
Lecture Notes in Mathematics  2193

Sergei Yu. Pilyugin
Kazuhiro Sakai

Shadowing 
and 
Hyperbolicity



Lecture Notes in Mathematics 2193

Editors-in-Chief:
Jean-Michel Morel, Cachan
Bernard Teissier, Paris

Advisory Board:
Michel Brion, Grenoble
Camillo De Lellis, Zurich
Alessio Figalli, Zurich
Davar Khoshnevisan, Salt Lake City
Ioannis Kontoyiannis, Athens
Gábor Lugosi, Barcelona
Mark Podolskij, Aarhus
Sylvia Serfaty, New York
Anna Wienhard, Heidelberg



More information about this series at http://www.springer.com/series/304

http://www.springer.com/series/304


Sergei Yu. Pilyugin • Kazuhiro Sakai

Shadowing and
Hyperbolicity

123



Sergei Yu. Pilyugin
Faculty of Mathematics and Mechanics
St. Petersburg State University
St. Petersburg, Russia

Kazuhiro Sakai
Faculty of Education
Utsunomiya University
Utsunomiya, Japan

ISSN 0075-8434 ISSN 1617-9692 (electronic)
Lecture Notes in Mathematics
ISBN 978-3-319-65183-5 ISBN 978-3-319-65184-2 (eBook)
DOI 10.1007/978-3-319-65184-2

Library of Congress Control Number: 2017950671

Mathematics Subject Classification (2010): 37C50, 37D20, 37C20, 37D30

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To the memory of Dmitrii Viktorovich Anosov



Preface

The theory of shadowing of approximate trajectories (pseudotrajectories) in dynami-
cal systems is now an important and rapidly developing branch of the modern global
theory of dynamical systems.

The notion of a pseudotrajectory goes back to Birkhoff [9]. The real development
of the shadowing theory started after the classical results of Anosov [4] and Bowen
[12]. The main results obtained in the 20th century were reflected in the monographs
[64] and [56]; one can find a survey of recent results in [70].

In fact, the modern shadowing theory has been developing on the powerful basis
of the theory of structural stability, one of the main parts of the global theory of
dynamical systems in the second half of the 20th century.

Undoubtedly, the notions of hyperbolicity and transversality, which are the key
notions of the theory of structural stability, have become the basic notions of the
shadowing theory as well.

This book is devoted to several recent results relating various shadowing prop-
erties to structural stability. It was understood in the 1970s that structural stability
implies shadowing. In fact, both monographs [64] and [56] were mostly devoted
to various proofs of the general statement: “Hyperbolicity (structural stability)
implies shadowing.” At the same time, simple examples show that shadowing is
not equivalent to structural stability.

Nevertheless, all such examples are, in a sense, “degenerate,” and it is natural
to assume that in “nondegenerate” cases, shadowing and structural stability are
equivalent. In a precise form, this assumption was formulated as a conjecture by
Abdenur and Diaz in [1]; in fact, they conjectured that a C1-generic diffeomorphism
with shadowing is structurally stable and proved this conjecture for so-called tame
diffeomorphisms.

Two more possible approaches to the problem of equivalence of shadowing and
structural stability are related to the passage to C1 interiors of the sets of dynamical
systems having various shadowing properties or to study of special shadowing
properties (such as Lipschitz and Hölder).

vii
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This book is devoted to the main results related to the above-mentioned two
approaches, which, in our opinion, may be of interest for specialists in the global
theory of dynamical systems.

One of our main goals was to give either complete proofs of some results which
are not easily available (for example, the Pliss theorem used in Chap. 2 was only
published in Russian long ago in proceedings of a Kiev conference and was never
reproduced) or detailed expositions of some heavy proofs (for example, we do not
reproduce the Tikhomirov’s paper devoted to Hölder shadowing but instead explain
in detail the not so heavy one-dimensional case to help the reader to understand the
original proof).

Let us describe the contents of the book.
The book consists of four chapters.
Chapter 1 is preliminary. In this chapter, we define pseudotrajectories and various

shadowing properties for dynamical systems with discrete and continuous time
(Sects. 1.1 and 1.2), study the notion of chain transitivity (Sect. 1.1), describe
hyperbolicity, ˝-stability, and structural stability (Sect. 1.3), and prove a lemma
on finite Lipschitz shadowing in a neighborhood of a hyperbolic set (Sect. 1.4).

In Chap. 2, we give either complete proofs or schemes of proof of the following
main results:

• If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

• a diffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is ˝-stable (Theorem 2.4.1);

• if a diffeomorphism f of class C2 has the Hölder shadowing property on finite
intervals with constants L ;C; d0; �; !, where � 2 .1=2; 1/ and � C ! > 1, then
f is structurally stable (Theorem 2.5.1);

• there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

• if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

Since Theorem 2.3.1 is one of the basic results related to the study of Lipschitz
shadowing property for diffeomorphisms, we include in the book complete versions
of the main ingredients of its proof: in Sect. 2.1, we prove Maizel’ and Pliss theo-
rems relating the so-called Perron property of difference equations and hyperbolicity
of sequences of linear automorphisms, Sect. 2.2 is devoted to the Mañé theorem
characterizing structural stability in terms of the so-called analytic transversality
condition (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof of Theorem 2.3.1
to results of the previous two sections.

In Chap. 3, we study the structure of C1 interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

• The C1 interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result combined with a well-known statement (structurally stable
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diffeomorphisms have the standard shadowing property) implies that the C1

interior of the set of diffeomorphisms having the standard shadowing property
coincides with the set of structurally stable diffeomorphisms;

• the C1 interior of the set of vector fields having the oriented shadowing property
minus some special set B of vector fields (consisting of vector fields that have
a couple of rest points connected by a trajectory of nontransverse intersection
of their stable and unstable manifolds; of course, such vector fields are not
structurally stable) is a subset of the set of structurally stable vector fields
(Theorem 3.3.1); similarly to the case of diffeomorphisms, this result combined
with a well-known statement (structurally stable vector fields have the shadowing
property) implies that the C1 interior of the set of vector fields having the oriented
shadowing property minus the set B coincides with the set of structurally stable
vector fields;

• the C1 interior of the set of vector fields having the oriented shadowing property
contains vector fields that are not structurally stable (Theorem 3.4.1).

The structure of the chapter is as follows.
Section 3.1 is devoted to the proof of Theorem 3.1.1. Our proof of Theorem 3.1.1

is based on reduction to the theorem stating that the C1 interior of the set
of Kupka–Smale diffeomorphisms coincides with the set of structurally stable
diffeomorphisms.

We give a detailed proof of the fact that any periodic point of a diffeomorphism
in the C1 interior of the set of diffeomorphisms having the standard shadowing
property is hyperbolic. Concerning the proof of transversality of stable and unstable
manifolds of periodic points of such a diffeomorphism, we refer the reader to
Sect. 3.3 where a similar statement is proved in a more complicated case of flows on
manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect. 3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If a diffeomorphism f belongs to theC1 interior
of the set of diffeomorphisms having the standard shadowing property, then f
satisfies Axiom A. Our proof uses neither Mañé’s ergodic closing lemma [42] nor
the techniques of creating homoclinic orbits developed in [44]. Instead, we refer to
a sifting type lemma of Wen–Gan–Wen [109] influenced by Liao’s work and apply
it to Liao’s closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C1 interior of the set of vector
fields having the oriented shadowing property. We introduce the above-mentioned
class B and prove Theorem 3.3.1.

In Sect. 3.4, we show that the C1 interior of the set of vector fields having the
oriented shadowing property contains vector fields belonging to B. The complete
description of the corresponding example given in [69] is quite complicated, and we
describe a “model” suggested in [100].

In Chap. 4, we study relations between the shadowing property of diffeo-
morphisms on their chain transitive sets and the hyperbolicity of such sets.
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We prove the following two main results:

• Let � be a closed invariant set of f 2 Diff1.M/. Then f j� is chain transitive and
C1-stably shadowing in a neighborhood of � if and only if � is a hyperbolic
basic set (Theorem 4.2.1);

• there is a residual set R � Diff1.M/ such that if f 2 R and � is a locally
maximal chain transitive set of f , then � is hyperbolic if and only if f j� is
shadowing (Theorem 4.3.1).

The structure of the chapter is as follows.
In Sect. 4.1, we discuss several examples of chain transitive sets. Section 4.2 is

devoted to the proof of Theorem 4.2.1. In Sect. 4.3, we prove Theorem 4.3.1.
Each section of the book contains Historical Remarks.
The authors are really grateful to A. A. Rodionova who put a lot of time and

effort into preparation of this book for publication.

St. Petersburg, Russia Sergei Yu. Pilyugin
Utsunomiya, Japan Kazuhiro Sakai
June 2017
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Chapter 1
Main Definitions and Basic Results

In this preliminary chapter, we define pseudotrajectories and various shadowing
properties for dynamical systems with discrete and continuous time (Sects. 1.1
and 1.2), study the notion of chain transitivity (Sect. 1.1), describe hyperbolicity,
˝-stability, and structural stability (Sect. 1.3), and prove a lemma on finite Lipschitz
shadowing in a neighborhood of a hyperbolic set (Sect. 1.4).

1.1 Pseudotrajectories and Shadowing in Dynamical Systems
with Discrete Time: Chain Transitive Sets

Consider a metric space .M; dist/. Everywhere below (if otherwise is not stated), we
denote by N.a; x/ and N.a;A/ the open a-neighborhoods of a point x 2 M and a set
A � M, respectively. For a set A � M, Int.A/, Cl.A/, and @A denote the interior,
closure, and boundary of A, respectively.

Let f be a homeomorphism of the metric space M. As usual, we identify the
homeomorphism f with the dynamical system with discrete time generated by f
on M.

We denote by

O.x; f / D ˚
f k.x/ W k 2 Z

�

the trajectory (orbit) of a point x 2 M in the dynamical system f .
We also consider positive and negative semitrajectories of a point x,

OC.x; f / D ˚
f k.x/ W k � 0

�
and O�.x; f / D ˚

f k.x/ W k � 0
�
:

© Springer International Publishing AG 2017
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
in Mathematics 2193, DOI 10.1007/978-3-319-65184-2_1
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2 1 Main Definitions and Basic Results

Similar notation is used for trajectories of sets;

O.A; f / D ˚
f k.A/ W k 2 Z

�

is the trajectory of a set A � M in the dynamical system f , etc.
We denote by Per. f / the set of periodic points of f .

Remark 1.1.1 We give the main definitions in this section for the most general case
of dynamical system with discrete time generated by homeomorphisms; in fact, the
main results of this book are related to smooth dynamical systems – either to systems
with discrete time generated by diffeomorphisms or to systems with continuous time
(flows) generated by smooth vector fields on manifolds.

If M is a smooth closed (i.e., compact and boundaryless) manifold with Rieman-
nian metric dist, we denote by TM the tangent bundle of M and by TxM the tangent
space of M at a point x, respectively. For a vector v 2 TxM, jvj is its norm induced
by the metric dist.

If f is a diffeomorphism of a smooth manifold M, we denote by

Df .x/ W TxM ! Tf .x/M

its derivative at a point x 2 M.
Let us give the main definition in the case of a homeomorphism of a metric space

.M; dist/.

Definition 1.1.1 Fix a d > 0. A sequence

� D fxk 2 M W k 2 Zg (1.1)

is called a d-pseudotrajectory of the dynamical system f if the following inequalities
hold:

dist.xkC1; f .xk// < d; k 2 Z: (1.2)

Sometimes, d-pseudotrajectories are called d-orbits.
The basic property of dynamical systems related to the notion of a pseudotrajec-

tory is called shadowing (or tracing).

Definition 1.1.2 We say that a dynamical system f has the shadowing property if
for any " > 0 we can find a d > 0 such that for any d-pseudotrajectory � of f there
exists a point p 2 M such that

dist
�
xk; f

k. p/
�
< "; k 2 Z: (1.3)

In this case, we say that the pseudotrajectory � is "-shadowed by the exact trajectory
of the point p, and the trajectory O. p; f / is called the shadowing trajectory.
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Sometimes, this property is called the standard shadowing property or the POTP
(pseudoorbit tracing property, see [5] and [6]).

In addition to infinite pseudotrajectories, we consider also finite pseudotrajecto-
ries, i.e., sets of points

� D fxk 2 M W l � k � mg

such that analogs of inequalities (1.2) hold for l � k � m � 1.
The corresponding shadowing property called finite shadowing property means

that for any " > 0 we can find a d > 0 such that for any finite d-pseudotrajectory �
of f as above there exists a point p 2 M such that analogs of inequalities (1.3) hold
for l � k � m � 1. Here it is important to emphasize that d depends on " and does
not depend on the number m � l.

In what follows, it will be convenient for us to introduce special notation for sets
of dynamical systems having some shadowing properties. Let us denote by SSPD

the set of systems with discrete time having the standard shadowing property (of
course, any time, using a notation of that kind, we will indicate the phase space and
the class of smoothness of the considered dynamical systems).

In this book, we also consider several modifications of the standard shadowing
property.

The first of these modifications is a property that is weaker than the standard
shadowing property. First let us recall the definition of the Hausdorff metric.

Denote by C .M/ the set of all nonempty compact subsets of M. Let x 2 M and
K 2 C .M/; set

dist.x;K/ D min
y2K dist.x; y/:

The Hausdorff metric distH on C .X/ is defined as follows:

distH.A;B/ D max

�
max
a2A dist.a;B/;max

b2B dist.b;A/

�

for A;B 2 C .X/.
The next result which we use below is well known (see p. 47 of [32]).

Lemma 1.1.1 If the space M is compact, then .C .M/; distH/ is a compact metric
space.

Definition 1.1.3 We say that a dynamical system f has the orbital shadowing
property if for any " > 0 we can find a d > 0 such that for any d-pseudotrajectory �
of f there exists a point p 2 M such that

distH.Cl.�/;Cl.O. p; f /// < ": (1.4)
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We denote by OSPD the set of systems with discrete time having the orbital
shadowing property.

One more shadowing property is defined below.

Definition 1.1.4 We say that f has the Lipschitz shadowing property if there exist
L ; d0 > 0 such that for any d-pseudotrajectory fxkg with d � d0 there exists an
exact trajectory f f k. p/g satisfying the inequalities

dist
�
xk; f

k. p/
� � L d; k 2 Z: (1.5)

One can define the finite Lipschitz shadowing property similarly to the finite
shadowing property (we leave details to the reader).

Let us denote by LSPD the set of systems with discrete time having the Lipschitz
shadowing property.

Obviously, the following inclusions hold:

LSPD � SSPD � OSPD (1.6)

(of course, here we have in mind that we consider dynamical systems with the same
phase spaces).

Simple examples show that all the inclusions in (1.6) are strict.
To show that SSPD n LSPD ¤ ;, consider a North Pole – South Pole

diffeomorphism f of the circle S1 that has two fixed points, an asymptotically stable
fixed point s and a completely unstable (i.e., asymptotically stable for f�1) fixed
point u and such that f k.x/ ! s; k ! 1, for any x ¤ u, and f k.x/ ! u; k ! �1,
for any x ¤ s. It is easy to show that such a diffeomorphism f has the standard
shadowing property. Theorem 1.4.1 (1) implies that if the fixed points s and u are
hyperbolic (in this case, f is structurally stable), then f has the Lipschitz shadowing
property. At the same time, it is an easy exercise to show that f does not have the
Lipschitz shadowing property if one of the fixed points s or u is not hyperbolic.

It is also an easy exercise to show that irrational rotation of the circle gives us an
example of a diffeomorphism belonging to OSPD n SSPD.

It is possible to study shadowing properties dealing with pseudotrajectories that
are subjected to some additional restrictions. In this book, we consider the case of
periodic pseudotrajectories.

Definition 1.1.5 We say that f has the periodic shadowing property if for any " > 0
we can find a d > 0 such that for any periodic d-pseudotrajectory � of f there exists
a periodic point p of f such that inequalities (1.3) hold.

Remark 1.1.2 Note that it is not assumed in the above definition that the periods of
the pseudotrajectory � and periodic point p coincide.

Let us denote by PerSPD the set of systems with discrete time having the periodic
shadowing property.

Definition 1.1.6 We say that f has the Lipschitz periodic shadowing property
if there exist positive constants L ; d0 such that if � D fxkg is a periodic
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d-pseudotrajectory with d � d0, then there exists a periodic point p of f such that
inequalities (1.5) hold.

Let us denote by LPerSPD the set of systems with discrete time having the
Lipschitz periodic shadowing property.

As was mentioned, we also consider pseudotrajectories defined not on Z but on
some subsets of Z. Such pseudotrajectories will appear, for example, in the study of
the following property.

Definition 1.1.7 We say that f has the Hölder shadowing property on finite
intervals with constants L ;C; d0; �; ! > 0 if for any d-pseudotrajectory

� D fxk W 0 � k � Cd�!g

of f with d � d0 there exists a point p such that

dist
�
xk; f

k. p/
� � L d � ; 0 � k � Cd�!: (1.7)

We denote by FHSPD.L ;C; d0; �; !/ the set of systems with discrete time
having the property formulated in Definition 1.1.7.

An important application of pseudotrajectories defined on subsets of Z is the
theory of chain recurrence and chain transitivity.

The main tools in this theory are "-chains (finite "-trajectories joining points of
the phase space; following tradition, we preserve this terminology and use " instead
of d in analogs of inequalities (1.2)).

Until the end of this section, we assume, in addition, that M is a compact metric
space.

Let C be a subset of M and let p; q 2 C.

Definition 1.1.8 For " > 0, a sequence fx0; x1; : : : ; xmg of points of the subset C
is called an "-chain in C of length m C 1 from p to q if x0 D p, xm D q, and
dist. f .xi/; xiC1/ < " for 0 � i < m.

If there is an "-chain in C from p to q, then we write p "
C q.

Let us also write

p!"
C q if both p "

C q and q "
C p;

p C q if p "
C q for any " > 0;

p!C q if p!"
C q for any " > 0:

In the above notation, we omit C if C D M.

Definition 1.1.9 A point x 2 M is called a chain recurrent point if x! x.
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Definition 1.1.10 The set

R. f / D fx 2 M W x! xg

of all chain recurrent points of f is called the chain recurrent set of f .

Definition 1.1.11 Two points x and y of M are called chain equivalent if x! y.
Note that if x; y 2 M and x! y, then x; y 2 R. f /.
Clearly, the chain equivalence is an equivalence relation on R. f /.

Definition 1.1.12 Each equivalence class of the above equivalence relation is called
a chain recurrence class.

We note that R. f / and chain recurrence classes are closed f -invariant sets (see
Lemma 1.1.5 below).

Definition 1.1.13 We say that a closed f -invariant set� is chain transitive if x �

y for any x, y 2 �.
A chain recurrence class R is called a maximal chain transitive set if the

inclusion R � C, where C is a chain transitive set, implies that R D C.
The main statement which we prove in this section is the following proposition.

Proposition 1.1.1 Any chain recurrence class is a maximal chain transitive set.
The next convention will be frequently used in this section. For " > 0, ı."/

denotes a real number such that 0 < ı."/ < " and the inequality dist.x; y/ < ı."/

implies that dist. f .x/; f .y// < �.
We prove a sequence of lemmas which we need.

Lemma 1.1.2 The relation

R. / D f.x; y/ 2 M � M W x yg

is closed in M � M.

Proof Let a sequence f.xi; yi/ W 1 � i < 1g in R. / converge to .x; y/ 2 M � M.
We show that .x; y/ 2 R. /. For " > 0, let ı D ı."=3/. Fix an index i � 1 such
that max.dist.xi; x/; dist.yi; y// < ı. Since xi  yi, there is a ı-chain fz0; : : : ; zmg
from xi to yi. Assume that m D 1. Then

dist. f .x/; y/ � dist. f .x/; f .z0//C dist. f .z0/; z1/C dist.z1; y/ <

< "=3C ı C ı < ":

Thus, x � y. Next assume that m � 2. Then it is easy to see that

fx; z1; z2; : : : ; zm�1; yg

is an "-chain from x to y. Hence, x � y in any case. Since " > 0 is arbitrary, x y,
and .x; y/ 2 R. /. ut
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The following statement is an obvious corollary of Lemma 1.1.2.

Lemma 1.1.3 The relation

R.!/ D f.x; y/ 2 M � M W x! yg

is closed in M � M.

Lemma 1.1.4

. f � f /.R. // � R. /

and

. f � f /.R.!// � R.!/:

Proof It is enough to prove the first inclusion. Let .x; y/ 2 R. /; we show that
. f .x/; f .y// 2 R. /. Fix an " > 0 and let ı D ı."/. Since x y, there is a ı-chain
fx0; : : : ; xmg from x to y. It is easy to see that f f .x0/; : : : ; f .xm/g is an "-chain from
f .x/ to f .y/. Thus, f .x/ f .y/. Since � > 0 is arbitrary, . f .x/; f .y// 2 R. /. ut
Lemma 1.1.5 The setR. f / and each chain recurrence class are closed f -invariant
sets.

Proof Let A be a chain recurrence class of f . It follows directly from Lemma 1.1.3
that both R. f / and A are closed. Since R. f / is a disjoint union of chain recurrence
classes, it is enough to show that A is f -invariant.

Let x 2 A. Then for each n � 1 there is a .1=n/-chain fxn0; : : : ; xnmn
g from x to

itself. Put yn D xnmn�1, n � 1, and let y be one of the limit points of the sequence
f yn W n � 1g. It is easy to see that x  y. Since dist. f .y/; x/ < 1=n for n � 1,
we get the equality f .y/ D x. Hence, f .x/  f .y/ D x by Lemma 1.1.4. Since
y f .y/ D x f .x/, we conclude that x! y and x! f .x/. Thus, both y and
f .x/ are chain recurrent points and belong to A. Since x 2 A is arbitrary, it follows
that f .A/ � A � f .A/, i.e., f .A/ D A. ut

Let, as above, C .M/ be the set of all nonempty compact subsets of M with the
Hausdorff metric distH (by Lemma 1.1.1, .C .M/; distH/ is a compact metric space).

Consider the map C . f / W C .M/ ! C .M/ defined by C . f /.A/ D f .A/ for
A 2 C .X/. Clearly, this map is continuous.

Recall that a closed f -invariant subset A is chain transitive if x !A y for all
x; y 2 A.

Proof (of Proposition 1.1.1) Let A be a chain recurrence class.
By Lemma 1.1.5, A is closed and f .A/ D A. We prove the proposition modifying

the proof of the result of Robinson [84]. Let x; y 2 A. For each integer n � 1, take
a .1=n/-chain Cn D fxn0; : : : ; xnmn

g from x through y to x. In particular, x; y 2 Cn.
Since Cn 2 C .M/ for any n, there is a subsequence nk such that limk!1 Cnk D C
for some C 2 C .M/. Note that x; y 2 C. We show that f .C/ D C. Since xn0 D xnmn

,
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we see that distH. f .Cn/;Cn/ < 1=n. Thus,

distH. f .C/;C/ � distH. f .C/; f .Cnk //C

CdistH. f .Cnk/;Cnk /C distH.Cnk ;C/ �

� distH . f .C/; f .Cnk //C 1

nk
C distH.Cnk ;C/:

Letting k ! 1, we conclude that distH. f .C/;C/ D 0, i.e., f .C/ D C.
Next we show that C is chain transitive. Let z;w 2 C, and fix any " > 0. Let

ı D ı."=3/ and take n D nk such that 1=n < "=3 and distH.C;Cn/ < ı. Then

C �
mn[

iD0
N.ı; xni /

(recall that N.ı; x/ D f y 2 M W dist.y; x/ < ıg).
Take i; j with 0 � i; j � mn such that dist.z; xni / < ı and dist.w; xnj / < ı.

Since xn0 D xnmn
, there is a .1=n/-chain f y0; y1; : : : ; ymg � C from xni to xnj . We now

construct an "-chain fz0; z1; : : : ; zmg in C from z to w. For 0 < k < m, take zk 2 C
such that zk 2 N.ı; yk/, and let z0 D z, zm D w. Since dist.zk; yk/ < ı D ı."=3/, it
follows that

dist. f .zk/; zkC1/ � dist. f .zk/; f . yk//C dist. f . yk/; ykC1/C

Cdist. ykC1; zkC1/ < "=3C 1

n
C ı < "

for each 0 � k < m. Thus, fz0; : : : ; zmg is an "-chain in C from z to w. Since " > 0 is
arbitrary, z C w. Since z;w 2 C are arbitrary, z!C w for any z;w 2 C, i.e., C is
chain transitive. If we take x D z, then x!C w for all w 2 C. Thus, C � A. Since
x!C y, we conclude that x!A y. Hence, A is chain transitive, as desired. The
maximality of A is obvious. ut

It is easy to see that the following statement holds (we omit the proof).

Lemma 1.1.6 For any x 2 M, the omega-limit set !f .x/ of x and alpha-limit set
˛f .x/ of x are chain transitive.

Historical Remarks Pseudotrajectories of a special kind (called ı-chains) were
considered by G. D. Birkhoff in his study of the last Poincaré geometric theorem [9].

The first basic results related to shadowing were obtained by D. V. Anosov and
R. Bowen in [4] and [12] for hyperbolic sets of diffeomorphisms. It is easily seen
that both Anosov’s and Bowen’s proofs, in fact, give Lipschitz shadowing in a
neighborhood of a hyperbolic set of a diffeomorphism.

The orbital shadowing property was first considered in the joint paper [65] of the
authors of this book and A. A. Rodionova.
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The periodic and Lipschitz periodic shadowing were studied by A. V. Osipov, the
first author of this book, and S. B. Tikhomirov in [50].

S. B. Tikhomirov studied the Hölder shadowing property on finite intervals in the
paper [101].

C. Conley introduced the notion of chain recurrence in [14] and [15]. Most of the
results of this section devoted to chain recurrence and chain transitivity, which were
reformulated for discrete dynamical systems in Shimomura [93], can be found in
[14] and [15] in the case of flows. As far as we know, chain transitive sets of discrete
dynamical systems with the standard shadowing property were first considered in
[93] from the view point of topological entropy.

1.2 Pseudotrajectories and Shadowing in Dynamical Systems
with Continuous Time

Let M be a smooth closed manifold. Consider a C1 vector field X on M and denote
by � the flow of X. We denote by

O.x; �/ D f�.t; x/ W t 2 Rg

the trajectory of a point x in the flow �; OC.x; �/ and O�.x; �/ are the positive and
negative semitrajectories, respectively.

Definition 1.2.1 Fix a number d > 0. We say that a mapping g W R ! M (not
necessarily continuous) is a d-pseudotrajectory (both for the field X and flow �) if

dist.g.� C t/; �.t; g.�/// < d for � 2 R; t 2 Œ0; 1�: (1.8)

Of course, one can also define finite pseudotrajectories defined not on R but on
finite segments Œa; b�. We leave details to the reader.

It is easy to understand that, defining shadowing properties in the case of flows,
it is not reasonable to give a definition parallel to Definition 1.1.2 just replacing
inequality (1.3) by an inequality of the form

dist.g.t/; �.t; p// < "; t 2 R: (1.9)

Indeed, consider the following simple example.

Example 1.2.1 Let M be the two-dimensional sphere S2; consider in a coordinate
neighborhood U homeomorphic to R

2 a vector field X having an isolated closed
trajectory 	 parametrized by

�.t/ D .sin t; cos t/; t 2 R:
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Take a small d > 0 and let

g.t/ D �.t C kd=2/; t 2 Œ2
k; 2
.k C 1//; k 2 Z:

Since jX.x/j D 1 at points of 	 , it is easy to understand that g is a d-
pseudotrajectory of X.

Assume that there exists a point p such that inequality (1.9) holds with " D
".d/ ! 0 as d ! 0. Since the trajectory 	 is isolated, this is possible (for " small
enough) only if p 2 	 . In this case, there exists a � such that

�.t; p/ D �.t C �/:

Note that

�.2
k; p/ D �.2
k C �/ D �.�/; k 2 Z;

while the set of points

g.2
k/ D �.2
k C kd=2/ D �.kd=2/

is d-dense in 	 . Hence, for any d small enough there exists a k such that the distance
between g.2
k/ and �.2
k C �/ D �.�/ is larger than 
=2, which contradicts our
assumption.
Clearly, a similar construction can be realized in any flow having an isolated closed
trajectory, and the set of such flows is large enough.

To avoid problems of that kind, one has to change parametrization of the
shadowing trajectories. We introduce the following notion.

Definition 1.2.2 A reparametrization is an increasing homeomorphismh of the line
R; we denote by Rep the set of all reparametrizations.

For a > 0, we denote

Rep.a/ D
�
h 2 Rep W

ˇ
ˇ̌
ˇ
h.t/ � h.s/

t � s
� 1

ˇ
ˇ̌
ˇ < a; t; s 2 R; t ¤ s

�
:

Definition 1.2.3 We say that a vector field X has the standard shadowing property
if for any " > 0 we can find d > 0 such that for any d-pseudotrajectory g.t/ of X
there exists a point p 2 M and a reparametrization h 2 Rep."/ such that

dist.g.t/; �.h.t/; p// < " for t 2 R: (1.10)

We denote by SSPF the set of vector fields having the standard shadowing
property.

Definition 1.2.4 We say that a vector field X has the Lipschitz shadowing property
if there exist d0 > 0 and L > 0 such that for any d-pseudotrajectory g.t/ of X with
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d � d0 there exists a point p 2 M and a reparametrization h 2 Rep.L d/ such that

dist.g.t/; �.h.t/; p// � L d for t 2 R: (1.11)

We denote by LSPF the set of vector fields having the Lipschitz shadowing
property.

Definition 1.2.5 We say that a vector field X has the oriented shadowing property if
for any " > 0 we can find d > 0 such that for any d-pseudotrajectory g.t/ of X there
exists a point p 2 M and a reparametrization h 2 Rep such that inequalities (1.10)
hold (we emphasize that in this case, it is not assumed that the reparametrization h
is close to identity).

We denote by OrientSPF the set of vector fields having the oriented shadowing
property.

Definition 1.2.6 We say that a vector field X has the orbital shadowing property if
for any " > 0 we can find d > 0 such that for any d-pseudotrajectory g.t/ of X there
exists a point p 2 M such that

distH.Cl.fg.t/ W t 2 Rg/;Cl.O. p; �/// < ":

We denote by OrbitSPF the set of vector fields having the orbital shadowing
property.

Obviously, the following inclusions hold:

OrbitSPF � OrientSPF � SSPF � LSPF

(of course, here we have in mind that we consider vector fields on the same
manifold).

It is easy to show that

SSPF n LSPF ¤ ;:

It was recently shown by Tikhomirov [100] that

OrientSPF n SSPF ¤ ;

(this solved the old problem posed by M. Komuro in [29]).

Historical Remarks Let us note that the standard shadowing property of vector
fields (and their flows) is equivalent to the strong pseudo orbit tracing property
(POTP) in the sense of M. Komuro [29] and [30]; the oriented shadowing property
was called the normal POTP by M. Komuro [29] and the POTP for flows by R. F.
Thomas in [102].
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1.3 Hyperbolicity,˝-Stability, Structural Stability,
Dominated Splittings

Let us shortly recall the definitions of basic notions of the theory of structural
stability of dynamical systems which we use in this book.

Let M be a smooth closed manifold and let f be a diffeomorphism of M of class
C1.

Definition 1.3.1 We say that a set I � M is a hyperbolic set of a diffeomorphism f
if the following conditions hold:

(HSD1) the set I is compact and f -invariant;
(HSD2) there exist numbers C > 0 and � 2 .0; 1/ and linear subspaces S. p/ and

U. p/ of the tangent space TpM defined for any point p 2 I such that
(HSD2.1) S. p/˚ U. p/ D TpM;
(HSD2.2) Df . p/S. p/ D S. f . p// and Df . p/U. p/ D U. f . p//;
(HSD2.3) if v 2 S. p/, then

ˇ
ˇDf k. p/v

ˇ
ˇ � C�kjvj for k � 0;

(HSD2.4) if v 2 U. p/, then
ˇ
ˇDf k. p/v

ˇ
ˇ � C��kjvj for k � 0.

The numbers C > 0 and � 2 .0; 1/ are usually called hyperbolicity constants of
the set I; the families S. p/ and U. p/ are called the hyperbolic structure on I.

The main objects related to a hyperbolic set I are stable and unstable manifolds
of its points.

Definition 1.3.2 The stable and unstable manifolds of a point p 2 I are the sets
defined by the equalities

Ws. p/ D ˚
x 2 M W dist

�
f k.x/; f k. p/

� ! 0; k ! 1�

and

Wu. p/ D ˚
x 2 M W dist

�
f k.x/; f k. p/

� ! 0; k ! �1�
;

respectively.
The classical stable manifold theorem (see, for example, [27, 108]) states that if

p is a point of a hyperbolic set I as above and �.p/ D dimS. p/, then Ws. p/ is the
image of the Euclidean space R

�.p/ under a C1 immersion ˛sp; this means that the
map

˛sp W R�. p/ ! Ws. p/

is one-to-one and that

rankD˛sp.x/ D �. p/; x 2 R
�. p/:
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In addition, ˛sp.0/ D p and

TpW
s. p/ D S. p/:

A similar statement (with �.p/ D dimU. p/) is valid for WU. p/.
One more classical definition which we need is the definition of the nonwander-

ing set of a diffeomorphism f .

Definition 1.3.3 A point x is called a nonwandering point of f if for any neigh-
borhood U of x and for any number N there exists a number n; jnj > N, such that
f n.U/\U ¤ ;. We denote by˝. f / the set of nonwandering points of f (sometimes,
the set ˝. f / is called the nonwandering set of f ).

It is not difficult to show that the set ˝. f / is nonempty, compact, and f -invariant
(see, for example, [71]).

Now we recall the two basic definitions of the theory of structural stability of
diffeomorphisms, the definitions of ˝-stability and structural stability.

Let us start with the definition of the C1 topology on the space of diffeomor-
phisms of a smooth closed manifold M.

First we define a C0 metric 
0 on the space of homeomorphisms of a compact
metric space.

Let .M; dist/ be a compact metric space. If f and g are two homeomorphisms of
the space M, we set


0. f ; g/ D max
x2M max

�
dist. f .x/; g.x//; dist. f�1.x/; g�1.x//

�
: (1.12)

It is easy to show that 
0 is a metric on the space of homeomorphisms of the space
M.

We denote by H.M/ the space of homeomorphisms of the space M with the
metric 
0; the topology induced by the metric 
0 is called the C0 topology.

It is not difficult to show that the metric space H.M/ is complete (see, for
example, [71]). At the same time, if we consider the topology on the space of
homeomorphisms induced by the standard uniform metric

max
x2M dist. f .x/; g.x//; (1.13)

then the resulting space is not necessarily complete (see [71]).
Let now M be a smooth closed n-dimensional manifold. To introduce the C1

topology on the space of diffeomorphisms of M, we assume that M is a submanifold
of the Euclidean space R

N (a different, equivalent, approach to definition of the C1

topology based on local coordinates is described in [60]).
No generality is lost assuming thatM is a submanifold of a Euclidean space since,

by the classical Whitney theorem, any smooth closed manifold can be embedded
into a Euclidean space of appropriate dimension.

If M is a submanifold of RN , for any point x 2 M we can identify the tangent
space TxM of M at x with a linear subspace of RN . Consider the metric dist on M
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induced by the Euclidean metric of the space R
N . For a vector v 2 TxM we denote

by jvj its norm as the norm in the space RN .
Let f and g be two diffeomorphisms of the manifold M. Define the value 
0. f ; g/

by the same formula (1.12) as for homeomorphisms of a compact metric space.
Take a point x of the manifold M and a vector v from the tangent space TxM. We

consider the vectors Df .x/v 2 Tf .x/M and Dg.x/v 2 Tg.x/M as vectors of the same
Euclidean space R

N . Hence, the following values are defined: jDf .x/v � Dg.x/vj
and

kDf .x/� Dg.x/k D max
v2TxM;jvjD1

jDf .x/v � Dg.x/vj:

Introduce the number


1. f ; g/ D 
0. f ; g/C max
x2M max

�kDf .x/ � Dg.x/k; kDf�1.x/ � Dg�1.x/k� :

Clearly, 
1 is a metric on the space of diffeomorphisms of the manifold M. We
denote by Diff 1.M/ the space of diffeomorphisms of M with the metric 
1; the
topology induced by the metric 
1 is called the C1 topology.

The standard reasoning shows that the topology on Diff 1.M/ does not depend on
the embedding of M into a Euclidean space and that .Diff 1.M/; 
1/ is a complete
metric space.

Remark 1.3.1 To explain why it is reasonable to include the term kDf�1.x/ �
Dg�1.x/k in the definition of the C1 topology on the space of diffeomorphisms,
let us consider the following example.

Let M D S1 with coordinate x 2 Œ0; 1/, fix a small t � 0 and define a mapping

ft W S1 ! S1

by the formula

ft.x/ D tx C x3 C ht.x/;

where ht is of class C1 in x,

ht.x/ D 0; x � 1=3;

and

ht.x/ D 3x.1 � x/� t; x � 2=3:

Then

ft.x/ D tx C x3; x � 1=3;
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and

ft.x/ D 1C t.x � 1/C .x � 1/3; x � 2=3:

Clearly, one can construct ht so that

f 0
t .x/ > 0

for small t > 0 and for all x (thus, any ft with such t is a diffeomorphism of S1) and

sup
0�x<1

�jht.x/ � h� .x/j C jh0
t.x/� h0

� .x/j
� ! 0; t; � ! 0: (1.14)

It follows from (1.14) that the family f ftg is a Cauchy sequence as t ! 0 with
respect to the metric


. f ; g/ D sup
0�x<1

�j f .x/� g.x/j C j f 0.x/ � g0.x/j�

but, clearly, its limit as t ! 0 is not a diffeomorphism of S1.
Thus, the space of diffeomorphisms of S1 with the metric 
 is not complete.
In what follows, if A is a subset of Diff 1.M/, then Int 1.A/ denotes the interior of

A in Diff 1.M/.

Definition 1.3.4 A diffeomorphism f is called structurally stable if there exists a
neighborhoodW of the diffeomorphism f in Diff 1.M/ such that any diffeomorphism
g 2 W is topologically conjugate to f (i.e., there exists a homeomorphism h W M !
M such that h ı f D g ı h).

We denote by SD.M/ the set of structurally stable diffeomorphisms in Diff 1.M/.
We agree to write Diff 1 and SD instead of Diff 1.M/ and SD.M/, respectively, if it
is not important for us to indicate the manifold M (as in the remark below).

Remark 1.3.2 Clearly, the set SD is open in Diff 1.

Definition 1.3.5 A diffeomorphism f is called ˝-stable if there exists a neighbor-
hood W of the diffeomorphism f in Diff 1.M/ such that for any diffeomorphism
g 2 W there exists a homeomorphism h W ˝. f / ! ˝.g/ such that

h ı f j˝. f / D g ı hj˝. f /:

We denote by ˝SD.M/ (or simply ˝SD) the set of ˝-stable diffeomorphisms.
The following statements are also obvious.

Remark 1.3.3

(1) The set ˝SD is open in Diff 1.
(2) SD � ˝SD.
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Now we pass to characterization of ˝-stability and structural stability.
S. Smale introduced the following condition.

Axiom A

(AAa) The nonwandering set ˝. f / is hyperbolic.
(AAb) Periodic points of f are dense in ˝. f /.

This condition played a very important role in the development of the theory
of structural stability. First we describe the structure of the nonwandering set of a
diffeomorphism that satisfies Axiom A. Smale proved the following statement.

Theorem 1.3.1 (Spectral Decomposition Theorem) If a diffeomorphism f satis-
fies Axiom A, then its nonwandering set can be represented in the form

˝. f / D ˝1 [ � � � [˝m; (1.15)

where the ˝i are disjoint, compact, invariant sets such that each of these sets
contains a dense positive semitrajectory. Representation of the form (1.15) is
unique.

The sets ˝i in representation (1.15) are called basic.
We can define analogs of stable and unstable manifolds for basic sets ˝i:

Ws.˝i/ D ˚
x 2 M W dist

�
f k.x/;˝i

� ! 0; k ! 1�

and

Wu.˝i/ D ˚
x 2 M W dist

�
f k.x/;˝i

� ! 0; k ! �1�
:

The following statement holds (one can find a proof, for example, in [60]).

Theorem 1.3.2 If a diffeomorphism f satisfies Axiom A, then

M D
m[

iD1
Ws.˝i/ D

m[

iD1
Wu.˝i/: (1.16)

Thus, any trajectory f k.x/ of a diffeomorphism that satisfies Axiom A tends to a
basic set as jkj ! 1.

Now we give definitions which we need to formulate necessary and sufficient
conditions of˝-stability and structural stability of diffeomorphisms.

Let ˝i and ˝j be two (not necessarily different) basic sets of a diffeomorphism
that satisfies Axiom A. We write ˝i ! ˝j if there is a point x … ˝. f / such that

f�k.x/ ! ˝i and f k.x/ ! ˝j; k ! 1:

Definition 1.3.6 We say that a diffeomorphism f has a 1-cycle if there exists a basic
set ˝i such that ˝i ! ˝i.
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We say that a diffeomorphism f has a k-cycle, k > 1, if there exist k different
basic sets ˝i1 ; : : : ;˝ik such that

˝i1 ! � � � ! ˝ik ! ˝i1 :

We say that a diffeomorphism satisfies the no cycle condition if it does not have
k-cycles with k � 1.

Theorem 1.3.3 A diffeomorphism f is ˝-stable if and only if f satisfies Axiom A
and the no cycle condition.

Definition 1.3.7 Let f be a diffeomorphism satisfying Axiom A. We say that
f satisfies the geometric strong transversality condition if stable and unstable
manifolds of nonwandering points are transverse, i.e., if p; q 2 ˝. f / and x 2
Wu. p/\ Ws. q/, then

TxW
u. p/C TxW

s.q/ D TxM: (1.17)

Remark 1.3.4 Usually, the condition introduced in Definition 1.3.7 is called the
strong transversality condition; we add the term geometric to distinguish this
condition and the analytic strong transversality condition introduced below, in
Definition 1.3.11.

Theorem 1.3.4 A diffeomorphism f is structurally stable if and only if f satisfies
Axiom A and the geometric strong transversality condition.

Theorems 1.3.3 and 1.3.4 are classical basic results of the theory of structural
stability. Nevertheless, sometimes it is more convenient to use different statements
which characterize ˝-stability and structural stability (as we do in this book). Let
us formulate some of them.

Recall that Per. f / denotes the set of periodic points of a diffeomorphism f .

Definition 1.3.8 A periodic point p is called hyperbolic if its trajectory O. p; f / is
a hyperbolic set. It is easy to see that if p is a periodic point of period m, then p
is hyperbolic if and only if the derivative Dfm.p/ does not have eigenvalues � with
j�j D 1.

Denote by HPD the set of diffeomorphisms f such that any periodic point of f is
hyperbolic.

Theorem 1.3.5 The sets Int 1.HPD/ and˝SD coincide.
Sometimes, the set Int 1.HPD/ is denoted by F and its elements are called star

systems.

Remark 1.3.5 It follows from Theorem 1.3.5 that to establish the ˝-stability of a
diffeomorphism f , it is enough to show that f and its C1-small perturbations do not
have nonhyperbolic periodic points.
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Definition 1.3.9 A diffeomorphism f 2 HPD is called Kupka–Smale if stable and
unstable manifolds of its periodic points are transverse. We denote by KSD the set
of Kupka–Smale diffeomorphisms.

Definition 1.3.10 A subset A of a topological space X is called residual if A
contains the intersection of a countable family of open and dense subsets of X. A
property P of elements of X is called generic if the set

fx 2 X W x satisfies Pg

is residual.

Theorem 1.3.6

(1) The set KSD is residual in Diff 1.
(2) The sets Int 1.KSD/ andSD coincide.

Remark 1.3.6 It follows from the second statement of Theorem 1.3.6 that to
establish that a diffeomorphism f is structurally stable, it is enough to show that
f has a C1 neighborhood belonging to KSD.

One more way of proving that a diffeomorphism is structurally stable is based on
the result of Theorem 1.3.7 (Mañé’s theorem) below. Let us start with a definition.

Fix a point x 2 M and consider the following two subspaces of TxM:

BC.x/ D
�
v 2 TxM W lim inf

k!1
ˇ̌
Df k.x/v

ˇ̌ D 0

�

and

B�.x/ D
�
v 2 TxM W lim inf

k!�1
ˇ
ˇDf k.x/v

ˇ
ˇ D 0

�
:

Definition 1.3.11 We say that a diffeomorphism f satisfies the analytic strong
transversality condition if

BC.x/C B�.x/ D TxM for any x 2 M: (1.18)

Theorem 1.3.7 A diffeomorphism f is structurally stable if and only if f satisfies
the analytic strong transversality condition.

A detailed proof of Theorem 1.3.7 is given in Chap. 2 of this book.
Let us define one more important for us property of invariant sets of diffeomor-

phisms.
Let � be a compact invariant set of a diffeomorphism f .

Definition 1.3.12 We say that f admits a dominated splitting on � if there exist
continuous families of linear subspaces E. p/ and F. p/ of the tangent spaces TpM
for p 2 � such that
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(DS1) E. p/˚ F. p/ D TpM; p 2 �;
(DS2) the subspaces E. p/ and F. p/ are Df -invariant (i.e., analogs of equalities

(HSD2.2) from Definition 1.3.1 with S. p/ and U. p/ replaced by E. p/ and F. p/
are satisfied);

(DS3) there exist numbers C > 0 and � 2 .0; 1/ such that

	
	Df kjE. p/

	
	 � 		Df�kjF. f k. p//

	
	 � C�k; p 2 �; k � 0: (1.19)

One more notion which we use in this book is the notion of a homoclinic point
(and homoclinic trajectory).

Let p be a hyperbolic periodic point of a diffeomorphism f .

Definition 1.3.13 A point q ¤ p such that

q 2 Wu. p/\ Ws. p/

is called a homoclinic point of the periodic point p.
A homoclinic point q of p is called transverse if the stable and unstable manifolds

Ws. p/ and Wu. q/ are transverse at q.

Theorem 1.3.8 Any neighborhood of a transverse homoclinic point contains an
infinite set of different hyperbolic periodic points of f .

Many notions and statements formulated above for diffeomorphisms have
analogs for flows generated by smooth vector fields. Let us give the corresponding
definitions and state theorems which we need in what follows (in the case of similar
objects, for example, such as the nonwandering set etc., we do not repeat the
definitions and leave details to the reader).

Let X be a smooth (of class C1) vector field on a smooth closed manifold M. Let

� W R � M ! M

be the flow generated by X and let, as above,

O.x; �/ D f�.t; x/ W t 2 Rg

be the trajectory of a point x 2 M in the flow �.
We denote by ˚.t; p/ the derivative (in p) of �.t; p/; thus,

˚.t; p/ W TpM ! T�.t;p/M:

Definition 1.3.14 We say that a set I � M is a hyperbolic set of the vector field X
(and its flow �) if I has the following properties:

(HSF1) the set I is compact and �-invariant;
(HSF2) there exist numbers C > 0 and � > 0 and linear subspaces S. p/ and U. p/

of the tangent space TpM defined for any point p 2 I such that
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(HSF2.1) S. p/˚ U. p/˚ fX. p/g D TpM, where fX. p/g is the subspace spanned
by the vector X. p/;

(HSF2.2)

˚.t; p/S. p/ D S.�.t; p// and ˚.t; p/U. p/ D U.�.t; p//; t 2 RI

(HSF2.3) if v 2 S. p/, then j˚.t; p/vj � C exp.��t/jvj for t � 0;
(HSF2.4) if v 2 U. p/, then j˚.t; p/vj � C exp.�t/jvj for t � 0.

Similarly to the case of diffeomorphisms, the main objects related to a hyperbolic
set I of a flow � are stable and unstable manifolds of its points (and its trajectories).

Definition 1.3.15 The stable and unstable manifolds of a point p are the sets
defined by the equalities

Ws. p/ D fx 2 M W dist.�.t; x/; �.t; p// ! 0; t ! 1g

and

Wu. p/ D fx 2 M W dist.�.t; x/; �.t; p// ! 0; t ! �1g;

respectively.
One uses these objects to define the stable and unstable manifolds of the

trajectory of a point p:

Ws.O. p; �// D
[

t2R
Ws.�.t; p//

and

Wu.O. p; �// D
[

t2R
Wu.�.t; p//:

The stable manifold theorem for flows states that if p is a point of a hyperbolic set
I as above and �.p/ D dimS. p/, then the structure of Ws.O. p; �// can be described
as follows:

• if p is a rest point (i.e., �.t; p/ 	 p; t 2 R), then Ws.O. p; �// D Ws. p/ is the
image of the Euclidean space R�.p/ under a C1 immersion;

• if O. p; �/ is a closed trajectory that is not a rest point (i.e., �.t; p/ is periodic
in t with a nonzero minimal period), then Ws.O. p; �// is the image under a C1

immersion of a fiber bundle over the circle with fibers R�.p/;
• if O. p; �/ is a trajectory such that �.t1; p/ ¤ �.t2; p/ for t1 ¤ t2, then

Ws.O. p; �// is the image of the Euclidean space R
�.p/C1 under a C1 immersion.

Similar statements hold for the unstable manifolds of trajectories of a hyperbolic
set.
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Now we recall the two basic definitions of the theory of structural stability of
vector fields, the definitions of ˝-stability and structural stability.

Let us start with the definition of the C1 topology on the space of vector fields
of class C1 on a smooth closed manifold M (everywhere below, a vector field is a
vector field of class C1).

Let X and Y be two such vector fields; define the number


1.X;Y/ D max
x2M

�
jX.x/� Y.x/j C

	
	
		
@X

@x
.x/ � @Y

@x
.x/

	
	
		

�
:

It is easily seen that 
1 is a metric on the space of vector fields of class C1; we
denote by X 1.M/ (or simply by X 1) the space of vector fields with this metric
(and with the induced topology which we call C1 topology). As in the case of
diffeomorphisms, if A is a subset of X 1.M/, then Int 1.A/ denotes the interior of
A in X 1.M/.

Remark 1.3.7 Let X and Y be two vector fields and let � and  be their flows,
respectively. Consider the diffeomorphisms f .x/ D �.1; x/ and g.x/ D  .1; x/. It
is not difficult to show that if 
1.X;Y/ ! 0, then 
1. f ; g/ ! 0 (see, for example,
Chap. 2 of [71]).

Let us denote by Per.X/ (or Per.�/) the set of rest points and closed trajectories
of X (and its flow �) and by ˝.X/ (˝.�/) the nonwandering set (the definition of
the nonwandering set for a flow is similar to that for a diffeomorphism, and we omit
it).

Definition 1.3.16 A vector field X (and its flow �) is called structurally stable
if there exists a neighborhood W of X in X 1.M/ such that for any vector field
Y 2 W, its flow  is topologically equivalent to the flow �, i.e., there exists
a homeomorphism h W M ! M that maps trajectories of X to trajectories of Y
preserving the orientation of trajectories.

Let us denote by SF.M/ (or SF) the set of structurally stable vector fields (and
flows).

Remark 1.3.8 Let us note that, in contrast to Definition 1.3.4, it is not assumed in
Definition 1.3.16 that h is a topological conjugacy of the flows � and  of X and Y
(the latter means that

h.�.t; x// D  .t; h.x//

for all t and x).
In fact, the homeomorphism h in Definition 1.3.16 must have the following

property: There exists a function � W R � M ! R such that

(1) for any x 2 M, the function �.�; x/ increases and maps R onto R;
(2) �.0; x/ D x for any x 2 M;
(3) h.�.t; x// D  .�.t; x/; h.x// for any .t; x/ 2 R � M.
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Clearly, the necessity of time reparametrization of shadowing trajectories in
the case of shadowing for flows (see Sect. 1.2) is caused by the same reasons as
the replacement of topological conjugacy by topological equivalence in Defini-
tion 1.3.16.

Definition 1.3.17 A vector field X (and its flow �) is called˝-stable if there exists
a neighborhoodW of X in X 1.M/ such that for any vector field Y 2 W, its flow is
˝-equivalent to the flow �, i.e., there exists a homeomorphism h W ˝.�/ ! ˝. /

that maps trajectories of ˝.�/ to trajectories of ˝. / preserving the orientation of
trajectories.

Let us denote by˝SF.M/ (or˝SF) the set of˝-stable vector fields (and flows).
The following condition (also introduced by Smale) is an analog of Axiom A for

the case of vector fields and flows.

Axiom A0

(AA0a) The nonwandering set ˝.�/ of the flow � is hyperbolic.
(AA0b) The set ˝.�/ is the union of two disjoint compact �-invariant sets Q1 and

Q2, where Q1 consists of a finite number of rest points, while Q2 does not contain
rest points, and points of closed trajectories are dense in Q2.

If a flow � satisfies Axiom A0, then the following analog of Theorem 1.3.1 holds.

Theorem 1.3.9 The nonwandering set ˝.�/ has a unique representation of the
form

˝.�/ D ˝1 [ � � � [˝m;

where the ˝i are disjoint, compact, �-invariant sets such that each of these sets
contains a dense positive semitrajectory.

As in the case of a diffeomorphism, the sets ˝i are called basic. A basic set of a
flow � that satisfies Axiom A0 is either a rest point or a closed invariant set that does
not contain rest points and such that points of closed trajectories are dense in it.

Let ˝i and˝j be two different basic sets of a flow � that satisfies Axiom A0. We
write ˝i ! ˝j if there exists a point x such that

�.t; x/ ! ˝i; t ! �1; and �.t; x/ ! ˝j; t ! 1:

The no cycle condition for a flow � literally repeats the corresponding condition for
a diffeomorphism.

The following statement is an analog of Theorem 1.3.3.

Theorem 1.3.10 A flow � is˝-stable if and only if � satisfies Axiom A0 and the no
cycle condition.

If a flow � satisfies Axiom A0, then hyperbolic trajectories �.t; p/; p 2 ˝.�/,
have stable and unstable manifolds Ws.O. p; �// and Wu.O. p; �//, respectively.
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Definition 1.3.18 We say that such a flow � satisfies the geometric strong transver-
sality condition if for any points p; q 2 ˝.�/, the manifolds Ws.O.q; �// and
Wu.O. p; �// are transverse at any point of their intersection.

The following statement is an analog of Theorem 1.3.4.

Theorem 1.3.11 A flow � is structurally stable if and only if � satisfies Axiom A0
and the geometric strong transversality condition.

Definition 1.3.19 A rest point or a closed trajectory of a flow � is called hyperbolic
if it is a hyperbolic set of �.

Remark 1.3.9 Condition under which a rest point or a closed trajectory is hyper-
bolic are well-known:

• a rest point p of a flow � generated by a vector field X is hyperbolic if and only
if any eigenvalue of the Jacobi matrix DX. p/ has nonzero real part;

• a closed trajectory 	 of a flow � is hyperbolic if and only if, for any transverse
section ˙ at any point of 	 , the zero point of the section (corresponding to
the intersection of 	 with ˙) is a hyperbolic fixed point of the Poincaré map
generated by ˙ (see [71] for details).

Denote by HPF the set of flows � such that any rest point and closed trajectory
of � is hyperbolic.

A complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct
(see Historical Remarks at the end of this section). Only the following partial analog
is valid.

Theorem 1.3.12 A nonsingular vector field in Int 1.HPF/ belongs to ˝SF.

Definition 1.3.20 A flow � 2 HPF is called Kupka–Smale if stable and unstable
manifolds of its rest points and closed trajectories are transverse. We denote by KSF

the set of Kupka–Smale flows.
The following statement is an analog of Theorem 1.3.6.

Theorem 1.3.13

(1) The set KSF is residual inX 1.
(2) The sets Int 1.KSF/ andSF coincide.

Let us describe one more approach for establishing the structural stability of a
flow.

Let, as above, � be the flow generated by a vector field X.

Definition 1.3.21 A point x 2 M is called a chain recurrent point of the flow
� if for any d;T > 0 there exists a d-pseudotrajectory g of � (in the sense of
Definition 1.2.1) such that g.0/ D x and g.t/ D x for some t � T.

In this case, similarly to Sect. 1.1, we write x! x.

Definition 1.3.22 The set

R.�/ D fx 2 M W x! xg
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of all chain recurrent points of � is called the chain recurrent set of �.
It is easy to show (compare with Sect. 1.1) that in our case (where M is a compact

manifold), the set R.�/ is nonempty, compact, and �-invariant.
In Sect. 2.7, we refer to the following two results.

Theorem 1.3.14 If X is a vector field of class C1 such that the chain recurrent set
R.�/ of its flow � is hyperbolic and stable and unstable manifolds of trajectories
inR.�/ are transverse, then X is structurally stable.

Now we formulate a theorem which allows one to show that components of the
set R.�/ are hyperbolic.

Let ˙ be a compact, �-invariant component of R.�/ that does not contain rest
points of �. Denote f .x/ D �.1; x/.

For a point x 2 ˙ , denote by P.x/ the orthogonal projection in TxM with kernel
spanned by X.x/ and by V.x/ the orthogonal complement to X.x/ in TxM. Consider
the normal subbundle V .˙/ of the tangent bundle TMj˙ which is the set of pairs
.x;V.x//, where x 2 ˙ .

Define a mapping 
 on the normal subbundle V .˙/ over˙ by


.x; v/ D . f .x/;B.x/v/ ; where B.x/ D P. f .x//Df .x/

(recall that f .x/ D �.1; x/).
The hyperbolicity of 
 on V .˙/ is defined similarly to the usual hyperbolicity

of a diffeomorphism on a compact invariant set. It means that there exist numbers
C > 0 and � 2 .0; 1/ and linear subspaces S. p/;U. p/ of V.p/ for p 2 ˙ such
that

• S. p/˚ U. p/ D V.p/;
• B. p/S. p/ D S. f . p// and B. p/U. p/ D U. f . p//;
• if v 2 S. p/, then

ˇ
ˇBk. p/v

ˇ
ˇ � C�kjvj for k � 0;

• if v 2 U. p/, then
ˇ
ˇBk. p/v

ˇ
ˇ � C��kjvj for k � 0.

Theorem 1.3.15 If 
 is hyperbolic on V .˙/, then˙ is a hyperbolic set of the flow
�.

If p is a rest point of a flow � (i.e., O. p; �/ D f pg), then we denote by Ws. p/ and
Wu. p/ (instead of Ws.O. p; �// etc.) its stable and unstable manifolds, respectively.

If 	 is a closed trajectory of a flow � (i.e., O. p; �/ D 	 for any p 2 	 ), then we
denote by Ws.	/ and Wu.	/ its stable and unstable manifolds, respectively.

Let p be a hyperbolic rest point (or let 	 be a hyperbolic closed trajectory) of a
flow �.

Definition 1.3.23 A point q ¤ p such that

q 2 Wu. p/\ Ws. p/

is called a homoclinic point of the rest point p.
A point q … 	 such that

q 2 Wu.	/ \ Ws.	/
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is called a homoclinic point of the closed trajectory 	 .
A homoclinic point q of 	 is called transverse if the stable and unstable manifolds

Ws. p/ and Wu.q/ are transverse at q.

Remark 1.3.10 Let us note that a homoclinic point q of a hyperbolic rest point p
cannot be transverse. Indeed, such a point q cannot be a rest point (otherwise, q D
p); hence, X.q/ ¤ 0 (where X is the vector field which generates the flow �).

Since

dimWs. p/C dimWu. p/ D dimM

and

0 ¤ X.q/ 2 TqW
s. p/\ TqW

u. p/;

the equality

TqW
s. p/C TqW

s. p/ D TqM

is impossible.
An analog of Theorem 1.3.8 for flows can be formulated as follows.

Theorem 1.3.16 If q is a transverse homoclinic point of a hyperbolic closed
trajectory 	 of a flow �, then any neighborhood of O.q; �/ contains an infinite set
of different hyperbolic closed trajectories of �.

Historical Remarks The general definition of a hyperbolic set is usually attributed
to D. V. Anosov [3].

The stable manifold theorem has a long history; usually, one refers to the names
of J. Hadamard and O. Perron (one can find an interesting discussion concerning the
theory of stable and unstable manifolds in D. V. Anosov’s monograph [3]; there he
mentiones also G. Darboux, H. Poincaré, and A. M. Lyapunov).

The notions of nonwandering points and other classical objects of the global
theory of dynamical systems were introduced and studied by G. Birkhoff [10].

The theory of structural stability originates from the A. A. Andronov and L. S.
Pontryagin’s paper [2] in which they defined a kind of such a property for vector
fields in a two-dimensional disk or on the two-dimensional sphere.

A very important role was played by S. Smale’s paper [95] in which he
introduced the notions of ˝-stability, Axioms A and A0, proved the spectral
decomposition theorem (Theorem 1.3.1), gave first sufficient conditions of ˝-
stability, etc.

Later, S. Smale proved the sufficiency of conditions of Theorem 1.3.3 [98].
The basic results of the theory of ˝-stability and structural stability were

formulated as conjectures by J. Palis and S. Smale [52].
The sufficiency statement in Theorem 1.3.4 was first proved by J. Robbin in [78]

for diffeomorphisms of class C2 and later by C. Robinson [81] in the general case.
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The necessity of conditions of Theorem 1.3.4 was established by R. Mañé in
[45]; later, the necessity of conditions of Theorem 1.3.5 was proved by J. Palis [53].

The set HP was studied by many authors; the set Int1.HP/ is sometimes denoted
by F (or F 1), and its elements are called star systems (both in the case of
diffeomorphisms and in the case of vector fields).

Theorem 1.3.5 was proved by Aoki [7] and S. Hayashi [25].
The complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct.

A vector field in Int1.HPF/ may fail to have a hyperbolic nonwandering set, as the
famous Lorenz attractor shows [22], or fail to have rest points and closed trajectories
dense in the nonwandering set [17], or, even if Axiom A0 is satisfied, still fail to
satisfy the no cycle condition [37].

R. Mañé proved Theorem 1.3.7 in [39].
Theorem 1.3.12 was proved S. Gan and L. Wen in [21].
Kupka–Smale systems were independently defined and studied by I. Kupka [31]

and S. Smale [94]. They proved Theorem 1.3.6 (1) and Theorem 1.3.13 (1).
Theorem 1.3.6 (2) follows from the results of [7] (where it was proved that

Int1.KSD/ � SD/ and [82], where the inverse inclusion was established.
The inclusion Int1.KSF/ � SF was proved by H. Toyoshiba [103] and C.

Robinson [80]; the inverse inclusion was established by C. Robinson [79] and S.
Hayashi [26].

Homoclinic points were first studied by H. Poincaré [75]; Theorem 1.3.8 (as well
as Theorem 1.3.13) belongs to S. Smale [96, 97].

The sufficiency of conditions of Theorem 1.3.10 was established by C. Pugh and
M. Shub [76]; the sufficiency of conditions of Theorem 1.3.11 was proved by C.
Robinson [79].

The necessity of conditions in these theorems follows from results of L. Wen
[106] and S. Hayashi [26].

It was shown by J. E. Franke and J. F. Selgrade in [18] that for a flow �, the set
R.�/ is hyperbolic if and only if � satisfies Axiom A0 and the no cycle condition.
Theorem 1.3.14 follows from this result combined with Theorem 1.3.11.

R. Sacker and G. Sell studied in detail dichotomies and invariant splittings in
linear differential systems [86]; in particular, they proved Theorem 1.3.15 in [85].

1.4 Hyperbolic Shadowing

As we wrote in the Preface, one of the main goals of this book is to study relations
between shadowing and basic notions of the theory of structural stability. It was
known that structural stability implies Lipschitz shadowing both for diffeomor-
phisms and vector fields; let us formulate this as a theorem.

Theorem 1.4.1 The following inclusions hold:

(1) SD � LSPD;
(2) SF � LSPF.
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We show in Chap. 2 that the inverse inclusions hold as well, so that structural
stability is equivalent to Lipschitz shadowing.

An important part in the proof of Theorem 1.4.1 is the statement that a diffeo-
morphism or a vector field has the Lipschitz shadowing property in a neighborhood
of its hyperbolic set.

In this section, we prove that a diffeomorphism has the finite Lipschitz shadowing
property in a neighborhood of a hyperbolic set (in this book, we refer to this
statement in Sect. 2.4). This is a classical result having a lot of different proofs. The
proof which we give here is of a geometric origin; its modification can be applied in
the absence of hyperbolicity as well (see, for example, [58]).

To simplify presentation, we consider a diffeomorphism f of Rn and its hyper-
bolic set �.

Our proof applies the existence of a so-called adapted (or Lyapunov) norm in
a neighborhood of � (with respect to this norm, the constant C in inequalities
(HSD2.3) and (HSD2.4) of Sect. 1.3 equals 1); a proof of this result can be found in
[71].

Lemma 1.4.1 Let � be a hyperbolic set of a diffeomorphism f . There exist
constants � � 1 and � 2 .0; 1/ such that for any " > 0 we can find a neighborhood
W of the set � having the following property. There exists a positive constant ı,
a C1 norm j � jx for x 2 W, and continuous (but not necessarily Df -invariant)
extensions S0 and U0 of the families S and U of the given hyperbolic structure to the
neighborhoodW such that

(1) S0. p/˚ U0. p/ D R
n; p 2 W;

(2) if p; q 2 W, j f . p/ � qj � ı, and P.q/ is the projection onto S0.q/ parallel to
U0.q/, then the mapping P.q/Df . p/ is a linear isomorphism between S0. p/ and
S0.q/ (respectively, if Q.q/ D Id�P.q/, then the mapping Q.q/Df . p/ is a linear
isomorphism between U0. p/ and U0.q/) and the following inequalities hold:

jP.q/Df . p/vjq � �jvjp and jQ.q/Df . p/vjq � "jvjp; v 2 S0. p/; (1.20)

and

�jQ.q/Df . p/vjq � jvjp and jP.q/Df . p/vjq � "jvjp; v 2 U0. p/I (1.21)

(3)

1

�
jvjp � jvj � �jvjp; p 2 W; v 2 R

nI (1.22)

(4)

kP. p/k; kQ. p/k � �; p 2 W (1.23)

(in inequalities (1.23), we have in mind the operator norm related to the norm
j:jp).
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Remark 1.4.1

(1) Since the adapted norm is Lipschitz equivalent to the standard norm (see
inequalities (1.22)), f has (or does not have) the finite Lipschitz shadowing
property with respect to these norms simultaneously. For that reason, to simplify
presentation, we assume that the standard Euclidean norm is adapted. Similarly,
we write S. p/ and Q. p/ instead of S0. p/ and U0. p/ for p 2 W.

(2) In addition, we may assume that the neighborhoods W corresponding to small
enough " are subsets of a fixed closed neighborhood of �.

This allows us to assume that the norm kDf . p/k is bounded for p 2 W and to
use uniform estimates of the remainder term of the first-order Taylor formula for f
in the proof of property (P04) and in formula (1.35).

Thus, we assume that

kDf . p/k � M0; p 2 W;

and set M D �.1C 12M0/.
Take

L D 2�=.1� �/ (1.24)

and note that

L > �L C � > 1 and L =� > L C �: (1.25)

There exists an " > 0 such that

L > � C "M.1C �/L ; (1.26)

L > �L C � C ".1C 2�/L : (1.27)

Note that (1.27) implies the inequality

L =� > L C � C ".1C 2�/L : (1.28)

Let W be a neighborhood of� corresponding by Lemma 1.4.1 to this ".
Our main result in this section is as follows.

Theorem 1.4.2 The diffeomorphism f has the finite Lipschitz shadowing property
in W.

Proof First we define several geometric objects related to the introduced structure.
Fix a point p in W; we represent points q close to p in the form p C v and define

our objects by imposing conditions on the projections P.p/v and Q. p/v.



1.4 Hyperbolic Shadowing 29

Let �0 and� be positive numbers; consider the sets

R.�0; �; p/ D ˚
q D p C v W jP. p/vj � �0; jQ. p/vj � �

� I

we write R.�; p/ instead of R.�;�; p/. Let

V.�; p/ D fq D p C v 2 R.�; p/ W jQ. p/vj D �g

and

T.�; p/ D fq D p C v 2 R.�; p/ W Q. p/v D 0g:

Let us note several obvious geometric properties of the introduced objects.

(P1) V.�; p/ is not a retract of R.�; p/.
(P2) V.�; p/ is a retract of R.�; p/ n T.�; p/.
(P3) If �0 > �, then there exists a retraction

� W R.�0; p/ ! R.�; p/

such that if

q D p C v and Q. p/v ¤ 0;

then

�.q/ D p C v0; where Q. p/v0 ¤ 0:

Now we prove several properties of the images of the introduced sets under
f .

(P4) There exists a�1 > 0 such that if p; r; f . p/ 2 W,� � �1, and jr�f . p/j < �,
then

f .R.�; p// � R.M1�; r/ (1.29)

and

f�1.R.�; r// � R.M1�; p/; (1.30)

where M1 D 4�M0.
We prove only the part of property (P4) related to inclusion (1.29); the part

related to inclusion (1.30) is proved by a similar reasoning (possibly, with
different constants M1 and �1).
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First we prove an auxiliary statement:
(P40) There exists a �1 > 0 such that if p; f . p/ 2 W and� � �1, then

f .R.�; p// � R.M1�; f . p//; (1.31)

where M1 D 4�M0.
Indeed, take a point q D p C v 2 R.�; p/; then

jvj � jP. p/vj C jQ. p/vj � 2�:

Since

f .q/ D f . p/C Df . p/v C o. p; v/;

where

jo. p; v/j=jvj ! 0; jvj ! 0;

uniformly in p and kDf . p/k � M0, there exists a�1 > 0 such that if� � �1, then

j f .q/� f . p/j � 2M0jvj; jvj � 2�:

If f .q/ D f . p/C w, then

jP. f . p//wj; jQ. f . p//wj � 2�M0jvj � 4�M0�;

which proves (P40) with M1 D 4�M0.
Now we prove (1.29). Since the projections P and Q are uniformly continuous,

we can reduce, if necessary,�1 so that

kP.x/� P. y/k; kQ.x/ � Q. y/k < 1; x; y 2 W; jx � yj < �1: (1.32)

Let � � �1. Take a point q 2 f .R.�; p// and let

q D f . p/C v D r C w:

Then jv � wj < � and

jP. f . p//vj; jQ. f . p//vj � M1�

by (P40).
Let us estimate

jP.r/wj � jP.r/w � P.r/vj C jP.r/v � P. f . p//vj C jP. f . p//vj �

� ��C 2M1�C M1� D .� C 3M1/� D M�
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(estimating the second term, we take the inequality jvj � 2M1� and (1.32) into
account).

A similar estimate holds for jQ.r/wj, which proves (1.29).
Of course, without loss of generality, we may assume that

M � 1: (1.33)

Now we fix a

d0 2 .0;�1=L /

with the following properties:

(1) if p; f . p/; r 2 W and jr � f . p/j < d0, then inequalities (1.20) and (1.21) are
satisfied with the chosen ";

(2) in the representation

f . p C v/ D f . p/C Df . p/v C o. p; v/; (1.34)

the estimate

jo. p; v/j � "jvj; jvj � 2ML d0; (1.35)

holds.

Now we prove one more statement.

(P5) If d � d0, p; f . p/; r 2 W, jr � f . p/j < d, and� D L d, then

f .T.M�; p// \ V.�; r/ D ;; (1.36)

f .T.�; p// � Int.R.�; r//; (1.37)

f .R.�; p//\ @R.�; r/ � V.�; r/; (1.38)

and

f .V.�; p// \ R.�; r/ D ;: (1.39)

First we prove relation (1.36).
If q D p C v 2 T.M�; p/, then v D P.p/v 2 S. p/, jP.p/vj � M� D ML d,

and Q. p/v D 0. Hence, it follows from representation (1.34) and estimates (1.26)
and (1.35) that

jQ.r/. f .q/� r/j � jQ.r/. f . p/� r/j C jQ.r/Df . p/P. p/vj C jQ.r/o. p; v/j �

� �d C "ML d C �"ML d D .� C "M.1C �/L /d < L d D �;
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which proves relation (1.36).
Let us prove relations (1.37) and (1.38).
First we note that inequality (1.33) implies the inclusion

T.�; p/ � T.M�; p/;

and it follows from the above inequality that

jQ.r/. f .q/� r/j < �; q 2 T.�; p/: (1.40)

Now we consider a point q D p C v 2 R.�; p/, represent v D P.p/v C Q. p/v,
and estimate

jP.r/. f .q/� r/j � jP.r/. f . p/� r/j C jP.r/Df . p/P. p/vjC

CjP.r/Df . p/Q. p/vj C jP.r/o. p; v/j �

� �d C �L d C "L d C 2�"L d D .� C �L C ".1C 2�/L /d < L d D �

(here we refer to the estimate jvj � 2L d and to inequality (1.27)).
The above inequality proves relation (1.38). Combining it with inequality (1.40),

we get a proof of relation (1.37).
Finally, we prove relation (1.39). If q D p C v 2 V.�; p/, then jP.p/vj � � D

L d and jQ. p/vj D � D L d. Then

jQ.r/. f .q/� r/j �

� jQ.r/Df . p/.P. p/vC Q. p/v/j � jQ.r/. f . p/� r/j � jQ.r/o. p; v/j �

� jQ.r/Df . p/Q. p/vj � jQ.r/Df . p/Q. p/vj � jQ.r/. f . p/� r/j � jQ.r/o. p; v/j �

� L d=�� "L d � �d � 2"�L d D .L =� � � � ".1C 2�//d > L d D �

(here we refer to inequality (1.28)). This proves relation (1.39).
Now we consider points p0; : : : ; pm 2 W such that

f . pk/ 2 W; k D 0; : : : ;m � 1; (1.41)

and

j f . pk/� pkC1j < d � d0; k D 0; : : : ;m � 1;

and prove that there exists a point r 2 R.�; p0/ such that

f k.r/ 2 R.�; pk/; k D 1; : : : ;m; (1.42)
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where� D L d.
Let us note that condition (1.41) is not a real restriction since we can guarantee

it reducing W, if necessary.
For brevity, we denote Rk D R.�; pk/;Vk D V.�; pk/;Tk D T.�; pk/.
Consider the sets

Ak D Rk n
m\

lDkC1
f�.l�k/.Int.Rl//; k D 0; : : : ;m � 1:

It follows from equality (1.39) that

f .Vk/\ RkC1 D ;:

Hence, Vk � Ak.
We claim that there exist retractions


k W Ak ! Vk; k D 0; : : : ;m � 1:

This is enough to prove our statement since the existence of 
0 means that

m\

lD0
f�l.Int.Rl// ¤ ;

(otherwise there exists a retraction of R0 to V0, which is impossible by property
(P1)), which, in turn, means that there exists a point r 2 R0 such that

f k.r/ 2 Rk; k D 0; : : : ;m;

or

ˇ̌
f k.r/� pk

ˇ̌ � 2�L d; k D 0; : : : ;m:

Thus, our claim implies the finite Lipschitz shadowing property of f in W with
constants d0 and 2�L .

Let us prove our claim. The existence of 
m�1 is obvious since inclusion (1.37)
implies that

Tm�1 � f�1.Int.Rm//;

and hence,

Rm�1 n f�1.Int.Rm// � Rm�1 n Tm�1;

while Vm�1 is a retract of the latter set by property (P2).
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Let us assume that the existence of retractions 
kC1; : : : ; 
m�1 has been proved.
Let us prove the existence of 
k.

The definition of the sets Ak implies that

Ak \ f�1.RkC1/ � f�1.AkC1/ (1.43)

since

f .Ak/\ f�.l�k/C1..Int.Rl// D ; for l � k C 2:

Define a mapping � on Ak by setting

�.q/ D f�1 ı 
kC1 ı f .q/; q 2 Ak \ f�1.RkC1/;

and

�.q/ D q; q 2 Ak n f�1.RkC1/:

Inclusion (1.43) shows that the mapping � is properly defined.
Let us show that this mapping is continuous. Clearly, it is enough to show that


kC1.r/ D r for r 2 f .Ak \ f�1.@RkC1//.
For this purpose, we note that

f .Ak \ f�1.@RkC1// D f .Ak/\ @RkC1 � f .Rk/ \ @RkC1 � VkC1

(we refer to inclusion (1.38)) and 
kC1.r/ D r for r 2 VkC1.
Clearly, � maps Ak into the set

Bk D ŒRk n f�1.RkC1/� [ f�1.VkC1/: (1.44)

Since d < �1 by our choice of d0, it follows from property (P4) that

Bk � R.M�; pk/:

Let us consider a retraction

� W R.M�; pk/ ! Rk

given by property (P3).
If

q D pk C v 2 f�1.VkC1/ n Rk;
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then q … T.M�; pk/ by (1.36); thus, Q. p/v ¤ 0. It follows from property (P3) that
in this case,

�.q/ 2 Ck WD Rk n T.�; pk/:

If

q 2 Rk n f�1.RkC1/;

then the above inclusion follows from (1.37).
Condition (P2) implies that there exists a retraction


 W Ck ! Vk:

It remains to note that �.q/ D q for q 2 Vk due to relation (1.39). Thus,


k D 
 ı � ı � W Ak ! Vk

is the required retraction. ut
Historical Remarks There exist several proofs of the inclusion

SD � SSPD

based on different ideas.
This statement was proved by A. Morimoto [46], K. Sawada [92], and C.

Robinson [83] (note that the proof in [83] is not complete).
As far as the authors know, the first statement of Theorem 1.4.1 was first proved

in the book [61] of the first author, and the second statement was proved in his paper
[62].

Lemma 1.4.1 belongs to D. V. Anosov [3].
As was mentioned in Historical Remarks to Sect. 1.1, both classical proofs of

the shadowing property in a neighborhood of a hyperbolic set of a diffeomorphism
given by D. V. Anosov in [4] and R. Bowen in [12] show that shadowing is Lipschitz.

Our proof of Theorem 1.4.2 published in the joint paper [58] of the first author
and A. A. Petrov mostly follows the ideas of the joint paper [63] of the first author
and O. B. Plamenevskaya.



Chapter 2
Lipschitz and Hölder Shadowing and Structural
Stability

In this chapter, we give either complete proofs or schemes of proof of the following
main results:

• If a diffeomorphism f of a smooth closed manifold has the Lipschitz shadowing
property, then f is structurally stable (Theorem 2.3.1);

• a diffeomorphism f has the Lipschitz periodic shadowing property if and only if
f is ˝-stable (Theorem 2.4.1);

• if a diffeomorphism f of class C2 has the Hölder shadowing property on finite
intervals with constants L ;C; d0; �; !, where � 2 .1=2; 1/ and � C ! > 1, then
f is structurally stable (Theorem 2.5.1);

• there exists a homeomorphism of the interval that has the Lipschitz shadowing
property and a nonisolated fixed point (Theorem 2.6.1);

• if a vector field X has the Lipschitz shadowing property, then X is structurally
stable (Theorem 2.7.1).

The structure of the chapter is as follows.
We devote Sects. 2.1–2.3 to the proof of Theorem 2.3.1. In Sect. 2.1, we prove

theorems of Maizel’ and Pliss relating the so-called Perron property of difference
equations and hyperbolicity of sequences of linear automorphisms, Sect. 2.2 is
devoted to the Mañé theorem (Theorem 1.3.7), and in Sect. 2.3, we reduce the proof
of Theorem 2.3.1 to results of the previous two sections.

Theorem 2.4.1 is proved in Sect. 2.4; Theorem 2.5.1 is proved in Sect. 2.5;
Theorem 2.6.1 is proved in Sect. 2.6.

Finally, Sect. 2.7 is devoted to the proof of Theorem 2.7.1.

© Springer International Publishing AG 2017
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
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2.1 Maizel’ and Pliss Theorems

Let I D fk 2 Z W k � 0g. Let A D fAk; k 2 Ig be a sequence of linear
isomorphisms

Ak W R
n ! R

n:

We assume that there exists a constant N � 1 such that

kAkk; kA�1
k k � N; k 2 I: (2.1)

We relate to this sequence two difference equations, the homogeneous one,

xkC1 D Akxk; k 2 I; (2.2)

and the inhomogeneous one,

xkC1 D Akxk C fkC1; k 2 I: (2.3)

Definition 2.1.1 We say that the sequence A has the Perron property on I if for
any bounded sequence fk, Eq. (2.3) has a bounded solution.

Set

F.k; l/ D
8
<

:

Ak�1 ı � � � ı Al; k > lI
Id; k D lI
A�1
k ı � � � ı A�1

l�1; k < l:

Definition 2.1.2 We say that the sequence A is hyperbolic on I if there exist
constants C > 0 and � 2 .0; 1/ and projections Pk;Qk; k 2 I, such that if Sk D PkR

n

and Uk D QkR
n, then

Sk ˚ Uk D R
nI (2.4)

AkSk D SkC1; AkUk D UkC1I (2.5)

jF.k; l/vj � C�k�ljvj; v 2 Sl; k � lI (2.6)

jF.k; l/vj � C�l�kjvj; v 2 Ul; k � lI (2.7)

kPkk; kQkk � C: (2.8)

In the relations above, k; l 2 I.
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Our first main result in this section is the following statement.

Theorem 2.1.1 (Maizel’) If the sequence A has the Perron property on I, then
this sequence is hyperbolic on I.

Remark 2.1.1 Of course, it is well known that a hyperbolic sequence A has the
Perron property on I (see Lemma 2.1.6 below), so the properties of A in the above
theorem are equivalent. We formulate it in the above form since this implication is
what we really need (and since precisely this statement was proved by Maizel’).

Proof Thus, we assume that the sequence A has the Perron property on I.
Let us denote by B the Banach space of bounded sequences x D fxkg, where

xk 2 R
n and k 2 I, with the usual norm

kxk D sup
k2I

jxkj:

A sequence x 2 B that satisfies Eq. (2.2) (or (2.3)) will be called a B-solution
of the corresponding equation.

Denote

V1 D fx0 W x D .x0; x1; : : : / is a B � solution of (2.2)g :

Since Eq. (2.2) is linear and B is a linear space, V1 is a linear space as well.
Denote by V2 the orthogonal complement of V1 in R

n and by P the orthogonal
projection to V1.

The difference of any two B-solutions of Eq. (2.3) with a fixed f 2 B is a
B-solution of Eq. (2.2). It is easily seen that for any f 2 B there exists a unique
B-solution of Eq. (2.3) (we denote it T. f /) such that .T. f //0 2 V2.

The defined operator

T W B ! B

plays an important role in the proof. Clearly, the operator T is linear.

Lemma 2.1.1 The operator T is continuous.

Proof Since we know that the operator T is linear, it is enough to show that the
graph of T is closed; then our statement follows from the closed graph theorem.

Thus, assume that

fn D . f n0 ; : : : / 2 B; yn D . yn0; : : : / 2 B;

yn D T. fn/, fn ! f , and yn ! y D . y0; : : : / in B.
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Then, clearly, y0 2 V2.
Fix k 2 I and pass in the equality

ynkC1 D Aky
n
k C f nkC1

to the limit as n ! 1 to show that

ykC1 D Akyk C fkC1:

Hence, y D T. f /, and the graph of T is closed. ut
Lemma 2.1.1 implies that there exists a constant r > 0 such that

kT. f /k � rk fk; f 2 B: (2.9)

Without loss of generality, we assume that

rN � 1; (2.10)

where N is the constant in (2.1).
Denote

X.k/ D
8
<

:

F.k; 0/; k > 0I
Id; k D 0I
F.0;�k/; k < 0:

Straightforward calculations show that the formula

yk D
kX

uD0
X.k/PX.�u/fu �

1X

uDkC1
X.k/.Id � P/X.�u/fu (2.11)

represents a solution of Eq. (2.3) provided that the series in the second summand
converges.

We can obtain a shorter variant of formula (2.11) by introducing the “Green
function”

G.k; u/ D
�
X.k/PX.�u/; 0 � u � kI
�X.k/.Id � P/X.�u/; 0 � k < u:

Then formula (2.11) becomes

yk D
1X

uD0
G.k; u/fu: (2.12)



2.1 Maizel’ and Pliss Theorems 41

Lemma 2.1.2 Let k0; k1; k 2 I and let � 2 R
n be a nonzero vector with j�j � 1.

Then

jX.k/P�j
kX

uDk0

jX.u/�j�1 � r; 0 � k0 � k; (2.13)

and

jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1 � 2rN; 0 � k � k1: (2.14)

Proof Without loss of generality, we may take f0 D 0. Fix l0; l1 2 I such that l0 � l1.
Take a sequence f with fi D 0; i > l1. Then formula (2.12) takes the form

yl D
l1X

uD0
G.l; u/fu:

For l � l1, all the indices u in this sum do not exceed l1, and we apply the first
line in the definition of G. Thus,

yl D X.l/P
l1X

uD0
X.�u/fu:

Hence, if l � l1, then yl is the image under X.l/ of a vector from V1 that does not
depend on l. It follows that the sequence y (with the exception of a finite number of
entries) is a solution of Eq. (2.2) with initial value from V1. Hence, y 2 B. Since
f0 D 0,

y0 D �.Id � P/
l1X

uD0
X.�u/fu 2 V2:

Thus, y D T. f /, and k yk � rk fk.
Now we specify the choice of f . Let xi D X.i/�; since � ¤ 0, x ¤ 0 as well. Set

fi D
8
<

:

0; i < l0I
xi=jxij; l0 � i � l1I
0; i > l1:

Since k fk D 1, inequality (2.9) implies that

ˇ
ˇ
ˇ
ˇ̌

l1X

uDl0

G.k; u/xi=jxij
ˇ
ˇ
ˇ
ˇ̌ D j ylj � r: (2.15)
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We take l D l1 D k and l0 D k0 in (2.15) and conclude that

r �
ˇ
ˇ
ˇ
ˇ̌

kX

uDk0

G.k; u/xu=jxuj
ˇ
ˇ
ˇ
ˇ̌ D

ˇ
ˇ
ˇ
ˇ̌

kX

uDk0

X.k/PX.�u/X.u/�=jX.u/�j
ˇ
ˇ
ˇ
ˇ̌D

D jX.k/P�j
kX

uDk0

jX.u/�j�1;

which is precisely inequality (2.13).
We prove inequality (2.14) using a similar reasoning.
First we consider 0 < k � k1. We take l D k � 1, l0 D k, and l1 D k1 in (2.15)

and get the estimates

r �
ˇ
ˇ
ˇ
ˇ
ˇ

k1X

uDk

G.k; u/xu=jxuj
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

k1X

uDk

X.k � 1/.Id � P/X.�u/X.u/�=jX.u/�j
ˇ
ˇ
ˇ
ˇ
ˇ
D

D jX.k � 1/.Id � P/�j
k1X

uDk

jX.u/�j�1 D jA�1
k�1X.k/.Id � P/�j

k1X

uDk

jX.u/�j�1 �

� kAk�1k�1jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1:

Applying inequality (2.1), we see that in this case,

jX.k/.Id � P/�j
k1X

uDk

jX.u/�j�1 � rN:

Now we consider 0 D k < k1 and apply the previous estimate with k D 1:

jX.0/.Id � P/�j
k1X

uD0
jX.u/�j�1 D jX.0/.Id � P/�j

k1X

uD1
jX.u/�j�1 C j.Id � P/�j �

� kA0k�1jX.1/.Id � P/�j
k1X

uD1
jX.u/�j�1 C 1 � rN C 1 � 2rN

(recall that j�j � 1 and rN � 1).
For k D k1 D 0, our inequality is trivial. ut
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Lemma 2.1.3 Let k0; k1; k; s 2 I and let � 2 R
n be a unit vector. Denote

� D 1 � .2rN/�1:

Then the following inequalities are satisfied:
if P� ¤ 0, then

sX

uDk0

jX.u/P�j�1 � �k�s
kX

uDk0

jX.u/P�j�1; k0 � s � kI (2.16)

if .Id � P/� ¤ 0, then

k1X

uDs

jX.u/.Id � P/�j�1 � �s�k
k1X

uDk

jX.u/.Id � P/�j�1; k � s � k1: (2.17)

Proof Denote

�i D
iX

uDk0

jX.u/P�j�1; i � k0;

and

 i D
k1X

uDi

jX.u/.Id � P/�j�1; i � k1:

Let us prove inequality (2.16). Since P� ¤ 0, �i > 0. Clearly, �i � �i�1 D
jX.i/P�j�1. Replacing � by P� (and noting that jP�j � 1) in (2.13), we see that

�i

�i � �i�1 � r � 2rN:

Hence,

.2rN/�1 � �i � �i�1
�i

D 1 � �i�1
�i
;

and

�i�1 � .1 � .2rN/�1/�i:

Iterating this inequality, we conclude that

�s � .1 � .2rN/�1/k�s�k; k � s:
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We prove inequality (2.17) similarly. We note that  i > 0 and that  i �  iC1 D
jX.i/.Id � P/�j�1. After that, we replace � by .Id � P/� in (2.14) and show that

 iC1 � .1 � .2rN/�1/ i:

Iterating this inequality, we get (2.17). ut
Now we prove that the sequence A is hyperbolic.

Lemma 2.1.4 The following inequalities are satisfied:

kX.k/PX.�s/k � r2�k�s; 0 � s � k;

and

kX.k/.Id � P/X.�s/k � 2r2N2�s�k; 0 � k � s:

Proof Fix a natural s and a unit vector �. Define a sequence y D fykg by

yk D
� �X.k/.Id � P/X.�s/�; 0 � k < sI
X.k/PX.�s/�; k � s:

The sequence y coincides (up to a finite number of terms) with a solution of
Eq. (2.2) with initial point from V1; hence, y 2 B.

Now we define a sequence f by

fk D
�
0; k ¤ sI
�; k D s:

It is easily seen that the above sequence y is a solution of Eq. (2.3) with
inhomogeneity f . Hence, y D T. f /, and k yk � r.

The definition of y implies that

jX.k/PX.�s/�j D j ykj � r; 0 � s � k:

Since � is an arbitrary unit vector, kX.k/PX.�s/k � r for 0 � s � k.
We replace � by the solution of the equation xs D X.s/� to show that

jX.k/P�j D jX.k/PX.�s/xsj � rjxsj; 0 � s � k: (2.18)

Using inequalities (2.13), (2.16) with k0 D s, and (2.18) with k D s, we see that

jX.k/PX.�s/xsj D jX.k/P�j � r

 
kX

uDs

jX.u/P�j�1
!�1

�

� r
�
��.k�s/jX.s/P�j�1��1 D r�k�sjX.s/P�j � r2�k�sjxsj:
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If P� D 0, then the resulting estimate is obvious. Since xs D X.s/� and X.s/ is
an isomorphism, we get the following estimate for the operator norm:

kX.k/PX.�s/k � r2�k�s; 1 � s � k:

In this reasoning, we have used inequality (2.18) with s D k. It is also true for
s D k D 0 since kPk � 1. Therefore, the first estimate of our lemma is proved for
0 � s � k.

The proof of the second estimate is quite similar. The only difference is as
follows. We cannot use an analog of (2.18) with k D s since k ¤ s in the definition
of the sequence y. The following inequality is proved by the same reasoning as
above:

jX.k/.Id � P/�j D jX.k/.Id � P/X.�s/xsj � rjxsj; s > k:

In the case k D s � 1, we write

jX.s/.Id � P/�j D jAs�1X.s � 1/.Id � P/X.�s/xsj �

� kAs�1kjX.s � 1/.Id � P/X.�s/xsj � rNjxsj;

and then repeat the reasoning of the first case. ut
Lemma 2.1.4 shows that if we take constants C0 D r2N and � D � and

projections

Pk D X.k/PX.�k/ and Qk D X.k/.Id � P/X.�k/;

then the operators F.k; l/ generated by the sequence A satisfy estimates (2.6) and
(2.7) with C D C0 and �. Clearly, relations (2.4) and (2.5) are valid.

Thus, to show that A is hyperbolic on I, it remains to prove the following
statement.

Lemma 2.1.5 There exists a constant C D C.N;C0; �/ � C0 such that inequalities
(2.8) are fulfilled.

Proof Let L1 and L2 be two linear subspaces of Rn. Introduce the value

†.L1;L2/ D min jv1 � v2j;

where the minimum is taken over all pairs of unit vectors v1 2 L1; v2 2 L2.
We claim that there exists a constant C1 D C1.N;C0; �/ such that

†.Sk;Uk/ � C1; k 2 I: (2.19)
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Fix an index k 2 I, take unit vectors v1 2 Sk and v2 2 Uk for which †.Sk;Uk/ D
jv1 � v2j, and denote

˛l D jF.l; k/.v1 � v2/j; l � k:

Inequalities (2.6) and (2.7) imply that

˛l � jF.l; k/v2j � jF.l; k/v1j � �k�l=C0 � C0�
l�k:

Hence, there exists a constant m D m.C0; �/ such that

˛kCm � 1:

At the same time, it follows from (2.1) that

˛kCm � Nm˛k:

Combining the above two inequalities, we see that

†.Sk;Uk/ D ˛k � C1.N;C0; �/ WD N�m.C0;�/;

which proves (2.19).
Clearly, if v1 and v2 are two unit vectors, then the usual angle hv1; v2i satisfies

the relation

jv1 � v2j D 2 sin.hv1; v2i=2/;

and we see that estimate (2.19) implies the existence of ˇ D ˇ.N;C0; �/ such that
if 	 is the usual angle between Sk and Uk, then

sin.	/ � ˇ:

Now we take an arbitrary unit vector v 2 R
n and denote vs D Pkv. If 	s is the angle

between v and vs, then the sine law implies that

jvj
sin.	/

D jvsj
sin.	0/

� jvsj;

and we conclude that

jvsj D jPkvj � 1=ˇ;
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which implies that

kPkk � C D max.C0; 1=ˇ/:

A similar estimate holds for kQkk. ut
As we said above, the following statement holds.

Lemma 2.1.6 A hyperbolic sequenceA has the Perron property on I.

Proof Assume that the sequence A has properties stated in relations (2.4)–(2.8).
Take a sequence

f D f fk 2 R
n W k 2 Ig

such that k fk D � < 1 and consider the sequence y defined by formula (2.11).
Then

jX.k/PX.�u/fuj � C�k�u�; 0 � u � k;

and

jX.k/.Id � P/X.�u/fuj � C�u�k�; k C 1 � u < 1;

which implies that the second term in (2.11) is a convergent series (hence, the
sequence y is a solution of (2.3)) and the estimate

k yk � C.1C �C �2 : : : /� C C.�C �2 : : : /� D 1C �

1� �
C�

holds. ut
Now we pass to the Pliss theorem.
This time, I D Z, and we denote IC D fk 2 Z W k � 0g and I� D fk 2 Z W

k � 0g.
Now A is a sequence of linear isomorphisms

Ak W R
n ! R

n; k 2 I D Z:

It is again assumed that an analog of inequalities (2.1) holds, and we consider
difference equations (2.2) and (2.3).

The Perron property of (2.2) on Z is defined literally as in the case of I D fk 2
Z W k � 0g.

It follows from the Maizel’ theorem and its obvious analog for the case of I D
fk 2 Z W k � 0g that the sequence A is hyperbolic on both IC and I� (the definition
of hyperbolicity in the case of I� is literally the same).
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Without loss of generality, we assume that C and � are the same for the
hyperbolicity on IC and I� and denote by SC

k ;U
C
k ; k 2 IC; and S�

k ;U
�
k ; k 2 I�;

the corresponding subspaces of Rn.

Theorem 2.1.2 (Pliss) IfA has the Perron property on I D Z, then the subspaces
U�
0 and SC

0 are transverse.

Remark 2.1.2 In fact, Pliss proved in [74] that the transversality of U�
0 and SC

0 is
equivalent to the Perron property of A on I D Z, but we need only the implication
stated above.

Remark 2.1.3 Note that there exist sequences A that are separately hyperbolic on
IC and I� for which the subspaces U�

0 and SC
0 are transverse and such that these

sequences are not hyperbolic on I D Z. It is easy to construct such a sequence with
SC
k D R

n;UC
k D f0g; k 2 IC; and S�

k D f0g;U�
k D R

n; k 2 I� (we leave details to
the reader).

Proof To get a contradiction, assume that the subspaces U�
0 and SC

0 are not
transverse. Then there exists a vector x 2 R

n such that

x ¤ y1 C y2 (2.20)

for any y1 2 U�
0 and y2 2 SC

0 .
Since the subspaces UC

0 and SC
0 are complementary (see (2.4)), we can represent

x D � C �; � 2 SC
0 ; � 2 UC

0 :

Then it follows from (2.20) that

� ¤ z1 C z2 (2.21)

for any z1 2 SC
0 and z2 2 U�

0 . We may assume that j�j D 1.
Consider the sequence

ak D
�
0; k � 0I
1; k > 0:

Since � ¤ 0 in (2.21), X.k/� ¤ 0 for k 2 I. Define a sequence f D f fk; k 2 Ig
by

fk D X.k/�

jX.k/�jak; k 2 I: (2.22)

Clearly, k fk D 1. We claim that the corresponding Eq. (2.3) does not have
bounded solutions.



2.1 Maizel’ and Pliss Theorems 49

Consider the sequence

�k D �
1X

uDkC1
X.k/.Id � P/X.�u/fu; k � 0:

In this formula, P is the projection defined for Eq. (2.2).
The sequence f�kg is bounded for k � 0. Indeed, fu 2 UC

u for u � 0; hence,

j�kj D
ˇ̌
ˇ
ˇ
ˇ

1X

uDkC1
X.k/.Id � P/X.�u/fu

ˇ̌
ˇ
ˇ
ˇ

�

�
1X

uDkC1
C�u�k D C

�

1 � �
:

We know that since the series defining �k is convergent, the sequence f�kg is a
solution of the homogeneous equation (2.2) for k � 0.

Clearly,

�0 D �
1X

uD1
.Id � P/X.�u/fu D �

1X

uD1

�

jX.u/�j D ��;

where

� D �
1X

uD1

1

jX.u/�j :

Deriving these relations, we take into account the definition of f and the equality
.Id � P/� D �. In addition, the value � is finite since

1

jX.k/�j � C�k; k � 0;

due to inequalities (2.7).
It follows from (2.21) that

�0 ¤ y1 C y2 (2.23)

for any y1 2 SC
0 and y2 2 U�

0 .
Now let us assume that Eq. (2.2) has a solution  D f kg that is bounded on

I D Z. Then  0 2 U�
0 .
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On the other hand,

 k D X.k/. 0 � �0/C �0:

Since �k are bounded for k � 0,  k can be bounded for k � 0 only if

X.k/. 0 � �0/

are bounded for k � 0, which implies that

 0 � �0 2 SC
0 :

Set

y1 D �0 �  0 2 SC
0 and y2 D  0 2 U�

0 :

Then �0 D y1 C y2, and we get a contradiction with (2.23). ut
Remark 2.1.4 We will apply the Maizel’ and Pliss theorems proved in this section
in a slightly different situation.

We consider a diffeomorphism f of a smooth closed manifold M, fix a point
x 2 M and the trajectory fxk D f k.x/ W k 2 Zg of this point and define linear
isomorphisms

Ak D Df .xk/ W TxkM ! TxkC1
M:

To the sequence A D fAkg we assign difference equations

vkC1 D Akvk; vk 2 TxkM;

and

vkC1 D Akvk C fkC1; vk 2 TxkM; fkC1 2 TxkC1
M:

Clearly, these difference equations are completely similar to Eqs. (2.2) and (2.3),
and analogs of the Maizel’ and Pliss theorems are valid for them.

Historical Remarks Theorem 2.1.1 was proved by A. D. Maizel’ in [38]. See also
the classical W. A. Coppel’s book [13].

The Pliss theorem (Theorem 2.1.2) was published in [74]. Later, it was gener-
alized by many authors; let us mention, for example, K. Palmer [55] who studied
Fredholm properties of the corresponding operators.
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2.2 Mañé Theorem

In this section, we prove Theorem 1.3.7.

Remark 2.2.1 In several papers, the analytic strong transversality condition is
formulated in the following form, which is obviously stronger than the condition
formulated in Definition 1.3.11: it is assumed that

QBC.x/C QB�.x/ D TxM; x 2 M;

where the subspaces QBC.x/ and QB�.x/ are defined by the equalities

QBC.x/ D
�
v 2 TxM W lim

k!1
ˇ
ˇDf k.x/v

ˇ
ˇ D 0

�

and

QB�.x/ D
�
v 2 TxM W lim

k!�1
ˇ̌
Df k.x/v

ˇ̌ D 0

�
:

In fact, it is easily seen from our proof below that the structural stability of f
implies this form of the analytic strong transversality condition as well, so that both
conditions are equivalent.

The main part of our proof of Theorem 1.3.7 is contained in the following
statement.

Theorem 2.2.1 The analytic strong transversality condition implies Axiom A.
First we prove that the analytic strong transversality condition implies the

hyperbolicity of the nonwandering set ˝ .
We assign to a diffeomorphism f W M ! M the mapping 
 W TM ! TM (where

TM is the tangent bundle of M) which maps a pair .x; v/ 2 TM (where x 2 M and
v 2 TxM) to the pair . f .x/;Df .x/v/.

A subbundle Y of TM is a set of pairs .x;Yx/, where x 2 M and Yx is a linear
subspace of TxM.

Definition 2.2.1 A subbundle Y is called 
-invariant if

Df .x/Yx D Yf .x/ for x 2 M:

Assuming that f satisfies the analytic strong transversality condition, we define
two subbundles BC and B� of TM by setting

BC
x D BC.x/ and B�

x D B�.x/ for x 2 M:
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Since

lim inf
k!1

ˇ
ˇDf k.x/v

ˇ
ˇ D 0

if and only if

lim inf
k!1

ˇ
ˇDf k. f .x//Df .x/v

ˇ
ˇ D 0;

the subbundle BC is 
-invariant. A similar reasoning shows that the subbundle
B� is 
-invariant as well.

The main object in the proof is the mapping 
�, dual to the mapping 
 .
Denote by <;> the scalar product in TxM. Let D�f .x/ W Tf .x/M ! TxM be

defined as follows:

< �;Df .x/v >D< D�f .x/�; v >

for all v 2 TxM and � 2 Tf .x/M (thus, D�f .x/ is the adjoint of Df .x/). We define 
�
as follows: a pair . f .x/; �/ ; � 2 Tf .x/M; is mapped to


� . f .x/; �/ D �
x;D�f .x/�

�
:

If p W TM ! M is the projection to the first coordinate (i.e., p.x; v/ D x), then
p.
.x; v// D f .x/ (in this case, one says that 
 covers f ); since p.
�.x; v// D
f�1.x/, 
� covers f�1.

Clearly, the definition of 
� implies the following statement.

Lemma 2.2.1

.
�/� D 
:

If Y is a subbundle of TM, we define the orthogonal subbundle Y? as follows:

Y?
x D f� W < �; v >D 0 for all v 2 Yxg ; x 2 M:

Lemma 2.2.2 If a subbundle Y is 
-invariant, then Y? is 
�-invariant.

Proof Consider vectors � 2 Y?
f .x/ and D�f .x/� 2 TxM. If v 2 Yx, then

< v;D�f .x/� >D< �;Df .x/v >D 0

since Df .x/v 2 Yf .x/, which means that D�f .x/� 2 Y?
x . ut

We call two subbundles Y1 and Y2 complementary if

Y1x ˚ Y2x D TxM for any x 2 M: (2.24)
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Lemma 2.2.3 If Y1 and Y2 are complementary subbundles that are 
-invariant,

then
�
Y1
�?

and
�
Y2
�?

are complementary subbundles that are 
�-invariant.

Proof The subbundles
�
Y1
�?

and
�
Y2
�?

are 
�-invariant by Lemma 2.2.2. If
dimY1x D k, then equality (2.24) implies that dimY2x D n � k. Clearly,

dim
�
Y1
�?
x

D n � k and dim
�
Y2
�?
x

D k: (2.25)

Consider a vector � 2 �
Y1
�?
x \ �

Y2
�?
x . Due to (2.24), any vector v 2 TxM is

representable as

v D v1 C v2; v1 2 Y1x ; v2 2 Y2x :

Then < �; v >D< �; v1 > C < �; v2 >D 0. Since v is arbitrary, � D 0. The
equality

�
Y1
�?
x \ �

Y2
�?
x D f0g

and (2.25) imply the statement of our lemma. ut
Let M0 � M be a hyperbolic set of f . Then S and U defined by Sx D S.x/ and

Ux D U.x/ for x 2 M0 are two complementary 
-invariant subbundles on M0 such
that inequalities (HSD2.3) and (HSD2.4) hold (see Definition 1.3.1). In this case, we
say that M0 is hyperbolic with respect to 
 with subbundles S and U and constants
C and �.

Lemma 2.2.4 If a set M0 is hyperbolic with respect to 
 with subbundles S and U
and constants C and �, then M0 is hyperbolic with respect to 
� with subbundles
U? and S? and the same constants C and �.

Proof If A and B are linear operators, then .AB/� D B�A�; hence,

�
Df . f .x//Df .x/

�� D D�f .x/D�f . f .x//:

If we take v 2 TxM and � 2 Tf 2.x/M, then

< Df 2.x/v; � >D< Df . f .x//Df .x/v; � >D

D< Df .x/v;D�f . f .x//� >D< v;D�f .x/D�f . f .x//� >D< v;D�f 2.x/� > :

Applying induction, it is easy to show that

< v;D�f k.x/� >D< �;Df k.x/v >; k 2 Z; (2.26)
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for v 2 TxM and � 2 Tf k.x/M, where

D�f k.x/ D D�f .x/D�f . f .x// : : :D�f . f k�1.x//

and

Df k.x/ D Df . f k�1.x//Df . f k�2.x// : : :Df .x/:

By Lemma 2.2.3, the subbundles S? and U? are complementary and 
�-
invariant.

Fix k � 0 and a vector � 2 �
Ufk.x/

�?
. Then D�f k.x/� 2 TxM. The obvious

equality

j�j D max
jvjD1

< �; v >; �; v 2 TxM;

implies that

ˇ
ˇD�f k.x/�

ˇ
ˇ D max

jvjD1
< v;D�f k.x/� > :

Represent v D v1 C v2, where v1 2 Sx and v2 2 Ux.
Since U? is 
�-invariant,

D�f k.x/� 2 .Ux/
?;

and < v2;D�f k.x/� >D 0. It follows that

ˇ
ˇD�f k.x/�

ˇ
ˇ D max

jv1jD1
< v1;D

�f k.x/� >D max
jv1jD1

< �;Df k.x/v1 >� C�kj�j:

In the last inequality, we used inequality (HSD2.3) and the obvious relation

< �; v >� j�jjvj:

A similar reasoning shows that

ˇ
ˇD�f�k.x/�

ˇ
ˇ � C��kj�j

for � 2 �Sf k.x/
�?

and k � 0. ut
Now we prove that the analytic strong transversality condition implies that, in a

sense, 
� does not have nontrivial bounded trajectories. Fix a point .x; v/ 2 TM and
define the sequence .xk; vk/ D .
�/k.x; v/.
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Lemma 2.2.5 If

sup
k2Z

jvkj < 1; (2.27)

then v D 0.

Proof The obvious equalities

x D f�k
�
f k.x/

�
and u D Df�k

�
f k.x/

�
Df k.x/u

which are valid for all x 2 M, u 2 TxM, and k 2 Z imply that

< �; u >D< �;Df�k
�
f k.x/

�
Df k.x/u >D< D�f�k

�
f k.x/

�
�;Df k.x/u >

for all �; u 2 TxM and k.
Assume that a point .x; v/ satisfies condition (2.27).
By the analytic strong transversality condition, we can represent any vector � 2

TxM in the form � D �1C�2 for which there exist sequences ln ! 1 andmn ! �1
as n ! 1 such that

ˇ
ˇDf ln.x/�1

ˇ
ˇ ! 0 and

ˇ
ˇDfmn.x/�2

ˇ
ˇ ! 0; n ! 1:

Let us write

< v; � >D< v; �1 C �2 >D< v;Df�ln
�
f ln.x/

�
Df ln.x/�1 > C

C < v;Df�mn . f mn.x//Dfmn.x/�1 >D

D< D�f�ln
�
f ln.x/

�
v;Df ln.x/�1 > C < D�f�mn . f mn.x// v;Dfmn.x/�2 > :

(2.28)

By condition (2.27), both values
ˇ
ˇD�f�ln. f ln.x//v

ˇ
ˇ and

ˇ
ˇD�f�mn. f mn.x//v

ˇ
ˇ are

bounded; hence, both terms in (2.28) tend to 0 as n ! 1. Thus, < �; v >D 0 for
any �, which means that v D 0. ut

To simplify notation, let us denote 
� by 
 and write


.x; v/ D .�.x/; ˚.x/v/;

so that �.x/ D f�1.x/ and ˚.x/ is the linear mapping TxM ! T�.x/M, ˚.x/ D
D�f .x/. Let

F.0; x/ D Id;

F.k; x/ D ˚.�k�1.x// � � �˚.x/; k > 0;
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and

F.�k; x/ D ˚�1.�1�k.x// � � �˚�1.x/; k > 0:

Obviously, the mapping 
 is continuous. By Lemma 2.2.5, it satisfies the
following Condition B: If

sup
k2Z

jF.k; x/vj < 1

for some .x; v/ 2 TM, then v D 0.
Let us define the following two subbundles in TM: V D f.x;Vx/g and W D

f.x;Wx/g. We agree that

• v 2 TxM belongs to Vx if jF.k; x/vj ! 0 as k ! 1
and

• v 2 TxM belongs to Wx if jF.k; x/vj ! 0 as k ! �1.

Clearly, the subbundles V and W are 
-invariant.

Lemma 2.2.6 Let a sequence .xm; vm/ 2 TM be such that

(1) .xm; vm/ ! .x; v/ as m ! 1;
(2) there exists a number L > 0 and a sequence km ! 1 as m ! 1 such that

jF.k; xm/vmj � L; 0 � k � km: (2.29)

Then .x; v/ 2 V.

Proof Fix an arbitrary l � 0. There exists an m0 such that km > l for m � m0. Then
it follows from (2.29) that

jF.l; xm/vmj � L: (2.30)

Since F.l; y/w is continuous in y and w, we may pass to the limit in (2.30) as
m ! 1; thus,

jF.l; x/vj � L:

Since l is arbitrary, this means that

jF.k; x/vj � L; k � 0: (2.31)

Let .x0; v0/ be a limit point of the sequence
�
�k.x/;F.k; x/v

�
, i.e., the limit of the

sequence

�
� tm.x/;F.tm; x/v

�
(2.32)

for some sequence tm ! 1.



2.2 Mañé Theorem 57

Take an arbitrary k 2 Z. Since

� tm.x/ ! x0 and F.tm; x/v ! v0; m ! 1;

�kCtm.x/ ! �k.x0/ and F.k C tm; x/v ! F.k; x0/v0; m ! 1: (2.33)

For large m, k C tm > 0, and it follows from (2.31) and the second relation in
(2.33) that

jF.k; x0/v0j � L: (2.34)

Since (2.34) is valid for any k 2 Z, Condition B implies that v0 D 0. Thus, in
any convergent sequence of the form (2.32) with tm ! 1,

jF.tm; x/vj ! 0;

which means that .x; v/ 2 V . ut
Remark 2.2.2 A similar reasoning shows that if we take km ! �1 and km � k � 0

in condition (2) of Lemma 2.2.6, then .x; v/ 2 W. In what follows, we do not make
such comments and only consider the case of the subbundle V .

Define the set

A D f.x; v/ 2 TM W jF.k; x/vj � 1 for k � 1g:

Clearly, the set A is positively 
-invariant, i.e., if .x; v/ 2 A and k � 0, then�
�k.x/;F.k; x/v

� 2 A.
Let us say that a set C D f.x; v/ 2 TMg is bounded if

sup
.x;v/2C

jvj < 1:

Since the manifold M is compact, any closed and bounded subset C of TM is
(sequentially) compact, i.e., any sequence in C has a convergent subsequence, and
the limit of this subsequence belongs to C.

Lemma 2.2.7 The set A is a compact subset of V.

Proof It was shown in the proof of Lemma 2.2.6 that inequality (2.31) implies the
inclusion .x; v/ 2 V; thus, A � V . Since F.0; x/v D v, A is bounded. Consider a
sequence .xm; vm/ 2 A such that .xm; vm/ ! .x; v/; m ! 1. For any fixed k � 0,

jF.k; x/vj D lim
m!1 jF.k; xm/vmj � 1:

Hence, .x; v/ 2 A, and A is closed. ut
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Lemma 2.2.8 For any � > 0 there exists a K > 0 such that if .x; v/ 2 A, then

jF.k; x/vj < �; k � K: (2.35)

Proof Assuming the converse, let us find sequences .xm; vm/ 2 A and km ! 1 and
a number � > 0 such that

jF.km; xm/vj � �: (2.36)

Since A is positively 
-invariant,

�
�km.xm/;F.km; xm/vm

� 2 AI

since A is compact, the above sequence has a convergent subsequence. Assume, for
definiteness, that

�
�km.xm/;F.km; xm/vm

� ! .x; v/:

Then it follows from (2.36) that jvj � �. Fix a number k 2 Z. Since k C km > 0 for
large m,

�
�kCkm.xm/;F.k C km; xm/vm

� ! �
�k.x/;F.k; x/v

�
; m ! 1;

and

jF.k C km; xm/vm/j � 1;

we conclude that

jF.k; x/v/j � 1; k 2 Z:

Condition B implies that v D 0. The contradiction with (2.36) completes the proof.
ut

Lemma 2.2.9 There exists a number � > 0 such that if .x; v/ 2 V and jvj � �,
then .x; v/ 2 A.

Proof Assuming the contrary, we can find a sequence .xm; vm/ 2 V such that jvmj !
0; m ! 1, and .xm; vm/ … A.

Then

�m D max
k�0 jF.k; xm/vmj > 1

(we take into account that jF.k; xm/vmj ! 0; k ! 1).
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Find numbers km > 0 such that

jF.km; xm/vmj D �m:

Since

jF.k; xm/.vm=�m/j � 1; k � 0;

.xm; vm=�m/ 2 A.
The mapping 
 is continuous and F.k; x/0 D 0; hence,

max
0�k�K

jF.k; xm/.vm=�m/j ! 0; m ! 1;

for any fixed K (note that xm 2 M, M is compact, jvmj ! 0, and �m > 1).
Hence, km ! 1; m ! 1. Lemma 2.2.8 implies now that the relations

.xm; vm=�m/ 2 A and jF.km; xm/.vm=�m/j D 1

are contradictory. ut
Lemma 2.2.10 There exists a number K > 0 such that if .x; v/ 2 V, then

jF.k; x/vj � .1=2/jvj; k � K: (2.37)

Proof Apply Lemma 2.2.8 to find a number K such that

jF.k; x/v0j < �=2; k � K;

for any .x; v0/ 2 A (where � is the number from Lemma 2.2.9).
Take any .x; v/ 2 V . If v ¤ 0, set v0 D �.v=jvj/. Then .x; v0/ 2 A by

Lemma 2.2.9, and it follows from Lemma 2.2.8 that

ˇ̌
F.k; x/v0 ˇ̌ D .�=jvj/ jF.k; x/vj � �=2; k � K;

which obviously implies the desired relation (2.37). If v D 0, we have nothing to
prove. ut
Lemma 2.2.11

(1) The subbundles V and W are closed.
(2) There exist numbers C > 0 and � 2 .0; 1/ such that

if .x; v/ 2 V, then

jF.k; x/vj � C�kjvj; k � 0I (2.38)
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if .x; v/ 2 W, then

jF.k; x/vj � C��kjvj; k � 0: (2.39)

Proof We prove the statements for the subbundle V; for W, the proofs are similar.
To prove statement (1), consider a sequence .xk; vk/ 2 V such that .xk; vk/ !

.x; v/ as k ! 1.
If v D 0, then, obviously, .x; v/ 2 V . Assume that v ¤ 0; then vk ¤ 0 for large

k, and, by Lemma 2.2.9 there exists a � > 0 such that

.xk; �vk=jvkj/ 2 A:

Since A is closed (see Lemma 2.2.7),

.x; �v=jvj/ 2 A;

and .x; v/ 2 V by Lemma 2.2.7. This proves the first statement of our lemma.
To prove the second one, apply Lemma 2.2.10 and find a number K such that

jF.k; x/vj � .1=2/jvj; k � K; (2.40)

for any .x; v/ 2 V .
It follows from (2.40) and from the 
-invariance of V that

jF.2K; x/vj � .1=2/2jvj; : : : ; jF.kK; x/vj � .1=2/kjvj; k � 0: (2.41)

There exists a number C0 > 0 such that

max
0�k<K; x2M kF.k; x/k � C0: (2.42)

Let us show that inequality (2.38) holds with C D 2C0 and � D 21=K . We can
represent any k � 0 in the form k D k0K C k1, where k0 � 0 and 0 � k1 < K. If
.x; v/ 2 V , then it follows from (2.41) and (2.42) that

jF.k; x/vj D jF.k1; �k0K.x//F.k0K; x/vj � C0.1=2/
k0jvj;

but since k0 C 1 > k=K, �k0 < �k=K C 1, and 2�k0 < 2�k, we conclude that

jF.k; x/vj � C�kjvj;

as required. ut
Remark 2.2.3 Inequalities (2.38) and (2.39) have the same form as inequalities
(HSD2.3) and (HSD2.4) in the definition of a hyperbolic set. Thus, if we want to
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show that some compact, 
-invariant subset M0 of M is a hyperbolic set of 
 with
subbundles V and W, we only have to show that

Vx C Wx D TxM; x 2 M0: (2.43)

Lemma 2.2.12 Assume that for a sequence .xm; vm/ 2 TM there exists a sequence
km ! 1 as m ! 1 and a number r > 0 such that

jvmj � r and jF.km; xm/vmj � r:

Then there exists a number R > 0 such that

jF.k; xm/vmj � R; 0 � k � km:

Proof Assume the contrary, and let there exist .xm; vm/ 2 TM and km ! 1 such
that

bm WD max
0�k�km

jF.k; xm/vmj ! 1; m ! 1:

Find numbers lm 2 Œ0; km� such that bm D jF.lm; xm/vmj. Since 
 is continuous, it is
obvious that

lm ! 1 and km � lm ! 1; m ! 1: (2.44)

Set

wm D F.lm; xm/.vm=bm/:

Let .x; v/ be a limit point of the sequence .� lm.xm/;wm/; then jvj D 1. The
inequality

ˇ
ˇF.k; � lm.xm//wm

ˇ
ˇ � 1

holds for k 2 Œ�lm; 0� [ Œ0; km � lm�. We apply relations (2.44) and Lemma 2.2.6
(and its analog for W) to conclude that v 2 Vx \ Wx, but then v D 0 by
Condition B. ut
Remark 2.2.4 A similar statement is valid if km ! �1. In this case,

jF.k; xm/vmj � R; km � k � 0:

Lemma 2.2.13 If x is a nonwandering point of the diffeomorphism f , then equality
(2.43) holds.
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Proof By the definition of a nonwandering point, there exist sequences of points
xm 2 M and numbers km such that

xm ! x; f km.xm/ ! x; jkmj ! 1

as m ! 1. We may assume that km ! �1.
Consider the linear subspace Wx and let Q be its orthogonal complement. Let

dimQ D s. Fix an orthonormal base v1; : : : ; vs in Q. Clearly, we can find s
orthonormal vectors vm1 ; : : : ; v

m
s in TxmM such that vmj ! vj as m ! 1 for

j D 1; : : : ; s.
Let Qm be the subspace of TxmM spanned by vm1 ; : : : ; v

m
s . Introduce the numbers

�m D min fjF.km; xm/vj W v 2 Qm; jvj D 1g :

We claim that

�m ! 1; m ! 1: (2.45)

If we assume the contrary, we can find a number r > 0 and sequences wm 2 Qm,
jwmj D 1, and km ! �1 such that

jF.km; xm/wmj � r:

By the remark to Lemma 2.2.12, there exists a number R such that

jF.k; xm/wmj � R; k 2 Œkm; 0�:

By Lemma 2.2.6, in this case, any limit point .x; v/ of the sequence .xm;wm/ belongs
to W, i.e., v 2 Wx. This relation contradicts our construction since wm 2 Qm, which
implies that v is orthogonal to Q (note that jvj D 1). This proves (2.45).

Consider the linear space

Km D F.km; xm/Qm:

Clearly, Km � TymM, where ym D f km.xm/, and dimKm D s.
Consider a vector w 2 Km, jwj D 1. Let w D F.km; xm/v. It follows from the

definition of the numbers �m that

jvj � �mjwj D �m: (2.46)

Inequalities (2.46), relations (2.45), and Lemma 2.2.12 imply that for any
sequence . ym;wm/, where wm 2 Km and jwmj D 1, there exists a number R such
that

jF.k; xm/wmj � R; k 2 Œ0;�km�:
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Now Lemma 2.2.6 implies that any limit point .x;w/ of such a sequence . ym;wm/

belongs to V , i.e., w 2 Vx.
Select an orthonormal basis wm

1 ; : : : ;w
m
s in Km. We may assume that all the

sequences wm
1 ; : : : ;w

m
s converge for some sequence of indices. For definiteness, let

wm
1 ! w1; : : : ;w

m
s ! ws; m ! 1:

The vectors w1; : : : ;ws are pairwise orthogonal unit vectors in Vx; hence,

dimVx � s: (2.47)

By the definition of the spaces Q and Qm,

dimWx D n � s:

Combining this with inequality (2.47), we see that

dimVx C dimWx � n:

Since Vx \ Wx D f0g by Condition B, we conclude that

Vx C Wx D TxM;

as claimed. ut
The nonwandering set of the diffeomorphism f coincides with the nonwandering

set of the diffeomorphism � D f�1. Combining Lemma 2.2.1 with Lemma 2.2.4
applied to the mapping 
, we conclude that the following statement holds.

Theorem 2.2.2 If a diffeomorphism f satisfies the analytic strong transversality
condition, then the nonwandering set of f is hyperbolic.

Now we show that the analytic strong transversality condition implies the second
part of Axiom A, the density of periodic points in the nonwandering set˝. f / of the
diffeomorphism f .

Since we are going to use the Mañé theorem in the proof of the implication (the
analytic strong transversality condition) ) (structural stability) for a diffeomor-
phism f having the Lipschitz shadowing property, we can essentially simplify this
proof (compared to the original Mañé proof) assuming that f has the shadowing
property.

Thus, now we prove the following statement.

Theorem 2.2.3 If a diffeomorphism f has the shadowing property and the nonwan-
dering set ˝. f / of f is hyperbolic, then periodic points are dense in˝. f /.

In this proof, we apply the following two well-known results (see, for example,
[71] for their proofs).

First we recall a known definition.
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Definition 2.2.2 A homeomorphism f of a metric space .M; dist/ is called expan-
sive on a set A with expansivity constant a > 0 if the relations

f k.x/; f k. y/ 2 A; k 2 Z;

and

dist
�
f k.x/; f k. y/

� � a; k 2 Z;

imply that x D y.

Theorem 2.2.4 If � is a hyperbolic set of a diffeomorphism f , then there exists a
neighborhood of � on which f is expansive.

Denote by cardA the cardinality of a finite or countable set A.

Theorem 2.2.5 (The Birkhoff Constant Theorem) If the phase space X of a
homeomorphism f is compact and U is a neighborhood of the nonwandering set
˝. f / of f , then there exists a constant T D T.U/ such that for any point x 2 X, the
inequality

card
˚
k 2 Z W f k.x/ … U

� � T

holds.

Proof (of Theorem 2.2.3) Fix an arbitrary point z 2 ˝. f /. There exist sequences of
points zn and numbers ln ! 1 such that

zn ! z and f ln.zn/ ! z; n ! 1:

Let U be a neighborhood of the set˝. f / on which f is expansive and let a be the
corresponding expansivity constant.

Fix an " > 0 such that the 3"-neighborhood of ˝. f / is a subset of U. Denote by
U0 the 2"-neighborhood of ˝. f /. We assume, in addition, that 2" < a.

For this " there exists a d > 0 such that any d-pseudotrajectory of f is "-shadowed
by an exact trajectory.

Fix an index n such that

dist.z; zn/; dist.z; f ln.zn// < d=2:

Construct a sequence fxkg as follows. Represent k 2 Z in the form k D k0C k1ln,
where k1 2 Z and 0 � k0 < ln, and set xk D f k0 .zn/.

Clearly, the sequence fxkg is periodic with period ln; the choice of n implies that
this sequence is a d-pseudotrajectory of f .

We claim that

fxkg � U0: (2.48)
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Assuming the contrary, we can find an index m such that xm … U0, i.e.,

dist .xm;˝. f // � 2";

but then

dist .xmCkln ;˝. f // � 2"; k 2 Z: (2.49)

Let p 2 M be a point whose trajectory "-shadows fxkg, i.e.,

dist
�
f k. p/; xk

�
< "; k 2 ZI

let pk D f k. p/.
Then it follows from inequalities (2.49) that

dist . pmCkln ;˝. f // � "; k 2 Z;

which contradicts Theorem 2.2.5. Thus, we have established inclusion (2.48).
Set r D f ln. p/. Since xk D xkCln , the following inequalities hold:

dist
�
f k.r/; xk

� D dist
�
f kCln. p/; xkCln

�
< "; k 2 Z:

Then

dist
�
f k.r/; f k. p/

�
< 2" < a; k 2 ZI

in addition, inclusion (2.48) implies that

f k.r/; f k. p/ 2 U; k 2 Z:

Since f is expansive on U, r D p.
Thus, p is a periodic point of f .
Since " and d can be taken arbitrarily small, there is such a point p in an arbitrarily

small neighborhood of the point z. ut
Thus, it remains to show that the analytic strong transversality condition implies

the strong transversality condition (stable and unstable manifolds of nonwandering
points are transverse).

For this purpose, we apply the following well-known theorem on the behavior of
trajectories of a diffeomorphism in a neighborhood of a hyperbolic set (its proof can
be easily reduced to Theorem 6.4.9 in the book [28]).

Theorem 2.2.6 Let � be a hyperbolic set of a diffeomorphism f with hyperbolicity
constants C; �. For any C1 > C and �1 2 .�; 1/ there exists a neighborhood U of
� with the following property. If x 2 Ws. p/, p 2 �, and f k.x/ 2 U for k � 0,
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then there exist two complementary linear subspaces LC.x/ and L�.x/ of TxM such
that

(1)

LC.x/ D TxW
s. p/; L�.x/ D TxW

u. p/I

(2)

ˇ
ˇDf k.x/v

ˇ
ˇ � C1�

k
1jvj; k � 0; v 2 LC.x/;

and

ˇ
ˇDf k.x/v

ˇ
ˇ � .1=C1/�

�k
1 jvj; k � 0; v 2 L�.x/:

Remark 2.2.5 Of course, a similar statement holds if x 2 Wu. p/, p 2 �, and f k.x/
belongs to a small neighborhood of � for k � 0.

Clearly, it is enough for us to prove that if r 2 Ws. p/\Wu.q/, where p; q 2 ˝. f /,
then

BC.r/ � TrW
s. p/ and B�.r/ � TrW

u.q/: (2.50)

We prove the first inclusion in (2.50) by proving that

BC.r/ � LC.r/ (2.51)

and applying Theorem 2.2.6; the second inclusion is proved in a similar way.
Any trajectory of a diffeomorphism satisfying Axiom A tends to one of the basic

sets as time tends to ˙1 (see Theorem 1.3.2).
Take as � the basic set to which f k.r/ tends as k ! 1; obviously, p belongs

to this basic set. Of course, we may assume that the positive semitrajectory of r
belongs to a neighborhood of � having the properties described in Theorem 2.2.6.

Assume that inclusion (2.51) does not hold; take v 2 BC.r/nLC.r/ and represent

v D vs C vu; vs 2 LC.r/; vu 2 L�.r/I

then vu ¤ 0.
Then

ˇ
ˇDf kv

ˇ
ˇ � ˇ

ˇDf kvu
ˇ
ˇ � ˇ

ˇDf kvs
ˇ
ˇ � .1=C1/�

�kjvuj � C1�
kjvsj ! 1; k ! 1;

which contradicts the relation defining BC.r/.
We have completely proved the Mañé theorem.
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Historical Remarks In his paper [39], R. Mañé gave several equivalent character-
izations of structural stability of a diffeomorphism; Theorem 1.3.7 of this book is
just one of them.

The property of expansivity of a dynamical system with discrete time is now
one of the classical properties studied in the global theory of dynamical systems.
Theorem 2.2.4 is folklore. Let us mention J. Ombach’s paper [49] in which it was
shown (see Proposition 9) that a compact invariant set � of a diffeomorphism f is
hyperbolic if and only if f j� is expansive and has the (standard) shadowing property
(compare with Sect. 4.1).

Theorem 2.2.5 was proved in G. Birkhoff’s book [10].

2.3 Diffeomorphisms with Lipschitz Shadowing

Our main result in this section is as follows.

Theorem 2.3.1 If a diffeomorphism of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property, then f is structurally stable.

As stated in Theorem 1.4.1 (1), a structurally stable diffeomorphism f has the
Lipschitz shadowing property. Combining this statement with Theorem 2.3.1, we
conclude that for diffeomorphisms, structural stability is equivalent to Lipschitz
shadowing.

Proof (of Theorem 2.3.1) Let us first explain the main idea of the proof.
Fix an arbitrary point p 2 M, consider its trajectory f pk D f k. p/ W k 2 Zg, and

denote Ak D Df . pk/. Consider the sequence A D fAk W k 2 Zg.
In Sect. 2.1 devoted to the Maizel’ and Pliss theorems, we worked with sequences

A of isomorphisms of Euclidean spaces. Here we apply these theorems (and all the
corresponding notions of the Perron property etc.) to the sequences A D fDf . pk/g
(see the remark concluding Sect. 3.1).

We claim that if f has the Lipschitz shadowing property, then A has the Perron
property on Z.

By the Maizel’ theorem, the Perron property on Z implies that the sequence A is
hyperbolic on both “rays” Z� and ZC. Denote by S�

k ;U
�
k ; k 2 Z� and SC

k ;U
C
k ; k 2

ZC the corresponding stable and unstable subspaces.
Then, by the Pliss theorem, the subspaces U�

0 and SC
0 are transverse.

Clearly,

jAk ı � � � ı A0vj ! 0; v 2 SC
0 ; k ! 1;

and

ˇ
ˇ.Ak/

�1 ı � � � ı .A0/�1v
ˇ
ˇ ! 0; v 2 U�

0 ; k ! �1;
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which means that U�
0 � B�. p/ and SC

0 � BC. p/, where B�. p/ and BC. p/ are the
subspaces from the analytic transversality condition.

The transversality of the subspaces U�
0 and SC

0 implies the transversality of the
subspaces B�.x/ and BC.x/. Since x is arbitrary, f is structurally stable by the Mañé
theorem.

Now we prove our claim.
To clarify the reasoning, we first prove an analog of this result, Lemma 2.3.2,

for a diffeomorphism of the Euclidean space R
n. Of course, Rn is not compact, but

we avoid the appearing difficulty making the following additional assumption (and
noting that an analog of this assumption is certainly valid for a diffeomorphism of
class C1 of a closed smooth manifold). We call the condition below Condition S.

Thus, we assume that for any � > 0 we can find a ı D ı.�/ > 0 (independent
of k) such that if jvj � ı, then

j f . pk C v/ � Akv � pkC1j � �jvj; k 2 Z: (2.52)

The basic technical part of the proof of Lemma 2.3.2 is the following statement
(Lemma 2.3.1). In the following two Lemmas, 2.3.1 and 2.3.2, f is a diffeomorphism
of Rn that has the Lipschitz shadowing property with constants L ; d0 > 0, f pk D
f k. p/g is an arbitrary trajectory of f , Ak D Df . pk/, and it is assumed that Condition
S is satisfied.

Lemma 2.3.1 Fix a natural number N. For any sequence

wk 2 R
n; k 2 Z;

with jwkj < 1 there exists a sequence

zk 2 R
n; k 2 Z;

such that

jzkj � L C 1; k 2 Z; (2.53)

and

zkC1 D Akzk C wkC1; �N � k � N: (2.54)

Proof Thus, we assume that f has the Lipschitz shadowing property with constants
L ; d0 > 0.

Define vectors

�k 2 R
n; �N � k � N C 1;
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by the following relations:

��N D 0 and �kC1 D Ak�k C wkC1; �N � k � N: (2.55)

Clearly, there exists a number Q (depending on N, A , and wk) such that

j�kj � Q; �N � k � N C 1: (2.56)

Fix a small number d 2 .0; d0/ (we will reduce this number during the proof)
and consider the following sequence � D fxk 2 R

n W k 2 Zg:

xk D
8
<

:

f kCN. p�N/; k < �NI
pk C d�k; �N � k � N C 1I
f k�N�1. pNC1 C d�NC1/; k > N C 1:

Note that if �N � k � N, then

jxkC1 � f .xk/j D j pkC1 C d�kC1 � f . pk C d�k/j �

� d j�kC1 � Ak�kj C j f . pk C d�k/� pkC1 � dAk�kj :

Since we consider a finite number of wk, the condition jwkj < 1 implies that there
is a � 2 .0; 1/ such that the first term above does not exceed �d; by Condition S,
the second term is less than .1 � �/d if d is small. Hence, in this case, the sum is
less than d.

For the remaining values of k,

jxkC1 � f .xk/j D 0:

Thus, we may take d � d0 so small that � is a d-pseudotrajectory of f . Then there
exists a trajectory � D fyk W k 2 Zg of f such that

jxk � ykj � L d; k 2 Z: (2.57)

Denote tk D . yk � pk/=d. Since �k D .xk � pk/=d, it follows from (2.57) that

j�k � tkj D jxk � ykj=d � L ; k 2 Z: (2.58)

It follows from (2.56) and (2.57) that

j yk � pkj � j yk � xkj C jxk � pkj � .L C Q/d; k 2 Z:

Hence,

jtkj � L C Q; k 2 Z: (2.59)
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Now we define a finite sequence

bk 2 R
n; �N � k � N C 1;

by the following relations:

b�N D t�N and bkC1 D Akbk; �N � k � N: (2.60)

Take �1 2 .0; 1/ such that

�
.K C 1/2N C .K C 1/2N�1 C � � � C 1

�
�1 < 1; (2.61)

where K D sup kAkk. Set

� D �1

L C Q

and consider d so small that inequality (2.52) holds for jvj � ı with ı D .L CQ/d.
The definition of the vectors tk implies that

dtkC1 D ykC1 � pkC1 D f . yk/� f . pk/ D f . pk C dtk/� f . pk/:

Since jdtkj � .L C Q/d by (2.59), it follows from Condition S and from the
above choice of d that

jdtkC1 � dAktkj D j f . pk C dtk/ � f . pk/� dAktkj �

� �jdtkj � �.L C Q/d D �1d:

Hence,

tkC1 D Aktk C �k; where j�kj < �1: (2.62)

Consider the vectors

ck D tk � bk:

Note that c�N D 0 by (2.60) and

ckC1 D Akck C �k; where j�kj < �1
by (2.62).
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Thus,

jc�NC1j � j��N j < �1;

jc�NC2j � jA�NC1c�NC1 C ��NC1j � .K C 1/�1;

and so on, which implies the estimate

jckj � �
.K C 1/2N C .K C 1/2N�1 C � � � C 1

�
�1 < 1; �N � k � N:

Hence,

jtk � bkj � 1; �N � k � N: (2.63)

Finally, we consider the sequence

zk D
8
<

:

0; k < �NI
�k � bk; �N � k � N C 1I
0; k > N C 1:

Relations (2.55) and (2.60) imply relations (2.54); estimates (2.58) and (2.63)
imply estimate (2.53). ut
Lemma 2.3.2 The sequenceA D fAkg has the Perron property.
Proof Take an arbitrary sequence

wk 2 R
n; k 2 Z;

with jwkj < 1 and prove that an analog of Eq. (2.54) has a solution

zk 2 R
n; k 2 Z;

with

jzkj � L C 1; k 2 Z:

Fix a natural N and consider the sequence

w.N/k D
�
wk; �N � k � NI
0; jkj � N C 1:

By Lemma 2.3.1, there exists a sequence
n
z.N/k ; k 2 Z

o
such that

z.N/kC1 D Akz
.N/
k C w.N/k ; �N � k � N; (2.64)
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and
ˇ
ˇ
ˇz.N/k

ˇ
ˇ
ˇ � L C 1; k 2 Z: (2.65)

Passing to a subsequence of
n
z.N/k

o
, we can find a sequence fvkg such that

vk D lim
N!1 z.N/k ; k 2 Z:

(Note that do not assume uniform convergence.) Passing to the limit in (2.64) and
(2.65) as N ! 1, we see that

vkC1 D Akyk C wk; k 2 Z;

and

jvkj � L C 1; k 2 Z:

Thus, we have shown that the sequence A has the Perron property. ut
Now let us explain how to prove the required statement in the case of a smooth

closed manifold M.

Lemma 2.3.3 If a diffeomorphism of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz shadowing property,

˚
pk D f k. p/

�
is an arbitrary

trajectory of f , and Ak D Df . pk/, then the sequence A D fAkg has the Perron
property.

Proof Let exp be the standard exponential mapping on the tangent bundle of M
generated by the fixed Riemannian metric dist. Let

expx W TxM ! M

be the corresponding exponential mapping at a point x 2 M.
Denote (just for this proof) by B.r; x/ the ball in M of radius r centered at a point

x; let BT.r; x/ be the ball in TxM of radius r centered at the origin.
It is well known that there exists an r > 0 such that for any x 2 M, expx is a

diffeomorphism of BT.r; x/ onto its image and exp�1
x is a diffeomorphism of B.r; x/

onto its image; in addition, D expx.0/ D Id.
Thus, we may assume that r is chosen so that the following inequalities hold for

any x 2 M:

dist.expx.v/; expx.w// � 2jv � wj; v;w 2 BT.r; x/; (2.66)

and
ˇ
ˇexp�1

x . y/� exp�1
x .z/

ˇ
ˇ � 2dist. y; z/; y; z 2 B.r; x/: (2.67)
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These inequalities mean that distances are distorted not more than twice when
we pass from the manifold to its tangent space or from the tangent space to the
manifold (if we work in a small neighborhood of a point of the manifold or in a
small neighborhood of the origin of the tangent space).

In our reasoning below, we always assume that d is so small that the correspond-
ing points belong to such small neighborhoods.

Now we fix a trajectory
˚
pk D f k. p/

�
of our diffeomorphism f and introduce the

mappings

Fk D exp�1
pkC1

ıf ı exppk W TpkM ! TpkC1
M:

Clearly,

DFk.0/ D Ak:

The analog of Condition S is as follows: For any � > 0 we can find a ı > 0

(independent of k) such that if jvj < ı, then

jFk.v/ � Akvj � �jvj; k 2 Z: (2.68)

Of course, this condition is satisfied automatically since f is of class C1 and the
manifold M is compact.

To prove that the sequence A has the Perron property, let us consider the
difference equations

vkC1 D Akyk C wk; k 2 Z; (2.69)

where vk 2 TpkM and wk 2 TpkC1
M.

We assume that jwkj < 1; k 2 Z. Let us “translate” the reasoning of Lemma 2.3.1
to the “manifold language.”

We fix a natural N and consider the sequence

�k 2 TpkM; �N � k � N C 1;

defined by relations (2.55). Let Q satisfy (2.56).
We fix a small d and define the sequence � D fxk 2 M W k 2 Zg by

xk D

8
<̂

:̂

f kCN. p�N/; k < �NI
exppk.d�k/; �N � k � N C 1I
f k�N�1.exppNC1

.d�NC1//; k > N C 1:

This definition and inequalities (2.66) imply that if d is small enough, then

dist


xkC1; exppkC1

.dAk�k/
�
< 2d:
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Since

f .xk/ D exppkC1
.Fk.d�k//;

condition (2.68) with � < 1 implies that

dist



exppkC1
.dAk�k/; f .xk/

�
< 2d;

and we see that

dist . f .xk/; xkC1/ < 4d:

Thus, there exists an exact trajectory � D fyk W k 2 Zg of f such that

dist.xk; yk/ � 4L d; k 2 Z: (2.70)

Now we consider the finite sequence

tk D 1

d
exp�1

pk
. yk/; �N � k � N:

Inequalities (2.70) and (2.67) imply that

j�k � tkj � 8L ; k 2 Z: (2.71)

Note that

dist. yk; pk/ � dist. yk; xk/C dist.xk; pk/ � .4L C 2Q/d; k 2 Z:

Hence,

jtkj � 8L C 4Q; k 2 Z:

Now we define a finite sequence

bk 2 TpkM; �N � k � N C 1;

by relations (2.60) and repeat the reasoning of Lemma 2.3.1 with

� D �1

8L C 4Q
;

where �1 is the same as above (see relation (2.61)).
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The rest of the proof is literally the same (with natural replacement of Rn by the
corresponding tangent spaces), and we get the relation

jtk � bkj < 1

similar to (2.63).
Finally, we get the estimate

jzkj � 8L C 1;

which completes the proof of the analog of Lemma 2.3.1.
The rest of the proof of the implication “Lipschitz shadowing property implies

the Perron property of the sequence A ” almost literally repeats the proof of
Lemma 2.3.2. ut
Historical Remarks Theorem 2.3.1 was published by the first author and S. B.
Tikhomirov in the paper [68]. Let us mention that the paper [67] contained the first
proof of the fact that structural stability follows from certain shadowing property
based on a combination of the Maizel’, Pliss, and Mañé theorems.

2.4 Lipschitz Periodic Shadowing for Diffeomorphisms

The main result of this section is as follows.

Theorem 2.4.1 A diffeomorphism f of class C1 of a smooth closed n-dimensional
manifold M has the Lipschitz periodic shadowing property if and only if f is ˝-
stable.

First we prove the “if” statement of Theorem 2.4.1.

Theorem 2.4.2 If a diffeomorphism f is˝-stable, then f has the Lipschitz periodic
shadowing property.

Let us give one more definition.

Definition 2.4.1 We say that a diffeomorphism f has the Lipschitz shadowing
property on a set U if there exist positive constants L ; d0 such that if � D fxi W
i 2 Zg � U is a d-pseudotrajectory with d � d0, then there exists a point p 2 U
such that inequalities (1.5) hold.

Remark 2.4.1 It follows from Theorems 1.4.2 and 2.2.4 that we can find a neighbor-
hood U of a hyperbolic set � of a diffeomorphism f having the above-formulated
property and such that f is expansive on U.

We start by proving several auxiliary results.

Lemma 2.4.1 Let f be a homeomorpism of a compact metric space .M; dist/. For
any neighborhood U of the nonwandering set ˝. f / there exist positive numbers
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T; ı1 such that if � D fxi W i 2 Zg is a d-pseudotrajectory of f with d � ı1 and

xk; xkC1; : : : ; xkCl … U

for some k 2 Z and l > 0, then l � T.

Proof Take a neighborhood U of the nonwandering set ˝. f / and let T be the
Birkhoff constant for the homeomorphism f given for this neighborhood by
Theorem 2.2.5. Assume that there does not exist a number ı1 with the desired
property; then there exists a sequence dj ! 0 as j ! 1 and a sequence of dj-

pseudotrajectories fx. j/k W k 2 Zg of f such that

n
x. j/k W 0 � k � T � 1

o
\ U D ;

for all j.
The set M0 D M n U is compact. Passing to a subsequence, if necessary, we may

assume that x. j/0 ! x0 as j ! 1. In this case,

x. j/k ! f k.x0/ 2 M0; 0 � k � T � 1;

and we get a contradiction with the choice of T. ut
Now let us recall some basic properties of ˝-stable diffeomorphisms. It was

noted in Sect. 1.3 that a diffeomorphism f is ˝-stable if and only if f satisfies
Axiom A and the no cycle condition (Theorem 1.3.3).

Let ˝1; : : : ;˝m be the basic sets in decomposition (1.15) of the nonwandering
set of an ˝-stable diffeomorphism f .

Below we need one folklore technical statement. Recall that we write ˝i ! ˝j

if there is a point x … ˝. f / such that

f�k.x/ ! ˝i and f k.x/ ! ˝j; k ! 1:

Theorem 2.4.3 Assume that a diffeomorphism f is ˝-stable. For any family of
neighborhoods Ui of the basic sets ˝i one can find neighborhoods Vi � Ui such
that if a point x belongs to some Vi and there exist indices 0 < l � m such that

f l.x/ … Ui and f
m.x/ 2 Vj;

then there exist basic sets ˝i1 ; : : : ;˝it such that

˝i ! ˝i1 ! � � � ! ˝it ! ˝j: (2.72)

Proof Reducing the given neighborhoods Ui, we may assume that the compact sets
U0

i D f .Cl.Ui//[ Cl.Ui/ are disjoint.
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Assume that our statement does not hold. In this case, there exist sequences of
points xk; k � 0, and indices l.k/ � m.k/ such that

xk ! ˝i; f l.k/.xk/ … Ui; f m.k/.xk/ ! ˝i; k ! 1:

Clearly, we may assume that

xk; f .xk/; : : : ; f
l.k/�1.xk/ 2 Ui

while

yk WD f l.k/.xk/ … Ui:

Then yk 2 U0
i , and, passing to a subsequence, if necessary, we may assume that

yk ! y 2 U0
i as k ! 1.

Since ˝i is a compact f -invariant set, l.k/ ! 1 as k ! 1. Thus, for any t < 0,
f t. yk/ 2 Ui for large k, and it follows that f t. y/ 2 Cl.Ui/ for any t < 0. We note
that the set Cl.Ui/ intersects a single basic set, ˝i, and refer to (1.16) to conclude
that

y 2 Wu.˝i/: (2.73)

By the same relation (1.16), there exists a basic set ˝i1 such that

y 2 Ws.˝i1 /: (2.74)

By our choice of Ui, the sets Cl. f .Ui// nUi do not contain nonwandering points.
Thus, if i1 D i, inclusions (2.73) and (2.74) mean the existence of a 1-cycle, and we
get the desired contradiction.

Hence, i1 ¤ i and˝i ! ˝i1 . Consider the compact set

Y D ˚
f k. y/ W k � 0

�[˝i1 :

Clearly, the set Y has a neighborhoodZ such that Ui1 � Z and Z does not intersect
a small neighborhood of ˝i.

Since yk D f lk .xk/ ! y, there exist indices l1.k/ such that

f t. yk/ D f l.k/Ct.xk/ 2 Z; 0 � t � l1.k/;

for large k, and

x1;k D f l1.k/. yk/ D f l.k/Cl1.k/.xk/ ! ˝i1 ; k ! 1:
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At the same time, the positive trajectories of the points yk (and hence, of the
points x1;k) must leave Z (and hence, Ui1) since the sequence

f m.k/�l.k/. yk/ D f m.k/.xk/

tends to ˝i.
Thus, we can repeat the above reasoning with the points x1;k and the basic set˝i1

instead of xk and ˝i.
Such a process will produce basic sets ˝i1 ; ˝i2 ; : : : such that

˝i ! ˝i1 ! ˝i2 ! : : : :

Since f has no cycles, this process is finite, and, as a result, we conclude that
there exist basic sets ˝i1 ; : : : ;˝it such that relations (2.72) hold. ut

Now we apply the above theorem to prove a statement concerning periodic
pseudotrajectories of ˝-stable diffeomorphisms.

Lemma 2.4.2 Assume that a diffeomorphism f is ˝-stable. For any family of
disjoint neighborhoodsWi of the basic sets˝i there exists a number ı2 > 0 such that
any periodic d-pseudotrjectory � of f with d � ı2 belongs to a single neighborhood
Wi.

Proof Fix arbitrary disjoint neighborhoodsWi of the basic sets˝i and find a number
" > 0 and neighborhoods Ui of ˝i such that

N.";Ui/ � Wi; i D 1; : : : ;m:

Apply Theorem 2.4.3 to find for Ui the corresponding neighborhoods Vi of ˝i.
Reducing ", if necessary, we can find neighborhoods V 0

i of ˝i such that

N.";V 0
i / � Vi; i D 1; : : : ;m:

By Lemma 2.4.1, there exist positive numbers T; ı1 such that if � D fxkg is a
d-pseudotrajectory of f with d � ı1 and

xk; xkC1; : : : ; xkCl … V WD
m[

iD1
V 0
i

for some k 2 Z and l > 0, then l � T.
Find a number ı2 2 .0; ı1/ such that if � D fxkg is a d-pseudotrajectory of f with

d � ı2, then

dist. f l.xk/; xkCl/ < "; 0 � l � T C 1;

for any k 2 Z.
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Now let � D fxkg be a periodic d-pseudotrajectory of f of period � with d � ı2.
Let us call a V-block of � a finite segment

�k;m D fxk; xkC1; : : : ; xkCmg; k 2 Z; m > 0;

such that xk; xkCm 2 V while xkCl … V for 0 < l < m. Note that in this case,
m � T C 1.

Let us note simple properties of V-blocks.
It follows from the choice of ı2 that if �k;m is a V-block for which there exist

indices i; j 2 f1; : : : ;mg such that xk 2 V 0
i and xkCm 2 V 0

j , then dist. f m.xk/; xkCm/ <

"; hence, f m.xk/ 2 Vj.
At the same time, if for such a V-block there exists an index l 2 .0;m/ such that

xkCl … Wi, then dist. f l.xk/; xkCl/ < "; hence, f l.xk/ … Ui.
It follows from Theorem 2.4.3 that in this case, there exists a relation of the form

(2.72); the absence of cycles implies that j ¤ i.
Since ı2 < ı1, there exists a neighborhood V 0

i such that � intersects V 0
i .

Changing indices of �, we may assume that x0 2 V 0
i .

If either xk 2 Wi for k � 0 or any V-block �k;m with k � 0 belongs to Wi, then
the statement of our lemma follows from the periodicity of �.

It was noted above that if �k;m be a V-block with xk 2 Vj for k � 0 for which
there exists an index l 2 .0;m/ such that xkl … Wj, then there exists an index j0 ¤ j
for which we have a relation

˝j ! � � � ! ˝j0

of the form (2.72).
Thus, if we assume that there exists a V-block �k;m with k � 0 such that �k;m n

Wi ¤ ;, then we get an index j1 ¤ i such that we have a relation

˝i ! � � � ! ˝j1

of the form (2.72).
Going to “the right” of this V-block �k;m and continuing this process, we construct

a sequence of pairs of indices .i; j1/; . j1; j2/; : : : such that

˝i ! � � � ! ˝j1 ; ˝j1 ! � � � ! ˝j2 ; : : : :

In this case, it follows from the absence of cycles that all the indices i; j1; j2; : : :
are different.

But the �-periodicity of � implies that if �k;m is a V-block and n is a natural
number, then �kCn�;m is an identical V-block, and the existence of the above
sequence with different i; j1; j2; : : : is impossible.

Now we prove Theorem 2.4.2.



80 2 Lipschitz and Hölder Shadowing and Structural Stability

By Remark 2.4.1, there exist disjoint neighborhoodsU1; : : : ;Um of the basic sets
˝1; : : : ;˝m such that

(i) f has the Lipschitz shadowing property on any of Uj with the same constants
L ; d�

0 ;
(ii) f is expansive on any of Uj with the same expansivity constant a.

Find neighborhoods Wj of ˝j (and reduce d�
0 , if necessary) so that the L d�

0 -
neighborhoods of Wj belong to Uj. Apply Lemma 2.4.2 to find the corresponding
constant ı2.

We claim that f has the Lipschitz periodic shadowing property with constants
L ; d0, where

d0 D min


d�
0 ; ı2;

a

2L

�
:

Take a �-periodic d-pseudotrajectory � D fxkg of f with d � d0. Lemma 2.4.2
implies that there exists a neighborhood Wi such that � � Wi � Ui.

Thus, there exists a point p such that inequalities (1.5) hold. Let us show that p
is a periodic point of f . By the choice of Ui and Wi, f k. p/ 2 Ui for all k 2 Z. Let
q D f�. p/. Inequalities (1.5) and the periodicity of � imply that

dist
�
f k.q/; xk

� D dist
�
f kC�. p/; xk

� D dist
�
f kC�. p/; xkC�

� � L d; k 2 Z:

Thus,

dist
�
f k.q/; f k. p/

� � 2L d � a; k 2 Z;

which implies that f�. p/ D q D p. This completes the proof. ut
Now we prove the “only if” statement of Theorem 2.4.1.

Theorem 2.4.4 If a diffeomorphism f has the Lipschitz periodic shadowing prop-
erty, then f is ˝-stable.

Thus, let us assume that f has the Lipschitz periodic shadowing property (with
constants L � 1; d0 > 0). Clearly, in this case f�1 has the Lipschitz periodic
shadowing property as well (and we assume that the constants L ; d0 are the same
for f and f�1).

To clarify the presentation, in the construction of pseudotrajectories in the
following Lemmas 2.4.3 and 2.4.4, we assume that f is a diffeomorphism of Rn

(and leave to the reader consideration of the case of a manifold).
We also assume that there exists a number N > 0 such that kDf .x/k � N for all

considered points x (an analog of this assumption is satisfied in the case of a closed
manifold).

Recall that we denote by Per. f / the set of periodic points of f .

Lemma 2.4.3 Every point p 2 Per. f / is hyperbolic.
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Proof To get a contradiction, let us assume that f has a nonhyperbolic periodic point
p (to simplify notation, we assume that p is a fixed point; literally the same reasoning
can be applied to a periodic point of period m > 1). In addition, we assume that
p D 0.

In this case, we can represent

f .v/ D Av C F.v/;

where A D Df .0/ and F.v/ D o.v/ as v ! 0.
By our assumption, A is a nonhyperbolic matrix. The following two cases are

possible:

Case 1: A has a real eigenvalue � with j�j D 1;
Case 2: A has a complex eigenvalue � with j�j D 1.

We treat in detail only Case 1 and give a comment concerning Case 2. To simplify
presentation, we assume that 1 is an eigenvalue of A; the case of eigenvalue �1 is
treated similarly.

We can introduce coordinate v such that, with respect to this coordinate, the
matrix A has block-diagonal form,

A D diag.B;P/; (2.75)

where B is a Jordan block of size l � l:

B D

0

B
B
B
@

1 1 0 : : : 0

0 1 1 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : 1

1

C
C
C
A
:

Of course, introducing new coordinates, we have to change the constants L and
d0; we denote the new constants by the same symbols. In addition, we assume that
L is integer.

We start considering the case l D 2; in this case,

B D
�
1 1

0 1

�
:

Let

e1 D .1; 0; 0; : : : ; 0/ and e2 D .0; 1; 0; : : : ; 0/

be the first two vectors of the standard orthonormal basis.
Let K D 7L .
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Take a small d > 0 and construct a finite sequence y0; : : : ; yQ of points (where Q
is determined later) as follows: y0 D 0 and

ykC1 D Ayk C de2; k D 0; : : : ;K � 1: (2.76)

Then

yK D .Z1.K/d;Kd; 0; : : : ; 0/;

where the natural number Z1.K/ is determined by K (we do not write Z1.K/
explicitly). Now we set

ykC1 D Ayk � de2; k D K; : : : ; 2K � 1:
Then

y2K D .Z2.K/d; 0; 0; : : : ; 0/;

where the natural number Z2.K/ is determined by K as well. Take Q D 2KCZ2.K/;
if we set

ykC1 D Ayk � de1; k D 2K; : : : ;Q � 1;

then yQ D 0. Let us note that both numbers Q and

Y WD max0�k�Q�1 j ykj
d

are determined by K (and hence, by L ).
Now we construct a Q-periodic sequence xk; k 2 Z; that coincides with the above

sequence for k D 0; : : : ;Q.
We claim that if d is small enough, then � D fxkg is a 2d-pseudotrajectory of f

(and this pseudotrajectory is Q-periodic by construction).
Indeed, we know that jxkj � Yd for k 2 Z. Since F.v/ D o.jvj/ as jvj ! 0,

jF.xk/j < d; k 2 Z; (2.77)

if d is small enough.
The definition of xk implies that

jxkC1 � Axkj D d; k 2 Z: (2.78)

It follows from (2.77) and (2.78) that

jxkC1 � f .xk/j � jxkC1 � Axkj C jF.xk/j < 2d;

which implies that � D fxkg is a 2d-pseudotrajectory of f if d is small enough.
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Now we estimate the distances between points of trajectories of the diffeomor-
phism f and its linearization at zero.

Let us take a vector p0 and assume that the sequence pk D f k. p0/ belongs to the
ball jvj � .Y C 2L /d for 0 � k � K. Let rk D Akp0 (we impose no conditions on
rk since below we estimate F at points qk only).

Take a small number � 2 .0; 1/ (to be chosen later) and assume that d is small
enough, so that the inequality

jF.v/j � �jvj

holds for jvj � .Y C 2L /d.
By our assumption, kAk D kDf .0/k � N. Then

j p1j � jAp0j C jF. p0/j � .N C 1/j p0j; : : : ;

j pkj � jApk�1j C jF. pk�1/j � .N C 1/kj p0j

for 1 � k � K, and

j p1 � r1j D jAp0 C F. p0/� Ap0j � �j p0j;

j p2 � r2j D jAp1 C F. p1/� Ar1j � Nj p1 � r1j C �j p1j � �.2N C 1/j p0j;

j p3 � r3j � Nj p2 � r2j C �j p2j � �.N.2N C 1/C .N C 1/2/j p0j;

and so on.
Thus, there exists a number � D �.K;N/ such that

j pk � rkj � ��j p0j; 0 � k � K:

We take � D 1=�, note that � D �.K;N/, and get the inequalities

j pk � rkj � j p0j; 0 � k � K; (2.79)

for d small enough.
Since f has the Lipschitz periodic shadowing property, for d small enough, the

Q-periodic 2d-pseudotrajectory � is 2L d-shadowed by a periodic trajectory. Let p0
be a point of this trajectory such that

j pk � xkj � L d; k 2 Z; (2.80)

where pk D f k. p0/.
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The inequalities jxkj � Yd and (2.80) imply that

j pkj � jxkj C j pk � xkj � . Y C 2L /d; k 2 Z: (2.81)

Note that j p0j � 2L d.
Set rk D Akp0; we deduce from estimate (2.79) that if d is small enough, then

j pK � rK j � j p0j � 2L d: (2.82)

Denote by v.2/ the second coordinate of a vector v.
It follows from the structure of the matrix A that

ˇ
ˇ
ˇr.2/K

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ p.2/0

ˇ
ˇ
ˇ � 2L d: (2.83)

The relations
ˇ̌
ˇ y.2/K

ˇ̌
ˇ D Kd and j pK � yK j � 2L d

imply that

ˇ
ˇ
ˇ p.2/K

ˇ
ˇ
ˇ � Kd � 2L d D 5L d (2.84)

(recall that K D 7L ).
Estimates (2.82)–(2.84) are contradictory. Our lemma is proved in Case 1 for

l D 2.
If l D 1, then the proof is simpler; the first coordinate of Akv equals the first

coordinate of v, and we construct the periodic pseudotrajectory perturbing the first
coordinate only.

If l > 2, the reasoning is parallel to that above; we first perturb the lth coordinate
to make it Kd, and then produce a periodic sequence consequently making zero the
lth coordinate, the .l � 1/st coordinate, and so on.

If � is a complex eigenvalue, � D a C bi, we take a real 2 � 2 matrix

R D
�
a �b
b a

�

and assume that in representation (2.75), B is a real 2l � 2l Jordan block:

B D

0

BB
B
@

R E2 0 : : : 0

0 R E2 : : : 0
:::
:::
:::
: : :

:::

0 0 0 : : : R

1

CC
C
A
;

where E2 is the 2 � 2 identity matrix.
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After that, almost the same reasoning works; we note that jRvj D jvj for any
2-dimensional vector v and construct periodic pseudotrajectories replacing, for
example, formulas (2.76) by the formulas

ykC1 D Ayk C dwk; k D 0; : : : ;K � 1;

where jth coordinates of the vector wk are zero for j D 1; : : : ; 2l � 2; 2l C 1; : : : ; n,
while the 2-dimensional vector corresponding to .2l� 1/st and 2lth coordinates has
the form Rkw with jwj D 1, and so on. We leave details to the reader. The lemma is
proved. ut
Lemma 2.4.4 There exist constants C > 0 and � 2 .0; 1/ depending only on N and
L and such that, for any point p 2 Per. f /, there exist complementary subspaces
S. p/ and U. p/ of Rn that are Df -invariant, i.e.,

(H1) Df . p/S. p/ D S. f . p// and Df . p/U. p/ D U. f . p//,
and the inequalities

(H2.1)
ˇ
ˇDf j. p/v

ˇ
ˇ � C�jjvj; v 2 S. p/; j � 0,

and
(H2.2)

ˇ
ˇDf�j. p/v

ˇ
ˇ � C�jjvj; v 2 U. p/; j � 0,

hold.

Remark 2.4.2 This lemma means that the set Per. f / has all the standard properties
of a hyperbolic set, with the exception of compactness.

Proof Take a periodic point p 2 Per. f /; let m be the minimal period of p.
Denote pi D f i. p/, Ai D Df . pi/, and B D Dfm. p/. It follows from Lemma 2.4.3

that the matrix B is hyperbolic. Denote by S. p/ and U. p/ the invariant subspaces
of B corresponding to parts of its spectrum inside and outside the unit disk,
respectively. Clearly, S. p/ and U. p/ are invariant with respect to Df , they are
complementary subspaces of Rn, and the following relations hold:

lim
n!C1Bnvs D lim

n!C1B�nvu D 0; vs 2 S. p/; vu 2 U. p/: (2.85)

We prove that inequalities (H2.2) hold with C D 4L and � D 1 C 1=.2L /

(inequalities (H2.1) are established by similar reasoning applied to f�1 instead of f ).
Consider an arbitrary nonzero vector vu 2 U. p/ and an integer j � 0. Define

sequences of vectors vi; ei and numbers �i > 0 for i � 0 as follows:

v0 D vu; viC1 D Aivi; ei D vi

jvij ; �i D jviC1j
jvij D jAieij:

Let

� D �m�1 � : : : � �1 C �m�1 � : : : � �2 C : : :C �m�1 C 1

�m�1 � : : : � �0 :
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Consider the sequence fai 2 R W i � 0g defined by the following formulas:

a0 D �; aiC1 D �iai � 1: (2.86)

Note that

am D 0 and ai > 0; i 2 Œ0;m � 1�: (2.87)

Indeed, if ai � 0 for some i 2 Œ0;m � 1�, then ak < 0 for k 2 Œi C 1;m�.
It follows from (2.85) that there exists an n > 0 such that

jB�n�e0j < 1: (2.88)

Consider the finite sequence of vectors fwi W i 2 Œ0;m.n C 1/�g defined as
follows:

8
<

:

wi D aiei; i 2 Œ0;m � 1�I
wm D B�n�e0I
wmC1Ci D AiwmCi; i 2 Œ0;mn � 1�:

Clearly,

wkm D Bk�1�n�e0; k 2 Œ1; n C 1�;

which means that we can consider fwig as an m.n C 1/-periodic sequence defined
for i 2 Z.

Let us note that

Aiwi D aiAiei D ai
viC1
jvij ; i 2 Œ0;m � 2�;

wiC1 D .�iai � 1/
viC1

jviC1j D ai
viC1
jvij � eiC1; i 2 Œ0;m � 2�;

and

Am�1wm�1 D am�1
vm

jvm�1j D vm

�m�1jvm�1j D em

(in the last relation, we take into account that am�1�m�1 D 1 since am D 0).
The above relations and condition (2.88) imply that

jwiC1 � Aiwij < 2; i 2 Z: (2.89)
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Now we take a small d > 0 and consider the m.n C 1/-periodic sequence

� D fxi D pi C dwi W i 2 Zg:

We claim that if d is small enough, then � is a 2d-pseudotrajectory of f .
Represent

f .xi/ D f . pi/C Df . pi/dwi C Fi.dwi/ D piC1 C Aidwi C Fi.dwi/;

where Fi.v/ D o.jvj/ as v ! 0.
It follows from estimates (2.77) that

j f .xi/� xiC1j < 2d

for small d.
By Lemma 2.4.3, the m-periodic trajectory f pig is hyperbolic; hence, f pig has a

neighborhood in which f pig is the unique periodic trajectory. It follows that if d is
small enough, then the pseudotrajectory fxig is 2L d-shadowed by f pig.

The inequalities jxi �pij � 2L d imply that jaij D jwij � 2L for 0 � i � m�1.
Now the equalities �i D .aiC1 C 1/=ai imply that if 0 � i � m � 1, then

�0 � : : : � �i�1 D a1 C 1

a0

a2 C 1

a1
: : :

ai C 1

ai�1
D

D ai C 1

a0

�
1C 1

a1

�
: : :

�
1C 1

ai�1

�
�

� 1

2L

�
1C 1

2L

�i�1
>

1

4L

�
1C 1

2L

�i

(we take into account that 1C 1=.2L / < 2 since L � 1).
It remains to note that

ˇ
ˇDf i. p/vu

ˇ
ˇ D �i�1 � � ��0jvuj; 0 � i � m � 1;

and that we started with an arbitrary vector vu 2 U. p/.
This proves our statement for j � m � 1. If j � m, we take an integer k > 0 such

that km > j and repeat the above reasoning for the periodic trajectory p0; : : : ; pkm�1
(note that we have not used the condition that m is the minimal period). The lemma
is proved. ut

In the following lemmas, we return to the case of a diffeomorphism f of a smooth
closed manifold M since the reasoning becomes “global.” We still assume that f has
the Lipschitz periodic shadowing property and apply analogs of Lemmas 2.4.3 and
2.4.4 for the case of a manifold.
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Lemma 2.4.5 The diffeomorphism f satisfies Axiom A.

Proof Denote by Pl the set of points p 2 Per. f / of index l (as usual, the index of a
hyperbolic periodic point is the dimension of its stable manifold).

Let Rl be the closure of Pl. Clearly, Rl is a compact f -invariant set. We claim that
any Rl is a hyperbolic set. Let n D dimM.

Consider a point q 2 Rl and fix a sequence of points pm 2 Pl such that pm ! q as
m ! 1. By an analog of Lemma 2.4.4, there exist complementary subspaces S. pm/
and U. pm/ of TpmM (of dimensions l and n � l, respectively) for which estimates
(H2.1) and (H2.2) hold.

Standard reasoning shows that, introducing local coordinates in a neighborhood
of .q;TqM/ in the tangent bundle of M, we can select a subsequence pmk for
which the sequences S. pmk/ and U. pmk/ converge (in the Grassmann topology) to
subspaces of TqM (let S0 and U0 be the corresponding limit subspaces).

The limit subspaces S0 and U0 are complementary in TqM. Indeed, consider
the “angle” ˇmk between the subspaces S. pmk/ and U. pmk/ which is defined (with
respect to the introduced local coordinates in a neighborhood of .q;TqM/) as
follows:

ˇmk D min jvs � vuj;

where the minimum is taken over all possible pairs of unit vectors vs 2 S. pmk/ and
vu 2 U. pmk/.

The same reasoning as in the proof of Lemma 2.1.5 shows that the values ˇmk are
estimated from below by a positive constant ˛ D ˛.N;C; �/. Clearly, this implies
that the subspaces S0 and U0 are complementary.

It is easy to show that the limit subspaces S0 and U0 are unique (which means, of
course, that the sequences S. pm/ and U. pm/ converge). For the convenience of the
reader, we prove this statement.

To get a contradiction, assume that there is a subsequence pmi for which the
sequences S. pmi/ and U. pmi/ converge to complementary subspaces S1 and U1
different from S0 and U0 (for definiteness, we assume that S0 n S1 ¤ ;).

Due to the continuity of Df , the inequalities

ˇ
ˇDf j.q/v

ˇ
ˇ � C�jjvj; v 2 S0 [ S1;

and

ˇ
ˇDf j.q/v

ˇ
ˇ � C�1��jjvj; v 2 U0 [ U1;

hold for j � 0.
Since

TqM D S0 ˚ U0 D S1 ˚ U1;
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our assumption implies that there is a vector v 2 S0 such that

v D vs C vu; vs 2 S1; v
u 2 U1; v

u ¤ 0:

Then

jDf j.q/vj � C�jjvj ! 0; j ! 1;

and

ˇ
ˇDf j.q/v

ˇ
ˇ � C�1��jjvuj � C�jjvsj ! 1; j ! 1;

and we get the desired contradiction.
It follows that there are uniquely defined complementary subspaces S.q/ and

U.q/ for q 2 Rl with proper hyperbolicity estimates; the Df -invariance of these
subspaces is obvious. We have shown that each Rl is a hyperbolic set with
dimS.q/ D l and dimU.q/ D n � l for q 2 Rl.

If r 2 ˝. f /, then there exists a sequence of points rm ! r as m ! 1 and a
sequence of indices km ! 1 as m ! 1 such that f km.rm/ ! r.

Clearly, if we continue the sequence

rm; f .rm/; : : : ; f
km�1.rm/

periodically with period km, we get a periodic dm-pseudotrajectory of f with dm ! 0

as m ! 1.
Since f has the Lipschitz periodic shadowing property, for large m there exist

periodic points pm such that dist. pm; rm/ ! 0 as m ! 1. Thus, periodic points are
dense in ˝. f /.

Since hyperbolic sets with different dimensions of the subspaces U.q/ are
disjoint, we get the equality

˝. f / D R0 [ � � � [ Rn;

which implies that ˝. f / is hyperbolic. The lemma is proved. ut
Thus, to prove Theorem 2.4.4, it remains to prove the following lemma.

Lemma 2.4.6 If f has the Lipschitz periodic shadowing property, then f satisfies
the no cycle condition.

Proof To simplify presentation, we prove that f has no 1-cycles (in the general
case, the idea is literally the same, but the notation is heavy; we leave this case to
the reader).

To get a contradiction, assume that

p 2 .Wu.˝i/\ Ws.˝i// n˝. f /:
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In this case, there are sequences of indices jm; km ! 1 as m ! 1 such that

f�jm. p/; f km. p/ ! ˝i; m ! 1:

Since the set ˝i is compact, we may assume that

f�jm. p/ ! q 2 ˝i and f km. p/ ! r 2 ˝i:

Since ˝i contains a dense positive semitrajectory, there exist points sm ! r and
indices lm > 0 such that f lm.sm/ ! q as m ! 1.

Clearly, if we continue the sequence

p; f . p/; : : : ; f km�1. p/; sm; : : : ; f lm�1.sm/; f�jm. p/; : : : ; f�1. p/

periodically with period km C lm C jm, we get a periodic dm-pseudotrajectory of f
with dm ! 0 as m ! 1.

Since f has the Lipschitz periodic shadowing property, there exist periodic points
pm (for m large enough) such that pm ! p as m ! 1, and we get the desired
contradiction with the assumption that p … ˝. f /. The lemma is proved. ut
Historical Remarks Theorem 2.4.1 was published by A. V. Osipov, the first author,
and S. B. Tikhomirov in [50].

2.5 Hölder Shadowing for Diffeomorphisms

In this section, we explain the main ideas of the proof of the following result.

Theorem 2.5.1 Assume that a diffeomorphism f of class C2 of a smooth closed
manifold has the Hölder shadowing property on finite intervals with constants
L ;C; d0; �; ! and that

� 2 .1=2; 1/ and � C ! > 1: (2.90)

Then f is structurally stable.
The proof of Theorem 2.5.1 is quite complicated. For that reason, we try to

simplify the presentation and omit inessential technical details; the reader can find
the original Tikhomirov’s proof in the paper [101].

The main two steps of the proof of Theorem 2.5.1 are as follows.
First one considers a trajectory f pk D f k. p/g of f , denotes Ak D Df . pk/, and

shows that under conditions of Theorem 2.5.1, the sequence A D fAkg has a
weak analog of the Perron property (in which the existence of bounded solutions
of the inhomogeneous difference equations is replaced by the existence of “slowly
growing” solutions).
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We reproduce this part of the proof in Theorem 2.5.2 in which we restrict our
consideration to the case of a diffeomorphism f of the Euclidean space Rn.

After that, it is shown that the above-mentioned weak analog of the Perron
property implies then f satisfies the analytic strong transversality condition (with
exponential estimates) and, hence, by the Mañé theorem, f is structurally stable. To
explain the basic techniques of that part of the proof, we prove the above statement
in Theorem 2.5.3 in the case of a one-dimensional phase space (and note that the
reasoning in the proof of Theorem 2.5.3 reproduces the most important part of the
proof given by Tikhomirov). We again refer the reader to [101] for the proof of the
general case.

Theorem 2.5.2 Assume that a diffeomorphism f of the Euclidean space Rn has the
Hölder shadowing property on finite intervals with constantsL ;C; d0; �; ! and that
condition (2.90) is satisfied.

Assume, in addition, that there exist constants S; " > 0 such that

j f . pk C v/ � pkC1 � Akvj � Sjvj2; k 2 Z; jvj � ": (2.91)

Then there exist constants L > 0 and 	 2 .0; 1/ such that for any i 2 Z and
N > 0 and any sequence

W D fwk 2 R
n W i C 1 � k � i C N C 1g (2.92)

with jwkj � 1, the difference equations

vkC1 D Akvk C wkC1; i � k � i C N; (2.93)

have a solution

V D fvk W i � k � i C N C 1g; (2.94)

such that the value

kVk WD max
i�k�iCNC1 jvkj (2.95)

satisfies the estimate

kVk � LN	 : (2.96)

Remark 2.5.1 Clearly, an analog of condition (2.91) is satisfied if we consider a
diffeomorphism of class C2 for which the trajectory f pkg is contained in a bounded
subset of Rn (or a diffeomorphism of class C2 of a smooth closed manifold studied
in the original paper [101]). In fact, it was noted by Tikhomirov that one can prove
a similar result in the case where exponent 2 in (2.91) is replaced by any � > 1. The
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reasoning remains almost the same, but calculations become very cumbersome. For
that reason, we follow the proof given in [101] (with exponent 2).

Proof (of Theorem 2.5.2) Denote

˛ D � � 1=2:

Inequalities (2.90) imply that

˛ 2 .0; 1=2/ and 1=2� ˛ < !: (2.97)

Consider two auxiliary linear functions of ˇ � 0,

g1.ˇ/ D .2C ˇ/.1=2� ˛/ and g1.ˇ/ D .2C ˇ/!:

By inequalities (2.97),

g2.0/ D 2! > 1 � 2˛ D g1.0/ 2 .0; 1/

and

g0
2.ˇ/ D ! > 1=2� ˛ D g0

1.ˇ/:

Hence, there exists a ˇ > 0 such that

g1.ˇ/ 2 .0; 1/ and g2.ˇ/ > 1:

We fix such a ˇ and write the above relations in the form

0 < .2C ˇ/.1=2� ˛/ < 1 and .2C ˇ/! > 1: (2.98)

Introduce the values

	 D ..2C ˇ/!/�1 and 	1 D 1 � .2C ˇ/.1=2� ˛/:

Then it follows from (2.98) that

0 < 	 < 1 and 	1 > 0: (2.99)

Now we fix a sequence W of the form (2.92) and denote by E.W/ the set of
all sequences V of the form (2.94) that satisfy Eqs. (2.93). The function kVk is
continuous on the linear space of sequences V; the set E.W/ is closed. Hence, the
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value

F.W/ D min
V2E.W/ kVk (2.100)

is defined.
The set of finite sequences W of the form (2.92) with

kWk D max
iC1�k�NC1 jwkj � 1

is compact. The function F.W/ is continuous in W; thus, there exists the number

Q D max
W

F.W/:

Let us fix sequences W0 and V0 2 E.W0/ such that

Q D F.W0/ D kV0k: (2.101)

Note the following two properties of the number Q. They follow from the
definition of Q and from the linearity of Eqs. (2.93).

(Q1) Any sequence V 2 E.W0/ satisfies the inequality

kVk � Q:

(Q2) For any sequence W of the form (2.92) there exists a sequence V 2 E.W/ such
that

kVk � QkWk:

It follows from property (Q2) that to complete the proof of our theorem, it is
enough to prove the following statement:

There exists a number L independent of i and N such that

Q � LN	 : (2.102)

Define the number

d D "Q�.2Cˇ/: (2.103)

Let us consider the following two cases.

Case 1: C..S C 1/d/�! < N. In this case,

Q < ."!.S C 1/!=C/	 N	 ;
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which proves inequalities (2.103) with

L D ."!.S C 1/!=C/	 :

Case 2: C..S C 1/d/�! � N. In this case, we prove a stronger statement: There
exists a number L independent of i and N such that

Q � L: (2.104)

Treating Case 2, we assume without loss of generality that i D 0.

Also, without loss of generality, we assume that " < 1 and Q > 2. Concerning
the latter assumption, we note that if there exists a fixed number L independent of
N such that Q � L, then estimate (2.104) is obviously valid. Thus, we may assume
that Q is larger than any prescribed number independent of N. Applying the same
reasoning, we assume that Q is so large that

Q > ..S C 1/"=d0/
1=.2Cˇ/ (2.105)

and

L ..S C 1/"=Q2Cˇ/� < "=2: (2.106)

Fix sequences W0 and V0 for which relation (2.101) is valid. To simplify notation,
write V0 D fvkg.

Consider the sequence of points

yk D pk C dvk; 0 � k � N C 1:

We claim that this sequence is an .S C 1/d-pseudotrajectory of f .
Let us first note that jvkj � Q; hence,

jdvkj � "Q�.2Cˇ/Q D "Q�.1Cˇ/ < "=2: (2.107)

In addition,

.dQ/2 D ."Q�.1Cˇ//2 < "Q�.2Cˇ/ D d: (2.108)

Now we estimate

j f . yk/� ykC1j D j f . pk C dvk/� . pkC1 C dvkC1/j D

D j f . pk C dvk/� . pkC1 C dAkvk C dwkC1/j �
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� j f . pk C dvk/ � . pkC1 C dAkvk/j C djwkC1j �

� Sjdvkj2 C d � .S C 1/d:

We estimate the first term of the third line taking into account condition (2.91) and
inequality (2.107); estimating the first term of the last line, we refer to inequality
(2.108).

Inequality (2.105) implies that

Q2Cˇ > .S C 1/"=d0I

hence,

.S C 1/d D .S C 1/"Q�.2Cˇ/ < d0:

Since we treat Case 2,

N � C..S C 1/d/�! < Cd�!;

and we can apply the Hölder shadowing property on finite intervals to conclude that
there exists an exact trajectory fxkg of f such that

j yk � xkj � L ..S C 1/d/� ; 0 � k � N C 1:

Denote xk D pk C ck and L1 D L .S C 1/� . Then

jdvk � ckj � j yk � xkj � L1d
� ; 0 � k � N C 1; (2.109)

and

jckj � Qd C L1d
� ; 0 � k � N C 1: (2.110)

Inequalities (2.107) and (2.106) imply that

jckj < ":

By the first inequality in (2.98),

Q > Q.1=2�˛/.2Cˇ/ D ."=d/1=2�˛ D "1=2�˛d˛�1=2:

Hence,

Qd > "1=2�˛d˛C1=2 D "1=2�˛d� :
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Now it follows from (2.110) that there exists an L2 independent of N such that

jckj � L2Qd:

Since pkC1 C ckC1 D f . pk C ck/, we can estimate

jckC1 � Akckj D j f . pk C ck/� . pkC1 C Akckj � Sjck/j2 � SL2.Qd/
2:

Denote tkC1 D ckC1 � Akck; then

jtkj � Sjckj2 � L3.Qd/
2;

where the constant L3 does not depend on N. By property (Q2), there exists a
sequence zk such that

zkC1 D Akzk C tkC1 and jzkj � QL3.Qd/
2; 0 � k � N:

Consider the sequence rk D ck � zk. Clearly,

rkC1 D Akrk and jrk � ckj � QL3.Qd/
2; 0 � k � N: (2.111)

Now we define the sequence ek D .dvk � rk/=d. Relations (2.109) and (2.111)
imply that

ekC1 D Akek C wkC1; 0 � k � N; (2.112)

and

jekj D j..dvk � ck/� .rk � ck//=dj � L1d
��1 C L3Q

3d; 0 � k � N:

Property (Q1) implies that

L1d
��1 C L3Q

3d D L1d
˛�1=2 C L3Q

3d � Q:

We can apply (2.103) and find L4;L5 > 0 independent of N and such that this
inequality takes the form

L4Q
�.2Cˇ/.˛�1=2/ C L5Q

1�ˇ � Q;

or

L4Q
1�	1 C L5Q

1�ˇ � Q:

It follows that either

L4Q
1�	1 � Q=2
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or

L5Q
1�ˇ � Q=2;

which implies that

Q � max
�
.2L4/

1=	1 ; .2L5/
1=ˇ
�
:

The theorem is proved. ut
Now we assume, in addition, that there exists a constant R > 0 such that

kAkk � R; k 2 Z: (2.113)

Remark 2.5.2 Of course, an estimate of the form (2.113) holds for Ak D Df . pk/ in
the case of a diffeomorphism f of a closed manifold.

Theorem 2.5.3 Let f be a diffeomorphism of the line R having the Hölder
shadowing property on finite intervals. Assume that conditions (2.91) and (2.113)
are satisfied for a trajectory f pk D f k. p/g. There exists a constant � 2 .0; 1/ with
the following property.

For any k 2 Z there exists a constant C > 0 and subspaces S. pk/ and U. pk/ of
R such that

S. pk/C U. pk/ D R; (2.114)

jAkCl�1 � � �Akvj � C�ljvj; v 2 S. pk/; l � 0; (2.115)

jA�1
k�l � � �A�1

k�1vj � C�ljvj; v 2 U. pk/; l � 0: (2.116)

The essential part of the proof of Theorem 2.5.3 is contained in the following
lemma.

Let us first introduce some notation. Consider a one-dimensional vector (i.e., a
real number) e0 with je0j D 1 and define a sequence fek W k 2 Zg as follows:

ekC1 D Akek=jAkekj; e�k�1 D A�1�k�1e�k=jA�1�k�1e�kj; k � 0: (2.117)

Set

�k D jAkekj:

It follows from inequalities (2.113) that

�k 2 Œ1=R;R�; k 2 Z: (2.118)

Set also

˘.k; l/ D �k � � ��kCl�1; k 2 Z; l � 1: (2.119)
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Lemma 2.5.1 If the sequence A satisfies the conclusion of Theorem 2.5.2, then
there exists a number N depending only on L, 	 , and R (see inequality (2.113)) and
such that, for any i 2 Z, one of the following alternatives is valid:

either˘.i;N/ > 2 or ˘.i C N;N/ < 1=2: (2.120)

Proof Fix numbers i 2 Z and N > 0 and consider the sequence

wk D �ek; i � k � i C 2N C 1:

It follows from the conclusion of Theorem 2.5.2 that there exists a sequence

fvk W i � k � i C 2Ng

such that

vkC1 D Akvk C wkC1 and jvkj � L.2N C 1/	 ; i � k � i C 2N:

Set vk D akek, where ak 2 R. Then

akC1 D �kak � 1 and jakj � L.2N C 1/	 ; i � k � i C 2N: (2.121)

Now we show that there exists a large enough number N (depending only on
L, 	 , and R) such that if aiCN � 0, then ˘.i;N/ > 2, and if aiCN < 0, then
˘.i C N;N/ < 1=2.

Let us prove the existence of N for the first case (i.e., for the case where
aiCN � 0).

Since �k > 0, it follows from relations (2.121) that if ak � 0 for
some k 2 Œi; i C 2N � 1�, then akC1 < 0. Thus, if aiCN � 0, then
ai; : : : ; aiCN�1>0.

Relations (2.121) imply that in this case,

�k D akC1 C 1

ak
; i � k � i C N � 1:

Hence,

˘.i;N/ D aiC1 C 1

ai

aiC2 C 1

aiC1
� � � aiCN C 1

aiCN�1
D

D 1

ai

aiC1 C 1

aiC1
aiC2 C 1

aiC2
� � � aiCN�1 C 1

aiCN�1
.aiCN C 1/ D

D aiCN C 1

ai

iCN�1Y

kDiC1

ak C 1

ak
;
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and it follows from relations (2.121) that

˘.i;N/ � 1

L.2N C 1/	

�
1C 1

L.2N C 1/	

�N�1
: (2.122)

Denote the expression on the right in (2.122) by G1.	;N/. Since

logG1.	;N/ D �	 log.L.2N C 1//C .N � 1/ log

�
1C 1

L.2N C 1/	

�
;

log

�
1C 1

L.2N C 1/	

�
' .L.2N C 1//�	

for large N, and 	 2 .0; 1/, we conclude that

G1.	;N/ ! 1; N ! 1:

Hence, there exists an N1 depending only on L and 	 such that G1.	;N/ > 2 for
N � N1.

Now we consider the second case, i.e., we assume that aiCN < 0. In this case, it
follows from relations (2.121) that

ak 2 .�L.2N C 1/	 ;�1/; i C N < k � i C 2N: (2.123)

As above, we set

�k D akC1 C 1

ak
:

Now we write

˘.i C N C 1;N � 1/ D aiCNC2 C 1

aiCNC1
aiCNC3 C 1

aiCNC2
� � � aiC2N C 1

aiC2N�1
D

D 1

aiCNC1
aiCNC2 C 1

aiCNC2
aiCNC3 C 1

aiCNC3
� � � aiC2N�1 C 1

aiC2N�1
.aiC2N C 1/

and conclude that

˘.i C N C 1;N � 1/ D aiC2N C 1

aiCNC1

iC2N�1Y

kDiCNC2

ak C 1

ak
: (2.124)

Inclusions (2.123) imply that

0 <
ak C 1

ak
< 1 � 1

L.2N C 1/	
; i C N C 2 � k � i C 2N � 1;
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and

0 <
aiC2N C 1

aiCNC1
< L.2N C 1/	 :

Combining these inequalities with (2.124), we conclude that

˘.i C N C 1;N � 1/ < L.2N C 1/	
�
1 � 1

L.2N C 1/	

�N�2
:

Denote the right-hand side of the above inequality byG2.	;N/. Clearly,G2.	;N/ !
0 as N ! 1; hence, there exists an N2 depending only on L, 	 , and R such
that

G.	;N/ <
1

2R
; N � N2:

If N � N2, then

˘.i C N;N/ D �iCN˘.i C N C 1;N � 1/ < R
1

2R
D 1=2:

Hence, the conclusion of our lemma holds for N D max.N1;N2/.
ut

Proof (of Theorem 2.5.3) Take an arbitrary i 2 Z and the number N given by
Lemma 2.5.1. The following statements hold:

(a) If ˘.i;N/ > 2, then ˘.i � N;N/ > 2;
(b) If ˘.i;N/ < 1=2, then˘.i C N;N/ < 1=2.

Let us prove statement (a); the proof of statement (b) is similar.
By Lemma 2.5.1 applied to i�N, either˘.i�N;N/ > 2 or˘.i;N/ < 1=2. By the

assumption of statement (a), the second case is impossible; thus, ˘.i � N;N/ > 2.
It follows from these statements that only one of the following cases is realized:

Case 1. ˘.i;N/ > 2 for all i 2 Z.
Case 2. ˘.i;N/ < 1=2 for all i 2 Z.
Case 3. There exist indices i; j 2 Z such that ˘.i;N/ > 2 and˘. j;N/ < 1=2.

Now we show that Theorem 2.5.3 is valid with � D 2�1=N .
Consider Case 1. Take e0 with je0j D 1 and define ek; k 2 Z, by formulas

(2.117). Represent any integer l � 0 in the form

l D nN C l1; n 2 ZC; 0 � l1 < N:
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Then

˘.i; l/ D ˘.i; nN/˘.i C nN; l1/ > 2
nR�l1

(in the last estimate, we take into account inequalities (2.118)).
Hence, in Case 1,

˘.i; l/ > R�l1
�
2�l1=N

� �
21=N

�l
> C0�

�l; i 2 Z; l � 0; (2.125)

where

C0 D R�N=2:

Now we fix a point pk of the trajectory f pkg and set S. pk/ D f0g and U. pk/DR.
Clearly, in this case, relations (2.114) and (2.115) are satisfied. Let us prove
inequalities (2.116). Take any v 2 R D U. pk/ and l � 0. Let

w D A�1
k�l � � �A�1

k�1v:

Then

v D Ak�1 � � �Ak�lw:

Hence,

jvj D �k�l � � ��k�1jwj D ˘.k � l; l/jwj;

and it follows from (2.125) that

jwj � C�ljvj;

where C D .C0/�1, as required.
In Case 2, we set U. pk/ D f0g and S. pk/ D R and apply a similar reasoning.
Let us now consider Case 3. By our remark at the beginning of the proof,

˘.i � nN;N/ > 2 and˘. j C nN;N/ < 1=2; n 2 ZC:

In this case, we set S. pk/ D U. pk/ D R. Clearly, in this case, relation (2.114) is
satisfied. Let us show how to prove inequalities (2.115).

We treat in detail two cases:

Case (I). k C l � j
and

Case (II). k < j and k C l > j
(the remaining cases and the proof of inequalities (2.116) are left to the reader).
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In Case (I), we note that l � j � k and estimate

˘.k; l/ � Rj�k D Rj�k2l=N2�l=N � C�l;

where C D Rj�k2. j�k/=N . Hence,

jAkCl�1 � � �Akvj � C�ljvj; v 2 S. pk/:

In Case (II), we represent k C l D j C nN C l1, where n 2 ZC and 0 � l1 < N.
Then

˘.k; l/ D ˘.k; j � k/˘. j; nN/˘. j C nN; l1/:

We note that ˘.k; j � k/ � Rj�k,

˘. j; nN/ < 2�n D 2l1=N�l;

and

˘. j C nN; l1/ � Rl1 < RN ;

which gives us the desired estimate˘.k; l/ < C�l (and, hence, inequalities (2.115))
with C D 2Rj�kCN . ut
Historical Remarks Theorem 2.5.1 was published by S. B. Tikhomirov in [101].

Let us mention that earlier S. M. Hammel, J. A. Yorke, and C. Grebogi, based on
results of numerical experiments, conjectured that a generic dissipative mapping f W
R
2 ! R

2 belongs to a class FHSPD.L ;C; d0; 1=2; 1=2/ [23, 24]. If this conjecture
is true, then, in a sense, Theorem 2.5.1 cannot be improved.

2.6 A Homeomorphism with Lipschitz Shadowing
and a Nonisolated Fixed Point

Consider the segment

I0 D Œ�7=6; 4=3�

and a mapping f0 W I0 ! I0 defined as follows:

f0.x/ D
8
<

:

1C .x � 1/=2; x 2 Œ1=3; 4=3�I
2x; x 2 .�1=3; 1=3/I
�1C .x C 1/=2; x 2 Œ�7=6;�1=3�:
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Clearly, the restriction f � of f0 to Œ�1; 1� is a homeomorphism of Œ�1; 1� having
three fixed points: the points x D ˙1 are attracting and the point x D 0 is repelling
(and this homeomorphism f � is an example of the so-called “North Pole – South
Pole” dynamical system; every trajectory starting at a point x ¤ 0;˙1 tends to an
attractive fixed point as time tends to C1 and to the repelling fixed point as time
tends to �1).

Now we define a homeomorphism f W Œ�1; 1� ! Œ�1; 1�. For an integer n � 0,
denote Nn D 2�.nC2/ and set

f .x/ D Nnf0.N
�1
n .x � 3Nn//C 3Nn; x 2 .2Nn; 4Nn�: (2.126)

This defines f on .0; 1�. Set f .0/ D 0 and f .x/ D �f .�x/ for x 2 Œ�1; 0/.
Clearly, f is a homeomorphism with a nonisolated fixed point x D 0 (for example,

every point x D ˙2�n is fixed). Let us note that in a neighborhood of any fixed point
(with the exception of x D 0), f is either linearly expanding with coefficient 2 or
linearly contracting with coefficient 1/2.

Theorem 2.6.1 The homeomorphism f has the Lipschitz shadowing property.
Before proving Theorem 2.6.1, we prove two auxiliary lemmas.

Lemma 2.6.1 The mapping f0 has the Lipschitz shadowing property on I0.

Proof Let

G0 D .�1=3; 1=3/

and

G1 D .�7=6;�1=3/[ .1=3; 4=3/:

We take d0 small enough and d � d0; in fact, we write below several explicit
conditions on d and assume that they are satisfied.

There exist trivial cases where � is a subset of one of the segments J1 D
Œ�7=6;�1=3�, J2 D Œ�1=3; 1=3�, or J3 D Œ1=3; 4=3�.

Let, for example, � � J3. The inequalities 1=3 � xk � 4=3 imply that

1=2 < 2=3 � d � f0.xk/� d � xkC1 � f0.xk/C d � 7=6C d < 15=12:

These inequalities are satisfied for an arbitrary k; hence, � belongs to a domain in
which f0 is a hyperbolic diffeomorphism (and � is uniformly separated from the
boundaries of the domain); by Theorem 1.4.2 (which, of course, is valid for infinite
pseudotrajectories as well), there exist L ; d0 > 0 such that if d � d0, then � is
L d-shadowed by an exact trajectory of f0.

A similar reasoning can be applied if � � J1 or � � J2.
To consider “nontrivial” cases, let us first describe possible positions of d-

pseudotrajectories � of f0 with small d with respect to J1; : : : ; J3.
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First we show that such a pseudotrajectory cannot intersect both J1 and J3.
Indeed, if we assume that �\J3 ¤ ;, i.e., there exists an indexm such that xm � 1=3,
then

xmC1 � f0.1=3/� d D 2=3� d > 1=3

and, consequently,

xmCi > 1=3; i > 0:

Similarly, if there exists an index l such that xl � �1=3, then

xlC1 � �2=3C d < �1=3
and

xlCi < �1=3; i > 0;

and we get a contradiction.
Thus, it remains to consider the cases where either

� � J2 [ J3; � \ Int. J2/ ¤ ;; � \ Int. J3/ ¤ ;;
or

� � J1 [ J2; � \ Int. J1/ ¤ ;; � \ Int. J2/ ¤ ;:

We consider the first case; the reasoning in the second case is similar.
We claim that in the case considered, � contains two points xk; xl such that

0 < xk < 1=3 < xl: (2.127)

The existence of the point xl follows directly from our assumption; it is easily
seen that

xlCi � 2=3� d > 1=2; i > 0: (2.128)

Thus, either the set

fm W xm 2 Int. J2/; xm � 0g

is empty (which implies that there exists an index k for which inequality (2.127) is
valid) or it is nonempty and bounded from above. In the latter case, let m0 be its
maximal element. Then

xm0C1 � f0.xm0 /C d � d

(i.e., xm0C1 2 J2) and xm0C1 > 0; thus, we get the required k D m0 C 1.
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Obviously, l > k (see (2.128)). Consider the finite set of indices

� D f i 2 Œk; l � 1� W xi � 1=3g:

This set is nonempty (k 2 �) and finite; hence, it contains the maximal element. Let
it be xk0 ; clearly,

xk0 � 1=3 < xk0C1:

To simplify notation, let us assume that k0 D 0. Thus,

x0 � 1=3 < x1:

In this case,

xi � 2=3� d > 1=2; i � 2: (2.129)

On the other hand,

x1 � 2=3C d < 1;

and one easily shows that

xi � 1C 2d; i � 2: (2.130)

Since f�1
0 has Lipschitz constant 2, � is a 2d-pseudotrajectory of f�1

0 ; hence,

x�1 � 1=6C 2d < 2=9;

and, applying the same reasoning as above, we conclude that

� 4d < xi < 1=6C 2d < 2=9; i < 0: (2.131)

Now we show that there exists a d0 such that if d � d0 and p D x0, then

ˇ
ˇ f k0 . p/� xk

ˇ
ˇ < 3d; k 2 Z: (2.132)

First, clearly,

j f0. p/� x1j < d:

Since the Lipschitz constant of f0 is 2,

ˇ
ˇ f 20 . p/� x2

ˇ
ˇ � j f . f . p//� f .x1/j C j f .x1/ � x2j < 2d C d D 3d:



106 2 Lipschitz and Hölder Shadowing and Structural Stability

It follows from (2.129) that

f 20 . p/ > 1=2� 3d > 1=3;

and then

f k0 . p/ > 1=3; k � 2:

Hence,

ˇ
ˇ f 30 . p/� x3

ˇ
ˇ � ˇ

ˇ f0. f 20 . p//� f0.x2/
ˇ
ˇC j f0.x2/� x3j < 3d=2C d < 3d:

Repeating these estimates, we establish inequalities (2.132) for k � 2.
On the other hand, the inclusion p 2 J2 implies that f k0 . p/ 2 J2 for k � 0. Since

f�1
0 .x/ D x=2 for x 2 J2 and (2.131) holds, the inequality

j f0.x1/ � pj < d

implies that

jx1 � f�1
0 . p/j < d=2:

After that, we estimate

ˇ
ˇx2 � f�2

0 . p/
ˇ
ˇ � ˇ

ˇx2 � f�1
0 .x�1/

ˇ
ˇC ˇ

ˇ f�1
0 .x�1/ � f�1

0 . f�1
0 . p//

ˇ
ˇ < d=2C d=2;

and so on, which shows that an analog of (2.132) with 3d replaced by d holds for
k < 0. ut

The following statement is almost obvious.

Lemma 2.6.2 Let g be a mapping of a segment J and let numbers M > 0 and m be
given. Consider the mapping

g0. y/ D M�1g.M. y � m//C m

on the set

J0 D fy W M. y � m/ 2 Jg:

If g has the Lipschitz shadowing property with constants L ; d0, then g0 has the
Lipschitz shadowing property with constantsL ;M�1d0.
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Proof First we note that if fykg is a d-pseudotrajectory of g0 with d � d0=M and
xk D M. yk � m/, then

g.xk/ � xkC1 D M.g0. yk/ � ykC1/:

Hence, fxkg is an Md-pseudotrajectory of g.
Since Md � d0, there exists a point p such that

ˇ
ˇgk. p/� xk

ˇ
ˇ � LMd:

Set p0 D M�1p C m. Then, obviously,

ˇ
ˇ.g0/k. p0/� yk

ˇ
ˇ D M�1 ˇˇgk. p/� xk

ˇ
ˇ � L d:

ut
Let us prove Theorem 2.6.1.

Proof For a natural n, define the segment

In D Œ˛n; ˇn� D Œ11Nn=6; 13Nn=3�

and note that formula (2.126) defining f for x 2 .2Nn; 4Nn� is, in fact, valid for
x 2 In.

To prove Theorem 2.6.1, we first claim that there exists a constant c independent
of n such that if d satisfies a condition of the form

d � cNn (2.133)

and � D fxkg is a d-pseudotrajectory of f that intersects In, then � is a subset of one
of the segments In�1; In; InC1.

In fact, all the conditions imposed below on d have the form (2.133).
It follows from the inequalities

f .˛n/ D 23Nn=12 > ˛n; f .ˇn/ D 25Nn=6 < ˇn

that if c is small enough (we do not repeat this assumption below), then

Cl.N.d; f .Im/// � Im; m D n � 1; n; n C 1: (2.134)

Thus, if xk 2 Im for some m D n � 1; n; n C 1, then it follows from (2.134) that

xkCi 2 Im; i � 0: (2.135)

Let x0 2 In.
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We assume that

Cl.N.2d; f�1.In/// � In�1 [ In [ InC1

(note that this condition on d has precisely form (2.133)).
By (2.135), xk 2 In for k � 0. Thus, if the inclusion � � In does not hold, there

exists an index l < 0 such that

xl 2 .In�1 [ InC1/ n In

(recall that � is a 2d-pseudotrajectory of f�1).
Assume, for definiteness, that xl 2 In�1 (the remaining case is treated similarly).

In this case, the same inclusions (2.135) imply that

xlCi 2 In�1; i � 0:

To show that

xlCi 2 In�1; i < 0;

take an index m < l and assume that xm 2 I� . Then inclusions (2.135) imply that

x0; xl 2 I�I

hence,

I� \ In ¤ ; and I� \ In�1 ¤ ;;

from which it follows that either � D n or � D n � 1. But since xl … In, � ¤ n, and
we conclude that � � In�1, as claimed.

Of course, a similar statement holds for the segments I0
n D Œ�ˇn;�˛n�.

Without loss of generality, we assume that

c � d0=2; (2.136)

where d0 is given by Lemma 2.6.1. Let ı.m/ D cNm.
Consider a d-pseudotrajectory � D fxkg � Œ�1; 1� of f with d � d0. If

d � ı.0/ D cN0 D c=4;

then 1 � 4d=c, and � is 4d=c-shadowed by the fixed point x D 0.
Otherwise, we find the maximal index m0 for which d < ı.m0/. In this case,

d � ı.m0 C 1/ D ı.m0/=2: (2.137)
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First we assume that

� \ Im ¤ ; for some m � m0 (2.138)

(the case of I0
m is similar).

In this case, the inequalities

d < ı.m0/ � ı.m/

imply that � is a subset of one of the segments Im�1; Im; ImC1. We assume that � �
ImC1; in the remaining cases, the same estimates work.

Since

d � ı.m/ D cNm � d0Nm=2 D d0NmC1

(we refer to (2.136)), Lemma 2.6.2 implies that � is L -shadowed.
If relation (2.138) does not hold, then

jxkj � ˛m0 D 11Nm0

6
D 11ı.m0/

6c
� 11

3c
d

(we take into account inequality (2.137) in the last estimate). Thus, in this case, � is
11d=.3c/-shadowed by the fixed point x D 0. ut
Historical Remarks In this section, we give a simplified proof of Theorem 2.6.1
compared to the original variant published by A. A. Petrov and the first author in
[59].

2.7 Lipschitz Shadowing Implies Structural Stability: The
Case of a Vector Field

Let M be a smooth closed manifold with Riemannian metric dist and let X be a
vector field on M of class C1. Denote by �.t; x/ the flow on M generated by the
vector field X.

Our main goal in this section is to prove the following statement.

Theorem 2.7.1 If a vector field X has the Lipschitz shadowing property, then X is
structurally stable.

In the proof of Theorem 2.7.1, we refer to Theorem 1.3.14.
Define a diffeomorphism f on M by setting f .x/ D �.1; x/.
It is an easy exercise to show that the chain recurrent set R.�/ of the flow � (see

Definition 1.3.22) coincides with the chain recurrent set of the diffeomorphism f .
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2.7.1 Discrete Lipschitz Shadowing for Flows

In this section, we introduce the notion of discrete Lipschitz shadowing for a vector
field in terms of the diffeomorphism f .x/ D �.1; x/ introduced above and show that
the Lipschitz shadowing property of � implies the discrete Lipschitz shadowing.

Definition 2.7.1 A vector field X has the discrete Lipschitz shadowing property if
there exist d0;L > 0 such that if yk 2 M is a sequence with

dist. ykC1; f . yk// � d � d0; k 2 Z; (2.139)

then there exist sequences xk 2 M and tk 2 R such that

jtk � 1j � Ld; dist.xk; yk/ � Ld; xkC1 D �.tk; xk/; k 2 Z: (2.140)

Lemma 2.7.1 The Lipschitz shadowing property of � implies the discrete Lipschitz
shadowing of X.

Proof First we note that since M is compact and X is C1-smooth, there exists a
� > 0 such that

dist.�.t; x/; �.t; y// � �dist.x; y/; x; y 2 M; t 2 Œ0; 1�: (2.141)

Consider a sequence yk that satisfies inequalities (2.139) and define a mapping
y W R ! M by setting

y.t/ D �.t � k; yk/; k � t < k C 1; k 2 Z:

Fix a � 2 Œk; k C 1/. If t 2 Œ0; 1� and � C t < k C 1, then

dist . y.� C t/; �.t; y.�/// D dist .�.� C t � k; yk/; �.t; �.� � k; yk/// D 0:

If k C 1 � � C t, then

dist. y.� C t/; �.t; y.�/// D dist.�.� C t � k � 1; ykC1/; �.� C t � k; yk// D

D dist.�.� C t � k � 1; ykC1/; �.� C t � k � 1; �.1; yk/// � �d:

Thus, y.t/ is a .� C 1/d-pseudotrajectory of �. Hence, if d � d0=.� C 1/, where
d0 is from the definition of the Lipschitz shadowing property for �, then there exists
a trajectory x.t/ of X and a reparametrization

˛ 2 Rep.L .� C 1/d/
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such that

dist. y.t/; x.˛.t/// � L .� C 1/d; t 2 R:

If we set

xk D x.˛.k// and tk D ˛.k C 1/� ˛.k/;

then

xkC1 D x.˛.k C 1// D �.˛.k C 1/� ˛.k/; x.˛.k// D �.tk; xk/;

dist.xk; yk/ D dist.x.˛.k//; yk/ � L .� C 1/d;

and

jtk � 1j D
ˇ
ˇ
ˇ
ˇ
˛.k C 1/� ˛.k/

k C 1 � k
� 1

ˇ
ˇ
ˇ
ˇ � L .� C 1/d:

Taking L D L .�C 1/ and d0 in Definition 2.7.1 as d0=.�C 1/, we complete the
proof of the lemma. ut

As in Sect. 2.3, we reduce our shadowing problem to the problem of existence
of bounded solutions of certain difference equations. To clarify the presentation,
we again first take M D R

n, assume that the considered vector field X defines a
flow (every trajectory is defined for t 2 R), and assume that the diffeomorphism
f satisfies Condition S formulated in Sect. 2.3 (see estimate (2.52)). To treat the
general case of a compact manifold M, one has to apply exponential mappings (see
Remark 2.7.1 below); we leave details to the reader.

As above, we denote

kVk D sup
k2Z

jvkj

for a bounded sequence of vectors V D fvk W k 2 Zg.

Lemma 2.7.2 Assume that X has the discrete Lipschitz shadowing property with
constant L. Let x.t/ be an arbitrary trajectory of X, let pk D x.k/, and set Ak D
Df . pk/ (recall that f .x/ D �.1; x/). Assume that f satisfies Condition S formulated
in Sect. 2.3. Let B D fbk 2 R

ng be a bounded sequence and denote ˇ0 D kBk.
Then there exists a sequence of scalars sk with

jskj � ˇ D L.ˇ0 C 1/

such that the difference equation

vkC1 D Akvk C X. pkC1/sk C bkC1 (2.142)
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has a solution V D fvkg with

kVk � ˇ: (2.143)

Proof Fix a natural number N and define �k 2 R
n as the solution of

vkC1 D Akvk C bkC1; k D �N; : : : ;N � 1;

with ��N D 0. Then

j�kj � C; k D �N; : : : ;N; (2.144)

where C depends on N, ˇ0, and an upper bound of kAkk for k D �N; : : : ;N � 1.
Fix a small number d > 0 and fix � in (2.52) so that

�C < 1: (2.145)

Consider the sequence of points yk 2 R
n defined as follows: yk D pk for k � �N,

yk D pk C d�k; k D �N; : : : ;N � 1;

and yNCk D f k. yN/ for k > 0.
Then ykC1 D f . yk/ for k � �N � 1 and k � N.
Since

ykC1 D pkC1 C d�kC1 D pkC1 C dAk�k C dbkC1;

j ykC1 � pkC1 � dAk�kj � djbkC1j � dˇ0: (2.146)

On the other hand, if dC � ı.�/, then it follows from (2.52) that

j f . yk/� pkC1 � dAk�kj D j f . pk C d�k/ � f . pk/� dAk�kj �

� �jd�kj � �dC < d (2.147)

(see (2.145)).
Combining (2.146) and (2.147), we see that

j ykC1 � f . yk/j < d.ˇ0 C 1/; k 2 Z;

if d is small enough. Let us emphasize that the required smallness of d depends on
ˇ0, N, and estimates on kAkk.
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Now the assumptions of our lemma imply that there exist sequences xk and tk
such that

jtk � 1j � dˇ; jxk � ykj � dˇ; xkC1 D �.tk; xk/; k 2 Z:

If we represent

xk D pk C dck and tk D 1C dsk;

then

jdck � d�kj D jxk � ykj � dˇ:

Thus,

jck ��kj � ˇ; �N � k � N: (2.148)

Clearly,

jskj � ˇ; k 2 Z: (2.149)

Define mappings

Gk W R � R
n ! R

n; k 2 Z;

by

Gk.t; v/ D �.1C t; pk C v/ � pkC1:

Then

Gk.0; 0/ D 0; DtGk.t; v/jtD0;vD0 D X. pkC1/; DvGk.t; v/jtD0;vD0 D Ak:

We can write the equality

xkC1 D �.1C dsk; xk/

in the form

pkC1 C dckC1 D �.1C dsk; pk C dck/;

which is equivalent to

dckC1 D Gk.dsk; dck/: (2.150)
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Now we fix a sequence of values d D d.m/ ! 0; m ! 1. Let us denote by c.m/k ,

t.m/k , and s.m/k the values ck, tk, and sk defined above and corresponding to d D d.m/.

It follows from estimates (2.148) and (2.149) that jc.m/k j � C C ˇ and js.m/k j � ˇ

for all m and �N � k � N � 1. The second inequality implies that
ˇ
ˇ
ˇt.m/k

ˇ
ˇ
ˇ � 1 for

large m. Hence (passing to a subsequence, if necessary), we can assume that

c.m/k ! Qck; t.m/k ! Qtk; s.m/k ! Qsk; m ! 1;

for �N � k � N � 1.
Applying relations (2.150) and (2.149), we can write

dmc
.m/
kC1 D Gk



dms

.m/
k ; dmc

.m/
k

�
D Akdmc

.m/
kC1 C X. pkC1/dms.m/k C o.dm/:

Dividing these equalities by dm, we get the relations

c.m/kC1 D Akc
.m/
kC1 C X. pkC1/s.m/k C o.1/; �N � k � N � 1:

Letting m ! 1, we arrive at the relations

QckC1 D Ak Qck C X. pkC1/Qsk; �N � k � N � 1;

where

j�k � Qckj; jQskj � ˇ; �N � k � N � 1;

due to (2.148) and (2.149).
Recall that N was fixed in the above reasoning. Denote the obtained Qsk by s.N/k .

Then v.N/k D �k � Qck is a solution of the equations

v
.N/
kC1 D Akv

.N/
k C X. pkC1/s.N/k C bkC1; �N � k � N � 1;

such that
ˇ
ˇ
ˇv.N/k

ˇ
ˇ
ˇ � ˇ.

There exist subsequences v. jN /k ! v0
k and s. jN /k ! s0

k as N ! 1 (we do not
assume uniform convergence) such that

v0
kC1 D Akv

0
k C X. pkC1/s0

k C bkC1; k 2 Z;

and jv0
kj; js0

kj � ˇ. The lemma is proved. ut
Remark 2.7.1 An analog of Lemma 2.7.2 is valid in the case of a smooth closed
manifold M. In this case, we denote Mk D TpkM and consider the difference
equation (2.142) in which vk; bk 2 Mk.
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Proving an analog of Lemma 2.7.2 in the case of a closed manifold (and
replacing, for example, the formula yk D pk C d�k by yk D exppk .d�k/, compare
with the proof of Lemma 2.3.3 in Sec 2.3), one gets a similar statement with the
estimates jskj � ˇ WD L.2ˇ0 C 1/ and kVk1 � 2ˇ (see the original paper [57]).

Thus, in what follows, we refer to Lemma 2.7.2 in the case of a vector field X on
a smooth closed manifold M (with B D fbk 2 R

ng replaced by B D fbk 2 Mkg and
properly corrected estimates).

2.7.2 Rest Points

In this section, we show that if a vector field has the Lipschitz shadowing property,
then its rest points are hyperbolic and isolated in the chain recurrent set. Thus, in
what follows we assume that we work with a vector field X on a smooth closed
manifold M having the Lipschitz shadowing property.

Lemma 2.7.3 Every rest point of X is hyperbolic.

Proof Let x0 be a rest point. Applying an analog of Lemma 2.7.2 for the case of a
manifold with pk D x0 and noting that X. pk/ D 0, we conclude that the difference
equation

vkC1 D Df .x0/vk C bkC1

has a bounded solution for any bounded sequence bk 2 Mk (recall that Mk D
TpkM).

Then it follows from the Maizel’ theorem (see Theorem 2.1.1 of Sect. 2.1) that
the constant sequence A D fAk D Df .x0/g is hyperbolic on ZC; in particular, every
bounded solution of the equation

vkC1 D Df .x0/vk

tends to 0 as k ! 1.
However, if the rest point x0 is not hyperbolic, then the matrix Df .x0/ has an

eigenvalue on the unit circle, in which case the above equation has a nontrivial
solution with constant norm. Thus, x0 is hyperbolic. ut
Lemma 2.7.4 Rest points are isolated in the chain recurrent setR.�/.

Proof Let us assume that there exists a rest point x0 that is not isolated in R.�/.
First we want to show that there is a homoclinic trajectory x.t/ associated with x0.

Since x0 is hyperbolic by the previous lemma, there exists a small d > 0 and a
number a > 0 such that if dist.�.t; y/; x0/ � L d for jtj � a, then �.t; y/ ! x0 as
jtj ! 1.

Assume that there exists a point y 2 R.�/ such that y is arbitrarily close to
x0 and y ¤ x0. Given any "0; � > 0 we can find points y1; : : : ; yN and numbers



116 2 Lipschitz and Hölder Shadowing and Structural Stability

T0; : : : ;TN > � such that

dist.�.T0; y/; y1/ < "0;

dist.�.Ti; yi/; yiC1/ < "0; i D 1; : : : ;N;

and

dist.�.TN ; yN/; y1/ < "0:

Set T D T0 C � � � C TN and define g� on Œ0;T� by

g�.t/ D
8
<

:

�.t; y/; 0 � t � T0I
�.t; yi/; T0 C � � � C Ti�1 < t < T0 C � � � C TiI

y; t D T:

Clearly, for any " > 0 we can find "0 depending only on " and � (see (2.141))
such that g�.t/ is an "-pseudotrajectory of � on Œ0;T�.

Now we define

g.t/ D
8
<

:

x0; t � 0I
g�.t/; 0 < t � TI
x0; t > T:

We want to choose y and " in such a way that g.t/ is a d-pseudotrajectory of �.
We have to show that

dist.�.t; g.�//; g.t C �// < d (2.151)

for all � and t 2 Œ0; 1�.
Clearly, (2.151) holds for (i) � � �1, (ii) � � T, (iii) �; � C t 2 Œ�1; 0�, and (iv)

�; � C t 2 Œ0;T� and " < d.
If � 2 Œ�1; 0� and � C t > 0, then

dist.�.t; g.�//; g.t C �// D dist.x0; g
�.t C �// �

� dist.x0; �.t C �; y//C dist.�.t C �; y/; g�.t C �// � �dist.x0; y/C ";

where � is as in (2.141). The last value is less than d if dist.x0; y/ and " are small
enough. Note that, for a fixed y, we can decrease " and increase N;T0; : : : ;TN
arbitrarily so that g.t/ remains a d-pseudotrajectory.

Similarly, (2.151) holds if � 2 Œ0;T� and � C t > T.
Thus, g.t/ is L d shadowed by a trajectory x.t/ such that dist.x.t/; x0/ � L d if

jtj is sufficiently large; hence, x.t/ ! x0 as jtj ! 1.
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Now we want to show that x.t/ is a homoclinic trajectory if d is small enough.
For this purpose, we have to show that x.t/ ¤ x0.

There exists an "1 > L d (provided that d is small enough) such that if y does not
belong to the local stable manifold of x0, then dist.�.t0/; y/ � "1 for some t0 > 0.
We can choose T0 > t0 (not changing the point y). Then g.t/ contains the point
g�.t0/ D �.t0; y/ whose distance to x0 is more than L d. Hence, x.t/ contains a
point different from x0, as was claimed.

If y belongs to the local stable manifold of x0, then it does not belong to the
local unstable manifold of x0. In this case, considering the flow  .t; x/ D �.�t; x/,
we can apply the above reasoning to  noting that R. / D R.�/ and  has the
Lipschitz shadowing property as well.

Now we show that the existence of this homoclinic trajectory x.t/ leads to a
contradiction. Set pk D x.k/. Since AkX. pk/ D X. pkC1/, it is easily verified that if
we consider two sequences ˇk and sk such that

ˇkC1 D ˇk C sk; k 2 Z;

then uk D ˇkX. pk/ is a solution of

ukC1 D Akuk C X. pkC1/sk; k 2 Z: (2.152)

In addition, if the sequence sk is bounded, then the sequence ˇkX. pk/ is bounded
as well since X. pk/ ! 0 exponentially as jkj ! 1 (the trajectory x.t/ tends to a
hyperbolic rest point as time goes to ˙1) and the sequence jˇkj=jkj is bounded).

By Lemma 2.7.2, for any bounded sequence bk 2 Mk there exists a bounded
scalar sequence sk such that Eqs. (2.142) have a bounded solution vk. We have shown
that Eqs. (2.152) have a bounded solution uk. Then the sequence wk D vk � uk is
bounded and satisfies the equations

wk D Akwk C bkC1; k 2 Z:

Thus, the sequence A D fAkg has the Perron property on Z. It follows from
Theorems 2.1.1 and 2.1.2 that the sequence A is hyperbolic both on ZC and Z� and
the corresponding spaces SC

0 and U�
0 are transverse. But this leads to a contradiction

since

dimSC
0 C dimU�

0 D dimM

(because dimSC
0 equals the dimension of the stable manifold of the hyperbolic rest

point x0 and dimU�
0 equals the dimension of its unstable manifold), while any of the

spaces SC
0 and U�

0 contains the nonzero vector X. p0/. The lemma is proved. ut
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2.7.3 Hyperbolicity of the Chain Recurrent Set

We have shown that rest points of � are hyperbolic and isolated in the chain recurrent
set R.�/. Since M is compact, this implies that the set R.�/ is the union of a finite
set of hyperbolic rest points and a compact set (let us denote it ˙) on which the
vector field X is nonzero.

To show that R.�/ is hyperbolic, it remains to show that the set ˙ is hyperbolic.
Consider the subbundle V .˙/ of the tangent bundle TMj˙ defined in Sect. 1.3

before Theorem 1.3.15.
Let x.t/ be a trajectory in ˙ . Let us introduce the following notation. Put

pk D x.k/ and let Pk D P. pk/ and Vk D V. pk/ (recall that P.x/ is the orthogonal
projection in TxM with kernel spanned by X.x/ and V.x/ is the orthogonal
complement to X.x/ in TxM). Introduce the operators

Bk D PkC1Ak W Vk ! VkC1

(recall that Ak D Df . pk/).

Lemma 2.7.5 For every bounded sequence bk 2 Vk there exists a bounded solution
vk 2 Vk of

vkC1 D Bkvk C bkC1; k 2 Z: (2.153)

Proof Fix a bounded sequence bk 2 Vk. There exist bounded sequences sk of scalars
and wk of vectors in TpkM such that

wkC1 D Akwk C X. pkC1/sk C bkC1; k 2 Z; (2.154)

(see the remark after Lemma 2.7.2).
Note that AkX. pk/ D X. pkC1/. Since .Id � Pk/v 2 fX. pk/g for v 2 Mk, we see

that

PkC1Ak.Id � Pk/ D 0;

which gives us the equality

PkC1Ak D PkC1AkPk: (2.155)

The properties of the set ˙ imply that the projections Pk are uniformly bounded.
Multiplying (2.154) by PkC1, taking into account the equalities PkC1X. pkC1/ D

0 and PkC1bkC1 D bkC1, and applying (2.155), we conclude that vk D Pkwk is the
required bounded solution of (2.153). The lemma is proved. ut

It follows from the above lemma that if we fix a trajectory x.t/ in˙ and consider
the corresponding sequence of operatorsB D fBkg, then B has the Perron property.
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By Theorems 2.1.1 and 2.1.2, the sequence B is hyperbolic both on Z� and ZC
and the corresponding spaces U�

0 .B/ and SC
0 .B/ are transverse.

Consider the mapping 
 on the normal bundle V .˙/ defined in Sect. 1.3. Recall
that


.x; v/ D . f .x/;B.x/v/; where B.x/ D P. f .x//Df .x/

(see Sect. 1.3).
In fact, we have shown that 
 satisfies an analog of the strong transversality

condition.
The same reasoning as in the proof of Lemma 2.2.5 shows that the dual mapping


� does not have nontrivial bounded trajectories. It is easy to show that if the flow
� has the shadowing property, then its nonwandering set coincides with its chain
recurrent set.

Hence, we can repeat the reasoning of the proof of Theorem 2.2.2 to conclude
that the mapping 
 is hyperbolic.

It remains to refer to Theorem 1.3.15 to conclude that ˙ is a hyperbolic set of
the flow �.

2.7.4 Transversality of Stable and Unstable Manifolds

Let x.t/ be a trajectory that belongs to the intersection of the stable and unstable
manifolds of two trajectories, xC.t/ and x�.t/, respectively, lying in the chain
recurrent set of �.

Without loss of generality, we may assume that

dist.x.0/; xC.0// ! 0; t ! 1;

and

dist.x.0/; x�.0// ! 0; t ! �1:

Denote pk D x.k/; k 2 Z; let Ws. p0/ and Wu. p0/ be the stable and unstable
manifolds of p0, respectively. Then, of course, Ws. p0/ D Ws.xC.0// and Wu. p0/ D
Wu.x�.0//. Denote by Es and Eu the tangent spaces of Ws. p0/ and Wu. p0/ at p0.

We use the notation introduced before Lemma 2.7.5.
By Lemma 2.7.5, for any bounded sequence bk 2 Vk there exists a bounded

solution vk 2 Vk of (2.153). By the Maizel’ theorem (Theorem 2.1.1), the sequence
Bk is hyperbolic on Z� and ZC.

By the Pliss theorem (Theorem 2.1.2),

E s C E u D V0; (2.156)
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where

E s D fw0 W wkC1 D Bkwk; jwkj ! 0; k ! 1g

and

E u D fw0 W wkC1 D Bkwk; jwkj ! 0; k ! �1g:

Clearly, it follows from the hyperbolicity of the sequence Bk on Z� and ZC that
the following equalities hold:

E s D fw0 W wkC1 D Bkwk; sup
k�0

jwkj < 1g

and

E u D fw0 W wkC1 D Bkwk; sup
k�0

jwkj < 1g:

We claim that

E s � Es and Eu � E u: (2.157)

First we note that (2.157) implies the desired transversality of Ws. p0/ and
Wu. p0/ at p0.

Indeed, combining equality (2.156) with inclusions (2.157) and the trivial
relations

Es D V0 \ Es C fX. p0/g and Eu D V0 \ Eu C fX. p0/g;

we conclude that

Es C Eu D Tp0M;

which gives us the transversality of Ws. p0/ and Wu. p0/ at p0.
Thus, it remains to prove inclusions (2.157). We prove the first inclusion; for the

second one, the proof is similar.

Case 1: The limit trajectory x0.t/ D x0 is a rest point of X. In this case, the stable
manifold of the rest point x0 in the flow � coincides with the stable manifold of
the fixed point x0 for the time-one diffeomorphism f .x/ D �.1; x/.

It is clear that if pk is a trajectory of f belonging to the stable manifold of x0, then
the tangent space to the stable manifold at p0 is the subspace Es of the initial values
of bounded solutions of

vkC1 D Akvk; k � 0: (2.158)
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Let us prove that E s � Es. Fix an arbitrary sequence wk such that wkC1 D Bkwk

and w0 2 E s. Consider the sequence

vk D �kX. pk/=jX. pk/j C wk;

where the �k satisfy the relations

�kC1 D jX. pkC1/j
jX. pk/j �k C X. pkC1/�

jX. pkC1/jAkwk (2.159)

(we denote by X� the row-vector corresponding to the column-vectorX) and �0 D 0.
It is easy to see that the sequence vk satisfies (2.158).

Since x.t/ is in the stable manifold of the hyperbolic rest point x0, there exist
positive constants K and ˛ such that

ˇ
ˇ̌
ˇ
dx

dt
.t/

ˇ
ˇ̌
ˇ � K exp.˛.t � s//

ˇ
ˇ̌
ˇ
dx

dt
.s/

ˇ
ˇ̌
ˇ ; 0 � s � t:

This implies that

jX. pk/j � K exp.˛.k � m// jX. pm/j ; 0 � m � k:

Thus, the scalar difference equation

�kC1 D jX. pkC1/j
jX. pk/j �k

is hyperbolic on ZC and is, in fact, stable. Since the second term on the right in
(2.159) is bounded as k ! 1 (recall that we take w0 2 E s), it follows that the �k
are bounded for any choice of �0.

We conclude that vk is a bounded solution of (2.158), and v0 D w0 2 Es. Thus,
we have shown that E s � Es, which completes the proof in Case 1.

Case 2: The limit trajectory is in the set˙ (the chain recurrent set minus rest points).
We know that the set ˙ is hyperbolic. Our goal is to find the intersection of its
stable manifold near p0 D x.0/ with the cross-section at p0 orthogonal to the
vector field (in local coordinates generated by the exponential mapping). To do
this, we discretize the problem and note that there exists a number � > 0 such
that a point p close to p0 belongs to Ws. p0/ if and only if the distances of the
consecutive points of intersections of the positive semitrajectory of p to the points
pk do not exceed � .
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For suitably small � > 0 we find all the sequences of numbers tk and vectors
zk 2 Vk (recall that Vk is the orthogonal complement to fX. pk/g at pk) such that

jtk � 1j � �; jzkj � �; ykC1 D �.tk; yk/; k � 0;

where yk D pk C zk.
Thus, we have to solve the equations

pkC1 D �.tk; pk C vk/; k � 0;

for numbers tk and vectors zk 2 Vk such that jtk � 1j � � and jzkj � �.
We reduce this problem to an equation in a Banach space. It was mentioned above

that the sequence fBkg generating the difference equation

zk D Bkzk; k � 0;

(where Bk D PkC1Ak and Pk is the orthogonal projection with range Vk) is
hyperbolic on ZC. Denote by Qk W Vk ! Vk the corresponding projections to
the stable subspaces and by R.Q0/ the range of Q0 (note that R.Q0/ D E s).

Fix a positive number �0 and denote by V the space of sequences

V D fzk 2 Vk W jzkj � �0; k 2 ZCg:

Let l1 .ZC; fMkC1g/ be the space of sequences f�k 2 MkC1 W k 2 ZCg with the
usual norm.

Define a C1 function

G W Œ1 � �0; 1C �0�
ZC � V � R.Q0/ ! l1.ZC; fMkC1g/ � R.Q0/

by

G.t; z; �/ D .f pkC1 C zkC1 � �.tk; pk C zk/g;Q0z0 � �/:

This function is defined if �0 is small enough.
We want to solve the equation

G.t; z; �/ D 0

for .t; z/ as a function of �. It is clear that

G.1; 0; 0/ D 0;

where the first argument of G is f1; 1; : : : g, the second argument is f0; 0; : : : g, and
the right-hand side is .f0; 0; : : : g; 0/.
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To apply the implicit function theorem, we must verify that the operator

T D @G

@.t; z/
.1; 0; 0/

is invertible.
First we note that if .s;w/ 2 l1.ZC; fMkC1g/ � V , then

T.s;w/ D .fwkC1 � X. pkC1/sk � Akwkg;Q0w0/:

To show that T is invertible, we have to show that the equation

T.s;w/ D .g; �/

has a unique solution for any .g; �/ 2 l1.ZC; fMkC1g/� R.Q0/. Thus, we have to
solve the equation

wkC1 D Akwk C X. pkC1/sk D gk; k � 0; (2.160)

subject to the condition

Q0w0 D �:

If we multiply Eq. (2.160) by X. pkC1/� and solve for sk, we get the equalities

sk D � X. pkC1/�

jX. pkC1/j2 ŒAkwk C gk�; k � 0;

and if we multiply Eq. (2.160) by PkC1, we get the equalities

wkC1 D PkC1Akwk C PkC1gk D Bkwk C PkC1gk; k � 0:

Now we know that the last equations have a unique bounded solution wk 2 Vk; k �
0, that satisfies Q0w0 D �. Thus, T is invertible.

Hence, we can apply the implicit function theorem to show that there exists a
� > 0 such that if j�j is sufficiently small, then the equation G.t; z; �/ D 0 has
a unique solution .t.�/; z.�// such that kt � 1k1 � � and kzk1 � �. Moreover,
t.0/ D 1, z.0/ D 0, and the functions t.�/ and z.�/ are of class C1.

The points p0Cz0.�/ form a submanifold containing p0 and contained in Ws. p0/.
Thus, the range of the derivative z0

0.0/ is contained in Es.
Take an arbitrary vector � 2 E s and consider � D ��; � 2 R. Differentiating the

equalities

pkC1 C zkC1.��/ D �.tk.��/; pk C zk.��//; k � 0;
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and

Q0.��/ D ��

with respect to � at � D 0, we see that

sk D @tk
@�

j�D0� and wk D @zk
@�

j�D0� 2 Vk

are bounded sequences satisfying the equalities

wkC1 D Akwk C X. pkC1/sk and Q0w0 D �:

Multiplying by PkC1, we conclude that

wkC1 D Bkwk and Q0w0 D �:

It follows that w0 2 E s D R.Q0/. Then w0 D Q0w0 D �.
We have shown that the range of z0

0.0/ is exactly E s. Thus, E s � Es.

Historical Remarks Theorem 2.7.1 was published by K. Palmer, the first author,
and S. B. Tikhomirov in [57].



Chapter 3
C1 Interiors of Sets of Systems with Various
Shadowing Properties

In this chapter, we study the structure of C1 interiors of some basic sets of dynamical
systems having various shadowing properties. We give either complete proofs or
schemes of proof of the following main results:

• The C1 interior of the set of diffeomorphisms having the standard shadowing
property is a subset of the set of structurally stable diffeomorphisms (Theo-
rem 3.1.1); this result and Theorem 1.4.1 (a) imply that the C1 interior of the
set of diffeomorphisms having the standard shadowing property coincides with
the set of structurally stable diffeomorphisms;

• the set Int1.OrientSPF n B/ is a subset of the set of structurally stable vector
fields (Theorem 3.3.1); similarly to the case of diffeomorphisms, this result and
Theorem 1.4.1 (b) imply that the set Int1.OrientSPF n B/ coincides with the set
of structurally stable vector fields;

• the set Int1.OrientSPF/ contains vector fields that are not structurally stable
(Theorem 3.4.1).

The structure of the chapter is as follows.
Section 3.1 is devoted to the proof of Theorem 3.1.1:

Int1 .SSPD/ � SD:

Our proof of Theorem 3.1.1 is based on reduction to Theorem 1.3.6 (2) (the C1

interior of the set of Kupka–Smale diffeomorphisms coincides with the set of
structurally stable diffeomorphisms).

We give a detailed proof of the inclusion

Int1 .SSPD/ � HPD

© Springer International Publishing AG 2017
S.Yu. Pilyugin, K. Sakai, Shadowing and Hyperbolicity, Lecture Notes
in Mathematics 2193, DOI 10.1007/978-3-319-65184-2_3
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(thus, any periodic point of a diffeomorphism f 2 Int1 .SSPD/ is hyperbolic).
Concerning the proof of transversality of stable and unstable manifolds of periodic
points of a diffeomorphism f 2 Int1 .SSPD/, we refer the reader to Sect. 3.3 where
a similar statement is proved in a more complicated case of flows on manifolds.

One of the necessary and sufficient conditions of structural stability of a
diffeomorphism is Axiom A. In Sect. 3.2, we give an independent proof of the
following statement, Theorem 3.2.1: If f 2 Int1 .SSPD/, then f satisfies Axiom A.
Our proof uses neither Mañé’s ergodic closing lemma [42] nor the techniques of
creating homoclinic orbits developed in [44]. Instead, we refer to a sifting type
lemma of Wen–Gan–Wen [109] influenced by Liao’s work and apply it to Liao’s
closing lemma.

Sections 3.3 and 3.4 are devoted to the study of the C1 interior of the set of
vector fields having the oriented shadowing property. We introduce a special class
B of vector fields having two rest points p and q for which there exists a trajectory
of nontransverse intersection of the stable manifold Ws. p/ and Wu.q/. Of course,
vector fields in B are not structurally stable.

In Sect. 3.3, we prove Theorem 3.3.1: The set

Int1 .OrientSPF n B/

is a subset of the set of structurally stable vector fields.
At the same time, we show in Sect. 3.4 that the set Int1.OrientSPF/ contains

vector fields belonging to B. The complete description of the corresponding
example given in [69] is quite complicated, and we describe a “model” suggested
in [100].

3.1 C1 Interior of SSPD

The main result of this section is the following theorem.

Theorem 3.1.1 Int1 .SSPD/ � SD.
It follows from Theorem 1.4.1 (a) that

SD � LSPD � SSPD:

Since the set of structurally stable diffeomorphisms is C1-open,

SD D Int1.SD/ � Int1.SSPD/:

Combining this with Theorem 3.1.1, we conclude that the C1 interior of the set
of diffeomorphisms having the standard shadowing property coincides with the set
of structurally stable diffeomorphisms.
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As was said at the beginning of this chapter, we reduce the proof of Theo-
rem 3.1.1 to Theorem 1.3.6 (2). Thus, we have to show that

Int1 .SSPD/ � Int1 .KSD/:

Of course, for this purpose, it is enough to show that

Int1 .SSPD/ � KSD: (3.1)

This means that we have to establish the inclusion

Int1 .SSPD/ � HPD (3.2)

(i.e., every periodic point of a diffeomorphism in Int1 .SSPD/ is hyperbolic) and to
show that, for a diffeomorphism in Int1 .SSPD/, stable and unstable manifolds of its
periodic points are transverse.

We prove inclusion (3.2) in Lemma 3.1.2.
We do not give here a proof of transversality of stable and unstable manifolds of

periodic points of a diffeomorphism in Int1 .SSPD/. Instead, we refer the reader to
Sect. 3.3 of this book; in this section, a similar statement is proved for the case of
vector fields (which is technically really more complicated). We advice the reader
to “transfer” the proof of Sect. 3.3 to the case of diffeomorphisms.

We start with a lemma proved by Franks in [19]; this lemma plays an essential
role in proofs of several theorems below.

If U is a domain in R
m with compact closure and f ; g W U ! R

m are
diffeomorphisms of U onto their images such that f .U/ D g.U/ D V , then we
define 
1;U. f ; g/ as the maximum of the following values:

sup
x2U

ˇ̌
f .x/ � g.x/

ˇ̌
; sup

x2U
		Df .x/ � Dg.x/

		;

sup
y2V

ˇ
ˇ f�1.y/� g�1.y/

ˇ
ˇ ; sup

y2V
	
	Df�1.y/ � Dg�1.y/

	
	

(this definition corresponds to our definition of the C1 topology of Diff 1.M/, see
Sect. 1.3).

Lemma 3.1.1 Let U be a domain in R
m with compact closure, where m � 1, and

let f W U ! R
m be a C1 diffeomorphism of U onto its image.

Consider a finite set of different points fx1; x2; : : : ; xng � U.
Then for any " > 0, any neighborhood N of the set fx1; x2; : : : ; xng, and any

linear isomorphisms

Li W Rm ! R
m
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such that

kLi � Df .xi/k; kL�1
i � .Df .xi//

�1k � "=8; 1 � i � n; (3.3)

there exists a number ı > 0 and a C1 diffeomorphism g W U ! R
m with f .U/ D

g.U/ and such that

(a) 
1;U. f ; g/ � ",
(b) g.x/ D f .x/; x 2 U n N,

and
(c) g.x/ D f .xi/C Li.x � xi/; x 2 N.ı=4; xi/; 1 � i � n:

Proof Standard reasoning shows that since U is a domain with compact closure,
there exists a number "0 > 0 such that if g is a C1 mapping of U such that f .U/ D
g.U/ and

sup
x2U

j f .x/� g.x/j; sup
x2U

kDf .x/ � Dg.x/k < "0;

then g is a diffeomorphism of U onto g.U/.
For a positive ı > 0, let

Bı.xi/ D fy 2 U W jy � xij � ıg; 1 � i � n:

We assume that ı is small enough, so that the sets Bı.xi/ with different i do not
intersect. In what follows, we reduce ı if necessary.

Choose a C1 real-valued function � W R ! R such that 0 � �.x/ � 1,

�.x/ D
(
0 if jx j � ı;

1 if jx j � ı=4;

and 0 � j� 0.x/j < 2=ı for all x.
Let 
 W Sn

iD1 Bı.xi/ ! R be defined by


.y/ D � .jy � xij/ ; y 2 Bı.xi/; 1 � i � n:

Fix " 2 .0; "0/ and take 0 < ı < min.1; "/ so small that

n[

iD1
Bı.xi/ � N; (3.4)

j f .xi/C Li.y � xi/ � f .y/j � "

4
jy � xij; (3.5)
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and

jLiv � Df .y/vj � "

4
jvj; v 2 R

m; (3.6)

for y 2 Bı.xi/; 1 � i � n (clearly, this is possible due to estimates (3.3)).
Define a mapping g W U ! R

m by

g.y/ D
(
f .y/ if y … Sn

iD1 Bı.xi/;


.y/. f .xi/C Li.y � xi//C .1 � 
.y//f .y/ if y 2 Sn
iD1 Bı.xi/:

It is easy to see that if y 2 Sn
iD1 Bı.xi/, then

j f .y/� g.y/j D j
.y/. f .xi/C Li.y � xi//� 
.y/f .y/j D

D 
.y/j f .xi/C Li.y � xi/� f .y/j � 1 � "
4

� ı < ":

Let us estimate the differences of the derivatives. If y 2 Bı.xi/ and v 2 R
m, then

Dg.y/v D 
.y/Liv C hD
.y/; vi. f .xi/C Li.y � xi//C

C.1 � 
.y//Df .y/v � hD
.y/; vif .y/;
where

hD
.y/; vi D
mX

jD1

@


@yj
.y/vj:

Thus,

jDf .y/v � Dg.y/vj D

D j
.y/Liv � 
.y/Df .y/v C hD
.y/; vi. f .xi/C Li.y � xi// � hD
.y/; vif .y/j �

� 
.y/jLiv � Df .y/vj C jhD
.y/; vijj f .xi/C Li.y � xi/� f .y/j:
It is clear that if jy � xij > ı, then 
.y/ D 0, and if jy � xij � ı, then, by the

choice of ı (see (3.6)),


.y/ � jLiv � Df .y/vj � jLiv � Df .y/vj � "

4
jvj:

If jy� xij > ı, then D
.y/ D 0 (since 
.y/ D 0 for jy� xij > ı). If jy� xij � ı, then
jD
.y/j < 2=ı and

j f .xi/C Li.y � xi/� f .y/j � "

4
jy � xij
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by the choice of ı (see (3.5)) and the definition of 
. Thus,

jhD
.y/; vijj f .xi/C Li.y � xi/� f .y/j �

� 2

ı
� "
4

jy � xijjvj � 2

ı
� "
4
ıjvj D "

2
jvj:

Hence,

jDf .y/v � Dg.y/vj � "

4
jvj C "

2
jvj � "jvj:

It follows from the choice of " < "0 that g is a diffeomorphism of U onto g.U/ D
f .U/.

Now a similar reasoning can be applied to estimate the values

j f 1.y/� g�1.y/j and kDf 1.y/ � Dg�1.y/k

(reducing ı, if necessary).
Inclusion (3.4) implies that g and f coincide outside N. The lemma is proved. ut

Lemma 3.1.2 Inclusion (3.2) holds.

Proof Let us consider the case of an m-dimensional manifold M with m � 1. To
get a contradiction, assume that there exists a diffeomorphism f 2 Int1 .SSPD.M//n
HPD.M/.

Then f has a nonhyperbolic periodic point p of period 
. p/.
Take a C1 neighborhood U . f / of f lying in SSPD.M/.
To simplify presentation, we assume that 
. p/ D 1 (the case of a periodic point

of minimal period 
. p/ > 1 is considered similarly). Moreover, since the argument
is local, we assume further that f is defined on an open set of Rm.

By the Franks lemma, it is possible to find a diffeomorphism g 2 U . f / with the
following properties:

– p is a fixed point of g,
– g is linear in a neighborhood of p.

Indeed, let us introduce local coordinates x 2 R
m near p such that p is the origin.

Then, by the Franks lemma, for any r > 0 there exists a diffeomorphism fr such
that

– fr.x/ D f .x/ for x … N.4r; p/,
– fr.x/ D Df . p/x for x 2 N.r; p/.

Note that fr converges to f with respect to the C1 topology as r ! 0. Fix r0 > 0

such that fr0 2 U . f / and write g instead of fr0 .
Since the point p D 0 is not hyperbolic, the matrix Dg. p/ has an eigenvalue �

with j�j D 1. To simplify presentation, we assume that � D 1 (the proof in the
general case can be found in [87]).
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Applying a C1-small perturbation of g (so that the perturbed g still is in U . f /)
and preserving the notation g for the perturbed diffeomorphism, we may assume
further that Dg. p/ has an eigenvalue equal to 1, p is the origin with respect to some
local coordinates x D .x1; : : : ; xm/, and g maps a point x D .x1; y/ 2 N.r0; p/, where
y D .x2; : : : ; xm/, to the point .x1;By/, where B is a hyperbolic matrix.

In this case, the segment

I D f.x1; 0; : : : ; 0/ W 0 � jx1j � r0g

consists of fixed points of g.
Since it was assumed that g 2 SSPD.M/, for " D r0=2 there is the corresponding

0 < d < " from the definition of the standard shadowing property. Take a natural
number l such that the sequence

� D fxk W k 2 Zg � I ;

where

xk D
8
<

:

0 for k < 0I�
r0k
2l ; 0; : : : ; 0

�
for 0 � k � lI

.r0=2; 0; : : : ; 0/ for k > l;

is a d-pseudotrajectory of g.
Let x 2 N."; x0/ be a point such that

jgk.x/ � xkj < � for k 2 Z:

Since the matrix B is hyperbolic, for any point .x1; y/ with y ¤ 0, its g-trajectory
leaves the set N.r0; p/. Hence, if

jgk.x/ � xkj < "; k 2 Z;

then x D .b; 0; : : : ; 0/. Since

g.x/ D g.b; 0; : : : ; 0/ D .b; 0; : : : ; 0/;

we see that jbj < r0=2, and then jb � r0j < r0=2. The obtained contradiction proves
our lemma. ut
Historical Remarks One of the first results concerning C1 interiors of sets of
diffeomorphisms with properties similar to shadowing was proved by K. Moriyasu
in [47].

Let us denote by TSD the set of topologically stable diffeomorphisms. Recall that
a diffeomorphism f of a smooth manifold M is called topologically stable if for any
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" > 0 there is a d > 0 such that for any homeomorphism g satisfying the inequality

0. f ; g/ < d, there exists a continuous map h mapping M onto M and such that

0.h; id/ < " and f ı h D h ı g (see [104]).

It is known that every topologically stable diffeomorphism has the standard
shadowing property (see [46, 105]); thus, SSPD � TSD. In addition, every expansive
diffeomorphism in SSPD is in TSD (see [64] for details).

K. Moriyasu proved in [47] that any diffeomorphism in Int1 .TSD/ satisfies
Axiom A. In fact, the paper [47] contains the proof of inclusion (3.2) (see
Proposition 1 in [47]).

Theorem 3.1.1 was proved by the second author in [87].
Later, a more general result (in which the set SSPD was replaced by a larger set

OSPD) was obtained by the first author, A. A. Rodionova, and the second author in
[65] (the method of proving transversality of the stable and unstable manifolds of
periodic points used in [65] was later applied in the case of vector fields [69]; see
Sect. 3.3 of this book).

In [88], the second author introduced the notion of C0 transversality and showed
that for two-dimensional Axiom A diffeomorphisms, C0 transversality of one-
dimensional stable and unstable manifolds is equivalent to shadowing. Later, the
authors related C0 transversality to inverse shadowing in two-dimensional Axiom A
diffeomorphisms [66].

Let us mention here one more result of that type related to shadowing properties.
Let f be a homeomorphism of a metric space .M; dist/. We say that f has the
weak shadowing property if for any " > 0 there exists d > 0 such that for any
d-pseudotrajectory � of f there is a point p 2 M such that

� � N.";O. p; f //:

Denote by WSPD the set of diffeomorphisms having the weak shadowing property.
It was shown by the second author in [89] that if M is a smooth two-dimensional

manifold, then

Int1.WSPD.M// � ˝SD.M/:

Let us note that the above inclusion is strict; it was shown by O. B.
Plamenevskaya in [72] that there exist ˝-stable diffeomorphisms of the two-
dimensional torus that do not have the weak shadowing property.

Let us also note that the result of [89] cannot be generalized to higher dimensions.
R. Mañé constructed in [40] an example of a C1-open subset T of the space of
diffeomorphisms of the three-dimensional torus such that

• any diffeomorphism f 2 T has a dense orbit (thus, any f 2 T is in Int1.WSPD/);
• any diffeomorphism f 2 T is not Anosov (and hence, it is not˝-stable).
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3.2 Diffeomorphisms in Int1 .SSPD/ Satisfy Axiom A

As was said at the beginning of this chapter, in this section we prove the following
statement.

Theorem 3.2.1 If f 2 Int1 .SSPD/, then f satisfies Axiom A.

Remark 3.2.1

1. To get an independent proof of Theorem 3.1.1 using Theorem 3.2.1, one has to
show that if a diffeomorphism f 2 Int1 .SSPD/ satisfies Axiom A, then f also
satisfies the strong transversality condition.

This can be done by applying the following scheme. Assuming that the
stable manifold Ws. p/ and the unstable manifold Wu.q/ for two points p; q 2
˝. f / have a point r of nontransverse intersection, one can approximate r by
points of intersection of periodic points of f and then, perturbing f , to get
a point of nontransverse intersection of periodic points of a diffeomorphism
g 2 Int1 .SSPD/. After that, one can apply the techniques described in Sect. 3.3
to get a contradiction. We leave details to the reader.

2. Of course, it has shown by Mañé and Hayashi [25, 42, 45] that a diffeomorphism
f 2 Int1 .HPD/ satisfies Axiom A, but we give a simpler proof of this result under
the assumption that f 2 Int1 .SSPD/; this proof uses neither Mañé’s ergodic
closing lemma [42] nor the techniques creating homoclinic orbits developed
in [44].

Let the phase space be a �-dimensional manifold M.
Denote, as above, by Per. f / the set of periodic points of a diffeomorphism f W

M ! M. Let 
. p/ be the minimal period of a periodic point p 2 Per. f /.
It is proved in [40] that if f 2 Int1 .SSPD.M/, then ˝. f / D Cl.Per. f //.
Denote by Pj. f /; 0 � j � �, the set of hyperbolic periodic points of f whose

index (the dimension of the stable manifold) is equal to j. Let �j be the closure of
the set Pj. f /.

It has shown by Pliss [73] that the sets of sinks, P�. f /, and of sources, P0. f /,
of a diffeomorphism f 2 Int1.SSPD.M// are finite sets (another proof can be found
in [36]).

The following lemma is a “globalized” variant of Frank’s lemma (Lemma 3.1.1)
for C1 diffeomorphisms of a smooth closed manifold using exponential mappings.

Lemma 3.2.1 Let f 2 Diff 1.M/ and let U . f / be a neighborhood of f .
Then there exists a number ı0 > 0 and a neighborhood V . f / � U . f / such

that for any g 2 V . f /, any finite set fx1; x2; : : : ; xmg consisting of pairwise different
points, any neighborhoodU of the set fx1; x2; : : : ; xmg, and any linear isomorphisms
Li W TxiM ! Tg.xi/M such that

kLi � Dg.xi/k; kL�1
i � Dg�1.xi/k � ı0; 1 � i � m;
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there exist "0 > 0 and Qg 2 U . f / such that

.a/ Qg.x/ D g.x/ if x 2 M n U, and

.b/ Qg.x/ D expg.xi/ ıLi ı exp�1
xi
.x/ if x 2 B"0.xi/ for all 1 � i � m.

Note that assertion .b/ implies that Qg.x/ D g.x/ if x 2 fx1; x2; : : : ; xmg and that
Dxi Qg D Li for all 1 � i � m.

In what follows, we assume that f 2 Int1 .SSPD/; hence, by Lemma 3.1.1, f 2
Int1 .HPD/.

Thus, there exists a neighborhoodU . f / of f in Diff 1.M/ such that every periodic
point p 2 Per.g/ is hyperbolic for any g 2 U . f /.

Then there exists a C1 neighborhood V . f / of f such that the family of
periodic sequences of linear isomorphisms of tangent spaces of M generated by
the differentials Dg of diffeomorphisms g 2 V . f / along hyperbolic periodic orbits
of points q 2 Per.g/ is uniformly hyperbolic (see [42]).

To be exact, this means that there exists " > 0 and a neighborhood V . f / of f
such that for any g 2 V . f /, any q 2 Per.g/, and any sequence of linear maps

Li W Tgi.q/M ! TgiC1.q/M

with

	
	Li � Dg

�
gi.q/

�		 < "; i D 1; : : : ; 
.q/� 1;
Q
.q/�1

iD0 Li is hyperbolic (here " > 0 and V . f / correspond to U . f /) according to
Lemma 3.2.1.

The following result was proved by Mañé [42, Proposition II.1]. Denote by
Es.q/. f / and Eu.q/. f / the stable and unstable spaces of the hyperbolic structure
at a point q of a hyperbolic periodic orbit of f , respectively.

Proposition 3.2.1 Let f 2 Int1 .HPD/.
In the above notation, there are constants C > 0, m > 0, and 0 < � < 1 such

that:

.a/ if g 2 V . f / , q 2 Per.g/, and 
.q/ � m, then

k�1Y

iD0

	
	
	DgmjEs.gim.q//.g/

	
	
	 � C�k and

k�1Y

iD0

	
	
	Dg�m

jEu.g�im.q//.g/

	
	
	 � C�k;

where k D Œ
.q/=m�.
.b/ For any g 2 V . f / and 0 � j � �, the set �j.g/ D Cl.Pj.g// admits a

dominated splitting (see Definition 1.3.12)

T�j.g/M D E.g/˚ F.g/
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with dimE.g/ D j, i.e.,

	
	
	DgmjE.x/.g/

	
	
	 �
	
	
	Dg�m

jF.gm.x//.g/
	
	
	 � �

for all x 2 Cl.Pj.g// (note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/ if
x 2 Pj.g//.

It is easy to see that the above proposition can be restated in the following way.

Proposition 3.2.2 In the notation and assumptions of Proposition 3.2.1, there exist
constants m > 0, 0 < � < 1, and L > 0 such that:

.a/ If g 2 V . f /, q 2 Per.g/, and 
.q/ � L, then


.q/�1Y

iD0

	
		DgmjEs.gim.q//.g/

	
		 < �
.q/ and


.q/�1Y

iD0

	
		Dg�m

jEu.g�im.q//.g/

	
		 < �
.q/:

.b/ For any g 2 V . f / and 0 � j � �, the set �j.g/ admits a dominated splitting
T�j.g/M D E.g/˚ F.g/ with dimE.g/ D j such that

	
	
	DgmjE.x/.g/

	
	
	 �
	
	
	Dg�m

jF.gm.x//.g/
	
	
	 < �2

for any x 2 �j.g/ (note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/ if
x 2 Pj.g//.

In what follows, we need two technical lemmas (Lemmas 3.2.2 and 3.2.3).
Denote by � a set �j D Cl.Pj. f //, where 0 � j � �.
Lemma 3.2.2 deals with extension of the dominated splitting to a small neigh-

borhood of� in M. Assume that � admits a dominated splitting T�M D E ˚ F for
which there exist constants m > 0 and 0 < � < 1 such that

	
	
	DfmjE.x/

	
	
	 �
	
	
	Df�m

jF. f m.x//
	
	
	 � �

for all x 2 �. To simplify notation, denote f m by f .
It is known (see [27]) that there exists a neighborhood U of�, a constant O� > 0,

� < O� < 1, and a continuous splitting TUM D OE ˚ OF with dim OE D dimE such
that

– OEj� D E and OFj� D F;
– Df .x/ OE.x/ D OE. f .x// if x 2 U \ f�1.U/;
– Df�1.x/ OF.x/ D OF. f�1.x// if x 2 U \ f .U/;

–
	
		Df kj OE.x/

	
		 �
	
		Df�k

j OF. f k.x//
	
		 < O�k if x 2 Tk

iD�k f
i.U/ for k � 0.

The continuity of the differential Df implies the following statement (in which
we have to shrink the neighborhood U of � if necessary).
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Lemma 3.2.2 In the above notation and assumptions of Proposition 3.2.1, there
exists a Df -invariant continuous splitting T�f .U/M D OE ˚ OF with dim OE D dimE

and 0 < O� < 1 such that
– OEj� D E and OFj� D F;

–
	
	
	Df kj OE.x/

	
	
	 �
	
	
	
	Df

�k
j OF. f k.x//

	
	
	
	 <

O�k for any x 2 �f .U/ and k � 0;

– for any " > 0 there exists ı > 0 such that if x 2 �f .U/, y 2 �, and dist.x; y/ < ı,
then

ˇ
ˇ
ˇ log

	
	Dfj OE.x/

	
	� log

	
	DfjE.y/

	
	
ˇ
ˇ
ˇ < "

and
ˇ
ˇ̌ log

	
	Df�1

j OF.x/
	
	 � log

	
	Df�1

jF.y/
	
	
ˇ
ˇ̌
< ":

In the statement above,

�f .U/ D
\

n2Z
f n.U/:

The second technical lemma (Lemma 3.2.3) is a variant of the so-called sifting
lemma first proved by Liao (see [36]). The statement which we prove belongs to
Wen–Gan–Wen [109].

Let T�f .U/M D OE ˚ OF be as in Lemma 3.2.2 and let 0 < � < 1.
An orbit string

fx; ng D fx; f .x/; : : : ; f n.x/g � �f .U/

is called a �-quasi-hyperbolic string with respect to the splitting OE ˚ OF if the
following conditions are satisfied:

(1)

k�1Y

iD0

		
	Dfj OE. f i.x//

		
	 � �k for k D 1; 2; : : : ; nI

(2)

n�1Y

iDk�1
m


Dfj OF. f i.x//

�
� �k�n�1 for k D 1; 2; : : : ; nI

(3)

	
		Dfj OE. f i.x//

	
		 =m



Dfj OF. f i.x//

�
� �2 for every i D 0; 1; : : : ; n � 1:
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Here m.A/ is the minimum norm of a linear map A, i.e.,

m.A/ D inf
kvkD1

kAvk:

Lemma 3.2.3 (Sifting Lemma, [36, 107, 109]) Let faig1
iD0 be an infinite sequence

for which there exists a constant K such that jaij < K. Assume that

lim sup
n!1

1

n

n�1X

iD0
ai D � and lim inf

n!1
1

n

n�1X

iD0
ai D � 0;

where � 0 < �. Then for any �1 and �2 with �1 < � < �2 there is an infinite sequence
fmig1

iD1 � N such that

1

k

miCk�1X

jDmi

aj � �2 and
1

k

miC1�1X

jDmiC1�k

aj � �1

for every i D 1; 2; : : : and every k D 1; : : : ;mi C 1 � mi.

Proof Let S.n/ D Pn�1
iD0 ai.

Fix a small " > 0 with

� � � 0

2
> ":

(We determine " at the end of the proof.)
Choose a large enough N 2 N such that

1

n
S.n/ < � C "

for any n > N.
By our assumption, the upper and lower limits are different; hence, there is an

infinite sequence

N < n1 < n0
1 < n2 < n0

2 < n3 < n0
3 < : : :

such that

1

ni
S.ni/ < �

0 C " < � � " <
1

n0
i

S.n0
i/

for every i D 1; 2; : : : .



138 3 C1 Interiors of Sets of Systems with Various Shadowing Properties

Take an integer ni < mi < niC1 such that

S.k/� S.mi/

k � mi
� � � "

for every k D mi C 1;mC2 : : : ; niC1 and

S.mi/� S.k/

mi � k
� � � "

for every k D ni; ni C 1; : : : ;mi � 1.
This is a crucial point of the proof. Roughly speaking, mi is the index at which

S.k/� S.ni/� .k� ni/.� � "/ attains maximum when k runs over the set ni C 1; ni C
2; : : : ; niC1 (Fig. 3.1).

Claim

niC1 � mi >
� � � 0 � 2"

K C � 0 C "
mi and mi � ni >

� � � 0 � 2"
K � � 0 � "

mi:

Proof (of the claim) By the choice of mi, it is easy to see that

S.mi/ � S.n0
i/ � .mi � n0

i/.� � "/:

Hence,

S.mi/ � mi.� � "/:

m3 n

S(n)

ε

4(n  , S(n  ))

m2m1n1

S(n )1

+ξ

ε−ξ

ε+ξ’

4

3(n  , S(n  ))3

2(n  , S(n  ))2

1(n  , S(n  ))1

Fig. 3.1 The choice of mi
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Since jaij < K, we get the inequalities

niC1.� 0 C "/ > S.ni C 1/ > S.mi/ � K.niC1 � mi/ � mi.� � "/� K.niC1 � mi/

and

ni.�
0 C "/C K.mi � ni/ > S.ni/C K.mi � ni/ > S.mi/ � mi.� � "/:

Hence,

K.niC1 � mi/ > .� � "/mi � .� C "/niC1 D

D .� � � 0 � 2"/mi C .� 0 C "/.mi � niC1/

and

K.mi � ni/ > mi.� � "/ � ni.�
0 C "/ D

D mi.� � � 0 � 2"/C .� 0 C "/.mi � ni/:

Therefore,

niC1 � mi >
� � � 0 � 2"

K C � 0 C "
mi and mi � ni >

� � � 0 � 2"
K � � 0 � " mi:

Thus, the claim is proved. ut
Let us pass to the proof of Lemma 3.2.3.
It is obvious that for k D 1; 2; : : : ; niC1 � mi,

1

k
.S.mi C k/ � S.mi// � � � ":

For k D niC1 � mi C 1; : : : ;miC1 � mi,

1

k
.S.mi C k/ � S.mi// <

1

k
..mi C k/.� C "/� mi.� � "// D

D � C "C 2"
mi

k
< � C

�
1C 2

K C � 0 C "

� � � 0 � 2�

�
":

Note that in the third inequality we have used the above claim.
Similarly, for k D 1; 2; : : : ;mi � ni,

1

k
.S.mi/� S.mi � k// � � � ";
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and for k D mi � ni C 1; : : : ;mi � mi�1,

1

k
.S.mi/ � S.mi � k// >

1

k
.mi.� � "/� .mi � k/.� C "/ D

D � C " � 2"
mi

k
> � C

�
1 � 2

K � � 0 � "

� � � 0 � 2"

�
":

Now choose " small enough so that

� C
�
1C 2

K C � 0 C "

� � � 0 � 2"

�
" < �2

and

min

�
� � "; � C

�
1 � 2 K � � 0 � "

� � � 0 � 2"
�
"

�
> �1:

This proves Lemma 3.2.3. ut
A proof of the following lemma (in fact of its generalized version) is given at the

end of this section (see Lemma 3.2.5).

Lemma 3.2.4 (Liao’s Closing Lemma [36]) Let T�f .U/M D OE ˚ OF be a
continuous Df -invariant splitting. For any 0 < � < 1 and any " > 0 there
is ı > 0 such that for any �-quasi-hyperbolic string fx; ng of f in �f .U/ with
dist . f n.x/; x/ < ı, there is a periodic point p 2 M of f such that f n. p/ D p and
dist

�
f i. p/; f i.x/

� � " for all 0 � i � n � 1.
In the following proposition, to simplify notation, we denote�f .U/, OE ˚ OF, and

O� by �, E ˚ F, and �, respectively. The next proposition is proved by applying
Lemmas 3.2.3 and 3.2.4.

Proposition 3.2.3 Let � be a compact f -invariant set, let 0 < � < 1 be given, and
assume that there is a continuous Df -invariant splitting T�M D E ˚ F such that

	
	
	DfjE.x/

	
	
	 �
	
	
	Df�1

jF. f .x//
	
	
	 < �2

for any x 2 �.
Assume that there exists a point y 2 � such that

log� < log�1 D lim sup
n!1

1

n

n�1X

iD0
log

	
	
	DfjE. f i.y//

	
	
	 < 0

and

lim inf
n!1

1

n

n�1X

iD0
log

	
	
	DfjE. f i.y//

	
	
	 < log�1:
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Then for any �2 and �3 with � < �2 < �1 < �3 < 1 and any neighborhood W
of � there is a hyperbolic periodic point q of index dimE such that O.q; f / � W,

k�1Y

iD0

	
		DfjEs. f i.q//

	
		 � �k3; and


.q/�1Y

iDk�1

	
		DfjEs. f i.q//

	
		 > �
.q/�kC1

2

for all k D 1; 2; : : : ; 
.q/.
Furthermore, q can be chosen so that the period 
.q/ is arbitrarily large.
Our Theorem 3.2.1 follows from the next proposition (this kind of result was first

obtained in [109]).

Proposition 3.2.4 Let� be a compact f -invariant set, and let 0 < � < 1 and L > 1
be given. Assume that f has the following properties (P.1)–(P.4).

(P.1) There is a homogeneous Df -invariant splitting T�M D E ˚ F such that

	
		DfjE.x/

	
		 �
	
		Df�1

jF. f .x//
	
		 < �2

for any x 2 �.
(P.2) There is a compact neighborhoodU of� such that if q 2 �f .U/\Per. f / and


.q/ � L, then


.q/�1Y

iD0

		
	DfjEs. f i.q//

		
	 < �
.q/ and


.q/�1Y

iD0

		
	Df�1

jEu. f�i.q//

		
	 < �
.q/:

(P.3) � D PdimE. f /.
(P.4) f has the standard shadowing property.

Then � is hyperbolic.

Proof Let � be a compact f -invariant set, let 0 < � < 1 and L > 0 be given, and
assume that f has properties (P.1)–(P.4). Let T�M D E˚F be a Df -invariant splitting
as in (P.1) (recall that every dominated splitting is continuous). Thus, shrinking
the neighborhood U of �, we may assume further that there exists an extension
T�f .U/M D OE ˚ OF of the dominated splitting T�M D E ˚ F (see Lemma 3.2.2).

Let us prove that � is hyperbolic. Assuming that E is not contracting, we show
first that for any � < � < �0 < 1 there is z 2 �f .U/ such that

lim inf
n!1

1

n

n�1X

jD0
log

	
		Dfj OE. f j.z//

	
		 < log � < lim sup

n!1
1

n

n�1X

jD0
log

	
		Dfj OE. f j.z//

	
		 < log �0:

After that, we derive a contradiction by applying Proposition 3.2.3.
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It is known that if there exists N > 0 such that for any x 2 � there is 0 � n.x/ �
N such that

	
		Df n.x/jE.x/

	
		 < 1, then E is contracting.

Since E is not contracting, it is easy to see that there is y0 2 � such that

n�1Y

jD0

	
	
	DfjE. f j.y0//

	
	
	 � 1 for all n � 1

(recall that � is compact).
Choose " > 0 small enough with N.2";�/ � U such that

(i) if dist.x; y/ < " for some x; y 2 N.";�/, then

ˇ
ˇ
ˇ log

	
	Dfj OE.x/

	
	 � log

	
	Dfj OE.y/

	
	
ˇ
ˇ
ˇ < min

�
1

2
.log �0 � log �/;

1

3
.log � � log�/

�
:

Observe that item .i/ follows from the continuity of E (recall that OEj� D E).
Since f has the standard shadowing property, there is 0 < ı � " such that any

ı-pseudotrajectory of f in M can be "-shadowed by a trajectory of f .
Denote the !-limit set of y0 by !f .y0/. It is well known that !f .y0/ � � is an

f -invariant compact set, and for any neighborhoodV D V.!f .y0// of !f .y0/ there is
N > 0 such that f n.y0/ 2 V for any n � N. By the compactness, there exists a finite
set of points fxjg`jD1 in !f .y0/ such that

!f .y0/ �
[̀

jD1
N.ı=2; xj/:

Since PdimE. f / is dense in �, it is easy to see that for the chosen ı there exists a
finite set of periodic points fpjg`jD1 � PdimE. f / with dist.xj; pj/ < ı

2
such that

!f .y0/ �
[̀

jD1
N.ı; pj/

and thus, there is N0 > 0 such that

f n.y0/ 2
[̀

jD1
N.ı; pj/ � N.";�/

for any n � N0.
Assume that n � N0. Then

n�1Y

jD0

	
	
	DfjE. f j.y0//

	
	
	 D

n�N0�1Y

jDN0

	
	
	DfjE. f j.y0//

	
	
	 �

N0�1Y

jD0

	
	
	DfjE. f j.y0//

	
	
	 � 1:
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Thus,

n�1Y

jD0

	
		DfjE. f N0Cj.y0//

	
		 �

0

@
N0�1Y

jD0

	
		DfjE. f j.y0//

	
		

1

A

�1

� e�KN0

;

so that

1

n

n�1X

jD0
log

	
		DfjE. f N0Cj.y0//

	
		 � �KN0

n
:

Here K D max
˚ˇˇ log kDf .x/kˇˇ; ˇˇ log kDf�1.x/kˇˇ W x 2 M

�
.

Hence,

(ii) lim inf
n!1

1

n

n�1X

jD0
log

		
	DfjE. f N0Cj.y0//

		
	 � lim

n!1

�
�KN0

n

�
D 0.

We may assume that the period of pj satisfies the inequality 
. pj/ � L for any j,
and, finally, put


 D
Ỳ

jD1

. pj/:

The set of periodic orbits

PO D
[̀

jD1
O. pj; f /

forms a ı-net of !f .y0/, i.e., for any w 2 !f .y0/, there is q 2 PO such that
dist.w; q/ < ı, and, conversely, for any q 2 PO, there is w 2 !f .y0/ such that
dist.w; q/ < ı.

Observe that for any for any q 2 PO,

(iii)
1





�1X

jD0
log

	
	
	DfjE. f j.q//

	
	
	 <

1

2
.log�C log �/

by the choice of ı (see (P.2)).
We construct a ı-pseudotrajectory fxigi2Z � � of f composed of points of the

orbit O.y0; f / and of the set PO by mimicking the procedure displayed in [109]
(the construction is by induction). Denote f N

0

.y0/ by y0 for simplicity.

Step I Since y0 2 �, there is qj1 2 PO such that dist.y0; qj1 / < ı. Set

x�1 D qj1�1; x�2 D qj1�2; : : : ; x�
C1 D qj1�
C1;

x�
 D qj1 ; x�
�1 D qj1�1; x�
�2 D qj1�2 : : : :
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Then dist. f .x�i/; x�iC1/ < ı for i � 1, so that the negative part fxig�1
iD�1 of fxigi2Z

is constructed.

Step II Let n1 D 1. Then

1

n1


0

@n1

�1X

jD0
log

		
	DfjE.qj1Cj/

		
	

1

A <
1

2
.log�C log �/:

Obviously, this inequality is ensured by .iii/.
Let i1 D n1
 , put xj D qj1Cj for j D 0; 1; : : : ; i1 � 1 D 
 � 1, and put xi1 D y0.

Then dist. f .xj/; xjC1/ < ı for j D 0; 1; : : : ; i1 � 1, and

1

i1

i1�1X

jD0
log

	
	DfjE.xj/

	
	 <

1

2
.log�C log �/:

Put

aj D log
	
	DfjE.xj/

	
	

for j D 0; 1; : : : ; i1 � 1, and choose l1 so that

1

i1 C l1

0

@
i1�1X

jD0
aj C

l1�1X

jD0
log

	
	DfjE. f j.y0//

	
	

1

A � 1

2
.log�C log �0/

and

1

i1 C l

0

@
i1�1X

jD0
aj C

l�1X

jD0
log

		DfjE. f j.y0//
		

1

A <
1

2
.log �C log �0/

for any l < l1.
The existence of l1 is ensured by the choice of y0 (recall the choice of y0 and .ii/).
Set j1 D i1 C l1, let xi1C1 D f .y0/; xi1C2 D f 2.y0/; : : : ; xj1�1 D f l1�1.y0/ 2

O.y0; f /, and put

ai1Cj D log
	
		DfjE.xi1Cj/

	
		

for j D 0; 1; : : : ; l1 � 1.

Step III Let ik�1, jk�1, fxigjk�1�1iD0 , and faigjk�1�1iD0 have been constructed in the
previous steps. Similarly with the choice of qj1 and n1, we can choose qjk 2 PO so
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that

dist
�
f .xjk�1 /; qjk

�
< ı;

and a positive number nk such that

1

ik

0

@
jk�1�1X

jD0
aj C nk


�1X

jD0
log

	
	
	DfjE.qjkCj/

	
	
	

1

A <
1

2
.log�C log �/;

where ik D jk�1 C nk
 (the existence of nk is ensured by .iii/). Let

xjk�1C1 D qjkC1; xjk�1C2 D qjkC2; : : : ; xjk�1C
 D qjk ;

xjk�1C
C1 D qjkC1; xjk�1C
C2 D qjkC2; : : : ;

and xik D f .xjk�1�1/ 2 O.y0; f /.
Obviously,

dist. f .xjk�1Cj/; xjk�1CjC1/ < ı

for j D 0; 1; : : : ; nk
 � 1. Put

ajk�1Cj D log
	
	
	DfjE.xjk�1Cj/

	
	
	

for j D 0; 1; : : : ; nk � 
 � 1, and choose lk so that

1

ik C lk

0

@
ik�1X

jD0
aj C

lk�1X

jD0
log

	
	
	DfjE. f j.xik //

	
	
	

1

A � 1

2
.log �C log�0/;

and

1

ik C l

0

@
ik�1X

jD0
aj C

lX

jD0
log

		
	DfjE. f j.xik //

		
	

1

A <
1

2
.log �C log �0/

for any l < lk.
The existence of lk is ensured by the fact that xik 2 O.y0; f / (recall the choice of

y0 and .ii/).
Let jk D ik C lk and let xikC1 D f .xik /; xikC2 D f 2.xik /; : : : ; xjk�1 D f lk�1.xik/.

Finally, we put

ajk�1Cj D log
		
	DfjE. f j.xik //

		
	

for j D 0; 1; : : : ; lk � 1.
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This completes the construction of fxigi2Z � �.
Roughly speaking, the ı-pseudotrajectory fxigi2Z looks as follows:

˚� � � ; PO; PO; y0; f .y0/; f
2.y0/; : : : ; f

l1 .y0/; PO;

: : : ; PO; f l1C1.y0/; : : : ; f l1Cl2 .y0/; PO; PO; : : :
�
:

Recall that K D max
˚j log kDf .x/kj; j log kDf�1.x/kj W x 2 M

�
.

It is easy to see that

1

ik

ik�1�1X

jD0
aj <

1

2
.log�C log �/ and

1

jk

jk�1X

jD0
aj � 1

2
.log �C log �0/

for every k D 1; 2; : : : , and

1

n

n�1X

jD0
aj <

1

n

�
1

2
.log �C log �0/ .n � 
/C K � 


�

for every n � 
 .
Hence,

lim sup
n!1

1

n

n�1X

jD0
aj D 1

2
.log �C log �0/ and lim inf

n!1
1

n

n�1X

jD0
aj � 1

2
.log�C log �/:

Let z 2 M be a point whose f -trajectory "-shadows fxigi2Z (see (P.4)). Note that
O.z; f / � N.2";�/ � U. Thus, by the choice of " (see .i/),

lim inf
n!1

1

n

n�1X

jD0
log

	
	
	Dfj OE. f j.z//

	
	
	 < log � < lim sup

n!1
1

n

n�1X

jD0
log

	
	
	Dfj OE. f j.z//

	
	
	 < log �0:

By Proposition 3.2.3, there is a hyperbolic periodic point q of index dimE
such that O.q; f / � U and the derivatives along the trajectory O.q; f / satisfy the
inequalities

k�1Y

iD0

	
	DfjEs. f i.q//

	
	 � �0k and


.q/�1Y

iDk�1

	
	DfjEs. f i.q//

	
	 > �
.q/�kC1

for all k D 1; 2; : : : ; 
.q/.
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Furthermore, q can be chosen so that 
.q/ is arbitrarily large, and thus we may
assume that 
.q/ � L. This is a contradiction because


.q/�1Y

iD0

	
	DfjEs. f i.q//

	
	 < �
.q/

by (P.2). Applying a similar reasoning, we can show that F is expanding, and thus,
� is hyperbolic. ut

Now we give a proof of a generalization of Liao’s closing lemma (Lemma 3.2.4)
proved by Gan [20].

Recall that a definition of a �-quasi-hyperbolic orbit string

fx; f .x/; f 2.x/; � � � ; f n.x/g

with respect to a splitting of TxM D E.x/˚F.x/ has been given before Lemma 3.2.3.
Let fxig1

iD�1 be a sequence of points in M and let fnig1
iD�1 be a sequence of

positive integers. Denote

fxi; nig D f f j.xi/ W 0 � j � ni � 1g:

The sequence fxi; nig1
iD�1 is called a �-quasi-hyperbolic ı-pseudotrajectory with

respect to splittings TxiM D E.xi/˚ F.xi/ if for any i, fxi; nig is �-quasi-hyperbolic
with respect to TxiM D E.xi/˚ F.xi/ and dist . f ni.xi/; xiC1/ � ı.

A point x "-shadows fxi; nig1
iD�1 if

dist
�
f j.x/; f j�Ni .xi/

� � " for Ni � j � NiC1 � 1;

where Ni is defined as follows:

Ni D
8
<

:

0; if i D 0I
n0 C n1 C � � � C ni�1; if i > 0I
ni C niC1 C � � � C n�1 if i < 0:

In the following result, it is assumed that � is a compact invariant set of
f 2 Diff1.M/ and there is a continuous Df -invariant splitting T�M D E ˚ F, i.e.,
Df .x/.E.x// D E. f .x// and Df .x/.F.x// D F. f .x//.

Lemma 3.2.5 (Generalized Liao’s Closing Lemma [20]) For any 0 < � < 1

there exist L > 0 and ı0 > 0 such that for any 0 < ı < ı0 and any
�-quasi-hyperbolic ı-pseudotrajectory fxi; nig1

iD�1 with respect to the splitting
T�M D E ˚ F there exists a point x that Lı-shadows fxi; nig1

iD�1. Moreover, if
the sequencefxi; nig1

iD�1 is periodic, i.e., there exists an m > 0 such that xiCm D xi
and niCm D ni for all i, then the point x can be chosen to be periodic with period
Nm.
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Proof Let .X; k � k/ be a Banach space and let

X.�/ D fv 2 X W kvk � �g; � > 0:

If X is the direct sum of two closed subspaces E and F, i.e., X D E ˚ F, then the
angle between E and F is defined as

†.E;F/ D inffku � vk W .u 2 E; v 2 F; kuk D 1/ or .u 2 E; v 2 F; kvk D 1/g:

Since E and F are closed, 0 < †.E;F/ � 1. ut
The following lemma is well known (e.g., see [64]); we give a proof for complete-
ness.

Lemma 3.2.6 In the above notation, assume that X D E˚F and†.E;F/ � ˛ > 0.
Let L W X ! X be a linear automorphism of the form

L D
�
A B
C D

�
W E ˚ F ! E ˚ F

such that

maxfkAk; kD�1kg � � and maxfkBk; kCkg � "

for some 0 < � < 1 and " > 0.
If

"1 D 2".1C �/

˛2.1 � �/
< 1;

then I � L is invertible, and

	
	.I � L/�1

	
	 � R D R.�; "; ˛/ D 1C �

˛.1 � �/.1 � "1/ :

Proof Put J D
�
A 0

0 D

�
and K D

�
0 B
C 0

�
: Then

.I � J/�1 D
�
.I � A/�1 0

0 .I � D/�1
�
;

	
	.I � A/�1

	
	 � 1

1 � �
; and

	
	.I � D/�1

	
	 � �

1 � �
:



3.2 Diffeomorphisms in Int1 .SSPD/ Satisfy Axiom A 149

If u 2 E, v 2 F and ku C vk D 1, then, by the definition of †.E;F/,

1 D ku C vk � †.E;F/kuk � ˛kuk and ku C vk � ˛kvk:

Thus,

k.I � J/�1.u C v/k � k.I � A/�1uk C k.I � D/�1vk � 1C �

˛.1 � �/ ;

and hence,

k.I � J/�1k � 1C �

˛.1 � �/
:

A similar reasoning shows that

kKk � 2"

˛
:

Since

"1 D 2".1C �/

˛2.1 � �/
< 1

by assumption, I�L D .I�J/�K D .I�J/.I�.I�J/�1K/ and k.I�J/�1Kk � "1.
Hence, I � L is invertible, and

k.I � L/�1k D k.I � J/�1.I � .I � J/�1K/�1k � R;

which proves our lemma. ut
The sequence version of the shadowing lemma is derived from the following

fixed point result. For completeness, we give a proof following the method of [64].
In the next proposition, we denote

R D R.�; �; ˛/ D 1C �

˛.1 � �/.1� �1/
; L D 2R; and ı0 D �

L

for 0 < � < 1, 0 < ˛ � 1, and � > 0 such that �1 D 2�.1C�/
˛2.1��/ < 1 and � > 0.

The minimal Lipschitz constant of a map � is denoted by Lip �.

Proposition 3.2.5 If 0 < ı � ı0 and ˚ D N C � W X.�/ ! X, where N is a linear
automorphism of the form

N D
�
A B
C D

�
W E ˚ F ! E ˚ F
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such that

maxfkAk; kD�1kg � �;

maxfkBk; kCkg � �;

†.E;F/ � ˛, Lip� � 1
L , and k�.0/k � ı, then ˚ has a unique fixed point z in X.�/

such that kzk � Lı.

Proof By Lemma 3.2.6, I � N is invertible. Let

H D .I � N/�1� W X.�/ ! X:

The set of fixed points of H in X.�/ coincides with the set of fixed points of ˚ in
X.�/. If x 2 X.Lı/, then

kH.x/k D kH.0/C .H.x/� H.0//k �
� k.I � N/�1�.0/k C k.I � N/�1.�.x/� �.0//k �
� Rı C R 1

LLı D Lı:

Thus, H maps X.Lı/ to X.Lı/.
If x; y 2 X.�/, then

kH.x/ � H.y/k D k.I � N/�1.�.x/� �.y//k � R
1

L
kx � yk D kx � yk

2
: (3.7)

Hence, the map H W X.Lı/ ! X.Lı/ is contracting. Therefore, H has a unique
fixed point z in X.Lı/. Moreover, if z0 2 X.�/ is another fixed point of H, then z D z0
by (3.7). ut

In the following proposition, let Xi D R
� for integer i (where � D dimM) and

we assume that Xi D Ei ˚ Fi. Let

Y D
1Y

iD�1
Xi

be endowed with the supremum norm

kvk D supfjvijg; v D .vi/:

Thus, Y is a Banach space.
We consider a map˚ W Y ! Y of the form .˚.v//iC1 D ˚i.vi/, where˚i W Xi !

XiC1.
Applying Proposition 3.2.5 to ˚ W Y ! Y, we obtain the sequence version of the

shadowing lemma for hyperbolic pseudotrajectories in the following way.



3.2 Diffeomorphisms in Int1 .SSPD/ Satisfy Axiom A 151

Proposition 3.2.6 Let us assume that conditions of Proposition 3.2.5 are satisfied
and use the above notation.

If 0 < ı � ı0 and ˚ W Y.�/ ! Y has the form

˚i D Li C �i W Xi.�/ ! XiC1;

where

Li D
�
Ai Bi

Ci Di

�

with respect to the splitting Xi D Ei ˚ Fi such that †.Ei;Fi/ � ˛,

maxfkAik; kD�1
i kg � �; maxfkBik; kCikg � �; Lip� � 1

L
;

and k�i.0/k � ı, then ˚ has a unique fixed point v 2 Y.�/, and kvk � Lı.
We need one more technical lemma. Fix 0 < � < 1.
A pair of sequences fai; bigniD1 of positive numbers is called �-hyperbolic if ak �

� and bk � ��1 for k D 1; 2; : : : ; n.
A pair of sequences fai; bigniD1 of positive numbers is called �-quasi-hyperbolic

if the following three conditions are satisfied:

(1)
Qk

jD1 aj � �k;
(2)

Qn
jDk bj � �k�n�1;

(3) bk=ak � ��2
for k D 1; 2; : : : ; n.

A sequence fcigniD1 of positive numbers is called a balance sequence if

kY

jD1
cj � 1 for k D 1; 2; : : : ; n � 1 and

nY

jD1
cj D 1:

A balance sequence fcigniD1 is called adapted to a �-quasi-hyperbolic sequence
pair fai; bigniD1 if fai=ci; bi=cigniD1 is still �-quasi-hyperbolic. Moreover, if
fai=ci; bi=cigniD1 is �-hyperbolic, then fcigniD1 is called well adapted.

If a balance sequence fcigniD1 is adapted to a �-quasi-hyperbolic sequence pair
fai; bigniD1, then we say that fai=ci; bi=cigniD1 is derived from fai; bigniD1. If fNai; NbigniD1
is derived from fai; bigniD1 and fNNai; NNbigniD1 is derived from fNai; NbigniD1, then fNNai; NNbigniD1
is derived from fai; bigniD1 as well.

Lemma 3.2.7 Let 0 < � < 1. Then any �-quasi-hyperbolic pair of sequences
fai; bigniD1 has a well adapted sequence fcigniD1.
Proof First we show that fai; bigniD1 has an adapted sequence fcigniD1 such that
ai=ci � � for 1 � i � n.
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To get a contradiction, assume that

N D maxfk W there exist fcigniD1 such that ai=ci � �; 1 � i � kg < n:

Obviously, N � 1. Assume that fcigniD1 is such an adapted sequence. Let Nai D ai=ci,Nbi D bi=ci, i D 1; 2; : : : ; n. Then NaNC1 > �.
Since

QNC1
iD1 Nai � �NC1, there exists 1 � m < N C 1 such that

NC1Y

iDk

Nai > �NC2�k for k D m C 1; : : : ;N C 1 and
NC1Y

iDm

Nai � �NC2�m:

Let Nci D Nai=� for i D m C 1; : : : ;N C 1 and Nci D 1 for i < m and i > N C 1.
Then fNcigniD1 is a balance sequence. Let NNai D Nai=Nci and NNbi D Nbi=Nci for 1 � i � n

and put Ncm D

QNC1

iDmC1 Nci
��1

. Obviously, NNai D � for m C 1 � i � N C 1,

NNam D Nam=Ncm D Nam

QNC1

iDmC1 Nci
�

D

D Nam

QNC1

iDmC1 Nai
�
��.N�mC1/ D


QNC1
iDm Nai

�
��.N�mC1/ � �;

and NNbi D Nbi=Nci D �Nbi=Nai � ��1 for m C 1 � i � N C 1.
Thus, one can easily check that fNNai; NNbigniD1 is a �-quasi-hyperbolic pair which is

derived from fai; bigniD1. But NNai � � for 1 � i � N C 1, which contradicts the
maximality of N.

Similarly, fai; bigniD1 has an adapted sequence fcigniD1 such that bi=ci � ��1 for
1 � i � n. In what follows, we assume that fai; bigniD1 itself has the property that
bi � ��1 for 1 � i � n. We will repeat the proof of the above paragraph to show
that a well adapted sequence exists.

Let

N D maxfk W there exist fcigniD1 such that

ai=ci � �; 1 � i � k; and bi=ci � �; 1 � i � ng < n:

Now we can copy the proof of the first paragraph word by word and only have to
show that NNbm � ��1. Since Ncm � 1, this is obvious. ut
Remark 3.2.2 If fcigniD1 is a well adapted sequence of fai; bigniD1, then ai=ci � �

and bi=ci � ��1. Hence, ai < ai=� � ci � bi� < bi for i D 1; 2; : : : ; n.
We prove Lemma 3.2.5 (the generalized Liao’s closing lemma) by combining

Proposition 3.2.6 and Lemma 3.2.7.
Let Gk.x/; x 2 M; be the Grassmann manifold of k-dimensional subspaces of the

tangent space Tx.M/. Denote by Gk.M/ the bundle fGk.x/ W x 2 Mg and consider a
metric 
 on Gk.M/ (we do not indicate the dependence of 
 on k).
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The following lemma is an easy corollary of well-known properties of the
exponential map.

Lemma 3.2.8 For any ˛, ", � , 	 > 0 there exists � > 0 such that if x; y 2 M,
TxM D E.x/˚ F.x/, TyM D E.y/˚ F.y/,

minf†.E.x/;F.x//;†.Ey;Fy/g � ˛;

and

maxf
.Df .x/E.x/;E.y//; 
.Df .x/F.x/;F.y/g � �;

then the map

˚ D exp�1
y ıf ı expx W TxM.�/ ! TyM

can be written as ˚ D L C �, where

L D
�
A B
C D

�
with respect to the splittings E.x/˚ F.x/ and E.y/˚ F.y/,

1 � � � kAk
		Df jE.x/

		 � 1C �;

1 � � �
	
	D�1		�1

m
�
Df jF.x/

� � 1C �;

maxfkBk; kCkg � "; and Lip� � 	:

Proof of Lemma 3.2.5 Let fxi; nig1�1 be a �-quasi-hyperbolic pseudotrajectory with
respect to the splitting T�M D E ˚ F. Denote

K D sup
x2M

˚kDf .x/k; kDf�1.x/k� and ˛ D inf
x2�†.E.x/;F.x// > 0:

We first show that there exists a point z that "-shadows fxi; nig1
iD�1, i.e.,

dist
�
f j.z/; f j�Ni .xi/

� � " for Ni � j � NiC1 � 1;

where

Ni D
8
<

:

0 if i D 0I
n0 C n1 C � � � C ni�1 if i > 0I
ni C niC1 C � � � C n�1 if i < 0:
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Let yj D f j�Ni.xi/ for Ni � j < NiC1 and denote Xj D TyjM, Ej D E.yj/, and
Fj D F.yj/.

Put � D 1C�
2

and r D �=� and take " > 0 such that

"1 D 2".1C �/

˛2.1� �/
< 1:

Let R D R.�; "; ˛/, L D 2R, and "2 D "=K.
Since the splitting T�M D E ˚ F is continuous, it follows from Lemma 3.2.7

that if � > 0 is small enough and fyjgNiC1

jDNi
is �-quasi-hyperbolic �-pseudotrajectory,

then the map

˚j D exp�1
yjC1 ıf ı expyj W Xj.�/ ! XjC1

has the form ˚j D Lj C �j, where

Lj D
�
Aj Bj

Cj Dj

�
W Ej ˚ Fj ! EjC1 ˚ FjC1

and Lip �j � 1
KL .

If Ni � j < NiC1 � 1, then �j.0/ D 0, Bj D Cj D 0, Aj D Df jEj , and Dj D Df jFj .
If j D NiC1 � 1, then

maxfkBjk; kCjkg � "2; kAjk � rkDf jEjk; and kD�1
j k � rm.Df jFj/

�1:

Let ı0 D �=L and fix 0 < ı � ı0. If fxi; nig1�1 is a quasi-hyperbolic

ı-pseudotrajectory, then k�j.0/k � ı. Thus,
˚kAjk;m.Dj/

�NiC1�1
jDNi

is a �-quasi-

hyperbolic pair of sequences. Hence, there is a well adapted sequence fhjgNiC1�1
jDNi

,
i.e.,

kY

jDNi

hj � 1 for k D Ni; : : : ;NiC1 � 2 and
NiC1�1Y

jDNi

hj D 1;

where 1
K � hj � K.

Let gj D Qj
kDNi

hk, QLj D h�1
j Lj, Q�j.x/ D g�1

j �j.gj�1.x// (note that gNi�1 D 1),

and Q̊ j D QLj C Q�j. Denote

�j D ˚j ı � � � ı ˚Ni and Q�j D Q̊ j ı � � � ı Q̊Ni :

Then Q�j D g�1
j �j.
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Note that gNiC1�1 D 1 and Q�NiC1�1 D �NiC1�1. Thus,

Lip Q�j D g�1
j Lip�jgj�1 D h�1

j Lip�j � K
1

KL
D 1

L
;

Q�j.0/ D �j.0/ D 0 for j D Ni; : : : ;NiC1 � 2, and Q�j.0/ D g�1
j �j.0/ D �j.0/ for

j D NiC1 � 1 since gj D 1.
Hence, by Proposition 3.2.6, Q̊ D f Q̊ jg W Y.�/ ! Y (where Y D Q1

iD�1 Xi)
has a unique fixed point Qv D fQvjg, and k Qvk � Lı. Let vNi D QvNi and for Ni < j <
NiC1 � 1, define vj D ˚j�1.vj�1/ inductively.

To guarantee that this is possible, let us check that kvjk � Lı. Since

vj D �j�1.vNi/ D gj�1 Q�j�1 D gj�1 Qvj;

we have the inequalities kvjk � kQvjk � Lı.
Since

vNiC1
D QvNiC1

D Q�NiC1�1.vNi/ D �NiC1�1.vNi/ D ˚NiC1�1.vNiC1�1/;

v is a fixed point of ˚ , and kvk � Lı. Then the f -trajectory of the point z D
expy0 .v0/ Lı-shadows fyjg. This proves the first conclusion of Lemma 3.2.5.

Now we assume that the sequence fxi; nig1
iD�1 is periodic, i.e., there exists an

m > 0 such that xiCm D xi and niCm D ni for all i.
Define Qw by . Qw/i D . Qv/NmCi . Since Qv and Qw are fixed points of Q̊ in Y.Lı/, Qv D Qw

by Proposition 3.2.6. Thus, v D w, and z has period Nm. ut
Historical Remarks The theory involving a selection of some special kinds of �-
quasi-hyperbolic strings has its origins in the works of V. A. Pliss [73] and S. T.
Liao [36].

The notion of �-quasi-hyperbolic string and Liao’s closing lemma played an
essential part in the solution of the stability conjecture in [45].

3.3 Vector Fields in Int1 .OrientSPF nB/

To formulate our main results in the last two sections of Chap. 3, we need one more
definition.

Consider a smooth vector field X on a smooth closed manifold M.
Let us say that a vector field X belongs to the class B if X has two hyperbolic

rest points p and q (not necessarily different) with the following properties:

(1) The Jacobi matrix DX.q/ has two complex conjugate eigenvalues �1;2 D a1 ˙
ib1 of multiplicity one with a1 < 0 such that if � ¤ �1;2 is an eigenvalue of
DX.q/ with Re� < 0, then Re� < a1;
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(2) the Jacobi matrixDX. p/ has two complex conjugate eigenvalues �1;2 D a2˙ib2
with a2 > 0 of multiplicity one such that if � ¤ �1;2 is an eigenvalue of DX. p/
with Re� > 0, then Re� > a2;

(3) the stable manifold Ws. p/ and the unstable manifold Wu.q/ have a trajectory
of nontransverse intersection.

Clearly, vector fields X 2 B are not structurally stable.
Condition (1) above means that the “weakest” contraction in Ws.q/ is due to the

eigenvalues �1;2 (condition (2) has a similar meaning).
The main result of this section is as follows.

Theorem 3.3.1

Int1.OrientSPF n B/ � SF: (3.8)

It follows from Theorem 1.4.1 (2) that SF � SSPF; since the set SF is C1-open
and SF \ B D ;,

SF � Int1.SSPF n B/ � Int1.OrientSPF n B/:

Combining this inclusion with (3.8), we see that

Int1.OrientSPF n B/ D SF:

Proof The proof of inclusion (3.8) is based on Theorem 1.3.13 (2):

Int1.KSF/ D SF

(recall that KSF is the set of Kupka–Smale vector fields).
Thus, in fact, we are going to prove that

Int1.OrientSPF n B/ � KSF: (3.9)

Before proving inclusion (3.9), we introduce some terminology and notation.
The term “transverse section” will mean a smooth open disk in M of codimension

1 that is transverse to the flow � at any of its points.
Let, as above, Per.X/ denote the set of rest points and closed orbits of a vector

field X.
Recall (see Sect. 1.3) that we have denoted by HPF the set of vector fields X for

which any trajectory of the set Per.X/ is hyperbolic. Our first lemma is valid for the
set OrbitSPF (which is, in general, larger than OrientSPF); we prove it in this, more
general form, since it can be applied for other purposes.

Lemma 3.3.1

Int1.OrbitSPF/ � HPF: (3.10)
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Proof To get a contradiction, let us assume that there exists a vector field X 2
Int1.OrbitSPF/ that does not belong to HPF, i.e., the set Per.X/ contains a trajectory
p that is not hyperbolic.

Let us first consider the case where p is a rest point. Identify M with R
n in a

neighborhood of p. Applying an arbitrarily C1-small perturbation of the field X, we
can find a field Y 2 Int1.OrbitSPF/ that is linear in a neighborhood U of p (we also
assume that p is the origin of U).

(Here and below in the proof of Lemma 3.3.1, all the perturbations are C1-small
perturbations that leave the field in Int1.OrbitSPF/; we denote the perturbed fields
by the same symbol X and their flows by �.)

Then trajectories of X in U are governed by a differential equation

Px D Px; (3.11)

where the matrix P has an eigenvalue � with Re� D 0.
Consider first the case where � D 0. We perturb the field X (and change

coordinates, if necessary) so that, in Eq. (3.11), the matrix P is block-diagonal,

P D diag.0;P1/; (3.12)

and P1 is an .n � 1/ � .n � 1/ matrix.
Represent coordinate x in U as x D .y; z/ with respect to (3.12); then

�.t; .y; z// D .y; exp.P1t/z/

in U.
Take " > 0 such that N.4"; p/ � U. To get a contradiction, assume that X 2

OrbitSP; let d correspond to the chosen ".
Fix a natural number m and consider the following mapping from R into U:

g.t/ D
8
<

:

y D �2"; z D 0I t � 0I
y D �2"C t=m; z D 0I 0 < t < 4m"I
y D 2"; z D 0I 4m" < t:

Since the mapping g is continuous, piecewise differentiable, and either Py D 0 or
Py D 1=m, g is a d-pseudotrajectory for large m.

Any trajectory of X in U belongs to a plane y D const; hence,

distH
�
Cl.O.q; �//;Cl.fg.t/ W t 2 Rg/� � 2"

for any q. This completes the proof in the case considered.
A similar reasoning works if p is a rest point and the matrix P in (3.12) has a pair

of eigenvalues ˙ib; b ¤ 0.
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Now we assume that p is a nonhyperbolic closed trajectory. In this case, we
perturb the vector field X in a neighborhood of the trajectory p using the perturbation
technique developed by Pugh and Robinson in [77]. Let us formulate their result
(which will be used below several times).

Pugh-Robinson Pertubation Assume that r1 is not a rest point of a vector field X.
Let r2 D �.�; r1/, where � > 0. Let ˙1 and ˙2 be two small transverse sections
such that ri 2 ˙i; i D 1; 2. Let � be the local Poincaré transformation generated by
these transverse sections.

Consider a point r0 D �.� 0; r1/, where � 0 2 .0; �/, and let U be an arbitrary
open set containing r0.

Fix an arbitrary C1 neighborhood F of the field X.
There exist positive numbers "0 and �0 with the following property: if � 0 is a

local diffeomorphism from the �0-neighborhood of r1 in ˙1 into˙2 such that

distC1 .�; �
0/ < "0;

then there exists a vector field X0 2 F such that

(1) X0 D X outside U;
(2) � 0 is the local Poincaré transformation generated by the sections ˙1 and ˙2

and trajectories of the field X0.

Let ! be the least positive period of the nonhyperbolic closed trajectory p. We
fix a point 
 2 p, local coordinates in which 
 is the center, and a hyperplane˙ of
codimension 1 transverse to the vector F.
/. Let y be coordinate in ˙ .

Let � be the local Poincaré transformation generated by the transverse section
˙ ; denote P D D�.0/. Our assumption implies that the matrix P is not hyperbolic.
In an arbitrarily small neighborhood of the matrix P, we can find a matrix P0 such
that P0 either has a real eigenvalue with unit absolute value of multiplicity 1 or a
pair of complex conjugate eigenvalues with unit absolute value of multiplicity 1. In
both cases, we can choose coordinates y D .v;w/ in ˙ in which

P0 D diag.Q;P1/; (3.13)

where Q is a 1 � 1 or 2 � 2 matrix such that jQvj D jvj for any v.
Now we can apply the Pugh-Robinson perturbation (taking r1 D r2 D 
 and

˙1 D ˙2 D ˙) which modifies X in a small neighborhood of the point �.!=2; 
/
and such that, for the perturbed vector field X0, the local Poincaré transformation
generated by the transverse section ˙ is given by y 7! P0y.

Clearly, in this case, the trajectory of 
 in the field X0 is still closed (with some
period!0). As was mentioned, we assume that X0 has the orbital shadowing property
(and write X; �; ! instead of X0; �0; !0).

We introduce in a neighborhood of the point 
 coordinates x D .x0; y/, where
x0 is one-dimensional (with axis parallel to X.
/), and y has the above-mentioned
property.
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Of course, the new coordinates generate a new metric, but this new metric is
equivalent to the original one; thus, the corresponding shadowing property (or its
absence) is preserved.

We need below one more technical statement.

LE (Local Estimate) There exists a neighborhood W of the origin in ˙ and
constants l; ı0 > 0 with the following property: If z1 2 ˙\W and jz2�z1j < ı < ı0,
then we can represent z2 as �.�; z0

2/ with z
0
2 2 ˙ and

j� j; jz0
2 � z1j < lı: (3.14)

This statement is an immediate corollary of the theorem on local rectification
of trajectories (see, for example, [8]): In a neighborhood of a point that is not a
rest point, the flow of a vector field of class C1 is diffeomorphic to the family of
parallel lines along which points move with unit speed (and it is enough to note
that a diffeomorphic image of ˙ is a smooth submanifold transverse to lines of the
family).

We may assume that the neighborhood W in LE is so small that for y 2 ˙ \
W, the function ˛.y/ (the time of first return to ˙) is defined, and that the point
�.˛.v;w/; .0; v;w// has coordinates .Qv;P1w/ in ˙ .

Let us take a neighborhood U of the trajectory p such that if r 2 U, then the first
point of intersection of the positive semitrajectory of r with ˙ belongs to W.

Take a > 0 such that the 4a-neighborhood of the origin in ˙ is a subset of W.
Fix

" < min


ı0;

a

4l

�
;

where ı0 and l satisfy the LE. Let d correspond to this " (in the definition of the
orbital shadowing property).

Take y0 D .v0; 0/ with jv0j D a. Fix a natural number � and set

˛k D ˛

��
k

�
Qkv0; 0

��
; k 2 Œ0; � � 1/;

ˇ0 D 0; ˇk D ˛1 C � � � C ˛k;

and

g.t/ D
8
<

:

�.t; .0; 0; 0//; t < 0I
�
�
t � ˇk;

�
0; k

�
Qkv0; 0

��
; ˇk � t < ˇkC1; k 2 Œ0; � � 1/I

� .t � ˇ�; .0;Q�v0; 0// ; t � ˇ�:

Note that for any point y D .v; 0/ of intersection of the set fg.t/ W t 2 Rg with ˙ ,
the inequality jvj � a holds. Hence, we can take a so small that

N.2a;Cl.fg.t/ W t 2 Rg// � U:
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Since
ˇ
ˇ̌
ˇ
k

�
QkC1v0 � k C 1

�
QkC1v0

ˇ
ˇ̌
ˇ D a

�
! 0; � ! 1;

g.t/ is a d-pseudotrajectory for large �.
Assume that there exists a point q such that

distH.Cl.O.q; �//;Cl.fg.t/ W t 2 Rg// < �:

In this case, O.q; �/ � U, and there exist points q1; q2 2 O.q; �/ such that

jq1j D jq1 � .0; 0; 0/j < "

and

jq2 � .0;Q�v0; 0/j < ":

By the choice of ", there exist points q0
1; q

0
2 2 O.q; �/\˙ such that

jq0
1j < l" < a=4 and jq0

2 � Q�v0j < l" < a=4:

Let q0
1 D .0; v1;w1/ and q0

2 D .0; v2;w2/. Since these points belong to the same
trajectory that is contained in U, jv1j D jv2j. At the same time,

jv1j < a=4; jv2 � Q�v0j < a=4; and jQ�v0j D a;

and we get a contradiction which proves Lemma 3.3.1. ut
To complete the proof of Theorem 3.3.1, we show that any vector field

X 2 Int1.OrientSPF n B/

has the second property from the definition of Kupka–Smale flows, i.e., stable and
unstable manifolds of trajectories of the set Per.X/ are transverse.

Then

Int1.OrientSPF n B/ � KSFI

hence, inclusion (3.9) is valid.
To get a contradiction, let us assume that there exist trajectories p; q 2 Per.X/ for

which the unstable manifold Wu.q/ and the stable manifold Ws. p/ have a point r of
nontransverse intersection. We have to consider separately the following two cases.

Case (B1): p and q are rest points of the flow �.
Case (B2): either p or q is a closed trajectory.
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Case (B1) Since X … B, we may assume (after an additional perturbation, if
necessary) that the eigenvalues �1; : : : ; �u with Re�j > 0 of the Jacobi matrix
DX. p/ have the following property:

Re�j > �1 > 0; j D 2; : : : ; u

(where u is the dimension of Wu. p/). This property means that there exists a one-
dimensional “direction of weakest expansion” in Wu. p/.

If this is not the case, then our assumption that X … B implies that the
eigenvalues �1; : : : ; �s with Re�j < 0 of the Jacobi matrix DX.q/ have the
following property:

Re�j < �1 < 0; j D 2; : : : ; s

(where s is the dimension of Ws.q/). If this condition holds, we reduce the problem
to the previous case by passing from the field X to the field �X (clearly, the fields X
and �X have the oriented shadowing property simultaneously).

Making a perturbation (in this part of the proof, we always assume that the
perturbed field belongs to the set OrientSP n B), we may “linearize” the field X
in a neighborhood U of the point p; thus, trajectories of X in U are governed by a
differential equation

Px D Px;

where

P D diag.Ps;Pu/; Pu D diag.�;P1/; � > 0; (3.15)

P1 is a .u � 1/ � .u � 1/ matrix for which there exist constants K > 0 and � > �

such that

k exp.�P1t/k � K�1 exp.��t/; t � 0; (3.16)

and Re�j < 0 for the eigenvalues �j of the matrix Ps.
Let us explain how to perform the above-mentioned perturbations preserving

the nontransversality of Wu.q/ and Ws. p/ at the point r (we note that a similar
reasoning can be used in “replacement” of a component of intersection of Wu.q/
with a transverse section ˙ by an affine space, see the text preceding Lemma 3.3.2
below).

Consider points r� D �.�; r/, where � > 0, and r0 D �.� 0; r/, where � 0 2 .0; �/.
Let ˙ and ˙� be small transverse sections that contain the points r and r�. Take
small neighborhoods V and U0 of p and r0, respectively, so that the set V does not
intersect the “tube” formed by pieces of trajectories through points of U0 whose
endpoints belong to˙ and˙�. In this case, if we perturb the vector field X in V and
apply the Pugh-Robinson perturbation in U0, these perturbations are “independent.”
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We perturb the vector field X in V obtaining vector fields X0 that are linear in
small neighborhoodsV 0 � V and such that the values 
1.X;X0/ are arbitrarily small.

Let 	s and 	�
s be the components of intersection of the stable manifold Ws. p/

(for the field X) with ˙ and ˙� that contain the points r and r�, respectively.
Since the stable manifold of a hyperbolic rest point depends (on its compact

subsets) C1-smoothly on C1-small perturbations, the stable manifolds Ws. p/ (for
the perturbed fields X0) contain components 	 0

s of intersection with˙� that converge
(in the C1 metric) to 	�

s .
Now we apply the Pugh-Robinson perturbation in U0 and find a field X0 in

an arbitrary C1 neighborhood of X such that the local Poincaré transformation
generated by the field X0 and sections ˙ and ˙� takes 	 0

s to 	s (which means that
the nontransversality at r is preserved).

We introduce in U coordinates x D .yI v;w/ according to (3.15): y is coordinate
in the s-dimensional “stable” subspace (denoted Es); .v;w/ are coordinates in the
u-dimensional “unstable” subspace (denoted Eu). The one-dimensional coordinate
v corresponds to the eigenvalue � (and hence to the one-dimensional “direction of
weakest expansion” in Eu).

In the neighborhood U,

�.t; .y; v;w// D .exp.Pst/yI exp.�t/v; exp.P1t/w/ ;

and it follows from (3.16) that

j exp.P1t/wj � K exp.�t/jwj; t � 0: (3.17)

Denote by Eu
1 the one-dimensional invariant subspace corresponding to �.

We naturally identify Es \ U and Eu \ U with the intersections of U with the
corresponding local stable and unstable manifolds of p, respectively.

Let us construct a special transverse section for the flow �. We may assume that
the point r of nontransverse intersection of Wu.q/ and Ws. p/ belongs to U. Take
a hyperplane ˙ 0 in Es of dimension s � 1 that is transverse to the vector X.r/. Set
˙ D ˙ 0 C Eu; clearly,˙ is transverse to X.r/.

By a perturbation of the field X outside U, we may get the following: in a
neighborhood of r, the component of intersection Wu.q/ \ ˙ containing r (for the
perturbed field) has the form of an affine space r C L, where L is the tangent space,
L D Tr.Wu.q/\˙/, of the intersection Wu.q/\˙ at the point r for the unperturbed
field (compare, for example, with [33]).

Let ˙r be a small transverse disk in ˙ containing the point r. Denote by 	 the
component of intersection of Wu.q/\˙r containing r.

Lemma 3.3.2 There exists " > 0 such that if x 2 ˙r and

dist .�.t; x/;O�.r; �// < "; t � 0; (3.18)

then x 2 	 .
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Proof To simplify presentation, let us assume that q is a rest point; the case of a
closed trajectory is considered using a similar reasoning.

By the Grobman–Hartman theorem, there exists "0 > 0 such that the flow of X
in N.2"0; q/ is topologically conjugate to the flow of a linear vector field.

Denote by A the intersection of the local stable manifold of q, Ws
loc.q/, with the

boundary of the ball N.2"0; q/.
Take a negative time T such that if s D �.T; r/, then

�.t; s/ 2 N."0; q/; t � 0: (3.19)

Clearly, if "0 is small enough, then the compact sets A and

B D f�.t; r/ W T � t � 0g

are disjoint. There exists a positive number "1 < "0 such that the "1-neighborhoods
of the sets A and B are disjoint as well.

Take "2 2 .0; "1/. There exists a neighborhoodV of the point s with the following
property: If y 2 V n Wu

loc.q/, then the first point of intersection of the negative
semitrajectory of y with the boundary of N.2"0; q/ belongs to the "2-neighborhood
of the set A (this statement is obvious for a neighborhood of a saddle rest point of a
linear vector field; by the Grobman-Hartman theorem, it holds for X as well).

Clearly, there exists a small transverse disk ˙s containing s and such that if y 2
˙s \ Wu

loc.q/, then the first point of intersection of the positive semitrajectory of y
with the disk˙r belongs to 	 (in addition, we assume that˙s belongs to the chosen
neighborhood V).

There exists " 2 .0; "1 � "2/ such that the flow of X generates a local Poincaré
transformation

� W ˙r \ N."; r/ ! ˙s:

Let us show that this " has the desired property. It follows from our choice of ˙s

and (3.18) with t D 0 that if x … 	 , then

y WD �.x/ 2 ˙s n Wu
loc.q/I

in this case, there exists � < 0 such that the point z D �.�; y/ belongs to the
intersection of N."2;A/ with the boundary of N.2"0; q/. By (3.19),

dist.z; �.t; s// > "0; t � 0: (3.20)

At the same time,

dist.z; �.t; r// > "1 � "2; T � t � 0: (3.21)

Inequalities (3.20) and (3.21) contradict condition (3.18). Our lemma is proved. ut
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Now let us formulate the property of nontransversality of Wu.q/ and Ws. p/
at the point r in terms of the introduced objects. Recall that we work in a small
neighborhood U of the rest point p identified with the Euclidean space Rn.

Let ˘ u be the projection to Eu parallel to Es.
The transversality of Wu.q/ and Ws. p/ at r means that

TrW
u.q/C TrW

s. p/ D R
n:

Since˙ is a transverse section to the flow � at r, the above equality is equivalent to
the equality

L C Es D R
n:

Thus, the nontransversality means that

L C Es ¤ R
n;

which implies that

L0 WD ˘ uL ¤ Eu: (3.22)

We claim that there exists a linear isomorphism J of ˙ for which the norm kJ �
Idk is arbitrarily small and such that

˘ uJL \ Eu
1 D f0g: (3.23)

Let e be a unit vector of the lineEu
1. If e … L0, we have nothing to prove (take J D Id).

Thus, we assume that e 2 L0. Since L0 ¤ Eu, there exists a vector v 2 Eu n L0.
Fix a natural number N and consider a unit vector vN that is parallel to Ne C v.

Clearly, vN ! e as N ! 1. There exists a sequence TN of linear isomorphisms of
Eu such that TNvN D e and

kTN � Idk ! 0; N ! 1:

Note that T�1
N e is parallel to vN ; hence, T�1

N e does not belong to L0, and

TN˘
uL \ Eu

1 D f0g: (3.24)

Define an isomorphism JN of ˙ by

JN.y; z/ D .y;TNz/

and note that

kJN � Idk ! 0; N ! 1:
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Let LN D JNL. Equality (3.24) implies that

˘ uLN \ Eu
1 D f0g: (3.25)

Our claim is proved.
First we consider the case where dimEu � 2. Since dimL0 < dimEu by (3.22) and

dimEu
1 D 1, our reasoning above (combined with a Pugh-Robinson perturbation)

shows that we may assume that

L0 \ Eu
1 D f0g: (3.26)

For this purpose, we take a small transverse section ˙ 0 containing the point r0 D
�.�1; r/, denote by 	 the component of intersection of Wu.q/ with ˙ 0 containing
r0, and note that the local Poincaré transformation � generated by˙ 0 and˙ takes 	
to the linear space L (in local coordinates of˙). The mapping �N D JN� is C1-close
to � for large N and takes 	 to LN for which equality (3.25) is valid. Thus, we get
equality (3.26) for the perturbed vector field.

This equality implies that there exists a constant C > 0 such that if .yI v;w/ 2
r C L, then

jvj � Cjwj: (3.27)

Fix a > 0 such that N.4a; p/ � U. Take a point ˛ D .0I a; 0/ 2 Eu
1 and a

positive number T and set ˛T D .ryI a exp.��T/; 0/, where ry is the y-coordinate of
r. Construct a pseudotrajectory as follows:

g.t/ D
(
�.t; r/; t � 0I
�.t; ˛T/; t > 0:

Since

jr � ˛T j D a exp.��T/ ! 0

as T ! 1, for any d there exists T such that g is a d-pseudotrajectory.

Lemma 3.3.3 Assume that b 2 .0; a/ satisfies the inequality

logK � logC C

�
�

� 1
�


log
a

2
� log b

�
� 0:

Then for any T > 0, reparametrization h, and a point s 2 rCL such that jr� sj < b
there exists � 2 Œ0;T� such that

j�.h.�/; s/� g.�/j � a

2
:
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Proof To get a contradiction, assume that

j�.h.�/; s/� g.�/j < a

2
; � 2 Œ0;T�: (3.28)

Let s D .y0I v0;w0/ 2 r C L. Since jr � sj < b,

jv0j < b: (3.29)

By (3.28),

�.h.�/; s/ 2 U; � 2 Œ0;T�:

Take � D T in (3.28) to show that

jv0j exp.�h.T// >
a

2
:

It follows that

h.T/ > ��1



log
a

2
� log jv0j

�
: (3.30)

Set �.�/ D j exp.P1h.�//w0j; then �.0/ D jw0j. By (3.27),

jv0j � C�.0/: (3.31)

By (3.17),

�.T/ � K exp.�h.T//�.0/: (3.32)

We deduce from (3.29)–(3.32) that

log

�
2�.T/

a

�
� log �.T/ � log jv0 exp.�h.T//j �

� logK C log �.0/� log jv0j C .� � �/h.T/ �

� logK � logC C

�
�

� 1
�
a
2

� log jv0j
�

�

� logK � logC C

�
�

� 1
�
a
2

� log b
�

� 0:

We get a contradiction with (3.28) for � D T since the norm of the w-coordinate
of �.h.T/; s/ equals �.T/, while the w-coordinate of g.T/ is 0. The lemma is
proved. ut
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Let us complete the proof of Theorem 3.3.1 in case (B1). Assume that l; ı0 > 0

are chosen for ˙ so that the LE holds.
Take " 2 .0;min.ı0; "0; a=2// so small that if dist.y; r/ < ", then �.t; y/

intersects˙ at a point s such that

dist.�.t; s/; r/ < "0; jtj � l": (3.33)

Consider the corresponding d and a d-pseudotrajectory g described above.
Assume that

dist.�.h.t/; x/; g.t// < "; t 2 R; (3.34)

for some point x and reparametrization h and set y D �.h.0/; x/.
Then dist.y; r/ < ", and there exists a point s D �.�; y/ 2 ˙ with j� j < l".
If �l" � t � 0, then

dist.�.t; s/;O�.r; �// � "0

by (3.33).
If t < �l", then h.0/C � C t < h.0/, and there exists t0 < 0 such that h.t0/ D

h.0/C � C t. In this case,

�.t; s/ D �.h.0/C � C t; x/ D �.h.t0/; x/;

and

dist .�.t; s/;O�.r; �// � dist
�
�.h.t0/; x/; �.t0; r/

� � "0:

By Lemma 3.3.2, s 2 r C L. If " is small enough, then dist.s; r/ < b, where b
satisfies the condition of Lemma 3.3.3, whose conclusion contradicts (3.34).

This completes the consideration of case (B1) for dimWu. p/ � 2. If
dimWu. p/ D 1, then the nontransversality of Wu.q/ and Ws. p/ implies that
L � Es. This case is trivial since any shadowing trajectory passing close to r must
belong to the intersection Wu.q/\Ws. p/, while we can construct a pseudotrajectory
“going away” from p along Wu. p/. If dimWu. p/ D 0, Wu.q/ and Ws. p/ cannot
have a point of nontransverse intersection.

Case (B2) Passing from the vector field X to �X, if necessary, we may assume that
p is a closed trajectory. We “linearize” X in a neighborhood of p as described in
the proof of Lemma 3.3.1 so that the local Poincaré transformation of the transverse
section˙ is a linear mapping generated by a matrix P with the following properties:
With respect to some coordinates in ˙ ,

P D diag.Ps;Pu/; (3.35)
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where j�jj < 1 for the eigenvalues �j of the matrix Ps, j�jj > 1 for the eigenvalues
�j of the matrix Pu, every eigenvalue has multiplicity 1, and P is in a Jordan form.

The same reasoning as in case (B1) shows that it is possible to perform such
a “linearization” (and other perturbations of X performed below) so that the
nontransversality of Wu.q/ and Ws. p/ is preserved.

Consider an eigenvalue � of Pu such that j�j � j�j for the remaining eigenvalues
� of Pu.

We treat separately the following two cases.

Case (B2.1): � 2 R.
Case (B2.2): � 2 C n R.

Case (B2.1) Applying a perturbation, we may assume that

Pu D diag.�;P1/;

where j�j < j�j for the eigenvalues � of the matrix P1 (thus, there exists a one-
dimensional direction of “weakest expansion” in Wu. p/). In this case, we apply
precisely the same reasoning as that applied to treat case (B1) (we leave details to
the reader).

Case (B2.2) Applying one more perturbation of X, we may assume that

� D � C i� D 
 exp

�
2
m1i

m

�
;

where m1 and m are relatively prime natural numbers, and

Pu D diag.Q;P1/;

where

Q D
�
� ��
� �

�

with respect to some coordinates .y; v;w/ in ˙ , where 
 D j�j < j�j for the
eigenvalues � of the matrix P1.

Denote

Es D f.y; 0; 0/g; Eu D f.0; v;w/g; Eu
1 D f.0; v; 0/g:

Thus, Es is the “stable subspace,” Eu is the “unstable subspace,” and Eu
1 is the two-

dimensional “unstable subspace of the weakest expansion.”
Geometrically, the Poincaré transformation � W ˙ ! ˙ (extended as a linear

mapping to Eu
1) acts on Eu

1 as follows: the radius of a point is multiplied by 
, while
2
m1=m is added to the polar angle.
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As in the proof of Lemma 3.3.1, we take a small neighborhood W of the origin
of the transverse section ˙ so that, for points x 2 W, the function ˛.x/ (the time of
first return to ˙) is defined.

We assume that the point r of nontransverse intersection of Wu.q/ and Ws. p/
belongs to the section ˙ . Similarly to case (B1), we perturb X so that, in a
neighborhood of r, the component of intersection of Wu.q/\˙ containing r has the
form of an affine space, r C L.

Let ˘ u be the projection in˙ to Eu parallel to Es and let˘ u
1 be the projection to

Eu
1; thus,

˘ u.y; u; v/ D .0; u; v/ and ˘ u
1 .y; u; v/ D .0; u; 0/:

The nontransversality of Wu.q/ and Ws. p/ at r means that

L0 D ˘ uL ¤ Eu

(see case (B1)). Applying a reasoning similar to that in case (B1), we perturb X so
that if L00 D L0 \ Eu

1, then

dimL00 < dimEu
1 D 2:

Hence, either dimL00 D 1 or dimL00 D 0. We consider only the first case, the second
one is trivial.

Denote by A the line L00. Images of A under degrees of � (extended to the whole
plane Eu

1) are m different lines in Eu
1.

In what follows, we refer to an obvious geometric statement (given without a
proof).

Proposition 3.3.1 Consider coordinates .x1; : : : ; xn/ in the Euclidean spaceRn. Let
x0 D .x1; x2/, x00 D .x3; : : : ; xn/, and let G be the plane of coordinate x0. Let D be a
hyperplane in Rn such that

D \ G D fx2 D 0g:

For any b > 0 there exists c > 0 such that if x D .x0; x00/ 2 D and x0 D .x0
1; x

0
2/, then

either jx0
2j � bjx0

1j or jx00j � cjx0j.
Take a > 0 such that the 2a-neighborhood of the origin in ˙ belongs to W. We

may assume that if v D .v1; v2/, then the line A is fv2 D 0g.
Take b > 0 such that the images of the cone

C D fv W jv2j � bjv1jg

in Eu
1 under degrees of � intersect only at the origin (denote these images by

C1; : : : ;Cm/.
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We apply Proposition 3.3.1 to find a number c > 0 such that if .0; v;w/ 2 L0,
then either .0; v; 0/ 2 C or

jwj � cjvj: (3.36)

Take a point ˇ D .0; v; 0/ 2 ˙ , where jvj D a, such that ˇ … C1 [ � � � [ Cm.
For a natural number N, set ˇN D .ry;P�N

u .v; 0// 2 ˙ (we recall that equality
(3.35) holds), where ry is the y-coordinate of r. We naturally identify ˇ and ˇN with
points of M and consider the following pseudotrajectory:

g.t/ D
�
�.t; r/; t � 0I
�.t; ˇN/; t > 0:

The following statement (similar to Lemma 3.3.2) holds: there exists "0 > 0 such
that if

dist.�.t; s/;O�.r; �// < "0; t � 0;

for some point s 2 ˙ , then s 2 r C L.
Since ˇ does not belong to the closed set C1 [ � � � [Cm, we may assume that the

disk in Eu
1 centered at ˇ and having radius "0 does not intersect the set C1[� � �[Cm.

Define numbers

˛1.N/ D ˛.ˇN/; ˛2.N/ D ˛1.N/C ˛.�.ˇN//; : : : ;

˛N.N/ D ˛N�1.N/C ˛.�N�1.ˇN//:

Take ı0 and l for which LE holds for the neighborhood W (reducing W, if
necessary). Take " < min."0=l; ı0/ and assume that there exists the corresponding d
(from the definition of the OrientSPF). Take N so large that g is a d-pseudotrajectory.

Let h be a reparametrization; assume that

j�.h.t/; p0/� g.t/j < "; 0 � t � ˛N.N/;

for some point p0 2 ˙ .
Since g .˛k.N// 2 ˙ for 0 � k � N by construction, there exist numbers �k such

that

j��k . p0/ � g.˛k.N//j < "0; 0 � k � N:

To complete the proof of Theorem 3.3.1, let us show that for any p0 2 r C L and
any reparametrization h there exists t 2 Œ0; ˛N.N/� such that

dist.�.h.t/; p0/; g.t// � ":
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Assuming the contrary, we see that

j��k . p0/� g.˛k.N//j < "0; 0 � k � N;

where the numbers �k were defined above.
We consider two possible cases.
If

˘ u
1 p0 2 C

(C is the cone defined before estimate (3.36)), then

˘ u
1 �

�k . p0/ 2 C1 [ � � � [ Cm:

By construction,˘ u
1 g.˛N.N// is ˇ. Hence,

j˘ u
1 �

�N . p0/ �˘ u
1 g.˛N.N//j > "0;

and we get the desired contradiction.
If

˘ u
1 p0 … C

and p0 D .y0; v0;w0/, then .0; v0;w0/ 2 L0, and it follows from (3.36)) that jw0j �
cjv0j. In this case, decreasing "0, if necessary, we apply the reasoning similar to
Lemma 3.3.3.

Thus, we have proved inclusion (3.9), which completes the proof of Theo-
rem 3.3.1. ut
Historical Remarks The first result concerning C1 interiors of sets of vector fields
having some shadowing properties was obtained by K. Lee and the second author
in [33]. Denote by N the set of nonsingular vector fields. It was shown in [33] that
vector fields in the set

Int1.SSPF/\ N

are structurally stable.
The class B was introduced by S. B. Tikhomirov in [99].
Theorem 3.3.1 was proved by the first author and S. B. Tikhomirov in [69].
Let us also note that S. B. Tikhomirov proved in [99] the following result: If the

dimension of the manifold does not exceed 3, then

Int1.OrientSPF/ D SF:
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3.4 Vector Fields of the ClassB

In the previous section, we defined the set B of vector fields. As was mentioned,
vector fields of that class are not structurally stable. This section is devoted to the
following result [69].

Theorem 3.4.1 Int1.OrientSPF/\ B ¤ ;:
This theorem states that there exist vector fields in Int1.OrientSPF/ that belong to

the class B. The complete proof of Theorem 3.4.1 given in [69] is quite complicated,
and we do not give it here.

Instead, we explain the main idea of the proof. One constructs a vector field X of
the class B on the four-dimensional manifold M D S2 � S2 that has the following
properties (F1)-(F3) (� denotes the flow generated by X).

(F1) The nonwandering set of � is the union of four rest points p; q; s; u.
(F2) We can introduce coordinates in the disjoint neighborhoodsUp D N.1; p/ and

Uq D N.1; q/ so that

X.x/ D Jp.x � p/; x 2 Up;

and

X.x/ D Jq.x � q/; x 2 Uq;

where

Jp D

0

B
B
@

�1 0 0 0

0 �2 0 0

0 0 1 �1
0 0 1 1

1

C
C
A

and

Jq D

0

B
B
@

1 0 0 0

0 �1 0 1

0 0 2 �1
0 �1 0 1

1

C
C
A :

Since the eigenvalues of Jp are �1;�2; 1˙ i and the eigenvalues of Jp are
1; 2;�1 ˙ i, conditions (1) and (2) of the definition of the class B (see the
previous section) are satisfied for the vector field X and its rest points q and p.

(F3) The point s is an attracting hyperbolic rest point. The point u is a repelling
hyperbolic rest point. The following condition holds:

Wu. p/ n fpg � Ws.s/; Ws.q/ n fqg � Wu.u/: (3.37)
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The intersection of Ws. p/\Wu.q/ consists of a single trajectory ˛, and for
any x 2 ˛, the condition

dim .TxWs. p/˚ TxW
u.q// D 3 (3.38)

holds.

These conditions imply that the two-dimensional manifolds Ws. p/ and Wu.q/
intersect along a one-dimensional curve in the four-dimensional manifold M. Thus,
Ws. p/ and Wu.q/ are not transverse; hence, X 2 B.

Geometrically, condition (3.38) means the following. Fix a point r 2 ˛ and let˙
be a transverse section to the flow � at r (as above, this means that ˙ is a smooth
open disk in M of codimension 1 containing r that is transverse to the flow � at any
of its points).

Denote by ˇs and ˇu the intersections of˙ with Ws. p/ and Wu.q/, respectively.
Clearly, ˇs and ˇu are one-dimensional curves containing the point r. Condition
(3.38) means that the curves ˇs and ˇu intersect at r at nonzero angle.

To prove Theorem 3.4.1, it is enough to show that any vector field X0 that is
C1-close to X belongs to OrientSPF.

The vector field X satisfies Axiom A0 and the no-cycle condition; hence, X is˝-
stable. Thus, there exists a neighborhood V of X in X 1.M/ such that for any field
X0 2 V , its nonwandering set consists of four hyperbolic rest points p0; q0; s0; u0 that
belong to small neighborhoods of p; q; s; u, respectively. We denote by �0 the flow
of any X0 2 V and by Ws. p0/;Wu. p0/, etc. the corresponding stable and unstable
manifolds.

Select compact subsets bs and bu of the curves ˇs and ˇu, respectively, such that
the interiors of bs and bu (in the interior topology) contain the point r.

Let �s and �u be compact subsets of Ws. p/ and Wu.q/, respectively, such that
bs � �s and bu � �u.

It follows from the stable manifold theorem that if x0 2 V , then the stable
and unstable manifolds Ws. p0/ and Wu.q0/ of the hyperbolic rest points p0 and q0
contain compact subsets �0

s and �0
u that converge (in the C1 topology) to �s and

�u, respectively, as X0 tends to X.
Hence, the corresponding curves b0

s and b0
u tend in the C1 topology to bs and bu,

respectively, as X0 tends to X.
We have the following two possibilities for a vector field X0 2 V:

• b0
s \ b0

u D ;;
• b0

s and b0
u have a point r0 of intersection close to r, and they intersect at r0 at

nonzero angle.

Clearly, we can choose˙ so that in the first case,

Wu. p0/ \ Ws.q0/ D ;I

then the vector field X0 is structurally stable, and X0 2 OrientSPF .
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Thus, it remains to consider the second case. To simplify notation, we write X,
�, etc. instead of X0, �0, etc.

In this case, we make several additional assumptions which help us to explain to
the reader the main geometric ideas used in the proof of Theorem 3.4.1 and to avoid
heavy technical constructions of [69]. Here we follow the reasoning of [100].

First, we assume that the vector field X is linear in neighborhoods Up and Uq of
the rest points p and q, respectively (see property (F2) above).

In addition, we assume that, in a sense, the shift at some fixed time along
trajectories in a neighborhood of a compact part of the trajectory ˛ of nontransverse
intersection of Ws. p/ and Wu.q/ is a parallel translation (see property (F5) below).

Let us introduce some notation. For a point x 2 Up denote P1x D x1 and P34x D
.x3; x4/, where x � p D .x1; x2; x3; x4/; for a point x 2 Uq, denote P1x D x1 and
P24x D .x2; x4/, where x � q D .x1; x2; x3; x4/. For a small m > 0 we denote
Wu

loc. p;m/ D Wu. p/\ N.m; p/ etc.
Our additional assumptions are as follows.

(F4) The trajectory ˛ satisfies the following inclusions:

˛\Up � fpC .t; 0; 0; 0/I t 2 .0; 1/g and ˛\Uq � fq� .t; 0; 0; 0/I t 2 .0; 1/g:

(F5) There exist numbers� 2 .0; 1/ and Ta > 0 such that

�.Ta; q C .�1; x2; x3; x4// D . p C .1; x2; x3; x4//; jx2j; jx3j; jx4j < �:

(F6) �.t; x/ … Uq for x 2 Up; t � 0.

In what follows, we need two simple geometric lemmas.
In the first lemma, we consider a planar linear system of differential equations

dx

dt
D Jx; x 2 R

2;

where

J D
�
1 �1
1 1

�
;

and denote by  .t; x/ its flow on R
2.

If a point x 2 R
2 has polar coordinates .r; �/ with � 2 Œ0; 2
/ and r ¤ 0, we put

arg.x/ D � .

Lemma 3.4.1 For any point x0 2 R
2 n 0, angle � 2 Œ0; 2
/, and number T0 there

exists t < T0 such that arg. .t; x0// D �.
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The proof of this lemma is straightforward. Of course, a similar statement holds
for the system

dx

dt
D �Jx; x 2 R

2;

with t < T0 replaced by t > T0.

Lemma 3.4.2 Let S1 and S2 be three-dimensional vector spaces with coordinates
.x1; x2; x3/ and .y1; y2; y3/, respectively. Let Q W S2 ! S1 be a linear map such that

Qfy2 D y3 D 0g ¤ fx2 D x3 D 0g:

Then for any D > 0 there exists R > 0 (depending on Q and D) such that if two sets
V1 � S1 \ fx1 D 0g and V2 � S2 \ fy1 D 0g satisfy the following conditions:
• V1 � N.R; 0/ and V2 � N.R; 0/;
• V1 intersects any ray in S1 \ fx1 D 0g starting at 0;
• V2 intersects any ray in S2 \ fy1 D 0g starting at 0;
then

C1 \ QC2 ¤ ;;

where

C1 D f.x1; x2; x3/ W jx1j < D; .0; x2; x3/ 2 V1g

and

C2 D f.y1; y2; y3/ W jy1j < D; .0; y2; y3/ 2 V2g:

Proof Let us fix a linear map Q and a number D > 0. Consider the lines l1 � S1
and l2 � S2 given by the equations x2 D x3 D 0 and y2 D y3 D 0, respectively.

By our assumption, Ql2 ¤ l1. Let us consider the plane 
 � S1 containing l1 and
Ql2. Consider a parallelogram P � 
 that is symmetric with respect to 0, has sides
parallel to l1 and Ql2, and satisfies the relation

P � fjx1j < Dg \ Q.fjy1j < Dg/: (3.39)

Find a number R > 0 such that the following inclusions hold:

B.R; 0/\ 
 � P and Q.B.R; 0/\ Q�1
/ � P: (3.40)

Let z1 be a point of intersection of V1 and the line 
 \ fx1 D 0g. Condition (3.40)
implies that z1 2 P. Consider the line k1 containing z1 and parallel to l1. Inclusion
(3.39) implies that k1 \ P � C1.
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Similarly, let z2 be a point of intersection of V2 and the line 
 \ fy1 D 0g.
Condition (3.40) implies the inclusion Qz2 2 P. Let k2 be the line containing Qz2
and parallel to Ql2. Inclusion (3.39) implies that Q�1.k2 \ V/ � C2.

Since k1 ¬ k2, there exists a point z 2 k1 \ k2. The inclusions z1; z2 2 P imply
that z 2 P. Hence, z 2 C1 \ QC2. Our lemma is proved. ut

Now let us prove that the vector field X has the oriented shadowing property.
Fix points yp D ˛.Tp/ 2 Up and yq D ˛.Tq/ 2 Uq (note that in this case, Tp > Tq

by property (F5)) and a number ı > 0.
We say that g.t/ is a pseudotrajectory of type Ps.ı/ if

g.t/ D
8
<

:

�.t � Tp; xp/; t > TpI
�.t � Tq; xq/; t < TqI
˛.t/; t 2 ŒTq;Tp�;

for some points xp 2 B.ı; yp/ and xq 2 B.ı; yq/.
Fix an " > 0. Let us say that a pseudotrajectory g.t/ can be "-oriented shadowed

if there exists a reparametrization h 2 Rep and a point z such that

dist.�.h.t/; z/; g.t// < "; t 2 R:

Clearly, the required inclusion X 2 OrientSPF is a corollary of the following two
statements.

Proposition 3.4.1 For any ı > 0, yp 2 ˛ \ Up, and yq 2 ˛ \ Uq there exists d > 0
such that if g.t/ is a d-pseudotrajectory of X, then either g.t/ can be "-oriented
shadowed or there exists a pseudotrajectory g�.t/ of type Ps.ı/ with these yp and yq
and a number t0 2 R such that

dist
�
g.t/; g�.t C t0/

�
< "=2; t 2 R:

Proposition 3.4.2 There exist ı > 0, yp 2 ˛ \ Up, and yq 2 ˛ \ Uq such that any
pseudotrajectory of type Ps.ı/ with these yp and yq can be "=2-oriented shadowed.

Proposition 3.4.1 can be proved by a standard reasoning. Precisely the same
statement was proved in [69] for a slightly different vector field (the only difference
is in the structure of the matrices Jp and Jq). The proof can be literally repeated in
our case.

The main idea of the proof is the following. Outside a neighborhood of the
curve ˛, our vector field X coincides with a structurally stable one. Hence,
pseudotrajectories that do not intersect a fixed neighborhood of ˛ can be shadowed.

If g.t/ intersects a small neighborhood of ˛, then (after a proper shift of time),
the points g.t/ with t > Tp also belong to a set where X coincides with a structurally
stable vector field; thus, for such t, g.t/ can be shadowed by �.t�Tp; xp/. Similarly,
the pseudotrajectory g.t/ can be shadowed by �.t � Tq; xq/. For t 2 .Tq;Tp/, the
points g.t/ are close to ˛. We leave the rest of the proof to the reader.
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Proof (of Proposition 3.4.2) Since the rest points s and u are a hyperbolic attractor
and a hyperbolic repeller, we may assume, without loss of generality, that

OC.N."=2; s/; �/ � N."; s/ and O�.N."=2; u/; �/ � N."; u/;

where OC.A; �/ and O�.A; �/ are the positive and negative semitrajectories of a set
A in the flow �, respectively.

Take m 2 .0; "=8/. We fix points yp D ˛.Tp/ 2 N.m=2; p/ \ ˛ and yq D
˛.Tq/ 2 N.m=2; q/ \ ˛. Put T D Tp � Tq. Find a number ı > 0 such that if
g.t/ is a pseudotrajectory of type Ps.ı/ (with yp and yq fixed above), t0 2 R, and
x0 2 N.2ı; g.t0//, then

dist.�.t � t0; x0/; g.t// < "=2; jt � t0j � T C 1: (3.41)

Consider a number � > 0 such that if x 2 Wu. p/ n N.m=2; p/, then �.�; x/ 2
N."=8; s/. Take "1 2 .0;m=4/ such that if two points z1; z2 2 M satisfy the inequality
dist.z1; z2/ < "1, then

dist.�.t; z1/; �.t; z2// < "=8; jtj � �:

In this case, for any y 2 N."1; x/, the following inequalities hold:

dist.�.t; x/; �.t; y// < "=4; t � 0: (3.42)

Decreasing "1, we may assume that if x0 2 Ws.q/ n N.m=2; q/ and y0 2 N."1; x0/,
then

dist.�.t; x0/; �.t; y0// < "=4; t � 0:

Let g.t/ be a pseudotrajectory of type Ps.ı/, where yp, yq, and ı satisfy the above-
formulated conditions.

Let us consider several possible cases. t

Case (P1): xp … Ws. p/ and xq … Wu.q/. Let

T 0 D infft 2 R W �.t; xp/ … N. p; 3m=4/g:

If ı is small enough, then dist.�.T 0; xp/;Wu. p// < "1. In this case, there exists a
point zp 2 Wu

loc. p;m/ n N.m=2; p/ such that

dist.�.T 0; xp/; zp/ < "1: (3.43)

Applying a similar reasoning in a neighborhood of q (and reducing ı, if
necessary), we find a point zq 2 Ws

loc.q;m/ n N.m=2; q/ and a number T 00 < 0

such that dist.�.T 00; xq/; zq/ < "1.
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Consider the hyperplanes Sp WD fx1 D P1ypg and Sq WD fx1 D P1yqg. From our
assumptions on the linearity of X in neighborhoods of p and q and from assumption
(F5) it follows that the Poincaré map defined by Q.x/ D �.T; x/ is a linear map
Q W Sq ! Sp such that Q.f.x2; x4/ D 0g/ ¤ f.x3; x4/ D 0g.

Apply Lemma 3.4.2 to the hyperplanes Sp and Sq, the map Q, and the number
D D "=8 and find the corresponding R > 0. Note that there exists a TR > 0 such
that

j�.t;P34xp/j < R; t < �TR; and j�.t;P24xq/j < R; t > TR:

Consider the sets

V� D ˚
�.t;P34xp/ W t < �TR

�
and VC D ˚

�.t;P24xq/ W t > TR
�
:

Due to Lemma 3.4.1, the sets V˙ satisfy the assumptions of Lemma 3.4.2; hence,
the sets

C� D ˚
x 2 Sp W P34x 2 V�; jP2xj < D

�

and

CC D ˚
x 2 Sq W P24x 2 VC; jP3xj < D

�

are such that C� \ QCC ¤ ;.
Let us consider a point

x0 2 C� \ QCC (3.44)

and numbers tp < �TR and tq > TR such that P34x0 D �.tp;P34xs/ and P24Q�1x0 D
�.tq;P24xu/. The following inclusions hold:

�.�TQ � TR � T 00; x0/ 2 N.2"1; zq/; �.�TQ; x0/ 2 N.D; yq/;

�.0; x0/ 2 N.D; yp/; �.TR C T 0; x0/ 2 N.2"1; zp/:

Inequalities (3.41) imply that if ı is small enough, then

dist.�.t3 C t; x0/; g.Tp C t// < "=2; t 2 Œ�T; 0�: (3.45)

Define a reparametrization h.t/ as follows:

h.t/ D

8
ˆ̂
<

ˆ̂:

h.Tq C T 00 C t/ D �TQ � TR � T 00 C t; t < 0I
h.Tp C T 0 C t/ D TR C T 0 C t; t > 0I
h.Tp C t/ D t; t 2 Œ�T; 0�I
h.t/ increases; t 2 ŒTp;Tp C T 0� [ ŒTq C T 00;Tq�:
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If t � Tp C T 0, then inequality (3.42) implies that

dist.�.h.t/; x0/; �.t � .Tp C T 0/; zp// < "=4

and

dist.�.t � Tp; xp/; �.t � .Tp C T 0/; zp// < "=4:

Hence, if t � Tp C T 0, then

dist.�.h.t/; x0/; g.t// < "=2: (3.46)

For t 2 ŒTp;Tp C T 0�, the inclusions �.h.t/; x0/; g.t/ 2 N.m; p/ hold, and inequality
(3.46) holds for these t as well.

A similar reasoning shows that inequality (3.46) holds for t � Tq. If t 2 ŒTq;Tp�,
then inequality (3.46) follows from (3.45). This completes the proof in case (P1).

Case (P2): xp 2 Ws. p/ and xq … Wu.q/. In this case, the proof uses the same
reasoning as in case (P1). The only difference is that instead of (3.44) we
construct a point x0 2 N.D; yp/ \ Ws

loc. p;m/ such that

�.�T � T 00; x0/ 2 N.2"1; zq/ and �.�T; x0/ 2 N."=8; yq/:

The construction is straightforward and uses Lemma 3.4.1.
Case (P3): xp … Ws. p/ and xq 2 Wu.q/. This case is similar to case (P2).
Case (P4): xp 2 Ws. p/ and xq 2 Wu.q/. In this case, we take ˛ as the shadowing

trajectory; the reparametrization is constructed similarly to case (P1).

Thus, we have shown that X 2 OrientSPF . ut
Historical Remarks Theorem 3.4.1 was published by the first author and S. B.
Tikhomirov in [69]. As was said at the beginning of Chap. 3, the complete proof
given in this paper is technically very complicated, and we only describe a “model”
published by S. B. Tikhomirov in the paper [100] devoted to the Komuro conjecture
[29].



Chapter 4
Chain Transitive Sets and Shadowing

In this chapter, we study relations between the shadowing property of diffeomor-
phisms on their chain transitive sets and the hyperbolicity of such sets.

We prove the following two main results:

• Let � be a closed invariant set of f 2 Diff1.M/. Then f j� is chain transitive and
C1-stably shadowing in a neighborhood of � if and only if � is a hyperbolic
basic set (Theorem 4.2.1);

• there is a residual set R � Diff1.M/ such that if f 2 R and � is a locally
maximal chain transitive set of f , then � is hyperbolic if and only if f j� is
shadowing (Theorem 4.3.1).

The structure of the chapter is as follows.
In Sect. 4.1, we discuss several examples of chain transitive sets. Section 4.2 is

devoted to the proof of Theorem 4.2.1. In Sect. 4.3, we prove Theorem 4.3.1.

4.1 Examples of Chain Transitive Sets (Homoclinic Classes)

Let M be a closed smooth manifold and let, as above, Diff1.M/ be the space of
diffeomorphisms of M with the C1 topology.

Consider a diffeomorphism f 2 Diff1.M/ and its invariant set A. Denote by fjA
the restriction of f to A.

Let � � M be a closed f -invariant set. We say that f j� has the standard
shadowing property if for any " > 0 there is d > 0 such that for any
d-pseudotrajectory fxigbiDa � � of f , where �1 � a < b � 1, there is a point
y 2 M such that

dist
�
f i. y/; xi

�
< "; a � i � b � 1:
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In what follows, in this chapter we write just “shadowing property” instead of
“standard shadowing property.”

Notice that we consider d-pseudotrajectories of f “contained in �,” while the
shadowing points y 2 M are not necessarily contained in �.

Let

R. f / D fx 2 M W x! xg

be the chain recurrent set of f (see Chap. 1).
Then

Per. f / � ˝. f / � R. f /:

It is easy to see that if f has the shadowing property (on M), then˝. f / D R. f /.
The relation! induces on R. f / an equivalence relation, whose equivalence

classes are called chain recurrence classes of f .
Recall that a closed f -invariant set � is called chain transitive if

x!� y

for any x; y 2 �. It is known that every chain recurrence class is chain transitive
(see Proposition 1.1.1).

Let p; q 2 Per. f / be hyperbolic saddle periodic points of f .
We say that p and q are homoclinically related and write p 
 q if either Ws. p/

and Wu.q/ or Wu. p/ and Ws.q/ have points of transverse intersection.
Let Hf . p/ be the homoclinic class of p, i.e., the closure of the set of all q 2 Per. f /

such that p 
 q.
Note that, by the Smale’s transverse homoclinic point theorem, Hf . p/ coincides

with the closure of the set of transverse homoclinic points x 2 Ws. p/\ Wu. p/.
The following version of Smale’s theorem is stated in [96].

Theorem 4.1.1 Let p be a hyperbolic periodic point of the diffeomorphism f and
let x be a transverse homoclinic point of p. Then every neighborhood of x contains
infinitely many periodic points that are homoclinically related to p.

If a homoclinic class is not hyperbolic, it may contain periodic points having
different indices, i.e., there may exist periodic points q1 and q2 in the class such that
dimEs.q1/ ¤ dimEs.q2/.

In fact, there are examples of diffeomorphisms with homoclinic classes contain-
ing hyperbolic periodic points with different indices and such that this phenomenon
is preserved under C1-small perturbations (see, for example, [11]).

Let, as above, p be a hyperbolic periodic point of the diffeomorphism f and set

Hf .O. p; f // D Hf . p/[ � � � [ Hf . f

. p/�1. p//

(recall that 
. p/ is the minimal period of a periodic point p).
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Denote by Cf . p/ the chain recurrence class containing p. Then Hf .O. p; f // �
Cf . p/, but, in general, these sets do not coincide.

Obviously, Hf .O. p; f // is a closed f -invariant set, and it is known that f jHf .O. p; f //

is transitive (see [48]).

4.1.1 Chain Transitive Sets Without Periodic Points

Note that chain transitive sets do not necessarily contain periodic points.
It is well known that every irrational rotation map on the unit circle S1 is transitive

but does not have periodic points.
More generally, there is a translation of the n-dimensional torus Tn with the same

property.
In the case n D 2, let

L W T2 ! T
2

be a translation defined by

.x; y/ 7! .x C a; y C b/;

where .a; b/ 2 T
2 satisfy the property that va C wb … Z for any pair .v;w/ 2

Z
2 (for instance, if a D p

2=2 and b D p
3=2, then va C wb … Z for any pair

.v;w/ 2 Z
2).

Then it follows from [43, Proposition 2.7 and Theorem 3.2] that L is minimal
(and hence, it is transitive), but L does not have periodic points. It is not hard to
show that L does not have the shadowing property.

4.1.2 Hyperbolic Horseshoes

Smale’s hyperbolic horseshoe �f on the two-dimensional disk containing a saddle
fixed point p is a typical example of a chain transitive set such that �f D
Cf . p/.

More precisely, let D2 � R
2 be a two-dimensional disk and let f be Smale’s

horseshoe map on D2 with a hyperbolic saddle fixed point p (see Fig. 4.1(a)). Denote
by �f the hyperbolic horseshoe (containing p) and by Cf . p/ the chain recurrence
class containing p.

Then �f D Hf . p/ D Cf . p/. Since �f is hyperbolic, f j�f has the shadowing
property.
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Fig. 4.1 Horseshoes

4.1.3 Horseshoe with a Homoclinic Tangency

Let fgtgt2R be the bifurcating one-parameter family of diffeomorphisms on D2

derived from the horseshoe �f and exhibiting a homoclinic tangency q0 of g0
associated to the fixed point p (see [54, Chap. 5]).

Then �f D Hg0 . p/ and Cg0 . p/ D �f [ O.q0; g0/ (see Fig. 4.1(b)). Thus,
homoclinic classes are not necessarily chain recurrence classes.

We can show that g0jCg0 . p/
does not have the shadowing property. To prove this,

for the sake of simplicity, denote g0 and q0 by g and q, respectively.
Let Wu

loc. p/ be a local unstable manifold of p and fix k > 0 such that g�k.q/ is in
the interior of g.Wu

loc. p// n Wu
loc. p/.

For simplicity, we assume that k D 1 (see Fig. 4.2(a)).
Take " > 0 and denote by Cu

" .q/ the connected component of g2.Wu
loc. p// \

N."; q/ containing q.
It is easy to see that there exists "1 > 0 such that

Cu
"1
.q/ D g2.Wu

loc. p//\ N."1; q/:

Further, we may assume that if jg�n.q/ � g�n. y/j < "1 for all n � 0, then
g�2. y/ 2 Wu

loc. p/.
To get a contradiction, assume that gjCg. p/ has the shadowing property and let

d D d.�1/ > 0 be the corresponding number given by the shadowing property.
Take l > 0 such that jgl.q/� g�l.q/j < d. Then

˚
: : : ; g�2.q/; g�1.q/; q; g.q/; : : : ; gl�1.q/; g�l.q/; g�lC1.q/; : : :

� � Cg. p/
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Fig. 4.2 A pseudotrajectory which cannot be shadowable

is a d-pseudotrajectory of g composed of two segments of true g orbits (see
Fig. 4.2(a)).

Since gjCg. p/ has the shadowing property, there is a point z close to q that "1-
shadows the above pseudotrajectory. Thus,

max
nˇ̌
ˇg�n.q/� g�n.z/

ˇ̌
ˇ;
ˇ
ˇg�lCn.q/� glCn.z/

ˇ
ˇ
o
< "1 for all n � 0: .�/

From here it follows that g�2.z/ 2 Wu
loc. p/, so that z 2 Cu

�1
.q/ by the choice of

"1.
If z D q, then the forward orbit of gl.z/ cannot "1-shadow the forward orbit of

g�l.q/ because the !-limit set of

O
�
gl.z/; g

� D O
�
gl.q/; g

�

is p. If z ¤ q, then the forward orbits of gl.z/ and g�l.q/move in opposite directions
since p is hyperbolic (see Fig. 4.2(b)).This contradicts .�/, and the assertion is
proved (for more information, see [90, Sec. 2, 2.2]).

4.1.4 Critical Saddle-Node Horseshoe

Let ' W D2 ! D2 be the saddle-node horseshoe map constructed in [51, Sec. 2, 2.2]
and possessing a saddle-node fixed point Qp (see Fig. 4.3).

It is stated in [51] that the saddle-node horseshoe �' is conjugate to Smale’s
horseshoe �f . Note that there is a hyperbolic saddle fixed point Qq in �' having
negative stable and unstable eigenvalues.

We consider here the chain recurrence class C'.Qq/ containing Qq. It is easy to see
that

�'

�D H'.Qq/
�
¤ C'.Qq/:
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Fig. 4.3 Saddle-node
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Indeed, if we take r 2 Wu. Qp/ as in Fig. 4.3, then r 2 C'.Qq/n�' since '˙n.r/ !
Qp as n ! 1.

We show that, due to the existence of a saddle-node fixed point Qp, 'jC'.Qq/ does
not have the shadowing property.

To show this, let r 2 Wu. Qp/ be as above. To get a contradiction, assume that
'jC'.Qq/ has the shadowing property. Fix " > 0 small enough and denote by Cu

" .r/ the
connected component of Wu. Qp/ containing r (defined as in the previous example in
Sect. 4.1.2, see Fig. 4.3). Let d D d."/ > 0 be the number corresponding to " due to
the shadowing property of 'jC'.Qq/. Take l > 0 such that j'�l.r/ � ' l.r/j < d. Then
the union of two segments of true '-orbits,

˚
: : : ; '�2.r/; '�1.r/; r; '.r/; : : : ; ' l�1.r/; '�l.r/; '�lC1.r/; : : :

� � C'.Qq/;

is a d-pseudotrajectory of '.
Then the same reasoning as in Sect. 4.1.2 shows that there is point z 2 Cu

" .r/
(near r) that "-shadows the above pseudotrajectory.

Note that 'n.z/ ! Qp as n ! 1 since Qp is a saddle-node point. Thus, the forward
'-orbit of z cannot "-shadow the forward '-orbit of '�l.r/. This is the required
contradiction (for more information, see [90, Sec. 2, 2.3]).

Historical Remarks Homoclinic orbits and the associated complexity were dis-
covered by H. Poincaré around 1890 (see [75]).

Seventy years after Poincaré, S. Smale constructed in [96, 97] a very simple geo-
metric example (horseshoe) which helped to completely analyze all the complexity
found before.

This was the beginning of the geometric theory which we now know as
hyperbolic dynamics. The history and many examples involving homoclinic orbits
are well described in [54].
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4.2 C1-Stably Shadowing Chain Transitive Sets

In the previous section, we have defined the (standard) shadowing property of a
diffeomorphism f 2 Diff1.M/ on a closed f -invariant set � � M.

Clearly, this property does not depend on the metric used and is preserved under
topological conjugacy. In addition, fj� has the shadowing property if and only if f nj�
has the shadowing property for every n 2 Znf0g.

Let U be a compact subset of M and put

�f .U/ D
\

n2Z
f n.U/:

We say that fj�, or simply �, is locally maximal (in U) if there is a compact
neighborhood U of � such that � D �f .U/. Such a set U is called an isolating
block. Note that if � is locally maximal in U, then � D �f .U/ D �f .V/ for any
compact neighborhood V � U of �.

Denote by Int1.SSPD.U// the C1 interior of the set of diffeomorphisms f 2
Diff1. f / such that f j�f .U/ is shadowing. Clearly, if � D M, then

Int1 .SSPD.M// D Int1 .SSPD/ :

Thus, f 2 Int1.SSPD.U// if and only if there is a C1 neighborhood U . f / of f
such that for any g 2 U . f /, gj�g.U/ is shadowing. The set

�g.U/ D
\

n2Z
gn.U/

is called the continuation of �f .U/. We say that f j� is C1-stably shadowing (in U)
if � is locally maximal in U and f 2 Int1.SSPD.U//.

It is well known that if � is hyperbolic, then f j� is shadowing (see Theo-
rem 1.4.2). We say that� is a basic set if� is locally maximal and f j� is transitive.
It is well known that periodic points are dense in hyperbolic basic sets (see [84]).

In this section, we prove the following main result.

Theorem 4.2.1 Let � be a closed invariant set of f 2 Diff1.M/. Then f j� is chain
transitive and C1-stably shadowing in U if and only if � is a hyperbolic basic set.

Proof The proof of the “if” statement in Theorem 4.2.1 is easy. Indeed, if � is
a hyperbolic basic set of f , then f j� is transitive (thus, chain transitive) and locally
maximal by definition. Let U be a compact neighborhood of� in which� is locally
maximal. Then f 2 Int1.SSPD.U// by the local stability of hyperbolic basic sets [84]
since f j�f .U/ D f j� is shadowing.

Let p 2 Per. f / be a hyperbolic saddle periodic point of f with minimal period

. p/ > 0. Recall that Hf . p/ is the homoclinic class of p, i.e., the closure of the set
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of all transverse intersection points x 2 Ws. p/\ Wu. p/. Set

Hf
�
O. p; f /

� D Hf . p/[ � � � [ Hf
�
f 
. p/�1. p/

�
:

Obviously, Hf .O. p; f // is a closed f -invariant set.
Let Cf be a chain recurrence class of f (recall that Cf is chain transitive) and

assume that f jCf is C1-stably shadowing. Then, by Theorem 4.2.1, there is a saddle
p 2 Cf \ Per. f / since Cf is a hyperbolic basic set. From this it follows that Cf �
Hf .O. p; f // (see Lemma 4.2.7). On the other hand, it is not difficult to show that
every hyperbolic chain recurrence class is locally maximal (Lemma 4.2.8). Thus,
we can obtain the next result.

Corollary 4.2.1 Let Cf be A chain recurrence class of f . Then f jCf is C1-stably
shadowing if and only if there is a hyperbolic saddle p 2 Cf \ Per. f / such that
Cf D Hf .O. p; f //, and Cf is hyperbolic.

Now we turn to the proof of the “only if” statement in Theorem 4.2.1.

4.2.1 Preliminaries

Let f 2 Diff1.M/. Throughout this subsection, let � be a (nontrivial) closed
f -invariant set.

Recall that f j� is transitive if there is a point x 2 � such that the omega-limit
set !f .x/ of x coincides with�. Obviously, the notion of chain transitivity is a strict
generalization of that of transitivity. The proof of the following lemma is simple and
left to the reader.

Lemma 4.2.1 Assume that f j� is locally maximal in U and shadowing. Then

– for any pseudotrajectory of f in �, the shadowing point can be taken from �;
– if f j� is chain transitive, then f j� is transitive.

The proof of the following lemma is almost the same as that of Lemma 3.1.2.

Lemma 4.2.2 Assume that f j� is C1-stably shadowing in U. Then there exists a
neighborhoodU . f / such that for any g 2 U . f /, every point q 2 �g.U/ \ Per.g/
is hyperbolic.

Before describing our technical results, we have to prepare some notation.
Recall (see Definition 1.3.12) that � admits a dominated splitting if the tangent

bundle T�M has a continuous Df -invariant splitting E ˚F and there exist constants
C > 0 and 0 < � < 1 such that

	
	Df njE.x/

	
	 � 		Df�njF. f n.x//

	
	 � C�n

for all x 2 � and n � 0.
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If � admits a dominated splitting T�M D E ˚ F such that dimE.x/ is constant
for x 2 �, then there exists a C1 neighborhood U . f / and a compact neighborhood
W of � such that for any g 2 U . f /, �g.W/ admits a dominated splitting (for g)

T�g.W/M D OE.g/˚ OF.g/

with dim OE.g/ D dimE (see [11, B.1]).
Let 0 � j � dimM. Denote by Pj. f j�/ the set of periodic points q 2 �\ Per. f /

with dimEs.q/ D j.
Note that both P0. f j�/ and PdimM. f j�/ are (single) periodic orbits if f j� is

transitive.
In the next two propositions, assume that f is C1-stably shadowing in U and let

U . f / be given by Lemma 4.2.2.
Then there is a C1 neighborhood V . f / of f such that the family of periodic

sequences of linear isomorphisms of tangent spaces of M generated by the differ-
entials Dg, where g 2 V . f /, along hyperbolic periodic points q 2 �g.U/ \ Per.g/
is uniformly hyperbolic (see the paragraph located before Proposition 3.2.1). Note
that here we consider periodic orbits of g contained in U.

Since in the proof of [42, Proposition II.1], perturbations are done in a small
neighborhood of�, we can readily obtain the following proposition which is a semi-
local variant of Proposition 3.2.1.

Proposition 4.2.1 Under the above notation and assumptions, there are constants
C > 0, m > 0, and 0 < � < 1 such that:

.a/ if g 2 V . f /, q 2 �g.U/\ P.g/, and 
.q/ � m, then

k�1Y

iD0

	
	DgmjEs.gim.q//.g/

	
	 � C�k and

k�1Y

iD0

	
	Dg�mjEu.g�im.q//.g/

	
	 � C�k;

where k D Œ
.q/=m�;
.b/ if g 2 V . f / and 0 < j < dimM, then Pj.gj�g.U// admits a dominated splitting

TPj.gj�g .U//M D E.g/˚ F.g/ with dimE.g/ D j, i.e.,

	
	DgmjE.x/.g/

	
	 � 		Dg�mjF.gm.x//.g/

	
	 � �

for all x 2 Pj.gj�g.U// .note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/
if x 2 Pj.gj�g.U///.

We construct the dominated splitting on the chain transitive set � by employing
a stronger variant of Pugh’s Closing Lemma proved in [42] under the condition that
f j� is C1-stably shadowing.

The above proposition will play an essential part in that proof.
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Since it is still unknown at this stage whether there is a periodic point in �, we
cannot apply the same reasoning as in Chap. 3 to prove the hyperbolicity of� (even
if there exists a dominated splitting on�).

It is easy to see that the above proposition can be restated in the following form,
which will be used in the proof of Theorem 4.2.1.

Proposition 4.2.2 Under the notation and assumptions of Proposition 4.2.1, there
are constants m > 0, 0 < � < 1, and L > 0 such that:

.a/ if g 2 V . f /, q 2 �g.U/\ P.g/, and 
.q/ � L, then


.q/�1Y

iD0
kDgmjEs.gim.q//.g/k < �
.q/ and


.q/�1Y

iD0
kDg�mjEu.g�im.q//.g/k < �
.q/I

.b/ if g 2 V . f / and 0 < j < dimM, then Pj.gj�g.U// admits a dominated splitting
TPj.gj�g .U//M D E.g/˚ F.g/ with dimE.g/ D j such that

kDgmjE.x/.g/k � kDg�mjF.gm.x//.g/k < �2

for any x 2 Pj.gj�g.U// (note that E.x/.g/ D Es.x/.g/ and F.x/.g/ D Eu.x/.g/
if x 2 Pj.gj�g.U///.

4.2.2 Construction of the Dominated Splitting
and Its Extension

Let f j� be chain transitive and C1-stably shadowing. In this subsection, we apply
Pugh’s Closing Lemma to construct a dominated splitting on � and then extend it
continuously to a neighborhood of �.

First of all, let us state some lemmas which we need.
Denote by B". f ; x/ the "-tubular neighborhood of the f -orbit of x:

B". f ; x/ D fy 2 M W dist. f n.x/; y/ < " for some n 2 Zg :

The next lemma is a stronger variant of Pugh’s Closing Lemma proved by Mañé
(see [42, Lemma I.2]).

Lemma 4.2.3 Let f 2 Diff1.M/, x 2 M, " > 0, andU . f / be given.
Then there are r > 0 and 
 > 1 such that if y 2 N.Nr; x/ with 0 < Nr � r and

f n. y/ 2 N.Nr; x/ for some n > 0, then there exist 0 � n1 < n2 � n and g 2 U . f /
such that

– f n1 . y/ 2 N.
Nr; x/ and f n2 . y/ 2 N.
Nr; x/;
– gn2�n1 . f n2 . y// D f n2 . y/ 2 Per.g/;
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– g D f on M n B". f ; x/;
– dist

�
gi. f n2 . y//; f i. f n1 . y//

� � " for all 0 � i � n2 � n1.

In the following two lemmas, we denote by U". f / the "-ball centered at f in
Diff1.M/ with respect to the C1 metric on Diff1.M/ and by distH the Hausdorff
metric on the space of nonempty closed subsets of M.

Lemma 4.2.4 Assume that f j� is transitive. Then for any n > 0 there are gn 2
U1=n. f / and pn 2 Per.gn/ with 
. pn/ � n such that

distH.O. pn; gn/;�/ < 1=n:

Proof Recall that � is a nontrivial set, i.e., � is not a periodic orbit. Since f j� is
transitive, there is a point x 2 � such that !f .x/ D � (of course, x … Per. f /).

Thus, for any n > 0 there is mn � n such that for any z 2 �, there is a number
0 � j � mn for which dist.z; f j.x// < 1=3n.

Choose a small enough "n > 0 such that the inequality dist.x; y/ < "n (where
y 2 �) implies that dist

�
f i.x/; f i. y/

�
< 1=3n for all 1 � i � mn.

Let rn > 0 and 
n > 1 be the numbers given by Lemma 4.2.3 for the above x,
1=3n, and U1=3n. f /.

Take 0 < Nrn � rn such that 
nNrn < "n.
Then, since !f .x/ D �, there exist w 2 O.x; f / and ln > 0 such that

w 2 N.Nrn; x/ and f ln.w/ 2 N.Nrn; x/:

By Lemma 4.2.3, there exist 0 � l1n < l2n � ln and gn 2 U1=3n. f / such that

– f l
1
n.w/ 2 N."n; x/ and f l

2
n.w/ 2 N."n; x/;

– g
l2n�l1n
n . f l

2
n.w// D f l

2
n.w/ 2 Per.gn/;

– gn D f on M n B1=3n. f ; f l
1
n.w//;

– dist. f i. f l
1
n.w//; gin. f

l2n.w/// � 1=3n for all 0 � i � l2n � l1n.

Since x … Per. f /, we may assume that l2n � l1n � mn.
Therefore, if we put vn D f l

1
n.w/ 2 � and pn D f l

2
n.w/ 2 Per.gn/, then

dist.z; g j
n. pn// � dist.z; f j.x//C dist. f j.x/; f j.vn//C dist. f j.vn/; g j

n. pn// <
1

n

for the above z 2 �. Hence, O. pn; gn/ \ N.1=n; z/ ¤ ;.
Obviously,

O. pn; gn/ � N.1=3n; �/ � N.1=n; �/

since f i.vn/ 2 � for 0 � i � 
. pn/, where 
. pn/ D l2n � l1n.
It is easy to see that pn can be chosen so that 
. pn/ is arbitrarily large as n ! 1;

thus, we may assume that 
. pn/ � n. ut
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In what follows, we assume in this subsection that f j� is chain transitive and f j�
is C1-stably shadowing in U. Let us construct a dominated splitting on � by using
Proposition 4.2.2.

Lemma 4.2.5 (Existence of a Dominated Splitting) Under the above notation
and assumptions, there exist constants m > 0 and 0 < � < 1 and a Df -invariant
splitting T�M D E ˚ F such that

	
	DfmjE.x/

	
	 � 		Df�mjF. f m.x//

	
	 � �

for any x 2 �.
Proof Since f j� is C1-stably shadowing in U and transitive, item .a/ of Proposi-
tion 4.2.2 and Lemma 4.2.4 imply that there are sequences of diffeomorphisms gn
and hyperbolic periodic points pn 2 Per.gn/ such that gn ! f with respect to the C1

topology as n ! 1 and O. pn; gn/ ! � as n ! 1 with respect to the Hausdorff
metric.

We may assume that the indices of fpng are constant, say, 0 � j0 � dimM.
Observe that by item .b/ of Proposition 4.2.2, there are constants m > 0 and

0 < � < 1 such that if n is sufficiently large, then

		DgnmjEs.q/.gn/

		 � 		Dgn�mjEu.gmn .q//.gn/

		 � �

for any q 2 O. pn; gn/.
Let �0 � � be a subset such that for any x 2 �, the f -orbit of x, O.x; f /,

intersects�0 at exactly one point.
For any x 2 �0 we can choose a sequence qn 2 O. pn; gn/ such that qn ! x as

n ! 1.
Set

E.x/ D lim
n!1Es.qn/.gn/ and F.x/ D lim

n!1Eu.qn/.gn/

by taking a subsequence of fqng, if necessary.
For any x 2 � n�0 such that f i.x/ 2 �0 for some i 2 Z, we put

E.x/ D Df�i
�
f i.x/

�
E
�
f i.x/

�
and F.x/ D Df�i

�
f i.x/

�
F
�
f i.x/

�
:

Then, following the reasoning of the proof of [41, Proposition 1.3], we can show
that the subbundles E and F on � are well-defined (i.e., they do not depend on the
choices of fgng and fqng) and that E.x/\ F.x/ D f0g for any x 2 �.

Furthermore, it follows from our construction that

kDfmjE.x/k � kDf�mjF. f m.x//k � �

for any x 2 �. Thus, T�M D E ˚ F is a dominated splitting for f with dimE D j0.
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Note that j0 is neither 0 nor dimM since f j� is transitive.
Indeed, if j0 D dimM, then f j� is a contraction, so that there are constants

ı0 > 0 and 0 < � < 1 such that if x; y 2 � and dist.x; y/ < d0, then
dist. f .x/; f . y// � �dist.x; y/. Since f j� is transitive, we can find x 2 � and l > 0

such that f l.N.d0; x// � N.d0; x/.
Thus, there exists a sink p 2 Bd0 .x/\Per. f /\� (recall that� is locally maximal

in U).
This is a contradiction since f j� is transitive; thus, j0 ¤ dimM (and a similar

reasoning for f�1j� shows that j0 ¤ 0/. ut
Hence, by Lemma 4.2.5, � admits a dominated splitting with respect to f m. In

the rest of this section, we prepare one technical lemma dealing with extension of
a dominated splitting on small neighborhoods of both � and f in M and Diff1.M/,
respectively. To simplify notation, denote f m by f .

It is known that, if a neighborhood U of � is small enough, then there exists a
constant O� > 0 with � < O� < 1 and a continuous splitting TUM D OE ˚ OF with
dim OE D dimE D j0 such that

– OEj� D E and OFj� D F;
– Df .x/ OE.x// D OE. f .x// if x 2 U \ f�1.U/;
– Df�1.x/ OF.x/ D OF. f�1.x// if x 2 U \ f .U/;

–
	
	
	Df kj OE.x/

	
	
	 �
	
	
	Df�kj OF. f k.x//

	
	
	 < O�k if x 2 Tk

iD�k f
i.U/ for k � 0.

Using this continuous splitting, we can prove the following lemma applying the
reasoning developed in [27]. This lemma will be used in the proof of Theorem 4.2.1
(more precisely, in the proof of Proposition 4.2.4).

Lemma 4.2.6 (Extension of the Dominated Splitting) Under the above notation
and assumptions, for any " > 0 there is d > 0 such that N.d; �/ � U and for any
g 2 Ud. f / there is a Dg-invariant continuous splitting

T�g.N.d;�//M D OE.g/˚ OF.g/

with dim OE.g/ D j0 and the following properties:

–
	
	
	Dgkj OE.x/.g/

	
	
	 �
	
	
	Dg�kj OF.gk.x//.g/

	
	
	 < O�k for any x 2 �g.N.d; �// and k � 0;

– if x 2 �g.N.d; �//, y 2 �, and dist.x; y/ < d, then

ˇ
ˇ
ˇlog kDgj OE.x/.g/k � log kDf jE. y/k

ˇ
ˇ
ˇ < "

and
ˇ
ˇ
ˇlog kDg�1j OF.x/.g/k � log kDf�1jF. y/k

ˇ
ˇ
ˇ < ":

Here �g.N.d; �// D T
n2Z gn.N.d; �//.
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Finally, let us remark that it is easy to prove that if, under the assumptions of the
above lemma, a point p 2 �g.N.d; �//\ Per.g/ is hyperbolic with dimEs. p/.g/ D
j0, then Es

p.g/ D OE. p/.g/ and Eu. p/.g/ D OF. p/.g/ by the “uniqueness” of the
dominated splitting (see [11, B.1]).

4.2.3 Proof of Theorem 4.2.1

In this section, we prove Theorem 4.2.1 using the idea of the proof of Theorem 3.2.1.
The following proposition was already proved in Chap. 3 (see Proposition 3.2.3).

Proposition 4.2.3 Let f j� and 0 < � < 1 be given; assume that there is a
continuous Df -invariant splitting T�M D E ˚ F such that

	
	Df jE.x/

	
	 � 		Df�1jF. f .x//

	
	 < �2

for any x 2 �. Assume that there is a point y 2 � such that

log� < log�1 D lim sup
n!1

1

n

n�1X

iD0
log

	
	Df jE. f i. y//

	
	 < 0

and

lim inf
n!1

1

n

n�1X

iD0
log

	
	Df jE. f i. y//

	
	 < log�1:

Then for any �2 and �3 such that

� < �2 < �1 < �3 < 1

and for any neighborhood U of � there is a hyperbolic periodic point q of index
dimE such that O.q; f / � U

k�1Y

iD0

	
	
	Df jEs. f i.q//

	
	
	 � �k3; and


.q/�1Y

iDk�1

	
	
	Df jEs. f i.q//

	
	
	 > �
.q/�kC1

2

for all k D 1; 2; : : : ; 
.q/. Furthermore, q can be chosen so that 
.q/ is arbitrarily
large.

The main auxiliary statement which we prove in this section is the following
proposition. The proof slightly modifies the reasoning used in the proof of the main
result of [109] and Chap. 3 (the main modification in our proof is the construction of
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an extra pseudotrajectory reflecting the assumed nonhyperbolicity, see the paragraph
located before Step I of the proof).

Finally, the “only if” part of Theorem 4.2.1 will be obtained by showing that f
has properties (P.1)–(P.5) of Proposition 4.2.4 if f j� is chain transitive and C1-stably
shadowing.

Proposition 4.2.4 Let f j� be locally maximal in U and let 0 < � < 1 and L > 1

be given. Assume that f j� has the following properties (P.1)–(P.5):

(P.1) There is a Df -invariant splitting T�M D E ˚ F such that if x 2 �, then
		Df jE.x/

		 � 		Df�1jF. f .x//
		 < �2:

(P.2) There is a neighborhoodU . f / such that if g 2 U . f /, q 2 �g.U/ \ Per.g/,
and 
.q/ � L, then


.q/�1Y

iD0
kDgjEs.gi.q//.g/k < �
.q/ and


.q/�1Y

iD0
kDg�1jEu.g�i.q//.g/k < �
.q/:

(P.3) For any " > 0 with N.";�/ � U and U". f / � U . f / there exist g 2 U". f /
and p 2 Per.g/ such that distH.O. p; g/;�/ < ". Furthermore, p can be
chosen so that 
. p/ is arbitrarily large.

(P.4) For any " > 0 there is d > 0 with N.d; �/ � U andUd. f / � U . f / such that
if g 2 Ud. f /, p 2 �g.N.d; �// \ Per.g/, y 2 �, and dist. p; y/ < d, then

ˇ
ˇ
ˇ log

	
	DgjEs. p/.g/

	
	 � log

	
	Df jE. y/

	
	
ˇ
ˇ
ˇ < "

and
ˇ
ˇ̌ log

		Dg�1jEu. p/.g/

		� log
		Df�1jF. y/

		
ˇ
ˇ̌
< ":

(P.5) f j� is shadowing.

Then � is hyperbolic.

Proof Let f j� be locally maximal in U and let 0 < � < 1 and L > 0 be given.
Assume that f j� has properties (P.1)–(P.5) and let T�M D E ˚ F be a Df -invariant
splitting as in (P.1) (recall that a dominated splitting is continuous).

Assuming that E is not contracting, we show first that for any � < � < �0 < 1

there is a point z 2 � such that

lim inf
n!1

1

n

n�1X

jD0
log

	
	Df jE. f j.z//

	
	 < log � < lim sup

n!1
1

n

n�1X

jD0
log

	
	Df jE. f j.z//

	
	 < log �0:

After that, we get a contradiction applying Proposition 4.2.3.
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It is known that if there exists N > 0 such that for any x 2 � there is a number
0 � n.x/ � N for which kDf n.x/jE.x/k < 1, then E is contracting.

Since E is not contracting, it is easy to see that there is a point y 2 � such that

n�1Y

jD0

	
	Df jE. f j. y//

	
	 � 1 for all n � 1:

Let U . f / be as in property (P.2); choose " > 0 small enough so that N.";�/ � U,
U". f / � U . f /, and the following conditions are satisfied:

(i) if x; y 2 � and dist.x; y/ < �, then

ˇ
ˇ
ˇ log

	
	Df jE.x/

	
	� log

	
	Df jE. y/

	
	
ˇ
ˇ
ˇ < min

�
1

2
.log �0 � log �/;

1

4
.log � � log�/

�
I

(ii) if g 2 U". f /, q 2 �g.N.";�//\ Per.g/, y 2 �, and dist.q; y/ < �, then

ˇ
ˇ
ˇ log

	
	DgjEs.q/.g/

	
	 � log

	
	Df jE. y/

	
	
ˇ
ˇ
ˇ <

1

4
.log �� log�/:

Note that the possibility of finding " for which item .i/ is satisfied follows from
the continuity of E; for item .ii/, it follows from property (P.4).

Since f j� is shadowing, there is 0 < d � " such that any d-pseudotrajectory of f
in � can be "-shadowed by a trajectory of f .

Since dist. f .x/; f . y// � eKdist.x; y/ for any x; y 2 M, where

K D max
˚ˇˇ log kDf .x/kˇˇ W x 2 M

�
;

it is not hard to show that there exists a number 0 < � � d=2 such that if x; y 2 M,
g 2 U�. f /, and dist.x; y/ < �, then

dist. f .x/; g. y// <
d

2
:

By property (P.3), there exists a diffeomorphism g 2 U�. f / and a hyperbolic
periodic point p of g with 
.q/ � L such that its g-orbit, O. p; g/, forms a �-net of
�, i.e., for any point w 2 � there is a point q 2 O. p; g/ such that dist.w; q/ < �,
and, conversely, for any q 2 O. p; g/, there is w 2 � such that dist.w; q/ < �.

At first, let us construct a periodic d-pseudotrajectory of f in � (with period

. p/) that approximates the above periodic orbit O. p; g/ of g within � with respect
to distH .

Take points qj 2 � such that dist.g j. p/; qj/ < � for j D 0; 1; : : : ; 
. p/ � 1.
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Then

dist. f .qj/; qjC1/ � dist. f .qj/; g.g j. p///C dist.g jC1. p/; qjC1/ <
d

2
C � � d;

and

(iii)
1


. p/


. p/�1X

jD0
log

	
	Df jE.qj/

	
	 <

1

2
.log�C log �/

by the choice of �.
Thus, the sequence of points fqjg
. p/�1jD0 � � is a periodic d-pseudotrajectory of

f ; in what follows, we denote it by PO f . p/.
Remark that in the proof of Theorem 3.2.1 (Proposition 3.2.4), the above

orbit was an exact periodic orbit of f ; however, in our case, it is a periodic
pseudotrajectory; this is the main difference between the original proof in [109]
and our proof.

Observe that the inequality in .iii/ follows from (P.2) and .ii/ since

1


. p/


. p/�1X

jD0
log

		DgjEs.g j. p//.g/

		 <
1

4
.3 log�C log �/:

We will construct a d-pseudotrajectory

fxigi2Z � �

of f composed of points of O.y; f / and PO f . p/ by mimicking the procedure
displayed in the proof of the main result of Proposition 3.2.4 (see also [109]). ut
Step I Since y 2 �, there is a point qj1 2 PO f . p/ such that dist.y; qj1 / < � < d.
Set

x�1 D qj1�1; x�2 D qj1�2; : : : ; x�
. p/C1 D qj1�
. p/C1;

and

x�
. p/ D qj1 ; x�
. p/�1 D qj1�1; x�
. p/�2 D qj1�2; : : : :

Then dist. f .x�i/; x�iC1/ < d for i � 1, so that the negative part fxig�1
iD�1 of

fxigi2Z is constructed.

Step II Let n1 D 1. Then

1

n1
. p/

0

@n1

. p/�1X

jD0
log

		
	Df jE.qj1Cj/

		
	

1

A <
1

2
.log�C log �/:
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Obviously, this inequality follows from .iii/.
Let i1 D n1
. p/, put xj D qj1Cj for j D 0; 1; : : : ; i1 � 1 D 
. p/ � 1, and put

xi1 D y. Then dist. f .xj/; xjC1/ < d for j D 0; 1; : : : ; i1 � 1, and

1

i1

i1�1X

jD0
log

	
	Df jE.xj/

	
	 <

1

2
.log�C log �/:

Put

aj D log kDf jE.xj/k

for j D 0; 1; : : : ; i1 � 1 and choose a number l1 having the following properties:

1

i1 C l1

0

@
i1�1X

jD0
aj C

l1�1X

jD0
log

	
	Df jE. f j. y//

	
	

1

A � 1

2
.log �C log �0/

and

1

i1 C l

0

@
i1�1X

jD0
aj C

l�1X

jD0
log

	
	Df jE. f j. y//

	
	

1

A <
1

2
.log �C log �0/

for any l < l1.
The existence of l1 follows from our choice of y (recall that

n�1Y

jD0

		Df jE. f j. y//
		 � 1 for all n � 1/:

Set j1 D i1 C l1, let xi1C1 D f . y/; xi1C2 D f 2. y/; : : : ; xj1�1 D f l1�1. y/ 2 O.y; f /,
and put

ai1Cj D log
	
	
	Df jE.xi1Cj/

	
	
	

for j D 0; 1; : : : ; l1 � 1.

Step III Let ik�1, jk�1, fxigjk�1�1iD0 , and faigjk�1�1iD0 have been constructed in the former
steps. Similarly to the choice of qj1 and n1, we can choose qjk 2 PO f . p/ such that

dist. f .xjk�1 /; qjk/ < � < d
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and a positive number nk such that

1

ik

0

@
jk�1�1X

jD0
aj C nk


. p/�1X

jD0
log

		
	Df jE.qjkCj/

		
	

1

A <
1

2
.log�C log �/;

where ik D jk�1 C nk
. p/ (the existence of nk is ensured by .iii/).
Let

xjk�1C1 D qjkC1; xjk�1C2 D qjkC2; : : : ; xjk�1C
. p/ D qjk ;

xjk�1C
. p/C1 D qjkC1; xjk�1C
. p/C2 D qjkC2; : : : ;

and xik D f .xjk�1�1/ 2 O.y; f /.
Obviously,

dist
�
f .xjk�1Cj/; xjk�1CjC1

�
< d

for j D 0; 1; : : : ; nk
. p/� 1.
Put

ajk�1Cj D log
	
	
	Df jE.xjk�1Cj/

	
	
	

for j D 0; 1; : : : ; nk
. p/� 1 and choose lk such that

1

ik C lk

0

@
ik�1X

jD0
aj C

lk�1X

jD0
log

		
	Df jE. f j.xik //

		
	

1

A � 1

2
.log �C log �0/

and

1

ik C l

0

@
ik�1X

jD0
aj C

lX

jD0
log

	
	
	Df jE. f j.xik //

	
	
	

1

A <
1

2
.log�C log �0/

for any l < lk.
The existence of lk is ensured by the fact that xik 2 O.y; f / (recall the choice of y).
Let jk D ik C lk and let xikC1 D f .xik /; xikC2 D f 2.xik /; : : : ; xjk�1 D f lk�1.xik/.

Finally, we put

ajk�1Cj D log
	
	
	Df jE. f j.xik //

	
	
	

for j D 0; 1; : : : ; lk � 1.
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This completes the construction of fxigi2Z � � of f . Roughly speaking, the
d-pseudotrajectory fxigi2Z looks as follows:

˚
: : : ; PO f . p/; PO f . p/; y; f . y/; f

2. y/; : : : ; f l1 . y/; PO f . p/;

: : : ; PO f . p/; f
l1C1. y/; : : : ; f l1Cl2 . y/; PO f . p/; : : :

�
:

Recall that K D max fj log kDf .x/kj W x 2 Mg. It is easy to see that

1

ik

ik�1�1X

jD0
aj <

1

2
.log�C log �/ and

1

jk

jk�1X

jD0
aj � 1

2
.log �C log �0/

for every k D 1; 2; : : : , and

1

n

n�1X

jD0
aj <

1

n

�
1

2
.log �C log �0/ .n � 
. p//C K
. p/

�

for every n � 
. p/.
Hence,

lim sup
n!1

1

n

n�1X

jD0
aj D 1

2
.log �C log �0/

and

lim inf
n!1

1

n

n�1X

jD0
aj � 1

2
.log�C log �/:

Let z 2 M be a point such that its f -orbit "-shadows the pseudotrajectory fxigi2Z
(see (P.5)).

Observe that O.z; f / � U, so that z 2 � by the local maximality.
Thus, the choice of " (see .i/) implies that

lim inf
n!1

1

n

n�1X

jD0
log

		Df jE. f j.z//
		 < log � < lim sup

n!1
1

n

n�1X

jD0
log

		Df jE. f j.z//
		 < log �0:

Thus, by Proposition 4.2.3, there is a hyperbolic periodic point q of index dimE
such that O.q; f / � U and the derivatives along the orbit O.q; f / satisfy the
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following inequalities:

k�1Y

iD0

		Df jEs. f i.q//

		 � �0k and

.q/�1Y

iDk�1

		Df jEs. f i.q//

		 > �
.q/�kC1

for all k D 1; 2; : : : ; 
.q/.
Furthermore, q can be chosen such that 
.q/ is arbitrarily large, so that we may

assume that 
.q/ � L. This is a contradiction because


.q/�1Y

iD0

	
	Df jEs. f i.q//

	
	 < �
.q/

by (P.2). In the same manner, we can show that F is expanding, and thus, � is
hyperbolic.

Now we complete the proof of Theorem 4.2.1.
Assume that f j� is chain transitive and C1-stably shadowing in U, and let m > 0,

0 < � < 1, and L > 0 be constants given by Proposition 4.2.2.
Then it is not difficult to show that the assumption of Proposition 4.2.3 and prop-

erties (P.1)–(P.5) of Proposition 4.2.4 are satisfied for f j� from Proposition 4.2.2
and Lemmas 4.2.4–4.2.6.

More precisely, (P.3) follows from Lemma 4.2.4 applied to f .
Properties (P.1), (P.2), and (P.4) follow from Proposition 4.2.2 and Lem-

mas 4.2.4–4.2.6 applied to f m. Note that f mj� is shadowing since f j� is shadowing,
and thus, f m has property (P.5).

Finally,� is hyperbolic for f m if and only if it is hyperbolic for f . Thus, applying
Propositions 4.2.3 and 4.2.4 to f m, we can show that � is hyperbolic. Since f j� is
transitive by Lemma 4.2.1, � is a basic set. The “only if” part of Theorem 4.2.1 is
proved. ut

4.2.4 Proof of Corollary 4.2.1

Proof Recall that, in general, a chain recurrence class Cf of f does not contain
periodic points. In this section, we prove Corollary 4.2.1 by applying Theorem 4.2.1.

We need the following two lemmas.

Lemma 4.2.7 Let � be a hyperbolic basic set of f 2 Diff1.M/. If p 2 � \ Per. f /
is a saddle periodic point, then � � Hf .O. p; f //.

Proof Let p 2 � \ Per. f / be a saddle periodic point. Since � is hyperbolic, there
is "0 > 0 such that if dist. f n.x/; f n. p// � "0 for n � 0, then x 2 Ws

"0
. p/ (and a

similar property holds for Wu
"0
. p/ with respect to f�1).
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Let U be a compact neighborhood of � in which � is locally maximal. Since
f j� is shadowing, for any " 2 .0; "0/ there is a number d D d."/ > 0 given by the
shadowing property of f j� (recall that, by Lemma 4.2.1, we can find a shadowing
point in �).

Since f j� is transitive by Lemma 4.2.1, for any x 2 � there exists a point y 2
N.d; p/ and numbers 0 < l1 < l2 such that f l1 . y/ 2 N."; x/ and f l2 . y/ 2 N.d; p/.

Put y�i D f�i. p/ for i � 0, yi D f i. y/ for 0 � i � l2, and yi D f i�l2 . p/ for
i � i2. Then it is easy to see that fyigi2Z � � is a d-pseudotrajectory of f .

Thus, there is a point z 2 � ("-close to x) that "-shadows the pseudotrajectory.
Hence,

z 2 �Ws.O. p; f //\ Wu.O. p; f //
� \ N."; x/ ¤ ;:

Observe that z is a transverse intersection point since � is hyperbolic. Since " is
arbitrary, x 2 Hf .O. p; f //; thus, � � Hf .O. p; f // as claimed. ut
Lemma 4.2.8 Let Cf be a chain recurrence class of f . If Cf is hyperbolic, then it is
locally maximal.

Proof Let Cf be hyperbolic. We first show that for any " > 0 there is d > 0 such
that for any d-pseudotrajectory fxigi2Z of f in Cf there is a point y 2 Cf such that
dist. f i. y/; xi/ < " for i 2 Z, i.e., the shadowing point y can be taken from Cf .

To prove this, it is enough to show that f jCf has a local product structure.
Since Cf is hyperbolic, for any " > 0 there is d > 0 such that if x; y 2 Cf and

dist.x; y/ < d, then Ws
".x/ and Wu

" . y/ have a point of transverse intersection. Fix
x; y 2 Cf with dist.x; y/ < d and let

z D Ws
".x/ \ Wu

" . y/ and w D Wu
" .x/\ Ws

". y/:

We claim that z;w 2 Cf .
For any � > 0 there is n > 0 such that

max fdist. f n.x/; f n.z//; dist. f�n. y/; f�n.z//g < �:

Since f˙.Cf / D Cf , f n.x/; f�n. y/ 2 Cf .
Thus, f n.x/ x and x f�n. y/; i.e., there exist an �-pseudotrajectory fxign�iD0

with x0 D f n.x/ and xn� D x and an �-pseudotrajectory fyigm�iD0 with y0 D x and
ym� D f�n. y/.

Since � is arbitrary, z ! x, so that z 2 Cf . A similar reasoning shows that
w 2 Cf ; thus, f jCf has a local product structure.

Since Cf is hyperbolic, there exists c > 0 such that if x 2 Cf , y 2 M, and
dist. f n.x/; f n. y// � c for n 2 Z, then x D y.

Now fix 0 < � � c=2 and let 0 < d < � be the corresponding number given
by the shadowing property of f jCf . Furthermore, choose 0 < d0 < d=2 such that if
dist.x; y/ < d0, then dist. f .x/; f . y// < d=2.
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We claim that

Cf D
\

i2Z
f i.N.d0;Cf //:

It is obvious that Cf � T
i2Z f i.N.d0;Cf //.

To show the converse, we note that any point x 2 Ti2Z f i.N.d0;Cf // is in Cf .
For each i 2 Z take a point xi 2 Cf such that dist. f i.x/; xi/ < d0. It is easy to

see that fxigi2Z is a d-pseudotrajectory of f jCf by the choice of d0. By the shadowing
property of f jCf , there is a point y 2 Cf such that dist. f i. y/; xi/ < " for all i 2 Z.

Thus,

dist. f i.x/; f i. y// � dist. f i.x/; xi/C dist.xi; f i. y// < d0 C " < c

for all i 2 Z; hence, x D y 2 Cf . ut
Now we complete the proof of Corollary 4.2.1.
Let Cf be a chain recurrence class of f and assume that f jCf is C1-stably

shadowing in U, i.e., that f jCf is locally maximal in U and f 2 Int1.SSPD.U//.
By Proposition 1.1.1, f jCf is chain transitive, and hence, Cf is a hyperbolic basic

set by Theorem 4.2.1 (recall that periodic points are dense in Cf ).
By Lemma 4.2.7, Cf � Hf .O. p; f // for some p 2 Cf \ Per. f /. Since f jHf .O. p; f //

is transitive, we get the equality Cf D Hf .O. p; f // because Cf is a maximal chain
transitive set.

The proof of “if” part is as follows. If a chain recurrence class Cf of f is
hyperbolic, then it is locally maximal by Lemma 4.2.8, so that it is a basic set by
Lemma 4.2.1 (since f jCf is shadowing). Thus, by the local stability of hyperbolic
basic sets (see [84]), f jCf is C1-stably shadowing. ut
Historical Remarks Theorem 4.2.1 and Corollary 4.2.1 were proved by the second
author in [91]. An assertion similar to the corollary was first proved in [35, Theorem
I.3] in the case where Cf is a chain recurrence class containing a periodic point
of f . Since, in general, a chain recurrence class does not contain a periodic point,
Corollary 4.2.1 generalizes the result of [35].

4.3 Chain Transitive Sets with Shadowing for Generic
Diffeomorphisms

Let us recall that a subset R of Diff1.M/ is called residual if it is a countable
intersection of dense open sets of Diff1.M/ (see Chap. 1).

In this section, we prove the following C1-generic result for locally maximal
chain transitive sets with shadowing obtained in [34].
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Theorem 4.3.1 There is a residual set R � Diff1.M/ such that if f 2 R and � is
a locally maximal chain transitive set of f , then � is hyperbolic if and only if f j� is
shadowing.

Let � be a locally maximal chain transitive set of f 2 R. Remark that by the
theorem, if f j� is shadowing, then � is a hyperbolic basic set (see Lemma 4.2.8).

We start with two lemmas which will be used in the proof of Theorem 4.3.1.
First we note that there is a residual set R1 � Diff1.M/ such that every f 2 R1

has the following properties.

(1) Every periodic point of f is hyperbolic, and stable and unstable manifolds of
periodic points of f are transverse.

(2) A compact f -invariant set � is chain transitive if and only if � is the limit of a
sequence of periodic orbits of f with respect to the Hausdorff distance.

Statement (1) above follows from the Kupka-Smale theorem (see Theorem 1.3.6
(a)). Statement (2) is proved in [16].

Note that if � is a locally maximal chain transitive set of f 2 R1, then statement
(2) above implies that periodic points are dense in �.

Recall that the index of a hyperbolic periodic point p 2 Per. f / is the dimension
of the stable manifold of p.

Lemma 4.3.1 There is a residual set R2 � Diff1.M/ such that every f 2 R2 has
the following property: If � � M is a closed f -invariant set � � M and there
is a sequence of diffeomorphisms fn converging to f and a sequence of hyperbolic
periodic orbits Pn of fn with index k such that

lim
n!1Pn D �;

then there is a sequence of hyperbolic periodic orbits Qn of f with index k such that
� is the Hausdorff limit of Qn.

Proof Denote by K .M/ be the space of all nonempty compact subsets of M
equipped with the Hausdorff metric and take a countable basis ˇ D fVng1

nD1 of
K .M/.

For each pair .n; k/ with n � 1 and k � 0, we denote by Hn;k the set of f such
that f has a C1 neighborhood U . f / � Diff1.M/ with the following property: If
g 2 U . f /, then there exists a hyperbolic periodic orbit Q � Vn of g with index k.

Let Nn;k be the set of f such that f has a neighborhood U . f / � Diff1.M/ with
the following property: Every diffeomorphism g 2 U . f / does not have hyperbolic
periodic orbits Q � Vn with index k.

It is clear that the sets Hn;k [ Nn;k are open in Diff1.M/.
Let us show that any set Hn;k [ Nn;k is dense in Diff1.M/. Take an arbitrary

diffeomorphism f 2 Diff1.M/ n Nn;k.
Then for any neighborhood U . f / of f there is a diffeomorphism g 2 U . f /

having a hyperbolic periodic orbit Q � Vn with index k. The hyperbolicity of Q
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implies that g 2 Hn;k. This means that f 2 Hn;k; thus,

Diff1.M/ D Hn;k [ Nn;k � Hn;k [ Nn;k:

Let

R2 D
\

n2ZC; kD0;:::;dimM

Hn;k [ Nn;k:

Then R2 is a residual subset of Diff1.M/.
Let f 2 R2 and let � be a closed f -invariant subset of M. Assume that there is

a sequence of diffeomorphisms fn converging to f and a sequence of periodic orbits
Pn of fn with index k such that � is the Hausdorff limit of Pn.

Fix an arbitrary neighborhood V of � in K .M/ and take Vm 2 ˇ such that
� � Vm � V . Then f … Nm;k, so that f 2 Hm;k. Hence, f has a periodic orbit, say
Qm, in Vm with index k by definition of Hm;k. This completes the proof. ut

In the following lemma, we show that if � is a chain transitive set of a
diffeomorphism f 2 R1 and f j� is shadowing, then every periodic point in � has
the same index.

Lemma 4.3.2 Let f 2 R1 and let � be a chain transitive set of f . If f j� is
shadowing, then all periodic points in � have the same index.

Proof Consider periodic points p; q 2 Per. f /\� and let " > 0 be small enough so
that the local stable manifold Ws

". p/ and the local unstable manifold Wu
" .q/ of size

" are well defined.
Take d > 0 such that every d-pseudotrajectory in � is "-shadowed by a point

in M.
Since � is chain transitive, there is a finite d-pseudotrajectory fx0; x1; : : : ; xng of

f in � such that x0 D q and xn D p.
Construct a d-pseudotrajectory � in � as follows:

� D ˚
: : : ; f�2.q/; f�1.q/; q; x1; x2; : : : ; p; f . p/; f 2. p/; : : :

�
:

Then there is an orbit O.y; f / that "-shadows �.
Since Orb. y/ \ Ws

". p/ ¤ ; and Orb. y/ \ Wu
" .q/ ¤ ;, we have the inclusion

y 2 Ws. p/\ Wu.q/.
This implies that the indices of p and of q are the same. Indeed, since Ws. p/ \

Wu.q/ ¤ ; and Ws.q/\ Wu. p/ ¤ ;, the transversality of the intersections implies
that

dimWs. p/C dimWu.q/ � dimM and dimWs.q/C dimWu. p/ � dimM:
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These inequalities imply that dimWs. p/ D dimWs.q/. Indeed, it follows from
the inequality

dimWs. p/ � dimM � dimWu.q/ D dimWs.q/

that dimWs. p/ � dimWs.q/. A similar reasoning shows that dimWs.q/ �
dimWs. p/. This completes the proof. ut
Proof Now we define the residual subset R � Diff1.M/ for which the assertion of
Theorem 4.3.1 holds as follows:

R D R1 \ R2:

The following proposition is crucial for the proof of Theorem 4.3.1.

Proposition 4.3.1 Let f 2 R and let � be a chain transitive set of f that is locally
maximal. Then there exist constants m > 0 and 0 < � < 1 such that for any
p 2 Per. f / \�,


. p/�1Y

iD0

	
	DfmjEs. f im. p//

	
	 < �
. p/;


. p/�1Y

iD0

	
	Df�mjEu. f�im. p//

	
	 < �
. p/;

and

		DfmjEs. p/

		 � 		Df�mjEu. f m. p//

		 < �2:

Proof Since f 2 R1, periodic points of f are hyperbolic and dense in �. By
Lemma 4.3.2, they have the same index.

First we show that there exists a C1 neighborhood U . f / of f 2 R2 and a
neighborhood U of � such that every g 2 U . f / does not have nonhyperbolic
periodic orbits contained in U.

To get a contradiction, assume that for any C1 neighborhood V . f / of f and a
neighborhood V of �, there is a diffeomorphism g 2 V . f / having a nonhyperbolic
periodic orbit Q in V .

Applying a C1-small perturbation of the diffeomorphism g, we can assume that
there are diffeomorphisms g1, g2 2 V . f / and hyperbolic periodic orbits Q1 and Q2
in V of g1 and g2, respectively, such that index Q1 ¤ index Q2.

Indeed, assume that Q is nonhyperbolic and take a point q 2 Q. Let l > 0 be the
period of Q. Then Dgl.q/ has an eigenvalue with absolute value equal to one.

Applying the Franks lemma (Lemma 3.2.1), we can find a C1-small perturbation
of g (denoted again g) such that there is a gl-invariant small arc I centered at q and
such that gljI is the identity map.
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Applying additional C1-small perturbations of g, we can construct diffeomor-
phisms g1 and g2 C1-close to g and having hyperbolic periodic orbits Q1 and Q2 in
V with different indices.

Hence, we can construct two sequences of diffeomorphisms gn and g0
n that

converge to f in Diff1.M/ and two sequences of hyperbolic periodic orbits Qn, Q0
n

of gn and g0
n, respectively, such that

lim
n!1Qn D Q� D lim

n!1Q0
n

and index Qn ¤ index Q0
n for each n 2 N.

Without loss of generality, taking a subsequence if necessary, we may assume
that index Qn D index Qm and index Q0

n D index Q0
m for all m; n 2 N.

Applying Lemma 4.3.1 to the f -invariant set Q�, we can choose two sequences
of periodic orbits Pn and P0

n of f such that index Pn D index Qn, index P0
n D

index Q0
n, and Q� is the Hausdorff limit of fPng and fP0

ng, respectively. Since � is
locally maximal and Q� � �, we may assume that Pn, P0

n � � for sufficiently large
n. Since index Pn ¤ index P0

n, we get a contradiction with Lemma 4.3.2.
Note that the reasoning used in the above proof shows that all of the indices of

periodic orbits of g 2 U . f / contained inU are the same. Hence, by the reason stated
in the paragraph located before Proposition 4.2.1 and Propositions 4.2.1–4.2.2, we
get constants K > 0, m0 2 Z

C, and 0 < � < 1 such that for any periodic point
p 2 � with 
. p/ � K, the following inequalities hold:


. p/�1Y

iD0

	
	Dfm0 jEs. f im0 . p//

	
	 < �
. p/;


. p/�1Y

iD0

	
	Df�m0 jEu. f�im0 . p//

	
	 < �
. p/;

and

	
	Dfm0 jEs. p/

	
	 � 		Df�m0 jEu. f m0 . p//

	
	 < �2:

Let �0 be the set of all periodic points in � whose periods are less than K. Since
every periodic point of f is hyperbolic,�0 is a finite set; hence, �0 is a hyperbolic
set of f .

Let k be a positive integer such that

	
	Df km0 jEs.x/

	
	 < � and

	
	Df km0 jEu.x/

	
	 < �

for all x 2 �0. If we take m D km0, then it is easy to show that m and � are the
required constants. ut

Now we complete the proof of Theorem 4.3.1.
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Let � be a locally maximal chain transitive set of f 2 R. To get the conclusion,
it is enough to show that if f j� is shadowing, then� is hyperbolic.

Now let us check that f m satisfies all the assumptions (P.1)–(P.4) of Proposi-
tion 3.2.4.

Let U be an isolating block of � so that �f .U/ D �. By the third property of
Proposition 4.3.1, we can see that � admits a dominated splitting T�M D E ˚ F
for f m that satisfies E. p/ D Es. p/ and F. p/ D Eu. p/ for every p 2 Per. f / \�. In
fact, it has shown in the proof of Proposition 4.3.1 that there are a C1 neighborhood
U . f / of f 2 R2 and a neighborhood U of � such that every g 2 U . f / does not
have nonhyperbolic periodic orbits contained in U. Thus, the assertion follows from
Proposition 4.2.1 (note that by Lemmas 4.3.1 and 4.3.2, � D PdimE. f /). Since f j�
is shadowing, f mj� is also shadowing and thus, (P.1)–(P.4) are satisfied for f m.

Therefore, � is hyperbolic for f m by Proposition 3.2.4, so that � is hyperbolic
for f as well. ut
Historical Remarks Theorem 4.3.1 was first proved by K. Lee and X. Wen in
[34] with application of the Mañé ergodic closing lemma [42]. We prove the result
applying Proposition 3.2.4 (and do not use the ergodic closing lemma). The proof
is a little bit longer, but it is simplified making an effective use of the shadowing
property.

For expansive homoclinic classes, a similar result to Theorem 4.3.1 was proved
by Yang-Gan [110] without the local maximality assumption of the sets.
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