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Abstract 

Because of the tremendous computational cost of 3D (three dimensional) calculation of the 
dendritic growth, the parallel approach and the block-correction technique (BCT) are adopted to 
improve the efficiency of codes. Meanwhile, the accuracy of the codes is evaluated by 
comparing the present prediction with the analytical solutions to the fluid flow problem, LGK 
analytical results and the experimental measured columnar dendritic morphology and secondary 
dendritic arm spacing (SDAS, 2). The results show that the parallel Jacobi code with once 2D 
iteration in 3D BCT is proved to be the most efficient one among the codes compiled in the 
present work, accordingly is employed to simulate the 3D dendritic growth of alloys. The 
calculated velocities agree well with the results from the analytical equations. The predicted 
steady growth velocities of the equiaxed dendritic tip of Fe-0.82wt%C alloy by the present CA 
model agree with the 3D LGK analytical model as the anisotropy parameter is 0.04. Moreover, 
the present CA model shows some capability to predict the columnar dendritic growth during the 
directional solidification process of Fe-1.48wt%C alloy. 

Introduction 

With the increasing demand for simulating the dendritic growth of alloys closer to the actual case, 
the numerical simulation by the deterministic models such as the phase field (PF) model and the 
front tracking (FT) model and the stochastic models such as the cellular automaton (CA) model 
has been extended from two dimensional (2D) domain to three dimensional (3D) domain.  
As the additional dimension is introduced, the computational cost boosts up significantly, 
especially in consideration of the melt flow, which is the most serious problem confronted by the 
model developers. Therefore, the algorithm optimization and the parallel computation are usually 
employed to improve the computation efficiency. The simulation of the dendritic growth in 3D 
was firstly realized with the PF model [1]. At first, considering the importance of the 
solidification interface to dendritic evolution, the adaptive-mesh approach with the much finer 
meshes at the interface and coarser meshes at the remain domain was usually used to reduce the 
computational cost of 3D PF models during the simulation of the dendritic growth of pure 
materials [2, 3]. With the development of computers, the parallel 3D PF models based on the 
message-passing interface (MPI) library become dominant to predict the dendritic growth with a 
reasonable computational efficiency [4]. The fundamental of the parallel approach is that the task 
is divided into several subdomains which are assigned to different processors and calculated 
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separately, meanwhile its continuity is guaranteed by the process communication, that is, the 
MPI approach. Moreover, the combination of the adaptive-mesh and the parallelization approach 
are usually combined to further improve the computational efficiency of PF models [5]. 
Similarly, Al-Rawahi and Tryggvason [6] implemented the 3D FT model on parallel computers 
using the MPI approach. Zhao and coauthors [7-10] realized the parallelization of their 3D CA-
FVM (cellular automaton-finite volume method) model with discrete linear equations being 
solved by 3D TDMA (tri-diagonal matrix algorithm) by using the MPI approach. However, 
compared with other algorithms such as Jacobi, TDMA is intrinsically with the serial 
characteristic. Therefore, Eshraghi et al. [11, 12] introduced the 3D lattice Boltzmann method 
(LBM) with the complete parallelism to deal with transport equations and extended the 
computational scale of the 3D CA-LBM model to 3.6 billion cells. Moreover, another advantage 
of LBM is that it can deal with the fluid flow in the discontinuous regions well, compared with 
traditional CFD (computational fluid dynamics) approaches. Recently, the graphic processing 
unit (GPU) has been used to accelerate the calculation of the 3D PF model in large scale domains 
[13]. For the traditional methods such as FDM (finite difference method) and FVM still used in 
the simulation of the dendritic growth [7-10], except for the parallelism, some acceleration 
algorithms for the calculation of discrete equations should be considered to obtain an acceptable 
computational cost. For example, the block-correction technique (BCT) [14] can promote the 
convergence of the iterations of linear equations by methods such as TDMA and Jacobi and has 
been applied in the investigation of dendritic growth under the melt flow in 2D with CA 
approach by present authors [15, 16]. Therefore, its application in 3D will be expected, as well as 
its combination with the parallelization of the codes. Additionally, the accuracy of the 3D codes 
should be concerned to ensure their capability in predicting the 3D dendritic growth of alloys. 
The models for the dendritic evolution are customarily tested through the comparisons of the 
steady dendritic tip parameters [17, 18], the qualitative dendritic morphology [18] and the 
dendritic arm spacing (DAS)[7, 9, 10] with analytic models and experimental results. Taking the 
advantage of the superiority of the FT model, Al-Rawahi and Tryggvason [6] tested their model 
and flow solvers with respect to the analytical solutions for the Stefan problem of a sphere and 
for the flow over a simple cubic array of spheres. Although this concept is very constructive and 
novel, comparisons with solutions of Stefan problems cannot be transplanted to the CA model. It 
is mainly ascribed to that the isothermal solidification interface in Stefan problems should be 
explicitly tracked to consider the release of solidification heat there, which cannot be realized in 
the CA model. As a result, Yin et al. [19] employed analytical solutions of pure thermal and 
solute diffusion to validate the heat transfer and solute diffusion solvers in 2D, however 
neglected the test of the flow solver.  
A 3D CA-FVM model focusing on the 3D dendritic growth of high carbon Fe-based alloys was 
developed in the consideration of the improvement of the computational efficiency and the 
model capacity [20, 21]. Compared with other works with traditional transport models [7-9], the 
present work employed both the 3D BCT and the parallelism to save the computational cost. The 
present paper will give a brief introduction of the first part of the work involving mainly seeking 
for the most efficient code to deal with the designed problems and evaluating the capability of 
3D CA-FVM model in solving the transport problem and the dendritic evolution.  
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Model Description 
 
Governing Equations 
 
The governing equations for the inter- and exter-dendritic flows are given by:  
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where U  is velocity vector, (u, v, w),  is density,  is viscosity, and p is the hydrostatic pressure.  
The governing equations of solute transport are given by: 
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where Cs and Cs are solute concentrations in solid and liquid phases, respectively, and D is 
diffusion coefficient, which is the mean value of solid diffusivity, Ds and liquid diffusivity, Dl 
according to the solid fraction, fs. 
The governing equation of the heat transport is expressed as follows: 
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where T is temperature,  is thermal diffusivity which is the function of the thermal conductivity, 
 and the specific heat capacity, c, and L is solidification latent heat.  

The convergence of transport equations should satisfy Eqs. (6) and (7): 
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where  represents field variables, including u, v, w, T and C, 0 is on behalf of initial values of 
those variables, n is iteration steps, is a number far less than unity, CT is a constant dependent 
on 0 , and  (i, j, k)  denotes the serial number of the CA cell. 
The Neumann configuration is used to deal with the evolution of the state of the CA cell. 
Accordingly, as the interface cell become solid, it will capture the liquid cells among its first 
nearest cells as the interface cells. The solute redistribution at the interface is given by: 
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where *
lC  and *

sC  are equilibrium solid and liquid solute concentrations at solidification interface, 
respectively, k0 is the equilibrium partition coefficient of the solute, C0 is the initial solute 
content in the modeling domain, Tl is the equilibrium liquidus temperature, ml is the slope of 
liquidus line in the equilibrium phase diagram of the alloy, is the Gibbs-Thomson coefficient 
of Fe-C alloy, and T* is the interface temperature. wmc is expressed in Eq. (10) [18]: 
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where  is the anisotropic degree of the surface energy, (nx, ny, nz) is unit normal vector of the 
interface and is calculated according to the first-order derivative of solid fraction, fs, such as 
nx= xfs/[( xfs)

2+( yfs)
2+( zfs)

2]0.5. The parameter Q is denoted as Q=nx
4         + ny

4                                                    + nz
4.   

The evolution of the solidification interface is governed by the solute balance there, as expressed 
in Eq. (11) [7-10, 15, 16, 20, 21]. 
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where vn is normal growth velocity of solidification interface. The solute balance along three 
axes is separately calculated [15, 16]. The related physical property parameters of high carbon 
Fe-C alloy are listed in the previous paper [15, 16, 20, 21]. 
 
Performance Optimization 
 
According to the basic concept of FVM, the transport equations in 3D are discretized into a 
uniform form: 

P P W W E E S S N N B B T T Pa a a a a a a b  (12)
where a, b and  are the coefficient, the constant term and the variable of the discrete equation, 
and P, W and E, T and B and N and S represent the present cell, its west and east neighboring 
cells along x axis, top and bottom nearest ones along z axis, and north and south nearest ones 
along y axis. The basic concept of the BCT is to introduce a mean modification value to ensure 
the complete conversation in the each iteration [14], as shown in Figure 1. 
The Parallel Patterns Library (PPL) and the namespace Concurrency in Microsoft Visual Studio 
2010 C++ are used to parallelize the codes. The codes are run on the server with 40 CPU cores.  

 

 
Figure 1. Schematic diagram of the concept of the BCT in (a) 3D and (b) 2D 

 
Model Test 

 
Transport  Models 
 
The computational efficiency of these codes is evaluated as they solve the designed melt flow 
problem, as illustrated in Figure 2(a) and (b). A fluid of the molten steel flows into the 201 m × 
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201 m × 201 m domain with the velocity of 0.001 m/s along x axis of at the left boundary, 
gets over the orthogonally arranged solid obstacles in the center of the domain and leaves at the 
right boundary, which belongs to the laminar category. The size of the block is 44 m × 10 m × 
10 m. Meanwhile, the domain is meshed into cells with the size of 1 m × 1 m × 1 m. 
Except for the inlet and the outlet boundaries, other walls of the domain are symmetrical. The 
flow field at steady state is predicted with the SIMPLE algorithm. The number  representing the 
convergence requirement is 0.001. As the 3D BCT is introduced, the computational cost of the 
serial TDMA code decreases from 92.62 h to 22.74 h, as shown in Figure 2(c). It is attributed to 
that the 3D BCT changes the convergence type of the iteration from the fluctuating one to a 
smooth one, according reduces the iteration steps. Subsequently, as the code is partially 
parallelized, the computational cost drops to 15.71 h. Such computational efficiency is still 
relatively high since TDMA is intrinsically serial. Therefore, Jacobi with much more parallel 
characteristic is employed to further improve the computational efficiency. The parallel Jacobi 
code with 3D BCT cost 8.67 h to get the convergence. According to the basic concept of BCT, 
the 2D iteration in 3D BCT is not necessarily required to be converged as the boundary condition 
is delivered into the computational domain. As the 2D iteration in 3D BCT in iterated once, the 
computational cost of the parallel Jacobi code reduces by 2.88 h. Moreover, as the compiling 
mode changes from debug to release, the computational cost of the parallel Jacobi code with 
once 2D iteration in 3D BCT reduces to an acceptable value, 2.60 h. Therefore, the parallel 
Jacobi code with once 2D iteration in 3D BCT is adopted to simulate the 3D dendritic growth of 
alloys in the present work.  
 

 
Figure 2. Computational efficiency test on the melt flow problem: (a) schematic diagram of the designed case, 

(b) characteristic sizes of the case and (c) computational costs of complied codes 
 

 
Figure. 3 Solution to the problem with fluid passing through periodically arranged balls: (a) the flow 

distribution around the solid ball and (b) comparison between the predicted normalized mean velocity, unor and 
the analytical results [22] 

 
In order to evaluate the accuracy of the present fluid flow solver, the classical problem with flow 
passing through periodical arranged balls [22] is concerned. In order to impel the flow pass 
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through the gap between two adjacent balls with the size of L along x axis with the given average 
velocity 0u , the driving force, that is, the pressure gradient should be exerted. The normalized 

velocity unor representing the quantitative relationship between and 0u changes with the volume 
fraction of the ball, VFb. The fluid passes through the gap of 1.0 m between two adjacent balls 
with an average velocity of 0.1 m/s, as shown in Figure 3(a). The predicted functional 
relationship between unor and VFb agrees well with the analytical result [22], as shown in Figure 
3(b). 
 
CA Model 
 
The 3D LGK model without consideration of the thermal undercooling [17, 18] is adopted to 
evaluate the present CA-FVM model. The selection parameter of the dendritic tip, * used in the 
LGK model is determined to be  corresponding to the anisotropy parameter of 0.04 
according to the linearized solvability theory [23]. The cubic domain with the size of 201 m × 
201 m × 201 m  meshed into (1 m)3 cells is used to simulate the single equiaxed dendritic 
growth of Fe-0.82wt%C alloy at the constant undercooling. The solute diffusion in solid phase is 
neglected in terms of the basic concept of the LGK mode. As the solidification time reaches the 
order of D/V2 [18], the dendritic growth is assumed to be at steady state. Accordingly, the steady 
growth velocity and radius of the dendritic tip can be determined. Figure 4 shows the 
comparisons between the predicted steady growth velocity and radius of the dendritic tip and the 
analytical results as the undercooling changes from 3 K to 13 K. The predicted steady growth 
velocities of dendritic tip present good agreements with the LGK analytical results at the 
undercooling of 6-7 K. The steady tip radius is consistent with the analytical prediction at the 
undercooling of 6.5 K. Meanwhile, the difference between the prediction and the analytical data 
can be attributed to the mesh dependence of the CA model. 
 

 
Figure. 4 Comparison between steady growth parameters of dendritic tip predicted by present CA model and 

the LGK analytical results: (a) the steady growth velocity and (b) the steady radius 
 

Additionally, the unidirectional solidification processes of the high carbon steel presented by 
Jacobi and Schwerdtfeger [24] are adopted to evaluate the capability of present codes in 
predicting the columnar dendritic growth. The steel is simplified into Fe-1.48wt%C alloy. In the 
simulation, the nuclei are placed at the bottom domain according to the measured average 
primary dendritic arm spacing (PDAS, 1) [24] as listed in Table I. The cooling conditions are 
strictly in accordance with the experimental conditions with the given growth rate, Rd and the 
given temperature gradient, G, which are listed in Table I. Firstly, the columnar dendritic 
morphology of Fe-1.48wt%C at the cooling condition with Rd=0.51 m/h and G=5200 K/m 
( 1=540 m) is predicted by the present CA-FVM model which agree with the experimental 
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result, as shown in Figure 5. The SDAS are measured as the columnar dendrites reach the top of 
the domain in the consideration of the dendritic coarsening and compared with the experimental 
measurements as listed in Table I. The predicted average SDASs shows some agreement with the 
experimental results, especially at Rd=0.51 m/h and G=7400 K/m. 

 

 
Figure. 5 Columnar dendritic morphology of Fe-1.48wt%C alloy during the unidirectional solidification: (a) 

the experimental observation [24] and (b) the predicted result 
 

Table I Comparisons between the predicted SDASs and the experimental measurements[24] 

Rd, m/h G, K/m 1, Mea, m 2, Mea, m 2, Cal, m 
MAX MIN AVE 

0.25 5300 570 150.0 160.0 60.0 110.0 
0.25 7000 370 130.0 170.0 75.0 107.0 
0.51 5200 540 110.0 110.0 55.0 77.0 
0.51 7400 320 70.0 90.0 45.0 69.3 
0.75 8800 280 80.0 80.0 30.0 52.0 

 
Conclusion 

 
(1)  With the introduction of the 3D BCT and the parallelism, the former serial TDMA code is 
gradually optimized to the parallel Jacobi code with once 2D iteration in 3D BCT with the 
computational cost reducing from 92.62 h to 5.79 h as it deals with the flow problem with the 
scale of 2013. As the compile mode is changed from debug to release, the computational cost of 
this code become more acceptable. The solutions for the problem with the fluid passing through 
the gap between periodically arranged balls agree well with the analytical results.  
(2) The predicted steady tip velocity and radius agree well with the LGK analytical model at the 
undercooling of 6-7 K. Moreover, the predicted columnar dendritic morphology of Fe-1.48wt%C 
alloy during the unidirectional solidification agrees with the experimental observation. The 
calculated SDASs agree with the experimental results, especially at the growth velocity of 0.51 
m/h and the temperature gradient of 7400 K/m. 
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