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Abstract. In this paper we present a new ensemble method, called
Boosted Residual Networks, which builds an ensemble of Residual Net-
works by growing the member network at each round of boosting.
The proposed approach combines recent developements in Residual
Networks - a method for creating very deep networks by including a
shortcut layer between different groups of layers - with the Deep Incre-
mental Boosting, which has been proposed as a methodology to train
fast ensembles of networks of increasing depth through the use of boost-
ing. We demonstrate that the synergy of Residual Networks and Deep
Incremental Boosting has better potential than simply boosting a Resid-
ual Network of fixed structure or using the equivalent Deep Incremental
Boosting without the shortcut layers.

1 Introduction

Residual Networks, a type of deep network recently introduced in [3], are char-
acterized by the use of shortcut connections (sometimes also called skip connec-
tions), which connect the input of a layer of a deep network to the output of
another layer positioned a number of levels “above” it. The result is that each
one of these shortcuts shows that networks can be build in blocks, which rely on
both the output of the previous layer and the previous block.

Residual Networks have been developed with many more layers than tradi-
tional Deep Networks, in some cases with over 1000 blocks, such as the networks
in [5]. A recent study in [14] compares Residual Networks to an ensemble of
smaller networks. This is done by unfolding the shortcut connections into the
equivalent tree structure, which closely resembles an ensemble. An example of
this can be shown in Fig. 1.

Dense Convolutional Neural Networks [6] are another type of network that
makes use of shortcuts, with the difference that each layer is connected to all
its ancestor layers directly by a shortcut. Similarly, these could be also unfolded
into an equivalent ensemble.

True ensemble methods are often left as an afterthought in Deep Learning
models: it is generally considered sufficient to treat the Deep Learning method
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Fig. 1. A Residual Network of N blocks can be unfolded into an ensemble of 2N − 1
smaller networks.

as a “black-box” and use a well-known generic Ensemble method to obtain mar-
ginal improvements on the original results. Whilst this is an effective way of
improving on existing results without much additional effort, we find that it can
amount to a waste of computations. Instead, it would be much better to apply an
Ensemble method that is aware, and makes use of, the underlying Deep Learning
algorithm’s architecture.

We define such methods as “white-box” Ensembles, which allow us to improve
on the generalisation and training speed compared to traditional Ensembles, by
making use of particular properties of the base classifier’s learning algorithm and
architecture. We propose a new such method, which we call Boosted Residual
Networks (BRN), which makes use of developments in Deep Learning, previ-
ous other white-box Ensembles and combines several ideas to achieve improved
results on benchmark datasets.

Using a white-box ensemble allows us to improve on the generalisation and
training speed of other ensemble methods by making use of the knowledge of
the base classifier’s structure and architecture. Experimental results show that
Boosted Residual Networks achieves improved results on benchmark datasets.

The next section presents the background on Deep Incremental Boosting.
Then the proposed Boosted Residual Networks method is described. Experi-
ments and results are discussed next, and the paper ends with conlusions.

2 Background

Deep Incremental Boosting, introduced in [9], is an example of such white-box
ensemble method developed for building ensembles Convolutional Networks. The
method makes use of principles from transfer of learning, like for example those
used in [15], applying them to conventional AdaBoost [12]. Deep Incremental
Boosting increases the size of the network at each round by adding new lay-
ers at the end of the network, allowing subsequent rounds of boosting to run
much faster. In the original paper on Deep Incremental Boosting [9], this has
been shown to be an effective way to learn the corrections introduced by the
emphatisation of learning mistakes of the boosting process. The argument as to
why this works effectively is based on the fact that the datasets at rounds t and
t + 1 will be mostly similar, and therefore a classifier ht that performs better
than randomly on the resampled dataset Xt will also perform better than ran-
domly on the resampled dataset Xt+1. This is under the assumption that both
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datasets are sampled from a common ancestor set Xa. It is subsequently shown
that such a classifier can be re-trained on the differences between Xt and Xt+1.

This practically enables the ensemble algorithm to train the subsequent
rounds for a considerably smaller number of epochs, consequently reducing
the overall training time by a large factor. The original paper also provides
a conjecture-based justification for why it makes sense to extend the previously
trained network to learn the “corrections” taught by the boosting algorithm. A
high level description of the method is shown in Algorithm1, and the structure
of the network at each round is illustrated in Fig. 2.

Algorithm 1. Deep Incremental Boosting
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
while t < tend do

Xt ← sample from X0 with distribution Dt

ut ← create untrained classifier with additional layer of shape Lnew

copy weights from Wt into the bottom layers of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

εt = 1
2

∑
(i,y)∈B Dt,i(1 − ht(xi, yi) + ht(xi, y))

βt = εt/(1 − εt)

Dt+1,i =
Dt,i

Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))|∀i

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

∑T
t=1 logαtht(x, y)

3 Creating the Boosted Residual Network

In this section we propose a method for generating Boosted Residual Networks.
This works by increasing the size of an original residual network by one resid-
ual block at each round of boosting. The method achieves this by selecting an
injection point index pi at which the new block is to be added, which is not
necessarily the last block in the network, and by transferring the weights from
the layers below pi in the network trained at the previous round of boosting.

The boosting method performs an iterative re-weighting of the training set,
which skews the resample at each round to emphasize the training examples that
are harder to train. Therefore, it becomes necessary to utilise the entire ensemble
at test time, rather than just use the network trained in the last round. This
has the effect that the Boosted Residual Networks cannot be used as a way
to train a single Residual Network incrementally. However, as we will discuss
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Fig. 2. Illusration of subsequent rounds of Deep Incremental Boosting

later, it is possible to alleviate this situation by deriving an approach that uses
bagging instead of boosting; therefore removing the necessity to use the entire
ensemble at test time. It is also possible to delete individual blocks from a
Residual Network at training and/or testing time, as presented in [3], however
this issue is considered out of the scope of this paper.

The iterative algorithm used in the paper is shown in Algorithm2. At the
first round, the entire training set is used to train a network of the original base
architecture, for a number of epochs n0. After the first round, the following steps
are taken at each subsequent round t:

– The ensemble constructed so far is evaluated on the training set to obtain
the set errors ε, so that a new training set can be sampled from the original
training set. This is a step common to all boosting algorithms.

– A new network is created, with the addition of a new block of layers
Bnew immediately after position pt, which is determined as an initial pre-
determined position p0 plus an offset t ∗ δp for all the blocks added at pre-
vious layers, where δp is generally chosen to be the size of the newly added
layers. This puts the new block of layers immediately after the block of lay-
ers added at the previous round, so that all new blocks are effectively added
sequentially.

– The weights from the layers below pt are copied from the network trained at
round t − 1 to the new network. This step allows to considerably shorten the
training thanks to the transfer of learning shown in [15].

– The newly created network is subsequently trained for a reduced number of
epochs nt>0.

– The new network is added to the ensemble following the conventional rules
and weight αt = 1

βt
used in AdaBoost. We did not see a need to modify the

way βt is calculated, as it has been performing well in both DIB and many
AdaBoost variants [2,9,12,13].
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Algorithm 2. Boosted Residual Networks
D0,i = 1/M for all i
t = 0
W0 ← randomly initialised weights for first classifier
p0 ← initial injection position
while t < T do

Xt ← sample from X0 with distribution Dt

ut ← create untrained classifier with an additional block Bnew of pre-determined
shape Nnew

determine block injection position pt = pt−1 + |Bnew|
connect the input of Bnew to the output of layer pt − 1
connect the output of Bnew and of layer pt − 1 to a merge layer mi

connect the merge layer to the remainder of the network
copy weights from Wt into the bottom layers l < pt of ut

ht ← train ut classifier on current subset
Wt+1 ← all weights from ht

εt = 1
2

∑
(i,y)∈B Dt,i(1 − ht(xi, yi) + ht(xi, y))

βt = εt/(1 − εt)

Dt+1,i =
Dt,i

Zt
· β(1/2)(1+ht(xi,yi)−ht(xi,y))|∀i

where Zt is a normalisation factor such that Dt+1 is a distribution
αt = 1

βt

t = t + 1
end while
H(x) = argmaxy∈Y

∑T
t=1 logαtht(x, y)

Fig. 3. Illusration of subsequent rounds of Boosted Residual Networks

Figure 3 shows a diagram of how the Ensemble is constructed by deriving the
next network at each round of boosting from the network used in the previous
round.

We identified a number of optional variations to the algorithm that may be
implemented in practice, which we have empirically established as not having
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an impact on the overall performance of the network. We report them here for
completeness.

– Freezing the layers that have been copied from the previous round.
– Only utilising the weights distribution for the examples in the training set

instead of resampling, as an input to the training algorithm.
– Inserting the new block always at the same position, rather than after the

previously-inserted block (we found this to affect performance negatively).

3.1 Comparison to Approximate Ensembles

While both Residual Networks and Densely Connected Convolutional Networks
may be unfolded into an equivalent ensemble, we note that there is a differen-
tiation between an actual ensemble method and an ensemble “approximation”.
During the creation of an ensemble, one of the principal factors is the creation
of diversity : each base learner is trained independently, on variations (resamples
in the case of boosting algorithms) of the training set, so that each classifier is
guaranteed to learn a different function that represents an approximation of the
training data. This is the enabling factor for the ensemble to perform better in
aggregate.

In the case of Densely Connected Convolutional Networks (DCCN) specifi-
cally, one may argue that a partial unfolding of the network could be, from a
schematic point of view, very similar to an ensemble of incrementally constructed
Residual Networks. We make the observation that, although this would be cor-
rect, on top of the benefit of diversity, our method also provides a much faster
training methodology: the only network that is trained for a full schedule is the
network created at the first round, which is also the smallest one. All subsequent
networks are trained for a much shorter schedule, saving a considerable amount
of time. Additionally, while the schematic may seem identical, there is a subtle
difference: each member network outputs a classification of its own, which is
then aggregated by a weighted averaging determined by the errors on the test
set, whilst in a DCCN the input of the final aggregation layer is the output of
each underlying set of layers. We conjecture that this aggressive dimensionality
reduction before the aggregation has a regularising effect on the ensemble.

4 Experiments and Discussion

In the experiments we used the MNIST, CIFAR-10 and CIFAR-100 datasets, and
compared Boosted Residual Networks (BRN) with an equivalent Deep Incremen-
tal Boosting without the skip-connections (DIB), AdaBoost with the initial base
network as the base classifier (AdaBoost) and the single Residual Network equiv-
alent to the last round of Boosted Residual Networks (ResNet). It is to be noted
that, because of the shortened training schedule and the differening architecture,
the results on the augmented datasets are not the same as those reported in the
original paper for Residual Networks.
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Table 1. Test accuracy in the benchmark datasets for the methods compared.

ResNet AdaBoost DIB BRN

MNIST 99.41% 99.41% 99.47% 99.53%

CIFAR-10 89.12% 89.74% 90.83% 90.85%

CIFAR-10 (aug) 92.14% 91.66% 92.31% 92.94%

CIFAR-100 67.25% 68.18% 68.56% 69.04%

CIFAR-100 (aug) 69.72% 70.74% 71.55% 72.41%

MNIST [8] is a common computer vision dataset that associates 70000 pre-
processed images of hand-written numerical digits with a class label representing
that digit. The input features are the raw pixel values for the 28 × 28 images,
in grayscale, and the outputs are the numerical value between 0 and 9. 50000
samples are used for training, 10000 for validation, and 10000 for testing.

CIFAR-10 is a dataset that contains 60000 small images of 10 categories of
objects. It was first introduced in [7]. The images are 32 × 32 pixels, in RGB
format. The output categories are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck. The classes are completely mutually exclusive so that it
is translatable to a 1-vs-all multiclass classification. 50000 samples are used for
training, and 10000 for testing. This dataset was originally constructed without
a validation set.

CIFAR-100 is a dataset that contains 60000 small images of 100 categories
of objects, grouped in 20 super-classes. It was first introduced in [7]. The image
format is the same as CIFAR-10. Class labels are provided for the 100 classes
as well as the 20 super-classes. A super-class is a category that includes 5 of the
fine-grained class labels (e.g. “insects” contains bee, beetle, butterfly, caterpillar,
cockroach). 50000 samples are used for training, and 10000 for testing. This
dataset was originally constructed without a validation set.

In order to reduce noise in the results, we aligned the random initialisation
of all networks across experiments, by fixing the seeds for the random number
generators. All experiments were repeated 10 times and we report the mean
performance values. We also report results with light data augmentation: we
randomly rotated, flipped horizontally and scaled images, but did not use any
heavy augmentation, including random crops. Results are reported in Table 1,
while Fig. 4 shows a side-by-side comparison of accuracy levels at each round of
boosting for both DIB and BRN on the MNIST and CIFAR-100 test sets. This
figure illustrates how BRNs are able to consistently outperform DIB at each
intermediate value of ensemble size, and although such differences would still
fall within a Bernoulli confidence interval of 95%, we make the note that this
does not take account of the fact that all the random initialisations were aligned,
so both methods started with the exact same network. In fact, an additional
Friedman Aligned Ranks test on the entire group of algorithms tested shows
that there is a statistically significant difference in generalisation performance,
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Table 2. Training times comparison. BRN and DIB are the fastest Ensemble methods
compared. The time to train the base network and a ResNet of comparable performance
is reported for comparison.

ResNet Base Net AdaBoost DIB BRN

MNIST 217 min 62 min 442 min 202 min 199 min

CIFAR-10 1941 min 184 min 1212 min 461 min 449 min

CIFAR-10 (aug) 2228 min 213 min 2150 min 1031 min 911 min

CIFAR-100 2172 min 303 min 2873 min 607 min 648 min

CIFAR-100 (aug) 2421 min 328 min 3072 min 751 min 735 min

whilst a direct Wilcoxon test comparing only BRN and DIB shows that BRN is
significantly better.

Table 2 shows that this is achieved without significant changes in the training
time1. The main speed increase is due to the fact that the only network being
trained with a full schedule is the first network, which is also the smallest, whilst
all other derived networks are trained for a much shorter schedule (in this case
only 10% of the original training schedule). If we excude the single network,
which is clearly from a different distribution and only mentioned for reference,
a Friedman Aligned Ranks test shows that there is a statistically significant
difference in speed between the members of the group, but a Wilcoxon test
between Deep Incremental Boosting and Boosted Residual Networks does not
show a significant difference. This confirms what could be conjured from the
algorithm itself for BRN, which is of the same complexity w.r.t. the number of
Ensemble members as DIB.

The initial network architectures for the first round of boosting are shown
in Table 3a for MNIST, and Table 3b for CIFAR-10 and CIFAR-100. The sin-
gle networks currently used to reach state-of-the-art on these datasets are very
cumbersome in terms of resources and training time. Instead, we used relatively
simpler network architectures that were faster to train, which still perform well
on the datasets at hand, with accuracy close to, and almost comparable to, the
state-of-the-art. This enabled us to test larger Ensembles within an acceptable
training time. Our intention is to demonstrate a methodology that makes it feasi-
ble to created ensembles of Residual Networks following a “white-box” approach
to significantly improve the training times and accuracy levels achievable with
current ensemble methods.

Training used the WAME method [11], which has been shown to be faster
than Adam and RMSprop, whilst still achieving comparable generalisation. This
is thanks to a specific weight-wise learning rate acceleration factor that is deter-
mined based only on the sign of the current and previous partial derivative ∂E(x)

∂wij
.

For the single Residual Network, and for the networks in AdaBoost, we trained

1 In some cases BRN is actually faster than DIB, but we believe this to be just noise
due to external factors such as system load.
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Table 3. Network structures used in experiments. The layers marked with “*” indicate
the location after which we added the residual blocks.

Table 4. Structure of blocks added at each round of DIB and BRN.

each member for 100 epochs. For Deep Incremental Boosting and Boosted Resid-
ual Networks, we trained the first round for 50 epochs, and every subsequent
round for 10 epochs, and ran all the algorithms for 10 rounds of boosting, except
for the single network. The structure of each incremental block added to Deep
Incremental Boosting and Boosted Residual Networks at each round is shown in
Table 4a for MNIST, and in Table 4b for CIFAR-10 and CIFAR-100. All layers
were initialised following the reccommendations in [4].

Distilled Boosted Residual Network: DBRN In another set of experiments we
tested the performance of a Distilled Boosted Residual Network (DBRN). Distil-
lation has been shown to be an effective process for regularising large Ensembles
of Convolutional Networks in [10], and we have applied the same methodology
to the proposed Boosted Residual Network. For the distilled network structure
we used the same architecture as that of the Residual Network from the final
round of boosting. Average accuracy results in testing over 10 runs are presented
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Fig. 4. Round-by-round comparison of DIB vs BRN on the test set

Table 5. Comparative results in terms of testing accuracy.

DBRN DDIB

MNIST 99.49% 99.44%

CIFAR-10 91.11% 90.66%

CIFAR-10 (aug) 93.06% 92.71%

CIFAR-100 66.63% 65.91%

CIFAR-100 (aug) 70.24% 69.18%

in Table 5, and for completeness of comparison we also report the results for the
distillation of DIB, following the same procedure, as DDIB. DBRN does appear
to improve results only for CIFAR-10, but it consistently beats DDIB on all
datasets. These differences are too small to be deemed statistically significant,
confirming that the function learned by both BRN and DIB can be efficiently
transferred to a single network.

Bagged Residual Networks: BARN We experimented with substituting the
boosting algorithm with a simpler bagging algorithm [1] to evaluate whether
it would be possible to only use the network from the final round of bagging
as an approximation of the Ensemble. We called this the Bagged Approximate
Residual Networks (BARN) method. We then also tested the performance of
the Distilled version of the whole Bagged Ensemble for comparison. The results
are reported as “DBARN”. The results are reported in Table 6. It is not clear
whether using the last round of bagging is significantly comparable to using the
entire Bagging ensemble at test time, or deriving a new distilled network from
it, and more experimentation would be required.
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Table 6. Test accuracy for BARN and DBARN.

BRN Bagging BARN DBARN

MNIST 99.53% 99.55% 99.29% 99.36%

CIFAR-10 90.85% 91.43% 88.47% 90.63%

CIFAR-10 (aug) 92.94% 92.61% 92.73% 92.69%

CIFAR-100 69.04% 68.15% 69.42% 66.16%

CIFAR-100 (aug) 72.41% 71.90% 72.01% 70.44%

5 Conclusions and Future Work

In this paper we have derived a new ensemble algorithm specifically tailored to
Convolutional Networks to generate Boosted Residual Networks. We have shown
that this surpasses the performance of a single Residual Network equivalent to
the one trained at the last round of boosting, of an ensemble of such networks
trained with AdaBoost, and Deep Incremental Boosting on the MNIST and
CIFAR datasets, with and without using augmentation techniques.

We then derived and looked at a distilled version of the method, and how
this can serve as an effective way to reduce the test-time cost of running the
Ensemble. We used Bagging as a proxy to test the generation of the approximate
Residual Network, which, with the parameters tested, does not perform as well
as the original Residual Network, BRN or DBRN.

Further experimentation of the Distilled methods presented in the paper,
namely DBRN and DBARN, is necessary to fully investigate their behaviour.
This is indeed part of our work in the near future. Additionally, the Resid-
ual Networks built in our experiments were comparatively smaller than those
that achieve state-of-the-art performance. Nevertheless, it might be appealing
in the future to evaluate the performance improvements obtained when creating
ensembles of larger, state-of-the-art, networks. Additional further investigation
could also be conducted on the creation of Boosted Densely Connected Convo-
lutional Networks, by applying the same principle to DCCN instead of Residual
Networks.
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