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Abstract. In this paper, a novel multiple-layer neuro-fuzzy network is proposed
to model/predict shoreline realignment at a highly touristic island beach (Kamari
beach, Santorini, Greece). A specialized experimental setup was deployed to
generate a set of input-output data that comprise parameters describing the beach
morphology and wave conditions and the cross-shore shoreline position at 30
cross-sections of the beach extracted from coastal video imagery, respectively.
The proposed network consists of three distinct modules. The first module
concerns the network representation of a fuzzy model equipped with a typical
inference mechanism. The second module implements a novel competitive
learning network to generate initial values for the rule base antecedent parame-
ters. These parameters are, then, used to facilitate the third module that employs
particle swarm optimization to perform a stochastic search for optimal parameter
estimation. The network is compared favorably to two other neural networks: a
radial basis function neural network and a feedforward neural network.
Regarding the effectiveness of the proposed network to model shoreline
re-alignment, the RMSE found (7.2–7.7 m, depending on the number of
rules/nodes), reflects the high variability of the shoreline position of the Kamari
beach during the period of observations: the RMSE is of a similar order to the
standard deviation (up to 8 m) of the cross-shore shoreline position. The results
are encouraging and the effectiveness of the proposed network could be further
improved by changes (fine-tuning) of the input variables.
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1 Introduction

Beaches, i.e. the low-lying coasts formed on unconsolidated sediments, are generally
under erosion [1–3]. These significant on their own right ecosystems are critical com-
ponents of the coastal zone, as they provide very important ecosystem services, such as
flood protection to the valuable coastal assets/infrastructure they front [4] as well as
substantial socio-economic benefits as they form the pillar of the ever-increasing coastal
tourism [5]. Therefore, the long- and short-term beach morphological evolution (mor-
phodynamics) and/or erosion and its controls have important implications for the sus-
tainable development of the coastal zone.

Beach morphodynamics is controlled by complex forcing-response processes that
operate at various spatio-temporal scales [6]. An important determinant of the current
and future beach morphological evolution is the shoreline position. This is generally
characterized by high spatio-temporal variability, mainly controlled by complex
interactions between the beach morphology and sediments and the incident waves.
Such interactions can lead to large localized shoreline position changesas well as an
overall short- and long-term shoreline retreat (beach erosion) particularly under
increasing sea levels and changing storminess [7, 8]. However, the study of these
changes through traditional morphodynamic modeling (e.g. [7, 9, 10]) is subject to
limitations arising from the: (a) high non-linearities involved in the shoreline
re-alignment phenomenon due to complex nearshore hydrodynamical, sedimentologi-
cal and morphological processes, and (b) high computational costs involved.

To address the above problem, we propose to use a novel neuro-fuzzy network
(NFN), designed to model shoreline realignment on the basis of a small number of
environmental variables that are based on high frequency observations of the shoreline
position and the nearshore hydrodynamics. NFNs attempt to offset the approximate
reasoning of fuzzy systems through the learning mechanisms and connectionist
structures of neural networks [11–14]. The proposed network comprises three modules.
The first module is a network representation of a standard fuzzy model. The second
module is a competitive learning network structure, which generates a set of initial
values for the fuzzy rule base antecedent parts. These values are then used to assist to a
particle swarm optimization-based learning procedure that finally carries out the net-
work’s optimal parameter estimation. The model is trained and tested at Kamari beach
(Santorini), one of the most touristic beaches of the Aegean Archipelago.

The material is organized as follows. Section 2 describes the experimental setup
and the data acquisition process. Section 3 presents the analytical structure of the
proposed neuro-fuzzy network. The simulation study is given in Sect. 4. Finally, the
paper concludes in Sect. 5.

2 Experimental Setup and Raw Data Extraction

Kamari beach is a microtidal beach, located at the island of Santorini (Fig. 1). The
southern section of beach (length of about 600 m) forms on coarse sediments, which
along the shoreline have mean grain sizes of 2.2–9.5 mm and in the nearshore seabed
mean sizes of 0.17–1.39 mm. The beach has a SE orientation and could be exposed to
energetic wave conditions.
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The experimental methodology consists of the collection/analysis of (a) beach
topographic data and (b) time series of shoreline position and contemporaneous
nearshore wave activity during a two-week period at the end of December 2016
(16-31/12/2016).

More specifically, nearshore bathymetric data were obtained through a single beam
digital echo-sounder (Hi-Target HD 370) and a Differential GPS (Topcon Hipper
RTK-DGPS) deployed from an inflatable boat, whereasland topographic data were
obtained through a RTK-DGPS survey at the beginning of the examined period
(16/12/2016). From these data, 30 cross-shore (perpendicular to the shoreline) profiles
were extracted with a spacing of 20 m (Fig. 1(d)). For each of these cross-shore
sections, the wet beach slope (WS), a critical morphological variable of beach mor-
phodynamics [7, 9], has been estimated forming the first input variable of the proposed
network. A pressure sensor (RBRvirtuoso) deployed offshore at about 9 m water depth
of the beach (Fig. 1(d)) provided high frequency (4 Hz) nearshore wave data, during
10 min bursts each hour, from which hourly values of significant wave height (HS),
peak wave period (TP), wave energy (E) and tidal elevations (TS) were estimated. In
addition, mean wave directions during these bursts were estimated from video records
obtained from the coastal video system deployed in the area to monitor in high fre-
quency the shoreline position (see below). Wave directions were expressed with regard
to the North-South (denoted as WNS) and East-West (denoted as WEW ) vector com-
ponents. All the above hydrodynamic characteristics control shoreline position as they
impose direct effects on beach morphodynamics [15], and form the remainder of the
network’s input variables. Based on the above nomenclature, the input variables taken
into account are described as: x1 ¼ WS; x2 ¼ Hs; x3 ¼ Tp; x4 ¼ E; x5 ¼ Ts;
x6 ¼ WNS, and x7 ¼ WEW .

Fig. 1. (a)–(c) Location of Kamari beach in Santorini, Greece. (d) Bathymetric map of the
studied beach part showing also the 30 cross-shore sections and the location of the deployed
RBR pressure sensor; and (e) example of a detected shoreline plotted on the corresponding
TIMEX image showing also the reference line (the blue line located above the shoreline) used to
define the output parameter in the experiments. (Color figure online)
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An autonomous coastal video monitoring system was installed at the beach (at the
(0,0) point shown in Fig. 1(e)) to monitor shoreline position. The system, which allows
automatic and low-cost monitoring of key beach features, comprised a station PC and
two fixed Vivotek IP8362 video cameras (center of view elevation of about 22 m above
mean sea level), operating at a sampling rate of 5 frames per secondand in hourly
10-minute bursts. Images were corrected for lens distortion and georectified and pro-
jected on real-world coordinates using standard photogrammetric methods and ground
control points (GCPs) collected during the dedicated RTK-DGPS survey. Shoreline
detection was performed during post-processing, using an automated coastal feature
detector that records the mean shoreline position over each 10-minute burst on the basis
of the obtained TIMEX images (Fig. 1(e)); TIMEX images are the time-averages of the
3000 snapshots collected in each burst defined on the red–green–blue (RGB) colour
model. A detailed description of the system and the automated procedure developed to
extract the shoreline from the TIMEX imagery can be found in [10]. On the basis of
this information, the network’s output variable (y) (for each of the 30 cross-shore
profiles and each burst) was defined as the distance between the video extracted
shoreline position and a reference line (see Fig. 1(e)); this variable expresses the
shoreline position change (re-alignment).

To summarize, the experimental setup generated n ¼ 3480 input-output data
symbolized as xk ¼ xk1 xk2 xk3 xk4 xk5 xk6 xk7½ �T , and yk 2 R. These data are
elaborated by the neuro-fuzzy network in order to model the shoreline realignment
during the period of the experiment.

3 The Proposed Neuro-Fuzzy Network

The proposed network comprises three modules (see Fig. 2) namely: (a) the
Takagi-Sugeno-Kang (TSK) fuzzy network, (b) the competitive learning network, and
(c) the particle swarm optimization (PSO). In what follows, it is assumed that there are
n input-output data pairs xk; ykf gjnk¼1 with xk 2 Rp and yk 2 R.

Fig. 2. The structure of the TSK neuro-fuzzy network.
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3.1 TSK Fuzzy Network

The typical TSK fuzzy model establishes the input-output relations in terms of c fuzzy
rules written as:

R‘ : If x1 is A‘1 and . . .: and xp is A‘p then y is w‘ðxÞ; 1� ‘� cð Þ ð1Þ

where, A‘j are Gaussian fuzzy sets:

A‘jðxjÞ ¼ exp � xj � v‘j
� ��

r‘j
� �2� �

ð2Þ

and

w‘ xð Þ ¼ a‘0 þ a‘1x1 þ . . .þ a‘pxp ð3Þ

with v‘j and r‘j being the fuzzy set centers and widths, and a‘j 2 R. The proposed
network representation of a TSK fuzzy model is illustrated in Fig. 2.

There are four layers involved in the inference process. Layer 1 is the input layer.
Layer 2 calculates the rule firing degrees as indicated next,

g‘ xð Þ ¼
Yp
j¼1

A‘jðxjÞ ¼ exp �
Xp
j¼1

xj � v‘j
� ��

r‘j
� �� �2 !

ð4Þ

In Layer 3, the fuzzy basis functions are calculated as follows:

h‘ xð Þ ¼ g‘ xð Þ
,Xc

i¼1

gi xð Þ ð5Þ

Finally, Layer 4 estimates the output of the network:

ŷ ¼
Xc
‘¼1

h‘ xð Þw‘ xð Þ ð6Þ

3.2 Competitive Learning Network

The motivation of using the competitive learning network (CLN) is to facilitate the
evolutionary process of the PSO algorithm. To do so, the CLN elaborates the
input-output data and generates a set of parameter values for the rule antecedent parts.
To provide an accurate initialization of the learning mechanism, the above values are
then codified in the best position of the PSO algorithm (see Sect. 3.3). The structure of
CLN (see Fig. 2) includes a hidden layer that comprises c nodes, the activation
functions of which are given as,
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l‘ xkð Þ ¼
Xc
i¼1

xk � t‘k k
xk � tik k

� � 2
m�1

" #�1

; 1� ‘� c; 1� k� nð Þ ð7Þ

where m[ 1, and t‘ ¼ t‘1; t‘2; . . . t‘p
	 
T2 Rp are the codewords obtained by the

competitive learning process. In this sense the set U ¼ t1; t2; . . .; tcf g is realized as
the set of the center elements of the partition of the data set X ¼ x1; x2; . . .; xnf g into c
clusters. The CLN falls in the realm of batch learning vector quantization (BLVQ)
introduced by Kohonen in [16]. The objective of the CLN is to provide an estimation of
the t‘ 1� ‘� cð Þ by minimizing the following distortion function [16–18],

D ¼ 1
n

Xn
k¼1

min
1� ‘� c

xk � t‘k k2
n o

ð8Þ

Assume that we are given a partition of the data set X into c clusters with centers
(i.e. codewords) U ¼ t1; t2; . . .; tcf g. Then, the mean of the set U is evaluated as,

~t ¼ 1
c

Xc
‘¼1

t‘ ð9Þ

In addition, we define the p� cþ 1ð Þ matrix

B ¼ b1 b2 . . . bc bcþ 1½ � ¼ t1 t2 . . . tc ~t½ � ð10Þ

The codeword positions are directly affected by the distribution of the clusters
across the feature space [17, 18]. An optimal cluster distribution should possess well
separated and compact clusters. These two properties depend on the relative positions
of the codewords [18, 19]. To quantify the effect the codeword relative positions
impose on the quality of the partition, we view each codeword as the center of a
multidimensional fuzzy set, the elements of which are the rest of the codewords. In this
direction, the membership degree of the codeword b‘ ¼ t‘ in the cluster with center the
codeword bi ¼ ti is defined as [18]

ui‘ ¼
Xcþ 1

l ¼ 1
l 6¼ ‘

b‘ � bik k
b‘ � blk k

� � 2
m�1

2
66664

3
77775

�1

; 1� ‘� c; 1� i� cð Þ ð11Þ

where m 2 1; 1ð Þ is the fuzziness parameter. Note that the indices ‘ and i are not
assigned the value cþ 1, which corresponds to the position bcþ 1 ¼ ~t. If the quantity ~t
was not taken into account, then in case there were only two codewords (i.e. c ¼ 2) the
function in ui‘ would not work properly because it would give one in all cases.
Therefore the presence of bcþ 1 ¼ ~t is important. Next, for each xk the closest code-
word tik ¼ bik is detected
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xk � tikk k ¼ min
1� ‘� c

xk � t‘k kf g ð12Þ

To this end, the codewords are updated by the subsequent learning rule,

ttþ 1
‘ ¼ tt‘ þ g f tik ; ‘ xk � tt‘

� � ð13Þ

where t is the iteration number, g[ 0 is the learning rate, and fik ; ‘ is the neighborhood
function:

fik ; ‘ ¼ 1 ; if ‘ ¼ ik
uik ; ‘; otherwise

(
ð14Þ

with ik 2 1; 2; . . .; cf g, 1� ‘� c, and uik ; ‘ is calculated in (11). The function fik ; ‘
gives the relative excitation degree of each codeword having as reference point the
winning codeword and the relative positions of the rest of the codewords. For a more
detailed analysis of the properties of the function fik ; ‘ the interested reader is referred to
[18]. As easily seen, the learning rule in Eq. (13) constitutes an on-line process. In a
similar way to the BLVQ [16], we can produce a batch mechanism by employing the
subsequent expectation measure:

E f tik ; ‘ xk � tt‘
� �h i

¼ 0 as t ! 1 ð15Þ

The condition in (15) enables us to modify the codeword updating rule as,

ttþ 1
‘ ¼

Xn
k¼1

f tik ; ‘ xk

,Xn
k¼1

f tik ; ‘ ð16Þ

The above CLN appears to be less sensitive to initialization when compare to the
BLVQ. This remark is justified by the fact that, based on the functions in (11) and (14),
a specific codeword moves towards its new position considering the relative positions
of the rest of codewords. Thus, before obtaining the new partition, the algorithm takes
into account the overall current partition and forces all codewords to be more com-
petitive. Therefore, in a single iteration all of the codewords are moving in an attempt
to win as much as training vectors they can. This behavior enables the whole updating
process to avoid undesired local minima.

Based on the nomenclature given in Eqs. (1)–(6), to extract initial values for the
rule antecedents, the fuzzy set centers are determined by projecting the codewords
t‘ ð1� ‘� cÞ on each dimension:

v‘j ¼ t‘j ; 1� ‘� c; 1� j� pð Þ ð17Þ

while the corresponding fuzzy set widths by the next relation
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r‘j ¼ Diag FC‘ð Þð Þ1=2 ð18Þ

where FC‘ is the fuzzy covariance matrix [20], which based on Eq. (7) is

FC‘ ¼
Xn
k¼1

l‘ xkð Þð Þm xk � t‘ð Þ xk � t‘ð ÞT
,Xn

k¼1

l‘ xkð Þð Þm ð19Þ

3.3 Particle Swarm Optimization

The particle swarm optimization (PSO) elaborates on a population of N particles
pi 2 Rq [21–23]. Each particle is assigned a velocity hi 2 Rq 1� i�Nð Þ. The positions
with the best values of the objective function obtained so far by the ith particle and by
all particles are respectively denoted as pbesti and pbest. The velocity is updated as

hi tþ 1ð Þ ¼ xhi tð Þ þu1 U 0; 1ð Þ � pbesti tð Þ � pi tð Þ
� � þ u2 U 0; 1ð Þ

� pbest tð Þ � pi tð Þð Þ ð20Þ

where � is the point-wise vector multiplication; U 0; 1ð Þ is a vector with elements
randomly generated in [0, 1]; x; u1, and u2 are positive constant numbers called the
inertia, cognitive and social parameter, respectively. The position of each particle is:

piðtþ 1Þ ¼ piðtÞþ hiðtþ 1Þ ð21Þ

In our case, to implement the PSO, each particle codifies the antecedent parameters,
i.e. the fuzzy set centers and widths. Therefore, the dimension of the particles’ search
space is equal to q ¼ 2 c p (i.e. pi 2 Rq; i ¼ 1; 2; . . .; N). All particles are randomly
initialized. In addition, the values of the antecedent parameters that were calculated in
Eqs. (17) and (18) are codified in the best overall position pbest, which is expected to
guide more efficiently the particles in their search for optimal parameter estimation. On
the other hand, there are c pþ 1ð Þ consequent parameters, described as

a ¼ a10; a11; . . .; a1p; a20; a21; . . .; a2p; . . .; ac0; ac1; . . .; acp
	 
T ð22Þ

The estimation of these parameters is carried out in terms of ridge regression [24].
To do so, we employ the following matrices:

K ¼ K1 K2 . . . Kn½ �T ð23Þ

Kk ¼ kk1 kk2 . . . kkc½ � 1� k� nð Þ ð24Þ

kk‘ ¼ h‘ xkð Þ h‘ xkð Þ xk1 . . . h‘ xkð Þ xkp½ � 1� ‘� cð Þ ð25Þ
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Note that the dimensionality of matrix K is n� c pþ 1ð Þ. The objective of ridge
regression is to minimize the following error function [24]:

E ¼ Ka� Yk k2 þ Cak k2 ð26Þ

where Y ¼ y1; y2; . . .; yn½ �T , C ¼ b I with b[ 0, and I the c pþ 1ð Þ � c pþ 1ð Þ identity
matrix. The parameter b is called regularization parameter and, in this paper, its value is
adjusted manually. The solution to the above problem reads as [24],

~a ¼ KTKþCTC
� ��1

KTY ð27Þ

4 Simulation Study and Discussion

Based on the analysis described in Sect. 2, the data set includes n ¼ 3480 input-output
data pairs (corresponding to 30 beach cross-sections) of the form xk; ykf gjnk¼1 with
xk ¼ xk1 xk2 . . . xk7½ �T and yk 2 <. The data set was divided into a training set
consisting of the 60% of the original data, and a testing set consisting of the remainder
40%. Parameter setting for the proposed methodology is as follows: m ¼ 2, and
b ¼ 20. For the PSO we set u1 ¼ u2 ¼ 2, the parameter x was randomly selected in
0:5; 1½ �, and the population size was N ¼ 20.

For comparison, two more neural networks were designed and implemented. The
first is a radial basis function neural network (RBFNN). The parameters of the basis
functions were estimated in terms of the input-output fuzzy clustering algorithm
developed in [20], while the connection weights were calculated by the orthogonal least
squares method. The second is a feedforward neural network (FFNN), the activation
functions of which read as:

f ðxÞ ¼ tanh
x
2

ð28Þ

To train the FFNN we used the PSO algorithm (see previous Section) with the above
parameter setting. All networks were implemented using the Matlab software.

The performance index used in the simulations was the root mean square error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
k¼1

yk � ŷkj j2
s

ð29Þ

For the three networks, we considered various numbers of rules/nodes, whereas for
each number of rules/nodes we run 10 different initializations. The results are shown in
Table 1. The proposed network appears to have the best performance compared with
the other two networks. The best result for both the training and testing data sets is
obtained by the proposed network for a number of rules equal to c ¼ 10.
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The number of rules plays an important role for the validity of the method since as
it increases the RMSE decreases. The results reported in Table 1 are visualized also in
Fig. 3. There are some interesting observations related to this figure. First, the supe-
riority of the proposed method is clear, in comparison with the other two tested net-
works. Second, the behavior of the FFNN and the RBFNN appears to be similar, but
with the latter achieving better performance in both the training and testing data. Third,
in all networks, the general tendency is a decrease (as expected) of the RMSEs as the
number of rules/nodes increases.

With regard to the effectiveness of the proposed network to model shoreline
re-alignment, the following should be noted. The RMSEs found, although smaller than
those of the other tested networks is still considered high, being between 7.2–7.7 m,
depending on the number of rules/nodes. However, it should be noted that the vari-
ability of the shoreline position of the Kamari beach was indeed high during the 15-day
period of observations, showing, in some cross-sections, differences between the
minimum and maximum cross-shore shoreline position in excess of 15 m and a
standard deviation of up to 8 m. Therefore, it seems that the obtained high RMSEs
reflect the high spatio-temporal variability of the Kamari shoreline position observed
during the period of observations; thus, the proposed network could model/predict the
shoreline re-alignment to accuracy similar to that of the actual variability of the beach.

Table 1. RMSEs and the corresponding standard deviations for the three networks with respect
to various numbers of rule/nodes

Method c = 4 c = 6 c = 8 c = 10

Proposed Train 7.540 � 0.059 7.402 � 0.044 7.327 � 0.109 7.201 � 0.099
Test 7.626 � 0.095 7.497 � 0.079 7.351 � 0.114 7.308 � 0.115

FFNN Train 8.003 � 0.076 7.960 � 0.055 7.899 � 0.060 7.958 � 0.108
Test 8.097 � 0.083 7.893 � 0.116 7.846 � 0.077 7.907 � 0.102

RBFNN Train 7.858 � 0.004 7.751 � 0.003 7.720 � 0.005 7.710 � 0.002
Test 7.871 � 0.005 7.727 � 0.006 7.658 � 0.004 7.734 � 0.005
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Fig. 3. Mean values of the RMSE as a function of the number of rules/nodes for the training and
testing data.

238 G.E. Tsekouras et al.



The results suggest that in order to improve the proposed model effectiveness in the
case of beaches the shorelines of which are characterised by high spatio-temporal
variability, there should be some changes in the input variables. First, another input
variable might be introduced that can define the ‘antecedent’ cross-shore position of the
shoreline; a good guess should be the average shoreline position of the previous 24 h
for each tested cross-section that could be easily defined from the video imagery. It is
thought that the inclusion of such a parameter will improve the behavior of the pro-
posed model. Secondly, as the tidal range at the Kamari beach was found to be rather
small (<0.08 m), it may be that nearshore total water level during energetic events is
controlled mostly by the storm-induced level increases. In this case, it makes sense for
an input variable reflecting this process (i.e. the total nearshore water level) to be used
instead of the tidal elevation (TS). Generally, the encouraging results of the modelling
exercise suggest that the proposed neural network, after a fine-tuning of the input
variables, can be used to model the shoreline re-alignment of beaches characterised by
highly variable morphodynamics, on the basis of a small number of environmental
variables.

5 Summary and Conclusions

In the present contribution we present a systematic methodology that uses a sophisti-
cated experimental setup and a novel neuro-fuzzy network to model and predict the
phenomenon of shoreline realignment at a highly touristic beach (Kamari, Santorini).
A set of morphological and wave variables were identified that can affect shoreline
realignment, which together with records of hourly shoreline positions obtained using a
coastal video imagery system, were used to generate the network’s input-output
training data. The proposed network consists of three modules. The main task of the
first module is to provide the inference mechanism of a typical fuzzy system repre-
sented as network structure. The second module constitutes a competitive learning
network able to provide an initial partition of the input feature space. This partition is
used to extract a set of values for the fuzzy rule antecedent parameters that are codified
in the overall best position of a PSO approach. Then, the PSO runs properly and
optimizes the network’s parameters. In each step of the iterative implementation of the
PSO algorithm, the fuzzy rule consequent parameters are evaluated using ridge
regression. Simulation experiments were carried and the results were compared with
those by two other neural networks: a radial basis function neural network and a
feedforward neural network. The comparison showed that the proposed network per-
forms better in all cases. Regarding the effectiveness of the proposed network to model
shoreline re-alignment, the RMSE found (7.2–7.7 m, depending on the number of
rules/modes), reflects the high variability of the shoreline position of the Kamari beach
during the period of observations: the RMSE is of a similar order to the standard
deviation (up to 8 m) of the cross-shore shoreline position. The results are encouraging
and the effectiveness of the proposed network could be further improved by changes
(fine-tuning) of the input variables.
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