
Chapter 14
Eliciting Multi-Criteria Preferences: ELECTRE
Models

Luis C. Dias and Vincent Mousseau

Abstract Outranking methods are a specific type of Multi-Criteria Decision Aiding
methods. They are based on the construction of binary relations validating or
invalidating, for any pair of alternatives .a; b/, the assertion “a outranks b”.
This comparison is grounded on the evaluation vectors of both alternatives, and
on additional information concerning the decision maker’s preferences, typically
accounting for two conditions: concordance and non-discordance. In decision
processes using these methods, the analyst should interact with the decision maker
in order to elicit values for the parameters that define a preference model. This can
be done either directly or through a disaggregation procedure that infers parameter
values from holistic judgements provided by the decision maker. In this chapter we
discuss the elicitation of an outranking-based preference model, focusing on the
valued outranking relation used in the ELECTRE III and ELECTRE TRI methods.

14.1 Introduction

As described in Chap. 12 in this book (Morton 2018), a common approach in the
field of Multiple Criteria Decision Aiding (MCDA) is to aggregate the performances
of an alternative being assessed on multiple criteria into a single number synthesiz-
ing its overall value (see also Keeney and Raiffa 1993). However, a different type of
methods has been developed in parallel, which obtain a binary relation on the set of
alternatives without aggregating multiple performances into a synthesis value. These
methods are usually referred as outranking methods in the MCDA literature and
have been, by and large, associated with the so-called European school of MCDA
(see Roy and Vanderpooten 1996). This allows for decision aiding approaches able
to model not only situations of preference or indifference between alternatives, but
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also situations in which alternatives are deemed to be incomparable in the light of the
preference information elicited. Incomparability typically occurs when the strengths
and weaknesses of two alternatives are so different that one cannot conclude that
one is better than the other, but it is equally unwarranted to conclude that they are
indifferent (i.e., similarly preferred).

Outranking methods ground the recommendations to the Decision Maker (DM)
on the construction of one (or several) binary relation(s) representing the preference
among pairs of alternatives (see Roy 1991; Roy and Bouyssou 1993). A simple
binary relation is dominance: an alternative dominates another one if it is better
on some criteria and it is not worse in any other criterion. It does not require any
subjective parameters such as criteria weights, but the relation is usually poor (i.e.,
it applies to few pairs of alternatives). Outranking methods use additional inputs to
enrich this relation. Examples of outranking methods include ELECTRE methods
(Figueira et al. 2013), PROMETHEE methods (Brans and Vincke 1985; Majid
Behzadian et al. 2010), RUBIS (Bisdorff et al. 2007), NAIADE (Munda 1995),
and qualitative approaches (Martel and Matarazzo 2005). This chapter will focus
on preference elicitation for ELECTRE methods, but analogous procedures can be
applied for other outranking-based approaches.

Let us consider a decision situation involving a finite set of alternatives A D
fa1; a2; : : : ; alg evaluated on n criteria g1; g2; : : : ; gn, (F D f1; 2; : : : ; ng denotes the
set of criteria indices).

The construction of an outranking relation S amounts at validating or invali-
dating, for any pair of alternatives .a; b/ 2 A2, an assertion aSb, whose meaning
is “a is at least as good as b” or, in other words, “a is not worse than b”.
This comparison is grounded on the evaluation vectors of both alternatives a and
b, i.e., .g1.a/; g2.a/; : : : ; gn.a// and .g1.b/; g2.b/; : : : ; gn.b//, and on additional
information concerning the DM’s preferences. To validate a statement aSb, two
basic conditions should be verified: concordance and non-discordance (or non-veto).

A criterion gk is said to be concordant with the assertion aSb if a is at least as
good as b with respect to criterion gk. The concordance condition is fulfilled for
the assertion aSb when the subset of criteria concordant with aSb is a “sufficient
majority”. A criterion gk is said to veto the assertion aSb if a is so much worse
than b on this criterion that the difference of evaluation jgk.b/ � gk.a/j becomes
incompatible with the assertion aSb, whatever the evaluation on the other criteria.
The non-discordance condition is fulfilled when no criterion opposes a veto to the
assertion aSb.

Constructing an outranking relation S involves the elicitation of values for
preference-related parameters, such as weights, majority thresholds and veto thresh-
olds. The next section provides details about these parameters and how they shape
a model of the DM’s preferences. Sections 14.3 and 14.4 in this chapter discuss
how to elicit parameter values. The elicitation of preference-related parameters can
be done either in a direct way centered on parameters (discussed in Sect. 14.3)
or indirectly through a disaggregation procedure centered on examples, that infers
the parameters values from holistic preferences provided by the DM (see Jacquet-
Lagrèze and Siskos 2001) (discussed in Sect. 14.4). Inference is usually performed
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through an optimization program that accounts for the aggregation model and
minimizes an “error function”. This disaggregation approach has been largely used
in additive models (e.g. see Jacquet-Lagrèze and Siskos 2001 and Chap. 13 in
this book Matsatsinis et al. 2018). Section 14.5 discusses the elicitation process,
namely focusing on the order parameters are elicited and how precise should the
elicitation be. Section 14.6 closes the chapter summarizing the main takeaways and
highlighting the research challenges that still lie ahead.

14.2 Preference Models with ELECTRE

This section briefly presents the ELECTRE preference model, namely describing
how a valued outranking relation on the set of alternatives is built in methods such
as ELECTRE III (see Roy 1978) and ELECTRE TRI (see Yu 1992a,b; Roy and
Bouyssou 1993).

14.2.1 Outranking Relations for a Single Criterion

ELECTRE builds, for each criterion gj, a valued outranking relation Sj modelling
the comparison of alternatives on that single criterion. For any ordered pair .a; b/ 2
A2, Sj.a; b/ is defined by (14.2) on the basis of gj.a/, gj.b/ and two thresholds:
indifference qj and preference pj (0 � qj � pj). We consider the thresholds pj and
qj as constant, although it is possible to consider them as affine functions (for such
cases see Roy et al. 2014). For a more compact notation, we will write:

�j.b; a/ D gj.b/ � gj.a/; (14.1)

which for each pair .a; b/ 2 A2 represents the advantage of b over a on the jth
criterion. This assumes, without loss of generality, that the evaluations are coded in
such a way that the higher the value, the better it is (if this is not the case, one simply
considers that �j.b; a/ D gj.a/ � gj.b/).

Sj.a; b/ represents the degree to which alternative a outranks (is at least as good
as) b, defined as (Fig. 14.1):

Sj.a; b/ D

8

<̂

:̂

0; if �j.b; a/ > pj
pj��j.b;a/

pj�qj
; if qj < �j.b; a/ � pj

1; if �j.b; a/ � qj

(14.2)
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Fig. 14.1 Partial valued outranking relation

14.2.2 Concordance Relation

The valued concordance relation C.a; b/ aggregates the relations Sj (j 2 F), and
it represents the level of majority among the criteria in favor of the assertion “a is
at least as good as b”. When computing this majority level, each criterion gj has a
weight wj � 0 representing its voting power. Without any loss of generality, we will
consider

P
j2F wj D 1. Therefore, C.a; b/ can be written as follows:

C.a; b/ D
X

j2F

wjSj.a; b/ (14.3)

14.2.3 Discordance Relations

ELECTRE also builds, for each criterion gj, a valued discordance relation dj

restricted to that criterion. This relation dj.a; b/ is traditionally defined by (14.4) on
the basis of gj.a/, gj.b/, a veto threshold vj and a preference threshold pj (pj < vj;
note we consider pj < vj, although ELECTRE also allows pj D vj) (see Fig. 14.2).
We consider the thresholds vj as constants (as we already did for pj and qj), although
it is possible to consider them as affine functions.

dj.a; b/ D

8

<̂

:̂

1; if �j.b; a/ � vj
�j.b;a/�pj

vj�pj
; if pj < �j.b; a/ < vj

0; if �j.b; a/ � pj

(14.4)

The overall valued non-discordance relation ND.a; b/ as originally defined (Roy
1978) is grounded on C.a; b/ and on the relations dj, j 2 F; it represents the degree
to which the minority criteria collectively oppose a veto to the assertion “a is at least
as good as b”. The classical way of defining ND.a; b/ is given in (14.5). ND.a; b/ D
0 corresponds to a situation where some minority criteria are totally opposed to aSb
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Fig. 14.2 Partial valued discordance relation

Fig. 14.3 Partial discordance relation d0

j .a; b/

whereas ND.a; b/ D 1 means that none of the criteria oppose a veto to aSb.

ND.a; b/ D
Y

j2F

1 � dj.a; b/

1 � C.a; b/
where F D fj 2 F such that dj.a; b/ > C.a; b/g

(14.5)
This expression is equivalent to (14.6):

ND.a; b/ D
Y

j2F

NDj.a; b/; (14.6)

where:

NDj.a; b/ D Min

�

1;
1 � dj.a; b/

1 � C.a; b/

�

: (14.7)

Mousseau and Dias (2004) have proposed an alternative valued non-discordance
relation defined by (14.8)–(14.9), where uj 2 Œpj; vjŒ is a new parameter (discordance
threshold) for the j-th criterion (Fig. 14.3):

ND0.a; b/ D
Y

j2F

ND0
j.a; b/ D

Y

j2F

�
1 � d0

j.a; b/
�

(14.8)
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d0
j.a; b/ D

8

<̂

:̂

1 if �j.b; a/ � vj
�j.b;a/�uj

vj�uj
if uj < �j.b; a/ < vj

0 if �j.b; a/ � uj

(14.9)

A second alternative to define a valued non-discordance relation is the following
(see Mousseau and Dias 2004), which is simpler but only takes the highest
discordance into account:

ND00.a; b/ D Minj2FND0
j.a; b/ (14.10)

Both definitions (14.8) and (14.10) follow ELECTRE’s intention of allowing
one minority criterion to veto the conclusion sustained by the majority of the
criteria, if the performance difference is too large (and worse). These two definitions
are mainly relevant when used in indirect elicitation (regression) processes, since
they allow easier mathematical programming models to infer parameter values,
especially variant ND00.a; b/.

14.2.4 Valued Outranking Relations

ELECTRE’s valued outranking relation combines the concordance and non-
discordance relations:

S.a; b/ D C.a; b/ ND.a; b/; (14.11)

or, according to the two alternative definitions of the discordance concept,

S0.a; b/ D C.a; b/ ND0.a; b/ (14.12)

S00.a; b/ D C.a; b/ ND00.a; b/ (14.13)

From a valued outranking relation such as S.a; b/, S0.a; b/ or S00.a; b/ it is
possible to define a family of nested “crisp” outranking relations S�. These crisp
relations correspond to �-cuts of S.a; b/, where the cutting level � 2 Œ0:5; 1�

represents the minimum value for S.a; b/ so that aS�b holds.

14.2.5 Exploitation of the Outranking Relation

Depending on the type of decision problem different ELECTRE methods can be
applied. Roy (1996) identifies three main “problématiques” depending on the type
of result sought:
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• Selection (or choice): to identify the best alternative (or a predefined number of
best alternatives) among a set of possibilities. Example: to select the best project
among a set of possible variants.

• Ranking: to obtain a preference order among the alternatives, from best to worst.
Example: a prioritization of projects defining the order by which they should be
implemented.

• Sorting problems aim at assigning alternatives to categories, which are typically
defined a priori and ordered. Example: sorting projects among the categories “not
urgent”, “urgent” and “very urgent”.

Methods ELECTRE I and IS (Roy and Bouyssou 1993; Roy and Skalka 1984)
have been proposed to deal with selection problems. Since the outranking relation
is usually not transitive and not complete, often these methods are unable to identify
a single winner. Their purpose is more modestly to identify a subset, named kernel,
of candidates to be the most preferred alternative. The methods try to make this
kernel as small as possible by excluding alternatives that are outranked. Alternatives
in the kernel are incomparable, which typically means they are too different to be
compared with the information requested by ELECTRE.

Methods ELECTRE II, III, and IV (Roy and Bertier 1973; Roy and Bouyssou
1993; Vallée and Zielniewicz 1994) have been proposed to deal with ranking
problems. As in the case of choice, the lack of transitivity and incompleteness of
the outranking relation hinder obtaining a clear-cut result. These methods yield a
partial preorder as an output, i.e., an incompletely defined ranking allowing ties and
in which some of the alternatives are incomparable.

Although ELECTRE methods for ranking and sorting have been used in many
applications (Govindan and Jepsen 2016), the inconclusiveness of its results may
disappoint some DMs and analysts. On the other hand, this inconclusiveness may
be seen as a strength in that ELECTRE I-IV do not force the result to be more
conclusive than warranted by the data and the preferences elicited. Another concern
that has been much debated (e.g., Figueira and Roy 2009) is the fact that adding,
removing, or modifying a possibly irrelevant alternative can change the relative
position of the remaining alternatives. New ranking methods overcoming the latter
issue have been proposed more recently (Rolland 2013).

Finally, ELECTRE TRI (Yu 1992b) and its variants are devoted to sorting
problems. Since they do not compare the alternatives being evaluated against each
other, adding, removing, or modifying an alternative has no effects of the results
concerning the other alternatives. In ELECTRE TRI the alternatives are sorted
based on how they compare to the profiles that define the available categories.
These profiles are multidimensional preference vectors (each profile indicates one
performance value for each criterion), which constitute new preference-related
parameters to be elicited.

The original version of ELECTRE TRI (Yu 1992b) defined category profiles as
bounds delimiting the categories: a profile b1 separates category C1 from category
C2 (b1 can be considered a lower bound for C2 and an upper bound for C1); a profile
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b2 separates category C2 from category C3, and so on. This version is sometimes
referred to as ELECTRE TRI-B.

A subsequent version of ELECTRE TRI is ELECTRE TRI-C (Almeida-Dias
et al. 2010), which proposes to define profiles as central elements of the categories:
a profile b1 it the typical (characteristic) element of category C1, a profile b2 it the
typical element of category C2, and so on. Later, the extension ELECTRE TRI-nC
was proposed to allow each category to be defined by more than one characteristic
element (Almeida-Dias et al. 2012). By analogy, it is also possible to create an
ELECTRE TRI-nB version (Fernández et al. 2017).

14.3 Direct Elicitation

14.3.1 Single-Criterion Concordance Parameters

It makes sense to start the process of eliciting an ELECTRE model by the single-
criteria concordance parameters, since the parameters to be elicited afterwards are
used in computations that refer to the relations Sj. Furthermore, the discussion about
these parameters is not as cognitively demanding as for other parameters, and allows
introducing the cornerstone concept of concordance in ELECTRE.

Given a pair of alternatives .a; b/, Sj.a; b/ assesses the degree to which a
outranks (is at least as good as) b according to the criterion gj. According to (14.2),
this depends on the advantage of a over b, denoted �j.a; b/ D ��j.b; a/ and
two parameters to be elicited: the indifference threshold qj and the preference
threshold pj.

In the oldest ELECTRE methods (Roy 1968, 1971) the single-criterion concor-
dance would be an absolute yes, i.e. Sj.a; b/ D 1, if �j.a; b/ � 0, or it would be an
absolute no, i.e. Sj.a; b/ D 0 otherwise. If a was worse than b on criterion gj then
there was no concordance at all, however small this difference might be. There are
however some reasons why this model might be inadequate for some criteria:

• A small difference might be considered insignificant in relative terms concerning
orders of magnitude. For instance, a difference of $1 between two projects
involving over $1 million is not likely to be valued by any DM.

• Performances may be assessed in an imprecise way using measuring instruments
or statistics. If the performance of a is 100˙5 and the performance of b is 101˙5,
many DMs will be indifferent between one or the other because the performance
difference is much lower than the acknowledged imprecision.

• Performance assessed may be just an imperfect indicator (or even a proxy)
of real-world performance. For instance, the advertised fuel consumption of a
car corresponds to its behavior in an idealized circuit (e.g., the New European
Driving Cycle). If the performance of a is 5:0 l=100 km and the performance of b
is 4:9 l=100 km, many DMs will be indifferent between them because they know
that none of these values correspond to real-life performance. Likewise, when
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recruiting a college graduate, the DM knows that the grade point average (GPA)
of their degrees is just an imperfect indicator: a student with a GPA of 3.5 is not
guaranteed to be more knowledgeable than another one with a GPA of 3.4.

The ELECTRE methods introduced later acknowledge these situations by allow-
ing the DM to set an indifference threshold qj, which is the largest difference such
that the DM does not distinguish between two alternatives in terms of preference. A
question addressing the need for such a threshold can be the following:

“If the difference between two alternatives on criterion j is not equal to zero then
one of them must be preferred on that criterion, or can this difference be so small
that you would not distinguish them in terms of preference?”

In the latter case, it is possible to ask for a limit to this indifference situation:
“How large can a performance difference be until you start hesitating about the

indifference between two alternatives?”
The DM can reply in absolute terms, e.g., 2.0, or in relative terms, e.g., 2%.

Although most ELECTRE software implementations allow modelling qj.gj.a// as
an affine function ˛j C ˇjgj.a/ for some parameters ˛j and ˇj, typically this option
is not used and this function is either a constant value (ˇj D 0) or a proportion of
the performance (˛j D 0). For simplicity, in the remainder of this text we assume it
is a constant value. When thresholds are modelled as functions of the performance
levels special care must be taken to ensure their consistency (Roy et al. 2014).

It is possible to ask verification questions and adjust the parameter by trial and
error:

“If gj.a/ has value xa and gj.b/ has value xb (for some relatively close values
xa and xb) would you say that on criterion j the two alternatives are indifferent, or
would you have a clear preference?”

It is not uncommon that up to a difference ı1 the DM feels clearly indifferent,
for a difference larger than ı2 (ı2 > ı1) the DM has a clear preference, and for
differences in-between ı1 and ı2 the DM exhibits some hesitation in answering such
a question. This allows setting qj D ı1 and pj D ı2, since the preference threshold
pj corresponds to the minimum difference such that the DM has a clear preference
for one of the alternatives.

The elicitation of qj and pj can therefore result in one of these typical situa-
tions:

• pj > qj > 0, meaning that some differences are too small to warrant preference,
and that up to a certain point there is a clear indifference, then some hesitation,
and finally a clear preference as the difference in performance increases.

• pj > qj D 0, meaning that above a given threshold there is a clear preference, and
below this threshold the DM hesitates if the alternatives are indifferent or one is
better than the other.

• pj D qj, and possibly both are null, in some cases concerning a discrete scale
(e.g., number of rooms in a house, or number of stars of an hotel).
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14.3.2 Weights and Cutting Level

As presented in Sect. 14.2.2, criteria weights are used to aggregate the concordance
of the different criteria concerning an outranking relation. Although they are used in
a weighted sum of concordance indices, they should not be interpreted as trade-off
weights. Unlike a typical additive aggregation model (e.g., Keeney and Raiffa 1993)
weights are not scaling coefficients such that the ratio of two weights indicates the
conversion rate between units of value (or utility) on two different criteria.

An adequate analogy for eliciting weights in ELECTRE is that of voting.
Suppose for the moment that all indifference and preference thresholds are null,
i.e., the single-criterion concordances are either 0 or 1. Suppose also that there
is no discordance (veto thresholds are not set or are extremely high), so that
S.a; b/ D C.a; b/ for any pair of alternatives .a; b/. Then, a outranks b if the weights
of the coalition of criteria that add up to C.a; b/ reaches at least cutting level �.
Then, the cutting level � can be interpreted as representing the required majority
for establishing an outranking relation. Typical values for this parameter are 0.50
or 0.51 (a simple majority), 0.67 (requiring a 2/3 majority), etc., up to 1 (requiring
unanimity). A direct elicitation question could be:

“How strong must the majority of the criteria that agree that a is at least as good
as b be, in order to establish this conclusion, taking criteria weights into account?
(in the absence of strong discordance)”

In a trial-and-error process tentative symbolic majority levels can be suggested,
such as 1/2, 2/3 or 3/4. Otherwise, communicating in terms of percentages is
preferable to decimal numbers (i.e., 60% communicates better the sense of a
required majority than 0.60). The higher the majority level required, the less will
the number of outranking relations be but the stronger is their justification. Often,
a compromise is sought between the richness of the relation (number of pairs for
which outranking holds) and the strength of the justification, by observing the effects
of varying this parameter.

In the particular case of sorting problems with ELECTRE TRI (ELECTRE TRI-
B) it may be more appropriate to inquire about the cutting level in a way that matches
more directly its effects on the results:

“How strong must the majority of the criteria that agree that a is at least as good
as the lower profile of a category be, taking criteria weights into account, to warrant
that an alternative can be sorted on that category, if not better? (in the absence of
strong discordance)”

Indeed, to be sorted in a given category (if not better) an alternative must outrank
the category’s lower profile. This parameter can be interpreted as denoting how
much demanding the decision maker is. A high cutting level makes it more difficult
for the alternatives to be classified in the best categories. Again, symbolic majority
levels can be tentatively suggested.

Having the voting majority analogy in mind, then criteria weights simply reflect
how much they count in the formation of such majorities. This means that weights
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Table 14.1 Example of
criteria weights

Criteria: g1 g2 g3 g4 g5

Weights (wk): 0.15 0.20 0.15 0.15 0.35

match the analogy of weights in the physical world. A direct elicitation question
could be:

“Considering that the support of all criteria for an outranking relation amounts to
a 100% majority (unanimity), how much weight (or voting power) would you assign
to criterion gj alone?”

Confirmation questions can be asked concerning the elicited weights. Consider
for instance the weights in Table 14.1. Since w1 < w2 one should confirm that
having the support of the first criterion for an outranking relation is less important
than having the support of the second criterion. Since w1 C w2 D w5, one should
confirm that the last criterion counts as much as the other two criteria. These are just
two examples among many possible. Further confirmatory questions may interrelate
the elicited weights and the cutting level. For instance, if � D 0:55, one should
confirm that:

• No criterion alone is strong enough to warrant an outranking relation.
• The only coalition of two criteria strong enough to warrant an outranking relation

is g2 together with g5 (since w2 C w5 D 0:55 D �)
• No coalition of three criteria is a sufficient majority unless g5 is in it.
• Any coalition of four criteria is a sufficient majority (at the minimum, w1 C w2 C

w3 C w4 D 0:65, which is larger than �).

If indifference and preference thresholds are not null, the single-criterion concor-
dances can be any value between 0 or 1, but this does not change the logic of the
elicitation process. One simply has to reason that if, for instance, the performance
of alternatives a and b is such that Sj.a; b/ D 0:50, then criterion gj contributes with
half of its weight to the coalition supporting that a outranks b.

An alternative to directly asking for numerical criteria weights has been proposed
by Simos (1990) and later revised by Figueira and Roy (2002). DMs can use
cards with criteria names to indicate how they would rank the criteria by order of
importance. Two or more cards can be placed together to indicate the respective
criteria should have the same weight. In addition, DMs can place blank cards to
indicate a higher difference in weights between ranks. For instance, DMs could
indicate the following ranking: g1 and g2, g3, (blank), g4, (blank), (blank), g5. This
indicates that g1 and g2 are the two criteria with higher weight, followed by g3,
then g4 and finally g5. The blank cards in this example entail that one should have
w4�w5 D 3�.w2�w3/ and that w3�w4 D 2�.w2�w3/. Since there are many weight
vectors fulfilling these inequalities the revised Simos technique requires DMs to
set a ratio between the first and the last ranked weights. The authors also propose
a rounding technique if the resulting weights are required to have a predefined
maximum number of decimal digits (for details see Roy and Figueira 2002).
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14.3.3 Discordance Parameters

14.3.3.1 Parameters Defining dj.a; b/

Being a noncompensatory preference model, ELECTRE allows specifying that a
large disadvantage on one criterion may not be compensated by advantages on other
criteria. Let us recall the way the non-discordance condition is implemented through
ND.a; b/ as in Eq. (14.5). If gj.b/ � gj.a/ exceeds vj for at least one criterion then
aSb is invalidated, i.e., 9j 2 F W dj.a; b/ D 1 ) S.a; b/ D 0. This may happen even
when the total concordance C.a; b/ is higher than the cutting level �.

Traditionally, ND.a; b/ accounts both for the values of dj.a; b/ and C.a; b/: the
way ND.a; b/ accounts for dj.a; b/ is amplified when C.a; b/ is low. This reflects
the idea that a veto situation should be accentuated when the concordance relation
is not firmly established. On the other hand, if C.a; b/ is high, then low values of
dj.a; b/ are not taken into account: the overall non-discordance relation defined in
(14.5) considers the dj.a; b/ only for criteria such that dj.a; b/ > C.a; b/.

The interplay between dj.a; b/ and C.a; b/ in measuring discordance makes the
process of eliciting veto thresholds vj prone to misunderstandings. The typical
question asked is often:

“What would be a performance difference in criterion j so large that it cannot be
compensated, i.e., that would make this criterion oppose a veto to any concordant
majority of other criteria?”

Suppose for instance that the previous steps of the elicitation process had let to
set pj D 10 and kj D 0:20, for some j 2 F. Suppose also that the answer to the
previous question had led to set vj D 50, possibly by “trial and error”. The DM
was found to have the opinion that if the performance difference is equal to 50 units
or more, then there would be a veto, but if the difference was less than 50 then an
outranking would be allowed. However, in this case any difference higher than 45
would necessarily veto an outranking relation:

From (14.4), pj D 10, vj D 50, and �j.b; a/ > 45 imply dj.a; b/ > 7=8.
Even assuming that there is no other discordance and C.a; b/ D 1 � kj D 0:8,

Eq. (14.7) together with dj.a; b/ > 7=8 yield NDj.a; b/ < 0:625.
Finally, Eqs. (14.6) and (14.11) yield S.a; b/ < 0:5.
Since �, the required majority, is at least 0.5, a cannot outrank b.
This means that the traditional question for eliciting a difference large enough

to warrant a veto situation leads to an overestimation of this difference. A more
rigorous way to question about the veto threshold, provided that criteria weights
have been elicited, is the following (assuming the parameter values of this example):

“Suppose that j is the only discordant criterion, meaning that a coalition of 80%
of the criteria weights agrees that aSb. What would be a performance difference in
criterion j so large that it cannot be compensated, i.e., that would make this criterion
oppose a veto to that coalition, even if � was as low as 0.5?”

It the DM provided the same answer, 50, then to obtain the desired behavior it
would be necessary to set:
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vj D pj C C.a; b/.�j.b; a/ � pj/

C.a; b/ � 0:5.1 � C.a; b//
D 10 C 0:8.50 � 10/

0:8 � 0:5.1 � 0:8/
D 55:71429:

(14.14)

14.3.3.2 Parameters Defining d0
j.a; b/ for Relation S0.a; b/ or S00.a; b/

The indices d0
j.a; b/ are defined by (14.9) on the basis of gj.a/, gj.b/, a veto threshold

vj and an additional threshold uj which we call discordance threshold. uj represents
the difference of evaluation gj.b/ � gj.a/ above which the discordance condition
starts to weaken concordance C.a; b/ in the definition of S0.a; b/. This discordance
threshold uj can be considered either:

• as an additional preferential parameter to be elicited through an interaction with
the DM, or

• as a technical parameter (rather than a preference-related one), an option that
should be used only when the DM does not wish to use the added flexibility
offered by uj, preferring to work with the thresholds vj only. In such cases, a
reasonable “rule-of-thumb” is to set uj D pj C 0:75.vj � pj/ (see Mousseau and
Dias 2004).

In case the discordance threshold uj is to be elicited, then the main difference
in the use of relation S0.a; b/ rather than S.a; b/ is that criteria that intervene in the
product are not restricted to those for which d0

j.a; b/ > C.a; b/, i.e., small values of
d0

j.a; b/ will impact ND0.a; b/. Moreover, the concordance relation C.a; b/ does not
intervene in the non-discordance implementation.

In model S0.a; b/, the discordance d0
j.a; b/ corresponds to a correction factor

to the concordance of all other criteria taken together. One possibility is to ask
two questions defining the performance differences that correspond to two distinct
d0

j.a; b/ values, e.g., a 10% correction (decrease) and 25% correction. For the former
case the question would be (the question pertaining the latter is similar):

“Suppose that j is the only discordant criterion, meaning that all other criteria
agree that aSb. What would be a performance difference in criterion j that would
warrant decreasing the weight of all concordant criteria by 10%?” (Note that unlike
relation S there is no need to refer to the exact weight of the criteria).

If, for instance, the DM would state that �j.b; a/ D 40 warrants decreasing the
weight of all concordant criteria by 10% and �j.b; a/ D 50 warrants decreasing
the weight of all concordant criteria by 25% then, based on Eq. (14.9), solving the
system

(
40�uj

vj�uj
D 0:10

50�uj

vj�uj
D 0:25

(14.15)

leads to the solution uj D 100=3 and vj D 100.



362 L.C. Dias and V. Mousseau

It is also possible to ask only one of the above questions, and use a different
question to elicit uj:

“Suppose that j is the only discordant criterion, meaning that all other criteria
agree that aSb. At what point (performance difference) would a veto effect start to
occur, in that the weight of all concordant criteria would start to be decreased?”

If, for instance, the DM would reply that a veto effect gradually begins at a
difference of 40, and that �j.b; a/ D 50 warrants decreasing the weight of all
concordant criteria by 25% then, based on Eq. (14.9),

50 � 40

vj � 40
D 0:25 yields vj D 95: (14.16)

14.3.4 Profiles in Sorting Problems

The elicitation of profiles in sorting problems in the framework of ELECTRE
models must take into account their distinct nature in different variants of ELECTRE
TRI: in the original version (ELECTRE TRI-B) the profiles are limits separating
the consecutive categories, whereas in ELECTRE TRI-C the profiles are central
elements of the categories.

Let us first address the original version (ELECTRE TRI-B). Here, a profile bk

separates category Ck from category CkC1 (it can be considered a lower bound for
CkC1). If there are ncat categories, then ncat � 1 profiles need to be elicited. A lower
bound for the first (worst) category, b0, needs not be elicited by assuming that aSb0 is
true for every conceivable alternative a. Similarly, An upper bound for the last (best)
category, bncat , needs not be elicited by assuming that aSbncat is false and bncat Sa is
true for every conceivable alternative a.

Considering the convention that C1 is the worst category and Cncat is the best
category the following conditions should be ensured:

• Each profile dominates the profiles of lower categories: if k0 > k then gj.bk0/ �
gj.bk/ for criteria gj to be maximized and gj.bk0/ � gj.bk/ for criteria gj to be
maximized, with at least one of these inequalities being strict.

• Profiles should not be so close to each other that an alternative might be
indifferent to both: for two different profiles bk0 and bk there is no alternative
a such that aSbk0 and bk0Sa and at the same time aSbk and bkSa.

The sorting of alternatives in ELECTRE TRI can be performed according to a
pessimistic (pseudo-conjunctive) perspective or an optimistic (pseudo-disjunctive)
perspective. Whenever the alternative to be sorted is incomparable to some profiles,
the pessimistic perspective places it a lower category than the optimistic perspective;
otherwise, both perspectives sort it in the same category. In this chapter we will
consider the pessimistic perspective, according to which an alternative is sorted in a
category Ck if it is good enough to outrank its lower bound but not good enough to
outrank its upper bound:



14 Eliciting Multi-Criteria Preferences: ELECTRE Models 363

ai is sorted in Ck , aiSbk�1 ^ :aiSbk (14.17)

Elicitation of the profiles can be conducted by considering one criterion at a
time. For each criterion gj, the profiles for the successive categories can be asked in
ascending order (starting from the worst one) or in descending order (starting from
the best one). In descending order the performance value for gj.bncat�1/ can be asked
as follows:

“On criterion gj, what level of performance is required for this criterion to vote
in favor of sorting an alternative in the best category, Cncat ?”

Then, the performance value for gj.bncat�2/ can be asked as follows:
“On criterion gj, what level of performance is required for this criterion to vote

in favor of sorting an alternative in category Cncat�1? (if not better)”
Then, performances gj.bncat�3/,. . . ,gj.b1/ would be elicited in the same way,

before moving on to a different criterion. Focusing on one criterion at a time makes
the task easier for decision makers, who are in this way invited to consider how each
criterion would sort the alternatives, if there was not any other criterion.

As an alternative, the elicitation can focus on one category at a time, considering
all the criteria, but often this task is harder. Decision makers would have to provide
multi-criteria performances for a profile bncat�1 such that all alternatives outranking
it would be placed in the best category. Then, they would need to provide multi-
criteria performances for a profile bncat�2 such that all alternatives outranking it (but
not outranking bncat�1) would be placed in the second best category, and so on.

Let us now address the central profiles version ELECTRE TRI-C. Here, a profile
bk is the most representative (also called characteristic) element of category Ck. If
there are ncat categories, then ncat profiles need to be elicited. For these profiles to
be consistent, a profile for one category, say bk, cannot be better than the profile
bkC1 from a better category. At the minimum, S.bk; bkC1/ < 1, but more stringent
conditions such as S.bk; bkC1/ < 0:5 or S.bk; bkC1/ < 0 can be placed (Almeida-
Dias et al. 2010). The basic idea of this method is to sort each alternative to the
category such that the alternative outranks and is at the same time outranked by the
profile as much as possible, i.e., with the largest minfS.ai; bk/; S.bk; ai/g (for details,
see Almeida-Dias et al. 2010).

As in the case of ELECTRE TRI-B, elicitation of the profiles can be conducted
by considering one criterion at a time. For each criterion gj, the profiles for the
different categories can be asked, in any order. The performance value for gj.bk/

can be asked as follows:
“On criterion gj, what level of performance best characterizes an alternative in

category, Ck?”
As an alternative, the elicitation can focus on one category at a time, considering

all the criteria. In this case, a profile can be regarded as an ideal example
characterizing the sort of performances the decision maker associates with each
category. Method ELECTRE TRI-nC (Almeida-Dias et al. 2012), which extends
ELECTRE TRI-C, even allows the decision maker to provide different examples of
profiles to characterize each category.
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14.4 Indirect Elicitation (Regression)

Assigning values to the parameters involved in the definition of an ELECTRE
model might be a difficult task for the DM. The disaggregation approach (see
Jacquet-Lagrèze and Siskos 2001) allows to infer parameter values from holistic
preferences (i.e., global preferences rather than a criterion-by-criterion analysis).
Holistic statements might be a ranking of a set of alternatives, comparisons of
alternatives, or, in the case of sorting problems, the proposal of classification
examples. The alternatives that are compared in a holistic manner might be a small
subset of a much larger set of alternatives to be evaluated, or alternatives considered
in past decision processes (possibly knowing how well they performed previously),
or even examples constructed in a way that facilitates comparisons.

The disaggregation approach is usually performed using mathematical programs.
Such inference programs can either be partial if only a subset of parameters is
being inferred (the values of the other parameters being fixed), or global if all
parameters are to be inferred. The inputs for the mathematical program are the
holistic preference statements and the values of the parameters that are not being
elicited. The decision variables are the parameters to be inferred. The objective
function is to minimize an “error function” measuring how well the holistic
preferences are reproduced by the inferred model. The constraints reflect the holistic
preferences and also constraints that the method imposes on the model (e.g., weights
are nonnegative and they add up to 1).

As described in Sect. 14.2.5, in ELECTRE methods the final choice set, or
ranking, or sorting result is derived from the outranking relation. For ELECTRE
TRI’s pessimistic (or pseudo-conjunctive) variant, a statement in the form of a
sorting example can be translated in two statements concerning outranking relations
(Mousseau and Dias 2004). For instance, a statement “alternative a should be
classified at least in the second category and at most in the third category” is
translated into two outranking statements: “a outranks the lower profile of the
second category” and “a does not outrank the lower profile of the fourth category”.
Unfortunately, statements based on ELECTRE methods devoted to choice or
ranking problems, such as ELECTRE I-IV, do not have an easy direct translation
into outranking statements. Therefore, the literature has concentrated on the cases
of sorting problems or inferring parameters from outranking statements.

In order to elicit values for preference-related parameters (i.e., wj, vj.gj/, pj.gj/,
qj.gj/, and limits of categories in ELECTRE TRI) it is possible to proceed using a
disaggregation procedure that infers the parameters values from holistic preferences
provided by the DM. Hence, it is necessary to formalize S.a; b/ through an
optimization program that minimizes an “error function” that measures how much
the values of the inferred parameters contradict the stated holistic preferences.
However, S.a; b/ is rather “optimization unfriendly”. Difficulties arise mainly from
the way the non-discordance condition is implemented, i.e., the way ND.a; b/ is
defined.
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More precisely, two features of the non-discordance relation are concerned. First,
the subset of criteria F (see (14.5)) is difficult to integrate into an optimization
program. Second, the fact that C.a; b/ intervenes in the definition of ND.a; b/

implies that the optimization program will necessarily be non-linear, even when
all the parameters are fixed except the weights.

The problem of inferring the parameters of an ELECTRE method (ELECTRE
TRI) based sorting examples translated into outranking statements was initially
studied by Mousseau and Slowinski (1998). The resulting mathematical program-
ming was nonlinear and would require global optimization techniques to find a
solution. A simpler formulation was proposed to infer only the weights and the
cutting level in situations without veto thresholds, in which S.a; b/ D C.a; b/. In
this case, an easy to solve linear programming formulation could be devised.

If veto thresholds are allowed, then the problem can no longer be solved by linear
programming, even if the only parameters to be inferred are weights and the cutting
level. Indeed, S.a; b/ is a non-differentiable and quasi-concave nonlinear function of
the weights in the domain where it is strictly positive and therefore a constraint like
S.a; b/ < � (which reflects a holistic statement of the form :aSb) does not define
a convex set (Dias and Climaco 1999). For this reason, Mousseau and Dias (2004)
proposed variants for the outranking relation, S0 and S00 (presented in Sect. 14.2.4)
that allow using linear programming in such cases.

To provide an example of the mathematical programming approach to inference,
the following section briefly recalls the inference of weights and cutting level for
relation S0. The ensuing section overviews the literature on eliciting other subsets of
parameters.

14.4.1 Inferring Weights and Cutting Level from S0
Outranking Statements

Let us suppose that the DM is not able (or not willing) to assign directly values to
the preference-related parameters involved in the outranking relation, but can state
crisp statements about this relation for some specific pairs of alternatives (a; b/, i.e.,
either aSb (a outranks b) or :aSb (a does not outrank b). Our purpose is to find
criteria weights and a cutting level that restore the DM’s statements.

Let A denote a set of alternatives. Let SC D f.a; b/ 2 A2 such that the DM stated
aSbg and S� D f.a; b/ 2 A2 such that the DM stated :aSbg. Then, a combination of
parameter values is able to restore the DM’s request iff S.a; b/ � �; 8.a; b/ 2 SC
and S.a; b/ < �; 8.a; b/ 2 S�, which may be written as S.a; b/ � � � 0; 8.a; b/ 2
SC and � � S.a; b/ C " � 0; 8.a; b/ 2 S� (" being a small positive value).

The mathematical program given below (14.18)–(14.23) maximizes a common
slack ˛ for all these constraints, to obtain a relatively “central” combination of
parameter values. Whenever the optimum value of ˛ is negative, there is no
combination of parameter values complying to all the constraints, i.e., the DM
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provided inconsistent information (a procedure to deal with such inconsistencies
is proposed in Mousseau et al. 2003). Alternative objective functions can be
considered (see Beuthe and Scannella 2001 and Mousseau and Slowinski 1998).

Max ˛ (14.18)

s:t: ˛ � S.a; b/ � �; 8.a; b/ 2 SC (14.19)

˛ � � � S.a; b/ C "; 8.a; b/ 2 S� (14.20)

� 2 Œ0:5; 1� (14.21)

vj.gj/ > pj.gj/ > qj.gj/ � 0; 8j 2 F (14.22)
Xn

jD1
wj D 1I wj � "; 8j 2 F: (14.23)

Some additional constraints can be added to this program, in order to inte-
grate explicit statements of the DM concerning the values of some parameters.
From (14.5) and (14.11), it is obvious that this is a difficult nonlinear program if all
the parameters were considered as variables. A solution to circumvent this difficulty
is to formulate partial inference programs, where only a subset of the parameters
are considered as variables, while the remaining ones are elicited by other means.
Among the partial inference problems, previous research on related problems has
focused mainly on inferring the weights and the cutting level (see Mousseau et al.
2000; Dias et al. 2002; Miettinen and Salminen 1999). This is an important partial
inference problem because the weights and the cutting level are the only parameters
involving inter-criteria judgements (the remaining parameters do not interrelate the
criteria).

Let us consider the case where S0 is used. In this case each product
Q

j2F.1 �
d0

j.a; b// D ND0.a; b/ is a fixed constant 8.a; b/. The following constraints
concerning outranking statements are hence linear, since C.a; b/ is an affine function
of the weights.

˛ � C.a; b/
Y

j2F

�
1 � d0

j.a; b/
� � �; 8.a; b/ 2 SC (14.24)

˛ � � � C.a; b/
Y

j2F

�
1 � d0

j.a; b/
� C "; 8.a; b/ 2 S� (14.25)

Considering S0.a; b/ instead of S.a; b/, the weights and the cutting level can be
inferred by solving a linear program whose variables are ˛, w1, . . . , wn, and �,
where (14.24) and (14.25) appear as (14.27) and (14.28):

Max ˛ (14.26)

s:t: ˛ �
Xn

jD1
wj Sj.a; b/ ND0.a; b/ � �; 8.a; b/ 2 SC (14.27)
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˛ � � �
Xn

jD1
wj Sj.a; b/ ND0.a; b/ C "; 8.a; b/ 2 S� (14.28)

� 2 Œ0:5; 1�; (14.29)
Xn

jD1
wj D 1 wj � "; 8j 2 F (14.30)

If the maximum value of ˛ is positive, then the values of w1, . . . , wn, and � at the
optimum are able to restore all the statements defining SC and S�. Otherwise, the
inferred values provide suggestions for changing those examples. The DM should
ponder whether they want to change the sets SC and S�, or to analyze the values of
ND0.a; b/. Indeed, some of the differences among the current model and the DM’s
requests may stem from inadequate values for the veto and discordance thresholds.
Considering S00.a; b/ instead of S0.a; b/ leads to a similar linear program.

As a particular case, the pessimistic procedure of ELECTRE TRI assigns
alternative a to category Ch (bh�1 and bh being the lower and upper profiles of Ch,
respectively) iff S.a; bh�1/ � � and S.a; bh/ < � (� 2 Œ0:5; 1� is the chosen cutting
level).

Suppose the DM has specified a set of assignment examples, i.e., a subset of
A� � A such that each ak 2 A� is associated with CM.ak/ (Cm.ak/, respectively)
the maximum (minimum, respectively) category to which a should be assigned
according to his/her holistic preferences. Hence ŒCm.ak/; CM.ak/� defines an interval
of possible categories to which ak can be assigned to. Cm.ak/ D CM.ak/ D Chk

means that the DM wants ak to be assigned to Chk precisely (we will note ak !DM

Chk such statement), while Cm.ak/ < CM.ak/ corresponds to an imprecise statement
(ak !DM ŒCm.ak/; CM.ak/�).

Inferring all ELECTRE TRI parameters is a difficult nonlinear program
(Mousseau and Slowinski 1998). But if we consider S0.a; b/ instead of S.a; b/,
the weights and the cutting level can be inferred by solving a linear program (all
other parameters being given as inputs). The linear program for this partial inference
problem is equal to (14.26)–(14.30) if we define:

SC D ˚
.ak; bCm.ak/�1/ 2 A� � B W ak !DM ŒCm.ak/; CM.ak/�

�
(14.31)

S� D ˚
.ak; bCM.ak// 2 A� � B W ak !DM ŒCm.ak/; CM.ak/�

�
(14.32)

Considering S00.a; b/ instead of S0.a; b/ leads to a similar linear program.

14.4.2 Inferring Different Parameters for Sorting Problems

In recent years, several papers dealt with the learning of ELECTRE TRI parameters.
As mentioned previously, the first paper devoted to the learning of ELECTRE

TRI parameters has been proposed by Mousseau and Slowinski (1998). The learning
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algorithm takes as input a set of assignment examples and their associated vector of
performances with respect to the problem criteria. The paper shows the difficulties
to learn the parameters of ELECTRE TRI without veto. The main difficulty is the
non-linearity of the partial concordance indices. Indeed, it makes the concordance
index not differentiable which prevents the use of gradient optimization algorithms.
In order to tackle this difficulty, Mousseau and Slowinski (1998) propose to
approximate the partial concordance indices by sigmoid functions.

Learning all the parameters of an ELECTRE TRI model involves the determi-
nation of a lot of parameters. It requires a lot of cognitive effort from the user.
Mousseau et al. (2001) consider the subproblem of finding the weights and the
cutting threshold of an ELECTRE TRI model with fixed profiles and indifference
and preference thresholds. In the paper, a linear program is proposed and some
experiments are conducted. It shows that learning only a subpart of the ELECTRE
TRI model simplifies the problem. Fewer assignment examples are required to
obtain good results.

Ngo The and Mousseau (2002) proposed a mixed integer program in order to
infer the profiles of an ELECTRE TRI model with fixed weights and thresholds. The
mixed integer program presented in the paper finds the partial concordance indices
in a first step. The second step consists in deducing the values of the profiles from
the partial concordance indices. They propose to use this mixed integer program in
combination with the linear program of Mousseau et al. (2001) in order to determine
the whole set of parameters of an ELECTRE TRI model.

Mousseau and Slowinski (1998), Mousseau et al. (2001) and Ngo The and
Mousseau (2002) consider only ELECTRE TRI models without veto. Dias and
Mousseau (2006) present a manner to learn vetoes of an ELECTRE TRI model with
fixed profiles, thresholds and weights. In the paper, two subproblems are treated.
The first one considers the inference of veto parameters for a single criterion. The
second considers the inference of all veto parameters for multiple criteria at the
same time.

Doumpos et al. (2009) proposed a metaheuristic in order to learn all the
parameters of an ELECTRE TRI model, including the veto thresholds. They
developed a genetic algorithm in order to learn all the parameters of the model at
the same time. The interest of this approach is that it allows to deal with larger data
sets than mixed integer program based algorithms.

However ELECTRE TRI integrates a large number of preference parameters
that are to be determined. MR-SORT is a simplified version of ELECTRE TRI
which keeps the philosophy of ELECTRE TRI with the advantage of using less
parameters (no veto thresholds and no discrimination thresholds are considered).
Leroy et al. (2011) propose a mixed integer program in order to learn the parameters
of such a model based on assignment examples. The experimental results presented
in the paper show that the mixed integer program is able to find MR-SORT models
which perform well in generalization. However, the experiments show the limitation
of such an algorithm in terms of computing time. For a small problem involving
five categories and three criteria, more than 100 s are required to restore all the
parameters of a MR-SORT model on the basis of 100 assignment examples.
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Damart et al. (2007) are the first to consider the problem of learning the
parameters of an ELECTRE TRI model in the context of multiple decision makers.
They propose an approach that aims at determining a set of fictitious alternatives
that contain enough information to obtain a model that is satisfactory for all the
DMs. The procedure is applied to an illustrative example.

Later, Cailloux et al. (2012) developed two mixed integer programs in order to
learn the parameters of a MR-SORT model in the context of multiple DMs. The
first mixed integer program aims at finding a set of profiles that is common to all
the decision makers. The second mixed integer program learns a set of weights
compatible with the preferences of each DM. The paper presents experimental
results on real and fictitious applications.

Recently, Sobrie et al. (2013), Sobrie (2016) proposed an heuristic to efficiently
infer MR-SORT parameters (weights and profiles) from large sets of assignment
examples (over several thousands).

14.5 Elicitation Process

After reviewing elicitation techniques, we now focus on elicitation as a process that
evolves in time, involving at least one DM and an analyst conducting the process.
Two issues are discussed: elicitation sequence and numerical precision.

14.5.1 Elicitation Sequence

The elicitation sequence defines which parameters are elicited, in which order
(or simultaneously), and using which technique.

All the parameters of an ELECTRE model should be discussed with the DMs,
but not necessarily elicited from them. Indeed, there are at least three situations in
which some parameters are not elicited:

• Indifference and preference thresholds, unlike preference-based parameters such
as weights, may be considered technical parameters (Rogers and Bruen 1998;
Roy et al. 2014) that can be set by the analyst, possibly with the help of experts
on the domain that a criterion refers to. For instance, an analyst may set both
thresholds equal to zero if a scale is ordinal, or an expert may set these thresholds
based on considerations about the method that measures the performance of the
alternatives on a cardinal scale, or a scientist may inform which differences in,
say, noise levels, are negligible because a human cannot perceive them (Rogers
and Bruen 1998).

• Veto thresholds may not be necessary, at least for all the criteria. The DMs may
deem that no veto power is granted to some criteria, meaning that the discordance
from those criteria is always null.
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• The DMs may feel uncomfortable about setting criteria weights. In such cases,
they may resort to ELECTRE IV, a method that does not ask for weights (Roy
and Hugonnard 1982), or they may consider some freedom in setting the weights,
as discussed in the following section. Many DMs may simply ask that all criteria
have the same weight, but such a conclusion should result from (or be confirmed
by) elicitation questions (Sect. 14.3.2).

There is no mandatory order by which parameters should be elicited. A possible
sequence is the one followed by Sect. 14.3. Indifference and preference thresholds
are clearly related and thus should be elicited simultaneously, one criterion at a time.
Then, since the concordance part of the outranking relation is being addressed, the
elicitation of weights may ensue. If the cutting level � is communicated as a required
majority level, then this parameter can be discussed simultaneously with weights, as
described in Sect. 14.3.2. Finally, the possibility of veto is discussed, eliciting veto
and non-discordance thresholds.

A different strategy is to initially focus on one criterion at a time and elicit
indifference, preference, discordance and veto thresholds for each criterion. Then,
criteria weights and the cutting level, which interrelate multiple criteria, would be
elicited.

When an indirect elicitation (regression approach) is followed, multiple types of
parameters can be inferred simultaneously, although that is a difficult optimization
problem. Inferring only a subset of the parameters at a time allows overcoming
this difficulty, and has an additional advantage. Since the DMs interactively revise
the information they provide and observe the results of the mathematical program,
partial inference problems allow them to focus their attention on a subset of
parameters at a time and to better understand the consequences of modifying the
examples they provide. We believe that inference programs should not be considered
as a problem to be solved once, but rather as problems to be solved many times
throughout an interactive learning process. Furthermore, it is possible to mix direct
and indirect elicitation questions for different sets of parameters, and even for the
same parameters (for confirmation purposes). Finally, the notion that parameters are
elicited in a sequence does not mean that the elicitation process is linear. Often, the
analyst may find out that the discussion concerning a subset of parameters puts into
question the values elicited previously for another subset of parameters.

14.5.2 Numerical Precision

The issue of precision (and accuracy) arises in both direct and indirect elicitation.
By precision we mean the freedom of variation one accepts for a parameter. For
instance, setting the weight of the first criterion as w1 D 0:288 is more precise than
setting w1 2 Œ0:28; 0:29�, which is more precise than setting or w1 2 Œ0:25; 0:30�.
The elicitation process is developed during a finite time window in which the DMs
are available (and attentive!). Therefore, one has to accept the elicitation results
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might not be “accurate” in the sense that they include the exact parameter values that
would result from a much longer process. In a direct elicitation process, a DM would
hardly state that w1 D 0:288. Probably he or she would state 0.29 or 0.3 which are
“rounder” numbers. Typically these inputs are accepted even knowing they might
be slightly inaccurate: no analyst would ask if it should really be a value of 0.299
or 0.301 instead of 0.3. Analysts know that rounder numbers are more comfortable
for the DMs and reckon it would not be worthwhile to trouble a DM for a degree
of precision that might be irrelevant to the results of the analysis. These concerns
can be addressed at the end by means of a sensitivity or a robustness analysis (Roy
1998).

In indirect elicitation processes the mathematical programs might admit many
different solutions able to reproduce the examples provided by DMs. For instance,
experimental studies have been developed (Mousseau et al. 2001) showing that
to infer relevant values for wj and �, the cardinality of SC and S� should be
“sufficiently” large. On the other hand, accepting less precision leads to higher
confidence that the elicitation results (a subset of the parameter space) contains the
parameter vector that would result from an ideally long elicitation process.

There are two possible outcomes of an indirect elicitation process: a set of
constraints defining a partial information set (a subset T of the parameter space) or
a (precise) vector of parameter values t� 2 T (the best fit found by a mathematical
program). For instance, the IRIS implementation (Dias and Mousseau 2003) of an
indirect elicitation process for ELECTRE TRI (Dias et al. 2002) infers a suggested
parameter vector and displays the resulting sorting of the alternatives, but it always
displays all other sorting possibilities that are compatible with examples and other
constraints provided by DMs.

Often, precision is not required for a model to be requisite (as defined by Phillips
1984). The analyst can follow a strategy of progressively reducing the variation for
the parameters by means of new questions depending on the observation of results
that are robust relatively to information provided before Dias (2007). The process
stops when the DMs feel the precision in the results is requisite for their purposes.
As an example we can mention an application for sorting plots of land according to
their suitability for photovoltaic plants (Sánchez-Lozano et al. 2014). A subset of
20 plots was considered as potential sorting examples. At the outset, an interval of
weights was considered based on the maximum and minimum values indicated by
a panel of stakeholders. Then, a DM observed the range of categories in which each
plot could be sorted given their characteristics and the weight intervals considered.
The DM then sorted a few of these plots according to his experience-based opinion,
one at a time, and observed how the range of possible categories for each plot was
reduced as a result of the new constraints associated with the example. After sorting
the seventh plot the number of constraints collected defined a region in the parameter
space that was sufficiently precise to be able to sort each one of the remaining 13
plots into a single category. The model was considered to be requisite, concluding
the elicitation process.

Setting a precise figure for each parameter value may also be an elusive
goal when seeking the agreement of multiple DMs, due to differences in their
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preferences. It is easier for them to agree that w1 2 Œ0:25; 0:30� than to agree that
w1 D 0:288, and often conclusions are robust to vector variations within a subset of
the parameter space. DMs may agree on a result although they would not be able to
agree on precise values for the input parameters (Dias and Clímaco 2000). In such
cases, DMs can start with little information and progressively constrain the subset
of the parameter space they consider.

Avoiding eliciting precise figures is also a possibility to cope with situations in
which DMs do not wish to set criteria weights, particularly in sensitive situations
(e.g., impacts on the environment and on human health, or social impacts). Such
DMs wish to treat criteria in a value-neutral way. An alterative to considering all
criteria have the same weight is to consider that all criteria share a common interval
of weights (for an example, see Domingues et al. 2015). This makes no distinction
between the criteria importance, but does not entail they have the same weight. In
this case, DMs would discuss the acceptable interval of weights for the criteria,
discussing for instance that no criterion should weight more than all other criteria
(kj < 0:5), or defining a maximum acceptable ratio between any two weights (e.g.,
a criterion’s weight cannot be more than ˛ times greater than any other criterion’s
weight, Domingues et al. 2015).

14.6 Concluding Remarks

A large literature exists concerning the way by which ELECTRE methods can
be implemented in practice and in particular with respect to the integration of
the DM judgement in the preference model. Preference elicitation for ELECTRE
methods have been largely developed and this chapter provides a synthesis of the
corresponding literature.

However, there are still many challenges to be faced. An important one concerns
the indirect elicitation of ELECTRE models for ranking problems: as ELECTRE
methods are not invariant with respect to third a alternative, i.e, a DM can provide a
statement “a is preferred to b”, the inferred model will reproduce this comparison,
but when applied to rank a larger set of alternatives, b can be better ranked than a.

Another challenge related to inference of ELECTRE model is related to the
multiplicity of preference parameters. When eliciting indirectly these preference
parameters, we usually can obtain a rather limited amount of preference statements
(e.g. pairwise comparisons, or assignment examples). The contrast of the great
flexibility of the preference models with the limited preference information makes
it difficult to set the values of the preference parameters without some form
of arbitrariness. In some applications, it might be relevant to consider some
simplification of the original ELECTRE methods (avoiding some of the parameters).
Another path is to collect la large amount of preference information, but this implies
computational challenges related to the inference of ELECTRE models with large
sets of preference statements.
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A third challenge is to elicit and integrate “soft” requests, such as “I would like
that criteria weights are not too different”, or “I would like that more important
criteria have greater veto power than the remaining ones” in direct and especially in
indirect elicitation processes.

Finally, group decision making places many different challenges. A strategy to
deal with lack of agreement is working with less precise information, as suggested
in the previous section. But if the DMs wish to somehow aggregate their opinions
assigning different weights for the DMs’s requests (e.g. reflecting their expertise or
past performance), then there is lack of research on how to take this into account in
eliciting ELECTRE’s parameter values.
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