<n.

Now we can copy the proof of the first paragraph word by word and only have to
show that b,, > A~!L. Since &,, < 1, this is obvious. O

Remark 3.2.2 If {c;}?_, is a well adapted sequence of {a;, b;}'_,, then a;/c; < A
and b;/c; > A™'. Hence, a; < a;/A < c¢; <bA <b;fori=1,2,...,n.

We prove Lemma 3.2.5 (the generalized Liao’s closing lemma) by combining
Proposition 3.2.6 and Lemma 3.2.7.

Let Gi(x), x € M, be the Grassmann manifold of k-dimensional subspaces of the
tangent space T(M). Denote by G;(M) the bundle {G(x) : x € M} and consider a
metric p on G(M) (we do not indicate the dependence of p on k).
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The following lemma is an easy corollary of well-known properties of the
exponential map.

Lemma 3.2.8 For any «, ¢, T, ¥y > 0 there exists n > 0 such that if x,y € M,
T:M = E(x) @ F(x), yM = E(y) @ F(y),

min{Z(E(x), F(x)), Z(Ey. Fy)} > a,
and
max{p(Df ()E(x), E(y)), p(Df () F (x), F(y)} < 1,
then the map
@ = expy_l of oexp, : T.M(n) = T,M

can be written as @ = L + ¢, where

L= (‘é g) with respect to the splittings E(x) @ F(x) and E(y) @ F(y),

l1—1< 4] <1+4r,
| D | |
111

< P
m (Df |rw)

max{||B|.||C||} <&, and Lip¢ <y.

Proof of Lemma 3.2.5 Let {x;, n;}* be a A-quasi-hyperbolic pseudotrajectory with
respect to the splitting TyM = E @ F. Denote

K = SEE{IIDJ‘(X)II, IDF~' (oI} and a = inf Z(E(x), F(x)) > 0.

oo

We first show that there exists a point z that e-shadows {x;, n;}2__, i.e.,

dist (f/(2).f/ N (x;)) <& for Ni <j<Niys—1,
where
0 if i=0;

Ni=44ng+n +---+n—y if i>0;
ni+nip+---+n_ if i<O.



154 3 C!Interiors of Sets of Systems with Various Shadowing Properties

Let y; = f/~Ni(x;) for N; < j < Ni11 and denote X; = T,,M, E; = E(y;), and
Fj = F(y).

Put u = HZ'A and r = /A and take & > 0 such that
2e(1
&1 = 8( +M) < 1.
a?(1—p)

LetR = R(u,e,a), L =2R,and g, = ¢/K.
Since the splitting ToM = E @ F is continuous, it follows from Lemma 3.2.7

that if » > 0 is small enough and {yj};vz’f\,‘i is A-quasi-hyperbolic n-pseudotrajectory,
then the map

® = expy’}, of oexp, : X;(1) = X

has the form @; = L; + ¢;, where

A; B;
L:( J ])ZE'@F'%E'+1@F'+1
J qD] J J J J

andLipg; < ;.
Ile fj < Ni+l - 1, then (]SJ(O) = 0, Bj = Cj = O, Aj = Df|E/, and Dj = DfIF_]
Ifj = Ni+1 — 1, then

max{||B;ll, IGill} < &2, 4]l < rlIDf|gll, and | D7 < rm(Df|r)~".

Let § = n/L and fix 0 < & < &o. If {x;,n;}°%, is a quasi-hyperbolic

§-pseudotrajectory, then [|¢;(0)|| < §. Thus, {||Aj||,m(Dj)};\’:"w;vl.—l is a p-quasi-
hyperbolic pair of sequences. Hence, there is a well adapted sequence {hj};vz"f\,li_l,

ie.,

k Nit1—1
[[hi<t for k=Ni.....Niyy—2 and [ =1
J=Ni J=Ni

where [l< <hi <K
Let & = [Timn, i Lj = 17'Ly, ¢5(x) = &7 ¢i(gj~1(x)) (note that gy,— = 1),
and @; = L; + ¢;. Denote

q/qujjo---O@Ni and 4}1243/00451\/

i

Then ¥ = g7'¥.
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Note that gy, ,—1 = 1 and l1~/N.

=1 = WNiJrl_l. Thus,

Lip¢; = g 'Lip¢jgj—1 = h; 'Lip¢; < KKIL = i
¢;(0) = ¢;(0) = 0 forj = N;,...,Niy1 — 2, and ¢;(0) = gj_1¢3i(0) = ¢;(0) for
Jj=Niy1 —1lsince g; = 1.

Hence, by Proposition 3.2.6, & = {qu} 2 Y(n) — Y (where Y = [[2_ X))
has a unique fixed point ¥ = {9;}, and ||0|| < L§. Let vy, = vy, and for N; < j <
Niy1 — 1, define v = <,~_1(vj_1) inductively.

To guarantee that this is possible, let us check that ||v;|| < L§. Since

v = Wi (oy) = g1 %1 = g7,

we have the inequalities [|v;]| < ||v;|| < Lé.
Since

UNiyy = 5Ni+1 = qjNi+1—1(vNi) = lI/Ni+l_1(vNi) = ®N,-+1—1(UN,-+1—1),

v is a fixed point of @, and ||v| < L§. Then the f-trajectory of the point z =
exp,, (vo) L3-shadows {y;}. This proves the first conclusion of Lemma 3.2.5.
Now we assume that the sequence {x;, n;}{2_ is periodic, i.e., there exists an
m > 0 such that x;4+,, = x; and n;,, = n; for all i.
Define w by (W); = (9)w,,,- Since ¥ and w are fixed points of @ inY(LS), o =w

by Proposition 3.2.6. Thus, v = w, and z has period N,,. O

Historical Remarks The theory involving a selection of some special kinds of A-
quasi-hyperbolic strings has its origins in the works of V. A. Pliss [73] and S. T.
Liao [36].

The notion of A-quasi-hyperbolic string and Liao’s closing lemma played an
essential part in the solution of the stability conjecture in [45].

3.3 Vector Fields in Int! (OrientSPy \ %)

To formulate our main results in the last two sections of Chap. 3, we need one more
definition.

Consider a smooth vector field X on a smooth closed manifold M.

Let us say that a vector field X belongs to the class Z if X has two hyperbolic
rest points p and g (not necessarily different) with the following properties:

(1) The Jacobi matrix DX(g) has two complex conjugate eigenvalues (1, = a; +
ib; of multiplicity one with a; < 0 such that if A # pu;, is an eigenvalue of
DX(g) with ReA < 0, then ReA < ay;
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(2) the Jacobi matrix DX ( p) has two complex conjugate eigenvalues vy, = a,£ib,
with a; > 0 of multiplicity one such that if A # v, , is an eigenvalue of DX(p)
with Red > 0, then Red > a5;

(3) the stable manifold W*(p) and the unstable manifold W*(g) have a trajectory
of nontransverse intersection.

Clearly, vector fields X € % are not structurally stable.

Condition (1) above means that the “weakest” contraction in W*(g) is due to the
eigenvalues (11> (condition (2) has a similar meaning).

The main result of this section is as follows.

Theorem 3.3.1
Int' (OrientSPp \ ) C S. (3.8)

It follows from Theorem 1.4.1 (2) that .%» C SSPp; since the set .%% is C'-open
and SN % =0,

Sr C Int' (SSPr \ &) C Int! (OrientSPr \ A).
Combining this inclusion with (3.8), we see that
Int' (OrientSPy \ &) = 7.
Proof The proof of inclusion (3.8) is based on Theorem 1.3.13 (2):
Int'(KSp) = .%F

(recall that KSp is the set of Kupka—Smale vector fields).
Thus, in fact, we are going to prove that

Int! (OrientSPy \ 2) C KSg. (3.9)

Before proving inclusion (3.9), we introduce some terminology and notation.

The term “transverse section” will mean a smooth open disk in M of codimension
1 that is transverse to the flow ¢ at any of its points.

Let, as above, Per(X) denote the set of rest points and closed orbits of a vector
field X.

Recall (see Sect. 1.3) that we have denoted by HP the set of vector fields X for
which any trajectory of the set Per(X) is hyperbolic. Our first lemma is valid for the
set OrbitSPy (which is, in general, larger than OrientSPr); we prove it in this, more
general form, since it can be applied for other purposes.

Lemma 3.3.1

Int' (OrbitSPr) C HPf. (3.10)
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Proof To get a contradiction, let us assume that there exists a vector field X €
Int' (OrbitSPr) that does not belong to HPz, i.e., the set Per(X) contains a trajectory
p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with R” in a
neighborhood of p. Applying an arbitrarily C'-small perturbation of the field X, we
can find a field Y € Int' (OrbitSP) that is linear in a neighborhood U of p (we also
assume that p is the origin of U).

(Here and below in the proof of Lemma 3.3.1, all the perturbations are C'-small
perturbations that leave the field in Int' (OrbitSPr); we denote the perturbed fields
by the same symbol X and their flows by ¢.)

Then trajectories of X in U are governed by a differential equation

i = Px, @3.11)

where the matrix P has an eigenvalue A with ReA = 0.
Consider first the case where A = 0. We perturb the field X (and change
coordinates, if necessary) so that, in Eq. (3.11), the matrix P is block-diagonal,

P = diag(0, Py), (3.12)

and Py isan (n — 1) x (n — 1) matrix.
Represent coordinate x in U as x = (y, z) with respect to (3.12); then

o(1. (y.2)) = (v.exp(P11)2)

inU.

Take ¢ > 0O such that N(4e,p) C U. To get a contradiction, assume that X €
OrbitSP; let d correspond to the chosen e.

Fix a natural number m and consider the following mapping from R into U:

y = —2e¢, 7z=0; t<0;
gH)=qy=-"2e+1t/m, z=0; 0<t<dme;
y =2, 7z=0; 4me<t.

Since the mapping g is continuous, piecewise differentiable, and either y = 0 or
y = 1/m, g is a d-pseudotrajectory for large m.
Any trajectory of X in U belongs to a plane y = const; hence,

dist (CL(O(g, $)), Cl({g(1) : 1 € R})) = 2¢

for any ¢. This completes the proof in the case considered.
A similar reasoning works if p is a rest point and the matrix P in (3.12) has a pair
of eigenvalues +ib, b # 0.
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Now we assume that p is a nonhyperbolic closed trajectory. In this case, we
perturb the vector field X in a neighborhood of the trajectory p using the perturbation
technique developed by Pugh and Robinson in [77]. Let us formulate their result
(which will be used below several times).

Pugh-Robinson Pertubation Assume that r| is not a rest point of a vector field X.
Let r; = ¢(t,r1), where T > 0. Let X1 and X, be two small transverse sections
such thatr; € X;,i = 1,2. Let 0 be the local Poincaré transformation generated by
these transverse sections.

Consider a point ¥’ = ¢ (', r), where t' € (0,71), and let U be an arbitrary
open set containing r'.

Fix an arbitrary C' neighborhood F of the field X.

There exist positive numbers €y and Agy with the following property: if ¢’ is a
local diffeomorphism from the Ag-neighborhood of ri in X into X, such that

distc1(0,0") < &g,

then there exists a vector field X' € F such that

(1) X' = X outside U;
(2) o’ is the local Poincaré transformation generated by the sections Xy and X,
and trajectories of the field X'.

Let w be the least positive period of the nonhyperbolic closed trajectory p. We
fix a point = € p, local coordinates in which  is the center, and a hyperplane X of
codimension 1 transverse to the vector F(;r). Let y be coordinate in X

Let o be the local Poincaré transformation generated by the transverse section
XY'; denote P = Do (0). Our assumption implies that the matrix P is not hyperbolic.
In an arbitrarily small neighborhood of the matrix P, we can find a matrix P’ such
that P’ either has a real eigenvalue with unit absolute value of multiplicity 1 or a
pair of complex conjugate eigenvalues with unit absolute value of multiplicity 1. In
both cases, we can choose coordinates y = (v, w) in X in which

P’ = diag(Q. Py), (3.13)

where Qisal x 1 or 2 x 2 matrix such that |Qu| = |v| for any v.

Now we can apply the Pugh-Robinson perturbation (taking r; = r, = 7 and
Y = X, = X) which modifies X in a small neighborhood of the point ¢(w/2, )
and such that, for the perturbed vector field X’, the local Poincaré transformation
generated by the transverse section X is given by y > P'y.

Clearly, in this case, the trajectory of 7 in the field X’ is still closed (with some
period @’). As was mentioned, we assume that X’ has the orbital shadowing property
(and write X, ¢, w instead of X', ¢, @").

We introduce in a neighborhood of the point 7 coordinates x = (x,y), where
X' is one-dimensional (with axis parallel to X(7r)), and y has the above-mentioned

property.
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Of course, the new coordinates generate a new metric, but this new metric is
equivalent to the original one; thus, the corresponding shadowing property (or its
absence) is preserved.

We need below one more technical statement.

LE (Local Estimate) There exists a neighborhood W of the origin in X and
constants 1, 8y > 0 with the following property: If z1 € XNO\W and |25—z1| < § < 8o,
then we can represent z as ¢(t, z5) with z, € X and

2], |z —z1] < 16. (3.14)

This statement is an immediate corollary of the theorem on local rectification
of trajectories (see, for example, [8]): In a neighborhood of a point that is not a
rest point, the flow of a vector field of class C! is diffeomorphic to the family of
parallel lines along which points move with unit speed (and it is enough to note
that a diffeomorphic image of X' is a smooth submanifold transverse to lines of the
family).

We may assume that the neighborhood W in LE is so small that fory € ¥' N
W, the function a(y) (the time of first return to X) is defined, and that the point
¢ (x(v,w), (0, v,w)) has coordinates (Qv, Pyw) in X.

Let us take a neighborhood U of the trajectory p such that if » € U, then the first
point of intersection of the positive semitrajectory of r with X' belongs to W.

Take a > 0 such that the 4a-neighborhood of the origin in X is a subset of W.
Fix

& < min (80, Zl) ,

where &y and [ satisfy the LE. Let d correspond to this ¢ (in the definition of the
orbital shadowing property).
Take yo = (v, 0) with |vg| = a. Fix a natural number v and set

o= ((];kao,O)), kel0,v—1),

Bo=0, Br=oar+- -+,
and

$(1,(0,0,0)), 1<0;
g) =1 ¢ (t—Br. (0.5 0o, 0)),  Br <t < Big1. ke[0,v—1);
¢ (t =By, (0,0"v9,0)), t> B

Note that for any point y = (v, 0) of intersection of the set {g(¢) : r € R} with X,
the inequality |v| < a holds. Hence, we can take a so small that

NQa,Cl({g(t) : t € R})) C U.
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Since

a

k k+1
Qk+1v0_ Qk+lv0 — § — 0’ v — 00,

Vv v

g(?) is a d-pseudotrajectory for large v.
Assume that there exists a point g such that

disty (C1(O(g, ¢)).Cl({g(r) : t € R})) < e.
In this case, O(g, ¢) C U, and there exist points g1, g» € O(g, ¢) such that
lg1] = g1 —(0,0,0)[ <&

and

|512 - (07 vi()vo)l <é.
By the choice of ¢, there exist points ¢/, g5 € O(q, ¢) N X such that
lq| <le <a/4 and |qy—Q"vo| <le <a/4.

Let g; = (0,v;,w;) and ¢, = (0, v2, w»). Since these points belong to the same
trajectory that is contained in U, |v;| = |v,|. At the same time,

lvi| <a/4, |va—Q"vo| <a/4, and |Q"vo| = a,

and we get a contradiction which proves Lemma 3.3.1. O
To complete the proof of Theorem 3.3.1, we show that any vector field

X € Int' (OrientSPy \ %)

has the second property from the definition of Kupka—Smale flows, i.e., stable and
unstable manifolds of trajectories of the set Per(X) are transverse.
Then

Int' (OrientSPy \ &) C KSg;

hence, inclusion (3.9) is valid.

To get a contradiction, let us assume that there exist trajectories p, g € Per(X) for
which the unstable manifold W*(g) and the stable manifold W*( p) have a point r of
nontransverse intersection. We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow ¢.
Case (B2): either p or g is a closed trajectory.
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Case (B1) Since X ¢ %, we may assume (after an additional perturbation, if
necessary) that the eigenvalues Aj,...,A, with ReA; > 0 of the Jacobi matrix
DX (p) have the following property:

Red;> A1 >0, j=2,...,u

(where u is the dimension of W*( p)). This property means that there exists a one-
dimensional “direction of weakest expansion” in W*( p).

If this is not the case, then our assumption that X ¢ % implies that the
eigenvalues fi1,..., s with Reu; < 0 of the Jacobi matrix DX(g) have the
following property:

Rep; <y <0, j=2,...,s

(where s is the dimension of W*(g)). If this condition holds, we reduce the problem
to the previous case by passing from the field X to the field —X (clearly, the fields X
and —X have the oriented shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the
perturbed field belongs to the set OrientSP \ %), we may “linearize” the field X
in a neighborhood U of the point p; thus, trajectories of X in U are governed by a
differential equation

x = Px,
where
P = diag(P,,P,), P, =diag(A,P;), A >0, (3.15)

Pyisa (u—1) x (u— 1) matrix for which there exist constants K > 0 and u > A
such that

| exp(=P11)|| < K~ exp(—put), t>0, (3.16)

and ReA; < 0 for the eigenvalues A; of the matrix P;.

Let us explain how to perform the above-mentioned perturbations preserving
the nontransversality of W“(q) and W*(p) at the point r (we note that a similar
reasoning can be used in “replacement” of a component of intersection of W*(q)
with a transverse section X' by an affine space, see the text preceding Lemma 3.3.2
below).

Consider points r* = ¢(z, r), where T > 0, and ¥ = ¢(z’, r), where v’ € (0, 7).
Let X and X'* be small transverse sections that contain the points r and r*. Take
small neighborhoods V and U’ of p and r/, respectively, so that the set V does not
intersect the “tube” formed by pieces of trajectories through points of U’ whose
endpoints belong to X' and X'*. In this case, if we perturb the vector field X in V and
apply the Pugh-Robinson perturbation in U’, these perturbations are “independent.”
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We perturb the vector field X in V obtaining vector fields X’ that are linear in
small neighborhoods V/ C V and such that the values p; (X, X’) are arbitrarily small.

Let y; and y;" be the components of intersection of the stable manifold W*(p)
(for the field X) with X' and X* that contain the points r and r*, respectively.

Since the stable manifold of a hyperbolic rest point depends (on its compact
subsets) C'-smoothly on C!-small perturbations, the stable manifolds W*(p) (for
the perturbed fields X’) contain components y; of intersection with X'* that converge
(in the C' metric) to y*.

Now we apply the Pugh-Robinson perturbation in U’ and find a field X’ in
an arbitrary C! neighborhood of X such that the local Poincaré transformation
generated by the field X and sections X and X* takes y/ to y, (which means that
the nontransversality at r is preserved).

We introduce in U coordinates x = (y; v, w) according to (3.15): y is coordinate
in the s-dimensional “stable” subspace (denoted E*); (v, w) are coordinates in the
u-dimensional “unstable” subspace (denoted E*). The one-dimensional coordinate
v corresponds to the eigenvalue A (and hence to the one-dimensional “direction of
weakest expansion” in E").

In the neighborhood U,

o(t, (y,v,w)) = (exp(P;t)y; exp(Ar)v, exp(PiH)w) ,
and it follows from (3.16) that
lexp(Pif)w| > K exp(un)lw], 1> 0. (3.17)

Denote by Ef the one-dimensional invariant subspace corresponding to A.

We naturally identify E° N U and E* N U with the intersections of U with the
corresponding local stable and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow ¢. We may assume that
the point r of nontransverse intersection of W*(g) and W*(p) belongs to U. Take
a hyperplane X’ in E* of dimension s — 1 that is transverse to the vector X(r). Set
Y = X' + E% clearly, X is transverse to X(r).

By a perturbation of the field X outside U, we may get the following: in a
neighborhood of r, the component of intersection W¥(g) N X containing r (for the
perturbed field) has the form of an affine space r 4+ L, where L is the tangent space,
L =T,(W"(g)N Y), of the intersection W"(g) N X' at the point r for the unperturbed
field (compare, for example, with [33]).

Let X, be a small transverse disk in X' containing the point . Denote by y the
component of intersection of W*(g) N X, containing r.

Lemma 3.3.2 There exists € > 0 such that if x € X, and
dist (p(t,x),0 (r,¢)) <e, =<0, (3.18)

then x € y.
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Proof To simplify presentation, let us assume that g is a rest point; the case of a
closed trajectory is considered using a similar reasoning.

By the Grobman—Hartman theorem, there exists &9 > 0 such that the flow of X
in N(2¢e0, g) is topologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of g, W}, .(q), with the
boundary of the ball N(2¢y, g).

Take a negative time 7 such that if s = ¢ (T, r), then

¢(t,s) € N(eo,q), t=0. (3.19)
Clearly, if g¢ is small enough, then the compact sets A and
B={¢@t.r): T<1=0}

are disjoint. There exists a positive number €; < &g such that the &;-neighborhoods
of the sets A and B are disjoint as well.

Take &, € (0, &1). There exists a neighborhood V of the point s with the following
property: If y € V \ W} (g), then the first point of intersection of the negative
semitrajectory of y with the boundary of N(2¢gy, ¢) belongs to the e,-neighborhood
of the set A (this statement is obvious for a neighborhood of a saddle rest point of a
linear vector field; by the Grobman-Hartman theorem, it holds for X as well).

Clearly, there exists a small transverse disk X containing s and such thatif y €
X5 N W (g), then the first point of intersection of the positive semitrajectory of y
with the disk X, belongs to y (in addition, we assume that X'y belongs to the chosen
neighborhood V).

There exists ¢ € (0,&; — &2) such that the flow of X generates a local Poincaré
transformation

o: X, NN(er)— X

Let us show that this ¢ has the desired property. It follows from our choice of X
and (3.18) with ¢ = 0 that if x ¢ y, then

yi=0(x) € X\ W, .(q):

in this case, there exists T < 0 such that the point z = ¢(z,y) belongs to the
intersection of N(g3,A) with the boundary of N(2¢y, g). By (3.19),

dist(z, ¢ (2,5)) > g9, t=<0. (3.20)
At the same time,
dist(z, ¢(t,7)) > &1 —&2, T <t=<0. (3.21)

Inequalities (3.20) and (3.21) contradict condition (3.18). Our lemma is proved. O
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Now let us formulate the property of nontransversality of W*(g) and W*(p)
at the point r in terms of the introduced objects. Recall that we work in a small
neighborhood U of the rest point p identified with the Euclidean space R".

Let IT" be the projection to E* parallel to E*.

The transversality of W"(q) and W*(p) at r means that

T,W*(q) + T,W*(p) = R".

Since X is a transverse section to the flow ¢ at r, the above equality is equivalent to
the equality

L+ E =R"
Thus, the nontransversality means that
L+E #R",
which implies that
L' .= IT"L # E". (3.22)

We claim that there exists a linear isomorphism J of X' for which the norm ||J —
Id|| is arbitrarily small and such that

mn"JjLn Ey = {0}. (3.23)
Let e be a unit vector of the line EY. If e ¢ L', we have nothing to prove (take J = Id).
Thus, we assume that e € L’. Since L' # E", there exists a vector v € E* \ L.

Fix a natural number N and consider a unit vector vy that is parallel to Ne + v.
Clearly, vy — e as N — oo. There exists a sequence Ty of linear isomorphisms of
E" such that Tyvy = e and

Ty —1d|| = 0, N — oo.
Note that 7, leis parallel to vy; hence, Ty, le does not belong to L', and
TyIT"L N EY = {0}. (3.24)
Define an isomorphism Jy of X' by
In(.2) = (3. Tyz)

and note that

|y —1d|| = 0, N — oo.
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Let Ly = JyL. Equality (3.24) implies that
"Ly N EY = {0}. (3.25)

Our claim is proved.

First we consider the case where dimE" > 2. Since dimL’ < dimE" by (3.22) and
dimE{ = 1, our reasoning above (combined with a Pugh-Robinson perturbation)
shows that we may assume that

L' NE" = {0}. (3.26)

For this purpose, we take a small transverse section X’ containing the point ' =
¢(—1,r), denote by y the component of intersection of W"(g) with X’ containing
¥/, and note that the local Poincaré transformation o generated by X’ and X takes y
to the linear space L (in local coordinates of X). The mapping oy = Jyo is C'-close
to o for large N and takes y to Ly for which equality (3.25) is valid. Thus, we get
equality (3.26) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if (y; v,w) €
r + L, then

lv] < Clw|. (3.27)
Fix a > 0 such that N(4a,p) C U. Take a point « = (0;a,0) € E{ and a

positive number T and set ar = (ry; aexp(—AT), 0), where r, is the y-coordinate of
r. Construct a pseudotrajectory as follows:

_)e@r)., t=0;
8) = ot ar), t>0.

Since
|r —ar| = aexp(—AT) — 0

as T — oo, for any d there exists T such that g is a d-pseudotrajectory.

Lemma 3.3.3 Assume that b € (0, a) satisfies the inequality
i a
logK —log C + (A - 1) (log ) —logb) > 0.

Then for any T > 0, reparametrization h, and a point s € r + L such that |[r—s| < b
there exists T € [0, T] such that

WM@%Q—g&Hz;.
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Proof To get a contradiction, assume that
(.9 —g@| < . Te0.T] (3.28)
Let s = (yo: vo, wg) € r + L. Since |r —s| < b,
[vo| < b. (3.29)
By (3.28),
¢(h(z),s) e U, t€][0,T].
Take t = T in (3.28) to show that
[vol exp(A(T)) > .
It follows that
W(T) > 27! (log;l ~log |v0|) . (3.30)
Set 6(t) = | exp(P1h(t))wol; then 8(0) = |wy|. By (3.27),
[vo| < CH(0). (3.31)
By (3.17),
O(T) = K exp(uh(T))60(0). (3.32)
We deduce from (3.29)—(3.32) that
(ZQ(T)
a

log ) > log 0(T) — log |vg exp(AR(T))| >

> log K + log 6(0) — log |vg| + (& — A)A(T) >

= logK —log €+ (% 1) (5 —loguol) =

> log K — log C + (’; ~1) (‘2’ ~logh) > 0.

We get a contradiction with (3.28) for t = T since the norm of the w-coordinate
of ¢p(h(T),s) equals 8(T), while the w-coordinate of g(7) is 0. The lemma is
proved. O
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Let us complete the proof of Theorem 3.3.1 in case (B1). Assume that /, §o > 0
are chosen for X' so that the LE holds.

Take ¢ € (0, min(3o, &0, a/2)) so small that if dist(y,r) < e, then ¢(¢,y)
intersects X' at a point s such that

dist(¢(z,5),r) < &9, |t] <le. (3.33)

Consider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist(¢ (h(r), %), g(1)) < e, teR, (3.34)

for some point x and reparametrization 4 and set y = ¢ (h(0), x).
Then dist(y, r) < e, and there exists a point s = ¢(z,y) € X with || < [s.
If —le <t <0, then

dist(¢ (2, 5), O~ (r,¢)) < &0

by (3.33).
If t < —le, then h(0) + © + t < h(0), and there exists ¥ < 0 such that (') =
h(0) 4+ t + ¢. In this case,

p(1.5) = p(h(0) + T + £,.x) = ¢(h().x),

and

dist (¢(t,5), 0~ (r. ¢)) < dist (p(h().x), p(7. 1)) < &o.

By Lemma 3.3.2, s € r + L. If ¢ is small enough, then dist(s, 7) < b, where b
satisfies the condition of Lemma 3.3.3, whose conclusion contradicts (3.34).

This completes the consideration of case (B1) for dimW*(p) > 2. If
dimW“(p) = 1, then the nontransversality of W“(¢) and W*(p) implies that
L C E°. This case is trivial since any shadowing trajectory passing close to r must
belong to the intersection W*(g) N W*( p), while we can construct a pseudotrajectory
“going away” from p along W*(p). If dimW"(p) = 0, W“(g) and W*(p) cannot
have a point of nontransverse intersection.

Case (B2) Passing from the vector field X to —X, if necessary, we may assume that
p is a closed trajectory. We “linearize” X in a neighborhood of p as described in
the proof of Lemma 3.3.1 so that the local Poincaré transformation of the transverse
section X is a linear mapping generated by a matrix P with the following properties:
With respect to some coordinates in X,

P = diag(Ps, P,,), (3.35)



168 3 C!Interiors of Sets of Systems with Various Shadowing Properties

where |A;| < 1 for the eigenvalues A; of the matrix Py, |A;| > 1 for the eigenvalues
A; of the matrix P, every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such
a “linearization” (and other perturbations of X performed below) so that the
nontransversality of W*(q) and W*(p) is preserved.

Consider an eigenvalue A of P, such that |[A| < |u| for the remaining eigenvalues
uofP,.

We treat separately the following two cases.

Case (B2.1): A € R.
Case (B2.2): A e C\ R.

Case (B2.1) Applying a perturbation, we may assume that
P, = diag(A, Py),

where |A| < |u| for the eigenvalues w of the matrix Py (thus, there exists a one-
dimensional direction of “weakest expansion” in W*(p)). In this case, we apply
precisely the same reasoning as that applied to treat case (B1) (we leave details to
the reader).

Case (B2.2) Applying one more perturbation of X, we may assume that
) .
A=v+in=pexp( ﬁmll),
m

where m; and m are relatively prime natural numbers, and

P, = diag(Q, Py),

where
v —
e=(;7)
n v
with respect to some coordinates (y,v,w) in X, where p = |A| < |u]| for the
eigenvalues u of the matrix P;.
Denote

E ={(.0,0)}, E"={0.v.,w)}, E{={0,v,0)].

Thus, E* is the “stable subspace,” E" is the “unstable subspace,” and EY is the two-
dimensional “unstable subspace of the weakest expansion.”

Geometrically, the Poincaré transformation o : ¥ — X (extended as a linear
mapping to EY) acts on EY as follows: the radius of a point is multiplied by p, while
27my/m is added to the polar angle.
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As in the proof of Lemma 3.3.1, we take a small neighborhood W of the origin
of the transverse section X' so that, for points x € W, the function «(x) (the time of
first return to X') is defined.

We assume that the point r of nontransverse intersection of W*(g) and W*(p)
belongs to the section Y. Similarly to case (Bl), we perturb X so that, in a
neighborhood of r, the component of intersection of W*(g) N X' containing r has the
form of an affine space, » + L.

Let IT* be the projection in X' to E* parallel to E* and let I1}' be the projection to
EY; thus,

" (y,u,v) = (0,u,v) and IT{'(y, u, v) = (0,u,0).
The nontransversality of W“(q) and W*( p) at r means that
L =I"L #E"

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so
that if L” = L’ N EY, then

dimL” < dimE} = 2.

Hence, either dimL” = 1 or dimL” = 0. We consider only the first case, the second
one is trivial.

Denote by A the line L”. Images of A under degrees of o (extended to the whole
plane EY) are m different lines in EY.

In what follows, we refer to an obvious geometric statement (given without a
proof).

Proposition 3.3.1 Consider coordinates (x1, . .. ,xy,) in the Euclidean space R". Let
X = (x1,x2), X" = (x3,...,x,), and let G be the plane of coordinate x'. Let D be a
hyperplane in R" such that

DNG={x, =0}

For any b > 0 there exists ¢ > 0 such that if x = (X', x") € D and x' = (x|, x}), then
either |x,| < blx}| or [x"| = c|x'|.

Take a > 0 such that the 2a-neighborhood of the origin in X' belongs to W. We
may assume that if v = (vy, v;), then the line A is {v, = 0}.

Take b > 0 such that the images of the cone

C=1{v: |vz] <blvi]}

in E} under degrees of o intersect only at the origin (denote these images by
Ci,...,Cn).
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We apply Proposition 3.3.1 to find a number ¢ > 0 such that if (0,v,w) € L/,
then either (0, v,0) € C or

[w| = clvl. (3.36)

Take a point § = (0,v,0) € ¥, where |v| = a, suchthat § ¢ C; U ---U Cy,.

For a natural number N, set By = (ry, P;V(v,0)) € X (we recall that equality
(3.35) holds), where ry is the y-coordinate of r. We naturally identify 8 and By with
points of M and consider the following pseudotrajectory:

o(t,r), t<0;

SO =\ 60 By). 150,

The following statement (similar to Lemma 3.3.2) holds: there exists g9 > 0 such
that if

dist(¢(t,5), O (r,9)) <&, =<0,

for some point s € X, thens € r + L.
Since B does not belong to the closed set C; U - -- U C,,, we may assume that the
disk in EY centered at 8 and having radius &y does not intersect the set C; U - -U C,y..
Define numbers

o1 (V) = a(By). ca(N) = i (N) + (0 (By)). ...
ay(N) = ax—1(N) + (@' (By)).

Take 8y and [ for which LE holds for the neighborhood W (reducing W, if
necessary). Take ¢ < min(gg/1, §p) and assume that there exists the corresponding d
(from the definition of the OrientSPr). Take N so large that g is a d-pseudotrajectory.

Let & be a reparametrization; assume that

lp(h(1).po) —g()| <&, 0=t=<an(N),
for some point pg € X.

Since g (o4 (N)) € X for 0 < k < N by construction, there exist numbers y; such
that

[0 (po) — g(ax(N))| < €9, 0 =<k<=<N.

To complete the proof of Theorem 3.3.1, let us show that for any pg € r + L and
any reparametrization / there exists ¢ € [0, ay (V)] such that

dist(¢ (h(1). po). 8(1)) = .
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Assuming the contrary, we see that
0% (po) — g(ex(N))| <€0. 0=k =N,

where the numbers y; were defined above.
We consider two possible cases.
If

M'py e C
(C is the cone defined before estimate (3.36)), then
o™ (pg) € C; U---UCy,.
By construction, I7{g(an(N)) is 8. Hence,
HT{o™ (po) — Hj'g(an(N))| > éo,

and we get the desired contradiction.
If

IT{po ¢ C

and po = (yo, vo, wp), then (0, vy, wy) € L, and it follows from (3.36)) that |wg| >
c|vol. In this case, decreasing &, if necessary, we apply the reasoning similar to
Lemma 3.3.3.

Thus, we have proved inclusion (3.9), which completes the proof of Theo-
rem 3.3.1. O

Historical Remarks The first result concerning C' interiors of sets of vector fields
having some shadowing properties was obtained by K. Lee and the second author
in [33]. Denote by .4 the set of nonsingular vector fields. It was shown in [33] that
vector fields in the set

Int' (SSPF) N A

are structurally stable.

The class % was introduced by S. B. Tikhomirov in [99].

Theorem 3.3.1 was proved by the first author and S. B. Tikhomirov in [69].

Let us also note that S. B. Tikhomirov proved in [99] the following result: If the
dimension of the manifold does not exceed 3, then

Int' (OrientSPy) = .%.
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3.4 Vector Fields of the Class %

In the previous section, we defined the set # of vector fields. As was mentioned,
vector fields of that class are not structurally stable. This section is devoted to the
following result [69].

Theorem 3.4.1 Int' (OrientSPr) N A # 0.

This theorem states that there exist vector fields in Int! (OrientSP) that belong to
the class 2. The complete proof of Theorem 3.4.1 given in [69] is quite complicated,
and we do not give it here.

Instead, we explain the main idea of the proof. One constructs a vector field X of
the class 2 on the four-dimensional manifold M = S? x S? that has the following
properties (F1)-(F3) (¢ denotes the flow generated by X).

(F1) The nonwandering set of ¢ is the union of four rest points p, g, s, u.
(F2) We can introduce coordinates in the disjoint neighborhoods U, = N(1, p) and
U, = N(1, g) so that

X(x) =J,(x=p), xeU,

and
X(x) =Jyx—q), xeU,
where
-1 000
0 —-200
=10 0121
0 011
and
1000
0-101
=100 221
0-101

Since the eigenvalues of J, are —1, —2, 1 £ 7 and the eigenvalues of J, are

1,2,—1 = i, conditions (1) and (2) of the definition of the class & (see the

previous section) are satisfied for the vector field X and its rest points g and p.

(F3) The point s is an attracting hyperbolic rest point. The point « is a repelling
hyperbolic rest point. The following condition holds:

W)\ {p} C W(s).  W(g) \ {g} C W'(u). (337



3.4 Vector Fields of the Class # 173

The intersection of W*( p) N W“(q) consists of a single trajectory o, and for
any x € «, the condition

dim (T, W* (p) ® TW"(q)) = 3 (3.38)

holds.

These conditions imply that the two-dimensional manifolds W*(p) and W*(q)
intersect along a one-dimensional curve in the four-dimensional manifold M. Thus,
W*(p) and W"(q) are not transverse; hence, X € A.

Geometrically, condition (3.38) means the following. Fix a point 7 € o and let ¥
be a transverse section to the flow ¢ at r (as above, this means that X' is a smooth
open disk in M of codimension 1 containing r that is transverse to the flow ¢ at any
of its points).

Denote by S, and B, the intersections of X' with W*(p) and W*(g), respectively.
Clearly, B, and B, are one-dimensional curves containing the point r. Condition
(3.38) means that the curves f; and §, intersect at r at nonzero angle.

To prove Theorem 3.4.1, it is enough to show that any vector field X’ that is
C'-close to X belongs to OrientSP.

The vector field X satisfies Axiom A’ and the no-cycle condition; hence, X is §2-
stable. Thus, there exists a neighborhood V of X in 2! (M) such that for any field
X’ € V, its nonwandering set consists of four hyperbolic rest points p’, ¢’, s, v’ that
belong to small neighborhoods of p, g, s, u, respectively. We denote by ¢’ the flow
of any X’ € V and by W*(p’), W*(p’), etc. the corresponding stable and unstable
manifolds.

Select compact subsets b, and b, of the curves B, and f,,, respectively, such that
the interiors of b, and b, (in the interior topology) contain the point r.

Let A; and A, be compact subsets of W*(p) and W"(q), respectively, such that
by C Ayand b, C A,.

It follows from the stable manifold theorem that if X’ € V, then the stable
and unstable manifolds W*(p’) and W*(q’) of the hyperbolic rest points p’ and ¢’
contain compact subsets A’ and A/ that converge (in the C' topology) to A, and
A,, respectively, as X’ tends to X.

Hence, the corresponding curves b and b/, tend in the C' topology to b and b,,,
respectively, as X’ tends to X.

We have the following two possibilities for a vector field X’ € V:

. VNb =0
» bl and b, have a point #’ of intersection close to r, and they intersect at ' at
nonzero angle.

Clearly, we can choose X' so that in the first case,
Wi(p') N W(g) = ;

then the vector field X’ is structurally stable, and X’ € OrientSPg.
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Thus, it remains to consider the second case. To simplify notation, we write X,
¢, etc. instead of X', ¢/, etc.

In this case, we make several additional assumptions which help us to explain to
the reader the main geometric ideas used in the proof of Theorem 3.4.1 and to avoid
heavy technical constructions of [69]. Here we follow the reasoning of [100].

First, we assume that the vector field X is linear in neighborhoods U, and U, of
the rest points p and g, respectively (see property (F2) above).

In addition, we assume that, in a sense, the shift at some fixed time along
trajectories in a neighborhood of a compact part of the trajectory a of nontransverse
intersection of W*(p) and W*(g) is a parallel translation (see property (F5) below).

Let us introduce some notation. For a point x € U, denote P1x = x| and P3;x =
(3, x4), where x — p = (x1,x2,x3,x4); for a point x € U,, denote Pix = x; and
Pyx = (x2,x4), where x — g = (x1,X2,X3,x4). For a small m > 0 we denote
Wi (p,m) = W"(p) N N(m,p) etc.

Our additional assumptions are as follows.

(F4) The trajectory o satisfies the following inclusions:
anU, C{p+(0,0,0);re (0,1)} andaeNU, C {g—(£,0,0,0);z € (0, 1)}.
(F5) There exist numbers A € (0, 1) and T, > 0 such that

O (Ta. g+ (=L x2,x3,x2)) = (p+ (1,x2,x3,X4)),  |x2], |x3], |xa| < A.

(F6) ¢(t.x) ¢ U, forx € Uy, t > 0.

In what follows, we need two simple geometric lemmas.
In the first lemma, we consider a planar linear system of differential equations

dx
dt

1-1
J= ,
and denote by ¥ (z, x) its flow on R

If a point x € R? has polar coordinates (r, §) with 6 € [0, 27) and r # 0, we put
arg(x) = 0.

=Jx, x¢€ RZ,

where

Lemma 3.4.1 For any point xo € R?\ 0, angle ® € [0, 2n), and number Ty there
exists t < Ty such that arg(y (¢, x0)) = O.
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The proof of this lemma is straightforward. Of course, a similar statement holds
for the system

dx

=—Jx, xeR?
& X, X
with ¢ < T replaced by ¢ > Ty.

Lemma 3.4.2 Let S| and S, be three-dimensional vector spaces with coordinates
(x1,x2,x3) and (y1,y2,y3), respectively. Let Q : S — S| be a linear map such that

Ofy2 =y3 =0} # {x, = x3 = O}.
Then for any D > 0 there exists R > 0 (depending on Q and D) such that if two sets
Vi C 81 N{x; =0} and V, C Sy N {y; = 0} satisfy the following conditions:

e VI CN(R,0)and V, C N(R,0);
e V) intersects any ray in S N {x; = 0} starting at 0;
eV, intersects any ray in S, N {y; = 0} starting at 0;

then
CiNEGC, #0,
where
Cr ={(x1,x2,x3) © x| <D, (0,x2,x3) € Vii}
and

Cy ={01.y2.y3): il <D, (0,y2,y3) € Va}.

Proof Let us fix a linear map Q and a number D > 0. Consider the lines /| C S
and [, C S, given by the equations x, = x3 = 0 and y, = y3 = 0, respectively.

By our assumption, O, # ;. Let us consider the plane # C S containing /; and
QU. Consider a parallelogram P C m that is symmetric with respect to 0, has sides
parallel to /; and Q/,, and satisfies the relation

P C{lal <Dy OIn| < D). (3.39)

Find a number R > 0 such that the following inclusions hold:
B(R,O)Nmw CP and Q(B(R,0)NQ 'n)cCP. (3.40)
Let z; be a point of intersection of V; and the line = N {x; = 0}. Condition (3.40)

implies that z; € P. Consider the line k| containing z; and parallel to /;. Inclusion
(3.39) implies that k; N P C C;.
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Similarly, let z; be a point of intersection of V, and the line = N {y; = 0}.
Condition (3.40) implies the inclusion Qz, € P. Let k;, be the line containing Oz,
and parallel to Ql,. Inclusion (3.39) implies that 9~ (k, N V) C C.

Since k; } kz, there exists a point z € k; N k,. The inclusions z;, 7, € P imply
that z € P. Hence, z € C; N QC,. Our lemma is proved. O
Now let us prove that the vector field X has the oriented shadowing property.

Fix points y, = a(T},) € U, andy, = a(T,) € U, (note that in this case, T, > T,
by property (F5)) and a number § > 0.

We say that g(¢) is a pseudotrajectory of type Ps(§) if

Ot =Ty, x5), t>Tp;
g(t) = ¢(t_ Tqv-xq)v < Tqa
a(r), t € [Ty, Tpl,

for some points x, € B(8,y,) and x, € B(8,y,).
Fix an ¢ > 0. Let us say that a pseudotrajectory g(¢) can be e-oriented shadowed
if there exists a reparametrization 4 € Rep and a point z such that

dist(¢ (h(1),2),8(1)) <&, telR.

Clearly, the required inclusion X € OrientSPy is a corollary of the following two
statements.

Proposition 3.4.1 Forany$§ > 0,y, € o N U, and y, € a N U, there exists d > 0
such that if g(t) is a d-pseudotrajectory of X, then either g(t) can be e-oriented
shadowed or there exists a pseudotrajectory g*(t) of type Ps(8) with these y, and y,
and a number ty € R such that

dist (g(t),g*(t +10)) <e/2, teR.

Proposition 3.4.2 There exist § > 0, y, € « N Uy, and y, € o N U, such that any
pseudotrajectory of type Ps(8) with these y, and y, can be € /2-oriented shadowed.

Proposition 3.4.1 can be proved by a standard reasoning. Precisely the same
statement was proved in [69] for a slightly different vector field (the only difference
is in the structure of the matrices J, and J,;). The proof can be literally repeated in
our case.

The main idea of the proof is the following. Outside a neighborhood of the
curve ¢, our vector field X coincides with a structurally stable one. Hence,
pseudotrajectories that do not intersect a fixed neighborhood of « can be shadowed.

If g(r) intersects a small neighborhood of «, then (after a proper shift of time),
the points g(#) with ¢ > T, also belong to a set where X coincides with a structurally
stable vector field; thus, for such 7, g(¢) can be shadowed by ¢ (t — T, x,,). Similarly,
the pseudotrajectory g(#) can be shadowed by ¢ (¢t — T, x,). For t € (T,,T},), the
points g(#) are close to . We leave the rest of the proof to the reader.
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Proof (of Proposition 3.4.2) Since the rest points s and « are a hyperbolic attractor
and a hyperbolic repeller, we may assume, without loss of generality, that

0t (N(g/2,5),¢) C N(e,s) and O (N(g/2,u),¢) C N(e, u),

where O (A, ¢) and O™ (A, ¢) are the positive and negative semitrajectories of a set
A in the flow ¢, respectively.

Take m € (0,¢/8). We fix points y, = a(T,) € N(m/2,p) N« and y, =
a(T;) € Nim/2,q) Na. Put T = T, — T,. Find a number § > 0 such that if
g(?) is a pseudotrajectory of type Ps(§) (with y, and y, fixed above), #p € R, and
Xo € N(28, g(l‘o)), then

dist(¢p(t — 19, x0), 8(1)) < &/2, |t—1to| <T+ 1. (3.41)
Consider a number 7 > 0 such that if x € W*(p) \ N(m/2,p), then ¢(7,x) €

N(e/8,s). Take e, € (0,m/4) such that if two points z;, 2o € M satisfy the inequality
dist(z1,z2) < &1, then

dist(¢(1,21). p(t.22)) < &/8, || <.

In this case, for any y € N(gy, x), the following inequalities hold:
dist(¢p (¢, x), p(t,y)) <e/4, t>0. (3.42)

Decreasing ¢, we may assume that if ' € W*(q) \ N(m/2,q) and y € N(g1,x),
then

dist(p(t,x'), ¢ (t,y)) < e/4, t=<0.

Let g() be a pseudotrajectory of type Ps(8), where y,, y;, and § satisfy the above-
formulated conditions.
Let us consider several possible cases. t

Case (P1): x, ¢ W(p) and x, ¢ W"(q). Let
T'=inf{ft e R: ¢(1,x,) ¢ N(p,3m/4)}.

If § is small enough, then dist(¢ (1", x,), W*(p)) < &1. In this case, there exists a
point z, € W} (p,m) \ N(m/2, p) such that

dist(¢(T", x,). 2p) < 1. (3.43)

Applying a similar reasoning in a neighborhood of ¢ (and reducing §, if
necessary), we find a point z, € W; (g.m) \ N(m/2,q) and a number 7”7 < 0
such that dist(¢ (T, x,), z4) < €1.
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Consider the hyperplanes S, := {x; = P1y,} and S, := {x; = P1y,}. From our
assumptions on the linearity of X in neighborhoods of p and ¢ and from assumption
(F5) it follows that the Poincaré map defined by Q(x) = ¢ (T, x) is a linear map

Q:S; — S, such that Q({(x2, x4) = 0}) # {(x3,x4) = 0}.
Apply Lemma 3.4.2 to the hyperplanes S, and S, the map Q, and the number
D = ¢/8 and find the corresponding R > 0. Note that there exists a Tz > 0 such
that
|¢(l, P34Xp)| <R, t < —Tg, and |¢(l, P24xq)| <R, t > Tg.
Consider the sets

VT ={p(t.Paxy) 1 t < —Tg} and V" = {¢(t. Pouxy) = t > Tg}.

Due to Lemma 3.4.1, the sets VE satisfy the assumptions of Lemma 3.4.2; hence,
the sets

C ={xeS,: PuxeV  |Px| <D}
and
Ct={xeS;: PuxeV*t |Px| <D}

are such that C~ N QC™* # 0.
Let us consider a point

xo€C NQOC* (3.44)

and numbers #, < —Tk and t;, > T such that P34xo = ¢ (t,, P34x,) and PO 'xg =
¢ (t,, P24x,). The following inclusions hold:

¢(—To—Tr—T",x0) € NQe1.2.), ¢ (—Tp,x0) € N(D,y,).
#(0,x0) € N(D,y,), ¢(Tgr+ T, x0) € NQéey1,2p).
Inequalities (3.41) imply that if § is small enough, then
dist(¢ (13 + 1,x0),8(T, + 1)) <¢/2, te[-T,0]. (3.45)
Define a reparametrization h(t) as follows:

W, +T'+1)=-Tog—Tr—T"+1,1<0;

W, +T +0) =T +T +1, t>0;

T, +1) =t te[-T,0];

h(r) increases, tel|l,.T,+TNU [T, +T",T,.

h(t) =
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If 1 > T, + T’, then inequality (3.42) implies that

dist(p (h(r). x0). ¢ (¢ — (T, +T').5,)) < /4
and
dist( (1 — T.3). (1 — (T, + T').3) < e/4.
Hence, if 1 > T, + 77, then

dist(¢ (h(t), x0), g(1)) < £/2. (3.46)

Fort € [T),, T, + T'], the inclusions ¢ (h(r), xo), g(t) € N(m, p) hold, and inequality
(3.46) holds for these ¢ as well.

A similar reasoning shows that inequality (3.46) holds for ¢t < T,,. If t € [T, T},],
then inequality (3.46) follows from (3.45). This completes the proof in case (P1).

Case (P2): x, € W¥(p) and x, ¢ W"(q). In this case, the proof uses the same
reasoning as in case (P1). The only difference is that instead of (3.44) we
construct a point xo € N(D,y,) N W} _(p, m) such that

¢ (=T —T",x0) € N(2¢1,z,) and ¢ (=T, x0) € N(¢/8,y,).

The construction is straightforward and uses Lemma 3.4.1.

Case (P3): x, ¢ W¥(p) and x, € W"(g). This case is similar to case (P2).

Case (P4): x, € W*(p) and x, € W¥(q). In this case, we take « as the shadowing
trajectory; the reparametrization is constructed similarly to case (P1).

Thus, we have shown that X € OrientSPr. O

Historical Remarks Theorem 3.4.1 was published by the first author and S. B.
Tikhomirov in [69]. As was said at the beginning of Chap. 3, the complete proof
given in this paper is technically very complicated, and we only describe a “model”
published by S. B. Tikhomirov in the paper [100] devoted to the Komuro conjecture
[29].



Chapter 4
Chain Transitive Sets and Shadowing

In this chapter, we study relations between the shadowing property of diffeomor-
phisms on their chain transitive sets and the hyperbolicity of such sets.
We prove the following two main results:

» Let A be a closed invariant set of f € Diff! (M). Then f| 4 is chain transitive and
C'-stably shadowing in a neighborhood of A if and only if A is a hyperbolic
basic set (Theorem 4.2.1);

+ there is a residual set #Z C Diff!(M) such that if f € % and A is a locally
maximal chain transitive set of f, then A is hyperbolic if and only if f|,4 is
shadowing (Theorem 4.3.1).

The structure of the chapter is as follows.
In Sect. 4.1, we discuss several examples of chain transitive sets. Section 4.2 is
devoted to the proof of Theorem 4.2.1. In Sect. 4.3, we prove Theorem 4.3.1.

4.1 Examples of Chain Transitive Sets (Homoclinic Classes)

Let M be a closed smooth manifold and let, as above, Diff! (M) be the space of
diffeomorphisms of M with the C! topology.

Consider a diffeomorphism f € Diff! (M) and its invariant set A. Denote by fia
the restriction of f to A.

Let A C M be a closed f-invariant set. We say that f|4 has the standard
shadowing property if for any ¢ > O there is d > 0 such that for any
d-pseudotrajectory {x,-}fza C Aof f, where —oco < a < b < oo, there is a point
y € M such that

dist (f'(y).x;) <& a<i<b-—1.

© Springer International Publishing AG 2017 181
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
in Mathematics 2193, DOI 10.1007/978-3-319-65184-2_4



182 4 Chain Transitive Sets and Shadowing

In what follows, in this chapter we write just “shadowing property” instead of
“standard shadowing property.”

Notice that we consider d-pseudotrajectories of f “contained in A,” while the
shadowing points y € M are not necessarily contained in A.

Let

Z(f) ={xeM:x <+~ x}

be the chain recurrent set of f (see Chap. 1).
Then

Per(f) C 22(f) € Z(f).

It is easy to see that if f has the shadowing property (on M), then £2(f) = Z(f).
The relation <w> induces on Z(f) an equivalence relation, whose equivalence
classes are called chain recurrence classes of f.
Recall that a closed f-invariant set A is called chain transitive if

X WS>y

for any x,y € A. It is known that every chain recurrence class is chain transitive
(see Proposition 1.1.1).

Let p, g € Per(f) be hyperbolic saddle periodic points of f.

We say that p and g are homoclinically related and write p ~ ¢ if either W*(p)
and W*(g) or W*(p) and W*(g) have points of transverse intersection.

Let Hy( p) be the homoclinic class of p, i.e., the closure of the set of all ¢ € Per(f)
such that p ~ q.

Note that, by the Smale’s transverse homoclinic point theorem, Hy(p) coincides
with the closure of the set of transverse homoclinic points x € W*(p) N W*(p).

The following version of Smale’s theorem is stated in [96].

Theorem 4.1.1 Let p be a hyperbolic periodic point of the diffeomorphism f and
let x be a transverse homoclinic point of p. Then every neighborhood of x contains
infinitely many periodic points that are homoclinically related to p.

If a homoclinic class is not hyperbolic, it may contain periodic points having
different indices, i.e., there may exist periodic points ¢; and g, in the class such that
dim E*(¢1) # dim E*(g2).

In fact, there are examples of diffeomorphisms with homoclinic classes contain-
ing hyperbolic periodic points with different indices and such that this phenomenon
is preserved under C'-small perturbations (see, for example, [11]).

Let, as above, p be a hyperbolic periodic point of the diffeomorphism f and set

Hy(O(p.f)) = Hy(p) U--- U H(f7" ! (p))

(recall that 77 (p) is the minimal period of a periodic point p).
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Denote by Cy(p) the chain recurrence class containing p. Then Hy(O(p,f)) C
C¢(p), but, in general, these sets do not coincide.

Obviously, Hr(O(p,[)) is a closed f-invariant set, and it is known that f |, o(p. )
is transitive (see [48]).

4.1.1 Chain Transitive Sets Without Periodic Points

Note that chain transitive sets do not necessarily contain periodic points.

It is well known that every irrational rotation map on the unit circle S' is transitive
but does not have periodic points.

More generally, there is a translation of the n-dimensional torus T" with the same
property.

In the case n = 2, let

L:T> - T?
be a translation defined by
(x.y) > (x+a,y+D),

where (a,b) € T? satisfy the property that va + wb ¢ Z for any pair (v,w) €
7? (for instance, if a = +/2/2 and b = +/3/2, then va + wh ¢ Z for any pair
(v, w) € Z?).

Then it follows from [43, Proposition 2.7 and Theorem 3.2] that L is minimal
(and hence, it is transitive), but L does not have periodic points. It is not hard to
show that L does not have the shadowing property.

4.1.2 Hpyperbolic Horseshoes

Smale’s hyperbolic horseshoe Ay on the two-dimensional disk containing a saddle
fixed point p is a typical example of a chain transitive set such that A, =
Gr(p).

More precisely, let D> C R? be a two-dimensional disk and let f be Smale’s
horseshoe map on D? with a hyperbolic saddle fixed point p (see Fig. 4.1(a)). Denote
by A the hyperbolic horseshoe (containing p) and by C;(p) the chain recurrence
class containing p.

Then Ay = Hy(p) = Cy(p). Since Ay is hyperbolic, f|4, has the shadowing

property.
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Fig. 4.1 Horseshoes

4.1.3 Horseshoe with a Homoclinic Tangency

Let {g;}.cr be the bifurcating one-parameter family of diffeomorphisms on D?
derived from the horseshoe Ay and exhibiting a homoclinic tangency go of go
associated to the fixed point p (see [54, Chap. 5]).

Then Ay = Hg (p) and Cg(p) = A U O(qo, o) (see Fig.4.1(b)). Thus,
homoclinic classes are not necessarily chain recurrence classes.

We can show that g0|cg0( p) does not have the shadowing property. To prove this,
for the sake of simplicity, denote go and gy by g and g, respectively.
Let W¥ (p) be alocal unstable manifold of p and fix k > 0 such that g7*(g) is in
the interior of g(W;. .(p)) \ W}.(p).

For simplicity, we assume that k = 1 (see Fig. 4.2(a)).

Take ¢ > 0 and denote by CY(g) the connected component of gZ(W (p)) N
N(e, g) containing g.

It is easy to see that there exists €; > 0 such that

C (q) = &*(Wjr.(p)) N N(e1.q).

Further, we may assume that if |g7"(¢) — g "(y)| < & for all n > 0, then
g72(y) € Wi ().

To get a contradiction, assume that g|c,(,) has the shadowing property and let
d = d(€1) > 0 be the corresponding number given by the shadowing property.

Take / > 0 such that |g'(¢) — g7'(¢)| < d. Then

{...87%@.87'@.9.8q).....8 7 (@.87(@). 8 (q)....} CCy(p)
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¢
gl(Z) '/
(a) (b)

Fig. 4.2 A pseudotrajectory which cannot be shadowable

is a d-pseudotrajectory of g composed of two segments of true g orbits (see
Fig.4.2(a)).

Since g|c,(p) has the shadowing property, there is a point z close to ¢ that &;-
shadows the above pseudotrajectory. Thus,

’

max {[7(q) = ()| [¢7+"(@) — ¢ @[} < e forall n= 0. (*)
From here it follows that g72(z) € W (p), so that z € C¢, (q) by the choice of
£1.
If z = g, then the forward orbit of g(z) cannot &;-shadow the forward orbit of
g7 (g) because the w-limit set of

0(g'(2).8) = 0(g'(9). )

is p. If z # g, then the forward orbits of g/(z) and g~'(¢) move in opposite directions
since p is hyperbolic (see Fig.4.2(b)).This contradicts (), and the assertion is
proved (for more information, see [90, Sec. 2, 2.2]).

4.1.4 Critical Saddle-Node Horseshoe

Let ¢ : D*> — D? be the saddle-node horseshoe map constructed in [51, Sec. 2, 2.2]
and possessing a saddle-node fixed point p (see Fig. 4.3).

It is stated in [51] that the saddle-node horseshoe A, is conjugate to Smale’s
horseshoe Ay. Note that there is a hyperbolic saddle fixed point g in A, having
negative stable and unstable eigenvalues.

We consider here the chain recurrence class C,(g) containing g. It is easy to see
that

Ay (= H(,(?;)) ; Cy(q)-
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Fig. 4.3 Saddle-node .
horseshoe o (r) w u(a)
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Indeed, if we take r € W*(p) as in Fig. 4.3, then r € C,(g) \ A, since e (r) —>
pasn — oo.

We show that, due to the existence of a saddle-node fixed point p, ¢|c, g does
not have the shadowing property.

To show this, let r € W“(p) be as above. To get a contradiction, assume that
¢lc, (g has the shadowing property. Fix & > 0 small enough and denote by C{/(r) the
connected component of W*( p) containing r (defined as in the previous example in
Sect.4.1.2, see Fig. 4.3). Let d = d(¢) > 0 be the number corresponding to ¢ due to
the shadowing property of ¢|¢, ). Take [ > 0 such that |9~/ (r) — ¢'(r)| < d. Then
the union of two segments of true @-orbits,

027 M @0 T ), T ), T () C Cl(@),

is a d-pseudotrajectory of ¢.

Then the same reasoning as in Sect. 4.1.2 shows that there is point z € Ci(r)
(near r) that e-shadows the above pseudotrajectory.

Note that ¢"(z) — p as n — oo since p is a saddle-node point. Thus, the forward
@-orbit of z cannot e-shadow the forward g-orbit of ¢ /(). This is the required
contradiction (for more information, see [90, Sec. 2, 2.3]).

Historical Remarks Homoclinic orbits and the associated complexity were dis-
covered by H. Poincaré around 1890 (see [75]).

Seventy years after Poincaré, S. Smale constructed in [96, 97] a very simple geo-
metric example (horseshoe) which helped to completely analyze all the complexity
found before.

This was the beginning of the geometric theory which we now know as
hyperbolic dynamics. The history and many examples involving homoclinic orbits
are well described in [54].
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4.2 C'-Stably Shadowing Chain Transitive Sets

In the previous section, we have defined the (standard) shadowing property of a
diffeomorphism f € Diff! (M) on a closed f-invariant set A C M.

Clearly, this property does not depend on the metric used and is preserved under
topological conjugacy. In addition, f4 has the shadowing property if and only if Iril
has the shadowing property for every n € Z\{0}.

Let U be a compact subset of M and put

AyU) = (V).

n€zZ

We say that fj4, or simply A, is locally maximal (in U) if there is a compact
neighborhood U of A such that A = Ay(U). Such a set U is called an isolating
block. Note that if A is locally maximal in U, then A = Ay(U) = Ay (V) for any
compact neighborhood V C U of A.

Denote by Int!(SSPp(U)) the C! interior of the set of diffeomorphisms f €
Diff' (f) such that f| Ap(v) 18 shadowing. Clearly, if A = M, then

Int' (SSP,(M)) = Int' (SSPp) .

Thus, f € Int'(SSPy(U)) if and only if there is a C' neighborhood % (f) of f
such that for any g € % (f), gla,w) is shadowing. The set

A,(U) = (&' (W)

n€Z

is called the continuation of A;(U). We say that f| 4 is C!-stably shadowing (in U)
if A is locally maximal in U and f € Int! (SSPp(U)).

It is well known that if A is hyperbolic, then f|, is shadowing (see Theo-
rem 1.4.2). We say that A is a basic set if A is locally maximal and f] 4 is transitive.
It is well known that periodic points are dense in hyperbolic basic sets (see [84]).

In this section, we prove the following main result.

Theorem 4.2.1 Let A be a closed invariant set of f € Diff' (M). Then f| 5 is chain
transitive and C'-stably shadowing in U if and only if A is a hyperbolic basic set.

Proof The proof of the “if” statement in Theorem 4.2.1 is easy. Indeed, if A is
a hyperbolic basic set of f, then f|, is transitive (thus, chain transitive) and locally
maximal by definition. Let U be a compact neighborhood of A in which A is locally
maximal. Thenf € Int! (SSPy(U)) by the local stability of hyperbolic basic sets [84]
since f|a,w) = f|a is shadowing.

Let p € Per(f) be a hyperbolic saddle periodic point of f with minimal period
m(p) > 0. Recall that Hy(p) is the homoclinic class of p, i.e., the closure of the set



188 4 Chain Transitive Sets and Shadowing

of all transverse intersection points x € W*(p) N W*(p). Set

Hy(O(p.f)) = Hy(p) U---UH; (f"P7'(p)).

Obviously, Hr(O(p,f)) is a closed f-invariant set.

Let €; be a chain recurrence class of f (recall that ¢} is chain transitive) and
assume that flg, is C !_stably shadowing. Then, by Theorem 4.2.1, there is a saddle
p € % N Per(f) since %; is a hyperbolic basic set. From this it follows that 6; C
Hr(O(p.f)) (see Lemma 4.2.7). On the other hand, it is not difficult to show that
every hyperbolic chain recurrence class is locally maximal (Lemma 4.2.8). Thus,
we can obtain the next result.

Corollary 4.2.1 Let 6y be A chain recurrence class of f. Then f|g; is C'-stably
shadowing if and only if there is a hyperbolic saddle p € €; N Per(f) such that
¢r = Hy(O(p.f)), and ¢; is hyperbolic.

Now we turn to the proof of the “only if”” statement in Theorem 4.2.1.

4.2.1 Preliminaries

Let f € Diff'(M). Throughout this subsection, let A be a (nontrivial) closed
f-invariant set.

Recall that f|, is transitive if there is a point x € A such that the omega-limit
set wy(x) of x coincides with A. Obviously, the notion of chain transitivity is a strict
generalization of that of transitivity. The proof of the following lemma is simple and
left to the reader.

Lemma 4.2.1 Assume that f| 4 is locally maximal in U and shadowing. Then

— for any pseudotrajectory of f in A, the shadowing point can be taken from A;
— Iff|a is chain transitive, then f| 4 is transitive.

The proof of the following lemma is almost the same as that of Lemma 3.1.2.

Lemma 4.2.2 Assume that f|, is C'-stably shadowing in U. Then there exists a
neighborhood % (f) such that for any g € % (f), every point q € Ag(U) N Per(g)
is hyperbolic.
Before describing our technical results, we have to prepare some notation.
Recall (see Definition 1.3.12) that A admits a dominated splitting if the tangent
bundle 74 M has a continuous Df-invariant splitting E @ F and there exist constants
C > 0and0 < A < 1 such that

1D e || - | BF " [r e | < CA?

forallx € Aandn > 0.
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If A admits a dominated splitting TyM = E & F such that dim E(x) is constant
for x € A, then there exists a C! neighborhood % (f) and a compact neighborhood
W of A such that for any g € % (f), A,(W) admits a dominated splitting (for g)

Ta, M = E(g) ® F(g)

with dimE(g) = dimE (see [11, B.1]).

Let 0 <j < dim M. Denote by P;(f|4) the set of periodic points g € A N Per(f)
with dim E*(q) = j.

Note that both Py(f|4) and Pagimp(f|a) are (single) periodic orbits if f|, is
transitive.

In the next two propositions, assume that f is C!-stably shadowing in U and let
% (f) be given by Lemma 4.2.2.

Then there is a C' neighborhood ¥ (f) of f such that the family of periodic
sequences of linear isomorphisms of tangent spaces of M generated by the differ-
entials Dg, where g € ¥'(f), along hyperbolic periodic points g € A4(U) N Per(g)
is uniformly hyperbolic (see the paragraph located before Proposition 3.2.1). Note
that here we consider periodic orbits of g contained in U.

Since in the proof of [42, Proposition II.1], perturbations are done in a small
neighborhood of A, we can readily obtain the following proposition which is a semi-
local variant of Proposition 3.2.1.

Proposition 4.2.1 Under the above notation and assumptions, there are constants
C>0m>0,and0 < A < 1 such that:

(a) ifg € V(f), q € Ag(U) N P(g), and 7w(q) = m, then

k=1 k—1
[T1Pg" s mapio | < CA* and [T De™"lpve-mianio | < CA%,
i=0 i=0

where k = [(g)/m)];
(b) ifg e V(f)and 0 < j < dimM, then P;(g|a,)) admits a dominated splitting

TPj(glAg(U))M = E(g) @ F(g) withdimE(g) =j, i.e,

|Dg" e | - [P lFenene || < A

for all x € Pi(g|a,w)) (note that E(x)(g) = E°(x)(g) and F(x)(g) = E"(x)(g)
if x € Pi(gla,w)-

We construct the dominated splitting on the chain transitive set A by employing
a stronger variant of Pugh’s Closing Lemma proved in [42] under the condition that
fa is C!-stably shadowing.

The above proposition will play an essential part in that proof.
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Since it is still unknown at this stage whether there is a periodic point in A, we
cannot apply the same reasoning as in Chap. 3 to prove the hyperbolicity of A (even
if there exists a dominated splitting on A).

It is easy to see that the above proposition can be restated in the following form,
which will be used in the proof of Theorem 4.2.1.

Proposition 4.2.2 Under the notation and assumptions of Proposition 4.2.1, there
are constants m > 0,0 < A < 1, and L > 0 such that:

(a) ifg € V(f) q € Ag(U) N P(g), and m(q) = L, then

w(g)—1 w(g)—1

1_[ ||ng|Ex(gi’”(é1))(g)|| <A™ and 1_[ ||Dg_m|Eu(g*im(q))(g)|| < AT@;
i=0 i=0

(b) ifg € V(f)and 0 < j < dimM, then P;(g|a,w)) admits a dominated splitting

TP_,-(gIAg(U))M = E(g) @ F(g) with dim E(g) = j such that

— 2
1Dg" el - 1D [Fgnng) Il < A

forany x € Pj(g|Ag(U)) (note that E(x)(g) = E*(x)(g) and F(x)(g) = E"(x)(g)
ifx € Pi(gla,w))-

4.2.2 Construction of the Dominated Splitting
and Its Extension

Let f] 4 be chain transitive and C!-stably shadowing. In this subsection, we apply
Pugh’s Closing Lemma to construct a dominated splitting on A and then extend it
continuously to a neighborhood of A.

First of all, let us state some lemmas which we need.

Denote by B.(f, x) the e-tubular neighborhood of the f-orbit of x:

B:(f,x) = {y € M : dist(f"(x),y) < e forsome n € Z} .

The next lemma is a stronger variant of Pugh’s Closing Lemma proved by Mafié
(see [42, Lemma 1.2]).

Lemma 4.2.3 Let f € Diff' (M), x € M, ¢ > 0, and % (f) be given.

Then there are r > 0 and p > 1 such that if y € N(r,x) with 0 < r < r and
f*(y) € N(r,x) for some n > 0, then there exist 0 < ny < n, <nandg € % (f)
such that

— J"(y) € N(pr,x) and f™(y) € N(pr,x);
= & () =f"(y) € Per(g);
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— g=f onM\B.(f.x);
— dist(g'(/ (). S (" () < & forall 0<i<ny—n.

In the following two lemmas, we denote by % (f) the e-ball centered at f in
Diff! (M) with respect to the C' metric on Diff! (M) and by disty the Hausdorff
metric on the space of nonempty closed subsets of M.

Lemma 4.2.4 Assume that f|, is transitive. Then for any n > 0 there are g, €
W n(f) and p, € Per(g,) with w(p,) > n such that

disty (O(pn, gn), A) < 1/n.

Proof Recall that A is a nontrivial set, i.e., A is not a periodic orbit. Since f|4 is
transitive, there is a point x € A such that wy(x) = A (of course, x ¢ Per(f)).

Thus, for any n > 0 there is m, > n such that for any z € A, there is a number
0 <j < m, for which dist(z, f/(x)) < 1/3n.

Choose a small enough &, > 0 such that the inequality dist(x,y) < &, (where
y € A) implies that dist (f'(x), f*(y)) < 1/3nforall 1 <i < m,.

Let r, > 0 and p, > 1 be the numbers given by Lemma 4.2.3 for the above x,
1/3n, and 2 /3, (f).

Take 0 < 7,, < r,, such that p,7,, < &,.

Then, since wy(x) = A, there exist w € O(x, f) and [, > 0 such that

w € N(7y, x) and fi(w) € N(Fy, x).

By Lemma 4.2.3, there exist 0 < 1,11 < lﬁ <, and g, € % 3.(f) such that

fln(w) € N(gn,x) and f%(w) € N(en, x);

= & (W) = fl(w) € Per(g,);

8n :f on M \ Bl/Sn(fva"(W));

— dist(FI(F ). g (S (W) < 1/3n forall 0<i<P—I.

Since x ¢ Per(f), we may assume that 2 — I} > m,,.
Therefore, if we put v, = flll (w)e Aandp, = fl5 (w) € Per(g,), then

dist(z, g (pn)) < dist(z. f/(x)) + dist(f (x). £ (va)) + dist(f (va). &1 (Pa)) < ,11

for the above z € A. Hence, O(py, g,) N N(1/n,z) # 0.
Obviously,

O(pn.gn) CN(1/3n, A) C N(1/n, A)
since f(v,) € A for 0 < i < 7(p,), where n(p,) = > —I..

It is easy to see that p, can be chosen so that ( p,) is arbitrarily large as n — 00;
thus, we may assume that z(p,) > n. O
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In what follows, we assume in this subsection that f| 4 is chain transitive and f| 4
is C!-stably shadowing in U. Let us construct a dominated splitting on A by using
Proposition 4.2.2.

Lemma 4.2.5 (Existence of a Dominated Splitting) Under the above notation
and assumptions, there exist constants m > 0 and 0 < A < 1 and a Df-invariant
splitting TAM = E @ F such that

|Df" e | - |1 D" lr e | < A

forany x € A.

Proof Since f|, is C!-stably shadowing in U and transitive, item (a) of Proposi-
tion 4.2.2 and Lemma 4.2.4 imply that there are sequences of diffeomorphisms g,
and hyperbolic periodic points p, € Per(g,) such that g, — f with respect to the C!
topology as n — oo and O(p,, g,) — A as n — oo with respect to the Hausdorff
metric.

We may assume that the indices of {p,} are constant, say, 0 < jo < dim M.

Observe that by item (b) of Proposition 4.2.2, there are constants m > 0 and
0 < A < 1 such that if n is sufficiently large, then

<A

1D |Es@yem || - [ Pgn ™" v (e a1y e

for any g € O(py, gn).

Let Ap C A be a subset such that for any x € A, the f-orbit of x, O(x,f),
intersects A at exactly one point.

For any x € Ay we can choose a sequence ¢, € O(py, g,) such that g, — x as
n — oo.

Set

E) = lim E'(gn)(g) and F(x) = Tim E"(g,)(g.)

by taking a subsequence of {¢,}, if necessary.
For any x € A\ Ag such that fi(x) € A, for some i € Z, we put

E(x) =Df " (f'(®)E(f'(x)) and F(x) =Df ™" (f'(0) F (f'()).

Then, following the reasoning of the proof of [41, Proposition 1.3], we can show
that the subbundles E and F on A are well-defined (i.e., they do not depend on the
choices of {g,} and {g,}) and that E(x) N F(x) = {0} for any x € A.

Furthermore, it follows from our construction that

IDf" e | - 1DF " [p(mep |l = A

for any x € A. Thus, TyM = E @ F is a dominated splitting for f with dim E = j.
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Note that jj is neither O nor dim M since f| 4 is transitive.

Indeed, if jo = dimM, then f|, is a contraction, so that there are constants
8 > 0and 0 < p < 1 such that if x,y € A and dist(x,y) < do, then
dist(f(x),f(y)) < udist(x,y). Since f| 4 is transitive, we can find x € A and [ > 0
such that f'(N(do. x)) C N(dy, x).

Thus, there exists a sink p € By, (x) NPer(f) N A (recall that A is locally maximal
in U).

This is a contradiction since f|, is transitive; thus, jo 7 dimM (and a similar
reasoning for f~!| 4 shows that jy # 0). O

Hence, by Lemma 4.2.5, A admits a dominated splitting with respect to /. In
the rest of this section, we prepare one technical lemma dealing with extension of
a dominated splitting on small neighborhoods of both A and f in M and Diff' (M),
respectively. To simplify notation, denote f™ by f.

It is known that, if a neighborhood U of A is small enough, then there exists a
constant A > 0 with A < A < 1 and a continuous splitting TyM = E @ F with
dimE = dimE = Jo such that
- E|A = Eandﬁ|A =F;

DF(WE(x) = E(f(v) ifx € UNf'(U);

- Df ' WE@) = F(F () ifx € UNF(U);

Hka| e H DF i i) H < Jkifx e N__,7'(U) for k > 0.

Using this continuous splitting, we can prove the following lemma applying the

reasoning developed in [27]. This lemma will be used in the proof of Theorem 4.2.1
(more precisely, in the proof of Proposition 4.2.4).

Lemma 4.2.6 (Extension of the Dominated Splitting) Under the above notation
and assumptions, for any ¢ > 0 there is d > 0 such that N(d, A) C U and for any
8 € U(f) there is a Dg-invariant continuous splitting

Tawva.ayM = E(g) & F(g)

with dim E(g) = jo and the following properties:

- Hnglé(")(g) H . HDg_klﬁ(gk(x))(g) H < ikfor anyx € Ag(N(d, A)) and k > 0;
— ifx € A (N(d, A)), y € A, and dist(x,y) < d, then

108 11814l = 10 1Dz | < &
and

log [1Dg ™" 0l = 10g 1D ey ll| <

OZ I8 i) (e) og [Df " |r(y &.

Here Ag(N(d, A)) = (,ez 8" (N(d, A)).
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Finally, let us remark that it is easy to prove that if, under the assumptions of the
above lemma, a point p € A,(N(d, A)) NPer(g) is hyperbolic with dim E*(p)(g) =

Jo, then Ej(g) = E(p)(g) and E“(p)(g) = ﬁ(p)(g) by the “uniqueness” of the
dominated splitting (see [11, B.1]).

4.2.3 Proof of Theorem 4.2.1

In this section, we prove Theorem 4.2.1 using the idea of the proof of Theorem 3.2.1.
The following proposition was already proved in Chap. 3 (see Proposition 3.2.3).

Proposition 4.2.3 Let f|p and 0 < A < 1 be given; assume that there is a
continuous Df -invariant splitting TAM = E @ F such that

| DAz | - [ rgan] < 22
for any x € A. Assume that there is a point y € A such that

1 n—1
logA < logA; = limsup ; Zlog ||Df|E(fi(y)) || <0
n—>oo i=0
and

n—1

1
liminf > log | Df ey | < logAr.
i=0

Then for any A, and A3 such that
A<l <A <A<l

and for any neighborhood U of A there is a hyperbolic periodic point q of index
dim E such that O(q,f) C U

m(g)—1

k—1

k w(q)—k+1
[1 HDf l5(r1) H =43, and HDf (@) H >4
i=0 i=k—1

forallk =1,2,...,7(q). Furthermore, q can be chosen so that 7w (q) is arbitrarily
large.

The main auxiliary statement which we prove in this section is the following
proposition. The proof slightly modifies the reasoning used in the proof of the main
result of [109] and Chap. 3 (the main modification in our proof is the construction of
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an extra pseudotrajectory reflecting the assumed nonhyperbolicity, see the paragraph
located before Step I of the proof).

Finally, the “only if” part of Theorem 4.2.1 will be obtained by showing that f
has properties (P.1)—(P.5) of Proposition 4.2.4 if f| 4 is chain transitive and C'-stably
shadowing.

Proposition 4.2.4 Let |5 be locally maximal in U and let 0 < A < 1 and L > 1
be given. Assume that f| o has the following properties (P.1)—(P.5):

(P.1) There is a Df-invariant splitting TAM = E & F such that if x € A, then

IDf e || - |12 e | < A%

(P.2) There is a neighborhood % (f) such that if g € U (f), q € Ag(U) N Per(g),
and w(q) > L, then

(g)—1 (g)—1

—1
[T 1Dl < 2P and TT 1D lewerianeoll < A7
i=0 i=0

(P.3) Forany e > 0 with N(e, A) C U and Z:(f) C % (f) there exist g € UA(f)
and p € Per(g) such that disty(O(p,g), A) < e. Furthermore, p can be
chosen so that 7w (p) is arbitrarily large.

(P4) Foranye > 0 thereisd > O with N(d, A) C U and () C % (f) such that
ifg e %(f), pe AyN(d, A)) N Per(g), y € A, and dist(p,y) < d, then

)log | Dglespyco | —log | DF 1y | ) <¢
and
‘10g 1Dg™ x| —1og [DF 1y | } <&

(P5) f|a is shadowing.
Then A is hyperbolic.

Proof Let f|4 be locally maximal in U and let 0 < A < 1 and L > 0 be given.
Assume that f| 4 has properties (P.1)-(P.5) and let TyM = E & F be a Df-invariant
splitting as in (P.1) (recall that a dominated splitting is continuous).

Assuming that E is not contracting, we show first that forany A < n < ' < 1
there is a point z € A such that

o 1 n—1 . 1 n—1
11nn_1>101.3f i, ;log ||Df|E(fj(Z)) H <logn < hrlgigp i Zozlog ||Df|E(f,-(Z)) || <logn'.

After that, we get a contradiction applying Proposition 4.2.3.
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It is known that if there exists N > 0 such that for any x € A there is a number
0 < n(x) < N for which ||Df"™ g, | < 1, then E is contracting.
Since E is not contracting, it is easy to see that there is a point y € A such that

n—1

[ T2l = 1 forall n>1.
=0

Let % (f) be as in property (P.2); choose ¢ > 0 small enough so that N(e, A) C U,
U.(f) C % (f), and the following conditions are satisfied:

(i) ifx,y € A and dist(x, y) < €, then

1 1
‘log |Df |ecy | —log HDf|E<y>||‘ <min{ , (og —logn),  (logn —logA){ ;

(ii) if g € %(f), g € Ag(N(e, A)) NPer(g),y € A, and dist(g,y) < €, then

1
‘ log HD8|E5(q)(g) ” —log ||Df|E(y) H ‘ < 4(10g n—logd).

Note that the possibility of finding & for which item (i) is satisfied follows from
the continuity of E; for item (i), it follows from property (P.4).

Since f| 4 is shadowing, there is 0 < d < ¢ such that any d-pseudotrajectory of f
in A can be e-shadowed by a trajectory of f.

Since dist(f(x),f(y)) < eXdist(x,y) for any x,y € M, where

K= max{|log ||Df(x)||| DX EM},

it is not hard to show that there exists a number 0 < v < d/2 such thatif x,y € M,
g € %,(f), and dist(x, y) < v, then

dist (). 8(3) < 5.

By property (P.3), there exists a diffeomorphism g € %;(f) and a hyperbolic
periodic point p of g with (¢) > L such that its g-orbit, O(p, g), forms a v-net of
A, i.e., for any point w € A there is a point ¢ € O(p, g) such that dist(w, qg) < v,
and, conversely, for any ¢ € O(p, g), there is w € A such that dist(w, g) < v.

At first, let us construct a periodic d-pseudotrajectory of f in A (with period
7 (p)) that approximates the above periodic orbit O(p, g) of g within v with respect
to disty.

Take points g; € A such that dist(g/(p),q;) < v forj=0,1,...,7(p) — 1.
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Then

. : d
dist(f(g)). gi+1) < dist(f(g;). g(g’(p))) + dist(g/T" (p). gj+1) < ,tv=d

and

w(p)—1 1
i) ooy ; log [ Dfleqy || <, (log + logn)
by the choice of v.

Thus, the sequence of points {qj};r:(’o’) “'cAisa periodic d-pseudotrajectory of
[ in what follows, we denote it by & 0(p).

Remark that in the proof of Theorem 3.2.1 (Proposition 3.2.4), the above
orbit was an exact periodic orbit of f; however, in our case, it is a periodic
pseudotrajectory; this is the main difference between the original proof in [109]
and our proof.

Observe that the inequality in (iii) follows from (P.2) and (ii) since

n(p)—1

1
2(p) ; log | Dglpipio || < , BlogA +logn).

We will construct a d-pseudotrajectory
{xitiez C A

of f composed of points of O(y,f) and Z?C(p) by mimicking the procedure
displayed in the proof of the main result of Proposition 3.2.4 (see also [109]). O
Step I Since y € A, there is a point g;, € & 0(p) such that dist(y,q;,) < v < d.
Set

Xl = Gji—1s X2 = Gji=25 -y Xon(p)+1 = Gjr—n(p)+15

and

X=n(p) = Qj1» X=n(p—1 = dji—1> X=n(p)—2 = Gj1=25 -+ -+

Then dist(f(x—;), x—i+1) < d for i > 1, so that the negative part {x;};.!_ of
{x;}iez is constructed.

Step Il Letn; = 1. Then

1 n(p)—1

m Z log HDfIE(qlerj)

1
< _(logA +logn).
mr(p) = 2




198 4 Chain Transitive Sets and Shadowing

Obviously, this inequality follows from (iii).
Let iy = mn(p), putx; = gj4jforj =0,1,...,i; —1 = 7(p) — 1, and put
x;, = y. Then dist(f(x;),xj+1) <dforj=0,1,...,i1—1, and

i1—1

1 1
i, 2108 [Dfle) | <, (tog + logn).

j=0
Put
aj = log ||Df | e
forj =0,1,...,i; — 1 and choose a number /; having the following properties:
1 i1—1 -1 !
W+ D ; 4+ ; log [ Df I | | =, (logn +logn')
and
1 i1—1 -1 ! /
P ;“J + ;log | DAl | <, (ogn +logn')

forany ! < [;.
The existence of /; follows from our choice of y (recall that

n—1

Jj=0

Setji =iy + I, letxi 41 = f(¥). Xi 42 = f2()). ... x;—1 =17 1(y) € O(y.f),
and put

ajy+j = log HDf |ECe, 1)
forj=0,1,...,; — 1.

StepIII Let iy—1, jr—1, {xi}jl:kz’(;_l ,and {a; jl:kz’(;_l have been constructed in the former

steps. Similarly to the choice of ¢;, and n;, we can choose g;, € &2 0(p) such that

dist(f(xj_,). ;) <v <d
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and a positive number 7y such that

1 Je—1—1 w(p)—1

1
D ai+m ) log HDf|E(q,-k+,-> < z(log)L + logn),
j=0 j=0

i

where i, = ji—1 + mr(p) (the existence of ny is ensured by (iii)).
Let

Xjg—14+1 = Gjr+1s Xjp14+2 = G425 -+ -5 Xj—+a(p) = e

Xig—1+m(p)+1 = Qi+l Xjpy+a(p)+2 = Gjx+25 -+

and x;, = f(x;,_,—1) € O, f).
Obviously,

dist (£ (_,4+7)s Xy, +j41) < d

forj=0,1,...,mm(p)—1.
Put

4y +j = log HDf lEGs, 1))

forj=0,1,...,mm(p) — 1 and choose /; such that

1 ix—1 k—1 1
i+ D4+ log HDf V) H =, (logn +log1)
a3 s =
and
1 ix—1 1 1
i+ 1 Z a; + Z log HD‘ﬂE(fj(xfk)) H < ) (IOg n + log 77/)
Jj=0 j=0

for any [ < I.
The existence of y is ensured by the fact thatx;, € O(y,f) (recall the choice of y).
Let jr = ix + I and let Xig+1 = f(xik),xik+2 = fz(xik), v Xjp—1 = flk—l(xik).
Finally, we put

jpi+j = log HDf |00 H

forj=0,1,..., L — 1.



200 4 Chain Transitive Sets and Shadowing

This completes the construction of {x;},ez C A of f. Roughly speaking, the
d-pseudotrajectory {x;};cz looks as follows:

{---s '@ﬁf(p)v '@ﬁf(p)v Ys f(y)v fz(y)s "'vfll(y)’ 'gzﬁf(p)v

, POip), ) L SR, 2Os(p), L

Recall that K = max {|log || Df (x)||| : x € M}. It is easy to see that

1 ir—1—1 Jk=1
Z a; < (log/\ + logn) and Za, > (log n +logn)
j=0 j =0

foreveryk = 1,2,...,and
1 1 /1
Vo< ( yoen+ toen) (= x(p) + k()
j=0

for every n > m(p).

Hence,
lim sup Z a; = ! (logn + logn')
n—oo N ! 2
and
1= 1
11nn_1>101.3f " ZO: aj < 2(log/\ + log ).

Let z € M be a point such that its f-orbit e-shadows the pseudotrajectory {x;};ez
(see (P.5)).

Observe that O(z,f) C U, so that z € A by the local maximality.

Thus, the choice of ¢ (see (7)) implies that

1 n—1 1 n—1
lim inf Zlog IDf 16y | < logn < hm nsup Zlog IDf 15y | < logn'.
1 =0

Thus, by Proposition 4.2.3, there is a hyperbolic periodic point g of index dim E
such that O(gq,f) C U and the derivatives along the orbit O(q,f) satisfy the
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following inequalities:

k-1 n(g)—1
[0z <0 and T [2flew@] > 7@~
i=0 i=k—1

forallk =1,2,...,7(q).
Furthermore, ¢ can be chosen such that 7 (g) is arbitrarily large, so that we may
assume that 7w(¢) > L. This is a contradiction because

m(q)—1

l—[ “DfIES(fi(q)) H < \"@

i=0

by (P.2). In the same manner, we can show that F is expanding, and thus, A is
hyperbolic.

Now we complete the proof of Theorem 4.2.1.

Assume that f| 4 is chain transitive and C!-stably shadowing in U, and let m > 0,
0 < A < 1,and L > 0 be constants given by Proposition 4.2.2.

Then it is not difficult to show that the assumption of Proposition 4.2.3 and prop-
erties (P.1)—(P.5) of Proposition 4.2.4 are satisfied for |4 from Proposition 4.2.2
and Lemmas 4.2.4-4.2.6.

More precisely, (P.3) follows from Lemma 4.2.4 applied to f.

Properties (P.1), (P.2), and (P4) follow from Proposition 4.2.2 and Lem-
mas 4.2.4-4.2.6 applied to /™. Note that | 4 is shadowing since f| 4 is shadowing,
and thus, /™ has property (P.5).

Finally, A is hyperbolic for /" if and only if it is hyperbolic for f. Thus, applying
Propositions 4.2.3 and 4.2.4 to f™, we can show that A is hyperbolic. Since f|4 is
transitive by Lemma 4.2.1, A is a basic set. The “only if” part of Theorem 4.2.1 is
proved. O

4.2.4 Proof of Corollary 4.2.1

Proof Recall that, in general, a chain recurrence class ¢ of f does not contain
periodic points. In this section, we prove Corollary 4.2.1 by applying Theorem4.2.1.
We need the following two lemmas.

Lemma 4.2.7 Let A be a hyperbolic basic set of f € Diff'(M). If p € A N Per(f)
is a saddle periodic point, then A C Hy(O(p,f)).

Proof Let p € A N Per(f) be a saddle periodic point. Since A is hyperbolic, there
is &9 > 0 such that if dist(f"(x),f"(p)) < &o forn > 0, then x € W; (p) (and a
similar property holds for Wy (p) with respect to f -1,
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Let U be a compact neighborhood of A in which A is locally maximal. Since
fla is shadowing, for any ¢ € (0, &9) there is a number d = d(g) > 0 given by the
shadowing property of f|4 (recall that, by Lemma 4.2.1, we can find a shadowing
pointin A).

Since f| 4 is transitive by Lemma 4.2.1, for any x € A there exists a point y €
N(d, p) and numbers 0 < [; < I, such that f'1 (y) € N(e, x) and f2(y) € N(d, p).

Puty_; = f7'(p) fori > 0, y; = f'(y) for 0 < i < b, and y; = f"~">(p) for
i > iy. Then it is easy to see that {y;}iez C A is a d-pseudotrajectory of f.

Thus, there is a point z € A (e-close to x) that e-shadows the pseudotrajectory.
Hence,

z€ (W(O(p.f)) N W' (O(p.f)) NN(e.x) # 8.

Observe that z is a transverse intersection point since A is hyperbolic. Since ¢ is
arbitrary, x € Hy(O(p,f)); thus, A C H;(O(p,f)) as claimed. O

Lemma 4.2.8 Let 6 be a chain recurrence class of f. If €y is hyperbolic, then it is
locally maximal.

Proof Let 6; be hyperbolic. We first show that for any & > 0 there is d > 0 such
that for any d-pseudotrajectory {x;};ez of f in %; there is a point y € %; such that
dist(f'(y),x;) < e fori € Z, i.e., the shadowing point y can be taken from ;.

To prove this, it is enough to show that f|¢; has a local product structure.

Since %; is hyperbolic, for any ¢ > 0 there is d > 0 such that if x,y € ¢; and
dist(x,y) < d, then Wi(x) and W¥(y) have a point of transverse intersection. Fix
X,y € 6 with dist(x, y) < d and let

z=Wix) N W{(y) and w = W;(x) N W.(y).

We claim that z, w € 6.
For any n > 0 there is n > 0 such that

max {dist(f" (x).f"(2)). dist(f ™" (y)./ (@)} < n.

Since () = 6. ()./ () € &. )

Thus, f"(x) ~ x and x ~ f~"(y); i.e., there exist an n-pseudotrajectory {x;},”
with xo = f"(x) and x,, = x and an n-pseudotrajectory {yi}?zo with yo = x and
Y, =f7"(y).

Since 7 is arbitrary, z <w> x, so that z € é;. A similar reasoning shows that
w € %5; thus, f|¢; has alocal product structure.

Since %; is hyperbolic, there exists ¢ > 0 such that if x € %, y € M, and
dist(f"(x),f"(y)) < cforn € Z, thenx = y.

Now fix 0 < € < ¢/2 andlet 0 < d < € be the corresponding number given
by the shadowing property of f|¢,. Furthermore, choose 0 < d" < d/2 such that if
dist(x,y) < d, then dist(f(x),f(y)) < d/2.
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We claim that

G = (/N %))

i€Z

It is obvious that 67 C [,z /' (N(d', €})).

To show the converse, we note that any point x € ();c,f (N(d', 6;)) is in 6.

For each i € Z take a point x; € %} such that dist(f'(x),x;) < d'. It is easy to
see that {x;}e7 is a d-pseudotrajectory of f|¢, by the choice of d’. By the shadowing
property of f|¢,, there is a point y € €7 such that dist(f'(y),x;) < e foralli € Z.

Thus,

dist(f'(x). () < dist(f'(x), %) + dist(xi, f'(y)) <d' +e<c

forall i € Z; hence, x =y € %;. O

Now we complete the proof of Corollary 4.2.1.

Let 47 be a chain recurrence class of f and assume that f|g; is C!-stably
shadowing in U, i.e., that f|¢; is locally maximal in U and f € Int' (SSP,(U)).

By Proposition 1.1.1, f|¢; is chain transitive, and hence, ¢ is a hyperbolic basic
set by Theorem 4.2.1 (recall that periodic points are dense in 7).

By Lemma 4.2.7, ¢ C Hr(O(p,[)) for some p € Gy N Per(f). Since f|u;o(p.r)
is transitive, we get the equality 6y = Hy(O(p,f)) because ¢; is a maximal chain
transitive set.

The proof of “if” part is as follows. If a chain recurrence class ¢ of f is
hyperbolic, then it is locally maximal by Lemma 4.2.8, so that it is a basic set by
Lemma 4.2.1 (since fls, is shadowing). Thus, by the local stability of hyperbolic
basic sets (see [84]), fl; is C'-stably shadowing. O

Historical Remarks Theorem 4.2.1 and Corollary 4.2.1 were proved by the second
author in [91]. An assertion similar to the corollary was first proved in [35, Theorem
1.3] in the case where %; is a chain recurrence class containing a periodic point
of f. Since, in general, a chain recurrence class does not contain a periodic point,
Corollary 4.2.1 generalizes the result of [35].

4.3 Chain Transitive Sets with Shadowing for Generic
Diffeomorphisms

Let us recall that a subset % of Diff' (M) is called residual if it is a countable
intersection of dense open sets of Diff' (M) (see Chap. 1).

In this section, we prove the following C'-generic result for locally maximal
chain transitive sets with shadowing obtained in [34].
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Theorem 4.3.1 There is a residual set # C Diff' (M) such that if f € % and A is
a locally maximal chain transitive set of f, then A is hyperbolic if and only if f| 4 is
shadowing.
Let A be a locally maximal chain transitive set of f € 2. Remark that by the
theorem, if f| 4 is shadowing, then A is a hyperbolic basic set (see Lemma 4.2.8).
We start with two lemmas which will be used in the proof of Theorem 4.3.1.
First we note that there is a residual set 2, C Diff! (M) such that every f € %,
has the following properties.

(1) Every periodic point of f is hyperbolic, and stable and unstable manifolds of
periodic points of f are transverse.

(2) A compact f-invariant set A is chain transitive if and only if A is the limit of a
sequence of periodic orbits of f with respect to the Hausdorff distance.

Statement (1) above follows from the Kupka-Smale theorem (see Theorem 1.3.6
(a)). Statement (2) is proved in [16].

Note that if A is a locally maximal chain transitive set of f € %, then statement
(2) above implies that periodic points are dense in A.

Recall that the index of a hyperbolic periodic point p € Per(f) is the dimension
of the stable manifold of p.

Lemma 4.3.1 There is a residual set %, C Diff! (M) such that every f € %, has
the following property: If A C M is a closed f-invariant set A C M and there
is a sequence of diffeomorphisms f, converging to f and a sequence of hyperbolic
periodic orbits P, of f, with index k such that

lim P, = A,
n—>o00

then there is a sequence of hyperbolic periodic orbits Q,, of f with index k such that
A is the Hausdorff limit of Q,.

Proof Denote by (M) be the space of all nonempty compact subsets of M
equipped with the Hausdorff metric and take a countable basis B = {7}, of
H(M).

For each pair (n, k) with n > 1 and k > 0, we denote by 7%, ; the set of f such
that f has a C' neighborhood % (f) C Diff' (M) with the following property: If
g € Z (f), then there exists a hyperbolic periodic orbit Q C ¥, of g with index k.

Let .4} be the set of f such that f has a neighborhood % (f) C Diff' (M) with
the following property: Every diffeomorphism g € % (f) does not have hyperbolic
periodic orbits Q C ¥, with index k.

It is clear that the sets .74, ; U 4, are open in Diff' (M).

Let us show that any set %, U .4, is dense in Diff! (M). Take an arbitrary
diffeomorphism f € Diff' (M) \ ;4.

Then for any neighborhood 7% (f) of f there is a diffeomorphism g € Z (f)
having a hyperbolic periodic orbit Q C ¥, with index k. The hyperbolicity of O
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implies that g € .77, . This means that f € 77, ; thus,
Diff' (M) = 3 U Npi C i U M.
Let

%2 = m %,k ) %,k-

nezZt, k=0.,...dim M

Then %, is a residual subset of Diff' (M).

Let f € %, and let A be a closed f-invariant subset of M. Assume that there is
a sequence of diffeomorphisms f,, converging to f and a sequence of periodic orbits
P, of f,, with index k such that A is the Hausdorff limit of P,.

Fix an arbitrary neighborhood ¥ of A in % (M) and take ¥, € B such that
A C Y, CV.Thenf & Ny, sothatf € 7, . Hence, f has a periodic orbit, say
Oum, in ¥, with index k by definition of .74, . This completes the proof. O

In the following lemma, we show that if A is a chain transitive set of a
diffeomorphism f € %, and f| is shadowing, then every periodic point in A has
the same index.

Lemma 4.3.2 Let f € %) and let A be a chain transitive set of f. If fla is
shadowing, then all periodic points in A have the same index.

Proof Consider periodic points p, g € Per(f) N A and let ¢ > 0 be small enough so
that the local stable manifold W?(p) and the local unstable manifold W¥(g) of size
¢ are well defined.

Take d > 0 such that every d-pseudotrajectory in A is e-shadowed by a point
inM.

Since A is chain transitive, there is a finite d-pseudotrajectory {xo, X, . . . , X, } of
fin A such that xo = ¢ and x,, = p.

Construct a d-pseudotrajectory £ in A as follows:

=1 DS @ g3 f(P) S (D)

Then there is an orbit O(y, f) that e-shadows £.

Since Orb(y) N Wi(p) # @ and Orb(y) N Wi¥(q) # 9, we have the inclusion
y € Wi (p) N W'(q).

This implies that the indices of p and of ¢ are the same. Indeed, since W*(p) N
W“(q) # @ and W*(gq) N W*(p) # @, the transversality of the intersections implies
that

dim W¥(p) 4+ dim W“(g) > dimM and dim W*(q) + dim W*(p) > dim M.
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These inequalities imply that dim W*(p) = dim W*(g). Indeed, it follows from
the inequality

dim W*(p) > dimM — dim W"(q) = dim W*(q)

that dim W*(p) > dim W*(g). A similar reasoning shows that dim W¥(qg) >
dim W*( p). This completes the proof. O

Proof Now we define the residual subset % C Diff! (M) for which the assertion of
Theorem 4.3.1 holds as follows:

X = K% N %s.

The following proposition is crucial for the proof of Theorem 4.3.1.

Proposition 4.3.1 Let f € &% and let A be a chain transitive set of f that is locally
maximal. Then there exist constants m > 0 and 0 < A < 1 such that for any
p € Per(f) N A,

7(p)—1
[T 12" lmpm | < A7,
i=0

ﬂ(pl)—l

IT 12r " lpermn | < 27,
i=0

and

1D e | - | DF " e(emion | < A2

Proof Since f € %), periodic points of f are hyperbolic and dense in A. By
Lemma 4.3.2, they have the same index.

First we show that there exists a C' neighborhood % (f) of f € %, and a
neighborhood U of A such that every g € % (f) does not have nonhyperbolic
periodic orbits contained in U.

To get a contradiction, assume that for any C' neighborhood 7 (f) of f and a
neighborhood V of A, there is a diffeomorphism g € ¥(f) having a nonhyperbolic
periodic orbit Q in V.

Applying a C'-small perturbation of the diffeomorphism g, we can assume that
there are diffeomorphisms g1, g2 € ¥'(f) and hyperbolic periodic orbits Q; and Q,
in V of g; and g, respectively, such that index Q; # index Q».

Indeed, assume that Q is nonhyperbolic and take a point g € Q. Let [ > 0 be the
period of Q. Then Dg!(g) has an eigenvalue with absolute value equal to one.

Applying the Franks lemma (Lemma 3.2.1), we can find a C'-small perturbation
of g (denoted again g) such that there is a g/-invariant small arc .# centered at ¢ and
such that g'| ~ is the identity map.
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Applying additional C'-small perturbations of g, we can construct diffeomor-
phisms g; and g, C!'-close to g and having hyperbolic periodic orbits Q1 and Q5 in
V with different indices.

Hence, we can construct two sequences of diffeomorphisms g, and g/, that
converge to f in Diff! (M) and two sequences of hyperbolic periodic orbits Q,,, o,
of g, and g/, respectively, such that

lim Q, = A = lim Q,
n—>oo n—o0
and index Q, # index Q/, for each n € N.

Without loss of generality, taking a subsequence if necessary, we may assume
that index Q, = index O, and index Q/, = index Q/, for all m,n € N.

Applying Lemma 4.3.1 to the f-invariant set A, we can choose two sequences
of periodic orbits P, and P} of f such that index P, = index Q,, index P, =
index Q/,, and A is the Hausdorff limit of {P,} and {P}}, respectively. Since A is
locally maximal and AcC A, we may assume that P,, P, C A for sufficiently large
n. Since index P, # index P}, we get a contradiction with Lemma 4.3.2.

Note that the reasoning used in the above proof shows that all of the indices of
periodic orbits of g € % (f) contained in U are the same. Hence, by the reason stated
in the paragraph located before Proposition 4.2.1 and Propositions 4.2.1-4.2.2, we
get constants K > 0, mg € Z*,and 0 < A < 1 such that for any periodic point
p € A with 7(p) > K, the following inequalities hold:

w(p)—1

[T 127" lespmo | < 277,
=0

n(p)—1

[T 1277l || < A7,
i=0

and

D™ sy || - | DF ™ Lo oy || < A2

Let Ao be the set of all periodic points in A whose periods are less than K. Since
every periodic point of f is hyperbolic, Ay is a finite set; hence, Ay is a hyperbolic
set of f.

Let k be a positive integer such that

[P leo] <4 and [ oy | < A
for all x € Ay. If we take m = kmy, then it is easy to show that m and A are the

required constants. O
Now we complete the proof of Theorem 4.3.1.
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Let A be a locally maximal chain transitive set of f € Z. To get the conclusion,
it is enough to show that if f| 4 is shadowing, then A is hyperbolic.

Now let us check that f satisfies all the assumptions (P.1)—(P.4) of Proposi-
tion 3.2.4.

Let U be an isolating block of A so that A;(U) = A. By the third property of
Proposition 4.3.1, we can see that A admits a dominated splitting TyM = E & F
for f™ that satisfies E(p) = E*(p) and F(p) = E"(p) forevery p € Per(f) N A.In
fact, it has shown in the proof of Proposition 4.3.1 that there are a C' neighborhood
Z (f) of f € %, and a neighborhood U of A such that every g € % (f) does not
have nonhyperbolic periodic orbits contained in U. Thus, the assertion follows from
Proposition 4.2.1 (note that by Lemmas 4.3.1 and 4.3.2, A = Pgime(f))- Since f| 4
is shadowing, /™| 4 is also shadowing and thus, (P.1)-(P.4) are satisfied for f™.

Therefore, A is hyperbolic for f” by Proposition 3.2.4, so that A is hyperbolic
for f as well. O

Historical Remarks Theorem 4.3.1 was first proved by K. Lee and X. Wen in
[34] with application of the Mafié ergodic closing lemma [42]. We prove the result
applying Proposition 3.2.4 (and do not use the ergodic closing lemma). The proof
is a little bit longer, but it is simplified making an effective use of the shadowing
property.

For expansive homoclinic classes, a similar result to Theorem 4.3.1 was proved
by Yang-Gan [110] without the local maximality assumption of the sets.
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