
Chapter 8
Eliciting Multivariate Uncertainty from
Experts: Considerations and Approaches Along
the Expert Judgement Process
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Abstract In decision and risk analysis problems, modelling uncertainty proba-
bilistically provides key insights and information for decision makers. A common
challenge is that uncertainties are typically not isolated but interlinked which
introduces complex (and often unexpected) effects on the model output. Therefore,
dependence needs to be taken into account and modelled appropriately if simpli-
fying assumptions, such as independence, are not sensible. Similar to the case of
univariate uncertainty, which is described elsewhere in this book, relevant historical
data to quantify a (dependence) model are often lacking or too costly to obtain. This
may be true even when data on a model’s univariate quantities, such as marginal
probabilities, are available. Then, specifying dependence between the uncertain
variables through expert judgement is the only sensible option. A structured and
formal process to the elicitation is essential for ensuring methodological robustness.
This chapter addresses the main elements of structured expert judgement processes
for dependence elicitation. We introduce the processes’ common elements, typically
used for eliciting univariate quantities, and present the differences that need to be
considered at each of the process’ steps for multivariate uncertainty. Further, we
review findings from the behavioural judgement and decision making literature on
potential cognitive fallacies that can occur when assessing dependence as mitigating
biases is a main objective of formal expert judgement processes. Given a practical
focus, we reflect on case studies in addition to theoretical findings. Thus, this chapter
serves as guidance for facilitators and analysts using expert judgement.
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8.1 Introduction

Probabilistic modelling of uncertainties is a key approach to decision and risk
analysis problems. It provides essential insights on the possible variability of a
model’s input variables and the uncertainty propagation onto its outputs.

Typically, uncertainties cannot be treated in isolation as they often exhibit
dependence between them which can have unanticipated and (if not properly
modelled) possibly misleading effects on the model outcome. Therefore, modelling
dependence of uncertainties is an area of ongoing research and several modelling
approaches have been developed, serving different purposes and allowing for
varying levels of scrutiny. A common challenge with regards to model quantification
is a lack of relevant historical data while simplifying assumptions, such as that of
independence, are not justifiable. Then, the only sensible option for quantifying a
model is by eliciting the dependence information through expert judgement. This is
even necessary when relevant data on the marginal probabilities are available.

A structured approach to eliciting multivariate uncertainty is encouraged as
it supports experts to express their knowledge and uncertainty accurately, hence
producing well-informed judgements. For instance, cognitive fallacies might be
present when experts assess dependence which can inhibit the judgements’ accu-
racy. Therefore, mitigation of these fallacies is a main objective of an elicitation
process. Further, a structured process addresses other questions which affect the
reliability of the elicited result and hence model outcome, such as aggregating
various judgements. Lastly, a formal process makes the elicited results transparent
and auditable for anyone not directly involved in the elicitation.

8.1.1 Objective and Structure of the Chapter

Complementary to the case of eliciting univariate uncertainty, this chapter’s objec-
tive is to outline the main elements of formal expert judgement processes for
multivariate uncertainty elicitation. This is done by discussing theoretical and
empirical findings on the topic, though the reader should note that fewer findings
are available for eliciting joint distributions than for the elicitation of univariate
quantities.

The structure of this chapter is as follows. In the remainder of this section we
introduce a definition of dependence for the subjective probability context which
establishes a common language and understanding of the key concept discussed
here. In Sect. 8.2, the importance of formal expert judgement processes is discussed
and an overview of the necessary adjustments for dependence elicitation is given.
This provides the reader with the scope of the topic. Section 8.3 outlines the
heuristics and biases that might occur when eliciting dependence. Then, Sect. 8.4
discusses the preparation of an elicitation (or the pre-elicitation stage) which
for instance entails the choice of the elicited forms and the training of experts.
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In Sect. 8.5, we present considerations for the actual elicitation phase, including
structuring and decomposition methods as well as the quantitative assessment. In
Sect. 8.6, we review required alterations of the process for the post-elicitation stage,
such as when combining the expert judgements. Finally, Sect. 8.7 concludes the
chapter by summarising the main points addressed and discussing the status-quo of
this research problem.

8.1.2 Dependence in the Subjective Probability Context

In this chapter, we use the terms dependence and multivariate uncertainty inter-
changeably and in a general sense. They contrast the specific association measures
(or dependence parameters) that quantify a dependence model and are therefore
often used as elicited variables. When discussing dependence in a general sense, we
refer to situations with multiple uncertain quantities and when gaining information
about one quantity, we change the uncertainty assessments for the others. More
formally, we say that two uncertain quantities X and Y are independent (for experts)
if they do not change their beliefs about the distribution of X after obtaining
information about Y . This is easily extended to higher dimensions in which all
quantities are independent of one another if knowing about one group of variables
does not change experts’ beliefs about the other variables. It follows that dependence
is simply the absence of independence.

Note that dependence in a subjective probability context is a property of
an expert’s belief about some quantities so that one expert’s (in-)dependence
assessment might not be shared with another expert who possesses a different state
of knowledge (Lad 1996).

8.2 Structured Expert Judgement Processes: An Overview

The necessity for a structured and formal process when eliciting uncertainty from
experts, such as in form of probabilities, has been recognised since its earliest
approaches. For instance, it has been acknowledged in the area of Probabilistic Risk
Analysis (PRA) which comprises a variety of systematic methodologies for risk
estimation with uncertainty quantification at its core (Bedford and Cooke 2001).
From a historical perspective, main contributions in PRA have been made in the
aerospace, nuclear and chemical process sector. Hence, after expert judgement was
used only in a semi-formal way in one of the first full-scale PRAs, the original
Reactor Safety Study1 by the US Nuclear Regulatory Commission (USNRC 1975),

1The study is also known as WASH-1400 and as the Rasmussen Report due to Norman Carl
Rasmussen. At that time, the use of expert opinion for assessing uncertainties was often viewed
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major changes towards a more scientific and transparent elicitation process were
made in the subsequent studies, known as NUREG-1150 (USNRC 1987; Keeney
and Von Winterfeldt 1991). When reflecting on the historical development of PRA,
Cooke (2013) highlights the improvements made through a traceable elicitation
protocol as a newly set standard and main achievement for expert judgement studies.

Another pioneering contributor to formal approaches for expert judgement is the
Stanford Research Institute (SRI). The Decision Analysis Group of SRI similarly
acknowledged the importance of a formal elicitation process when eliciting uncer-
tainty from experts. Therefore, they developed a structured elicitation protocol that
supports a trained interviewer through a number of techniques to reduce biases and
aid the quantification of uncertainty (Spetzler and Staël von Holstein 1975; Staël
von Holstein and Matheson 1979).

Following from these early contributions, various proposals for formal expert
judgement processes have been made and its various components were further
developed. While not one particular step-by-step process to follow exists given the
varying and particular objectives of each elicitation, there is agreement regarding
which high level steps are essential. Fairly complete elicitation protocols are for
instance presented in Merkhofer (1987), Morgan and Henrion (1990), Cooke and
Goossens (1999), Walls and Quigley (2001), Clemen and Reilly (2014) and EFSA
(2014). Even though these references explicitly address the case of eliciting a
univariate quantity, they serve as guidance for our purpose of presenting and
discussing the considerations for eliciting dependence.

The elicitation of dependence follows historically from advances made for
eliciting univariate uncertainty and an overview of the historical development of
expert judgement in risk analysis is presented in Cooke (2013). This development
is not surprising given that marginal distributions need to be specified (at least
implicitly) before any dependence assessment can be made. Furthermore, univariate
quantities are (typically) more intuitive to assess. Whereas some findings for
eliciting univariate uncertainty are still applicable in the multivariate case, for other
parts of the process adjustments need to be made. Figure 8.1 shows the main
elements of elicitation processes with the modifications that are necessary when
eliciting dependence.

Regarding the different roles during an elicitation, in this chapter we consider
the situation of a specific decision or risk analysis problem that is of importance
for a decision maker. Experts assess the uncertainty on the variables without
any responsibility for the model outcome or consequences of the later decision.
The experts are chosen based on their substantive (also subject-matter) expertise,
meaning they are experts on the particular topic of the decision problem. This
implies that the experts might not have normative expertise, thus they are not

highly sceptical, however a main challenge was that until then no nuclear plant accident had been
observed. Therefore, the report, together with its use of expert opinion, was only revived due to
the Three Mile Island accident (1979). After the incident, the report’s results were prescient. In
particular, the inclusion of human error as a source of risk made the case for expert judgement.
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(4.1) Problem Identification:

Identify relationships between variables, specify depen-
dence problem/determine modelling context
Design elicitation for chosen dependence model

(4.2) Choice of Elicited Parameters:

Account for desiderata of elicited forms
Consider prevalence of cognitive fallacies for certain forms
Account for experts’ familiarity with dependence parameter

Preparation of Background Information, Brief-
ing Document and Elicitation Document

Expert Identification and Selection

(4.3) Specification of Marginal Distributions:

Assess from historical data (if available) or decide whether
to assess in same or separate EJ session

Trial-Run of Elicitation

(4.4) Training and Motivation:

Familiarise the expert with elicited form
Complement feedback of training questions with
simulation-based learning approaches
Explain common biases

(5.1) Knowledge and Belief Structuring:

Assess experts’ rationale behind assessment

(5.2) Quantitative Elicitation

(6.1) Aggregation of Expert Judgements:

Decide on reasonable aggregation method
Base probabilistic independence on structural information

(6.2) Feedback and Robustness Analysis:

Use graphical outputs for ”feeding back”
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Fig. 8.1 Overview of the expert judgement process adjusted for eliciting dependence (steps
discussed in this chapter are in grey)
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statistical or probabilistic experts. The facilitator, who manages the actual elicitation
part of the overall process, might be either the same person as the decision maker
or an independent third type of attendee at the elicitation workshop. The facilitator
clarifies any questions from the experts. An analyst on the other hand is usually in
charge of the whole process. This includes the preparation of the elicitation and the
finalisation of results afterwards. Such a situation with a given, formulated problem
and clearly defined roles is often the case, however other ones are possible. French
(2011) discusses various elicitation contexts and their potential implications.

We regard an elicitation as successful if we can be confident that the experts’
knowledge is captured accurately and faithfully, thus their uncertainty is quantified
through a well-informed judgement. However, the assessments’ reliability might
be still poor if little knowledge about the problem of interest prevails. This often
implies that there is high uncertainty in the area of the decision problem overall.

8.3 Biases and Heuristics for Dependence Elicitation

In this section, we review main findings from the behavioural judgement and
decision making literature on assessing dependence as psychological research shows
that experts are not guaranteed to act rationally when making such assessments.
Hence, the goal of this section is to raise awareness of departures from rationality in
the hope to minimise them in the elicitation. Briefly, rationality implies that experts
make assessments in accordance with normative theories for cognition, such as
formal logic, probability and decision theory. Irrationality, on the other hand, is the
systemic deviation from these norms. While this definition suffices here, the topic is
much more complex and a critical debate on the concept of rationality can be found
in Stanovich and West (2000) and Over (2004). In contrast to normative theories
that describe how assessments ought to be made, descriptive research investigates
how assessments are actually made. This relates directly to our earlier definition of a
successful elicitation (Sect. 8.2) that states our aim of eliciting accurate and faithful
assessments from experts. In other words, a successful elicitation aims at mitigating
a range of potential biases.

For expert judgement, in particular two types of biases, cognitive and motiva-
tional, are of importance as they can distort the elicitation outcome severely.

Cognitive biases refer to the situation in which experts’ judgements deviate
from a normative reference point in a subconscious manner, i.e. influenced by
the way information is mentally processed (Gilovich et al. 2002). This bias type
occurs mainly due to heuristics, in other words because people make judgements
intuitively by using mental short-cuts and experience-based techniques to derive
the required assessments. The idea of a heuristic proof was used in mathematics to
describe a provisional proof already by Pólya (1941), before the term was adopted
in psychology, following Simon (1957) with the concepts of bounded rationality
and satisficing.
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Motivational biases may deviate experts’ judgements away from their true
beliefs. In other words, experts ought to make the most accurate judgements
regardless of the implied conclusion or outcome, yet they do not. Motivational
biases happen consciously and depend on the experts’ personal situations. For
instance, social pressures, wishful thinking, self-interest as well as organizational
contexts can trigger this type of biases (Montibeller and Von Winterfeldt 2015).
Given that motivational biases are not different for univariate and multivariate
uncertainty assessments we will not consider them in our review in Sect. 8.3.2.

Regarding the mitigation of biases, a motivational bias can be addressed in
a technical way by introducing (strictly proper) scoring rules or as well by the
direct influence of a facilitator who encourages truthful answers. A cognitive bias is
mainly counteracted through training of experts, decomposing and/or structuring the
experts’ knowledge prior to the quantitative elicitation as well as a sensible framing
of the elicitation question(s). The latter also entails the choice of the elicited form.

Over the last 40 years, the number of newly identified heuristics and biases has
increased tremendously. Nevertheless, only a few findings are available for the case
of assessing dependence. We present these findings in the remainder of this section
and Table 8.1 provides an overview. For discussions on some main univariate biases,
we refer to Kynn (2008) and Montibeller and Von Winterfeldt (2015).

As can be seen in Table 8.1, most identified heuristic and biases that are appli-
cable for the case of multivariate uncertainty concern conditional assessments, such
as conditional probabilities. While conditionality is a common way to conceptualise
probabilistic dependence, it is shown that in addition to the explicit fallacies (as
introduced in the following), understanding and interpreting conditional forms

Table 8.1 Main biases and heuristics for dependence elicitation
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remains a challenge in today’s statistics and probability education (Díaz et al.
2010). An explanation for this difficulty comes from Carranza and Kuzniak (2009)
who note that a main focus of probability education is on frequentist approaches
to probability together with (idealised) random experiments, such as coin tosses.
Regarding conditional probabilities, such a position is however problematic as
with equally likely cases, reducing the subspace has no clear impact on the equal
probabilities. With a subjective view on probability (Sect. 8.1.2) on the other hand,
a conditional probability is more intuitive as one simply revises judgements given
new information that has become available (Borovcnik and Kapadia 2014).

8.3.1 Causal Reasoning and Inference

Before we address in detail the biases from Table 8.1, recall that we are interested
in the experts’ ability to assess dependence in accordance with Sect. 8.1.2. Usually
this is done through specifying a dependence parameter and we address the choice
of an elicited form in Sect. 8.4.3. While emphasizing that assessing dependence,
e.g. as a correlation, is not the same as claiming a causal relationship, we consider
experts’ mental models about causal relationships as a main determinant for their
assessments (despite the missing statistical noise). Therefore, we briefly address
findings of behavioural studies on causal reasoning and inference first.

The concept of causation itself is highly debated2 and its discussion is out of
scope here, yet it is proposed that in most situations people believe that events
actually have causes. In other words, their belief is that events mainly occur due
to causal relationships rather than due to pure randomness or chance (Hastie 2016).
Moreover, it is argued that people have systematic rules for inferring such causal
relationships based on their subjective perception (Einhorn and Hogarth 1986). They
then update their mental models of causal relationships continuously and might
express summaries of causal beliefs in various forms, such as serial narratives,
conceptual networks or images of (mechanical) systems (Hastie 2016).

Due to incomplete knowledge and imperfect mental models, we emphasize the
concept of probabilistic causation (Suppes 1970). A formal framework that has been
used widely for representing probable causes in fields such as statistics, artificial
intelligence, as well as philosophy of science and psychology, is a probabilistic
(causal) network. The topic of causation within probabilistic networks is however
not without criticism and generates debate. Extensive coverage of this topic is given
in Spirtes et al. (2000), Pearl (2009) and Rottman and Hastie (2014).

2There has been ongoing philosophical debate about the meaning of causation. While some refuted
the concept of causation in science altogether (Russell 1912), others focused on specific aspects.
For us, probabilistic causation (Suppes 1970) and its perception/inference are of interest. Hume
(1748/2000) proposes one of the most established accounts for that. He proposes a (unobservable)
causal mechanism which is inferred through the regularity of an effect following a cause.
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A first type of information for inferring a probabilistic causal relationship is the
set of necessary and sufficient conditions that constitute a presumed background of
no (or only little) causal relevance (i.e. they are not informative for inference), but
which need to be in place for an effect to happen. These conditions are known as
causal field. For instance, when inferring the cause(s) of someone’s death, being
born is a necessary and sufficient condition, nevertheless it is of little relevance for
establishing a causal explanation (Einhorn and Hogarth 1986). The causal field is a
key consideration when structuring experts’ beliefs about relationships as it relates
to model boundaries and determines which events should be included in a graphical
(or any other) representation of the system of interest. We discuss structuring beliefs
in Sect. 8.5.1.

Another type of information that is assumed to be in place for making causal
inferences is summarised as cues-to-causality. Most of these origin with Hume
(1748/2000) and comprise temporal order, contiguity in time and space, similarity,
covariation, counterfactual dependence and beliefs about the underlying causal
mechanism as seen by events’ positions in causal networks (Hastie 2016). Generally,
the presence of multiple cues decreases the overall uncertainty, even though
conflicting cues increase it. The way in which these cues are embedded in the causal
field and how both types of information together shape one’s causal belief is shown
by Einhorn and Hogarth (1986) with the following example:

Imagine that a watch face has been hit by a hammer and the glass breaks. How likely was
the force of the hammer the cause of the breakage? Because no explicit context is given, an
implicitly assumed neutral context is invoked in which the cues-to-causality point strongly
to a causal relation; that is, the force of the hammer precedes the breakage in time, there is
high covariation between glass breaking (or not) with the force of solid objects, contiguity
in time and space is high, and there is congruity (similarity) between the length and strength
of cause and effect. Moreover, it is difficult to discount the causal link because there are few
alternative explanations to consider. Now imagine that the same event occurred during a
testing procedure in a watch factory. In this context, the cause of the breakage is more often
judged to be a defect in the glass.

This simple example shows that by changing the contextual factors while keeping
the cues constant, someone’s causal belief can change rather dramatically.

The ways in which these types of information influence a causal perception are
important for the remainder of this section as experts’ causal beliefs and inferences
often serve as candidate sources for several biases.

8.3.2 Biased Dependence Elicitation: An Overview

In the following, the main cognitive fallacies that can occur when eliciting depen-
dence, as shown in Table 8.1, are presented in more detail. In addition to introducing
the examples that the original researchers of the different biases propose, we illus-
trate each bias with a simplified example from the area of project risk assessment.
Explaining all biases with the same example allows for a better comparison between
their relevance and the context in which they apply.
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Suppose, we manage a project with an associated overall cost. The project’s
overall cost is determined by various individual activities which are essential for
the project completion and which each have their own cost. We denote the cost of
an individual activity by ca and when we distinguish explicitly between two different
activities, we do so by indexing them as 1 and 2, so as ca1 and ca2 . It follows
that we are interested in modelling and quantifying the dependence between the
individual activities’ costs and the dependence’s impact on the overall cost. Note
that assuming independence between the activities might severely underestimate
the likelihood of exceeding some planned overall cost. In order to better understand
the dependence relationships, we take for instance into account how the individual
activities can be jointly influenced by environmental and systemic uncertainties.
In this simple example, we consider whether (and if yes, how) such uncertainties
impact the activities’ costs, e.g. due to affecting the durations of certain activities.
The duration or time an activity takes is represented by ta. A main area of research
in PRA that focuses on modelling implicit uncertainties, which have a joint effect
on the model outcome but that are not well enough understood to consider these
factors explicitly, is common cause modelling. For an introduction, see Bedford and
Cooke (2001).

Confusion of the Inverse A common way of eliciting dependence is in form of
conditional judgements, such as conditional probabilities (Sect. 8.4.2). A main bias
for conditional forms of query variables is the confusion of the inverse (Meehl and
Rosen 1955; Eddy 1982; Dawes 1988; Hastie and Dawes 2001). Villejoubert and
Mandel (2002) provide a list of alternative names proposed in the literature. For
that, a conditional probability P.XjY/ is confused with P.YjX/. In our project risk
example, this might happen when considering the time that an activity takes and
whether this influences its own (but also other activities’) cost. When eliciting the
conditional probability P.ca � vjta � w/ where v and w are specific values, an
expert might confuse this with its inverse, P.ta � wjca � v/.

An empirical research area in which this fallacy has been studied more
extensively is medical decision making. It is shown that medical experts
often confuse conditional probabilities of the form P.test resultjdisease/ and
P.diseasejtest result/. In a pioneering study, Eddy (1982) reports this confusion
for cancer and positive X-ray results. More recently, Utts (2003) lists the confusion
of the inverse among the main misunderstanding that “educated citizens” have when
making sense of probabilistic or statistical data. Further, Utts (2003) outlines several
cases in which being prone to this fallacy has led to false reporting about risk in the
media.

One explanation for confusing the inverse is attributed to the similarity of X
and Y . Therefore, some researchers suggest that this bias is linked to the better
known representativeness heuristic (Kahneman and Tversky 1972; Kahneman and
Frederick 2002). For that, people assess the probability of an event with respect
to essential characteristics of the population which it resembles. For dependence
assessments this implies that experts regard P.XjY/ D P.YjX/ due to the resem-
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blance or representativeness of X for Y and vice versa (O’Hagan et al. 2006). For
instance a time-intensive project activity might resemble a cost-intensive one and
vice versa.

Another explanation for this fallacy is related to neglecting (or undervaluing)
base-rate information (Koehler 1996; Fiedler et al. 2000). Generally, the base-rate
neglect (Kahneman and Tversky 1973; Bar-Hillel 1980) states that people attribute
too much weight to case-specific information and too little (or no) to underlying
base-rates, i.e. the more generic information. With regards to confusing the inverse,
Gavanski and Hui (1992) distinguish between natural and non-natural sampling
spaces. A natural sampling space is one that is accessed more easily in one’s
memory (this may or may not be the sample space as prescribed by probability
theory). In the fallacy’s classical example of P.test resultjdisease/ for instance, the
sample space of “people with a disease” often comes to mind easier than that of
“people with a certain test result”, such as “positive”, given that the latter can
span over several types of diseases. Similarly in our project risk example, for
P.ca � vjta � w/ an expert ought to regard the activities exceeding a certain
duration before thinking of the activities within this subspace that exceed a certain
cost. However, the sample space of activities exceeding a specified cost might be
more readily available so that from this the proportion of the activities exceeding a
certain time is considered.

A last suggested source for the inverse fallacy stems from experts’ (potentially)
perceived causation between X and Y . Pollatsek et al. (1987) attribute a potential
confusion between conditionality and causation to similar wordings such as “given
that” or “if”. Remember that temporal order is important for determining the
cause(s) and the effect(s) of two or more events. For instance, Bechlivanidis and
Lagnado (2013) show how causal beliefs influence the inference of their temporal
order and vice versa, i.e. how temporal order informs causal beliefs. Thus, when
eliciting the dependence between two activities’ durations, experts might confuse
P.ta1 � wjta2 � w/ with its inverse if the durations are not easily observed, e.g. due
to lagging processes, and the first completed activity is seen as causing the other.

In the medical domain, in which this confusion has been observed most often,
we note that for P.test resultjdisease/ the test result is observed first (in a temporal
order) even though the outbreak of the disease clearly preceedes in time. Therefore,
the cause is inferred from the effect. This is a situation in which Einhorn and Hogarth
(1986) see the confusion of the inverse very likely to occur, even though temporal
order has no role in probability theory. By some researchers, this is called the time
axis fallacy or Falk phenomenon (Falk 1983). Another interesting example from
medical research concerns the early days of cancer research and the association
between smoking and lung cancer. While it is now established that smoking causes
lung cancer, some researchers have also proposed the inverse (Bertsch McGrayne
2011). Indeed, the question of whether a certain behaviour leads to a disease
or whether a disease leads to a certain behaviour can be less clear. A potential
confusion of the inverse is then subject to the expert’s belief on the candidate cause.
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Causality Heuristic The close connection between conditional assessments and
causal beliefs can be the source of another cognitive fallacy. In a pioneering study,
Ajzen (1977) coined the term causality heuristic, claiming that people prefer causal
information and therefore disregard non-causal information, such as base-rates with
no causal implication. Other researchers (e.g. Bes et al. 2012) have since then
confirmed this preference for causal information. At a general level, the causality
heuristic relates to causal induction theories in contrast to similarity-based induction
(Sloman and Lagnado 2005). For instance, Medin et al. (2003) found that people
regarded the statement “bananas contain retinum, therefore monkeys do” as more
convincing than “mice contain retinum, therefore monkeys do” which shows that
the plausibility of a causal explanation can outweigh a similar reference class.

In the context of conditional assessments, it is noteworthy that people assess a
higher probability for P.XjY/ when a causal relation is perceived between X and
Y , even though according to probability theory, a causal explanation should make
no difference in the assessment (Falk 1983). This is shown further by people’s
preference to reason from causes to effects rather than from effects to causes (Hastie
2016). As a result, causal relations described as the former are judged as more
likely than the latter even though both relations should be equally probable. For
our example of assessing P.ca � vjta � w/, we therefore need to consider whether
experts perceive a causal explanation and how it influences the assessment outcome.

In an experimental study, Tversky and Kahneman (1980) asked subjects whether
it is more probable that (a) a girl has blue eyes if her mother has blue eyes?, (b)
a mother has blue eyes if her daughter has blue eyes?, or (c) whether both events
have equal probability? While most participants (75) chose the correct answer (c),
69 participants responded (a) compared to 21 that chose (b). Whether this result
can be fully attributed to the role of participants’ perception of causation is however
questionable given other possible influences on the assessments such as semantic
difficulties (Einhorn and Hogarth 1986). Nevertheless, it is an indicator for how
experts are led by preferences about perceiving a conditional relation (which might
contradict the elicited one) once they regard the variables as causes and effects.

While sometimes being regarded as a different bias, the simulation heuristic
(Keren and Teigen 2006) affects judgements in a very similar manner. Here, the
premise is that conditional probability judgements are based on the consideration of
if-then statements. This is an idea originating with Ramsey (1926) and his “degree
of belief in p given q”, roughly expressing the odds one would bet on p, the bet
only being valid if q is true. Hence, it is proposed that for assessing a conditional
probability, P.XjY/, one first considers a world in which Y is certain before assessing
the probability of X being in this world. The simulation heuristic states then that
the ease with which one mentally simulates these situations affects the probability
judgement. People often compare causal scenarios and tend to be most convinced
by the story that is most easily imaginable, most causally coherent and easiest to
follow. However, they then neglect other types of relevant information together with
causal scenarios that are not readily available for their conception.
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Insufficiently Regressive Prediction A fallacy that might occur when people
interpret a conditional form as a predictive relation is insufficiently regressive
prediction. Kahneman and Tversky (1973) show that when assessing predictive
relationships, people do not follow normative principles of statistical prediction.
Instead, they “merely translate the variable from one scale to another” (Kahneman
and Tversky 1973). In the project risk example, when predicting an activity’s
cost from its duration, e.g. through conditional quantiles, experts might simply
choose the value of the cost’s ith quantile based on the time’s ith quantile. This
is problematic as typically there is no perfect association between the variables.
Hence, people do not adjust their assessment for a less than perfect association
between the variables. O’Hagan et al. (2006) give an example of predicting the
height of males from their weight while assuming a correlation of 0:5 between the
variables. Then, for a male who is one standard deviation above the mean weight,
the best prediction for his height should only be 0:5 standard deviations above the
mean height. However, people tend to assess the prediction too close to one standard
deviation above the mean height.

A common explanation for this fallacy is again the representativeness heuristic.
Regarding one variable representative for the other, e.g. viewing tall as represen-
tative for being heavy or a time-intensive project activity as representative for a
cost-intensive one, experts disregard the aforementioned imperfect association.

As shown in Sect. 8.4.2, eliciting conditional quantiles is one common way to
elicit dependence information.

Bayesian Likelihood Bias Research investigating experts’ conditional assess-
ments in the context of intuitively using Bayes’ Theorem3 formulated what is
named (by some) the Bayesian likelihood bias (DuCharme 1970). Bayes’ Theorem
is proposed as a normative rule for revising probabilities given new evidence. The
fallacy is that people are too conservative in their assessment (Edwards 1965),
at least for certain framings (see Kynn (2008) for a critical discussion on this
fallacy). The univariate equivalent is the conservatism bias. It refers to the finding
that higher probabilities are underestimated while lower ones are overestimated,
i.e. assessments vary less from the mean and avoid extreme values. For P.ca1 �
vjca2 � v/, experts might make too conservative assessments in light of new
information about another activity’s cost. In a pioneering study by DuCharme
(1970), participants assessing the probability of a person’s gender given the height,
P.genderjheight/, tended to underestimate the number of tall men and overestimate
the number of tall women.

3Bayes’ Theorem is named after Thomas Bayes (1701–1761) who first proposed it. Since then
it has been further developed and had its impact in a variety of problem contexts (see Bertsch
McGrayne 2011 for a historical overview). In its simplest form, for events X and Y , it is defined as
P.XjY/ D P.YjX/P.X/

P.Y/
whereas P.Y/ ¤ 0.
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Confusion of Joint and Conditional Probabilities A cognitive fallacy that might
be present when assessing dependence for events occurring together, i.e. the
conjunction of events, such as in a joint probability assessment is the confusion
of joint and conditional probabilities.

Consider the framing of the elicitation question: “What is the probability of ca1 �
v and ca2 � v?” While a more precise framing (specifying that we elicit the joint
probability) or eliciting a joint probability still framed differently (see Sect. 8.4.3)
would be helpful, it is important to note that from the view of probability theory,
when using the word “and”, we would expect the expert to assess P.ca1 � v \
ca2 � v/, i.e. the conjunction of the events. However, it is shown that this is often
interpreted differently. For some people “and” implies a temporal order (which has
no role in probability theory), so they assess the conditional probability of P.ca1 �
vjca2 � v/ instead (Einhorn and Hogarth 1986). This fallacy is closely related to the
confusion of the inverse for which one explanation is based as well on an implicit
influence of temporal order.

Conjunction Fallacy A more extensively studied bias that is relevant when elic-
iting the conjunction of events is the conjunction fallacy (Tversky and Kahneman
1983). In experiments, subjects assessed the probability of a conjunction of events
P.X \ Y/ as more probable than its separate components, i.e. P.X/ or P.Y/, despite
its contradiction to probability theory. For instance, when Lagnado and Sloman
(2006) asked participants which of the following two statements is more likely: (a)
a randomly selected male has had more than one heart attack, and (b) a randomly
selected male has had more than one heart attack and he is over 55 years old, (b) was
judged more probable than (a) by most participants. Similarly, experts in our project
risk example might assess P.ca � v \ ta � w/ as more probable than P.ca � v/ or
P.ta � w/ separately.

As with the confusion of the inverse, a suggested source for the conjunction
fallacy is the representativeness heuristic. However, while this is the most common
explanation, it is not without criticism and numerous other candidate sources for this
fallacy exist (Costello 2009; Tentori et al. 2013). For example, another explanation
is the aforementioned causality heuristic. Hence, the constituent events are related
through a causal explanatory variable. The additional information that constitutes
the subset is then judged as causally relevant, as e.g. in our earlier examples being
over the age of 55 is seen as causally relevant for having a heart attack, and an
activity exceeding a certain duration for exceeding a certain cost.

In the context of assessing conditional probabilities, Lagnado and Shanks (2002)
discuss the conjunction fallacy through the related concept of disjunction errors.
People assess the conditional probabilities through subordinate and superordinate
categories. For example in their example, a subordinate category, Asian flu, was
regularly judged as more probable than its superordinate category, flu, given a set
of symptoms. A possible explanation is based on a predictive interpretation for the
conditional probability. Participants view the symptoms as more predictive for the
subordinate category and base their likelihood judgement on it.
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Cell a Strategy Some research focuses on interpreting and assessing dependence
as the concordance of events whereas this is based on a frequency (or cross-
sectional) interpretation for the event pairs. In other words, it explicitly requires
a population to draw from. At the most general level, this relates to people’s ability
to assess dependence in form of the “perhaps simplest measure of association”
(Kruskal 1958), the quadrant association measure. It gives the probability that the
deviations of two random variables from (for instance) their medians have regularly
the same signs, i.e. positive or negative. This is closely related to assessing a
concordance probability which is introduced in Sect. 8.4.3.

In some situations this is the way how people perceive association between
(binary) variables and a research stream that investigates this form of dependence
perception is associative learning (Mitchell et al. 2009). A common cognitive
fallacy is the cell A strategy (Kao and Wasserman 1993) which is named like this
for reasons that will become apparent.

While certain activities are highly standardised and performed similarly across
numerous projects, it is still rather an idealised case to serially observe whether
or not the duration of the same activity exceeded a certain value for j projects with
j D 1; 2; : : : ; J, i.e. whether ta;j � w or ta;j < w, before obtaining this information for
its cost. Despite its idealisation, this is how experts would perceive dependence in
this case. Similarly in his pioneering study, Smedslund (1963) worked with medical
experts and the variables referred to symptoms and diseases. The experts were given
information about the presence or absence of a disease following information on the
presence or absence of a symptom and then assessed its correlation.

This information can be ordered within four quadrants. The upper left corre-
sponds to the presence of both variables, the lower right shows the joint absence
and the remaining two quadrants relate to one variable being present while the
other is absent. Whereas in normative theory, all four quadrants should be equally
informative, it is found that people focus on the joint presence of both variables
disproportionally in relation to the observed frequencies, so that this quadrant
has a larger impact on the assessment. This quadrant has also been called cell A
when labelling the four quadrants from A to D4 which explains the name of this
fallacy. It suggests that subjects fail to use all relevant information available and
in fact, a preference order exists in form of .XC; YC/ > .XC; Y�/ � .X�; YC/ >

.X�; Y�/ (McKenzie and Mikkelsen 2007). Mandel and Lehman (1998) offer two
explanations. The first considers the frequencies (or observations) per quadrant as
a sample from a larger population and assumes presence is rare (P < 0:5) while
absence is common (P > 0:5). Then a joint presence is more informative to judge
a positive relationship in contrast to joint absence. In other words, it would be
more surprising to observe a joint presence rather than a joint absence. The second

4 When, C indicates the presence of variables X and Y , and � their absence, the quadrants can be

presented as:
A W .XC; YC/ B W .XC; Y�/

C W .X�; YC/ D W .X�; Y�/
.
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explanation relates to hypothesis testing and since the quadrant of joint presence is
evidence in favour of the hypothesis, this is again (typically) more informative in
contrast to both non-joint quadrants that are evidence against it.

Illusory Correlation A cognitive fallacy that is not subject to the specific form of
an elicited variable but applies at a general level is known as illusory correlation. For
this, experts assess that two uncorrelated events show a (statistical) dependence or
the correlation is (at least) overestimated. Note that this bias is a systematic deviation
that experts may make consistently and not simply a false belief that one expert has
but not another. Illusory correlation can be present due to prior beliefs that people
have about the co-occurrence of events so that a statistical dependence is expected
even though actual observations/data do not confirm this.

In their pioneering research in psychodiagnostics, a field of psychology studying
the evaluation of personality, Chapman and Chapman (1969) found that medical
experts assessed an illusory correlation for the relation of symptoms and personality
characteristics. The phenomenon of assuming a correlation where in fact no exists
was since then confirmed in different settings and experiments (Eder et al. 2011) and
explains various social behaviours, such as the persistence of stereotypes (Hamilton
2015).

One explanation for the (false) expectation of a correlation is that it is triggered
by the availability bias. This bias implies that people are influenced considerably by
recent experiences and information that can be recalled more easily (Tversky and
Kahneman 1973). For instance, one might be overvaluing the recent observation of a
co-occurrence of two events by regarding it as a commonly observed co-occurrence.
In our project risk example, this could apply when having recently observed a
project delay before seeing its cost exceeding a certain value and regarding this
co-occurrence as a frequent observation for similar type of projects. Another source
of this fallacy is attributed to pre-existing causal beliefs (Bes et al. 2012). In this
regard, the prior belief about the correlation stems simply from a false belief about
an underlying causal mechanism, as shown in the causality bias.

8.3.3 Implications of Biases for the Elicitation Process

After having presented the main biases that are relevant for eliciting dependence
from experts in various forms, we briefly outline the implications that these findings
have for the design of the elicitation process.

One finding is that various biases are triggered from the different possible ways
that experts might interpret a dependence relationship. In particular, for conditional
forms of elicitation, such as conditional probabilities, it is crucial for a facilitator to
understand whether the experts might assess the conditional relationships based on
similarity/representativeness, causation (e.g. temporal order), or predictive power.
As shown, each of these different interpretations can have an effect on the
amount and type of information that experts take into consideration when making



8 Eliciting Multivariate Uncertainty: Considerations and Approaches 187

assessments. In other words, each of the interpretations biases the outcome of
an elicitation in a certain way. While more research is necessary to understand
how different interpretations are triggered and affect an assessment, we highlight
the importance of structuring experts’ knowledge and beliefs about a dependence
relationship qualitatively, prior to the quantitative elicitation. This ensures that the
decision maker and the experts have the same understanding about the dependent
variables and more insight about experts’ interpretation might be provided. Further,
it helps experts to clarify their own understanding and interpretation. This is
essential for ensuring confidence in the resulting elicitation outcome as well as for
supporting transparency and reproducibility of the expert judgement process.

In addition, the different interpretations and their implications should be
addressed in a training session for the experts, in which misunderstandings, such as
semantic ones, are resolved. Then, common pitfalls, such as confusing conditional
statements and conjunction of events, can be avoided.

Another finding is that several of the presented fallacies originate with (and are
closely linked to) more common biases that are not only observed when assessing
dependence, e.g. the representativeness heuristic, base-rate neglect and availability
bias. For these, research has addressed debiasing methods through alternative
framing of elicitation questions, eliciting variables in various forms and training.
Montibeller and Von Winterfeldt (2015) discuss and give an overview to debiasing
methods. Further, Table 8.1 lists specific debiasing techniques for the discussed
biases.

8.4 Elicitation Process: Preparation/Pre-elicitation

As can be seen in Fig. 8.1, the elicitation process starts already before actually
interacting with any experts. The different elements of the preparation (or pre-
elicitation) phase ensure that the decision maker’s problem is addressed properly
and in accordance with the underlying model for which the right variables need to be
quantified by suitable experts. In addition, the choices made in this phase allow the
experts to assess the uncertain variables as intuitively as possible. In the following,
we present the various elements of the this part in more detail.

8.4.1 Problem Identification and Modelling Context

The first step in an elicitation process is the identification of the actual problem
at hand in accordance with the decision maker or stakeholder. This step has been
termed for instance background (Clemen and Reilly 2014) or preparation (O’Hagan
et al. 2006) and includes typically not just the definition of the elicitation’s objective
but also the identification of the variables of interest.
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Fig. 8.2 Schematic representation of modelling and elicitation context

When drawing conclusions from one of the earliest experiences on formal
processes for probability elicitation, Spetzler and Staël von Holstein (1975) referred
to this step as the deterministic phase. They describe it as the part of the modelling
process in which relevant variables are identified and their relationships are
determined before uncertainty assessment is considered (in the probabilistic phase).

Likewise for dependence elicitation, a main consideration during this part of the
process is to design the elicitation in accordance with the underlying dependence
model. A multivariate stochastic model might be pre-determined by the decision
maker or is decided upon at this point in accordance with the analyst. In this
regard, a broad variety of dependence models exists and their applicability is
subject to particular problem situations as they serve different purposes and allow
for varying degrees of scrutiny. Werner et al. (2017) review the elicitation for
several dependence models and discuss how decisions in the modelling context are
related to the elicitation by outlining elicitation strategies for three different, broad
dependence modelling situations which are shown in Fig. 8.2.

At this general level, we have a vector of output variables T which depends
deterministically on the vector of stochastic variables S in the model. Further,
R represents auxiliary variables that are used to evaluate the uncertainty on S.
Through the solid arrows uncertainty is propagated as they show the deterministic
relationships between variables. Before we provide an illustrative example, note that
it is common for there to be dependence between the output variables arising from
the functional dependence in arrow (a), in particular when we cannot regard the
variables in S as stochastically independent and hence have to model and assess
dependence on S.

The first modelling context (a) refers to modelling the dependence relationships
in S directly before the uncertainty is then propagated through the model (arrow
(a)) to T . This is the predominant approach in the literature with common models,
such as Bayesian (Belief) nets (BNs) (Pearl 1988, 2009), copulas (Joe 2014) as
well as parametric forms of multivariate distributions (Balakrishnan and Nevzorov
2004) and Bayes linear methods (Goldstein and Wooff 2007). Given that later in this
chapter we will discuss examples in which dependence is elicited for the two former
models, we briefly define them here. A BN consist of a directed acyclic graph in
which random variables are described by nodes while arcs represent the qualitative
dependence relationships between the variables. The direct predecessors/successors
of a node are called parent and child nodes accordingly and a BN is quantified
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(for example in the discrete case) by assessing for every child node its conditional
probability distribution given the state of its parent nodes. With a different modelling
focus, a copula might be used to model dependence. Due to Sklar (1959), any
multivariate distribution function can be decomposed into its marginal distribution
functions and a function which is known as the copula. This can be reversed,
meaning that any combination of univariate distribution functions through a copula
is a multivariate distribution function. Various common copulas belong to either one
of two main families, the Elliptical or Archimedean one. A main difference is that
copulas in the former family are radially symmetric while this is not true for the
copulas in the latter, implying a main difference for modelling.

In modelling context (b), a set of auxiliary variables is introduced. This is helpful
if it allows an easier quantification of the multivariate uncertainty, for instance in
the case of too little knowledge for direct modelling and therefore being more
comfortable to quantify the uncertainty on the auxiliary variables. In fact, one
might chose these so that they can be considered stochastically independent and
the dependence in S arises from the complex relationships between the variables in
R and S as shown with arrow (b). A common modelling type for this context is a
regression model.

The last modelling context is (c). For that, we consider an alternative set of
the output variables (see dotted node) given that a direct assessment of S is too
difficult, but the dependence structure must satisfy reasonable conditions on the
output variables which are easier to understand and quantify. The alternative set
is not identical to T as otherwise we would simply assess its uncertainty directly.
The multivariate model is then determined through backward propagation of the
uncertainty on S as shown by arrow (c). The arrow is dotted to indicate the key
difference to the solid arrows. The backward-propagation problem has no unique
solution (or even no solution) so that criteria, such as maximum entropy methods,
need to be used to select a unique solution, which can then be used to forward-
propagate from S to T for looking at other output contexts. A common model type
in this situation is Probabilistic Inversion (Kurowicka and Cooke 2006).

For context (b) and (c), we extend the model (beyond the variables strictly
needed to specify the dependence) in order to simplify the necessary understanding
of the underlying factors determining the multivariate uncertainty. This influences
(or is even determined by) the experts’ knowledge on the particular problem.
As aforementioned in Sect. 8.3.2, in PRA several methods have been developed
for capturing and incorporating implicit uncertainties that are not well enough
understood to consider these factors explicitly.

We illustrate the different choices that can be made in the modelling and
elicitation context (Fig. 8.2) and how these choices are influenced by the ease with
which we can quantify the multivariate uncertainty with our earlier, simplified
example from the area of project risk management (Sect. 8.3.2). Recall, we are
managing a project which has an overall cost. This is represented by the output
variable T (or vector of variables when managing several projects). The overall
cost is determined by individual activities, which are important for the project’s
completion, and each have their own associated costs. The costs of these individual
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activities are given by S. If we now want to model the stochastic dependence
between these activities’ costs, a first option is by doing so directly. The models that
are often used for this are the ones mentioned earlier for modelling context (a). If
the direct modelling of the cost elements is not satisfactory in terms of its outcome,
we have the choice to include explanatory variables R, which might help us in
understanding the relationships better, and for which we can quantify the uncertainty
in the cost easier. The models that are used here are from modelling context
(b). For our project, environmental uncertainties can be included as explanatory
variables if we believe that they (partly) influence the project cost. Lastly, modelling
systemic impacts of the project, such as the (un-)availability of qualified staff, can
be necessary to capture some subtle dependencies which have been excluded in
the earlier modelling contexts. For that, we use modelling techniques from context
(c). With these, we model the distribution of the overall cost (or features of it)
separately which leads to a changed model for the previous joint distributions (as
modelled within (a) and (b)). Similarly, modelling context (c) can be applicable if
we model a more complex situation with various projects. Then, we can assess the
uncertainty for one project and propagate the uncertainty back to the activity costs
S and obtain a better understanding about the overall costs of the other projects in
T . The underlying idea is that we only ever specify parts of the joint distribution
and hence might choose modelling techniques from other contexts to add to our
understanding.

The implication for the remainder of the process is that the choices in the
different modelling contexts are determined by the level of understanding about the
dependencies to be modelled and therefore formulate our variables of interest. These
in turn, define the applicability of elicited forms for a satisfactory representation of
the experts’ information in the model. Therefore, decisions on the model strongly
affect the choice of which dependence parameter to elicit as discussed next.

8.4.2 Choice of Elicited Parameters

The next step in the preparation phase is the choice of an appropriate elicited
form for the dependence information. Werner et al. (2017) review commonly
elicited dependence parameters extensively with regards to the modelling context
(Sect. 8.4.1) as well as the assessment burden for experts. These two considerations
for choosing an elicited form formulate already main desiderata for this choice,
however more are worth discussing.

While some desiderata are the same as for eliciting univariate uncertainty, others
are of particular concern when eliciting multivariate quantities. Two desiderata
that stem from the univariate case, are: (1) a foundation in probability theory,
and (2) the elicitation of observable quantities. A foundation in probability theory
ensures a robust operational definition when representing uncertainty. Observable
quantities are physically measurable, and having this property may increase the
credibility and defensibility of the assessments (Cooke 1991). Moreover, the form
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of the elicited variable should allow for a low assessment burden. Kadane and
Wolfson (1998) emphasise practicality in this regard. The elicited variables should
be formulated so that experts feel comfortable assessing them while their beliefs
are captured to a satisfactory degree. For the former, the elicited parameter should
be kept intuitively understandable and for the latter, the information given by the
experts should be linked (as directly as possible) to the corresponding model. When
eliciting dependence, it might be preferred (for instance due to a potential reduction
in the assessment burden) to elicit a variable in a different form than the one
needed as model input, in which case we need to transform the elicited variable.
Then, it is important to measure and control the degree of resemblance between
the resulting assessments (through the model) and the dependence information as
specified by the expert (Kraan 2002). The transformation of dependence parameters
is typically based on assumptions about their underlying bivariate distribution. For
instance, when transforming a product moment correlation into a rank correlation,
the most common way assumes bivariate normality (Kruskal 1958). Similarly, when
transforming a conditional probability into a product moment correlation, we might
assume an underlying normal copula (Morales-Nápoles 2010). A potential issue
is that positive definiteness is not guaranteed (Kraan 2002), leading to the next
desideratum which is coherence. Coherence means that the outcome should be
within mathematically feasible bounds. If it is not, it might need to be adjusted
such that it still reflects the expert’s opinion (as good as possible). Another solution
to incoherence is to fix possible bounds for the assessment a priori, even though
this can severely decrease the intuitiveness of the assessment. Both solutions are
rather pragmatic and show why forms of elicited parameters that result in coherent
assessments while being intuitive should be preferred. A last desideratum relates
to the (mathematical) aggregation of numerous expert judgements (Sect. 8.6.1).
When combining expert judgements, it is desirable to base this combination on
the accuracy of experts’ assessments measured by performance against empirical
data. Therefore, an easily derived dependence parameter from related historical
data based on which we can measure such performance is preferred. While there
is no query variable that fulfils all of these desirable properties, the desiderata serve
as guidance for which elicited parameter to choose under certain circumstances.
For instance, an analyst might choose an elicited form that corresponds directly to
the model input given a familiarity of the experts with the dependence parameter,
therefore having intuitiveness ensured.

At a broad level, most elicited forms can be categorised into probabilistic and
statistical representations. Table 8.2 outlines some main elicited forms in more
detail.

We note that the majority of approaches for eliciting dependence fall under the
probabilistic umbrella. Probabilistic forms have two main advantages: they (usually)
elicit observable quantities and they are rooted in probability theory. Moreover, they
are the direct input into various popular models, such as discrete BNs (Pearl 2009,
1988) and its continuous alternative (Hanea et al. 2015). For instance, Werner et al.
(2017) found in a review of the literature on dependence elicitation and modelling
that 61% of case studies, in which dependence was elicited, a BN was used for
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Table 8.2 Overview of elicited forms

modelling the dependence. The predominant form for the elicited parameter was a
conditional probability (point estimates and quantile estimates).

A potential issue with the forms elicited in the probabilistic approaches, such
as conditional and joint probabilities, is that they are regarded as non-intuitive
and cognitively difficult to assess. Clemen et al. (2000) compare their assessment
with other approaches, such as the direct assessment of a correlation coefficient,
and found that conditional and joint probabilities were among the worst per-
formances for coherence and in terms of accuracy against empirical data, i.e.
not well-calibrated. In particular, joint probability assessments seem cognitively
complex.

This is even true for independence assessments which are (typically) among
the easier judgements to express. A further concern is the assessment of a con-
ditional probability with a higher dimensional conditioning set, as discussed
in Morales-Nápoles (2010) and Morales-Nápoles et al. (2013). The growing
conditioning set poses a challenge for experts and this method is (in its cur-
rent form) difficult to implement. Similarly, expected conditional quantiles (per-
centiles) are difficult to assess as they require the understanding of location
properties for distributions together with the notion of regression towards the
mean (Clemen and Reilly 1999).

As a more accurate and intuitive probabilistic way to assess dependence,
concordance probabilities have been proposed (Gokhale and Press 1982; Clemen
et al. 2000; Garthwaite et al. 2005). A requirement, which may restrict the variables
of interest that can be elicited in this way, is the existence of a population to draw
from and a certain familiarity with the population.
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Alternatively to eliciting probabilistic forms, we can ask experts to assess
dependence through statistical dependence measures. While theoretical objections,
such as non-observability (Kadane and Wolfson 1998), persist for the elicitation of
moments and similarly cross-moments, they seem to perform well with respect to
various desiderata (other than theoretical feasibility). For instance, the direct elicita-
tion of a (rank) correlation coefficient is shown to be accurate and intuitive in some
studies (Clemen and Reilly 1999; Clemen et al. 2000; Revie et al. 2010; Morales-
Nápoles et al. 2015), even though some research is not in agreement with this finding
(Gokhale and Press 1982; Kadane and Wolfson 1998; Morgan and Henrion 1990).
The contrasting opinions may arise from the difference in normative expertise that
the experts in the studies have or as well from the difference in the complexity
of the assessed relationships. For example, in the studies which conclude that
eliciting a correlation coefficient is accurate and intuitive, the assessed correlations
are on rather simple relationships, such as height-weight, or as well on relationships
between stocks and stock market indices. This suggests that regarding relationships
for which experts have a certain familiarity and maybe even some knowledge about
historical data, the direct statistical method is indeed advantageous. Support for
this conclusion comes from findings of weather forecasting. Here, experts obtained
frequent feedback on correlations which allowed them to become accurate assessors
(Bolger and Wright 1994). Neurological research concludes similar findings after
evaluating the cognitive activity in a simulation game where participants obtained
regular feedback on correlation assessments (Wunderlich et al. 2011).

An indirect statistical approach is the assessment of dependence through a verbal
scale that corresponds to correlation coefficients (or other dependence parameters).
Clemen et al. (2000) for example provide a scale with seven verbal classifiers.
Generally, verbal assessment is seen as intuitive, directly applicable and has
therefore enjoyed further consideration. Swain and Guttman (1983) introduce the
Technique for Human Error Rate Prediction (THERP) which uses a verbal scale
for assigning multivariate uncertainty between human errors. Since its introduction,
THERP has been developed extensively in the field of human reliability analysis
(HRA) and it has been applied in various industries (see Mkrtchyan et al. 2015 for
a review on modelling and eliciting dependence in HRA).

Further, some BN modelling techniques, originating with noisy-OR methods
(Pearl 1988), make use of verbal scales. For instance, in the ranked nodes approach,
random variables with discretised ordinal scales are assessed by experts through
verbal descriptors of the scale (Fenton et al. 2007).

While these are the main approaches for eliciting a dependence parameter, note
that when quantifying some models, such as parametric multivariate distributions
and regression models, more commonly so called hyperparameters are elicited.
They allow (through restructuring) for eliciting (mainly) univariate variables.

For a more detailed and comprehensive review of the elicitation methods and
elicited forms mentioned above together with some additional ones, see Werner
et al. (2017).
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8.4.3 Specification of Marginal Distributions

Before dependence can be elicited, the marginal distributions for the variables of
interest need to be specified. In some situations, this information is available from
historical data and we can simply provide the experts with this data (if they do not
know it already). If this is not the case however, we need to elicit the information
on the marginal distributions prior to eliciting dependence. This is important as
otherwise the experts base their dependence assessments on different beliefs.

Consider for instance, we elicit dependence from experts in a conditional
form. If the marginal distributions have not been specified formally, each expert
will base their assessment on their own implicit judgement and as a result each
assessment will be conditional on different marginal probabilities. While this leads
to dependence assessments which are not comparable and therefore cannot be
combined for model input, the implicitly specified marginal probabilities are also
likely to lack the scrutiny that a formal elicitation process would allow for. In other
words, even if eliciting multivariate uncertainty only from a single expert, a formal
process for specifying the marginal distributions is still highly encouraged to ensure
less biased and better calibrated assessments. Note that if we omit the specification
of the marginal distributions, experts might even refuse to assess dependence as they
regard the process as flawed.

Various expert judgement methods exist to elicit univariate quantities (as pre-
sented elsewhere in this book) and the process is similarly complex as the one
presented here. This is an important remark as we need to decide whether all
(univariate together with multivariate) variables are elicited in the same session or
whether this is done separately. Eliciting all variables in one session is likely to be
tiring for the experts while arranging two separate elicitation workshops might be
challenging in terms of availability of experts and organisational costs.

8.4.4 Training and Motivation

Training and motivating are likely to improve elicitation outcomes for various
reasons, one of which being the effort to mitigate motivational and cognitive biases
(Hora 2007). Recall from Sect. 8.3.2 that although it is possible for experts to have
an intuitive understanding of probabilistic and/or statistical dependence parameters,
psychological research shows that interpreting and assessing dependence is often
cognitively difficult and results may be distorted. Therefore, we try to counteract
the influence of biases and a main approach to achieve this is to train and motivate
experts. As aforementioned, motivational biases are not specific to quantifying mul-
tivariate uncertainty and are therefore not discussed in this chapter. Consequently,
we will further consider only training (not motivating) experts.

Generally, a training session serves to familiarise the experts with the form in
which the query variables are elicited by clarifying its interpretation. For univariate
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quantities this (typically) includes introducing the experts to particular location
parameters, such as the quantiles of a marginal distribution. This ensures that these
are meaningful to the experts and they feel comfortable assessing them. Further,
experts are made aware of the main cognitive fallacies that might affect their
assessments so that they can reflect on them and make a well-reasoned judgement
by taking a critical stance. While this ability is an important characteristic of
someone’s statistical literacy (Gal 2002), we emphasise a pragmatic approach to
training experts as even experienced statisticians often have difficulties with such
critical examining and reasoning.

For assessing multivariate uncertainty, the objectives are similar. As concluded
in Sect. 8.3.3, main determinants of cognitive biases when assessing dependence
are the different interpretations of the elicited forms (in particular of the conditional
form). Recall that causal, predictive as well as similarity-based interpretations have
a misleading influence on assessments. Therefore, a first focus of an effective
training is on explaining the correct interpretation of the dependence parameter to
be elicited. This involves an emphasis on the probabilistic and statistical features,
such as randomness, in contrast to causal, predictive as well as similarity-based
relationships. For instance, causal relationships are often regarded as deterministic,
i.e. if Y is understood as the cause of X, then it follows that P.XjY/ D 1 as X is
always present when Y is present. However, P.XjY/ D 1 is not claiming a causal
relationship and we might need to account for other factors that affect X and Y (Díaz
et al. 2010). As aforementioned, the confusion of the inverse as well as the causality
heuristic (Sect. 8.3.2) are two main biases that can be explained by such a misleading
interpretation. In this regard, some researchers have mentioned their concern about
the language that is used in many statistics textbooks to teach fundamental concepts
such as independence (Díaz et al. 2010). For instance, the phrase “whenever Y has
no effect on X” is used to explain that two variables, X and Y , are independent and
their joint distribution is simply the product of their margins. However, for many
experts, the term “effect” might imply a causal relationship. This shows that training
on the elicited form should also address any semantic misunderstandings at this step
of the elicitation process.

In the same manner, we can address the other misinterpretations. For example, in
order to avoid that conditional assessments are based on similarity, i.e. resemblance
of X for Y , we should stress that the assessments might also be influenced by other
factors. As such, a specific outcome, such as a certain diagnosis, can be typical for
a certain disease but still unlikely (O’Hagan et al. 2006).

While probabilistic reasoning is commonly included in school curricula, its
teaching is often done through formula-based approaches and neglects real-world
random phenomena (Batanero and Díaz 2012). Therefore, it is common that experts
hold misconceptions on probabilistic/statistical reasoning which are hard to erad-
icate. In fact, they might even consider this kind of reasoning as counterintuitive.
A possibility to enhance a better understanding of these concepts might be to
complement the practice of forming probability judgements and providing feedback
on training questions (as commonly done before elicitations) with simulation-
based approaches. There is empirical evidence that multimedia supported learning
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environments successfully support students in building adequate mental models
when teaching the concepts of correlation (Liu and Lin 2010) and conditional
probability (Eichler and Vogel 2014).

Once the experts are familiar with the elicited form and its correct interpretation,
an additional focus of the training session is on outlining the common biases
as identified in Sect. 8.3.2. This allows the experts to obtain a better conceptual
understanding and we can address potential issues more specifically, such as
recognising that a conditional probability involves a restriction in the sample space,
distinguishing joint and conditional probabilities or as well distinguishing the
inverses.

8.5 Elicitation Process: Elicitation

After the preparation/pre-elicitation phase is concluded, the actual elicitation starts.
Note that this is the phase in the overall process in which the facilitator works
interactively with the experts, first when supporting experts to structure their
knowledge and beliefs (or rationale), and second when eliciting the uncertain
variables quantitatively. We will explain both steps in more detail below.

8.5.1 Knowledge and Belief Structuring

Neglecting existing knowledge and data that can be relevant for an assessment is
another reason for biased elicitation outcomes in addition to misinterpreting the
elicited form (Sect. 8.3.3). However, experts often have cognitive difficulties in
exploring the underlying sample space to a satisfactory degree. Therefore, they
need support for making better use of their knowledge and beliefs, a procedure
we call structuring or which is also known as knowledge evocation (Browne et al.
1997). Apart from mitigating biases, structuring experts’ knowledge and beliefs
about a joint distribution prior to eliciting dependence quantitatively is essential for
ensuring confidence in the later assessment as well as for supporting transparency
and reproducibility of the expert judgement process. In fact, when quantifying
multivariate uncertainties, identifying the factors that are relevant to the particular
problem is a main outcome of the structured expert judgement process. In other
words, knowledge structuring allows for obtaining an insight into the details of
experts’ understanding about the dependence relationships, thus their rationale.

Howard (1989) views this step of probability elicitation as the most challenging
one in the process. This is due to people possessing knowledge about uncertain
events or variables which is composed of many fragmented pieces of information,
often all being of high relevance. Further, people typically know more than they
think, therefore neglecting this step could result in less informative judgements.
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Structuring knowledge might be part of a hybrid approach to dependence mod-
elling in which qualitative, structural information about dependence relationships is
specified first, before probabilistic quantification is considered. Typically, graphical
models are used to reduce the cognitive load on experts’ short term memory,
even though other structuring methods, such as directed questions (checklist-
based approaches) have been proposed (Browne et al. 1997). Some commonly
used graphical models are knowledge maps (Howard 1989), event and fault trees
(Bedford and Cooke 2001), influence diagrams5 (Shachter 1988; Howard and
Matheson 2005) and BNs (Sect. 8.4.1). Note that we can nevertheless also include a
structuring part when quantifying a dependence model with experts which offers
no such a graphical representation. In this case, rather than including the result
of knowledge structuring in the actual model, we use it solely for supporting the
experts. That being said, when reviewing the literature on eliciting dependence in
probabilistic modelling, Werner et al. (2017) found that the dependence model,
which is used most often together with expert judgement, is in fact a BN. A reason
for its popularity is likely that it allows for an intuitive graphical representation.
According to Zwirglmaier and Straub (2016), deriving the structure of a BN can
be achieved in four ways. First, the structure can be specified through transforming
existing probabilistic models of the problem, such as event and fault trees. Such a
transformation is straightforward as the necessary structural information is already
given in the existing models and it can be sensible as BNs are more flexible. Second,
a BN structure can be inferred from some empirical or physical model. Third, the
structure can be built based on existing historical data and fourth, it can be elicited
from experts. The last way is of most interest for us as it is a common situation
that not only the probabilistic information needs to be elicited from experts, but
also the qualitative relationships (Pollino et al. 2007; Flores et al. 2011). Further, it
corresponds directly to the knowledge structuring part of the process.

Zwirglmaier and Straub (2016) propose to begin the structural elicitation with
identifying the relevant variables and to achieve this, they refer for instance to
organized interviews (Hanea and Ale 2009). Then, the actual arcs are elicited,
either interactively (as we describe below) or through reusable patterns of structures
(Fenton and Neil 2013). Last, they deal with unquantifiable variables (e.g. through
proxies).

As mentioned before, one way to derive the graphical structure is by eliciting
the experts’ input on these interactively (Norrington et al. 2008). One advantage
of such an interactive procedure is that it allows (typically) for discussion among
experts about the justification of nodes and arcs. In other words, pre-existing
knowledge is challenged and elaborated on if necessary. Further, experts obtain a
greater ownership of the model which they structured themselves so that they are
more comfortable in quantifying it later on. A potential difficulty, which needs to
be considered, is that the consensus on the final model structure might have been

5In the literature on event trees and influence diagrams, the idea of decomposition is often
mentioned as it describes a “divide and conquer” technique (Hora 2007) that allows to ease the
assessment in particular of conditional probabilities (see e.g. Kleinmuntz et al. 1996).
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achieved by a dominating expert who dictated the result or due to group-think,
i.e. without critical evaluation. Regarding these potential issues, Walls and Quigley
(2001) suggest to elicit a structure from each individual expert, whenever there is
a concern about not capturing the opinion of less confident experts. Aggregating
diverse structural information coherently through rules (as opposed to consensus)
is discussed in Bradley et al. (2014). While for hybrid dependence models a
combined graphical structure is necessary, in terms of knowledge structuring it
is also of interest how sharing knowledge and rationales among experts affects a
later assessment. For instance, Hanea et al. (2017) integrate group interaction in
a structured protocol for quantitative elicitation as it is shown to be beneficial in
assessment tasks.

Besides the initial structuring step, Henrion (1989) mentions the potential
necessity to refine a model structure during the actual quantification. In particular,
the violation of conditional independence is of concern. By definition of a BN, the
successor nodes (children) are conditionally independent given their parents. If this
is not the case when observing the final model, an additional node is required. Pearl
(1988) regards conditional independence therefore as a guiding principle as where
it fails, further clarification about an assumed, hidden variable is needed.

8.5.2 Quantitative Elicitation

After structuring experts’ knowledge and beliefs about the factors that influence the
variable(s) of interest, the quantitative assessment follows. This step of the process
is also named encoding (Spetzler and Staël von Holstein 1975). In this step, experts
assess the variable(s) of interest in the form that was chosen to be appropriate with
respect to various desiderata (Sect. 8.4.3).

The main considerations herewith are similar to those of eliciting univariate
uncertainty. Likewise, we need to decide on how much interaction between the
experts we allow for (we address the aggregation of assessments in Sect. 8.6.1).
Further, at least one facilitator is present to answer questions regarding the under-
standing of the query variables. Prior to the session, experts should have received a
briefing document which helps them to familiarise themselves with the purpose and
structure of the elicitation (Cooke and Goossens 2004).

As there are no differences to univariate uncertainty elicitation in this part, we
devote the remainder of this sub-section to illustrating an exemplary assessment
which has been used similarly in an actual dependence elicitation problem. Morales-
Nápoles et al. (2015) and Morales-Nápoles et al. (2016a) elicit and quantify
dependence between rain amount and rain duration in the Netherlands through
conditional exceedance probabilities. The elicited results are used as model input
for quantifying parametric copulas. Modelling dependence in this way informs
resilience analysis for critical components of road networks, such as tunnels and
road sections. The aim of this analysis is to improve the understanding about the
effects of extreme rainfall for the development of probabilistic models in reliable
infrastructure risk analysis.
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Fig. 8.3 Exemplary elicitation question with visualisation

Figure 8.3 shows a way of presenting experts with the elicitation question:

For Rotterdam, NL, consider all samples for which the rain duration in hours
.X/ is larger than its 95th quantile (4 h). What is the percentage of this set
of samples, for which the rain amount in mm .Y/ is also larger than its 95th
quantile (6 mm)?

This can be expressed as P.Y � 95th quantilejX � 95th quantile/ or
likewise as P.Y � 6 mmjX � 4 h/.

Please provide your assessment:

The inclusion of a visualisation can be helpful for experts to obtain a better
understanding about the framing of the elicitation question.

8.6 Elicitation Process: Post-elicitation

The last phase in the overall elicitation process (Fig. 8.1) is the post-elicitation part.
The two main steps that are of importance here are aggregating the assessments
of various experts and providing feedback to the experts. We address both steps in
more detail below.
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8.6.1 Aggregation of Expert Judgements

In order to capture a broad perspective on the uncertainties that we model and
quantify, we (usually) elicit judgements from a variety of experts. Therefore, a
main aspect of the post-elicitation phase is the aggregation (or combination) of the
assessments from several experts.

As in the univariate case, a distinction at a broad level is made between
behavioural and mathematical (or algorithmic) aggregation methods. The first
type aims at reaching consensus so that the outcome is a single assessment upon
which the group of experts has agreed. This might be achieved within a group
elicitation session or through methods, such as Delphi (Rowe and Wright 2001).
Given that these methods are the same as for univariate elicitation, they are not
further discussed here. Recall however that a potential shortcoming of these methods
(in the univariate as well as multivariate case) is that the consensus might be
reached through one expert dominating the elicitation discussion or even dictating
the elicitation’s outcome (French 2011).

For aggregating judgements mathematically, in particular two approaches are
common. The first is the Bayesian approach which allows for modelling quality
aspects of individual expert distributions, for example overconfidence. The second
approach is a pooling function which is typically seen as more robust and easier to
use (Hora and Kardeş 2015).

For Bayesian aggregation, we apply Bayes’ Theorem (Sect. 8.3.2) while regard-
ing the expert judgements as data. If we are interested in an event or unknown
quantity x, we elicit its probability or set of quantiles and obtain the experts’
individual prior opinions, f0;e.x/ for experts e D 1; 2; : : : ; E. We denote the
set of elicited distributions as D D .f0;1.x/; : : : ; f0;E.x//, and get the combined
posterior distribution for x, f1;DM.xjD/ through f1;DM.xjD/ / f0;DM.x/LDM.Djx/.
It is then necessary to elicit the likelihood function of observing D given x, i.e.
LDM.Djx/ (Wilson 2017). A Bayesian aggregation model which has been used more
commonly is Mosleh and Apostolakis (1986).

A pooling function on the other hand assigns weights to individual assessments
to derive a weighted combination of the experts’ judgements. The weights are either
equal for each expert or they reflect an expert’s competence or performance (in terms
of statistical accuracy, if empirical data can be used for measuring this). For equal as
well as performance-based weighting, all weights are non-negative and sum to one.
A commonly used pooling function is linear averaging, for which the combined
assessment is DM.f1.x/;:::;fn.x// D PE

eD1 wefe.x/, with we being the weight of expert e.
Alternatively, other pooling methods exist, such as logarithmic pooling, for which
the combined assessment is defined as DM.f1.x/;:::;fn.x// D k

QE
eD1 fe.x/we where k is

a normalising constant.
Linear pooling functions originate with Stone (1961) and DeGroot (1974) and

the legitimacy of their application from an axiomatic perspective is primarily
based on event-wise independence (or the weak set-wise function) and unanimity
preservation (Aczél and Wagner 1980; McConway 1981; Dietrich and List 2016).
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The first axiom implies that the collective probability of an event is only determined
by the individual probabilities for that specific event (and not that of other ones).
Unanimity preservation holds that if all experts give the same assessment, then this
will be the collective one.

For aggregating dependence assessments, mainly linear pooling functions have
been used (Werner et al. 2017), which is why we address them in more detail.
Before we discuss these however, note that a possible concern with mathematical
aggregation in the multivariate case is that not all dependence assessments are
preserved. For instance, a linear combination of correlation matrices is still a
correlation matrix, however conditional independencies such as in a BN are not
preserved. Further, an axiomatic issue might be that of preserving probabilistic
independence which ensures that if all experts regard two variables as (condition-
ally) independent, then this is preserved in the combined assessment. For several
pooling functions (e.g. linear as well as logarithmic ones) this is problematic.
However, it might be argued that unless independence assessments are also based on
structural judgements (Sect. 8.5.1), i.e. they are not purely accidental, this normative
constraint is questionable (Bradley et al. 2014). Note that this is a question of
whether one regards dependence information as fully represented by probabilistic
(un-)conditional dependence or only in addition to structural judgements in form of
graphical representations (such as in BNs). As we have emphasised in Sect. 8.5.1
that structural information should be elicited either within the same modelling
framework or separately, the independence axiom is not of concern and we regard
linear pooling methods as applicable for dependence information.

Equal Weighting One option to set weights in a linear pooling function is by
equally weighting all assessments (simple average). When eliciting correlation
parameters directly, overall accuracy improved in that way through adding experts
(Winkler and Clemen 2004). The authors tested the robustness by removing/adding
experts and found that the mean absolute error (MAE) decreased when the number
of experts increased.

Performance-Based Weighting Alternatively, Winkler and Clemen (2004) also
showed that taking the average of only the top performing cohort of experts (in
terms of lowest MAE) instead of the whole set of experts reduces the overall
MAE further. This finding is consistent with expert judgement studies for univariate
quantities (Cooke and Goossens 2008) and therefore motivated the idea of using
a measure of calibration to assess experts’ performance in terms of statistical
accuracy as a score for multivariate assessments. Before we introduce this score,
note that there is an indication that a common calibration method for univariate
expert judgements (Cooke 1991) might not be feasible for aggregating dependence
assessments (Morales-Nápoles et al. 2013).

The first and only calibration score for multivariate assessments (according to
the authors’ knowledge) is the dependence calibration score introduced in Morales-
Nápoles and Worm (2013) which is based on the Hellinger distance. In order to
assess this score (similar to Cooke’s Classical model (Cooke 1991)) seed variables
known to the facilitator but not the experts are elicited in addition to the target
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variables. Then, two bivariate copulas fC (a copula model used for calibration
purposes) and fE (a copula estimated by expert opinions) are used to derive the
Hellinger distance, H, which is defined as:

H.fC; fE/ D
“

Œ0;1�2

s
1p
2

.
p

fC.u; v/ �
p

fE.u; v//2dudv

In Abou-Moustafa et al. (2010) an overview of different distances between distri-
butions is given. If the distributions are Gaussian, these distances can be written in
terms of the parameters of the Gaussian distributions (i.e. the mean and covariance
matrix). Under the Gaussian copula assumption, H may be parametrised by two
correlation matrices:

HG.†C; †E/ D
s

1 � det.†C/1=4det.†E/1=4

. 1
2
det.†C/ C 1

2
det.†E//1=2

Here †C is a correlation matrix used for calibration purposes and †E the one
estimated by experts. The d-calibration or dependence calibration score is:

D D 1 � H

The score is 1 if an expert’s assessments correspond to the calibration model exactly.
Conversely, it differs from 1 as the expert’s opinion differs from the calibration
model. Under the Gaussian assumption, i.e. when using HG, the score approaches
1 as †E approximates †C element-wise and it decreases as HG differs from HC

element-wise. A score equal to zero means that at least two variables are linearly
dependent in the correlation matrix used for calibration purposes and the expert fails
to express this. Or contrary to this, an expert expresses perfect linear dependence
between two variables when this is not the case. For more details, see Morales-
Nápoles et al. (2016b). In the same paper (Morales-Nápoles et al. 2016b), the
method discussed in Morales-Nápoles and Worm (2013) is extended by using the
Hellinger distance to compare a Gumbel copula generated from precipitation data
with a copula constructed from experts’ assessments of tail dependence between
rain amount and duration in Rotterdam and De Bilt, in the Netherlands. The experts’
assessments are obtained by a similar framing as shown in Sect. 8.5.2 and varying
the elicited quantiles, e.g. 50th and 95th (see Morales-Nápoles (2010) for more
details). An overview of the results in given in Table 8.3.

In this study, the combination of expert opinions based on the dependence
calibration score outperforms individual expert opinions as well as weighting
experts equally. In fact, the equal weights approach does not give satisfactory
results. We observe that the performance-based aggregation is much closer to the
actual empirical rank correlation. Further, it was noticed that experts with highest
calibration scores for univariate assessments are not necessarily the experts with the
highest dependence calibration score.



8 Eliciting Multivariate Uncertainty: Considerations and Approaches 203

Table 8.3 Dependence calibration results based on rank correlation, Gaussian (HG) and Hellinger
(H) distance (Morales-Nápoles et al. 2016b)

Rotterdam De Bilt Rotterdam De Bilt

Name X > 0:95 X > 0:95 X > 0:5 X > 0:5

1 � HG

Expert 1 0.809 0.812 0.894 0.897
Expert 2 0.889 0.892 0.766 0.769
Expert 3 0.960 0.963 0.853 0.856
Expert 4 0.746 0.769 0.960 0.963
Expert 5 0.832 0.812 0.979 0.982
Expert 6 0.733 0.736 0.730 0.733
Expert 7 0.787 0.790 0.730 0.733
Expert 8 0.809 0.812 0.894 0.897
1 � H
Expert 1 0.822 0.825 0.900 0.903
Expert 2 0.895 0.899 0.784 0.787
Expert 3 0.962 0.965 0.862 0.865
Expert 4 0.767 0.787 0.962 0.965
Expert 5 0.843 0.825 0.980 0.983
Expert 6 0.756 0.759 0.753 0.756
Expert 7 0.802 0.805 0.753 0.756
Expert 8 0.822 0.825 0.900 0.903
Calibration score

Equal weighting 0.814 0.817 0.837 0.841
Performance-based weighting 0.960 0.963 0.979 0.982
Rank correlation (result)

Equal weighting 0.264 0.264 0.326 0.326
Performance-based weighting 0.578 0.578 0.608 0.608
Realisation 0.622 0.617 0.622 0.617

In order to combine dependence assessments, experts are weighted according
to their dependence calibration score. Similar to the univariate case, a cut-off level
is established, either chosen by the facilitator or by optimising the performance of
the combination. If an individual expert falls below this level, their score will be
unweighted for the pooling function.

8.6.2 Feedback and Robustness Analysis

Similar to eliciting univariate uncertainty, one of the final steps of the depen-
dence elicitation process is testing the robustness of elicited results and providing
feedback to the experts after a combined assessment has been constructed. While
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this procedure is not much different for the multivariate case, it should be noted that
many dependence models produce graphical outputs, such as scatter plots. Depend-
ing on the experts’ understanding of the graphical output and their willingness to
examine such outputs, it might be possible to feedback such a visualisation and
assess their agreement with it.

8.7 Conclusions

In this chapter, we have presented the main considerations for eliciting multivariate
uncertainty from experts. As shown, there are several important adjustments that are
necessary when eliciting dependence given that many of the findings from expert
judgement processes for univariate quantities are not readily applicable.

A first remark for concluding this chapter is that a few areas still lack insight
to a considerable extent. For instance, we have discussed that the biases and
heuristics which influence dependence assessments might be mitigated by training
and knowledge structuring. In particular, experts’ potential misinterpretations of
dependence parameters need to be corrected and ways to do so might be informed
by the educational literature on teaching concepts such as conditional and joint
probabilities. Nevertheless, we need to acknowledge that experiences here might
not be directly transferable to designing experts’ training due to a different
understanding of that of students and therefore further research in training design is
necessary.

Further, more insight is needed on the exact triggers of the potential biases
and their relative influence on judgements. It would be desirable for behavioural
researchers to take a similar interest in this field as they do with the more common
(typically univariate probability) heuristics and biases. This would allow developing
the various (undeveloped) steps in the pre-elicitation phase, e.g. format choices.

In the elicitation phase, in particular the topic of structuring knowledge is
identified as a key area for which further research is necessary. For instance, the
graphical representation of BNs offers a way to incorporate qualitative dependence
information. However issues still remain such as eliciting the structure of highly
complex BNs as well as eliciting tail dependencies graphically. Therefore, again,
we need to obtain more experiences for this part of the elicitation process.

Lastly, we have discussed that when combining assessments mathematically,
more research is necessary for addressing some common desiderata for this step,
such as performance-based as well as mathematically coherent aggregation.
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