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Communicating Uncertainty 

to Policymakers: The Ineliminable Role 
of Values

Eric Winsberg

13.1	 �Introduction

Over the last several years, there has been an explosion of interest and 
attention devoted to the problem of Uncertainty Quantification (UQ) 
in climate science—that is, to giving quantitative estimates of the degree 
of uncertainty associated with the predictions of global and regional 
climate models. The technical challenges associated with this project are 
formidable: the real data sets against which model runs are evaluated are 
large, patchy, and involve a healthy mixture of direct and proxy data; 
the computational models themselves are enormous, and hence the 
number of model instances that can be run is minuscule and sparsely 
distributed in the solution space that needs to be explored; the param-
eter space that we would like to sample is vast and multidimensional; 
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and the structural variation that exists amongst the existing set of mod-
els is substantial but poorly understood. Understandably, therefore, the 
statistical community that has engaged itself with this project has 
devoted itself primarily to overcoming some of these technical 
challenges.

So why is UQ so important in climate science? What goals are we try-
ing to meet with UQ, and are they likely to be met? Those who are inter-
ested in these questions might benefit from a close look at some of the 
recent philosophical literature on the role of social values in science. UQ, 
I suggest, is first and foremost a tool for communicating knowledge from 
experts to policymakers. Experts, in this case, climate scientists and cli-
mate modelers, have knowledge about the climate. In one sense, there-
fore, they are the people who ought to be considered best situated to 
make decisions about what we ought to do in matters related to climate. 
But in another sense, they are not.

Consider the fact that we often evaluate the wisdom of pursuing vari-
ous climate adaptation strategies, such as: how to manage the problem 
of glacial lake outburst floods, one of the many possible dangers of 
regional climate changes. These floods occur when a dam (consisting of 
glacier ice and a terminal moraine) containing a glacial lake fails. Should 
a local community threatened by a possible flood replace the terminal 
moraine with a concrete dam? The answer to this question depends in 
part on the likelihood of the glacier melting and the existing (natural) 
dam bursting, which climate scientists, who have the most expertise 
about the future of the local regional climate, would be in the best posi-
tion to address. It also surely depends, however, on the cost of building 
the dam, and on the likely damage that would ensue if the dam were to 
break. Just as much, it might depend on how the relevant stakeholders 
weigh the present costs against the future damages. And so while, on the 
one hand, we would like the people making the decision to have the 
most expertise possible, we also, on the other hand, want the decision to 
be made by people who represent our interests, whoever “we” might be. 
Making decisions about, for example, climate adaptation strategies, 
therefore, requires a mixture of the relevant expertise and the capacity to 
represent the values of the people on whose behalf one is making the 
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decision.1 But there is rarely any single group of people who obviously 
possess both of these properties.

UQ, as we will see in what follows, is in principle one way in which 
these different capacities can be kept separate. One clear motivation for 
solving the problems of UQ, in other words, is to maintain this division 
of labor between the epistemic and the normative—between the people 
who have the pure scientific expertise and the people with the legitimate 
ability to represent the values of the relevant stakeholders. And so if we 
want to understand where the need to produce quantitative estimates of 
uncertainty comes from, we need to delve into the role of social values in 
the administration of scientific expertise.

13.2	 �Science and Social Values

What do we mean, first of all, by “social values”? Social values, I take 
it, are the estimations of any agent or group of agents of what is impor-
tant and valuable—in the typical social and ethical senses—and of 
what is to be avoided, and to what degree. What value does one assign 
to economic growth, on the one hand, and to the degree to which we 
would like to avoid various environmental risks, on the other? In the 
language of decision theory, by social values we mean the various mar-
ginal utilities one assigns to events and outcomes. The point of the 
word “social” in “social values” is primarily to flag the difference 
between these values and what Ernan McMullin once called “epistemic 
values,” like simplicity, fruitfulness, and so forth (1983). But I do not 
want to beg any questions about whether or not values that are para-
digmatically ethical or social can or cannot or should or should not 
play important epistemic roles. So, I prefer not to use that vocabulary. 
I talk instead about social and ethical values when I am referring to 
things that are valued for paradigmatically social or ethical reasons. I 
do not carefully distinguish, in this chapter, between the social and the 
ethical.2

It is uncontroversial that social and ethical values play a role in sci-
ence. When we set constraints on experimentation, for example, or 
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when we decide which projects to pursue and which projects to ignore, 
these decisions uncontroversially reflect social values. But the philo-
sophically controversial question about social and ethical values is about 
the degree to which they are involved (or better put: the degree to which 
they are necessarily involved, or inevitably involved, and perhaps most 
importantly: uncorrectibly involved) in the appraisal of hypotheses or 
in reaching other conclusions that are internal to science, and that nec-
essarily also involves scientific expertise. This is the question, after all, 
of the degree to which the epistemic and the normative can be kept 
apart.

This is a question of some importance because we would like to believe 
that only experts should have a say in what we ought to believe about the 
natural world. But we also think that it is not experts, or at least not 
experts qua experts, who should get to say what is important to us, or 
what is valuable or has utility. Such a division of labor, however, is only 
possible to the extent that the appraisal of scientific hypotheses, and the 
consideration of other matters that require scientific expertise, can be car-
ried out in a manner that is free of the influence of social and ethical 
values.

Philosophers of science of various stripes have mounted a variety of 
arguments to the effect that the epistemic matter of appraising scien-
tific claims of various kinds cannot be kept free of social and ethical 
values. Here, we will be concerned only with one such line of argu-
ment—one that is closely connected to the issue of UQ—that goes 
back to the midcentury work of statistician C.  West Churchman 
(1949, 1953) and philosopher of science Richard Rudner (1953).3 
This line of argument is now frequently referred to as the argument 
from inductive risk. It was first articulated by Rudner in the following 
schematic form:

	1.	 The scientist qua scientist accepts or rejects hypotheses.
	2.	 No scientific hypothesis is ever completely (with 100% certainty) 

verified.
	3.	 The decision to either accept or reject a hypothesis depends upon 

whether the evidence is sufficiently strong.
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	4.	 Whether the evidence is sufficiently strong is “a function of the impor-
tance, in a typically ethical sense, of making a mistake in accepting or 
rejecting the hypothesis.”

	5.	 Therefore, the scientist qua scientist makes value judgments.

Rudner’s oft-repeated example compared two hypotheses: (1) that a 
toxic ingredient of a drug is not present in lethal quantity in some 
resource, (2) that a certain lot of machine stamped belt buckles is not 
defective. Rudner’s conclusion was that “how sure we need to be before 
we accept a hypothesis will depend upon how serious a mistake it would 
be” to accept it and have it turn out false (1953, p. 2). We can easily 
translate Rudner’s lesson into an example from climate science: consider 
a prediction that, given future emissions trends, a certain regional climate 
outcome will occur. Should we accept the hypothesis, say, that a particu-
lar glacial lake dam will burst in the next 50 years? Suppose that if we 
accept the hypothesis, we will replace the moraine with a concrete dam. 
But whether we want to build the dam will depend not only on our 
degree of evidence for the hypothesis, but also on how we would measure 
the severity of the consequences of building the dam, and having the 
glacier not melt, vs. not building the dam, and having the glacier melt. 
Rudner would have us conclude that as long as the evidence is not 100% 
conclusive, we cannot justifiably accept or reject the hypothesis without 
making reference to our social and ethical values.

The best-known reply to Rudner’s argument came from logician and 
decision theorist Richard Jeffrey (1956). Jeffrey argued that the first 
premise of Rudner’s argument—that it is the proper role of the scientist 
qua scientist to accept and reject hypotheses—is false. The proper role of 
scientists, he urged, is to assign probabilities to hypotheses with respect to 
the currently available evidence. Others—for example, policymakers—
can attach values or utilities to various possible outcomes or states of 
affairs and, in conjunction with the probabilities provided by scientists, 
decide how to act.

In providing this response to Rudner, Jeffrey was making it clear that 
an important purpose of probabilistic forecasts is to separate practice 
from theory and the normative from the epistemic, so that social values 
can be relegated entirely to the domain of practice, and cordoned off 
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from the domain of scientific expertise. If the scientist accepts or rejects a 
hypothesis, then Rudner has shown that normative considerations can-
not be excluded from that decision process. In contrast, if scientists don’t 
have to bring any normative considerations to bear when they assign 
probabilities to a hypothesis, then the normative considerations can be 
cordoned off. It should now be clear why I said at the beginning that UQ 
is first and foremost a tool for communicating knowledge from experts to 
policymakers. It is a tool for dividing our intellectual labor. If we were 
entirely comfortable simply letting experts qua experts decide for us how 
we should act, then we would not have such an acute need for UQ.

It is clear, however, that Jeffrey did not anticipate the difficulties that 
modern climate science would have with the task that he expected to be 
straightforward and value free, the assignment of probability with respect 
to the available evidence. There are many differences between the kinds 
of examples that Rudner and Jeffrey had in mind and the kinds of situa-
tions faced by climate scientists. For one, Rudner and Jeffrey discuss cases 
in which we need the probability of the truth or falsity of a single hypoth-
esis, but climate scientists generally are faced with having to assign prob-
ability distributions over a space of possible outcomes. I believe, however, 
that the most significant difference between the classic kind of inductive 
reasoning Jeffrey had in mind (in which the probabilities scientists are 
meant to offer are their subjective degrees of belief based on the available 
evidence) and the contemporary situation in climate science is the extent 
to which epistemic agency in climate science is distributed across a wide 
range of scientists and tools.

Here, I am pursuing a theme that is at the heart of much of my work 
on computationally intensive science (2010): that this new kind of sci-
ence requires of philosophers new ways of thinking about old epistemo-
logical issues. These kinds of claims can also be found in the work of 
Elisabeth Lloyd (in this volume and elsewhere, 2012, 2015), where she 
argues that recent developments in science require that we adopt what 
she calls “complex empiricism.”

I will return to the issue of how climate science differs from the kind 
of science envisioned by Jeffrey later (especially in Sect. 13.6), but for 
now, we should turn to what I would claim are typical efforts in climate 
science to deliver probabilistic forecasts and see how they fare with respect 
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to Jeffrey’s goal of using probabilities to divide labor between the epis-
temic and the normative.

13.3	 �Uncertainty in Climate Science

Where do probabilistic forecasts in climate science come from? We should 
begin with a discussion of the sources of uncertainty in climate models. 
There are two main sources that concern us here: structural model uncer-
tainty and parameter uncertainty. While the construction of climate mod-
els is guided by basic science—science in which we have a great deal of 
confidence—these models also incorporate a barrage of auxiliary assump-
tions, approximations, and parameterizations, all of which contribute to 
a degree of uncertainty about the predictions of these models. This source 
of uncertainty is often called “structural model uncertainty.”

Next, complex models involve large sets of parameters or aspects of the 
model that have to be quantified before the model can be used to run a 
simulation of a climate system. We are often highly uncertain about what 
the best value for many of these parameters is, and hence, even if we had 
at our disposal a model with ideal (or perfect) structure, we would still be 
uncertain about the behavior of the real system we are modeling, because 
the same model structure will make different predictions for different 
values of the parameters. Uncertainty from this source is called “param-
eter uncertainty.”4

Most efforts in contemporary climate science to measure these two 
sources of uncertainty focus on what one might call “sampling methods.” 
In practice, in large part because of the high computational cost of each 
model run, these methods are extremely technically sophisticated, but in 
principle they are rather straightforward.

I can best illustrate the idea of sampling methods with an example 
regarding parameter uncertainty: consider a simulation model with one 
parameter and several variables.5 If one had a data set against which to 
benchmark the model, one could assign a weighted score to each value of 
the parameter based on how well it retrodicted values of the variables in 
the available data set. Based on this score, one could then assign a prob-
ability to each value of the parameter. Crudely speaking, what we are 
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doing in an example like this is observing the frequency with which each 
value of the parameter is successful in replicating known data—how 
many of the variables does it get right? with how much accuracy? over 
what portion of the time history of the data set?—and then weighting the 
probability of the parameter taking this value in our distribution in pro-
portion to how well it had fared in those tests.

The case of structural model uncertainty is similar. The most common 
method of estimating the degree of structural uncertainties in the predic-
tions of climate models is a set of sampling methods called “ensemble 
methods,” which examine the degree of variation in the predictions of the 
existing set of climate models. By looking at the average prediction of the 
set of models and calculating their standard deviation, one can produce a 
probability distribution for every value that the models calculate.

13.4	 �Some Worries About the Standard 
Methods

There are reasons to doubt, however, that these simple methods for esti-
mating structural model uncertainty and parameter uncertainty are con-
ceptually coherent. Signs of this are visible in the results that have been 
produced. These signs have been particularly well noted by climate scien-
tists Claudia Tebaldi and Reto Knutti (2007). Tebaldi and Knutti have 
noted, in the first instance, that many studies founded on the same basic 
principles produce radically different probability distributions. One of 
their very illustrative charts shows a comparison of four different attempts 
to quantify the degree of uncertainty associated with the predictions of 
climate models for a variety of scenarios, regions, and predictive tasks. 
Tebaldi and Knutti note the wide range of the various estimates.

Beyond the graphical display of the wide variety of possible results one 
can get from ensemble averages, there are various statistical analyses one 
can perform on ensemble sample characteristics that cast doubt on their 
reliability for naïve statistical analysis. These are summarized in Tebaldi 
and Knutti. I quote their conclusions here:
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Recent coordinated efforts, in which numerous general circulation climate 
models have been run for a common set of experiments, have produced 
large data sets of projections of future climate for various scenarios. Those 
multimodel ensembles sample initial conditions, parameters, and struc-
tural uncertainties in the model design, and they have prompted a variety 
of approaches to quantifying uncertainty in future climate change … This 
study outlines the motivation for using multimodel ensembles and dis-
cusses various challenges in interpreting them. Among these challenges are 
that the number of models in these ensembles is usually small, their distri-
bution in the model or parameter space is unclear, and that extreme behav-
ior is often not sampled … While the multimodel average appears to still 
be useful in some situations, these results show that more quantitative 
methods to evaluate model performance are critical to maximize the value 
of climate change projections from global models. (2007, p. 2053)

Indeed, I would argue that there are four reasons to suspect that 
ensemble methods are not a conceptually coherent set of methods:

	1.	 Ensemble methods either assume that all models are equally good, or 
they assume that the set of available methods can be relatively 
weighted.

	2.	 Ensemble methods assume that, in some relevant respect, the set of 
available models represent something like a sample of independent 
draws from the space of possible model structures.

	3.	 Climate models have shared histories that are very hard to sort out.
	4.	 Climate modelers have a herd mentality about success.

I discuss each of these four reasons in what follows. But, first, consider 
a simple example that mirrors all four: suppose that you would like to 
know the length of a barn. You have one tape measure and many carpen-
ters. You decide that the best way to estimate the length of the barn is to 
send each carpenter out to measure the length and then take the average. 
There are four problems with this strategy. First, it assumes that each 
carpenter is equally good at measuring. But what if some of the carpen-
ters have been drinking on the job? Perhaps you could weight the degree 
to which their measurements play a role in the average in inverse propor-
tion to how much they have had to drink. But what if, in addition to 
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drinking, some have also been sniffing from the fuel tank? How do you 
weight these relative influences? Second, you are assuming that each car-
penter’s measurement is independently scattered around the real value. 
But why think this? What if there is a systematic error in their measure-
ments? Perhaps there is something wrong with the tape measure that 
systematically distorts them. Third (and relatedly), what if all the carpen-
ters went to the same carpentry school, and they were all taught the same 
faulty method for what to do when the barn is longer than the tape mea-
sure? And fourth, what if, before recording their value, each carpenter 
looks at the running average of the previous measurements, and if theirs 
deviates too much, they tweak it to keep from getting the reputation as a 
poor measurer?

All of these sorts of problems play a significant role—both individu-
ally, but especially jointly—in making ensemble statistical methods in 
climate science conceptually troubled. I will now discuss the role of each 
of them in climate science in detail:

	1.	 Ensemble methods either assume that all models are equally good, or they 
assume that the set of available methods can be relatively weighted.

If you are going to use an ensemble of climate models to produce a 
probability distribution, you ought to have some grounds for believing 
that all of them ought to be given equal weight in the ensemble. Failing 
that, you ought to have some principled way to weight them. But no such 
thing seems to exist. While there is widespread agreement among climate 
scientists that some models are better than others, quantifying this intu-
ition seems to be particularly difficult. It is not difficult to see why.

As Peter Gleckler et al. (2008) note, no single metric of success is likely 
to be useful for all applications. Their beautiful illustrations show the suc-
cess of various models for various prediction tasks. It is fairly clear that 
while there are some unambiguous flops on the list, there is no unam-
biguous winner, nor a clear way to rank them.

	2.	 Ensemble methods assume that, in some relevant respect, the set of avail-
able models represent something like a sample of independent draws from 
the space of possible model structures.
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This is surely the greatest problem with ensemble statistical methods. 
The average and standard deviation of a set of trials is only meaningful if 
those trials represent a random sample of independent draws from the 
relevant space—in this case, the space of possible model structures. Many 
commentators have noted that this assumption is not met by the set of 
climate models on the market. In fact, I would argue, it is not clear what 
this would even mean in this case. What, after all, is the space of possible 
model structures? And why would we want to sample randomly from 
this? After all, we want our models to be as physically realistic as possible, 
not random. Perhaps we are meant to assume, instead, that the existing 
models are randomly distributed around the ideal model, in some kind of 
normal distribution, on analogy to measurement theory. But modeling 
isn’t measurement, and so there is very little reason to think this assump-
tion holds.6

	3.	 Climate models have shared histories that are very hard to sort out.

Large clusters of the climate models on the market have shared histo-
ries, which is one reason for doubting that existing models are randomly 
distributed around an ideal model.7 Some of them share code. Scientists 
move from one lab to another and bring ideas with them. Various parts 
of climate models come from a common toolbox of techniques, and so 
forth. Worse still, we do not even have a systematic understanding of 
these interrelations. So, it is not just the fact that most current statistical 
ensemble methods are naive with respect to these effects; it’s also that it is 
far from obvious that we have the background knowledge we would need 
to eliminate this naïveté and therefore account for them statistically.

	4.	 Climate modelers have a herd mentality about success.

Most climate models are highly tunable with respect to some of their 
variables, and to the extent that no climate lab wants to be the oddball on 
the block, there is significant pressure to tune one’s model to the crowd. 
This kind of phenomenon has historical precedent.8 In 1939, Walter 
Shewhart published a chart of the history of measurement of the speed of 
light. The chart shows a steady convergence of measured values that is not 
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well explained by their actual success. Myles Allen puts the point like 
this: “If modeling groups, either consciously or by ‘natural selection,’ are 
tuning their flagship models to fit the same observations, spread of pre-
dictions becomes meaningless: eventually they will all converge to a 
delta-function” (2008).

13.5	 �The Inevitability of Values: Douglas 
contra Jeffrey

What should we make of all of these problems from the point of view of 
the Rudner–Jeffrey debate? This much should be clear: Jeffrey’s goal of 
separating the epistemic from the normative cannot be achieved using 
UQ based on statistical ensemble methods. But Heather Douglas’s (2000) 
discussion of the debate about science and values should have made this 
clear from the beginning.9

Douglas noted a flaw in Jeffrey’s response to Rudner: scientists often 
have to make methodological choices that do not lie on a continuum. 
Suppose I am investigating the hypothesis that substance X causes disease 
D in rats. I give an experimental group of rats a large dose of X and then 
perform biopsies to determine what percentage has disease D. How do I 
perform the biopsy? Suppose that there are two staining techniques I 
could use. One is more sensitive and the other is more specific—one 
produces more false positives and the other more false negatives. Which 
one should I choose? Douglas notes that which one I choose will depend 
on my inductive risk profile. To the extent that I weigh more heavily the 
consequences of saying that the hypothesis is false if it is in fact true, I will 
chose the stain with more false positives, and vice versa. But that, of 
course, depends on my social and ethical values. Social and ethical values 
therefore play an inevitable role in science.

Now, inevitability is always relative to some fixed set of background 
conditions, and the set of background conditions Douglas assumes 
include the use of something like classical statistical methods. If I have 
some predetermined level of confidence, alpha, say .05, then which stain-
ing method I use will raise or lower, respectively, the likelihood that the 
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hypothesis will be accepted. What if, on the other hand, all toxicologists 
were good Bayesians of the kind that Jeffrey almost surely had in mind? 
What is the argument that they could not use their expert judgment, hav-
ing chosen whatever staining method they like, to factor in the specificity 
and sensitivity of the method when they use the evidence they acquire to 
update their degrees of belief about the hypothesis? In principle, surely 
they could. By factoring the specificity and sensitivity of the method into 
their degrees of belief, they are essentially eliminating or “screening out” 
the influence of the social or ethical values that otherwise would have 
been present. And if they could do this, social and ethical values, at least 
the kind that normally play a role in the balance of inductive risks, would 
not have to play a role in their assessments of the probabilities.10 Let us 
call this the Bayesian response to the Douglas challenge (BRDC).

Back to climate science: another way to look at the problem with 
ensemble statistical methods is that they have no hope of skirting 
Douglas’s challenge and hence no hope of fulfilling their intended role—
to divide the epistemic from the normative. To the extent that we use 
sampling methods and ensemble averages, we are doomed to embed past 
methodological choices of climate modelers into our UQ. And, for just 
the reasons that Douglas highlights, along with some others, method-
ological choices often need to reflect judgments of social and ethical 
values.

There are at least two ways in which methodological choices in the 
construction of climate models will often ineliminably reflect value judg-
ments in the typically social or ethical sense.

	1.	 Model choices have reflected balances of inductive risk.
	2.	 Models have been optimized, over their history, to particular pur-

poses, and to particular metrics of success.

The first point should be obvious from our discussion of Douglas. 
When a climate modeler is confronted with a choice between two ways 
of solving a modeling problem, she may be aware that each choice strikes 
a different balance of inductive risks with respect to a problem that con-
cerns her at the time. Choosing which way to go, in such a circumstance, 
will have to reflect a value judgment. This will always be true so long as a 
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methodological choice between methods A and B are not epistemologi-
cally forced in the following sense: while option A can be justified on the 
grounds that it is less likely to predict, say, outcome O, than B is when O 
will not in fact occur, option B could also be preferred on the grounds 
that it is more likely to predict O if O will in fact occur. So, to return to 
our old example, if the central question is whether or not some glacial 
dam will burst, there will often be a modeling choice that will make it less 
likely to predict that the dam will burst when it fact it won’t, and a differ-
ent modeling choice that will make it less likely to predict that the dam 
won’t burst when in fact it will. In such a situation, neither choice will be 
“objectively correct,” since the correct choice will depend on which of the 
above two situations is deemed more undesirable.

As to the second point, when a modeler is confronted with a method-
ological choice, she will have to decide which metric of success to use 
when evaluating the likely success of the various possibilities. And it is 
hard to see how choosing a metric of success will not reflect a social or 
ethical value judgment, or possibly even a response to a political pressure, 
about which prediction task is more “important” (in a not purely epis-
temic sense.) Suppose choice A makes a model that looks better at match-
ing existing precipitation data, but choice B better matches temperature 
data. A modeler will need to decide which prediction task is more impor-
tant in order to decide which method of evaluation to use and that will 
influence the methodological choice she makes.

13.6	 �Three Features of Climate Models

The discussion thus far should make two things clear. First, ensemble 
sampling approaches to Uncertainty Quantification (UQ) are founded 
on conceptually shaky ground. Second, and perhaps more importantly, 
they do not enable UQ to fulfill its primary function, namely, to divide 
the epistemic from the normative in the way that Jeffrey expected proba-
bilistic forecasts to do. And they fail for just the reasons that Douglas has 
made perspicuous: because they ossify past methodological choices 
(which themselves can reflect balances of inductive risk and other social 
and ethical values) into “objective” probabilistic facts.
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This raises, of course, the possibility that climate UQ could respond to 
these challenges with something akin to the BRDC: by adopting a thor-
oughly Bayesian approach to quantifying probabilities. Recall the prob-
lem faced by Douglas’ hypothetical toxicologist. If she is looking for 
statistically significant evidence that substance X is causing disease D at 
some predetermined level of “statistical significance,” then a particular 
choice of staining method will either raise or lower the probability of 
finding that result. But if she has some prior probability for the hypoth-
esis, and updates it in response to the evidence acquired in the biopsies, 
then the choice of staining method needn’t influence those probabilities. 
Similarly, one might hope, the Bayesian climate scientist might avoid the 
fundamental problem of any approach founded on “objective” ensemble 
averaging: that past methodological choices become features of the 
ensemble and hence exert a pull on the estimated uncertainties.

Indeed, this approach has been endorsed by several commentators.11 
Unfortunately, the role of genuinely subjective Bayesian approaches to 
climate UQ has been primarily in theoretical discussions of what to do; 
they have not been widely drawn on to produce actual estimates that one 
sees published and that are delivered to policymakers. Here, I identify 
some of the difficulties that might explain why these methods are not 
used in the field. Genuinely Bayesian approaches to UQ in climate sci-
ence, in which the probabilities delivered reflect the expert judgment of 
climate scientists rather than observed frequencies of model outputs, face 
several difficulties. In particular, the difficulties arise as a consequence of 
three features of climate models: their massive size and complexity; the 
extent to which epistemic agency in climate modeling is distributed, in 
time and space, and across a wide range of individuals; and the degree to 
which methodological choices in climate models are generatively 
entrenched. Let me take each of these features in turn.

�Size and Complexity

Climate models are enormous and complex. Take one of the state-of-the-
art American models, NOAA’s GFDL CM2.x. The computational model 
itself contains over a million lines of code. There are over a thousand 
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different parameter options. It is said to feature modules that are “con-
stantly changing” and as well as hundreds of initialization files that con-
tain “incomplete documentation” (Dunne 2006, p. 00). It is also said to 
contain novel component modules written by over 100 different people. 
Just loading the input data into a simulation run takes over two hours. 
Using over 100 processors running in parallel, it takes weeks to produce 
one model run out to the year 2100 and months to reproduce thousands 
of years of paleoclimate (Dunne 2006). Storing the data from a state of 
the art global climate model (GCM) every five minutes can produce tens 
of terabytes per model year.

Another aspect of the models’ complexity is their extreme “fuzzy mod-
ularity” (Lenhard and Winsberg 2010). In general, a modern state-of-
the-art climate model is a model with a theoretical core that is surrounded 
and supplemented by various submodels that themselves have grown into 
complex entities. Their overall interaction determines the dynamics—
and these interactions are themselves quite complex. The coupling of 
atmospheric and oceanic circulation models, for example, is recognized 
as one of the milestones of climate modeling (leading to so-called cou-
pled general circulation models). Both components had an independent 
modeling history, including an independent calibration of their respec-
tive model performance. Putting them together was a difficult task 
because the two submodels now interfered dynamically with each other.12

Today, atmospheric GCMs have lost their central place and given way 
to a deliberately modular architecture of coupled models that comprise a 
number of highly interactive submodels, like atmosphere, oceans, or ice 
cover. In this architecture, the single models act (ideally!) as interchange-
able modules.13 This marks a turn from a reliance on one physical core—
the fundamental equations of atmospheric circulation dynamics—to the 
development of a more networked picture of interacting models from 
different disciplines (see Küppers and Lenhard 2006).

In sum, climate models are made up of a variety of modules and sub-
models. There is a module for the general circulation of the atmosphere, 
a module for cloud formation, for the dynamics of sea and land ice, for 
effects of vegetation, and many more. Each of them, in turn, includes a 
mixture of principled science and parameterizations. And it is the inter-
action of these components that generates the overall observable dynamics 
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in simulation runs. The results of these modules are not first gathered 
independently and then only after that synthesized. Rather, data are con-
tinuously exchanged between all modules during the runtime of the sim-
ulation.14 The overall dynamics of one global climate model is the complex 
result of the interaction of the modules—not the interaction of the results 
of the modules. This is why I modify the word “modularity” with the 
warning flag “fuzzy” when I talk about the modularity of climate models: 
due to interactivity and the phenomenon of “balance of approximations,” 
modularity does not break down a complex system into separately man-
ageable pieces.15

�Distributed Epistemic Agency

Climate models reflect the work of hundreds of researchers working in 
different physical locations and at different times. They combine incred-
ibly diverse kinds of expertise, including climatology, meteorology, atmo-
spheric dynamics, atmospheric physics, atmospheric chemistry, solar 
physics, historical climatology, geophysics, geochemistry, geology, soil 
science, oceanography, glaciology, paleoclimatology, ecology, biogeogra-
phy, biochemistry, computer science, mathematical and numerical mod-
eling, time series analysis, and so forth.

Epistemic agency in climate science is not only distributed across space 
(the science behind model modules comes from a variety of labs around 
the world) and domains of expertise but also across time. No state-of-the-
art, coupled atmosphere-ocean GCM (AOGCM) is literally built from 
the ground up in one short surveyable unit of time. They are assemblages 
of methods, modules, parameterization schemes, initial data packages, 
bits of code, coupling schemes, and so forth that have been built, tested, 
evaluated, and credentialed over years or even decades of work by climate 
scientists, mathematicians, and computer scientists of all stripes.16

No single person, indeed no group of people in any one place, at one 
time, or from any one field of expertise, is in a position to speak authori-
tatively about any AOGCM in its entirety.17
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�Methodological Choices are Generatively Entrenched

In our (2010), Johannes Lenhard and I argued that complex climate 
models acquire an intrinsically historical character and show path-
dependency. The choices that modelers and programmers make at one 
time about how to solve particular problems of implementation have 
effects on what options will be available for solving problems that arise at 
a later time. And they will have effects on what strategies will succeed and 
fail. This feature of climate models, indeed, has lead climate scientists 
such as Smith (2002) and Palmer (2001) to articulate the worry that dif-
ferences between models are concealed in code that cannot be closely 
investigated in practice.

Of course the modelers could—in principle—re-work the entire code. 
The point is, however, that in even moderately complex cases, this is not 
a viable option for practical reasons. At best, this would be far too tedious 
and time-consuming. Conceivably, we would not even know how to pro-
ceed. So in the end, each step in the model building process, and how 
successful it might be, could very well depend on the particular way pre-
vious steps were carried out—because the previous steps are unlikely to 
be completely disentangled and redone.

This is the sense in which modeling choices are generatively entrenched. 
Modeling choices that are made early in the model construction process 
have effects on the models at later times in unpredictable ways. And the 
success of modeling choices at later times depends in unpredictable ways 
on earlier modeling choices.

13.7	 �Summary

To summarize then, state-of-the-art global climate models are highly 
complex, they are the result of massively distributed epistemic labors, and 
they arise from a long chain of generatively entrenched methodological 
choices whose effects are epistemically inscrutable. These three features, I 
would now argue, make the BRDC very difficult to pull off with respect 
to climate science.
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13.8	 �The Failure of the BRDC in Climate 
Science

Recall how the BRDC is meant to go: Rudner argues that the scientist 
who accepts or rejects hypotheses has to make value judgments. Jeffrey 
replies that she should only assign probabilities to hypotheses on the basis 
of the available evidence, and, in so doing, avoid making value judg-
ments. Douglas argues that scientists make methodological choices, and 
that these choices will become embedded in the mix of elements that give 
rise to estimates of probabilities that come from classical, as opposed to 
Bayesian, statistics. Since those methodological choices will involve a bal-
ance of inductive risks, the scientist cannot avoid value judgments. The 
BRDC suggests that scientists avoid employing any deterministic algo-
rithm that will transmit methodological choices into probabilities (like 
employing a classical statistical hypothesis test in the toxicology case, or 
employing ensemble averages in the climate case), and should instead rely 
on their expert judgment to assess what the appropriate degree of belief 
in a hypothesis is given that a particular methodological choice is made 
and resultant evidence acquired. The probabilities such a scientist would 
offer should be the scientist’s subjective degree of belief, one that has been 
conditionalized on the available evidence.

Unfortunately, large groups of individuals, distributed across space 
and time, do not possess subjective degrees of belief. Subjective Bayesian 
probabilities need to be “owned” by one individual epistemic agent 
(Parker 2011), or, at the very least, by manageably small epistemic 
groups.18 But the three features of global climate models I have pointed 
to—that they are highly complex, are the result of massively distributed 
epistemic labors, and arise from a long chain of generatively entrenched 
methodological choices—make it seem implausible, at least to me, that 
any individual epistemic agent19 will ever be in good position to have a 
useful degree of expert judgment of the kind required to implement the 
BRDC.20 The BRDC precisely requires that one epistemic agent be capa-
ble of making an informed judgment about how every single method-
ological choice on which a climate model is built ought to influence his 
or her degree of belief in a hypothesis that he or she is evaluating with the 
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use of that model. But how can we expect any individual, or well-defined 
group of experts, to do this successfully when faced with massively com-
plex models, built over large expanses of space and time, and built on 
methodological choices that have become generatively entrenched, and 
hence epistemically inscrutable?

The argument thus far, then, can be summarized as follows. Climate 
science, and the construction of climate models, like almost all of science, 
is full of unforced methodological choices. And like in the rest of science, 
these choices often reflect priorities with respect to predictive power, and 
balances of inductive risk. There is nothing new here. It is plausible to 
suppose, moreover, that Jeffrey understood this to be a feature of much of 
science, and still believed, pace Douglas, that the subjective Bayesian had 
available a defense of value-free science: once the methodological choices 
are made, the scientists qua scientist can update her degree of belief in 
any relevant hypothesis in light of the evidence that comes from those 
methodological choices—and that updating can be free of the canoni-
cally social or ethical values that guided those methodological choices in 
the first place. Or at least, so a modern Jeffrien is entitled to maintain. So 
why is climate science different? It is different because of the size, com-
plexity, socially cooperative origin, and historical path dependency of cli-
mate modes. And it is different because climate experts, in light of the 
individually limited role that they play in the socially extended activity of 
building climate knowledge, can only arrive at posterior degrees of belief 
in ways that are fundamentally mediated by the complex models that 
they build. And they are incapable of sorting out the ways in which past 
methodological choices are influencing, through their entrenchment in 
the very models that mediate their inferences, the ways in which they 
could possibly arrive at those posterior degrees of belief. Their judgments 
about climate uncertainties, therefore, whether they come from “objec-
tive” ensemble methods, or from their subjective judgments, cannot be 
free from the social values that guide methodological choices everywhere 
in the sciences.
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13.9	 �Values in the Nooks and Crannies

At this point in the discussion, it might be natural for a reader to ask for 
a specific example of a social, political, or ethical value that has influenced 
a methodological choice in the history of climate modeling. It is easy to 
give a couple of potted examples. In previous work, I have focused on the 
extent to which climate models have been optimized, over their history, 
to particular purposes, and to particular metrics of success.21 I gave the 
example that, in the past, modelers had perhaps focused on the metric of 
successfully reproducing known data about global mean surface tempera-
ture, rather than other possible metrics. I speculated that they might have 
done so because of a social and political climate in which the concern was 
about “global warming,” a phrase that is now being supplanted by the 
phrase “anthropogenic climate change.”

But I now think it was a mistake to focus on particular historical claims 
about specific motives and choices. I want to focus instead on the fact 
that climate modeling involves literally thousands of unforced method-
ological choices.22 Many crucial processes are poorly understood, many 
compromises in the name of computational exigency need to be made, 
and so forth. All one needs to see is that, as in the case of the biopsy stain, 
no unforced methodological choice can be defended in a value vacuum. 
If one asks, “Why parameterize this process rather than try to resolve it 
on the grid?” or “Why use this method for modeling cloud formation?” 
it will rarely be the case that the answer can be “because that choice is 
objectively better than the alternative.” Rather, most choices will be bet-
ter in some respects and worse in other respects than their alternatives, 
and the preference for the one over the other will reflect the judgment 
that this or that respect is more important. Some choices will invariably 
increase the probability of finding a certain degree of climate variation, 
while its alternative will do the opposite—and so the choice that is made 
can be seen as reflecting a balance of inductive risks.

All we need to argue here is that many of the choices made by climate 
modelers had to have been unforced in the absence of a relevant set of 
values—that in retrospect, such choices could only be defended against 
some set of predictive preferences and some balance of inductive risks. In other 
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words, any rational reconstruction of the history of climate science would 
have to make mention of predictive preferences and inductive risks at 
pain of making most of these choices seem arbitrary. But what I want to 
be perfectly clear about here (in a way that I think I have not been in 
earlier work) is that I do not mean to attribute to the relevant actors these 
psychological motives, nor any particular specifiable or recoverable set of 
interests.23 I am not in the business of making historical, sociological, or 
psychological claims. I have no idea why individual agents made the 
choices that they made—and indeed it is part of my argument that these 
facts are mostly hidden from view. In fact, for many of the same reasons 
that these methodological choices are immune from the BRDC, they are 
also relatively opaque to us from a historical, philosophical and sociologi-
cal point of view. They are buried in the historical past under the com-
plexity, epistemic distributiveness, and generative entrenchment of 
climate models.

Some readers may find that this makes my claim about the value-
ladenness of climate models insufficiently concrete to have any genuine 
bite. One might ask: “Where are the actual values?” Some readers, in 
other words, might be craving some details about how agents have been 
specifically motivated by genuine concrete ethical or political consider-
ations. They might be tempted to think that I have too abstractly identi-
fied the role of values here to be helpful. But this is to miss the dialectical 
structure of my point. The very features that make the BRDC implausi-
ble make this demand unsatisfiable. No help of the sort that “finds the 
hidden values” can be forthcoming on my account. The social, political, 
and ethical values that find their way into climate models cannot be 
recovered in bite-sized pieces.

Recall that we began this whole discussion with a desire to separate the 
epistemic from the normative. But we have now learned that, with respect 
to science that relies on models that are sufficiently complex, epistemi-
cally distributed, and generatively entrenched, it becomes increasingly 
difficult to tell a story that maintains that kind of distinction. And with-
out being able to provide a history that respects that distinction, there is 
no way to isolate the values that have been involved in the history of cli-
mate science.
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One consequence of the blurred distinction between the epistemic and 
the normative in our case is that the usual remarks philosophers often 
make about the value-ladenness of science do not apply here. Those who 
make the claim that science is value laden often follow up with the advice 
that scientists ought to be more self-conscious in their value choices and 
that they ought to ensure that their values reflect those of the people they 
serve. Or they suggest implementing some system for soliciting public 
opinions or determining public values and making that the basis for these 
determinations. But on the picture I am painting, neither of these options 
is really possible. The bits of value-ladenness lie in all the nooks and cran-
nies; they might very well have been opaque to the actors who put them 
there, and they are certainly opaque to those who stand at the end of the 
long, distributed, and path-dependent process of model construction. In 
the case of the biopsy stains I can say “consumer protection is always 
more important than corporate profits! Even in the absence of epistemo-
logically forcing considerations, the toxicologist should choose the stain 
on the left!” But in the climate case, the situation is quite different. We 
can of course ask for a climate science that does not reflect systematic 
biases, unlike one cynically paid for by the oil industry. But this demand 
for a science that reflects the “right values” cannot go “all the way down” 
into all those nooks and crannies. In those relevant respects, it becomes 
terribly hard to ask for a climate science that reflects “better” values.24

13.10	 �Conclusion

So what could Climate Science—its practitioners, its public consumers, 
and the policymakers who rely on it—do? One very sensible response to 
a state of affairs in which there is no principled and value-neutral way to 
assign a precise probability distribution to climate outcomes is to refrain 
from giving one—certainly from giving one that is derived in a simplistic 
way from the distribution of modeling results that come from the set of 
models on the market. This is what Wendy Parker has urged in response 
to some of my earlier work. Perhaps, she argues, what we have learned is 
that a probability density function over all the possible outcomes is too 
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detailed and precise a depiction. Perhaps what climate scientists ought to 
deliver to the public, and to policymakers, is something coarser.

In practice, coarser depictions of uncertainty are what we actually get from 
expert groups like the Intergovernmental Panel on Climate Change 
(IPCC). Even for GMST, IPCC uncertainty estimates reached on the basis 
of expert judgment assign only a portion of the probability mass and, 
moreover, in some cases assign it to a predictive range that extends signifi-
cantly beyond that delineated by predictions from today’s state-of-the-art 
models and/or by more formal probabilistic methods.25

She gives the following example from the IPCC report (see Fig. 13.1):
In Fig. 13.1, the gray bars give the ranges of values (for each emissions 

scenario), inside which the IPCC experts deemed that there was at least a 
66% chance that the actual value of global mean surface temperature 
would fall. As we can see, this range is significantly larger than any of the 
formal methods for calculating probability would give us. This reflects 
their judgment, as Parker puts it, that “today’s state-of-the-art models do 
not thoroughly or systematically sample existing uncertainty about how 
to adequately represent the climate system. More specifically, it reflects 
the judgment that these models are more likely to underestimate rather 
than overestimate changes in GMST and that, while they may well be off 
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Fig. 13.1  Projections and uncertainties for global mean temperature increase in 
2090–2099 (rel. to 1980–1999 avg.) for the six SRES marker scenarios (Source: IPCC 
AR4 WG1 2007)
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by something like 50% in their projections for 2050, there is not a high 
probability that they are off by something like 500%” (Ibid., Parker).

I agree with Parker (and the IPCC!) that this is an excellent strategy. 
What I do not agree with is that it is a value-free strategy. Notice what 
Parker correctly notes is the justification for this report: that there is a 
(relatively) “high probability” that the models may be off by something 
like 50%, but a (relatively) “low probability” that they are off by some-
thing like 500%. I agree that these are the correct sorts of judgments to 
be making, but these are classic Rudnerian judgments—they reflect a 
balance of inductive risks. Deciding to omit some chunk of possibility 
space from covering a range of values because there is a sufficiently low 
(second order) probability that it belongs there is exactly the kind of 
judgment that Rudner was talking about—only elevated to the level of 
second order probabilities.26 It can only be made with a combined judg-
ment of the probability that the real value lies in that space, and of the 
moral, social, or political cost of being wrong. But this is exactly what the 
IPCC is doing when they leave off those tails on the grounds that they 
have a “low probability.” It is a logical possibility, after all, that one might 
make the judgment that, even though the probability that the models are 
off by 500% is extremely small, that the seriousness (“in the typically 
ethical sense”—Rudner) of neglecting that possibility and having it actu-
ally be the case would outweigh that very small probability.

I would like to emphasize that I am not criticizing the IPCC here. I 
agree with Parker that this is the correct thing to do in light of the present 
situation with climate models, and in light of the situation that is likely 
to exist under any practicable state of affairs. But I insist that it is not 
value free. It is only a slight twist on the classic Rudnerian decision to 
decide that the (second order) probability that less than 66% of the (first 
order) probability lies in the gray bar is sufficiently low to be safely 
ignored. To decide that second order probabilities are sufficiently low to 
be ignored is to choose a balance of inductive risks. It reflects a judgment 
that the risk of sticking their necks out further and being wrong is equally 
balanced by the risk of not sticking it out far enough. As long as there is 
no principled PDF to be offered, some amount of neck sticking is 
required. And how far out one should stick one’s neck is a classic balance 
of inductive risks.
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If one is uncomfortable with second order probabilities, there are other 
ways to interpret what the IPCC is doing. But none of them change the 
conclusion. It is clear that the IPCC cannot be perfectly confident that 
exactly 66% of the probability mass lies precisely in the grey bars. If they 
were perfectly confident of this, than they would have a principled pre-
cise first order probability—and this is what we have argued, above, they 
cannot have. But this means that could have made a more precise esti-
mate with less confidence, or a less precise estimate with more confi-
dence. And choosing the right balance of precision and confidence here 
is a value judgment.

Of course, when values enter into the picture in this kind of way—
when the experts at the IPCC make a determination about what kinds of 
minimum probabilities to report—the points I made earlier about the 
inscrutability of the values no longer apply. At this point in the process, 
one might even say that the values are being applied fairly self-consciously. 
And so vis-à-vis this part of the process, I think the ordinary lessons about 
the role of values in science (that scientists ought to be more self-conscious 
in their value choices, and that they ought to ensure that their values 
reflect those of the people they serve, etc.) do apply. And I have no reason 
to doubt that the IPCC does a reasonably good job of this. But we should 
not let this conceal the fact that the fundamental science on which IPCC 
bases its judgments (all the color-coded action inside the gray bars) con-
ceals, in all the ways I described in the last section, an opaque, inscrutable 
tapestry of values.
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Notes

1.	 Of course one might have worries about whether elected representatives 
generally represent the values of their constituents but that is the subject 
of a different discussion.

2.	 I variously use the expressions “social values,” “ethical values,” or “social 
and ethical values” which should not be read as flagging important phil-
osophical differences.

3.	 See also (Frank 1954; Neurath 1913; Douglas 2000; Howard 2006; 
Longino 1990, 1996, 2002; Kourany 2003a, b; Solomon 2001; Wilholt 
2009; Elliott 2011a, b).

4.	 Many discussions of UQ in climate science will also identify data uncer-
tainty. In evaluating a particular climate model, including both its structure 
and parameters, we compare the model’s output to real data. Climate mod-
elers, for example, often compare the outputs of their models to records of 
past climate. These records can come from actual meteorological observa-
tions or from proxy data—inferences about past climate drawn from such 
sources as tree rings and ice core samples. Both of these sources of data, 
however, are prone to error, and so we are uncertain about the precise 
nature of the past climate. This, in turn, has consequences for our knowl-
edge of the future climate. While data uncertainty is a significant source of 
uncertainty in climate modeling, I do not discuss this source of uncertainty 
here. For the purposes of this discussion, I make the crude assumption that 
the data against which climate models are evaluated are known with cer-
tainty. Notice, in any case, that data uncertainty is part of parameter uncer-
tainty and structural uncertainty, since it acts by affecting our ability to 
judge the accuracy of our parameters and our model structures.

5.	 A parameter for a model is an input that is fixed for all time, while a vari-
able takes a value that varies with time. A variable for a model is thus 
both an input for the model (the value the variable takes at some initial 
time) and an output (the value the variable takes at all subsequent times). 
A parameter is simply an input.

6.	 Some might argue that if we look at how the models perform on past 
data (for, say, mean global surface temperature), they often are distrib-
uted around the observations. But, first, these distributions do not dis-
play anything like random characteristics (i.e., normal distribution). 
And, second, this feature of one variable for past data (the data for which 
the models have been tuned) is a poor indicator that it might obtain for 
all variables and for future data.
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7.	 Masson and Knutti (2011) discuss this phenomenon and its effects on 
multimodel sampling, in detail.

8.	 Shewhart (1939).
9.	 Which, inter alia, did much to bring the issue of “inductive risk” back 

into focus for contemporary philosophy of science and epistemology.
10.	 Whether they would do so in fact is not what is at issue here. Surely that 

would depend on features of their psychology and of the institutional 
structures they inhabit, about which we would have to have a great deal 
more empirical evidence before we could decide. What is at stake here is 
whether their social and ethical values would necessarily play a role in 
properly conducted science.

11.	 See, for example, Goldstein and Rougier (2006).
12.	 For an account of the controversies around early coupling, see Shackley 

et al. (1999); for a brief history of modeling advances, see Weart (2010).
13.	 As, for example, in the earth system modeling framework. See, e.g., 

Dickenson et al. (2002).
14.	 Because data are being continuously exchanged one can accurately 

describe the models as parallel rather than serial in the sense discussed in 
Winsberg (2006).

15.	 “Balance of approximations” is a term introduced by Lambert and Boer 
(2001) to indicate that climate models sometimes succeed precisely 
because the errors introduced by two different approximations cancel 
each other out.

16.	 There has been a move, in recent years, to eliminate “legacy code” from 
climate models. Even though this may have been achieved in some mod-
els (this claim is sometimes made about CM2), it is worth noting that 
there is a large difference between coding a model from scratch and 
building it from scratch, that is, devising and sanctioning from scratch 
all of the elements of a model.

17.	 See Rougier and Crucifix, this volume.
18.	 I do not have the space to talk about what “manageably small” might 

mean here. But see our discussion of “catch and toss” group authorship 
in the work mentioned in the next note.

19.	 One might reasonably wonder whether, in principle, a group could be an 
epistemic agent. In fact, this is the subject of a forthcoming paper by 
Bryce Huebner, Rebecca Kukla, and me. I would argue here, however, 
and hope that we will argue in more detail in that paper, that the analytic 
impenetrability of the models made by the groups involved here is an 
obstacle to these groups being agents with subjective degrees of belief.
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20.	 One can think of the contribution to this volume by Rougier and 
Crucifix as a recognition of, and attempt to address, this problem: that 
complex climate models are too complex to help climate scientists 
develop subjective degrees of belief.

21.	 See especially Biddle and Winsberg (2009), and also Winsberg (2010, 
ch. 6).

22.	 Here, my point is very well supported by Elisabeth Lloyd’s contribution 
to this volume. Her chapter chronicles in detail a very nice example of 
the kind of unforced methodological choice I am talking about: the 
choice of how to calibrate the relevant satellite data. The way Lloyd tells 
the story, the process involved a whole host of data-processing decisions 
and choices. I am simply adding to Lloyd’s narrative the observation that 
each of the decisions and choices she chronicles can be understood as 
being underwritten by balances of inductive risk and prediction 
preferences.

23.	 One might complain that if the decisions do not reflect the explicit psy-
chological motives or interests of the scientist, then they do not have a 
systematic effect on the content of science, and are hence no different 
than the uncontroversial examples of social values I mentioned in the 
introduction (such as attaching greater value to AIDS research than to 
algebraic quantum field theory). But though the effect of the values in 
the climate case might not have a systematic effect on the content of sci-
ence, it is nonetheless an effect internal to science in a way that those 
other examples are not.

24.	 Again, Elisabeth Lloyd’s contribution to this volume illustrates this 
point.

25.	 This comes from Parker’s remarks at the 2011 meeting of the Eastern 
division of the American Philosophical Association during an author 
meets critic session for my (2010).

26.	 The probability that less than 66% of the probability mass lies inside the 
gray bar is a second order probability because it talks about the probabil-
ity of a probability.
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