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Chapter 1
Elicitation: State of the Art and Science

Luis C. Dias, Alec Morton, and John Quigley

I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory
kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of Science,
whatever the matter may be.

Lord Kelvin (1891, pp. 72–72)

Abstract This book is about elicitation, which may be defined as the facilitation of
the quantitative expression of subjective judgement, whether about matters of fact
or matters of value. To motivate, we review case studies from human health (swine
flu); provision of public services (airport location); natural hazards (assessment of
the risk of earthquakes) and environmental protection (in the case of radioactive
waste) where elicitation was or could have been profitably used to inform decisions.
It is often argued that uncertainties are too deep or human values are too profound
for quantitative thinking to be applicable: we argue on the contrary (drawing again
on cases) that it is impossible to think about important problems without dealing
with problems of “how big” and “how much”. We provide an overview of chapters
in the book, which, we argue, shows that there is a huge body of knowledge and
expertise about how to elicit both probabilities and preferences in important social
problems, and conclude with future trends that make the subject of this book (in our
view) particularly timely.
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1.1 Conceptual Background

A useful definition of a problem is that it is a situation where there is a current
state, and a desired state, and they are not the same. Most people are familiar with
this sort of situation and many day to day problems can be dealt with by largely
subconscious or automatic processes (the coffee is too bitter, so I add sugar; the
water is too cold, so I turn the tap). But some problems (I want to take up a new
hobby, perhaps a new sport, a new language, or a new instrument) require reflection:
I have to reflect what goals I want to achieve and whether the actions I have at my
disposal will help me achieve them. In such cases I have to build a mental model of
my problem to organise my thoughts and help me choose wisely. Other problems,
even more complex, involve the significant others in my life (where should we go
on holiday?; should we move to a new city, or new country, to take that new job?):
in these cases, the model I build should be a shared one, so as to ensure that all
those involved in the problem understand what they are getting into. At a higher
level still, society has to take important decisions about responses to threats to our
environmental and economic wellbeing and security: in a democracy these decisions
should take account of the views of the public in some organised fashion.

Tackling problems at multiple levels therefore, requires models of value and
models of (our knowledge of) the world around us which may be to a greater
or lesser extent implicit or explicit depending on the background nature of the
problem. These models can also be more or less complex. For example, in the event
of an uncontrolled emission of radioactive materials from a nuclear plant into the
atmosphere, the core decision may look as shown in Table 1.1, where the rows are
the choice of actions, the columns are scenarios which may be realised and the
consequences in the cells are the outcomes experienced by humanity. This is a very
simple model. At the other end of the scale, there are much more complex models
(e.g. Geldermann et al. 2009). Such systems may allow (probabilistic) forecasting
of wind direction, and model the dispersion of radionuclides and the consequent
damage to human health. These more complex models may require drawing on
extensive amounts of data and cutting-edge science.

Table 1.1 A simple model of a decision in nuclear emergency management

Scenarios
Wind blow seawards
and radioactive material
is dispersed over the
ocean

Wind blow landwards and
radionuclides are dispersed
over land

Actions Evacuate nearby town Unnecessary evacuation
with result cost and
hardship

Population are moved out
of the path of harm’s way

Do not evacuate but
encourage people to
shelter indoors

Damage and inconvenience
both minimised

Population are exposed to
potentially hazardous
levels of radiation
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To whom should we go when we wish to deliberate on these models? In the
case of models of the world around us, it seems reasonable to privilege experts—
those who have relevant knowledge about the subject matter—above lay members
of the public. However, identifying these experts may not be straightforward. Senior
professors may have long since ceased to keep up with the research literature and
be primarily expert at obtaining research funding, and managing grants. Industry
experts may be blinkered by social norms and conflicts of interest, especially if
they depend for employment or consulting income on other powerful stakeholders.
Moreover, if we want to make a genuinely informed decision, we want experts who
are able, not just to offer an opinion, but to give us an assessment of how much
confidence we can have in their assessment. This requires a cognitive ability which
is entirely distinct from actual knowledge.

We may seem to be on safer ground when it comes to models of value. In
these cases, surely the person to engage with is the decision maker. Yet this is
not a particularly helpful observation. In many situations there is no single unitary
decision maker. Even if one person has to sign on the dotted line, the agreement
of many people is required if the decision is to be real—is actually to result in
action and change. What is more, research strongly suggests that even when making
consequential decisions people do not know the goals that they have—even if asked
to spontaneously list their goals, there are many other not less important goals which
they also recognise as being relevant to their choices (Bond et al. 2008). Therefore,
it is wise to engage in reflective dialogue with their friends and partners about
significant choices—even if the decision falls to you alone.

This book is a book about elicitation, which may be defined as the facilitation
of the quantitative expression of subjective judgement, whether about matters of
fact or matters of value. Why should anyone want to express their judgements
quantitatively, or to help others to do so? So far, we have stressed the role of models
in underpinning decision making. But these models are often—and always in the
case of models which are exclusively mental models—qualitative in nature.

We believe that people should be encouraged to express their judgements
quantitatively as a way of making their thoughts precise, and ensuring that they
are testable against the evidence from the real world. Statements like “This year
there will probably be a lot of rain in Glasgow” or “Artistic self-realisation is more
important to me than money” are hopelessly vague: “This year there is a 50% chance
of more than 1100mm of rain in Glasgow” and “I would be prepared to take a pay
cut of up to £7K per annum to free up a day a week for my theatre workshop” can
be tested against the actual realised weather and my actual choices respectively.

For important decisions, this clarity is critical, we believe, if we are to have
high quality, transparent engagement of experts and stakeholders; if we seriously
care about having high quality deliberative dialogue. It is not that words and
qualitative reasoning are not important. However, significant decisions inevitably
involve weighing competing risks and values and questions of relative magnitude
inevitably arise. The only way to communicate clearly about relative magnitude
is through the use of numbers. For such decisions, words and numbers are jointly
necessary and indeed, complementary.
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It is true that people are not (yet) accustomed to use numbers to express their
judgements of fact or value. For some people this is difficult or uncomfortable;
others have an ideological objection to it, as they view quantification as having
a technocratic flavour. Yet we believe that the difficulties are overstated. As the
chapters in this book show, there are many ways to enable people to express their
quantitative judgements, which can be customised to quite different cognitive styles
and tastes. Many of the elicitation methods we review involve asking respondents
purely qualitative questions: the numbers are, so to speak, “backed out” from their
answers.

Our purpose in this section has been to present our motivating philosophy and the
conceptual underpinnings of the current volume. In the remainder of this chapter, we
discuss in more detail the need for, and barriers to, using elicitation of probabilities
and preferences to support decision making, outline the chapters of the book, and in
conclusion, present some common themes and ways forward.

1.2 The Need for and Barriers to Elicitation

For the purposes of sharpening assumptions and distinguishing them, nothing beats an
exercise in probability. (Neustadt and Fineberg 1983, p. 118)

Values are what we care about. As such values should be the driving force for our decision
making : : : But that is not the way it is. It is not even close to the way it is. Keeney (1992)

1.2.1 The Need for Elicitation of Judgement

In this subsection, our aim is to reflect on the need for elicitation. We do so by
considering cases where elicitation was or could have been profitably used. These
in-depth cases will give a sense of the breadth of potential application across time
and across domains. Specifically we deal with four areas of applications, which are
depicted in Table 1.2 below: they cover human health (swine flu); provision of public
services (airport location); natural hazards (assessment of the risk of earthquakes)
and environmental protection (in the case of radioactive waste). Although all cases
involve both uncertainties about matters of fact (probabilities) and conflicts about
values (preferences), two case studies are better used to highlight the former, and
the other two, the latter.

Table 1.2 Four case studies which illustrate the potential for structured elicitation

Assessment of probabilities Assessment of preferences

Historic (1960s/70s) Case 1. Swine flu Case 2. Airport location
Recent Case 3. Assessment of risk of earthquake Case 4. Radioactive waste



1 Elicitation: State of the Art and Science 5

1.2.1.1 Case 1. Swine Flu

In early February 1977, then US Secretary of Health, Education and Welfare Joseph
A Califano Jr. was confronted with the decision to release stocks of influenza
vaccine; he had been in post for 2 weeks. The vaccine had been used in autumn 1976
to begin immunizing the nation against swine flu, a strain of the H1N1 influenza,
and possibly prevent an epidemic on the scale of the Spanish flu which caused the
death of 3–6% of the world’s population in 1919. The vaccine had been withheld
due to possible but not certain links with Guillain-Barre Syndrome, which is an
often paralyzing and sometimes fatal side effect. This unenviable time pressured
task of decision making under uncertainty concerned trading between risks, where
traditional “scientific” evidence from controlled lab based experiments did not exist
and as such must rely on expertise. Today, the outbreak is most remembered for
an unnecessary mass immunisation that cost $135 million (Harrell 2009). The
virus resulted in one fatality while side-effects from the vaccine are thought to
have caused 25 deaths due to Guillain-Barre syndrome (Roan 2009). There is no
guarantee that decision making under such circumstances will result in the best
outcome post-hoc, however better processes for working with expert judgement
seem to have been needed.

Much has been written on this outbreak with the most in-depth critique of the
decision making process “The Epidemic That Never Was: Policy Making & The
Swine Flu Affair” (Neustadt and Fineberg 1983), published after the event with the
aim of learning lessons for the future. While there are a number of confounding
issues that led to the decision to attempt to vaccinate the entire US population a
key shortcoming identified in the process was the lack of probability assessments,
explicitly identifying the need for experts to quantify their uncertainty in terms of
probability, exposing their judgment for comparison with one another.

1.2.1.2 Case 2. Airport Location

A perennial issue in UK politics over the last several decades has been airport
capacity planning in the crowded South-East of the country around London. An
instructive episode in this history is the Roskill Commission (Hall 1980) appointed
by the UK government in 1968, and which reported in 1971. The centerpiece of the
Roskill Commission’s Report was a highly detailed economic cost-benefit analysis
(“without doubt the largest and most complex of its kind attempted anywhere”—
Hall 1980, p 32) which involved calculations and monetisation not only of capital
investment and passenger time, but also noise impacts, agricultural impacts and the
like. The Commission’s calculations pointed to a site—Cublington—between Lon-
don and Birmingham as the best choice. However the publication of the report and
the substantive recommendation of Cublington generated a storm of controversy.
One commission member wrote an impassioned note of dissent suggesting that the
Commission’s entire methodology had been misguided as it completely ignored
the overriding importance of preserving open countryside. Academic commentators
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such as Mishan (1970) (“What is wrong with Roskill?”) and Self (1970) (“Nonsense
on stilts”) piled into the discussion with trenchantly expressed take-downs of the
study methodology. An important theme of the Mishan and Self critiques is that
the Roskill Commission calculations embed disputable and critically important
assumptions about social values, such as equity. In large part because of a disconnect
between the values embedded in the cost-benefit analysis and political and popular
perceptions, the Roskill recommendation of Cublington was ultimately rejected and
the government chose to explore the option of building an airport at Foulness.

The experience of the Roskill Commission is a reminder that complex decisions
are “wicked problems” (Rittel and Webber 1973) and feature conflicting stakehold-
ers, with multiple, competing, objectives. Effective analyses have to grapple with
these features of the problem context rather than wish them away. It is interesting
to contrast the mode of analysis of the Roskill Commission with the Multicriteria
Decision Analysis (MCDA) described in Keeney (1992) for the location of the new
Mexico City airport. This very early decision analysis (originally reported in 1972)
nevertheless features the use of computerised sensitivity analysis to explore and
communicate the model, in order to assist decision makers to reflect on their value
judgements.

1.2.1.3 Case 3. Assessment of the Risk of Earthquake

In early April 2009, an earthquake struck L’Aquila Italy killing 309 people.
Six scientists and one government official who participated in Italy’s National
Commission for the Forecast and Prevention of Major Risks 6 days prior to the
earthquake were sentenced to 6 years in prison in October 2012 for manslaughter.
The prosecution argued that the expert advice from the Commission resulted in
30 people deciding to stay indoors which resulted in their death. The case led to
outrage from many in the scientific community who argued that earthquakes cannot
be predicted with certainty, so the trial was seen by some as an attack on science. The
prosecuting attorney Fabio Picuti was not criticizing the experts on these grounds,
rather on a lack of evaluation of the degree of risk present in L’Aquila; the presiding
judge Marco Billi ruled the analysis was superficial. An appeal in November 2014
resulted in all six scientists being acquitted and the government official having his
jail sentence reduced to 2 years, on the grounds that only the government official
was responsible for the communication of the risk assessment that led to the death
of the 30 individuals. For details see Nature (2011) and Science (2012, 2014).

A further criticism of the L’Aquila risk assessment identified by Alessandro
Martelli and Lalliana Mualchin who were respectively the President and General
Secretary of the International Seismic Safety Organisation (ISSO) concerned the
dangers of the lack of independence amongst expert judgments (Martelli and
Mualchin 2012). This tragedy highlights a need for transparent, rigorous and widely
accepted processes for assessing uncertain events.
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1.2.1.4 Case 4. Radioactive Waste Management

In 2003 the UK government set up a Committee on Radioactive Waste Management
(CoRWM) to address the problem of what to do with the UK’s inventory of
radioactive waste. This problem was not new, but acquired new urgency as the
current fleet of nuclear reactors was coming to the end of its life and government
wanted to commission new nuclear power plants in order to ensure continuity of
generating capacity. However, previous efforts to arrive at a solution—involving
“deep disposal” of waste stocks in a deep underground repository had left a legacy
of popular distrust of the nuclear industry and of the government. CoRWM was
asked to take a new alternative approach—open and participative, and capable of
inspiring public confidence.

Early on, CoRWM decided that they would systematically involve a broad
range of stakeholders and conduct as much as possible of their business in public.
However, a challenge was how to reconcile this with the need to actually reach
a decision which all members of the committee (who brought a diverse range of
views) could actually sign up to. One of the strengths of the CoRWM process was
their use of a systematic MCDA as a core (though not the only) component of their
deliberative strategy (Morton et al. 2009). The MCDA model provided a transparent
basis through which different concerns—for example about safety, or about the need
to avoid a burden on future generations—and stakeholder perspectives could be
discussed and weighed up against each other. The MCDA also played a key role
in communicating the rationale for the decision in the final report (CoRWM 2006).
Thus, CoRWM provides a good example of how explicit elicitation and modelling of
value tradeoffs can play an important role in supporting complex societal decisions.

1.2.2 Why do People Resist Expressing Their Uncertainty
and Values Quantitatively?

It is sometimes argued that attempting to employ analytic methods in situations
which are characterised by uncertainty and conflict over objectives reflects a
technocratic arrogance in the face of a fundamentally uncertain, unpredictable world
and/or a profane disregard for the role of human values in decision making. As
examples of the former, Black Swans (Taleb 2007) and Perfect Storms (Junger
1997) are two metaphors used to describe rare events about which there is “deep
uncertainty” which is impossible to quantify. As an example of the latter, consider
Tetlock’s (2003) discussion of “sacred values”: “A sacred value can be defined as
any value that a moral community implicitly or explicitly treats as possessing infinite
or transcendental significance that precludes comparisons, trade-offs, or indeed any
other mingling with bounded or secular values” (Tetlock et al. 2000, p. 853).

We believe that appeals to “deep uncertainty” or “sacred values” often reflect
lazy, superficial thinking about both possible future events and human objectives.
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Again, we frame our discussion through four case studies: Deepwater Horizon and
the Fukushima nuclear disaster for deep uncertainty; the approval of new drugs and
the concept of capability in military planning.

1.2.2.1 Deep Uncertainty Case 1: Deepwater Horizon

In April 2010, a geyser of seawater erupted onto the BP Deepwater Horizon rig
located in the Gulf of Mexico resulting in the largest offshore oil spill in US history;
eleven platform workers were killed and seventeen injured. The National Academy
of Engineering and National Research Council (2010) argued early indications
of the problem existed from several repeated tests of well integrity. Bea (2010)
attributes the cause stemming from the failure of multiple processes, systems
and equipment. While this event may appear as a Black Swan as we have never
experienced such an event before, it was not beyond the boundaries of reasoned
imagination (Paté-Cornell 2012), as early warning signals were present. To model
this is possible: we would require an assessment not only of each event but the
dependency between events, where all the events which precipitated the disaster are
made more likely through a certain management style.

1.2.2.2 Deep Uncertainty Case 2: The Fukushima Disaster

In March 2011, an earthquake in Japan resulted in the release of seismic energy
into a place of convergent boundaries of tectonic plates, i.e. a subduction zone,
causing a tsunami that reached 14 m. The Fukushima Daiichi nuclear reactors which
were designed for a maximum wave height of 5.7 m, were affected by the tsunami,
resulting in nuclear meltdowns and release of radioactive material. The plants design
was deemed safe as the likelihood of a wave in excess of 6 m was less than 0.01
in the next 50 years, although historical evidence of such extreme waves existed
albeit from the 9th and seventeenth Century (Paté-Cornell 2012). Moreover, while
the buildings were designed to withstand a tsunami, the plants backup generators
were not (Masys 2012). This event illustrates how analogous events for which data
exists could inform the identification of events and the assessment of the associated
uncertainty on events.

1.2.2.3 Sacred Values Case 1: the Approval of New Drugs

Some of the hardest values to think about systematically are values which relate
to one’s own quality of life and, ultimately one’s own mortality. However, since
most of our healthcare is provided by third parties, either governments or insurance
funds, there is a need to make tradeoffs since not all medical technologies, which
influence one’s health and survival are affordable. One tool for structuring such
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tradeoffs is the Quality Adjusted Life Year or QALY (Pliskin et al. 1980). QALYs
provide a numerical assessment of health benefit which integrates quality of life and
survival. Roughly speaking, QALYs are calculated via a quality of life score, which
reflects different dimensions of quality of life such as level of pain, mental distress
or mobility, multiplied by length of life. Over the last two or three decades QALYs
(and their variants) have become widely used and accepted in many jurisdictions
(Drummond et al. 2015), with the precise parameters used to calculate the QALYs
being elicited from local populations to reflect local preferences. The success of
the QALY in ensuring that public spending on medicines is in line with social
values shows the potential of a simple, yet theoretically robust concept in making
previously taboo tradeoffs discussable in the public sphere.

1.2.2.4 Sacred Values Case 2: The Concept of “Capability”
in Military Planning

A common way in which values become sacred in organisational management is
where values are specified at an insufficiently strategic level. Protection of existing
programmes becomes identified with loyalty to one’s division of the organisa-
tion and accepting reallocations becomes identified with surrender. Addressing
such issues requires creating an overarching conceptual framework in which the
contribution of individual programmes to the common good can be traced and
articulated. In businesses, profitability often provides this framework but in other
sorts of organisations, the path to constructing such a framework might be less
obvious. A good example of such a framework in a non-business setting is the idea
of “military capability” which has been recently popular in countries such as the
UK, US, Australia and Finland (Anteroinen 2012). The idea in such frameworks
is to substitute arguments between individual services about how many ships,
tanks, or planes with arguments about how to deliver particular capabilities: for
example a monitoring capability may be delivered by human reconnaissance, UAVs
or satellites. Once this substitution has been made, it is possible to reframe decisions
away from being about which branch of the service suffers and towards what
constitutes the best way of delivering the ability to meet national military needs.

Reviewing the above cases, we freely admit that eliciting probabilistic or tradeoff
information may be difficult: but we argue that the proper response is not to declare
that the problems are somehow too profound for quantitative thinking to be useful,
but rather to think carefully and creatively about what the difficulties are and how
to tackle them. With this motivation, the rest of the book represents a sourcebook of
methods and concepts for doing this.
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1.3 Overview of the Book

The idea for this book originated in the COST Action “Expert Judgment Network:
Bridging the Gap Between Scientific Uncertainty and Evidence-Based Decision
Making”,1 noting the importance of using sound elicitation processes when building
models to inform decision making. Elicitation may be needed to populate models
of uncertainty, interacting with subject experts, but it may also be needed to set
up models of preferences, interacting with experts, decision makers, and other
stakeholders. In both cases, it is important that analysts and experts follow a process
that allows them to think clearly about numbers, whether they concern probabilities
or they concern the importance of attributes, for instance. Hence, this book covers
elicitation processes having in mind both probabilities and preferences.

A first major group of chapters in this book (Chapters 2 to 9) focusses on
processes to elicit uncertainty from experts. Chapter 2: “Elicitation in the Classical
Model”, by Quigley, Colson, Aspinall and Cooke, presents the Classical Method for
aggregating judgements from multiple experts concerning a probability distribution;
the method uses mathematical aggregation based on the performance of experts.
In Chapter 3: “Validation in the Classical Model”, Cooke discusses the issue of
validation: what constitutes good uncertainty assessment and how can this be
measured. This chapter addresses in particular the Classical Method, for which
many studies have already been carried out. Chapter 4: “SHELF: The Sheffield
Elicitation Framework”, by Gosling, presents the Sheffield elicitation framework,
also to elicit probability distributions, covering its foundations, its extensions, and its
applications. In contrast to the Classical method, a behavioural aggregation method
is proposed in this chapter. Chapter 5: “IDEA for Uncertainty Quantification”,
by Hanea, Burgman and Hemming, outlines a protocol named IDEA, which is a
mixed approach combining behavioural and mathematical aggregation techniques
that can be used instead of, for example, the well-known Delphi protocol. The two
ensuing chapters present approaches based on the principles of Bayesian updating
of probability distributions. Chapter 6: “Elicitation and Calibration: A Bayesian
Perspective”, by Hartley and French, discusses how one might use a full Bayesian
model to combine the judgements of multiple experts into a posterior distribution,
considering prior experts’ judgements as data. In Chapter 7: “A Methodology of
Constructing Subjective Probability Distributions with Data”, Quigley and Walls
present an approach to represent expert uncertainty through analogies with existing
empirical data so reducing the burden of quantification on experts.

Chapters 8 and 9 address important issues that are of relevance for different
probability elicitation approaches. Chapter 8: “Eliciting Multivariate Uncertainty
from Experts: Considerations and Approaches along the Expert Judgement Pro-
cess”, by Werner, Hanea and Morales-Nápoles, discusses the main elements of
structured expert judgement processes for dependence elicitation, when eliciting

1http://www.expertsinuncertainty.net/.

http://www.expertsinuncertainty.net/
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multivariate distributions using either pooling or Bayesian approaches. Chapter 9:
“Combining Judgements from Correlated Experts”, by Wilson and Farrow, discuss
how mathematical methods for expert judgement aggregation, whether opinion
pooling or Bayesian methods, can incorporate correlations between experts; they
also consider behavioural approaches and the potential effects of correlated experts
in this context.

A second major group of chapters in this book (Chapters 10 to 14) focusses on
processes to elicit preferences from stakeholders or decision makers. The elicitation
processes covered here consider situations in which a decision maker (or a group)
needs to make a decision. The purpose of the elicitation is then to build a model of
the preferences of the decision maker (and often, preferences of other stakeholders)
that helps this decision maker in making sound and informed decisions. The first
two chapters on preference elicitation deal with problems under uncertainty. Chapter
10: “Utility Elicitation”, by Gonzalez-Ortega, Radovic, and Ríos Insua, presents the
classical decision analysis paradigm of utility theory, to elicit models of preferences
that can be combined with models of uncertainty. They cover the case of preferences
concerning one attribute, multiple attributes, and the preferences of adversaries. In
Chapter 11: “Elicitation in Target-Oriented Utility”, Bordley presents a different
perspective on utility elicitation based on targets, which allows using probability
elicitation methods to elicit utility functions.

Chapters 12 to 14 address the elicitation of preferences independently of, or
in the absence of, any uncertainty elicitation. These chapters concern preferences
over multiple attributes or evaluation criteria. In Chapter 12: “Multiattribute value
elicitation”, Morton presents the multiattribute value theory, from its foundations
to process aspects important in practice. Chapter 13: “Disaggregation Approach to
Value Elicitation”, by Matsatsinis, Grigoroudis and Siskos, is based on the same
theoretical grounds, but introduces a new outlook on a very different elicitation
paradigm, which involves eliciting preferences indirectly, “disaggregating” compar-
isons that a decision maker is able to make at an holistic level into the components of
a multiattribute value function. In Chapter 14: “Eliciting Multi-Criteria Preferences:
ELECTRE Models”, Dias and Mousseau discuss the elicitation of an outranking-
based preference model, considering in particular ELECTRE methods, which are
based on principles that are different from the value measurement framework of the
preceding chapters.

Chapters 15 and 16 are about cross-cutting issues that are relevant for elicitation
of uncertainties as well as for elicitation of preferences. In both cases, the experts or
stakeholders involved can incur into biases leading to answers that, upon reflection,
they would wish to revise. In Chapter 15: “Individual and Group Biases in Value
and Uncertainty Judgments”, Montibeller and von Winterfeldt overview the biases
that individuals and groups are subject to, and also what might be done to reduce the
occurrence of such biases. Chapter 16: “The Selection of Experts for (Probabilistic)
Expert Knowledge Elicitation”, by Bolger, addresses another issue present in any
elicitation process involving expert judgement, which is the selection of the experts.
This chapter presents a structured process having in mind mainly probability
elicitation, but it is also relevant for preference elicitation.
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The last group of chapters illustrates how some of the approaches presented
in this book can be, and are being, applied in practice. In Chapter 17: “Eliciting
Probabilistic Judgments for Integrating Decision Support Systems”, Barons, Wright
and Smith describe an integrating decision support system for probabilistic judge-
ment elicitation (under a Bayesian approach), and they illustrate its potential on
a food security case in the UK. Chapter 18: “Expert Elicitation to Inform Health
Technology Assessment”, by Soares and Bojke, illustrates expert elicitation in
health care decision making, discussing two examples of formal elicitation to inform
Health Technology Assessments in the UK. Chapter 19: “Expert Judgment Based
Nuclear Threat Assessment for Vessels Arriving in the US”, by Merrick and Albert,
demonstrates an expert judgment based method using pairwise comparisons and
parameter estimation to elicit nuclear threat risks concerning the security of US
ports. In Chapter 20: “Risk Assessment using Group Elicitation: Case Study on
Start-up of a New Logistics System”, Porthin, Rosqvist and Kunttu present a risk
assessment concerning a new logistics system for a pulp and paper manufacturer
in the Nordic countries, using a computer system designed to support decision-
making (i.e. that can also be used to elicit preferences). Chapter 21: “Group Decision
Support for Crop Planning: A Case Study to Guide the Process of Preferences
Elicitation” differs from the previous applications in that it deals with elicitation
of preferences rather than uncertainties, but it also considers a situation involving a
group of individuals. In this chapter, Delias, Grigoroudis and Matsatsinis present a
case study of applying a multicriteria disaggregation approach to elicit a model of
preferences for crop planning in a Greek region.

1.4 Conclusions and Future Directions

As we have emphasised in our initial section, we see the aim of elicitation as being
to facilitate the quantitative expression of subject judgement, not as an end in itself,
but to facilitate high quality dialogue and reflection about important decisions. As
our overview of the chapters shows, there is now a vibrant applied discipline which
draws on a rigorous and well-developed theoretic base, and which has provided us
with a toolbox of techniques, each custom-developed to meet the needs of particular
sorts of problems and the preferred cognitive styles of different people.

The philosophy of this book is that quantification, through elicitation, is a way
to refine and clarify the mental models which people inevitably use in thinking
about complex problems. Quantification enables clearer communication about these
models between people—all sorts of people—but also sharpens the predictions
which these models make about the world and enable them to be tested empirically.
A book on this subject is (in our view) particularly timely because of the following
trends in the world.

• Increasing range of choice. Our experience of the world is increasingly mediated
through digital technologies which are global in reach. This means that we are
routinely confronted with choices broader than ever before. A trivial example is
that we are now able to download virtually any book in print from Amazon onto
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our Kindle reader; our choices about our education, career, potential political or
religious beliefs, choice of life partner, etc., have been similarly broadened. We
need aids which will help us organise and make sense of these complex choices,
and which will enable us to weigh, select and aggregate, and ultimately make
better and more life-enhancing decisions.

• Increasing availability of data. As more transactions are conducted online and as
the cost of data storage and processing drops, businesses and governments have
been increasingly able to collect, process, and make available large volumes of
data relating to their activity. Unfortunately, gathering data does not itself bring
insight, and in the absence of a strong research design, making inferences about
what caused what, and the generalising from then and there to now and here
can be extremely difficult. To build meaning from this data requires somehow
infusing the data with expert judgement.

• Increasing demands for accountability. During the debate prior to the 2016
Brexit referendum, the UK politician Michael Gove remarked that the “people
in this country have had enough of experts” (Financial Times 2016). Whatever
one’s view on the substantive issue, the outcome of that referendum clearly
validated Gove’s claim: the UK voting public did not trust the experts who
predicted that leaving the EU would be a disaster, or the elites who purported
to take decisions in their best interests. A technological society cannot survive
without experts, or without political officeholders, but lay people may reasonably
demand confidence that expert judgements—and claims to expertise—are as
open to scrutiny and testing as possible, and that the values which inform public
decisions are subject to open and transparent debate.

The tools in this book have a vital role meeting all of these challenges: empow-
ering purposeful decisions in the face of these overwhelming choices; making sense
of vast, complex and ill-structured datasets; and building bridges between experts
and elites on the one hand, and (perhaps rightly) suspicious lay people on the other.

Elicitation is a young technology. Other quantitative technologies—counting,
measurement of physical dimensions—have been around for millennia. Yet other
quantitative technologies—cost accounting for example—have become well estab-
lished in the space of a few decades when it became clear that they met a need of a
modern complex industrial society. There is the potential for elicitation of value and
uncertainty to have a no less central role in the society of the future. We hope that
this book will give the reader some ideas as to how that might come about.
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Chapter 2
Elicitation in the Classical Model

John Quigley, Abigail Colson, Willy Aspinall, and Roger M. Cooke

Abstract The Classical Model (CM) is a performance-based approach for math-
ematically aggregating judgements from multiple experts, when reasoning about
target questions under uncertainty. Individual expert performance is assessed against
a set of seed questions, items from their field, for which the analyst knows or will
know the true values, but the experts do not; the experts are, however, expected
to provide accurate and informative distributional judgements that capture these
values reliably. Performance is measured according to metrics for each expert’s
statistical accuracy and informativeness, and the two metrics are convolved to
determine a weight for each expert, with which to modulate their contribution when
pooling them together for a final combined assessment of the desired target values.
This chapter provides mathematical and practical details of the CM, including
describing the method for measuring expert performance and discussing approaches
for devising good seed questions.

2.1 Introduction

The Classical Model (CM) (Cooke 1991) was designed to function within a science-
based quantitative uncertainty analysis. From the wide differences in experts’
assessments and performance as uncertainty assessors, the CM must forge a rational
consensus of 5–20 experts who each quantify their uncertainty on, typically, 20–
30 uncertain items—all within the time and resource constraints of the study. The
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feature that makes this possible is empirical validation, which enables performance-
based combination of the assessments. The goal of the CM is to sensibly combine
the experts’ disparate assessments of uncertainty, not to convince one person,
be it expert, analyst, or problem owner, that his/her personal beliefs have been
faithfully represented. For the results to qualify as science and appeal to rational
consensus, the element of empirical control is essential. This is achieved by asking
experts to quantify their uncertainty on a set of items from the experts’ field, called
calibration or seed variables, for which the true values are known post hoc. Details
on performance measures and combination algorithms are described in Sect. 2.2.

The use of seed variables and performance measures transforms expert uncer-
tainty quantification into an activity with all the hallmarks of scientific data
acquisition. Not only is the analyst tasked to find plausible seed variables, (s)he
must be able to explain and defend the elicitation method, performance measures,
combination algorithms and indeed the entire purpose of external validation of
subjective probabilities. Familiarity with the scientific background of the study, with
foundational literature on the representation of uncertainty and with some previous
applications is a requisite. In Sect. 2.3 we provide a detailed discussion on finding
seed variables, which is illustrated with real applications.

To date, well over 200 professional expert panels have been elicited using seed
variables and performance-based combination of expert judgements. The oft heard
remonstration that “seed variables were not possible in this case” may really signal
the challenge of finding an analyst/facilitator with the necessary skills to conduct
a CM elicitation. This chapter describes the CM method and is intended to share
experiences in finding and using seed variables, with the goal of lowering the
barriers to science-based uncertainty quantification.

2.2 Classical Model Basics

The CM provides an approach for combining subjective probability distributions
on quantities of interest through calculating a weighted average across multiple
experts. In contrast to behavioral aggregation approaches, see Chapter 4: “SHELF:
the Sheffield Elicitation Framework” in this book (Gosling 2018), the experts do
not discuss and agree on a final aggregate distribution. Instead, the combined
distribution is determined mathematically. The aim is to provide the most depend-
able probability distribution through assigning greater weight to the judgements of
those experts who can be demonstrated to have performed better via the empirical
validation stage; higher weight is assigned to experts with better statistical accuracy
and informativeness. The weights are based on the theory of proper scoring rules so
reward experts who authentically state their own scientific or technical judgement.

The fundamentals of the CM will be described throughout this section. We start
with a description of the type and form of questions asked during the elicitation,
which is followed by a discussion on statistical accuracy and how it is measured
within the CM. The results from a simple Monte Carlo exercise are presented to
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show how well the calibration score performs in discriminating between experts.
The information score is explained and illustrated with a simple example. Finally, a
description of how weights are assessed based on these measures is provided before
closing with a reflection on further topics not covered.

2.2.1 Elicitation Questions

The CM considers two types of questions, namely, target variables and seed
variables, about which we elicit expert uncertainty. Uncertainties are described
by subjective probabilities and should be such as to ensure self-consistent betting
behavior, e.g. assigning a probability of 0.5 to an event implies the expert is
indifferent to betting on the outcome being realized or a fair coin landing heads. The
target variables are the variables of interest for the study. They involve quantities
that cannot be perfectly observed, calculated, or predicted with existing knowledge
and tools, so they are uncertain. The purpose of the elicitation exercise is to obtain
probability distributions to characterise the uncertainty associated with the value
of these variables. Unlike other elicitation methods, the CM uses variables from
their field for which the experts do not know the true value but the analyst does
(or will sometime within the timeframe of the study), which are referred to as seed
variables. The experts are not expected to know the values precisely but, as experts
in the topic(s), they are expected to provide accurate and informative distributional
judgements that capture these values reliably within a suitable narrow credible
range. A set of several seed variables, typically eight to twenty in number, are used
in a joint hypothesis test to assess formally, and auditably, the performance of the
experts in expressing their uncertainty in terms of probability.

Seed variables should be defined so that they trigger the same judgement
heuristics as the target variables. Thus, the seed variables should be representative
of the target variables, so that performance on seed variables can be reasonably
assumed to map over to performance on target variables. This presumption needs
to be carefully scrutinized in each elicitation case. We will revisit this in detail in
Sect. 2.3.

Unlike in a behavioural aggregation elicitation, during a CM elicitation session
the expert will not discuss their assessments with other experts, although there
can be a pre-elicitation workshop with interaction of experts prior to seeing the
questions. Ideally, experts are unaware if they are assessing a seed variable or a
target variable. This is often not feasible in practice, however, as the experts may be
able to identify the subset of questions for which realizations are possible (i.e., the
seed variables).

Experts are presented with a series of questions and asked to provide specified
quantiles from their subjective probability distributions concerning the values of
each variable. Typically, experts will be asked to provide their 5th, 50th and 95th
quantiles, although many studies also ask for the 25th and 75th quantiles as well.
In essence, an expert’s quantiles reflect a point of indifference between two bets,
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one based on the realization of the quantity of interest and the other based on a
realization from a mechanism where the probability is known. As such, the expert’s
xth quantile corresponds to a value for which the expert is indifferent to betting on
the quantity of interest being less than or a lottery with a probability of winning
being x=100.

As an example of the form of the questions, an aircraft engineer may be asked
the following concerning the reliability of a new design.

From a fleet of 100 new aircraft engines how many will fail before 1000 hours of operations?

Please provide the 5th, 95th, and 50th percentiles of your estimate.

5%_______________95%__________________50%___________________

The questions are sequenced to encourage the expert to first assess the range
of values, i.e. the 5th and 95th percentiles, then a more central measure, i.e. 50th
percentile. This sequencing is recommended as it compensates for a common
heuristic, so-called ‘anchoring’, in which people do not adequately adjust their
judgements on either side of their central estimate to reflect accurate upper and lower
quantile values. However, the ease for experts of creating a probability distribution
around a central value sometimes proves more important than avoiding this possibly
troublesome bias. Heuristics and biases cannot be completely removed from an
elicitation, but their impact should be minimized to the extent possible.

The performance measurement aspect of the CM allows an analyst to identify
which experts are able to provide statistically accurate assessments despite the
heuristics and biases in play. See Chapter 15: “Individual and Group Biases in Value
and Uncertainty Judgments” of this book (Montibeller and von Winterfeldt 2018)
for a full discussion on biases and heuristics.

The number of questions that can be assessed by an expert in a session will
depend on the number of mental models they are required to generate in order to
respond reliably to the questions, i.e. it depends are how closely linked the questions
are. An expert can be expected to answer up to 100 similar or related questions
during a session, although most elicitations involve fewer than 40 questions.

2.2.2 Calibration Score

As described in Sect. 2.2.1, the experts provide quantiles on both seed and target
variables. The variables are measured on a continuous scale, for example the
temperature tomorrow rather than whether it rains or not. The seed variables are
used to assess calibration as the realizations are known, and the degree of calibration
informs the weight applied to the assessment on the target variables. Figure 2.1
illustrates performance data from an expert on ten seed questions, where each
horizontal line represents the number line, the vertical lines are where the expert
has assigned their quantiles (for this example we consider only three, i.e. 5th, 50th
and 95th), and the X represents the realization.
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Fig. 2.1 Illustration of an expert’s assessment on ten seed variables where the realization is
denoted with X, the thin vertical lines represent the 5th and 95th quantiles and the thick vertical
lines represent the 50th quantile

Table 2.1 Summary of Performance of Expert on Ten Seed Questions showing higher than
expected realizations below the 5th and above the 95th quantile

Quantile Below 5th 5th to 50th 50th to 95th Above 95th

Observed proportion of realizations 0.20 0.30 0.30 0.20
Expected proportion of realizations 0.05 0.45 0.45 0.05

From Fig. 2.1 we see that on Q1 the realization was between the 50th and 95th
quantile, while of Q2 the realization was between the 5th and 50th quantile. In
assessing the accuracy of the experts, we do not distinguish between the proximity
of the realization to a quantile, so for example in both Q3 and Q5 the realization
is below the 5th quantile, and we are not concerned that it is farther below in Q3
than Q5. We see that 5 of the realizations are above the 50th quantile and 5 below,
however there are more realizations than expected in the tails of the distribution,
i.e. below the 5th and above the 95th quantile. Table 2.1 provides a summary of the
overall performance in terms of the proportion of the realizations observed in the
four intervals.

Upon inspecting the data from Table 2.1 we can see that the expert is overconfi-
dent: 4 of the 10 realizations were in the tails of the distribution and we would have
expected only 1, i.e. 10% of the seed questions. However, we need to measure how
extreme the set of realizations is with respect to the expert’s distributions, which
we do through the Kullback-Leibler (KL) divergence measure, which measures the
difference between two probability distributions.
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The KL divergence measure is a measure for the difference between two proba-
bility distributions. We will use it to measure the difference between the probability
distribution specified by the expert and the empirical distribution obtained from
the raw frequencies. For our example, this would correspond to comparing the
differences between the observed and expected frequencies presented in Table 2.1.

The formula for the divergence measure, denoted by I(s, p), is:

I .s; p/ D
nX

iD1
si ln

�
si

pi

�

where: si is the observed proportion of realizations in interval i
pi is the expected proportion of realizations in interval i
n is the number of intervals
Applying this to our example we obtain:
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�
0:2

0:05

�
C 0:3 ln

�
0:3

0:45

�
C 0:3 ln

�
0:3

0:45

�
C 0:2 ln

�
0:2

0:05

�
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If the observed proportions perfectly match the expected proportions then the
divergence measure would be 0, as the difference grows so does the measure.

This divergence measure has been extensively studied in mathematical statistics.
In particular, if the expert’s assessments are statistically accurate, i.e. the long-
run observed proportions will equal the expected proportions, then the probability
distribution of this measure is related to the �2 distribution for large sample sizes.
Specifically,

Pr f2qI .s; p/ � xg ! �2n�1.x/; as q ! 1

where q is the number of seed questions and �2n�1.x/ is the Cumulative Distribution
Function (CDF) of the �2 distribution with n � 1 degrees of freedom evaluated at x.

For our example, we have n equal to 4. Figure 2.2 provides an illustration of
the Probability Density Function (PDF) of the �23 distribution. The expert in the
example had a divergence measure of 0.31, so 2qI(s, p) equals 6.2. The probability
of observing a divergence measure in excess of 6.2, i.e. the area under the �23 curve
greater than 6.2, is 0.1. This is the calibration score on which we will compare all
experts.

The calibration score used with the CM is the probability of observing a more
extreme divergence statistic between specified and observed proportions. The best
expert score would be 1, the worst would be 0. The cutoff is imposed by the scoring
rule constraint and chosen by optimization, which is explained in Sect. 2.2.5.3.

Figure 2.3 illustrates the relationship between the KL divergence measure and
the calibration score for an expert, denoted by C(expert). From the maximum score
of 1, where divergence is 0, the score drops quickly as divergence increases. The
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Fig. 2.2 The PDF of the �23 distribution measuring the variable in the divergence between the
experts specified probabilities and observed frequencies

qI (s, p)

0.001

0.01

0.1

1
0 1 2 3 4 5 6 7 8

C
(e

xp
er

t)

Fig. 2.3 The relationship between the calibration score for an expert, C(expert), and qI(s, p) where
q is the number of seed questions and I(s, p) the KL divergence showing a steep drop in the score
as divergence increases from 0 is on a log scale)

calibration score is on a log scale, showing an almost linear relationship with
I(s, p). Over the range qI(s, p) 2 [1, 8] we have the approximate relationship of
C(expert) � 1.44e�0.9qI(s, p), which we present only to provide an indication on the
relationship between these variables. This implies that the logarithm of the ratio of
any two calibration scores is approximately 0.9q times the difference in their KL
divergence measures.
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2.2.3 Distribution and Discrimination of Calibration Score

The purpose of the calibration score is not to perform hypothesis testing but to
discriminate across experts on their level of calibration. We conducted a simple
Monte Carlo simulation exercise to assess the difference in calibration score
between an expert who was perfectly calibrated with one who was slightly over
confident based on ten seed questions.

Specifically, we simulated ten realizations from a multinomial distribution based
on a Calibrated Expert (CE) with probabilities (0.05, 0.45, 0.45, 0.05) and ten from
an Over Confident Expert (OCE) with probabilities (0.15, 0.35, 0.35, 0.15). For each
expert we calculated their calibration score as per Sect. 2.2.2 and evaluated the ratio.
We repeated this 10,000 times. The results are presented in Fig. 2.4.

Figure 2.4 has the ratio expressed on a log scale and shows that even with only
ten seed questions the calibration score discriminates well between a calibrated and
marginally over confident expert. For 75% of the simulations the CE received a
higher score (i.e. the ratio was greater than 1), for 50% of the simulations the ratio
was in excess of 2.5 and for 10% it was in excess of 87.

Fig. 2.4 Cumulative Distribution Function of the ratio of the calibration scores of Calibrated
Expert (CE) (0.05, 0.45, 0.45, 0.05) to Over Confident Expert (OCE) (0.15, 0.35, 0.35, 0.15)
showing the CE receives a higher score (ratio exceeds 1) on 75% of the simulations
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2.2.4 Information Score

By providing extremely large quantile intervals, an expert can achieve what appears
to be excellent, or even perfect calibration - but they will be totally uninformative
by doing so. The ideal expert is both well-calibrated and informative. There are
many standard approaches to measure the degree to which a probability distribution
is spread out, such as the standard deviation or width of prediction intervals, but
these have shortcomings as changes in units of measure (e.g. grams to kilograms)
can affect some variables but not others. The CM uses the Kullback-Leibler (KL)
divergence measure, as it is scale invariant.

The spread of the experts’ distributions is assessed relative to a background
range. During the elicitation the expert does not assign a minimum or maximum
value, so we need to determine the length of the lower and upper intervals. This
is done through the intrinsic range, which is based on the range of judgments on a
variable (target or seed) across all experts.

An intrinsic range is determined for each question (seed and target). By default,
the intrinsic range overshoots the range spanned by the lowest and highest assessed
values by 10%. (The overshoot is chosen by the analyst and affects only the
measure of information; a larger overshoot tends to make all information scores
similar, a small overshoot boosts the differences.) The informativeness of an expert’s
probability distribution will be measured using KL divergence measure relative
to a uniform distribution applied to the intrinsic range, i.e. the least informative
distribution across the collected range of opinion (the loguniform background
measure is used for very wide ranges).

Illustrating this with an example, assume we have three experts, each asked to
predict the recorded temperature in Toronto at noon on September 15 next year.
Each provides their 5th, 50th and 95th quantiles in Celsius. Expert 1 provides (0,
13, 40), Expert 2 provides (0, 37, 40) and Expert 3 provides (10, 13, 20).

The range of elicited quantiles is 40ıC, as Expert 1 and 2 had the lowest 5th
quantile and coincidentally both had the highest 95th value of 40ıC. 10% of the
range of assessments is 4ıC, which we add and subtract to the range in the experts’
assessments to obtain the intrinsic range of (�4ıC, 44ıC). We compare each expert
against the uniform distribution on the intrinsic range, which is illustrated in Fig. 2.5.

Figure 2.5 illustrates the CDF for each expert, assuming a uniform distribution
between specific quantiles, and compares this with a uniform distribution across the
entire intrinsic range. As the uniform distribution over the intrinsic range is the least
informative distribution, we are looking for the distribution that diverges from it the
most. Expert 1 appears the least informative of the experts as their CDF is almost
the same as the uniform. Expert 3 appears to diverge the most from the uniform,
thereby being the most informative.

The KL divergence measure will provide a measure for the degree of divergence.
For each interval provided by the expert we assess the probability assigned by the
uniform distribution. For expert e we denote the information measure on question i
with Ii(e) and calculate it as in the following.
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Fig. 2.5 CDF for each expert compared with uniform distribution on intrinsic range showing
Expert 1 to be least informative and Expert 3 to be most informative
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where xi0 , xi4 are the lower and upper bound of the intrinsic range for question i
and xei1 , xei2 , xei3 are the 5th, 50th and 95th quantiles provided by the expert. Note
that we do not use realizations in this formula, so this can be calculated for seed
and target questions (although the lower and upper bound of the intrinsic range do
depend on the realizations, if they exist).

Illustrating the calculation for Expert 1 consider the following. Note that the
intrinsic range is 48ıC in length.
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Inspecting the calculation, we see there are four items being summed, one for
each interval. The first interval, for which Expert 1 assigned probability 0.05, was
4ıC in length so the uniform distribution would assign probability 0.083, i.e. 4/48.
Similar assessments are made for each interval. If the expert assigns a probability to
an interval greater than the proportion of that interval on the intrinsic range, then the
ratio is greater than 1 and the item being summed makes a positive contribution to
the summation. Likewise, if the ratio is smaller than 1 then a negative contribution
is made. The summation will always result in a non-negative number and will be
0 only if the expert’s distribution coincides with the uniform distribution (i.e., the
least informative distribution).

Consider the information score for Expert 3, who is more informative than
Expert 1.
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Inspecting this calculation, we see that Expert 3 performs very well in the two
middle intervals, assigning probability of 0.45 to intervals with length of 6% and
15% of the intrinsic range. While the first and last intervals perform poorer than
with Expert 1, these intervals are weighted at only 5% of the sum.

Lastly, Expert 2 received an information score of 0.5951, unsurprisingly this is
not as good as Expert 3 but better than Expert 1. It is interesting to note that Expert
2 had provided the same 5th and 95th quantiles as Expert 1 but scored much better
due to the difference in the 50th quantile. This resulted in much higher concentration
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of probability between the 50th and 95th quantile, where the uniform distribution
assigned only 0.06 compared with 0.45.

2.2.5 Weights

The outcome of the CM is a weighted average across all experts’ Cumulative
Distribution Functions (CDF), which we refer to as the CDF of the Decision
Maker (DM).

PDM .X � x/ D
nX

iD1
wiPi .X � x/

where: Pi(X � x) is the CDF provided from expert i.
wi is the weight assigned to expert i
PDM(X � x) is the CDF of the Decision Maker
An expert’s weight is derived from the product of their calibration score and

information score. We will describe three methods for obtaining the weights,
namely, Global, Itemized and Optimized.

2.2.5.1 Global Weights

Global weights are obtained through averaging an expert’s information score across
all seed questions.

We first calculate the average information score: I .ei/ D
Pq

jD1 Ij.ei/

q .
Raw weights are then calculated removing any expert whose calibration score is

below acceptable levels, typically 0.01.

w0
i D C .ei/ � I .ei/ � 1˛ .C .ei//

where: 1˛(C(ei)) is 1 if the calibration score C(ei), exceeds the cutoff threshold ˛
and 0 otherwise. The use of 1˛(C(ei)) is imposed by the requirement that the weights
w’i should be an asymptotically strictly proper scoring rule: an expert maximizes
his(her) long run expected weight if and only if his(her) quantile assessments
correspond to his(her) true beliefs.

Weights are then normalized across all experts.

wi D w0
iP

8k w’
k

These weights are applied to all target variable assessments as well as the seed
variables, which enables the same performance measures to be calculated to assess
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the quality of the Decision Maker (DM). The calibration score will vary much more
between experts than the information score and, as such it is the calibration score
that will drive the differences in weights.

2.2.5.2 Itemized Weights

Unlike the calibration score which necessarily depends on performance across a set
of seed variable assessments, the information score is calculated on a question by
question basis and as such can vary as an expert provides a narrower range relative
to the other experts for some questions as opposed to others. The itemized weights
approach allows the weight to change between questions.

Similar to the Global weights, the raw weight for expert i on question j is
calculated as:

w0
ij D C .ei/ � Ij .ei/ � 1˛ .C .ei//

As such we have two subscripts, one for the expert and one for the question.
If there is little relative variation in the information score between experts across
questions, then the assessment will be similar to the Global weights method.
Note that the criterion for including an expert’s assessments in the combination,
i.e.1˛(C(ei)), is not influenced by the information score.

2.2.5.3 Optimized Weights

Requiring the unnormalized weights to be strictly proper scoring rules imposes a
cutoff ˛, but it does not say what the value of ’ should be. The value of ˛ is chosen
to optimize the unnormalized weight of the DM. Starting with ˛D 0, the value
is successively raised and the global weight of the DM successively recomputed,
whereupon the value ˛� is chosen which returns the DM with highest global weight.

Studies have shown that optimally choosing ˛ has a significant impact on the
performance of the DM. It is therefore important that the use of a cutoff be explained
properly to experts and problem owners. From the above it is clear that ˛ is
NOT chosen to accept or reject experts. In most cases ˛� bears no resemblance,
or probative relationship, to the value 0.05 commonly used in simple hypothesis
testing. Unweighted experts are not “bad” and are not “rejected.” Unweighting
an expert can mean that, but it doesn’t necessarily mean that. Some experts are
justified bad. The value of unweighted experts for the study becomes evident if
robustness analysis on the choice of experts is performed: successively excluding
experts and re-running the analysis typically shows that the DM still performs well
after redistributing weight over the non-excluded experts—sometimes the DM’s
score even improves.

Knowing that the quality of the DM would not change significantly if any given
expert were excluded (or hadn’t turned up) aids in the acceptance of the study
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results. Robustness analysis is routinely performed on both the choice of experts
and on the choice of seed variables.

2.2.6 Summary

This section has provided a brief introduction to the CM. We have discussed its
purpose and explored its details, focusing on how calibration and information are
measured and weights determined. More analysis on the performance data of a given
study is possible, which we have not considered here. In particular, the robustness
of the results can be explored in more depth. The sensitivity of the performance of
the DM to specific seed questions can be assessed, identifying whether an expert
has received a particularly high or low weight due to their performance on a single
question and assessing the appropriateness of that question. In the following section,
we explore seed questions in more depth.

2.3 Finding Seed Variables

Seed variables serve three purposes in the CM. First, they demonstrate that quantify-
ing uncertainty as subjective probability is a science-based activity, as an experts’s
hypotheses for the set of seed questions are falsifiable based on the observed
realizations. Second, they allow for the measurement of an expert’s performance
as an uncertainty assessor. Third, they enable performance-based combinations of
experts’ judgments and hopefully validate the legitimacy of that combination.

If a field is scientific, then there are observations and measurements underlying
the experts’ judgments, and this information can be mined for seed variables.
Seed variables should be items for which an expert on the variables of interest
can, reasonably, be expected to provide an informed judgement. The thematic link
between the seed variables and variables of interest should be strong enough that an
expert or problem owner in the field accepts differential weighting of experts—with
similar specialist qualifications and knowledge in the topic—based on their varying
abilities to quantify uncertainty on the seed questions.

Seed questions are classified in two ways: predictions versus retrodictions,
and domain versus adjacent (Cooke and Goossens 1999; European Food Safety
Authority 2014). Predictions are questions about future quantities that will be
observed or measured within the timeframe of the study, and retrodictions are based
on previously collected data. Domain questions are in the same field of expertise
or use the same physical dimensions as the variables of interest, whereas adjacent
questions are related to but slightly different from the variables of interest. Although
there is minimal research on what constitutes a good seed question, it is generally
accepted from practical experience in many elicitations that domain predictions are
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the ideal, but they can be tough to find in practice. Domain retrodictions or adjacent
predictions are the next best target, with adjacent retrodictions falling third.

If a study involves experts from different fields, a seed question could be
considered “domain” for one expert and “adjacent” for another. For example, in
an expert judgment study on foodborne disease, experts could have backgrounds
in epidemiology, public health field work, or food safety. Again, actual experience,
and some unpublished tests with sub-groups of a number of panels, suggest that
generally a well-calibrated individual is usually well-calibrated on adjacent seeds,
and vice versa for low weight individuals.

Thus, finding good seed variables is an art. Although they should be closely
linked to the variables of interest, seed variables are not a test of the expert’s subject
matter expertise and they should not be queried about the sort of values that are
established ‘constants’ or well-known to all experts in their professional domain;
testing an individual’s recall is not appropriate for calibrating skill in judging
uncertainty. Experts can become frustrated when they feel like they should know the
answer to the question because they have come across it before. There are several
strategies for finding seed variables. Among the more common are utilizing:

A. Results of future measurements that will be performed within the study’s time
frame

B. Unpublished measurement results
C. Querying relevant though unfamiliar features of standard databases (e.g., cen-

soring rates)
D. Combining or comparing values from disparate datasets.

Of these strategies, only A provides prediction seed variables; the other three
yield retrodictions.

These varieties of seed questions are illustrated below with examples.

A. Results of Future Measurements
Potential Damage from Asian Carps in the Great Lakes

In a study for the U.S. Environmental Protection Agency (EPA), researchers
at the University of Notre Dame and Resources for the Future (RFF) used expert
elicitation to quantify the future impacts, with uncertainty, of Asian carp (silver and
bighead) establishment on the food web of Lake Erie and to evaluate the efficacy of
strategies to prevent their establishment (Wittmann et al. 2014; Cooke et al. 2014;
Wittmann et al. 2015). These two species have recently dispersed to waterways
directly connected to the Great Lakes and may cause substantial ecological and
economic damage. Seed variables were based on future measurements about the
Great Lakes ecosystem contained in a report released once a year; previous
measured values were supplied for convenience. Eleven experts quantified the 5,
50, and 95 percentiles of their subjective probability distributions for fifteen seed
variables. Example questions include:

• What was the total harvest (in tons; 1 ton D 1000 kg) of yellow perch in Lake
Erie in 2010?

• What was the abundance (number of fish) of walleye in Lake Erie in 2010?
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• What percentage of Lake Erie eastern basin lake trout (lean strain) contained
round goby in their stomach contents in 2010?

B. Unpublished Measurement Results
Nitrogen Removal in the Chesapeake Bay

Managing nitrogen removal requires an ecosystem-based approach. Data are
needed to define Best Management Practices (BMPs) for engineered structures
so that natural resource managers can meet prescribed water quality targets and
other ecosystem service needs. Given the rapid rate of urbanization, managers must
often quickly make decisions on where, which, and how many BMPs to implement
within a catchment area. Empirical data to inform decisions about the types and
optimal placement of BMPs remain problematic in urbanized areas such as the
Chesapeake Bay, and high levels of uncertainty about the effectiveness of BMPs
in nitrogen-removal impedes deployment decisions. The U.S. EPA, the University
of Maryland, and RFF conducted an expert elicitation to quantify, with uncertainty,
the performance of various urban stormwater management structures under a variety
of rain events (Koch et al. 2015). Nine experts assessed 5, 50 and 95 percentiles
for eleven seed variables based on measured but unpublished values for actual rain
events. Data for the seed variables were collected by one of study’s collaborators,
and the protocol described the conditions and details of the watershed area and rain
event in which they were measured, including hydrographs and the precipitation
record. Below is one example question regarding the Piedmont watershed.

What is the outgoing total nitrogen load (kg TN) from the sub-watershed over
the entire duration of rain event I?

C. Unfamiliar Features of Standard Databases
Breastfeeding and Cognitive Development

The long-term effects of nutritional interventions are notoriously difficult to
assess in well-controlled randomized blinded trials. Conventional longitudinal
studies frequently underlie policy recommendations, although confounding always
poses threats to findings based on such data. Evaluating the long-term effects of
breastfeeding exemplifies the challenges posed by using non-randomized longitu-
dinal data sets as key variables such as mother’s IQ, mother’s income, birth order,
and length of time breastfeeding are all highly correlated. Under contract with the
Bill and Melinda Gates Foundation, the University of Virginia and Resources for the
Future applied structured expert judgment to evaluate the effects of the duration of
exclusive and any breastfeeding on cognitive performance, measured as IQ (Colson
et al. 2016). Specifically, seven experts were asked to quantify their uncertainty
about outcomes of a hypothetical fully randomized trial and on 11 seed variables.
Seed questions were based on new calculations with the survey data most frequently
used in the breastfeeding and IQ literature. The 5, 25, 50, 75 and 95 percentiles were
elicited, and seed questions included the following.

1. In NLSY79-C (National Longitudinal Study of Youth data base) the average
Peabody Picture Vocabulary Test (Revised Form L) (PPVT) mean score, among
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the children with scores, is 90.660. What is the average among first-born children
with at least one PPVT score?

2. In NLSY79-C the average PPVT mean score, among the children with scores, is
90.660. What is the average among first-born children who were ever breastfed?

3. In NLSY79-C, 1706 children have PPVT scores recorded for 1986 and Peabody
Individual Assessment Test math scores for 1986. What is the correlation among
these scores?

4. In NLSY79-C, 1700 children have PPVT scores recorded for 1986 and Peabody
Individual Assessment Test reading recognition scores for 1986. What is the
correlation among these scores?

5. In what percentage of the 11,512 records in NLSY79-C is the Peabody Picture
Vocabulary Test (PPVT) never reported?

6. In NLSY79-C the average age in weeks when breastfeeding ended is 9.12. What
is the average age in weeks when breastfeeding ended among the 1583 only
children who were breastfed?

7. In the 2005–06 Demographic Health Survey for India, what is the 75th percentile
for duration of breastfeeding (in months), among children who were breastfed
and who were not still breastfeeding at the time of the survey? This data excludes
children who died while breastfeeding

8. The U.S. Panel Study of Income Dynamics Child Development Supplement
(PSID-C) data set has 3563 records. In what percentage of completed records
is the sum of Woodcock-Johnson Word Scores and Woodcock-Johnson Applied
Problem Scores in 1997 greater than in 2002?

D. Combining or Comparing Datasets
Mortality Impact of Fine Particulate Matter

The Kuwait Oil Fires of 1991 emitted vast quantities of fine particulate matter
and related gases to the atmosphere. A team from Harvard University and the TU
Delft was asked to estimate the mortality impacts of exposure to oil fire smoke to
support the State of Kuwait’s environmental reparations claims (Evans et al. 2005;
Tuomisto et al. 2005; Wilson et al. 2005). The primary goal of the elicitation was to
probabilistically characterize the number of deaths attributable to the oil fires. Six
European experts quantified the 5, 25, 50, 75, and 95 percentiles of their subjective
probability distributions for 12 seed variables which were found by combining
existing datasets. The following are representative:

1. On how many days in 2001 did the daily average PM10 concentration exceed
50 �g/m3 at one or more of the above London stations (max 365)?

2. On how many days in 2001 did the daily average PM10 concentration fall below
30 �g/m3 at all of the above London stations (max 365)?

3. On how many days in 1997 did the daily average PM10 concentration exceed
concentration exceed 50 �g/m3 at least one of the above London stations (max
365)?

4. On how many days in 1997 did the daily average PM10 concentration fall below
30 �g/m3 at all of the above London stations (max 365)?
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5. On how many days in 2001 did the daily average PM10 concentration exceed
50 �g/m3 at least one of the above Athens stations (max 365)?

6. What is the ratio: Number of non-accidental deaths in the week (7 days starting
from January 1st) of 2000 with the highest average PM10 concentration/Weekly
average number non-accidental deaths in 2000.

7. What is the ratio: Number of cardiovascular deaths (ICD10 Cause I) in the
week (7 days starting from January 1st) of 2000 with the highest average PM10

concentration /Weekly average number cardiovascular deaths in 2000

2.4 Elicitation Styles

In addition to getting experts to quantify their uncertainty as subjective probability
distributions, the elicitation process involves providing the experts with some
training and, ideally, should also involve a procedure for capturing the qualitative
reasoning behind the experts’ assessments. Elicitation is typically done by one or
two facilitators, with the ideal being one facilitator who is well-versed in elicitation
practices and can manage the process—and the participating experts—neutrally and
fairly, and a second person with extensive knowledge in the subject area of that
particular study. On occasion, the latter may be the problem owner—i.e. the person
who commissions the elicitation and uses the findings.

Expert training should include an introduction to structured expert judgment and
an explanation of the motivation for using expert judgment in the specific problem
at hand. Names and affiliations will be published but not associated with individual
assessments. This linkage will be preserved to enable competent peer review if
required at some later date. The facilitator should also explain the use of seed
variables and the performance measures of the CM. Training includes a discussion
of subjective probabilities as a method of quantifying uncertainty, with at least one
example discussed in detail. The facilitator should warn the expert, or the group if
a one-off “plenary” elicitation is being undertaken, about overconfident responses
(i.e., a set of assessments with high information but low statistical accuracy scores)
and explain that less informative but statistically accurate assessments are much
more useful to the analyst and problem owner than informative but inaccurate
assessments. Finally, training should involve walking the expert or panel through
a few example questions. Typically, the search for seed variables yields about 15–
20 questions of which the best 10 to 15 are used in the actual study, the others can
be used for training. With the training questions, the expert provides the specified
percentiles from her subjective probability distribution for each question, and the
facilitator immediately provides the true value for each of these questions. These
questions help the experts understand how to think about their uncertainty as
subjective probability and give them a little bit of feedback on their performance
before elicitation on the real questions begins.

Throughout the elicitation, in addition to providing values from their subjective
probability distributions, experts should also explain their thinking on each question,



2 Elicitation in the Classical Model 33

particularly the target variables of interest. This can be done through written
comments or discussion, with the facilitator or a rapporteur taking notes; some
elicitations may be recorded (with the agreement of the participants) and the con-
tributions transcribed later; the latter is a gold standard approach, but adds to costs.
Facilitators should ask experts to explain any existing data, assumptions, scenarios,
or other information that informed the expert’s uncertainty for each question.
Capturing this qualitative information is an important part of the elicitation process.
The qualitative rationales can help the analyst and problem owner understand the
results of the study, and comparing the rationales of different experts can illuminate
differences in assessments. Occasionally, through the rationales it emerges that
different experts interpreted a question differently, and the facilitator can follow-
up with experts to clarify any relevant issues. In most cases, the collected rationales
from experts become part of the published record of a study, though they are also
kept anonymous.

Following an elicitation session, the facilitator or analyst should provide some
feedback to the expert or expert panel. At a minimum, this should include sharing
the final decision maker assessments with the experts for their review. If a facilitator
took notes on the experts’ rationales during the elicitation process, each expert
should also have a chance to review her rationale to confirm it is complete
and correctly captures her thinking. In some cases, feedback may also include
sharing the realizations for the seed questions or giving each expert her individual
performance scores.

Experts’ subjective probability distributions can be elicited within the CM
framework via a group plenary session, in-person in one-on-one interviews, or one-
on-one remote sessions. Plenary sessions consist of the experts and facilitator(s)
all meeting together for the training, elicitation, and possibly feedback. A plenary
elicitation session begins with the motivation for the study and training. Experts then
individually work through the elicitation protocol, and the session may conclude
with the facilitator feeding back results to the experts. Individually working through
the questions in a group setting allows the experts and facilitator to discuss any
ambiguity in the questions, ensuring the experts interpret everything in the same
way, as far as possible. Plenary elicitations may require less facilitator time, since
all the participating experts work through the elicitation protocol simultaneously.
Plenary elicitations are logistically more difficult to arrange, though, and may be
impossible for geographically dispersed experts, especially if the elicitation needs
to be completed within a specific, sometimes urgent, timeframe. Plenary elicitations
risk suffering from negative group dynamics, like groupthink or strong personalities
having an outsized influence on discussion, and an accomplished facilitator is
needed to prevent these issues and individual propensities from unduly influencing
the experts’ assessments. Finally, plenary sessions allow for less interaction between
the facilitator and each individual expert, which can make it harder for the facilitator
to accurately capture an expert’s rationale, to challenge the expert’s thinking, and
to make certain the expert accurately interprets the question and understands the
relevant uncertainty. This said, as noted above and if appropriate, the proceedings
of plenary sessions can be recorded to obtain a complete account of deliberations.
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One-on-one or two-on-one in-person interviews involve the facilitator(s) inter-
viewing and eliciting probabilities from each expert individually. The interview may
be preceded by a group training session, conducted either in-person or by webinar,
or the interview can begin with individual training. In-person expert interviews
are easier to schedule than a group elicitation session, but they require more time
from the facilitators who must travel to each expert and individually walk them
through the elicitation protocol. Individual expert elicitations are not subject to
the potentially troublesome group dynamics that can affect plenary sessions. In
individual elicitations, however, the experts cannot discuss the questions to make
certain everyone understands them to have the same meaning (experience with
plenary elicitations suggests this is a common and significant potential shortcom-
ing). Dry-runs to identify and clarify ambiguity or misspecification in the questions
are especially important for one-on-one elicitations so that all potential issues are
resolved before the first expert is interviewed. If something new emerges after one or
more interviews are complete, the facilitator may need to re-elicit probabilities from
experts who responded earlier. In a study with one-on-one elicitations, feedback of
the results to the experts happens after all the expert interviews are complete.

Increasingly, as online meeting and communication tools improve, there is
growing interest in conducting elicitations remotely. When the experts are spread
across the globe, remote elicitations are much cheaper and easier to arrange than
plenary sessions or in-person interviews. Remote elicitations can use software
and online tools that allow the expert and facilitator to communicate by video
and share computer screens or documents so that one person can enter values
into the elicitation protocol and the other instantly sees them, to enable smooth
communication and make sure all data is captured correctly. Training can also be
done remotely, although it may not be as effective as in-person training. Experts
may feel less invested in an elicitation conducted remotely, they may provide
less qualitative information than they would during an in-person conversation, and
remote elicitations may be subject to more interruptions than in-person meetings.
Additional research is needed to understand if the quality of expert assessments
degrades in a remote elicitation. As the demand for structured expert judgment
grows and remote meeting tools improve, however, new best practices specific to
remote elicitations are needed.

2.5 Discussion

The core principle of the CM that makes it distinctive and unique is external
and empirical validation. Each expert is assessed on their ability to express their
uncertainty in probabilistic terms; this ability is measured and compared across the
pool of participating experts, rewarding the better experts with higher weight in the
final assessment. As such, the quality of seed variables is paramount and within
this chapter we have provided a detailed discussion of four different approaches to
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developing these questions. While finding appropriate seed variables does add to the
preparation work and design of an elicitation, the calibration function they provide
substantially improves the quality of the ensuing target item combination results,
see Chapter 3: “Validation in the Classical Model” of this book (Cooke 2018).

We have described the two key performance measures in the CM, i.e. calibration
and information scores, and illustrated with simple examples to show these to
behave as intuitively sensible performance measures. There have been, to date,
well over 200 professional expert elicitation panels that have successfully—and
efficaciously—utilized seed variables to provide rational consensuses on important
issues of scientific, engineering and medical concern.
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Chapter 3
Validation in the Classical Model

Roger M. Cooke

Abstract Validation is the hallmark of science. For expert judgment to contribute
to science-based uncertainty quantification, it must become amenable to empirical
validation. Using data in which experts quantify uncertainty on variables from their
fields whose true values are known post hoc, this chapter explains how validation is
performed in the Classical Model for structured expert judgment and reviews results
for different combination methods.

3.1 Introduction: Why Validate?

Expert Judgment (EJ) encompasses a wide variety of techniques ranging from a
single undocumented opinion, through preference surveys, to formal elicitation with
external validation. In the nuclear safety area, Rasmussen et al. (1975) formalized EJ
by documenting all steps in the expert elicitation process for scientific review. This
made visible wide spreads in expert assessments and teed up questions regarding
the validation and synthesis of expert judgments. The nuclear safety community
later took onboard expert judgment techniques driven by external validation (Cooke
2012a, b; Oppenheimer et al. 2016). Most recently, the National Academy of
Science report on the Social Cost of Carbon spotlights the role of performance
measurement “performance-weighted average of distributions usually outperforms
the simple average, where performance is again measured again by calibration and
informativeness” (NAS 2017, p. 339).

External validation is the hallmark of science, and is the main driver of the
Classical Model for Structured Expert Judgment (SEJ). It has been deployed
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extensively in areas ranging from nuclear safety, investment banking, volcanology,
public health, ecology, and aeronautics/aerospace. Applications are overviewed in
Cooke and Goossens (2008), Eggstaff et al. (2014) and in Sect. 3.4. A Wikipedia
page gives a good introduction (https://en.wikipedia.org/wiki/Structured_expert_
judgment:_the_classical_model).

The classical model validates probabilistic forecasting performance in terms of
statistical accuracy (sometimes called calibration) and information (Cooke et al.
1988; Cooke 1991). Since “calibration” causes confusion among engineers and is
only loosely defined in decision theoretic literature, the term “statistical accuracy” is
now used in its stead. Statistical accuracy is measured as the p-value at which one
would falsely reject the hypotheses that an expert’s probability assessments were
statistically accurate. Informativeness is measured as Shannon relative information
with respect to a user supplied background measure. The combined score is the
product of the former two. Shannon relative information is used because it is scale
invariant, tail insensitive, slow, and familiar. Parenthetically, information measures
with physical dimensions, such as the standard deviation, or the width of prediction
intervals are scale dependent: a change of units (meters to kilometers) would affect
some variables but not others. The combined score satisfies a long run proper scoring
rule constraint, and involves choosing an optimal statistical accuracy threshold
beneath which experts are unweighted, see Chapter 2: “Elicitation in the Classical
Model” in this book (Quigley et al. 2017), and the online appendix to this chapter
(Cooke 2017).

Experts’ combined scores are used to form a weighted average of experts’
distributions, sometimes termed a weighted linear pool. Other pooling models
have been proposed, without the benefit of benchmarking with expert judgment
data. Section 3.2 discusses pooling and benchmarks pooling methods against
empirical data.

Cooke and Goossens (2008) published the results of 45 professionally contracted
SEJ studies and made this data available to the research community. Using this
data, Clemen (2008) introduced the issue of out-of-sample validation. Variables
of interest are typically unobservable on relevant time scales (a few exceptions
are found in Cooke and Goossens 2008), and out-of-sample validation usually
comes down to cross validation. Cross validation involves splitting the calibration
variables, whose values are known post-hoc, into a training set and a test set.
The models are initialized on the training set, then scored for performance on the
test set. The studies published in 2008 contain many from the dawn of SEJ with
wildly different designs. The number of experts ranged from four to seventy-seven,
the number of calibration variables from five to fifty-five. Eggstaff et al. (2014)
exhaustively cross validated all these studies. SEJ continues to expand, thanks in
no small part to (Aspinall 2010). The more recent studies are better resourced,
better executed and better documented than the very early studies. Thirty-three
independent professionally contracted expert judgment studies have been performed
between 2006 and 2014 in which panels of four to twenty-one experts assessed
between seven and seventeen calibration variables from their fields. These studies
have been recently cross validated (Colson and Cooke 2017). Cross-validation
research is summarized in Sect. 3.3. Methods for identifying calibration variables

https://en.wikipedia.org/wiki/Structured_expert_judgment:_the_classical_model
https://en.wikipedia.org/wiki/Structured_expert_judgment:_the_classical_model
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Fig. 3.1 Expert statistical accuracy scores in post 2006 data

are discussed in Chapter 2: “Elicitation in the Classical Model” in this book (Quigley
et al. 2017).

Two sets of studies were not used in cross validation research. An ongoing
expert elicitation program at the Montserrat Volcano Observatory (Aspinall et al.
2002; Wadge and Aspinall 2014) and a very large scale study by the World Health
Organization (Aspinall et al. 2015; Hald et al. 2015; Hoffmann et al. 2016) both
produced a wealth of data on expert performance. Since both sets of studies involve
heavily overlapping expert panels, they do not lend themselves to cross validation
analysis where the panels are considered independent.

Expert judgment data provides compelling answers to the question ‘why vali-
date?’. Figure 3.1 shows the statistical accuracy scores of the 320 experts in the
2006–2014 data, arranged from best to worse. 227 of the 320 experts have a
statistical accuracy score less than 0.05, which is the traditional rejection threshold
for simple hypothesis testing. Half of the experts score below 0.005, and roughly
one third fall into the abysmal range below 0.0001. These numbers challenge the
assumption that the predicate “expert” is a sufficient guarantee of quality, with
regard to uncertainty quantification. There is however, a bright side: 93 of the 320
experts would not be rejected, as statistical hypotheses, at the 5% level. 25 of the 33
studies have at least one, and usually two or more experts whose statistical accuracy
is acceptable. Those who eschew validation seem committed to the ‘random expert
hypothesis’ according to which one expert is as good as another and differences
in expert performance are random fluctuations around a mean. On this hypothesis,
combining experts on the basis of performance is just groping in the noise.

A recent study for the US Geological Service involving 32 experts and 18
calibration variables (this study is not included in the 2006–2014 data, publication
in preparation) provides a nice test for the ‘random expert’ hypothesis. Figure 3.2
shows the statistical accuracy scores of the top five experts in the real data and in
randomized data whereby 32 “Random experts” randomly pick their assessments for
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Fig. 3.2 Real and random expert statistical accuracy scores compared for US Geological Service
data

each of the 18 variables, without replacement, from the original expert assessments
for that variable. Were the random expert hypothesis true, then there would be no
reason to expect that the best real experts are different from the best random experts.
In fact, the best real experts are better than random. (The worst real experts are also
worse than random: the standard deviation of the real experts is ten times that of
the random experts). Of course this is but one data set. The cross validation work
presented in Sect. 3.3 may be seen as a comprehensive test of the random expert
hypothesis.

Simply identifying the best experts and relying on them would be a big
improvement over unvalidated expert judgment. Indeed, Philip Tetlock’s Good
Judgment Project, the reputed winner of IARPA’s 5 year forecasting tournament,
radically down-selected a small set of “superforecasters” from a pool of more than
3000,1 based on their performance.

Once we have taken that step, looking for an optimal combination of expert
judgments based on their performance is inevitable.

Mathematicians and statisticians are inclined to see expert combination as a
mathematics problem, as if the axioms of probability will tell us how it must be
done. A thorough study of foundations teaches that expert combination is more akin
to an optimization problem in engineering. A bicycle obeys Newton’s laws but does
not follow from them. It is designed to optimize performance under constraints.
The classical model views expert judgment combination as a tool for enabling

1Full documentation is not available at this writing and the information here is based on http://
www.npr.org/sections/parallels/2014/04/02/297839429/-so-you-think-youre-smarter-than-a-cia-
agent accessed 1/12/2017 and Ungar et al. (2012).

http://www.npr.org/sections/parallels/2014/04/02/297839429/-so-you-think-youre-smarter-than-a-cia-agent
http://www.npr.org/sections/parallels/2014/04/02/297839429/-so-you-think-youre-smarter-than-a-cia-agent
http://www.npr.org/sections/parallels/2014/04/02/297839429/-so-you-think-youre-smarter-than-a-cia-agent
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rational consensus by optimizing performance measures under mathematical and
decision theoretic constraints. Details are found in Wittmann et al. (2014) and
Cooke (2015).

The following section compares two popular mathematical aggregation tech-
niques with performance based combinations. Section 3.3 reviews out-of-sample
validation. Section 3.4 overviews applications to date. An on-line appendix gives
updated proofs of the scoring rule properties of weights in the classical model.

3.2 Mathematical Pooling: Harmonic, Geometric
and Arithmetic Means

The classical model for SEJ employs weighted arithmetic averaging, often termed
weighted linear pooling. Other pooling models have been proposed and a review of
their performance is a useful introduction to the classical model.

Performance based weighting of expert judgments takes effort on the part of
the analyst in developing suitable calibration questions, and also on the part of
the expert in answering them. Simply averaging experts’ probability distributions
is much easier and has been widely used. This is termed Equal Weighting (EW).
Geometric averaging, or Geometric Weighting (GW) has been advocated as being
“independence preserving” (Laddaga 1977) and “externally Bayesian” (Genest and
Zidek 1986). Geometric averaging tends to concentrate mass in regions where the
experts agree. This tendency is even more pronounced with harmonic averaging or
Harmonic Weighting (HW).

Harmonic weighting, under the moniker “averaging quantiles” has found recent
adherents. Lichtendahl et al. (2013) suggest that averaging experts’ quantiles might
give a better decision maker than an equal weight, or “averaging probabilities”
combination of their distribution functions. They note that HW is “sharper” than
EW. Flandoli et al. (2011) also used this technique in their analysis of the Classical
Model (CM). Gillingham et al. (2015) is a recent example. Averaging quantiles
is easier to compute than averaging distributions, and is frequently employed by
unwary practitioners.

This section shows that averaging quantiles is equivalent with harmonically
averaging densities. The performances of HW, EW and Performance Weighted (PW)
combinations are then compared on the thirty-three professional expert judgment
studies since 2006. Since EW and HW bracket geometric averaging, and since none
of these techniques utilizes expert performance, this comparison does not consider
geometric averaging. Some of this material first appeared in Bamber et al. (2016).

3.2.1 Analysis

Let F and G be Cumulative Distribution Functions (CDFs) from experts 1 and 2,
with densities f, g. Let HW, hw denote respectively the CDF and density of the
result of averaging the quantiles of F, G. Then
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HW�1.r/ D F�1.r/C G�1.r/
2

; 0 � r � 1 (3.1)

A good intuitive interpretation (Andrea Bevilacqua, personal communication)
notes that HW takes the average of the experts’ median values, i.e. r D 0.5,
and a confidence interval whose width is the average of the experts’ confidence
intervals. The position of the median within the confidence interval depends on the
distributions.

To gain further insight into Eq. (3.1), take derivatives of both sides:

1

hw
�
HW�1.r/

� D
1

f.F�1.r//
C 1

g.G�1.r//

2
(3.2)

hw
�
HW�1.r/

� D 2
1

f.F�1.r//
C 1

g.G�1.r//

(3.3)

Equation (3.3) says that hw is the harmonic mean of f and g, evaluated at points
corresponding to the r-th quantile of each distribution. The harmonic mean of n
numbers strongly favors the smallest of these numbers: the harmonic mean of 0.01
and 0.99 is 0.0198. The higher concentration of the HW combination would be
very valuable IF statistical accuracy were also achieved. Evaluating the statistical
accuracy for HW requires real experts assessing real variables from their fields for
which true values are known post hoc. None of the proponents of HW have verified
its performance on real expert data.

3.2.2 Performance on Real Expert Data

Using the thirty-three 2006–2014 professional expert judgment studies, it is possible
to compare HW, EW and performance weighting (PW). In performing this compar-
ison, the global weights combination was used and experts who assessed less than
the full set of seed variables were excluded. This causes the PW and EW solutions
used here to differ slightly from the solutions published elsewhere. The integrity
of the present comparison is not affected; it was done to facilitate checks by third
parties.

The performance of HW, EW and PW are compared with regard to statistical
accuracy, informativeness and the combined score (the product of the former two).

Table 3.1 gives the results. HW is the best in four of the thirty-three cases, its
informativeness is slightly higher than that of PW, and substantially higher than
EW. The statistical accuracy of HW is substantially below that of EW and PW.
In eighteen cases (55%) the hypothesis that HW is statistically accurate would be
rejected at the 5 percent level. In nine cases rejection would be at the 0.001 level.
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Fig. 3.3 Number of calibration variables and number of experts against P-values for HW,
AvP and PW

These data provide evidence on how performance is affected by the number
of experts and number of calibration variables. Focusing on statistical accuracy,
Fig. 3.3 graphs the number of calibration variables and number of experts against
the statistical accuracy scores, for HW, EW, and PW. HW degrades as the number
of calibration variables increases, whereas EW is unaffected and PW actually
improves. Indeed, increasing the number of calibration variables increases PW’s
ability to resolve expert performance. The statistical power of the measure of
statistical accuracy increases with the number of calibration variables and this would
tend to suppress statistical accuracy scores of all experts and combinations alike.
However, no such tendency is observed for EW or PW. The number of experts does
not have a marked effect on any of the combinations.
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3.3 Review of Expert Judgment Cross Validation Research

Out of Sample Validation for expert judgment dates from Clemen’s (2008) proposal
of a Remove-One-At-a-Time (ROAT) method. Calibration variables were removed
one at a time and predicted by the model initialized on the remaining calibration
variables. The predictions, though originating from different decision makers, were
pooled and compared with the equal weight (EW) decision maker (DM). On the
fourteen studies selected for his exercise, Clemen found that performance weights
(PW) outperformed EW on nine, which was not statistically significant. Cooke
(2008, 2012a, b) noted that this ROAT is biased against PW since each calibration
variable is predicted by a separate DM in which experts who assessed that particular
item badly are up-weighted.

3.3.1 ROAT Bias

To understand the ROAT bias, suppose two experts state the probability of heads.
Let P1(Heads) D 0.8 and P2(Heads) D 0.2 be the probability of heads for experts 1
and 2. Suppose that the decision maker’s probability is a weighted combination of
the experts’ probabilities, Pdm D wP1 C (1– w)P2, where the weight of each expert,
given observed data, is proportional to the likelihood of each expert’s distribution,
given the data. Such likelihood weights are not proper scoring rules, and do not
account for informativeness; nonetheless there is a strong analogy with the classical
model, as the driving term in that model is the likelihood of the hypothesis that an
expert is statistically accurate. After observing n Heads and n Tails, the experts’
likelihood ratio is

0:8n � 0:2n

0:2n � 0:8n D 1 (3.4)

so that the weights are each 1/2. If we remove one Tail, the likelihood ratio
becomes 0.8/0.2 D 4. We re-initialize our model and predict the Tail which was
removed: we find that the predicted probability of Tails is 1–Pdm(Heads) D 1–
[(4/5) � 0.8 C (1/5) � 0.2.] D 1–0.68 D 0.32. Removing one Tail, strongly tilts
the model toward expert 1 with P(Heads) D 0.8 and our prediction probability
for heads is 0.68. At the same time we evaluate this model on the Tail which we
removed, hence the likelihood for this model on this observation is 0.32. The same
holds, mutatis mutandis, when we remove a Head. If we do this for each of ten
coin tosses, the likelihood for our ROAT model is one one-hundredth of the true
likelihood ((0.32/0.5)10 D 0.01).

It is commonly observed that removing one calibration variable can influence
an individual expert’s statistical likelihood by a factor of three or more, a feature
explained by the fact that statistical accuracy is a very fast function. To illustrate,
Fig. 3.4 shows the variation in weights of five experts in the EU-USNRC atmo-
spheric dispersion study (Harper et al. 1995) as each of the twenty-three calibration
variables (a large number) is removed one-at-a-time.
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Fig. 3.4 Variation of expert weights under one-at-a-time calibration variable exclusion

Variations on the ROAT approach have been performed by other researchers. Lin
and Cheng (2008) examined twenty-eight of the forty-five studies and found PW
significantly out performing EW, although PW’s out-of-sample performance was
degraded. Lin and Cheng (2009) used ROAT on forty studies finding no significant
difference between PW and EW. These publications do not report that their code
has been vetted against EXCALIBUR, the standard software for implementing the
Classical Model (Cooke and Solomatine 1992), and there are very large differences
between the values reported in Lin and Cheng (2008) and those reported in Cooke
and Goossens (2008), as shown in Table 3.2.

Table 3.2 provides a strong argument for communicating with the authors of
the data set before publishing results. Such communication did not happen in this
case and the numbers of Lin and Chen bear little resemblance to those of Cooke
and Goossens. In six of the twenty-eight studies the names and numbers of experts
and calibration variables are so divergent as to prevent determining which study is
meant.

The values in Cooke and Goossens (2008) are published values some of which
were computed with archaic MS DOS code. That code had a crude method for
estimating the tail of a chi square distribution, leading to poor resolution below 1E–
4. For large numbers of calibration variables (eg as in study 24) this problem could
be acute. It was addressed by reducing the statistical power to a default value of
10. This might explain part of the discrepancy in study 24. For other studies, no
explanation suggests itself.
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Several researchers have shared their code with the authors and exact agreement
with EXCALIBUR was achieved. Exact agreement was achieved with the out-of-
sample code of Eggstaff et al. (2014). The out-of-sample code of Flandoli et al.
(2011) has been reviewed and found to optimize incorrectly and to conflate uniform
and loguniform background measures. Two of the four cases reported in (Flandoli
et al. 2011) had fifteen and sixteen calibration variables, enabling direct comparison
with results from the Eggstaff code. The other cases are too large. Flandoli et al.
draw 500 random samples from training sets of fixed size and compute the scores
on the complementary test set. Table 3.3 compares the results with the complete
sample using the Eggstaff code.

It is often suggested that cross validation should use different performance
measures than those underlying the Classical Model. Lin and Huang (2012) used
ROAT with the Brier score (related to the quadratic scoring rule) in a regression
based study of the effects of aggregation method, dependence, number of experts
and calibration variables and overconfidence on the Brier score. They follow in the
footsteps of Winkler (1969), who first proposed strictly proper scoring rules for
individual variables to score experts. A score is assigned to each experts’ probability
assessment for each calibration variable based on each realization and the scores are
summed over the set of calibration variables.

This idea is strongly discouraged in Cooke (1991). A simple example shows
why: Suppose an expert assess the probability of Heads for a coin of unknown
composition as 1/2. On each toss with the coin, the score is the same for Heads
and Tails. If these individual scores are added, then the sum score after 100 tosses is
also independent of the actual sequence of outcomes; fifty Heads and fifty Tails gets
the same score as 100 Heads. Table 3.4 compares the quadratic score (positively
sensed, on [�1, 1]) averaged over 1000 predictions of rain of two experts.

Table 3.3 Results of Flandoli et al. (2011) based on 500 samples compared with the vetted code of
Eggstaff based on the complete sample where SA is Statistical Accuracy, Inf is Information Score
and Comb is the product of both

PW EW
SA Inf Comb SA Inf Comb

Pbearl 7 training, 8 test Eggstaff 0.149 0.617 0.072 0.271 0.167 0.046
Flandoli Table 8 0.229 0.407 0.093 0.273 0.167 0.046

Vesuvius 8 training 8 test Eggstaff 0.277 1.176 0.231 0.520 0.756 0.380
Flandoli Table 4 0.449 0.896 0.377 0.519 0.720 0.365

Table 3.4 Two experts assessing next day probability of rain on 1000 days, quadratic score
positively sensed on [�1, 1]

Probability of rain
next day 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Totals

Expert 1 Assessed 100 100 100 100 100 100 100 100 100 100 1000
Realized 5 15 25 35 45 55 65 75 85 95 500

Expert 2 Assessed 100 100 100 100 100 100 100 100 100 100 1000
Realized 0 0 0 0 0 100 100 100 100 100 500

Quadratic score expert 1 D 0.665; Quadratic score expert 2 D 0.835
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Both experts are equally informative in the sense that they both attribute 5%
probability to one hundred next days, etc. Expert 1 is statistically perfectly accurate,
expert 2 is massively inaccurate, yet expert 2 scores better than expert 1. The reason
is that such rules decompose as the sum of a “calibration” and “resolution” terms
(De Groot and Fienberg 1983, or online appendix). Resolution measures the expert’s
ability to separate the variables into statistically distinct subsets, regardless whether
the distributions assigned to the subsets correspond to the expert’s assessments.
High resolution overwhelms bad statistical accuracy in the above example.

Other researchers have undertaken cross validation without ROAT. Cooke (2008)
looked at half-half splits in thirteen studies with at least fourteen calibration
variables. Flandoli et al. (2011) examined five datasets, choosing 30 percent of the
number of calibration variables as the size of the test set, provided this number was
at least eight, otherwise the test set was eight. They recoded the classical model in R,
but did not implement item weights or the log uniform background measure. They
randomly drew 500 partitions into training and test sets of the fixed sizes.

The most extensive study of this kind is Eggstaff et al. (2014), which initializes
the global weights model on all subsets of calibration variables (except the empty
set and the full set) and in each case predicts the complementary subset, again
using only global weights. Using primarily the pre 2006 data sets, studies with
large numbers of calibration variables were split into separate studies to suppress
combinatoric explosion. This resulted in 62 studies for cross validation. We note that
the studies are not independent, as the split studies had the same panels of experts.
Combined scores for PW and EW were aggregated per study, and their ratios are
shown in Fig. 3.5.

An in-depth analysis of the 2006–2014 breaks the ‘performance dividend’ of
performance based weighting into components and shows the dependence on
the number of calibration variables. The number of calibration variables is more
uniform (26 of the 33 studies have between 10 and 15), allowing to aggregate
training sets based percentage of the calibration set. Aggregating over all training
sets whose size is a fixed percentage of all calibration variables, scoring performance
on the complementary test sets, and aggregating over all studies, the aggregate
statistical accuracy (Sa) and informativeness (Inf ) scores and the combined scores of
PW and EW can be plotted as function of percentage training set size. Figure 3.6 left
reveals an out-of-sample penalty in statistical accuracy, as the PW predicts variables
outside the set used to initialize the model. Whereas EWSa grows with decreasing
test set size (increasing training set size) simply because of loss of statistical power,
the same is not true for PWSa. For small training sets, PW is unable to resolve
experts’ statistical accuracy, and performance initially lags EWSa. The gap starts
closing as the training set is 80% of the calibration variables. At this point, the
expert weights resemble the weights based on the full set of calibration variables.
For Informativeness (Fig. 3.6 right) a different picture emerges. The information
advantage of PW kicks in for small training sets. Figure 3.7 shows that the effect of
the information boost overwhelms the statistical accuracy, and the combined score
of PW consistently dominates that of EW.



52 R.M. Cooke

1000

100

10

1

0.1

1 11 21 31

Ratio PW / EW combined scores

Study number

41 51 61

Fig. 3.5 Ratios of combined scores of PW/EW, aggregated per study over all splits into training
and test sets of calibration variables. Scores for PW resp. EW were averaged for each training set
size, and the averages were geometrically averaged of all sizes

Fig. 3.6 Average over all studies per training set size percentage of the average statistical
Accuracy (SA) for PW and EW (left) and informativeness (Inf) (right)

Before this data was well understood it was opined that a small number of
calibration variables might be sufficient. A thorough analysis, taking account of
the volatility in weights for small calibration sets (Cooke et al. 2014), re-affirms
the advice to use 10 calibration variables. Pooling all vetted cross validation data
to date, the hypothesis that PW is no better than EW is rejected at the 2.5E-5 level
(Colson and Cooke 2017).
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Fig. 3.7 Average over all
studies per training set size
percentage of the combined
score for PW and EW

3.4 Post 2006 Data Sets and Applications Documentation

Expert judgment materials, including data from expert judgment studies, are
available at (http://rogermcooke.net/). The studies can be read by the expert
judgment software EXCALIBUR free downloadable at http://www.lighttwist.net/
wp/. Summary information is presented in the following table. The list includes four
studies completed after 2014 beneath the bold line. Reference number refers to the
publication number in the Applications Documentation downloadable from (http://
rogermcooke.net/rogermcooke_files/Supplementary%20Material%20for%20Cross
%20Validation.pdf).

3.5 Conclusion

Social decision making under uncertainty remains the playground of poor ideas
where private interests cherry-pick sources, pander fake news and gerrymander
proof burdens to promote their agendas. Facing decisions on longer timescales,
greater uncertainty and heightened impact, this playground is a luxury society can
no longer afford. Developing science based methods of uncertainty quantification
for data poor contexts is a priority requiring a host of tools. Recruiting and
training experts, communicating to stakeholders, fostering uncertainty awareness
in educational programs and the general public—these are among the areas where
multidisciplinary approaches are needed. Underpinning all such efforts is validation.
Without a clear idea what constitutes good uncertainty assessment and how this can
be measured, broader efforts in recruitment, training, communication, education and
social acceptance cannot progress beyond the parochial state in which they presently

http://rogermcooke.net
http://www.lighttwist.net/wp
http://rogermcooke.net/rogermcooke_files/Supplementary%20Material%20for%20Cross%20Validation.pdf
http://rogermcooke.net/rogermcooke_files/Supplementary%20Material%20for%20Cross%20Validation.pdf
http://rogermcooke.net/rogermcooke_files/Supplementary%20Material%20for%20Cross%20Validation.pdf
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find themselves. The mathematical tools for validation presented here are certainly
not the last word, but hopefully signal directions along which social decision making
under uncertainty can advance.
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Chapter 4
SHELF: The Sheffield Elicitation Framework

John Paul Gosling

Abstract The Sheffield elicitation framework is an expert knowledge elicitation
framework that has been devised over a number of years and many substantial
expert knowledge elicitation exercises to give a transparent and reliable way of
collecting expert opinions. The framework is based on the principles of behavioural
aggregation where a facilitator-guided group interact and share information to arrive
at a consensus. It was originally designed for helping to elicit judgements about
single uncertain variables, but, in recent years, the framework and the associated
software implementations have been extended to accommodate judgements about
more complex multidimensional variables and geographically-dispersed experts. In
this chapter, we discuss the aims and foundations of the framework, its extensions
and its notable applications.

4.1 Introduction

Meticulous preparation is required alongside consideration of potential psycholog-
ical pitfalls to ensure representative judgements are captured from experts in any
elicitation exercise whose results are to be used in a decision making process. The
process of capturing expert judgements involves the investment of many hours of
effort on the part of people involved. As such, it is important that the results are
transparent and defensible: any potential user will need to understand the basis
on which the judgements have been made and trust the process. Key principles
for successful elicitation exercises include well-structured questions, unambiguous
definitions of quantities, transparency in the process and opportunities for experts
to share their expertise and reasoning (Garthwaite et al. 2005; Morgan and Henrion
1990; O’Hagan et al. 2006).

The Sheffield elicitation framework (henceforth SHELF) is an expert knowledge
elicitation (EKE) protocol that provides a transparent and rigorous approach
to capturing judgements from multiple experts. The synthesis of the experts’
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judgements is achieved through facilitated group discussion aiming to arrive at a
consensus distribution using behavioural aggregation. SHELF provides a framework
for capturing information about an elicitation exercise including the experts’
backgrounds and potential conflicts of interest and any reasoning or key sources
of information that underpin the experts’ judgements. This is done through a
comprehensive set of questions that are designed to cover everything a user of the
elicitation exercise results needs to know before applying them to their particular
decision problem. On the more technical side, SHELF was originally set up to
cover a variety of univariate elicitation techniques including the roulette, bisection
and range methods and uses least squares fitting to model the experts’ probability
distributions (which are described fully in the next section). The method has been
subsequently extended to cover judgements about multidimensional parameters
(including vectors of proportions).

An EKE exercise carried out using SHELF is designed to be performed by a
group of experts guided by a facilitator. The individual experts are asked to make
their own quantitative judgements after the quantity of interest has been discussed
and then a group consensus distribution is suggested to the facilitator using linear
opinion pooling with equal weights. Both the individual fitted distributions and
the potential consensus distribution can be displayed to the group and discussions
are encouraged as to whether the consensus distribution is valid. This final step is
a behavioural approach to aggregation that can use mathematical aggregation as
a point of departure. Throughout, the experts have opportunities to contribute to
discussions and to revise their judgements, and a skilled facilitator is needed to
tackle the difficulties of managing group dynamics.

The application of SHELF is supported by explanatory documentation, forms
to capture the various stages of the process and a set of R functions (Core Team
2016; Oakley and O’Hagan 2014). The documentation gives the justification for
each of the steps in the protocol along with suggestions for facilitators to help
avoid potential biases in the experts’ judgements. The forms are a tool for capturing
information from details of the experts’ and the aims of the EKE exercise through
to the ultimate consensus distribution. The R functions allow the facilitator to fit
distributions and demonstrate the consequences of judgements to the experts during
the elicitation sessions.

The development of SHELF stems from years of experience in designing and
performing EKE exercises over many different application areas. A particularly
important project in the development was the Department of Health funded project,
“Bayesian Elicitation of Expert Probabilities”, which brought together a number
of senior researchers on the topic of expert judgements and culminated in a book
reviewing the topic (O’Hagan et al. 2006). This project was also supported by
ongoing research in the Centre for Bayesian Statistics in Health Economics at
the University of Sheffield where methods were being developed to help support
decision making in health-related EKE. The final catalyst for the first version of
SHELF stemmed from a project investigating microbial risk assessments where
several model parameters needed to be specified using expert judgement and
software was needed to help the facilitation of the EKE (Kennedy et al. 2009).
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Since its inception, SHELF has been widely applied in health economics and
medicine, which is unsurprising given its background. There have also been notable
applications in business planning, natural hazards and environmental sciences
amongst others. These are highlighted in Sect. 4.3.

There has been some use of SHELF at a government and regulator level. The
Aqua Book is produced by the UK’s Treasury and provides guidance on producing
quality analysis for government (Treasury 2015). In the Aqua Book, the Sheffield
method is highlighted as a formal method for eliciting expert knowledge. The
UK’s Defence Science and Technology Laboratory describe many features of
SHELF for performing probabilistic elicitation of subjective data (Defence Science
and Technology Laboratory 2015). The European Food Safety Authority has also
recommended the use of the SHELF as one of its methods for conducting structured
EKE (European Food Safety Authority 2014).

In the next section, we outline the steps in SHELF with reference to the
challenges in quantifying opinions that the framework aims to solve. In Sect. 4.3,
applications of SHELF are highlighted across areas such as health-related research
and environmental science. Extensions to the framework that have been imple-
mented are described in Sect. 4.4, and, in Sect. 4.5, we discuss other potential
extensions to the framework alongside the benefits and challenges of applying
SHELF.

4.2 The Elicitation Framework

There are several key participants in an EKE exercise. The problem owner is
the person who wishes to quantify the current knowledge about the quantity of
interest. The experts are the people who the problem owner believes are likely
to have useful knowledge about the quantity of interest. The facilitator of the
EKE exercise interacts with the experts to obtain the desired information about
the quantities of interest on behalf of the problem owner. The facilitator will
typically have knowledge of statistics and probabilistic reasoning and be skilled
in managing meetings. In practice, many EKE exercises will benefit from having
multiple facilitators: in the past, we have found it useful to have someone running
the meeting and another recording the discussions and performing any necessary
calculations.

The most important part of SHELF is the set of forms that guide the facilitator of
an elicitation exercise through the necessary steps whilst enabling them to record
what has been presented to the experts and what their responses have been. In
order for a decision maker to make use of the results of an elicitation exercise,
they must have faith in the results. This faith can be gained by having transparency
in the process that comes from producing complete records of an exercise and
recording the evidence base behind the experts’ reasoning. There is the additional
bonus of having such records that, if the exercise needs to be revisited, then the
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comprehensive records are available to set up a new elicitation session and to find
out what evidence the original judgements were based upon.

Of course, an elicitation exercise is not just about asking an expert a number of
questions about the quantities of interest and fitting distributions. There are several
stages the facilitator of the elicitation exercise should go through (Garthwaite et al.
2005):

• problem set-up and training of experts,
• eliciting beliefs about the quantities of interest,
• fitting of an appropriate distribution,
• feedback of implications of fitted distribution,
• revision of judgements to reach a consensus distribution.

The final three stages should be repeated until the experts are happy that the fitted
distribution reflects their beliefs about the quantity of interest. The ultimate aim
of expert elicitation is to finish with a probability distribution that the experts are
satisfied captures their beliefs. Figure 4.1 is a flowchart outlining the steps behind
these stages when employing SHELF for a single quantity of interest.

In the flowchart, we can see that there are many stages to complete before the
experts are asked to make any direct judgements about the quantities of interest
and, once they have made judgements, there are opportunities for them to discuss
and revise their judgements as the group moves towards a consensus. Formally,
SHELF provides forms with detailed instructions for capturing stages (3)–(8);
however, guidance has been provided within the documentation on stages (1) and
(2) alongside some briefing documents that can help with the expert selection phase.

Stages (3)–(8) take place during a facilitated workshop. In our experience, the
facilitator will benefit from having the following available during the workshop
(European Food Safety Authority 2014):

• a computer linked to a projector to step through the SHELF documents and
provide feedback to the experts,

• a flip chart or white board to allow key information about the quantities of interest
can be displayed to the experts throughout,

• name cards for each person in the room to aid in the capturing of judgements and
group cohesion,

• writing materials for each expert.

For the latter item, it is beneficial to have preprinted forms for the expert to use
to capture their quantitative judgements. An examples of this will be given in
Sect. 4.2.5.

4.2.1 Exercise Specification

Prior to commissioning an EKE, the problem owner must have identified a need for
the quantification of uncertainty about some quantities of interest due to incomplete
or inconsistent information. It is important that the problem owner specifies the
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Fig. 4.1 The flow of an elicitation exercise under the SHELF protocol
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quantities of interest unambiguously because ambiguity can render an EKE useless.
Unclear definitions with potentially contentious wording can lead to unnecessary
arguments between participating experts and may lead to misinterpretation from the
ultimate users of the exercise results. It can also be beneficial for the problem owner
to collect the relevant information and evidence on the quantities of interest so that
it can be shared with the experts before the EKE (see Sect. 4.2.2).

It is recommended that the problem owner considers the potential impact of
not assessing the uncertainty on their decision making (Morgan and Henrion 1990;
O’Hagan et al. 2006). If the quantities have little bearing on the potential decisions,
then the great effort needed for a successful EKE may be better spent elsewhere.
Further guidance on the exercise specification and the role of the problem owners in
this is discussed in European Food Safety Authority (2014).

4.2.2 Expert Selection

It is important to elicit beliefs from a group of experts, rather than a single expert,
in order to synthesise the range of knowledge and opinions of the relevant expert
community. Kadane (1986) recommends that prior distributions are representative
of the community of experts; this may lead to any number of experts’ beliefs being
combined to form one prior distribution. Of course, the experts must be able to
communicate information about their knowledge, but that does not necessarily mean
that they will need to be able to make probabilistic statements at the outset. Within
SHELF, there is ample opportunity to train and aid the experts with making such
judgements (see Sect. 4.2.3).

SHELF can be used with a single expert up to any number of experts (in theory).
However, experience in conducting EKEs under SHELF has led to the belief that
having five-to-ten experts seems to be practicable (European Food Safety Authority
2014): the group has the potential to cover many perspectives and their are enough
people for the experts to feel comfortable making judgements without feeling as
if they are being interrogated, but there are not so many that the group is difficult
to facilitate. In cases where there are many quantities to elicit information on, the
problem owner may allow experts to enter the discussions temporarily to act in an
advisory role. This has been suggested in European Food Safety Authority (2014),
but the facilitator must manage such a situation carefully because the advisor might
want to be more involved in the process or they may disrupt the group. In situations
where there may be several quantities to elicit judgements on, there may only be one
expert available on each of the topics. During the elicitation exercise, we typically
see the relevant individual dominating discussions surrounding their expertise and
often the others are happy to defer to their judgements.

Another consideration when selecting experts is length of time that an EKE
will take. It is recommended that a SHELF exercise takes between one and two
days. Experience of applying the method for multiple quantities tells us that, as the
expert group become familiar with the process, this can drop to just 2–3 h (Gosling
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et al. 2012) (dependent on the shared relevant information between the quantities of
interest and the level of expert training required).

Recruitment is limited by the availability of experts. An example recruitment
strategy of experts arose in the context of quantifying patient survival (Girling et al.
2007). The experts were recruited because they were in the same place at the same
time: the 51st annual conference of the American Society for Artificial Organs. Of
course, conferences can provide a good opportunity to get experts together, but there
is a danger that the selected experts might be a biased sample because they might all
be from a particular academic field and not cover all backgrounds of interest. When
deciding the make up of the group, the problem owner must also consider the effects
of perceived seniority on group dynamics. Different people respond differently in
group situations to the presence of people they consider to be more senior (in terms
of experience or institutional hierarchy). Part of the facilitator’s task is to make every
expert realise that their opinions and judgements are valued (see Sect. 4.2.4); this can
be aided by avoiding expert groups that have widely varying levels of seniority. A
much more comprehensive discussion of these recruitment issues can be found in
Chap. 16 of this book (see Bolger 2018).

As part of the recruitment process when using SHELF, a briefing document is
sent to the identified experts outlining the purpose of the EKE and stating the use of
SHELF. The suggested text from Oakley and O’Hagan (2014) is as follows:

“The purpose of the elicitation meeting is to obtain probability distributions to represent
your uncertainty about various quantities of interest. The elicitation will be conducted
following the Sheffield Elicitation Framework (SHELF), based on elicitation practice
recommended in O’Hagan et al. (2006). You will be given training in the process of
elicitation at the start of the meeting, which will include a practice exercise to familiarise
you with the procedure.

“It is important to note that you will not be asked to provide single estimates of any of
these quantities. The elicitation process will instead involve considerations such as what a
plausible range of values would be for each unknown quantity, and whether, in your opinion,
some values are more likely than others. You may have considerable uncertainty about some
of these quantities (though less than that of a lay person). This will not be of concern during
the elicitation itself, as the outputs from the elicitation will reflect large uncertainty when it
is present.

“Due to the subjective nature of elicited probability distributions, it is important to make the
elicitation process as transparent as possible. A written record will be kept of the meeting,
which will include details of experts present at the meeting, a summary of each expert’s
relevant expertise, and any declarations of interest.”

The final sentence states that a list of the experts will be recorded for trans-
parency’s sake, but the experts are offered partial anonymity in that the individual
comments and judgements that will appear in the SHELF reports will not be
attributed to any individual. Full anonymity can also be offered if appropriate, but,
when not absolutely necessary, it is more useful to maintain the partial anonymity to
help the group have ownership for the their judgements. In practice, this means that a
full list of experts and their affiliations will be added to the EKE exercise record, but
no judgement or line of reasoning will be attributed to any single expert. Whatever
the method is used for recruitment, there must be transparency in the process: it is
important that subsequent users of the elicitation exercise know whose experience
the judgements are based on and why.
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Alongside the text, the experts are provided with details of the background to
the problem, clear definitions of the quantities of interest and any evidence that has
been identified by the problem owner as particularly relevant. The experts are asked
to complete a form given this information asking for the following:

• declarations of interests in the outcomes of the EKE,
• expertise of the respondent relevant to the quantities of interest,
• additional evidence that is relevant to the quantities of interest.

Although experts will often be stakeholders in the ultimate decision problem, the
declarations of interests enable the expert group to recognise the potential vested
interests within the group so that they can discuss the quantities openly. They
also help the facilitator to be aware of possible tensions. It should be noted that
the experts may be employees who will benefit from success in the enterprise to
which the elicitation contributes or they may be invited specifically to represent a
stakeholder group or point of view.

Although training is part of the formal SHELF exercise (see Sect. 4.2.3), it
is often beneficial to give the experts some background material (or even online
training) on expressing uncertainty through probabilities. It should be noted that
some experts may already be comfortable with probabilistic reasoning and some
experts may need more training in order to understand this use of probability. Of
course, sending a briefing document explaining the objectives of an EKE exercise
and getting a group of experts into a room do not guarantee that the experts will feel
part of the process or that the group will function in a way conducive to providing
useful information. At the expert meeting, SHELF begins with a statement by the
facilitator reiterating the briefing document and assuring the experts that all of their
opinions and judgements on the topic are valuable to the problem owner including
a statement:

“Participants are aware that this elicitation will be conducted using the Sheffield Elicitation
Framework, and that this document, including attachments, will form a record of the
session.”

4.2.3 Training in EKE Process

Having expertise in a particular field does not guarantee an ability to make
probabilistic judgements about quantities of interest in that particular field. In EKE
exercises, we often have experts who have little or no knowledge of probability or
statistics. It is therefore important that the facilitator guides the expert through the
process based on a toy problem. There are two approaches to this: the first is to
give an almanac-type problem where the subject is reasonably well known and the
second is to tailor the problem so that it is similar in nature to the ultimate quantities
of interest. It is common for researchers to use road distances between cities, timings
of train journeys or heights of mountains in the first approach (European Food Safety
Authority 2014; O’Hagan 1998). It can be useful when using such quantities if the
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true value is not so simple to look up for the experts (although this is difficult given
access to the internet). The exercise may be more beneficial if there will be a range
of experiences and uncertainties across the experts. Asking about the population of
a city can work with regards to this because experts local to that city may expect to
have more knowledge about the population.

Training using quantities that are similar to the ultimate quantities of interest may
give the experts an experience that is closer to what is coming later in the elicitation
exercise, but it also may cause other problems. It can be difficult to find similar
enough quantities to the ones of ultimate interest such that the values are not known
by the experts. The major problem is that having a relevant quantity in the training
phase may mean that the experts become too involved in that they spend too much
time discussing the quantity.

In the training stage, the facilitator should step the experts through stages (5)–
(9) of the protocol as shown in Fig. 4.1. The training phase should be as close to
the real elicitation as possible in the use of the SHELF forms and the sharing of
the experts’ individual fitted distributions (see Sect. 4.2.5). The facilitator should
take care to explain the probabilistic judgements that are required and point out
any incoherences in the experts’ judgements. This is also an opportunity for the
facilitator to help work on the well-known issue of experts being overconfident in
their judgements (Kadane and Wolfson 1998). First, the facilitators can identify and
question experts who have relatively narrow uncertainty ranges, and, secondly, the
facilitators can reveal the true value of the training quantity of interest to help shift
the experts’ opinions.

In some expert elicitation exercises, there are experts who do not want to engage
fully in the process and may feel unable to give quantitative judgements (Morgan
and Henrion 1990). The training stage may help the facilitators to identify these
experts; however, the fabricated nature of the training exercise may not be a true
reflection of how an expert will operate when considering the real quantities of
interest.

4.2.4 Information Sharing

Before quantitative judgements are made about the quantities of interest, informa-
tion about the experts and their expertise is needed. This serves three purposes: first,
the problem owner needs to know who is in the group and what expertise is covered
so they can have faith in the results from the EKE exercise; secondly, this stage helps
the experts to focus on the problem in hand and to remember relevant information
sources; and, thirdly, it helps to improve the confidence that the experts have in each
other.

The formal SHELF questioning begins with
“Have you got any interests that are related to the variable under consideration?”,
which is asking for a declaration of interests. Although these will have been captured
to some extent if a pre-elicitation questionnaire has been administered, recognising
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their own potential vested interests before the group and those of other participants
helps the experts to report their beliefs openly and in an informed way. It is also
important for the decision maker to be aware of possible biases.

The second question in this stage is:
“What is your expertise in relation to the quantity under consideration?”
The purpose of this question is self explanatory. As a decision maker, we would
want to know about the experts’ experience in areas related to the quantities. At this
stage, there should also be the opportunity for the experts in the group to suggest
what expertise might be missing in the room. It is useful for the problem owner and
future users of the results to know what the perceived weaknesses of the group were,
and it may help direct further study or future EKE exercises.

After the initial sharing of information about expertise and the training exercise,
the experts are then asked to refocus on the quantities of interest. The first question
on the SHELF forms for this stage is:
“What facts are important when making judgements about the variable under
consideration?”
This leads to a list of influencing factors that the experts need to keep in mind when
making the judgement. We have found it useful to record these on a flip chart or
white board so that all the experts have access to these key points whilst making their
judgements. The facilitators can also use this question to check for ambiguities in
the definition of the variable (for example, has the scenario that is been conditioned
on been defined clearly enough?).

Once the list has been produced, the experts are asked to relate these to evidence:
“What quantitative or qualitative evidence have you seen relating to the variable
under consideration?”
This could be a list of key publications and reports, which could build upon
the shared materials before the elicitation meeting. The evidence could also be
experiences that the experts have had in their careers and research. Apart from
recording the evidence base that the experts were using, there is an additional benefit
similar to the benefit of the earlier question on expertise: the experts are once again
reminded of their expertise and value. During these discussions, the experts may also
have comments on the dependency between the quantities of interest. The SHELF
forms have a section entitled “Structuring” with instructions:
“Record any choices made to structure the quantities of interest in terms of others
that may be easier to elicit.”
Structuring or elaboration is an important tool when eliciting information about
several quantities. It is generally better to structure the quantities of interest in terms
of other quantities that the experts judge to be independent of each other and in terms
of quantities the experts feel more comfortable making judgements about O’Hagan
(1988).

Although these discussions are important to have transparency and a functioning,
engaged group, the facilitator must act to curtail peripheral discussions due to the
inevitable time constraints.
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4.2.5 Individual Judgements

The SHELF documentation supports the recording of many types of quantitative
expert judgements including tertiles, quartiles and direct assessments of the cumu-
lative distribution. In this stage, the experts will discuss the evidence related to the
quantities, but they are asked to keep their quantitative judgements to themselves.
Here we list the questions that are suggested in the documentation for both the
quartile and roulette methods (which have been the most popular methods within
the context of SHELF, see Sect. 4.3).

The quartile method (which is referred to as the “Sheffield method” in European
Food Safety Authority 2014) is based upon the bisection method of Raiffa (1968).
Before asking for quantitative judgements, if there any many quantities under
consideration, it is worth reiterating the precise definition of the quantity of interest
and the key evidence (ideally, these will still be displayed on a flip chart or white
board). The facilitator starts by asking for bounds for the quantity of interest; these
may be physical bounds or provide a range for which it is extremely unlikely that the
true value will be outside. As part of this, the facilitator should prompt the experts
to think about circumstances that can rise to values that are past the lower and
upper bounds to test if the experts are missing plausible values. The quantitative
questioning begins with the extreme ends to help with overcoming two well known
biases in making probabilistic judgements: anchoring and overconfidence (Kadane
and Wolfson 1998). We do not start with a best guess for the quantity of interest
because experts have a tendency to anchor on this value and adjust their uncertainty
judgements away from this value. Also, thinking about extremes can make values
away from the best guess feel more plausible to the experts and this can counteract
the natural tendency to be overconfident in predictions.

The next question aims to elicit the experts’ medians:
“Can you specify a value such that it is equally likely that the true value lies below
or above it?”
After recording their own judgements, the expert are then asked about the remaining
quartiles:

Lower quartile: “Suppose the true value is definitely below the median you have
specified. Can you specify a value such that it is equally likely that the true
value lies below or above it?”

Upper quartile: “Suppose the true value is definitely above the median you have
specified. Can you specify a value such that it is equally likely that the true
value lies below or above it?”

Here the experts are bisecting their initial ranges. We have found that providing the
form in Fig. 4.2 can be helpful to experts when making these judgements because
they can visualise the line that they are bisecting. Here, the facilitator should be
mindful of another cause of poor judgement: the range-frequency compromise
where people tend to want to share probability reasonably evenly across the range.
The symptoms of this are easy to spot in the roulette method (described later), and,
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Fig. 4.2 An example sheet for capturing each expert’s judgements

when eliciting quartiles, the effect of this is that experts will tend to specify their
lower and upper quartiles in the middle of the ranges under consideration.

The second most popular method within SHELF is the roulette method where
the experts are asked to build histographic representations of densities that reflect
their beliefs about the quantities of interest. In practice, we have found that this
method can work well when experts have a solid background in statistics or if they
have been exposed to probability density functions that encode beliefs through other
elicitation exercises. This method shares that same start as the quartile method with
the experts being asked to provide a range for the quantity of interest, but, using this
method, the experts must agree to share the plausible range to make the judgement
entry easier when using SHELF’s R functions. Once the range is specified, it is split
into ten equal length “bins” where the experts will be able to allocate “chips”. Using
ten here means that it is simple to do the mathematics and that the experts will not
be making judgements to an unrealistic level of accuracy. Of course, if there are
reasons why more or fewer are needed, then the number of bins can be changed;
however, it is not useful to deviate from equal spacing because the interpretation of
the chips will need to change. Experts should ideally have preprinted sheets with
ten bins marked out, and they will have space to add in the bin boundaries. Experts
will also have been given a number of chips each to place. It is recommended that
the experts are given physical chips rather than asking them to mark the sheet with
pen, because this engages the experts and allows a visual representation of their
uncertainty (O’Hagan et al. 2006; Oakley and O’Hagan 2014).

In order to place chips in the bins, experts are asked to consider the relative
probabilities of the true value for the quantity of interest falling within each bin
(like placing bets on a roulette table). They should also be shown an example of
chip allocation based upon a small number of chips so they understand how the
chips translate into probability statements. For example,



4 SHELF: The Sheffield Elicitation Framework 73

Fig. 4.3 Entering individual judgements with the roulette method

“we have five chips in bin A, three chips in bin B and two in bin C; this translates
to a 50% probability for the true value to be in bin A.”
The facilitator may advise the experts that a realistic expression of uncertainty
should involve concentrating chips in relatively few bins, but not too few. Also, the
overall specified range is dictated by physical bounds, the fact that it is considered
implausible for the true value to be outside these bounds suggests that the probability
of being outside is so small that even a single chip would give too much weight
to those regions. The experts should be offered no more than 30 chips (with no
expectation that they will use them all) and the experts can adjust their deployment
of chips until they are satisfied with the distribution.

As mentioned before, this stage should be completed individually; therefore,
some consideration has to be made regarding the seating arrangements of the experts
and the size of the chips to help prevent copying in the allocations. We have found
it beneficial, when preparing for the fitting stage and subsequent aggregation, to
photograph each expert’s chip allocations. This way the experts do not need to
shout out their judgements and the facilitator has a hard copy of the judgements
for entering the values into the computer (see Fig. 4.3) and for the records of the
EKE exercise.

Within the SHELF documents, there are also supporting forms and guidance for
the tertile method (which is analogous to the quartile method, but the questions
lead to tertiles rather than quartiles) and hybrid methods that use direct probability
judgements alongside the one of the aforementioned three methods.

After the experts have made the individual judgements, the facilitator collects in
the information without anyone declaring the values that they have specified. The
facilitator will then record the judgements just assigning them to suitable aliases (for
example, “expert 1”, “expert 2” and so on).
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4.2.6 Distribution Fitting

The judgements are not enough (at least in the continuous variable case) to specify
a probability distribution fully. Extra assumptions about distributional form are
needed to arrive at a fitted distribution. Here, the facilitator’s experience and
knowledge of statistics is crucial. We have found that it is worthwhile being flexible
here and giving the experts chance to comment on the distributional choices if they
feel able to (Gosling et al. 2012, 2013).

In order to fit a distribution to the judgements, it is common to employ a
least-squares fitting procedure (O’Hagan 1998). In such a procedure, the elicited
judgements are compared against the corresponding theoretical quantities from a
fully-specified probability distribution. We select the parameters of that distribution
by finding the parameters that minimise the squared difference between the elicited
and the theoretical quantities. For instance, if we have elicited the median, Q2 say,
and the lower and upper quartiles, Q1 and Q3, we wish to find the distribution with
cumulative distribution function F.:/ that minimises

F.Q0/
2 C ŒF.Q4/ � 1�2 C

4X

iD1
fŒF.Qi/ � F.Qi�1/� � 1=4g2 ; (4.1)

where Q0 is the specified lower bound and Q4 is the upper bound. The measure
in (4.1) is easily extended to more judgements of different types. Because we
have a finite number of judgements, there are infinitely many distributions that will
minimise this measure so, in practice, the facilitator must use their judgement as to
which distribution (or family of distributions) would best accommodate the expert’s
judgements. Minimising this measure does not necessarily result in an appropriate
distribution being fitted. For example, if the experts’ judgements indicate that the
distribution is likely to be heavily skewed, we will not be able to find a set of
parameters for a normal distribution such that that distribution is an adequate
representation of the experts’ beliefs. Often, we have information on the likely
shape of the distribution prior to the judgements being made (for instance, we may
know that the distribution is bounded between 0 and 1); we can use this information
to choose appropriate distributions on which to attempt the fit. For a categorical
variable, this type of fitting is unnecessary because the full distribution will have
been defined by the expert in the previous step.

The R functions provided with SHELF allow the facilitator to enter and store
the judgements for each of the experts and automate the fitting process. Figure 4.4
shows a screen shot from using those functions to enter information from six experts
using the quartile method. The minimisation routine is fast enough for the fitting to
be completed in real-time. The functions give the facilitator the option of choosing
the distribution family or allowing the program to select the best fitting distribution
family automatically. Version 2 of SHELF has the following distributions built in
for univariate quantities:
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Fig. 4.4 Entering individual judgements and choosing distributional families

• normal,
• Student’s-t,
• scaled beta,
• log-normal,
• log-Student’s-t,
• gamma.

Due to potential identifiability issues given the low number of judgements, the
facilitator is required to choose the number of degrees of freedom when using the
Student’s-t or log-Student’s-t distributions.

4.2.7 Aggregation of Distributions

The individual distributions should be shown to the experts, but, at this stage,
revisions are not invited unless an expert is insistent that the fitted density badly
distorts their beliefs. However, the facilitator may take the opportunity to work with
the experts to correct any incoherences that may have occurred in their judgements
(as suggested in Brown and Lindley 1982).

As a guide for the facilitators, the linear opinion pool of Stone et al. (1961) can
be calculated as part of the SHELF R functions. The linear opinion pool offers a
mathematical framework to form a prior distribution for the whole group. If we
have fi.�/ to represent the density fitted to the ith expert’s judgements about � , then
the linear opinion pool can be used to calculate an aggregated density fA.�/ for N
experts:
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Fig. 4.5 Example distributional fits within SHELF with linear pool shown

fA.�/ D 1

N

NX

iD1
fi.�/: (4.2)

The combining of beliefs means that each individual’s opinion must be pooled
together in a way in which everyone is satisfied. French (1985) investigated the
problems of putting opinion-pooling techniques into practice and the problem of
distinguishing between the experts and the decision makers. French commented
that this is an extremely difficult task and a simplistic, democratic technique for
constructing consensus probabilities is the only viable method. In our experience,
we found that asking the experts to discuss the quantity and relevant evidence
and then arrive at judgements that were group consensuses has been effective at
capturing a group’s opinion. In contrast, mathematical aggregation of the individual
expert’s beliefs could lead to distributions that no one person agreed with.

Some practitioners of the SHELF method choose to share the pooled distribution
with the group (see Fig. 4.5), but we have found that this can distract the experts
and may be used as a fall-back by the experts who may prefer a seemingly objective
way of combining the judgements.

Producing the pooled distribution can help the facilitator to identify experts that
have relative extreme views in terms of the location of their judgements and the
amount of uncertainty. This information is useful in the next stage where feedback
on what has been collected so far (and fitted) is presented to the experts. If feasible,
the facilitator should compute the median and quartiles of an equally-weighted
average of the density functions. Ideally, these should not be revealed to the experts
immediately, but may be used at the facilitator’s discretion in the next stage.
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4.2.8 Feedback on Distributions

In the feedback stage, the experts judge the assumption that the fitted distribution
is an adequate representation of their beliefs as a group. This is similar to the
satisficing prior distribution of Winkler (1967): the experts will be content to adopt
that prior distribution at that moment in time as being representative of the group. As
the expert cannot differentiate between well-fitted distributions, there are an infinite
number of distributions that the expert would accept as their own distribution. As
the experts are often not experts in interpreting plots of density functions, there
is little point to just showing a graph and asking if that conforms with what they
had in mind. Even if the experts could do this, we could not expect the experts to
differentiate between several distributions that have similar characteristics. Often,
the experts will find it useful to be given statements or summaries about the fitted
distributions that are in a similar format to the original questions. For instance,
we might produce a credible interval based on the fitted distributions. Appropriate
questions at this stage include:
“Your responses suggest that a value of X (maybe using the 99th percentile here) is
highly unlikely; do you agree with this?”
and
“According to your judgements, there is a 1 in 5 chance of the variable falling
outside the range (u,v)?”

A picture like that of Fig. 4.5 is shown to the experts (with or without the
pooled density) and the facilitator prompts a discussion of the different distributions.
Questions about why one distribution is far from another in terms of location and
spread can help to identify incoherences in an expert’s judgements and reasons for
differing opinions. Because there is potential for wildly contrasting views and that
this is the first time that each individual is aware of the others’ opinions on the
quantity of interest, this discussion can take a substantial amount of time. The
facilitator should be careful to only cut short the discussions if the experts are
no longer exchanging information and arguments, but are just repeating opinions.
The facilitator needs to manage the discussion so that divergent views are properly
considered, and to ensure that strong personalities or groups with overlapping
experiences do not dominate inappropriately. A skilled facilitator will be aware of
psychological literature warning of group dictators and the polarisation that can
occur in extended group discussions (Myers and Lamm 1975; O’Hagan et al. 2006).

When using the quartile method, the aim of the facilitator is to find values for the
three quartiles that the experts can agree on as being representative of the group’s
views. The agreed median will inevitably be some sort of compromise. Before
discussion, there are two components of uncertainty in the group—uncertainty that
each expert has and is expressed in that expert’s quartiles, as well as variability
between the experts’ judgements. The agreed quartiles should reflect the group’s
overall uncertainty that remains after the discussion thus capturing lack of knowl-
edge and variability across the experts in the room.
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It is possible that our reported distribution for the experts’ density may not
agree with what the experts really thinks: the distributions we have chosen might
be inappropriate and/or the experts may have given us probability judgements that
do not really match their beliefs. In this case, the experts could give us different or
more information to help update the fitted distribution.

This is part of the “feedback loop” where stages (5)–(8) are repeated until the
experts are satisfied that their beliefs have been captured adequately. The SHELF
forms have space to record the process of iteratively fitting, feeding back and
revising the group judgements. In an EKE exercise, we must be careful about the
fact that an expert might just get bored with the process and accept anything after a
few iterations of the feedback loop.

Throughout this process, the value of a skilled facilitator can be seen. Because of
the interaction with the experts and the gauging of reaction to fitted distributions, a
poor facilitator could influence the outcome of the EKE exercise more than if a more
straightforward mathematical approach was taken to the aggregation. However,
we have found in numerous elicitation exercises that it is these discussions that
help the experts understand how to make judgements about their uncertainty and
more detailed information about each individual’s reasoning will be captured that
could be beneficial to the problem owner and other subsequent users of the results.
Often, conflicts that are apparent in the experts’ individual fitted densities are due to
misunderstandings in making coherent quantitative judgements and differences in
perceptions of the relevant evidence.

4.2.9 Completing the Exercise

Stages (4)–(8) must be repeated for each quantity of interest in the exercise. If some
of the quantities being considered are closely related to quantities already covered,
there may be much overlap in the information sharing stage and there may be an
instinct for the experts to repeat their previous judgements. When this situation
arises, the facilitator may wish to order the quantities being considered to help
prevent judgement reuse. However, in long elicitation sessions, fatigue can set in
with all concerned due to the intensity of the process and experts can begin to repeat
judgments even if quantities are not related. Therefore, when employing SHELF
for multiple quantities (assuming it is important to elicit information about all the
quantities), adequate time should be left for breaks and the facilitator should be
realistic about what can be achieved in a single session.

As already stated, it is important to be as transparent as possible when using
SHELF due to the inherently subjective nature of EKE. Therefore, whenever the
EKE has been used, we must report all the information about the process alongside
the elicited consensus distribution. Here is a list of information that could be
included in the supporting documentation for an EKE exercise if the SHELF
protocol has been followed:
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• List of experts along with their expertise and any declarations of interest;
• List of agreed and unambiguous descriptions of the quantities of interest;
• Experts’ answers to qualitative questions as described in Sect. 4.2.4;
• Experts’ answers to qualitative and quantitative questions as described in

Sect. 4.2.5 (including any disagreements between the experts);
• Details of the distributional fitting procedure;
• Experts’ answers to feedback questions as described in Sect. 4.2.8;
• Details of any revisions and the experts’ reactions to them;
• The final fitted consensus distributions for each of the quantities of interest.

Throughout the documentation, once the list of experts has been given, only aliases
should be used as described at the end of Sect. 4.2.5. Of course, there are situations
where the experts must remain completely anonymous, and this will have to be
stated in the supporting information.

An important part of each of the SHELF forms is the recording of the timings
for each stage. For any users of the results, this is indicative of the amount of effort
spent on each quantity of interest. For the facilitator, such information is invaluable
when planning future SHELF sessions.

4.3 Notable Applications of the Framework

SHELF has been widely available since 2008 and, as such, has been applied in a
number of EKE exercises. As mentioned earlier, the early development of SHELF
was done with healthcare in mind (see Sect. 4.3.1), but it has also been taken up
in the environmental sciences (see Sect. 4.3.2) and in business planning amongst
other applications (see Sect. 4.3.3). In this section, we briefly outline some of the
method’s applications and comment on the use of the results.

4.3.1 Healthcare and Medicine

SHELF was considered as a tool for clinical trial planning in Kinnersley and Day
(2013) where its utility was demonstrated in a case study involving a hypothetical
trial in ankylosing spondylitis and in Ren and Oakley (2014) where assurance
calculations based upon expert judgements. The experts were asked to use the
roulette method to specify their individual probability densities. In this exercise, the
experts found that the roulette method was appropriate (despite some difficulties
in specifying tail probabilities); however, it should be noted that the experts in
this case were statisticians working on clinical trials and had significant exposure
to expressing uncertainty using probability density functions. In a recent exercise
to inform decisions around the treatment of persistent cervical cancer, a similar
scheme was used where experts were asked to declare their background and
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relevant expertise prior to making judgements (Meads et al. 2013). In that exercise,
the roulette method was used to elicit individual judgements with a paper based
exercise with no group interaction for the formal elicitation part and mathematical
aggregation was done without the experts’ intervention. Related to this, the reporting
guidelines for expert judgements in model-based evaluations in health economics as
offered in Iglesias et al. (2016) aligns closely with what is reported at the end of a
SHELF exercise.

The SHELF method was implemented as part of characterisation of a human
toxicological safety assessment in Gosling et al. (2013). The method was used to
gather knowledge from risk assessors and toxicologists on the potency of certain
chemicals and the relationships between various animal and non-animal potency
tests. The final results of the EKE were used to populate a Bayes linear updating
scheme aimed at quantifying the experts’ beliefs about true human potency, and, as
such, the facilitators needed to elicit information on correlations between quantities
of interest that were arrived at by using SHELF to elicit beliefs about differences
between the various quantities. In the information sharing and structuring phase of
SHELF (see Sect. 4.2.4), the experts identified conditional independencies to make
this task more manageable.

SHELF has been implemented for the elicitation of expert beliefs for veterinary
treatments Higgins et al. (2012). In this study, the cure rates of cows under different
treatments in intra-mammary dry cow therapy was considered. Practitioners were
paid at a rate of £100 per hour for their time to encourage participation . Also, the 24
experts were selected at random from a pool of 77 practitioners from 13 veterinary
practices using stratified sampling to get a range of view across the veterinary
practices. Due to the large number of experts, they were split into five groups and
the consensus distributions for each cluster were reported. The facilitators used the
quartile method and fitted beta distributions (as the variables were bounded between
zero and one).

In Gosling et al. (2012), SHELF was used to quantify government experts’
opinions on the costs and rate of exotic disease outbreaks in UK livestock. In
contrast to Higgins et al. (2012), the experts were selected from an internal pool
of employees based upon their expertise. The expert elicitation sessions covered 40
variables of interest and elicitation workshops were ran over four non-consecutive
days. Here having a skilled facilitator was crucial to the exercises success; however,
the long days and sheer number of variables being considered meant that the experts
repeated earlier judgements and the task would have been more difficult if the
quantities were not so closely related.

4.3.2 Environmental Sciences

SHELF has also been applied in the environmental sciences partially due to the
interests of the creators and partially due to the rise of uncertainty analyses and
Bayesian methods in that discipline.
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SHELF was employed in error modelling for geological boundaries in Lark et al.
(2015). In this study, five geologists were asked to consider errors in boundaries
under six different hypothetical scenarios. These scenarios were designed prior to
the EKE sessions, but the facilitators allowed the experts to have input in altering the
scenarios to make them more realistic and to avoid future ambiguities. The training
exercise for the experts focussed on the distribution of the ages of delegates to the
2013 European Geosciences Union congress. Beliefs about the age of a randomly
selected individual involves both natural variability and uncertainty, which was akin
to the ultimate quantity of interest because there is a population of errors for which
the experts are unsure of the distribution.

Uncertainty analyses of complex computer models require the specification of
distributions for the input parameters, which are often specified through EKE
(Oakley and O’Hagan 2002). When modelling the atmospheric carbon flux, EKE
procedures similar to SHELF were employed in Kennedy et al. (2008) around the
time SHELF was being developed. A formal use of SHELF for the purpose of
specifying input distributions can be found in Lee et al. (2013) where 28 model
input parameter were considered by aerosol modellers.

4.3.3 Other Applications

There are several other documented uses of SHELF for substantial applications in
other fields.

The UK’s Centre for Workforce Intelligence employed SHELF to inform future
workforce planning for the health and social care system in England (Centre
for Workforce Intelligence 2015). Before employing SHELF, they reviewed the
protocol alongside traditional Delphi techniques that have been employed in horizon
scanning for similar initiatives (Linstone and Turoff 1975). They concluded that the
number of quantities that could be considered in a SHELF exercise was far less
than what is possible in traditional Delphi exercises and a greater level of effort was
required by the experts. These considerations led to SHELF only being employed
for quantities that are of most importance to the model of workforce planning. Also,
in these studies, gaps in the method were highlighted with respect to capturing
correlations between quantities.

An adaptation of SHELF was used to model expert opinions of failure times for
water pipe networks (Scholten et al. 2013). The standard SHELF procedure was
followed until the point when the experts had to make their individual quantitative
judgements. The individual judgements were made over three rounds:

1. Each expert added paper clips to their own time line to build up a picture of when
failures would occur;

2. The quartiles were then elicited from each expert with reference to the results of
the first round;

3. Each expert had the opportunity to make qualitative statements about the shape
of the density that they felt would represent their beliefs.
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Instead of combining the individual distributions using behavioural aggregation,
linear pooling (see Stone et al. 1961) and using an hierarchical model of the expert
opinions (akin to Lindley et al. 1979).

A study of expert opinion on medium-term effects of the economy and climate
on the energy sector (Usher and Strachan 2013) employed a SHELF-like scheme
when eliciting judgements from individual experts using the quartile method. That
particular study stopped short of using behavioural aggregation to combine the
experts’ distributions because the focus was on the range of opinions and they just
reported the individual judgements alongside the linear opinion pool. The experts
were training in this EKE exercise using the almanac question: “What is the length
of the Moscow underground network in kilometers?”; this was appropriate here
because the quantities of interest were subject to epistemic uncertainty alone.

4.4 Extensions of the Framework

Many extensions and adaptations to SHELF have have been proposed and imple-
mented. There have also been efforts to make the accompanying R software more
flexible and user friendly. The R package SHELF has been created to give updated
versions of the supporting R functions and to host additional functionality (for
example, this includes a function for viewing experts’ judgements as a histogram,
which can highlight incoherence in the judgements; see Fig. 4.6). The latest version
(1.2.0, released 17th August 2016) has a browser-based interface and includes
options for eliciting multivariate distributions (see Sect. 4.4.1). There has also been
interest in developing the protocol to handle expert groups that cannot physically
meet (see Sect. 4.4.2) and to extend the experts’ judgements to attempt to capture
more qualitative information about the uncertainties that cannot be quantified
(Gosling et al. 2012, 2013). In this section, we review the extensions to the original
method and some approaches that have deviated from the original framework.
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Fig. 4.6 Visualising judgements in the SHELF R package
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4.4.1 Elicitation for Multivariate Quantities

The first extension for multivariate quantities considers fitting distributions for sum-
constrained vectors. A method was developed in Zapata-Vázquez et al. (2014)
for fitting Dirichlet distributions to judgements on such vectors that avoids direct
questioning on correlations or dependencies across vector elements. The individual
judgement stage of SHELF proceeds in this case by separately eliciting judgements
on each of the elements of the vector. The distribution fitting finds marginal beta
distributions for the set of judgements for each element and the means of those
distributions are taken alongside to specify a Dirichlet distribution. However, to
complete the specification, an extra parameter is needed that controls the spread
in the distribution. This can be calculated through optimisation where the fitted
Dirichlet distribution’s marginal standard deviations are selected to best match the
standard deviations from the fitted beta distributions. The facilitator is free to make
other choices here (like matching the most diffuse fitted beta distribution), but the
idea is to get a number of indicative distributions before starting the feedback and
aggregation stages of the process. The feedback options in the SHELF package are
limited to the marginal distributions, but it may be helpful to expose the experts to
some ternary plot representations of the fitted distributions as well as conditional
probability statements. The difficulty here is that the Dirichlet distribution is
inflexible in terms of correlation structure. The original paper (Zapata-Vázquez et al.
2014) also suggested a more flexible form of the Dirichlet distribution based on
Dickey (1983), but that is not yet implemented in the SHELF R package.

For more flexibility in modelling expert’s uncertainty for two quantities of inter-
est, an extension of SHELF utilising copula-based representations of probability
distributions has been added to the SHELF R package following the approach of
Clemen and Reilly (1999). The experts are asked to make judgements about the two
quantities of interest separately so that marginal distributions can be fitted (essen-
tially, following the univariate SHELF scheme as described in Sect. 4.2). Following
this, they are asked to make judgements about the concordance probability. The
concordance probability here is of the form

Pr fŒ.X > x/ \ .Y > y/� [ Œ.X < x/ \ .Y < y/�g ;

where X and Y are the two quantities of interest and x and y are median values
taken from the experts’ fitted marginal distributions (or original judgements if
appropriate). The R function allows the experts to visualise the consequences of
their specified probability in the form of a scatterplot as shown in Fig. 4.7. When
fitting univariate distributions, the facilitator must choose which distributions might
be appropriate to capture the experts’ beliefs adequately. Similarly, there is a choice
for the copula form. Currently, the R function only offers the bivariate normal copula
for fitting bivariate distributions.

Given the growth of Bayesian approaches in geostatistics, Truong et al. (2013)
extended SHELF to accommodate expert judgements about variograms that specify
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Fig. 4.7 Tool for eliciting concordance probabilities

correlations over spatial fields. Like in the copula approach, marginal distributions
are elicited using the standard approach for values of the variable at multiple
sites. Under assumptions of stationarity over the spatial field, judgements about
differences in the variable at different spatial locations can be used to capture
information on the variogram for the entire spatial field. Again, assumptions were
made about the underlying spatial process when fitting to the judgements (Gaussian
process with Matérn correlation function).

It is clear that there is still some effort to needed to extend SHELF for general
multivariate problems. Simple conversion to separate univariate EKE exercises
using products or differences for quantities on a similar scale (like in Gosling et al.
2013) will prove to be too inefficient given the number of pairs of variables that need
to be considered and the fatigue that can set in during long elicitation exercises. Of
course, there are efficiencies to be gained in the structuring phase by identifying
(conditional) independencies, but the facilitator may be end up making the experts
accept more assumptions about their distributions when it is difficult to make such
judgements.

4.4.2 Distributed Experts

It is not always possible to get the experts together at the same time. Internet
connectivity allows for online applications to be developed that can aid the remote
capture of expert judgements. A SHELF exercise requires skilled facilitation and
difficulties can arise if the group are not guided through the process by such an
individual (see French 2007; Morgan and Henrion 1990). If the process can be
facilitated remotely through telephone or video conferencing, it can be challenging
for the facilitator to track group dynamics and respond appropriately. However,
due to time restrictions and travel costs, it can often be infeasible for the experts
to be in the same room. The R program behind the SHELF implementation has
been modified for remote use in the online MATCH uncertainty elicitation tool
(Morris et al. 2014). MATCH is implemented as a browser based elicitation tool (see
Fig. 4.8) and covers the functionality of the SHELF R functions for fitting univariate
distributions via five elicitation methods. MATCH covers stages (5)–(6) of SHELF
as described in Sect. 4.2. The facilitators may choose to conduct the first and final
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Fig. 4.8 The home page of the MATCH uncertainty elicitation tool

Fig. 4.9 Entering judgements on median and probabilities in MATCH

parts of SHELF using a teleconference and use MATCH as part of remote one-to-
one interviews to get the individual distributions.

A key feature of the MATCH implementation is that the browser window can be
shared across multiple users so that the facilitator can guide the individual though
the SHELF steps. In Figs. 4.9 and 4.10, screen shots are given for the hybrid method
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Fig. 4.10 Entering judgements via the roulette method in MATCH

and roulette method respectively. In the hybrid method, the experts are asked for
their medians and two probabilities and they are presented with visualisations of
those judgements that might help some experts. For people with limited statistical
training, it can be challenging to think about medians and probabilities or to build
up a probability density function so having a facilitator (albeit remotely watching)
to guide can be crucial. This approach follows the recommendation of the joint use
of facilitation and remote software given in Anson et al. (1995).

In MATCH, once the judgements have been made, the experts can get instan-
taneous feedback through a plot of fitted distributions alongside percentiles (as
shown in Fig. 4.11). This part of the software uses the fitting procedure described in
Sect. 4.2.6 and enables the users to select which percentiles they want to consider in
the feedback phase.

A similar protocol to SHELF has also been implemented as part of the EC-
funded UncertWeb project (Bastin et al. 2011). In this implementation, named ‘The
Elicitator’, online forms are provided to capture all the briefing documents for an
elicitation exercise, to invite experts to participate in the elicitation exercise and to
keep track of the progress of all the experts during the exercise (see Fig. 4.12).

Like in the MATCH implementation, the experts are exposed to real-time
feedback to their judgements through plots of the fitted densities (see Fig. 4.13)
and selected feedback questions. The aggregation stage can be done automatically
using a Vincentization procedure (see Thomas and Ross 1980) or the results of
the individual distribution fitting can form the basis of discussions in a shorter
teleconference or face-to-face meeting.

The Elicitator also has an option to collect expert judgements on categorical vari-
ables through a roulette-type method. Here the experts are given an inexhaustible
supply of beans to place in various pots that represent the possible values of
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Fig. 4.11 Fitted density and feedback percentiles in MATCH

Fig. 4.12 Tracking the progress through part of a SHELF exercise with The Elicitator

the variable (see Fig. 4.14). Again, in the feedback phase the experts are asked
questions about the probabilities of falling in one of multiple categories to check
for coherence.

Remote expert elicitation exercises have been attempted through several rounds
of emails using SHELF as a basis. Such innovations could be especially valuable to
facilitators looking to apply a behavioural aggregation method with the costs (but
without the benefits) of meeting. SHELF has been adapted to an Microsoft Excel
spreadsheet-based tool that has been used via email for several different applications
and has been piloted for capturing disease prevalence (Sperber et al. 2013) and for
food safety assessments (which is in fact a modified Delphi technique) (European
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Fig. 4.13 Specifying bounds and the three quartiles with real-time feedback in The Elicitator

Food Safety Authority 2014). The flexibility of modern spreadsheet software means
that the necessary information can be easily recorded and instantaneous feedback
can be provided in bespoke ways with little knowledge of graphical user interface
development. Also, health experts are likely to be familiar with spreadsheets and
they (and the facilitators) may even use them for some of their probabilistic
modelling. However, it is important that the experts buy-in to an elicitation exercise
and a long spreadsheet-based questionnaire may not be ideal.

The Delphi method is well-known technique for capturing expert opinion
(Dalkey 1969; Rowe and Wright 2001). A Delphi exercise involves involves several
rounds of questionnaires where each expert has access to the opinions of the other
participants. In order to make the Delphi technique more relevant to probabilistic
assessments, it has been suggested that the SHELF method could be embedded
within a Delphi-like process (European Food Safety Authority 2014). Here the
idea is to use the SHELF process to capture all the relevant information about the
elicitation exercise whilst avoiding the need to meet. The experts are asked to make
their judgements separately and then have several rounds of revisions based on the
other experts’ judgements and the fitted consensus distribution. Like SHELF, the
relative simplicity of technique makes it relatively easy to produce software, but
given the remote nature of these exercises and lack of facilitator interaction, great
care must go into software design.
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Fig. 4.14 Capturing individual judgements on categorical variables in The Elicitator

4.5 Discussion

The core principles behind the SHELF method are:

• group information sharing,
• capturing individual judgements whilst helping to avoid incoherence,
• facilitating discussions to reach consensus,
• documented procedure open to external scrutiny.

SHELF is designed to create an environment within which the experts can make
useful judgements whilst minimising the effects of the usual heuristics and biases. A
SHELF exercise should also lead to a set of documents that are accessible to users of
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the elicited distributions so they understand the provenance of the results. However,
no matter the amount of care put into the formulation of an elicitation protocol,
there is no guarantee that it has been applied correctly. Each part of SHELF and the
questions stem from years of experience and research into elicitation methods. An
unskilled facilitator could undo all of the good intentions by mismanaging the group
or deviate from the ordering of the process.

The final consensus distribution may be thought of as the distribution a rational
independent observer may arrive at after taking into account the discussions and
judgements made at the meeting. It is clear that this is wholly dependent on the
experts in the room. Therefore, great care must be taken when setting up a SHELF
exercise to find experts who will have useful opinions for subsequent users of the
results. Further guidance on expert selection is given in Ayyub (2001) and Morgan
and Henrion (1990). In scientific studies, we would like to be able to reproduce
results of an experiment. An EKE exercise is an experiment of sorts where the
facilitator is attempting to measure the experts’ beliefs about some quantities of
interest. It cannot be guaranteed that the same group of experts will give the same
judgements at a different time (even if their baseline knowledge of the variables
has not changed). SHELF enables us to capture what the experts were thinking at
the time of the judgements and provides a framework within which we can easily
highlight differences between two elicitation sessions.

Of course, there is potential for great disparity between the experts and conflicts
may occur in both the discussion and in the fitted distributions. Another innovation
to help in this situation was suggested in the veterinary treatment work of Higgins
et al. (2012) to help understand the differences in expert judgements. As part of the
feedback phase (see Sect. 4.2.8), the differences between experts were highlighted
by using multidimensional scaling where each expert was represented in two
dimensions based upon their vector of judgements about the quartiles. This is a
useful tool for the facilitator to demonstrate differences in opinions and clusters of
experts with similar judgements (and is also easy to implement in R in real time).
Such a visualisation could be used to help guide discussion in the feedback and
revision stages of SHELF especially when conflicts occur. If these disparities cannot
be resolved, there is scope within SHELF to accommodate the various viewpoints,
report distributions for each conflicting view point and record the reasons for the
differences (which will likely be differing interpretations of the same evidence).

As already discussed in Sect. 4.4, many efforts are currently being undertaken
to improve and extend the SHELF R functions that support the framework’s
implementation. On the theoretical side, more research is needed on handling
multivariate quantities within the framework and taking account of uncertainties
that the experts feel unable to quantify. Given the choices that the facilitator makes
when fitting a distribution, the reported distribution could also take into account
the uncertainty in distribution fitting (as infinitely many distributions would be
satisfactory) using the approaches of Gosling et al. (2007) and Oakley and O’Hagan
(2007).
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Chapter 5
IDEA for Uncertainty Quantification

Anca M. Hanea, Mark Burgman, and Victoria Hemming

Abstract It is generally agreed that an elicitation protocol for quantifying uncer-
tainty will always benefit from the involvement of more than one domain expert.
The two key mechanisms by which judgements may be pooled across experts are
through striving for consensus, via behavioural aggregation, where experts share
and discuss information, and via mathematical methods, where judgements are
combined using a mechanistic rule. Mixed approaches combine elements of both
deliberative (behavioural) and mechanical (mathematical) styles of aggregation.

This chapter outlines a mixed-aggregation protocol called IDEA. It synthe-
sises specific elements from several of the classical structured expert judgement
approaches. IDEA encourages experts to Investigate, Discuss, and Estimate, and
concludes with a mathematical Aggregation of judgements.

5.1 Introduction

Several elicitation protocols developed over the last decades have been deployed
successfully in political science, infrastructure planning, volcanology, etc. (e.g.
Aspinall 2010; Aspinall and Cooke 2013; Bolger et al. 2014; Cooke and Goossens
2008; O’Hagan et al. 2006). The protocols detailed in Chaps. 2 and 3 of this
book (see Quigley et al. 2018 and Gosling 2018 respectively) are two of the
most notable examples of structured protocols that follow thoroughly documented
methodological rules. They differ in several aspects, including the way interaction
between experts is handled, and the way in which experts’ judgements are pooled.

The Classical (Cooke’s) Model detailed in Chap. 2 of this book (Quigley et al.
2018) uses mathematical aggregation. In mathematical aggregation approaches,
interaction between experts is generally limited to training and briefing (e.g.
Valverde 2001; Cooke 1991), since it is believed that more interaction may induce
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dependence between elicited judgements (e.g. O’Hagan et al. 2006), adversely
affecting them. Chapter 9 of this book (Wilson and Farrow 2018) discusses the
aggregation of correlated judgements in detail; here we touch on this subject very
briefly.

The main advantage of mathematical aggregation is that it makes aggregation
explicit and auditable. The choice of the aggregation rule is nevertheless difficult.
Different rules possess different properties and it is not possible to have all desirable
properties in one rule (Clemen and Winkler 1999). The Classical Model uses an
unequally weighted linear pool, distinguished by the use of calibration variables to
derive performance based weights. Techniques for testing and evaluating experts’
performances necessarily play an important role in exploring the performance of
experts. Commonly used metrics are designed to be objective. However, different
metrics focus on (and measure) different attributes of performance.

Another class of methods of aggregating experts’ judgements is referred to
as behavioural aggregation, and involves striving for consensus via deliberation
(O’Hagan et al. 2006). The Sheffield protocol, detailed in Chapter 3 of the book
(Gosling 2018), is an example. When experts disagree, the advocates of behavioural
aggregation recommend a discussion between the experts with divergent opinions,
resulting in a “self-weighting” through consensus.1 But this comes at the cost of ver-
ifiability and reproducibility. Moreover, such interaction is prone to group dynamic
biases including overconfidence, polarisation of judgements and groupthink (Kerr
and Tindale 2011).

Mixed approaches combine behavioural and mathematical aggregation tech-
niques. The most common mixed approach is the Delphi protocol (Rowe and
Wright 2001), in which experts receive feedback over successive question rounds
through a facilitator, in the form of other group members’ judgements. Experts
remain anonymous and do not interact with one another directly. As originally
conceived, the Delphi method strives to reach consensus after a relatively small
number of rounds (Dalkey 1969), though in modern usages achieving consensus is
not necessarily the primary aim (e.g. von der Gracht 2012). While research supports
a general conclusion that Delphi methods can improve accuracy over successive
rounds, this is by no means guaranteed. Critical reviews suggest that even though
individual judgements may converge (von der Gracht 2012), this convergence does
not necessarily lead to greater accuracy (e.g. Murphy et al. 1998; Bolger et al. 2011).
Moreover, the Delphi method is widely used for the elicitation of point estimates
rather than probability distributions.

The IDEA protocol described in this chapter synthesizes specific elements
from all the approaches described above. In doing so, it aims to minimize the

1However, where a group consensus judgement cannot be reached, individual expert distributions
can be elicited and combined using a mathematical aggregation technique. Or alternatively, where
consensus is not the aim, the resulting spread of expert viewpoints following discussion can be
maintained and presented to decision-makers (Morgan 2015).
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disadvantages of existing approaches and optimise their advantages. The majority
of elements that characterise IDEA are not new; its novel contribution is in the
structured approach to the combination of these elements.

The reminder of this chapter is organised as follows: Section 5.2 introduces the
IDEA protocol, Sect. 5.3 discusses the analysis of expert data collected using IDEA
and Sect. 5.4 offers guidance for facilitators to use IDEA to elicit and quantify
uncertainty.

5.2 The IDEA Protocol

The acronym IDEA arises from the combination of the key features of the protocol
that distinguish it from other structured elicitation procedures: it encourages experts
to Investigate and estimate individual first round responses, Discuss, Estimate
second round responses, following which judgements are combined using mathe-
matical Aggregation (Hanea et al. 2016).

An outline of the basic approach is as follows. First, experts provide private,
individual estimates in response to the questions posed to them. They receive
feedback in the form of the judgements of the other experts. With the assistance
of a facilitator, the experts discuss their initial estimates with the others, sharing
information, clarifying terms, and establishing a shared understanding of the
problem. This discussion stage may take place remotely (e.g. Wintle et al. 2012;
McBride et al. 2012; Hanea et al. 2016) or face-to-face (e.g. Burgman et al. 2011).
During the discussion stage, ideally the anonymity of the individual estimates is
maintained to counter possible unwanted dominance and halo effects. Experts are
asked to revise their judgements in light of this discussion and make a second,
private and anonymous estimate. These second round estimates are finally combined
mathematically (see Fig. 5.1).

The motivation behind the use of the IDEA protocol is that while interaction
between experts can be detrimental during the initial development of arguments and

Fig. 5.1 The IDEA protocol
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responses, its use during the evaluation stage can be beneficial: allowing experts
to better clarify reasoning and assumptions, and to benefit from the gains arising
from well-functioning behavioural groups. The controlled interaction and feedback
allow for exchange of information independent of its source, thereby removing some
of the more negative aspects of behavioural groups. Using a (final) mathematical
aggregation lessens the pressure for experts to reach consensus. In making their
estimates for each question, experts answer using either a 4-step format for eliciting
information about quantities, or a 3-step format for eliciting probabilities of binary
variables (Burgman 2016). These formats draw on empirical findings from cognitive
psychology and they have been shown to mitigate overconfidence (Speirs-Bridge
et al. 2010; Soll and Klayman 2004).

5.2.1 Eliciting Probabilities

When eliciting probabilities of binary variables (or event’ occurrences), IDEA uses
three questions, termed a 3-step format, one for a best estimate and the other two
for an interval that captures uncertainty around it. The bounds are asked for before
the best estimate, to get experts to think about the extreme conditions. The first two
questions are prefaced with statements that urge them to think about evidence that
points in one direction, and then the other, as shown in Fig. 5.2.

Other approaches, including Cooke’s protocol, ask the experts to assign events
to probability bins bi D .pi; 1 � pi/, where pi corresponds to the probability of
occurrence. Bins can have the following form: b1 D .0:1; 0:9/, b2 D .0:2; 0:8/,
b3 D .0:3; 0:7/, etc. if the continuous probability of occurrence scale is discretized
into ten intervals. An expert assigns an event to the b2 bin if their best estimate
(about the probability of occurrence) is anywhere between 0.1 and 0.2. So, in a
way, these approaches only ask for best estimates, acknowledging the imprecision
in the experts’ judgements by allowing a fixed interval around them (equal to the
respective bin’s length).

Fig. 5.2 The 3-step format
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The probabilities of binary variables can sometimes be interpreted in terms of
relative frequencies. It is then legitimate to ask experts to quantify their degree of
belief using a subjective distribution. In this case the upper and lower bounds asked
for in the 3-step format may be thought of as quantiles of this subjective probability
distribution. However, when the relative frequency interpretation is not appropriate
the 3-step format may be criticised for lacking operational definitions for the upper
and lower bounds. We emphasize that in such cases the bounds are elicited to
improve thinking about the best estimates. They are not used in a probabilistic
framework.

In both situations, if questions resolve within the time frame of the study, and
using the experts’ best estimates only, experts’ performances can be assessed in
terms of accuracy and calibration. For calibration measures, the best estimates are
placed in probability bins. For example, using the notation above, best estimates
between 0.2 and 0.3 are assigned to bin b3. This construction allows the evaluation
of calibration measures used in other protocols, e.g. Cooke’s protocol. Sections 5.3.2
and 5.3.3 discuss a comparison of such measures evaluated using a dataset detailed
later in this chapter.

5.2.2 Eliciting Quantiles of Probability Distributions

When IDEA is used to elicit continuous quantities (continuous random variables)
this procedure uses four questions to elicit the values of variables (corresponding
to different quantiles), termed a 4-step format. This approach draws on research
from psychology on the effects of question formats, mitigating much of the
overconfidence typically observed in expert estimates (e.g. Soll and Klayman 2004;
Speirs-Bridge et al. 2010).

In the 4-step format (like the 3-step format above) bounds are elicited before
asking for the best estimate, to encourage experts think about extreme values, and
to prevent them from anchoring on their best estimate. The first three questions are
used to elicit three values of the variable, corresponding to three different quantiles,
and the fourth question is used to identify the probabilities corresponding to the
upper and lower quantiles specified by the experts (Fig. 5.3).

The best estimate corresponds to the median.2 The lower and upper bounds
correspond to upper and lower quantiles (denoted ql and qu), such that their
difference corresponds to the specified confidence level. If, for example, an expert
provides a 50% confidence level, ql and qu will be taken to be the first and the
third quartiles. When experts provide different confidence levels, their estimates are

2The best estimate may be also interpreted as the mode of the distribution. Methods for building
a distribution that complies with the mode and two specified quantiles are proposed in Salomon
(2013). However the interpretation of the best estimate and its use in constructing a distribution
should be clearly specified prior to the elicitation.
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Fig. 5.3 The 4-step format

rescaled to a consistent confidence level (e.g. 90% confidence) such that experts’
distributions can be further compared and aggregated. Several methods may be used
to rescale to a fixed pair of quantiles, ranging from a simple linear extrapolation to
fitting a parametric distribution to the elicited quantiles and extracting the required
quantiles from the fit. The sensitivity of an aggregated distribution (calculated for
example as a weighted combination of individual rescaled expert distributions) to
the choice of the rescaling method is assumed low (as supported by anecdotal
evidence). However this topic requires additional research.

A slightly different version of this procedure, where the elicited quantiles are
fixed, corresponds to the way questions are asked in the Sheffield method and
in Cooke’s protocol. Once rescaled to these fixed quantiles, the answers obtained
using the 4-step format can be mathematically aggregated using the mathematical
apparatus of Cooke’s protocol.

5.3 Data Analysis

The IDEA protocol was refined and tested as part of a forecasting “tournament” that
started in 2011 as an initiative of the US Intelligence Advanced Research Projects
Activity(IARPA).3 Five university-based research teams were involved in predicting
hundreds of geopolitical, economic and military events, with the goal of finding
the key characteristics of efficient protocols for eliciting and aggregating accurate
probabilistic judgements. The project used real events that resolved in the near-
future to test the accuracy of forecasts. Thousands of forecasters made over a million
forecasts on hundreds of questions (Ungar et al. 2012; Mellers et al. 2015). The data
elicited with the IDEA protocol represent the answers to a subset of the questions
developed by IARPA. All questions considered correspond to Bernoulli variables
of the following sort: “Will the Turkish government release imprisoned Kurdish

3http://www.iarpa.gov/index.php/research-programs/ace.

http://www.iarpa.gov/index.php/research-programs/ace
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Fig. 5.4 The number of
questions answered by
participants over 4 years

rebel leader Abdullah Ocalan before 1 April 2013?”, which were answered using
the 3-step format outlined above. All questions usually resolved within 12 months,
hence they were suited for empirical validation studies. The elicitation took place
remotely, initially via email, and from the second year of the tournament through
a dedicated website4 which was set up for the participants to answer the questions,
discuss and upload/download necessary materials.

The tournament operated on a yearly basis, over the course of 4 years. Each year,
new participants joined the IDEA group, and other participants dropped out. There
were 150 participants (over the 4 years) who answered at least one question (both
rounds). Eight of these participants returned each year. The level of participants’
expertise covered a very wide range from self-taught individuals with specialist
knowledge to intelligence analyst. A total of 155 questions were answered by at
least one participant. However, no participant answered more than 96 questions.
Figure 5.4 shows the distribution of the number of questions answered by the
participants. The participants were divided into groups and the number of groups
varied across years to keep the number of participants per group fairly constant
(typically ten). Starting from the third year Super-groups were formed composed of
the best performing participants from the previous year.5 The number of participants
composing the Super-group was equal to the number of participants from any other
group.

Initial training of the participants took place before the game started. Some of
the participants engaged in initial face-to-face training, where they learned about
how the questions would be asked, why they were asked in this manner, and

4http://intelgame.acera.unimelb.edu.au/.
5Performance was measured using the average Brier score. This measure was imposed by the
forecasting tournament rules and all participating team had to use it.

http://intelgame.acera.unimelb.edu.au/
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most importantly, the cognitive biases and group issues that can occur during an
elicitation, and ways to mitigate them. Participants who did not receive face-to-
face training, received online or telephone training. Training materials/documents
that outlined and explained the issues above were also uploaded to the website
for access and reference. Even though probabilistic training was not offered, many
probabilistic concepts were introduced through practice questions that were part of
the training.

5.3.1 Measures of Performance

This section outlines some of the approaches to measuring expert performance and
dependencies among experts’ estimates that we have investigated for the dataset
described above. Hence we restrict attention to evaluating assessments of binary
variables. Experts are asked to represent their uncertainty as a subjective probability
and their assessments may then be scored. Roughly speaking, a scoring rule is a
numerical evaluation of the accuracy of expert assessments against actual outcomes
(de Finetti 1962; Savage 1971; Winkler and Jose 2010). Despite the simplicity
of this idea, there are many ways to score experts, deserving careful attention.
Scoring rules are called proper if their expected pay-off is maximised when experts
accurately express their true beliefs about the predicted event. Proper scoring rules
encourage the experts to make careful and honest assessments (Winkler and Murphy
1968).

Along with evaluating individual experts’ performances, we are also interested
in experts’ joint behaviour. Expert judgements are (in general) correlated with one
another, if for no other reason, because people have access to similar information
and have similar training and experiences (e.g. Booker and Meyer (1987)). This
subject is discussed in Chap. 9 of this book (Wilson and Farrow 2018); here we only
present the analysis of the dataset introduced above.

We are concerned with scoring as a way of rewarding those properties of expert
subjective probability assessments that we value positively. We have investigated
three of these properties: accuracy, calibration and informativeness.

5.3.1.1 Accuracy

Accuracy measures how close an expert’s best estimate is to the truth. One tool to
measure accuracy is the Brier score (Brier (1950)), a proper scoring rule. The Brier
score for events is twice the squared difference between an estimated probability
(an expert’s best estimate) and the actual outcome; hence it takes values between 0
and 2. Consider question/event i with two possible outcomes j. The Brier score of
expert k assessing event i is calculated as follows:
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BrierScorek
i D

2X

jD1
.pk

ij � xij/
2;

where pk
ij is expert k’s probability for event i, output j, and xij is 1 if output j occurs

and 0 otherwise. The above formula measures the accuracy of one estimate made by
one expert for one question. Lower values are better and can be achieved if an expert
assigns large probabilities to events that occur, or small probabilities to events that
do not occur. An experts’ accuracy can be then measured over many questions (N)
and averaged to represent their overall accuracy:

BrierScorek D 1

N

NX

iD1

2X

jD1
.pk

ij � xij/
2

The number of questions and their overall sample distribution play an important
role in interpreting such a score. By an overall sample distribution, we mean the
inherent uncertainty of the events represented by the questions. This is also called
the base rate and it is different for each different set of questions. However, its
value contributes to the value of the average Brier score, even though it has nothing
to do with the expert’s accuracy. This challenges the comparison of experts’ scores
calculated from different sets of questions, with different base rates. Nevertheless,
comparisons will be more meaningful when made on the same set of questions.

5.3.1.2 Calibration

To deal with the base rate problem, Cooke discusses the benefits of using scores for
average probabilities, rather than average scores for individual questions (variables)
in Cooke (1991). He opts for calibration (which he calls statistical accuracy) rather
than accuracy measures for evaluating experts’ performance. A scoring rule is
essentially a random variable and interpreting the scores’ values requires knowledge
about the score’s distribution. An important justification for Cooke’s proposal is
that his (asymptotically proper) score has a known distribution, as opposed to (for
example) the average Brier score, which does not. The average Brier score is a
single number summary of the joint distribution of forecasts and observations. An
empirical distribution of the average Brier score can be obtained for a given joint
distribution of the forecasts and observations. However, this empirical distribution
will differ for different joint distributions.

Before introducing Cooke’s calibration score for events,6 we need some notation.
Assume the experts are asked to assign events to probability bins bi. Let pi be the

6The calibration measure for events is based on similar concepts as the ones presented in Chap. 2 of
this book (Quigley et al. 2018), when the calibration score is described for evaluating assessments
about continuous variables.
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probability of occurrence that corresponds to bin bi. Each expert assigns events to
bins. Let ni denote the number of events assigned (by an expert) to the bin bi. Let
si denote the proportion of these events that actually occur; si can be thought of as
the empirical distribution of bi, whose theoretical distribution is pi. Ideally si and
pi should coincide. Nevertheless, in practice, they often do not. Cooke’s calibration
is essentially a comparison between the empirical and theoretical distributions, per
bin, per expert. The discrepancy between the two is measured in terms of the relative
information7 I.si; pi/ of si with respect to pi, defined in Chap. 2 of this book (Quigley
et al. 2018). The relative information of one distribution with respect to another is
a non-negative measure that equals zero iff si D pi. Increasing values of I.si; pi/

indicate increasing discrepancy. The relative information is calculated as follows:

I.si; pi/ D si ln

�
si

pi

�
C .1 � si/ ln

�
1 � si

1 � pi

�

A result in Hoel (1971) shows that for ni independent events whose probability
of occurrence is pi, 2niI.si; pi/ is asymptomatically Chi-squared distributed with
one degree of freedom. Then, if ten bins are used and if all events are independentP10

iD1 2niI.si; pi/ is asymptomatically Chi-squared distributed with ten degrees of
freedom. Under the (null) hypothesis that the experts estimate the theoretical
distribution correctly, Cooke’s calibration is defined as the probability of obtaining
a result equal to or more extreme than the one observed. Hence, it corresponds to
the p-value of a statistical test:

Cal.e/ D 1 � �210
 

10X

iD1
2niI.si; pi/

!
;

where �210 is the cumulative distribution function of a Chi-squared random variable
with ten degrees of freedom.

For the Chi-square approximation to be reasonably close, the number of ques-
tions assessed by each expert should be quite large (hundreds). Since this is very
rarely the case in practice, the empirical distribution of

P10
iD1 2niI.si; pi/ (obtained

via simulation) is used instead.
As for the average Brier score case, ideally expert performances should be

compared on the same set of questions. When experts assess different questions,
the power of the test used in measuring calibration should be adjusted to account for
the different number of samples (the different number of questions) (Cooke 1991).
Incorporating this adjustment into the simulated empirical distribution of the score
is far from trivial. If a score has an exact distribution, rather than an asymptotic one,
the power adjustment is not crucial.

7The relative information is usually known as the Kullback–Leibler divergence, or information
divergence, or information gain, or relative entropy.
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Using the same notation we could measure a different sort of calibration
through the average Brier score discussed above. The average Brier score can
be decomposed into two additive components called calibration and refinement
(Murphy 1973). The calibration term for N questions can be calculated as follows:

10X

iD1

ni.pi � si/
2

N

Very roughly, the refinement term is an aggregation of the resolution and the
inherent uncertainty of the events assessed. The resolution term rewards expert
estimates that are consistent with event probabilities. Other measures of resolution
based on the notion of entropy associated with a probability mass function can be
formulated. Entropy is a measure of the degree to which the mass is spread out and
can be used in several ways to describe aspects of an expert’s informativeness.

5.3.1.3 Informativeness

Entropy is very often taken as a measure of lack of information in a distribution.
The entropy of the distribution .pi; 1 � pi/, denoted H.pi/ is calculated as follows:

H.pi/ D �piln.pi/ � .1 � pi/ln.1 � pi/

The maximum value of H.pi/ is ln.2/ and it is obtained when pi D 0:5. Thus,
the uniform distribution is the most entropic. The most informative distribution
corresponds to the distributions with minimal entropy, 0. This is obtained only if
pi D 0 or pi D 1. The entropy in the joint distribution of independent variables is
the sum of entropies in the distributions of the individual variables. Two different
entropy measures are defined in Cooke (1991), the average response entropy and
the average sample entropy. The average response entropy in an expert’s joint
distribution on N events is defined as:

Hr D 1

N

10X

iD1
niH.pi/

The response entropy measures the entropy in what the expert says. It does not
depend on the actual occurrences of events. The average sample entropy, denoted
Hs, is calculated as follows:

Hs D 1

N

10X

iD1
niH.si/
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The sample entropy measures the entropy in the expert’s performance, but it
does not correspond to the distribution that the expert (or anyone else) believes.
In contrast, response entropy corresponds to the distribution connected to the
calibration hypothesis described above. If an expert is perfectly calibrated, then
Hs D Hr. Unfortunately, Hs D Hr does not imply perfect calibration.

An expert’s informativeness may be also measured with respect to their choice
of the probability bins. The choice (alone) of a more extreme probability bin (i.e.
assigning a probability close to 0 or 1) can give yet another indication of the expert’s
informativeness. The average response informativeness, introduced in Hanea et al.
(2016) is defined as follows:

Ir D 1

N

10X

iD1
niI.pi; 0:5/

The response informativeness attains its minimum in 0, when all the variables
are placed in the .0:5; 0:5/ bin. A higher informativeness score is preferred since it
indicates that more variables were placed in more extreme bins.

All the formulations above assume that experts have placed events in probability
bins. However IDEA asks experts to provide a best estimate and an uncertainty
interval around their best estimate. In our analysis, the above measures are calcu-
lated by placing the best estimates into the bins and ignoring the upper and lower
bounds. Nevertheless, the interval’ widths can be considered as a measure of the
experts’ confidence, or lack thereof. A larger (smaller) interval may be interpreted
as decreased (increased) confidence. Narrower bounds around a judgement are often
interpreted as greater informativeness. Hence we can investigate the length of the
uncertainty interval as a measure of confidence and the relationship between this
measure and the measures of informativeness discussed above. These relationships
are investigated in Hanea et al. (2016) for the dataset described above.

5.3.1.4 Correlated Expert Judgements

Correlated expert judgements have been discussed occasionally in the literature but,
to our knowledge, there has been little research on evaluating the extent to which this
dependence is practically relevant. Cooke (1991) postulates that such correlation is:

usually benign, and always unavoidable.

In contrast O’Hagan et al. (2006) worries that:

groups of similar experts will receive too much weight and minority views will be under-
represented.

Chapter 9 Wilson and Farrow (2018) of the book discusses this subject from
a more general perspective. In contrast, we investigate only two particular con-
jectures about the dependence between the participants’ answers elicited using
the IDEA protocol (which permits and encourages interaction between the two
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elicitation rounds). We conjecture that any additional dependence between judge-
ments introduced through the discussion is justified by the increase in information
resulting from discussion and by the reduction of misunderstandings or unintended
dichotomies in responses. Moreover, this discussion takes place within groups, so
our second conjecture is that the dependence structures within and between the
groups are similar. If/when that is true, the expert data analysis can be (statistically)
strengthened by pooling the estimates from all groups.

5.3.2 The Merits of Discussion

Results on the benefits of the discussion between rounds, based on part of the 4
year dataset described earlier are presented in Hanea et al. (2016). The analysis was
undertaken within groups and per year, hence the claimed benefits lack statistical
power. However, the second conjecture formulated above is supported by the
data analysis from Hanea et al. (2016), so we feel comfortable in pooling the
expert data to form a larger dataset and hence permit more powerful statistical
tests. This allows us to investigate how some of the performance scores detailed
in Sect. 5.3.1 change per expert after discussion. Figure 5.5 shows pairs of four
different scores (before and after discussion) corresponding to all participants who
answered at least four questions. The crosses represent the average Brier scores,
the diamonds represent the average confidence as measured by the length of the
uncertainty intervals, and the x’s represent the calibration terms of the Brier score.
For all three measures low scores represent better performance. The dots represent
the average response informativeness; better informativeness corresponds to larger
values. The main diagonal is plotted for better visualisation. For the first three
measures (Brier scores, confidence, and calibration), most of the points fall below
the main diagonal, indicating better performance after discussion. For the fourth
measure (informativeness), most of the points fall above the main diagonal, again
indicating better performance in the second round.8

All the investigated measures of performance point to the value of facilitated
conversations between experts in reconciling language based misunderstandings
and interpretations of evidence. The relationship between these measures remains
unclear in general. For this particular dataset, the authors of Hanea et al. (2017)
found no, or little correlation between how accurate experts’ estimates are, and how
informative they are.

8Three quarters of the Brier scores and the average confidence scores are better in the second
round, and two thirds of the calibration scores and the informativeness scores are better in the
second round.
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Fig. 5.5 The average Brier scores, the average confidence,the calibration term of the Brier score
and the average response informativeness of all participants, before and after discussion

5.3.3 Prior Performance as a Guide to Future Performance

Each year of the tournament, we compared an equally weighted combination of
all participants after the first round of opinions (“the wisdom of crowds”) to the
equally weighted opinions of the groups after discussion, using a within-subject
design. In 1 year alone (2013–2014) we had sufficient data to calculate differential
weights using Cooke’s calibration score. Figure 5.6 shows the average Brier scores
of the equally weighted combination of all participants’ first round judgements
(before discussion), compared with the equally weighted judgements of each
group after discussion, together with their corresponding confidence intervals. An
unequal, performance-based weighted combination of the super-group participants’
judgements is shown in the same figure.

Although not statistically significant, the super-group (G1) outperformed the
other groups of participants, suggesting that prior performance is a useful guide to
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Fig. 5.6 Forcasting tournament, year 2013–2014

future performance on similar estimation tasks. The same was observed for the forth
year of the tournament. This finding is in agreement with the findings of Mellers
et al. (2014). Using Cooke’s calibration to derive performance based weights for an
unequally weighted combination generates a slight improvement in performance.

These signals illustrate one of the most important lessons of empirical studies
over the last decade: an expert’s performance on technical questions may be
predicted to some extent by the history of their performance on similar questions
previously. Taking advantage of this phenomenon, Cooke’s approach to differential
weighting assimilates each expert’s confidence and statistical accuracy into a single
weight. The result is that group performance improves. Our results demonstrate that
even in the relatively difficult conditions imposed in answering binary questions
on the outcomes of geopolitical events, performance based differential weights
calculated using Cooke’s method improve the performance of groups, even those
composed of relatively reliable forecasters.

5.4 A Guide to Facilitating the IDEA Elicitation Protocol

The purpose of this section is to present a summary guide for analysts and
facilitators who intend to use the IDEA protocol in an uncertainty quantification
exercise. Some of the recommended steps are similar to those needed when using
other protocols, however, several are specific to IDEA. Much of this section has
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been adapted from Hemming et al. (2017), and we suggest referring to this paper
for more comprehensive advice and examples. In this section, we assume that the
problem structuring, modelling, identification of data gaps and the requirements for
expert input have been decided upon.

5.4.1 Preparing for an Elicitation

Careful planning is necessary to ensure that experts are aware of time constraints,
and that the deliverables of the elicitation become available in the time necessary.
Below we briefly discuss a number of key elements to be taken into account prior to
the elicitation.

5.4.1.1 Key Documents

Time-Line and Key Dates
A list of tasks and a schedule of key dates for each of the steps of the elicitation
before commencing the process is necessary. An elicitation using the IDEA protocol
can take up to 6 weeks if using remote elicitation, or as little as 3 days if using a face-
to-face elicitation. Additional time is required for the development of questions,
recruitment of experts, approval of human research approvals, and the analysis of
data. A sample timeline can be found in the supplementary material of Hemming
et al. (2017).

Human Subjects Research Ethics Approvals
These approvals may be required, particularly if results are to be published, or to be
used to inform decisions. If approval is necessary this may substantially delay the
project.

A Project Description
This document outlines the purpose of the project, the relevant time-frames, the
required expert input, and any payments. It also includes instructions on how the
collected data will be used.

A Consent Form
A consent form should accompany the project description and be sent to experts to
formalize their agreement to take part in the study and for the data to be retained
and used for the specified purpose.

Briefing Document
The purpose of this document is to guide experts through the IDEA elicitation
protocol. It should include instructions on how to answer the questions, reiterate that
experts must make an initial private and anonymous estimate, whilst they are free
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to talk to people outside of the elicitation group, they cannot discuss their estimates
with anyone inside the group until the discussion round. Instructions should also
explain the four-step or three-step format, and how their estimates will be interpreted
or scored. The document should re-iterate the time-lines for the elicitation.

5.4.1.2 The Questions

Even when the quantities to be elicited are identified, the elicitation questions should
be framed such that the quantities to be elicited relate to potentially verifiable
facts and have a clear operational meaning. Moreover, the questions should include
details such as units, time-scales, and metrics. Vague, ambiguous or underspecified
questions which could result in multiple interpretations should be avoided.

Ideally, one or two experts who will not participate in the elicitation should
scrutinize the draft questions, ensuring (as far as possible) that the questions are
fair and reasonable, within the domain of expertise of the participants, free from
linguistic ambiguity or biases, and they can be completed within the allocated
time-frame. The total number of questions that can be asked during an elicitation
depends on the availability and the motivation of the experts. It also depends on
the type (remote or face-to-face) and time-frame of the elicitation exercise. The
authors of Hemming et al. (2017) suggest that no more than 20 questions should
be asked within a single day of elicitation; many more can be asked if more time
is available or through remote elicitation, but asking more questions may come at
the cost of expert fatigue. Different settings will be detailed later in this section.
When experts’ judgements are aggregated using differential weighting schemes,
calibration questions should be added to the set of questions.

5.4.1.3 The Experts

Chapter 16 of this book (Bolger 2018) is dedicated to expert selection. We only very
briefly touch upon this subject. The IDEA protocol relies on recruiting a diversity of
experts. To generate a diverse group of experts, we recommend employing a range
of techniques including professional network searches, peer-recommendations, on-
line searches, and literature reviews. The techniques employed can have inherent
biases and lead to the selection of older, well regarded individuals, or people whose
ideas are in line with popular belief (often older males with a tertiary education).
This may lead to a homogeneous and systematically biased group. Diversity should
be reflected by variation within the group in age, gender, cultural background, life
experience, education or specialisation, years of experience and position on the
questions at hand.
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5.4.1.4 The Facilitator

A key requirement of a good facilitator regardless of the protocol they employ is that
are neutral to the outcome of the elicitation, and capable of retaining objectivity.
The facilitator must be competent in diplomatically handling a wide range of
personalities, be able to encourage critical thinking within groups, and to pose
counterfactuals.

When facilitating an elicitation using the IDEA protocol, the facilitator should
be familiar with the aims and limitations of the IDEA protocol. This means they
should be acutely aware of the various biases and heuristics common to expert
judgement, and how elements of the IDEA protocol aim to counteract the expression
of these biases. The facilitator should understand and be capable of explaining both
the mathematical and the psychological theory behind the specific elicitation type
and the aggregation method.

5.4.2 Implementing the IDEA Protocol

5.4.2.1 The Initial Meeting

The IDEA protocol commences with an initial meeting between the project team and
the experts. The first project meeting is vitally important for establishing a rapport
with the experts. A teleconference of approximately an hour is usually sufficient.
During the meeting, the motivation for the project is introduced and the unavoidable
frailties of expert judgement are explained. The motivation for a structured protocol
is the desire to ensure the same level of scrutiny and neutrality is applied to expert
judgement as is afforded to the collection of empirical data.

During this meeting the outline of the IDEA protocol, and the motivation behind
its key steps are discussed. The format of the questions, the cognitive biases and
group issues that can occur during an elicitation, and ways to mitigate them are
explained. Probabilistic training may be included if experts do not have a minimum
level of understanding of necessary probabilistic concepts. One rule is emphasised:
the experts must not speak to one another prior to the discussion stage within the
IDEA framework. However, they can and should speak to anyone else they like,
and use any sources that may be relevant. We recommend going through one or two
practice questions if time allows, as they help the experts familiarise themselves
with the questions style and the overall process; otherwise practise questions can be
incorporated subsequently. Finally, reiterate the time-lines and allow sufficient time
for experts to ask questions. The supplementary material of Hemming et al. (2017)
provides an example of how the project team might structure the teleconference.
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5.4.2.2 The Elicitation

The IDEA protocol provides a flexible approach to the elicitation of experts which
enables on-line and remote elicitation, or to undertake the entire elicitation through
a workshop (face-to-face). The choice of method will usually be a result of budget
and time constraints, however, if the option is available then it is recommended that
at the very least the discussion phase should be undertaken with use of a face-to-face
elicitation.

IDEA On-line
The experts should be (individually) provided with the questions (including practice
questions if they were not dealt with during the initial meeting), a briefing document
to guide them through the elicitation process and to reiterate key steps, and training
materials. The experts then create a unique codename/number which retains their
anonymity in group discussions, but allows them to easily identify their own
estimates. They should be sent a reminder about 3 days before the close of the first
round to get their results in by the deadline. Ideally, allow 2 weeks for experts to
complete the first round estimates.

Each expert sources information and consults colleagues independently, before
answering the questions. Once all answers are collected, allow time for the expert
data to be cleaned. If outliers or implausible values are revealed during this process,
then it is best to clarify with experts whether these are true beliefs or mistakes before
analysing the data.

After all the above steps are completed, a graphical output of the data should
be collated and circulated among the experts. Compile the comments, rationales, re
sources and links provided by the experts together with their estimates and distribute
them together with the graphical output.

The discussion phase commences once experts have received the consolidated
results of the first round estimates. This can be undertaken by email, a telecon-
ference, or a web forum. The key aims of discussion are (1) to reduce linguistic
uncertainty and (2) to make sure that experts have considered counter-factual
explanations, contrary evidence and alternative models. The role of the facilitator
is to guide and stimulate discussion but not dominate it. For example, the facilitator
should pick some contrasting results and ask questions which help to determine the
source of variation.

Following the discussion, facilitators should clarify meaning and/or better define
the questions. If questions are reformulated or modified in any way, the new versions
should be sent back to the experts, who now need to make second, anonymous and
independent estimates for each. Another week or two should be allowed for the
second round estimates. It is possible to ask many more questions, when elicitations
run remotely (over the web or by email). People then have enough time to spread
the tasks over several days.

IDEA Face-to-Face
Face-to-face workshops are time consuming and expensive, but they usually result in
better buy-in and acceptance of the outcomes than do elicitations that are exclusively
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remote. The duration of the workshop depends on the resources: it can range from 1
day to 3 days. If time allows the initial meeting can be part of the workshop, prior to
training the experts, and discussing the questions to be elicited. Experts provide
individual, anonymous initial estimates based on their prior knowledge and any
information they can gather from the web or other immediately accessible sources.

A graphical output of the data is then collated and presented to the experts.
The discussion stage starts and questions are analysed in turn. Typically, some
questions are more problematic than others and require longer discussion. As above,
the facilitator prompts the experts to think about alternative explanations and to
reconcile different linguistic interpretations of the questions. The facilitator judges
when the discussion has reached a point when no more useful contributions remain
to be made and the questions are sufficiently clarified. The experts then make their
second, anonymous and independent estimates for each question.

Hybrid On-line and Face-to-Face IDEA
Combining remote and face-to-face elicitation steps is also possible, and several
options are available. A recommended combination (in case of restricted resources)
is to elicit the first round estimates remotely, and then conduct face-to-face
discussions and elicitation of the second round estimates during a 1 day workshop.
Other combinations are nevertheless possible. Chapter 17 of this book Barons et al.
(2018) presents an application of the IDEA protocol, where a 1 day face-to-face
workshop was used to elicit the questions of interest, followed by a remote IDEA
protocol for eliciting calibration questions.

5.5 Discussion

Expert judgements are part of the fabric through which scientists communicate with
policy makers and decision makers. In most circumstances, the data we require
for decisions are unavailable or incomplete. Expert judgements are an unavoidable
part of every-day decision-making in all technical domains. Structured techniques
such as those outlined here (and in the rest of the book) are perhaps surprisingly
a relatively new initiative. A handful of publications in the early 1990s have been
followed by a flowering of ideas, methods and empirical tests in the 2000s. Despite
these developments, for the most part, scientists and decision makers alike have been
satisfied with informal deliberation processes and ad-hoc methods for acquiring and
combining opinions. Evidence accumulated since the 1950s in cognitive psychology
especially has illuminated how subjective and unstructured deliberations are prey
to a host of frailties that may substantially influence scientific estimates. Most
worryingly, the scientist themselves will be unaware of these biases. Thus, these
methods represent a critical advance in the place of science in decision making and
policy development.

Here, we have outlined the IDEA protocol for structured expert judgement
that takes several of the most promising elements of these emerging techniques,
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combining them in a way that takes advantage of their strengths, and avoiding their
potential weaknesses. The data presented here suggest that some of the potential
flaws of this new combined approach are not serious impediments to its deployment.
In particular, the potential for generating unwanted correlation structures seems
to be outweighed by the improvement in the quality of individual estimates, and
subsequently (aggregated) in group judgements.

We have also discussed some of the practical aspects of involving small groups
in the process, face-to-face and remotely. This is especially important for the
adoption of protocols by organisations such as regulatory agencies and businesses.
Often, there is a need to acquire the best possible or best available expert opinion.
Previously, this has been achieved by organisations going to the most highly
regarded individual they can find, and using their opinion uncritically. Structured
techniques outperform individuals of any status consistently and by a considerable
margin. Thus, by using these techniques, organisations may discharge due diligence
in decision making. The methodological details provided here ensure that their
deployment can be practical and time-efficient.
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Chapter 6
Elicitation and Calibration: A Bayesian
Perspective

David Hartley and Simon French

Abstract There are relatively few published perspectives on processes and pro-
cedures for organising the elicitation, aggregation and documentation of expert
judgement studies. The few that exist emphasise different aggregation models, but
none build a full Bayesian model to combine the judgements of multiple experts into
the posterior distribution for a decision maker. Historically, Bayesian concepts have
identified issues with current modelling approaches to aggregation, but have led
to models that are difficult to implement. Recently Bayesian models have started
to become more tractable, so it is timely to reflect on elicitation processes that
enable the model to be applied. That is our purpose in this Chapter. In particular,
the European Food Safety Authority have provided the most detailed and thorough
prescription of the procedures and processes needed to conduct an expert judgement
study. We critically review this from a Bayesian perspective, asking how it might
need modifying if Bayesian models are included to analyse and aggregate the expert
judgements.

6.1 Introduction

Proposals for the use of expert judgement to provide inputs to decision analysis
when there is little relevant data are almost as old as decision theory itself. Early
mathematical formalisms for combining judgements from several experts were
either simple averaging, known as opinion polling in this context, or essentially
Bayesian (French 1985, 2011). However, the Bayesian approach,1 although very
helpful for thinking about the principles behind the use of structured expert
judgement (SEJ), did not prove tractable and in many ways fell into the background
of the subject. In practice, opinion polling, particularly Cooke’s development known

1Introductions to Bayesian approaches to statistics, risk and decision analyses may be found in
Smith (2010).
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as the Classical Model (Cooke 1991, 2007), dominated among the mathematical
approaches to eliciting and aggregating expert judgement data. Many practical
studies also used more behavioural approaches to combining experts’ assessments in
which groups of experts discussed and agreed on consensus probability distributions
(Garthwaite et al. 2005).

We believe that it is timely to reconsider the process of incorporating expert
judgement data into risk and decision analyses for two reasons. Firstly, Bayesian
methods are more tractable with the advent of more effective computational
approaches, particularly MCMC (Wiper and French 1995; Clemen and Lichtendahl
2002; Lichtendahl 2005; Albert et al. 2012). Secondly, the use of Bayesian methods
to think conceptually about the principles behind the use of expert judgement has
been less common among those developing practical prescriptions and procedures.
Our aim in this chapter is to take the latter direction, though we shall to a lesser
extent note some of the more technical advances in the application of Bayesian
approaches.

Although the last two decades have seen many applications, there are relatively
few published perspectives on formal processes and procedures regarding the
elicitation, aggregation and documentation of Expert Judgement Studies. Three
key texts provide the broadest overviews: Meyer and Booker (1991), Cooke and
Goossens (2000) and EFSA (2014). Meyer and Booker’s text and the European Food
Safety Authority’s (ESFA) Guidance provide the most comprehensive discussion
and recommendations on process. The Classical Method described in Chap. 2 of
this book (Quigley et al. 2017), on which Cooke and Goossens’ recommendations
are based, has had the most practical usage, but fewer procedural details are
specified. Procedural issues are also carefully managed and documented in using the
Sheffield Method described in Chap. 4 of this book (Gosling 2017) of behavioural
aggregation, developed by O’Hagan and Oakley2: see the EFSA guidance for
details. None of these recommendations consider how one might use a full Bayesian
model to combine the judgements of multiple experts into the posterior distribution
for the decision makers from a procedural perspective. That is our purpose in
this chapter.

6.2 Context

French in 1985 distinguished three contexts in which one might wish to combine
expert judgements of uncertainty.

1. The Expert Problem. Here the group of experts are asked for advice by a decision
maker who faces a real decision. She3 formulates the problem and asks the

2http://www.tonyohagan.co.uk/shelf/.
3Following convention, we will refer to the decision maker as female.

http://www.tonyohagan.co.uk/shelf/
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experts for advice on the uncertainties relating to events and quantities that she
has defined. In this context the emphasis is on how she should learn from the
experts’ statements on the uncertainties involved. Ideally, of course, she would
want to learn in a rational way.

2. The Group Decision Problem. Here there is still the focus of a real decision;
but it is the group itself that is jointly responsible and accountable for the
decision. The decision makers are their own experts. They formulate the problem,
defining events and quantities of interest. During discussion the decision makers
may, usually will,4 share and discuss their uncertainties and they will wish to
learn from each other and to do so rationally. However, their responsibility for
making the decision may bring democratic issues into play and, sadly, principles
of rationality and democracy are often in conflict (Taylor 1995; French 2007,
2011). Moreover, the responsibilities and possible benefits or harm that may
come to them individually from the outcome of the decision may consciously
or unconsciously bias their statements.

3. The Textbook Problem. The group may simply be required to give their judge-
ments for others to use in the future in as yet undefined circumstances; there is
no predefined decision. For instance, when an issue or general risk is of current
public concern, governments may commission reports from a panel of experts.
In this case the experts have to identify events and quantities that might be of
future interest, but without having the clear focus of a precise decision problem.
The textbook problem has been discussed little in the literature, but is growing in
importance (French 2012).

It is possible, indeed likely, that some combination of these three contexts may
occur. For instance, a group of decision makers might be informed by a group of
experts before making their decision. However, we avoid such complexities and
use just these three contexts as they are sufficient to articulate some of the issues
and principles that are of concern. We shall discuss, for instance, that whether it is
appropriate to calibrate expert judgements depends to some extent on the context.

Within societal decision making, the Expert and Textbook problems are very
common contexts. For example as an instance of an Expert Problem, a regulator may
wish to act as a single rational decision maker taking advice from a panel of experts.
The EFSA guidance is written very much from this perspective. As we have noted,
the Textbook Problem corresponds very much to circumstances when a government
sets up a panel of experts to advise on some issue of public concern. One might
think that the Group Decision Problem would correspond to decision making within
many areas of government, but that is seldom the case. Political processes dominate
and seldom correspond to the simplicity of any decision theoretic model (French
et al. 2009). Within the private sector, it is more common to find circumstances
with the structure of the Group Decision Problems, possibly because members

4This is becoming less true when web-based group decision support systems are used and decision
makers may simply enter numerical judgements of uncertainties and values into the system, while
being separated in space and possibly time (French 2007).
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of a commercial organisation have more closely correlated values than is found
across the whole of society meaning that some of the paradoxes and inconsistencies
possible in theory do not occur in practice (Bacharach 1975).

In all contexts we assume that the experts articulate their uncertainties in terms
of probabilities, perhaps on a single event A, a series of events A1;A2; : : : ;An, or
the probability distribution of an unknown quantity � , either discrete or continuous.
We also assume that these will be used in a statistical, risk or decision analysis.
We would expect these to be structured according to the Bayesian paradigm (see,
e.g., French and Rios Insua 2000; Bedford and Cooke 2001; Gelman et al. 2013),
because such approaches are consistent with subjective theories of probability which
also underpin the use of probability to encode expert judgement. However, as the
EFSA guidance shows, it is quite possible to move back to non-Bayesian approaches
in using the probabilities from expert judgement studies. We also note that just
as the elicitation and aggregation of expert judgement requires attention to the
processes and procedures of which the mathematical analysis forms a part, so there
are many ‘softer’ issues to be considered in conducting a statistical, risk or decision
analysis (Edwards et al. 2007; French et al. 2009). We would contend that all these
procedures and processes need be consistent and based on compatible principles.

It is important to realise that in assuming that the experts provide probability
assessments, we do not claim that they will do so ‘accurately’ in the sense that
any probability that they give relates to reality in an unbiased way. Ideally we
would wish that an articulated probability of, say, 60% corresponds to something
that is observed to occur roughly 60% of the time. However, experts, as indeed
everyone else, are liable to biases which manifest in many ways (Kahneman et al.
1982; Lichtenstein 1982; Gigerenzer 2002; Kahneman and Klein 2009; Kahneman
2011). For instance, experts are often overconfident, assigning probabilities of 100%
and 0% to events that subsequently prove to be neither certain nor impossible.
This means that we should consider the calibration of experts, just as we might
consider the calibration of instruments rather than simply accepting their readings
without question. We shall see that the calibration of experts has been a significant
hurdle to developing practical and tractable Bayesian methods for assimilating and
aggregating expert judgements into any analysis.

Calibration issues arise because of the psychology of the individual experts.
They are confounded by further pressures which can bias expert judgement.
These can arise from social pressures and legal responsibilities that impact on the
experts. For instance, geologists, particularly in Italy, would inevitably consider
their assessments in the light of the indictments of the experts who advised on
the likelihood of an earthquake at Aquila (Alexander 2014). Although they were
subsequently acquitted on appeal, it is far from clear that this will be last time
that experts in any country are placed at risk in court because of their advice and
the subsequent outcomes; and that possibility will always be in the background of
their thinking.

Often the advice of ‘independent experts’ is sought, but they are as unlikely to be
found as the elixir of life. Experts inevitably share much experience and education
in common, which correlates their advice (Wilson 2016), see Chap. 9 of this book
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(Wilson and Farrow 2017). Modelling dependence between experts has proved to
be another significant hurdle to the implementation of practical Bayesian Methods.

6.3 The Bayesian Approach to Structured Expert Judgement

Bayesian approaches treat the experts’ judgements as data and then develop appro-
priate likelihood functions to represent the information implicit in their statements.
Thus applying Bayes theorem to assimilate their advice on uncertain events to give
the posterior probabilities given the experts’ statements:

PDM.AjQ/ / PDM.QjA/ � PDM.A/; (6.1)

where:

• A is an event or series of events A1;A2; : : : ;An

• Q are the experts’ statements, Q D .q1;q2; : : : ;qe; : : : ;qE/, expert e stating qe

for e D 1; 2; : : :E
• PDM.A/ are the decision maker’s prior probability distributions for A
• PDM.QjA/ are the decision maker’s probabilities for the experts stating Q given

A, i.e. the likelihoods,
• PDM.AjQ/ are the decision maker’s posterior probability distributions for A given

the experts’ statements Q

or, to assimilate their advice on uncertain quantities:

PDM.� jQ/ / PDM.Qj�/ � PDM.�/; (6.2)

where:

• � is the unknown quantity of interest to the DM,
• PDM.�/ are the decision maker’s prior probability distributions for �
• PDM.Qj�/ are the decision maker’s probabilities for the experts stating Q given
� , i.e. the likelihood function,

• PDM.� jQ/ are the decision maker’s posterior probability distributions for � given
the experts’ statements Q

The constant of proportionality is in principle simple to evaluate. It is found
by remembering that probability distributions integrate to one. Unfortunately the
integration is not easy in many cases. We shall return to this point in the next section.

A key difficulty in the Bayesian approach is the development of tractable
likelihood models, PDM.QjA/ or PDM.Qj�/, that capture the decision maker’s
understanding of:
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• the ability of the experts to encode their knowledge probabilistically and their
potential for overconfidence (Clemen and Lichtendahl 2002; O’Hagan et al.
2006; Hora 2007; Lin and Bier 2008);

• the correlation between expert judgements that arises from their shared knowl-
edge and common professional backgrounds (Shanteau 1995; Mumpower and
Stewart 1996; Wilson 2016), see Chap. 9 of this book (Wilson and Farrow 2017);

• the correlation between the experts’ judgements and the decision maker’s own
judgements (French 1980);

• the effects of other biasing pressures such as may arise from conflicts of
interests, fear of being an ‘outlier’, concern about future accountabilities,
competition among the experts themselves, more general psychological ‘biases’,
and emotional and cultural responses to context (Hockey et al. 2000; Skjong and
Wentworth 2001; Lichtendahl and Winkler 2007; French et al. 2009; Kahneman
2011).

The Bayesian perspective makes it clear that one needs to think about shared
knowledge and the correlations this brings between the judgements of the experts;
other approaches to aggregating expert judgements do not. As any statistician
knows, ignoring dependences between data leads to overconfidence in estimates.
The same is true here, although we have noted that allowing for correlations between
experts has been a considerable hurdle to the development of practical Bayesian
methods.

Bayesian modelling extends to allow for both expert judgement and empirical
data to be assimilated. All that is required is that the likelihood function models the
observation processes of both, which, of course, may not be a simple task. Moreover,
while we are assuming for the present that the experts articulate their uncertainties
in terms of probabilities, they could give means, variances or some other moments
of their distributions, and again the likelihood function could model this.

The Bayesian model as stated here clearly maps onto the expert problem
described above. It describes how the decision maker should update her beliefs in
the light of the information she receives from the experts. In the case of the group
decision problem, some approaches apply the Bayesian model separately for each
group member to represent how they should learn from each other, so developing
theories of Bayesian conversations (French 1981; Kadane 1993). Other approaches
to group decision making assume that the members articulate their probabilities
after sharing all their information through discussion, so that the process of learning
from each other is never formalised. This is true of the Sheffield method and more
generally of decision conferencing.

It is clear that the use of probability to represent uncertainty is key to our
discussion and it would be wise to pause and be clear on what we mean by
probability. Firstly, we note that expert judgement studies have to recognise two
broad forms of uncertainty:
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• aleatory uncertainty or randomness: such uncertainty relates to natural variation
and randomness such as the unpredictability of the weather or variations within
a species;

• epistemological uncertainty: such uncertainty relates to a lack of knowledge or
scientific understanding.

In expressing their opinions, experts have to integrate both forms of uncertainty
into a holistic expression of the total uncertainty in the event or quantity of concern.
But there are more subtle issues relating to the meaning of probability, which is a
surprisingly controversial topic that has been of interest to many philosophers over
the centuries. Broadly there are four families of approaches (Barnett 1999; French
2013).

The classical view of probability simply partitions the future into n equally likely
primitive events and then to get the probability of a more complex event counts those
primitive events that comprise it, say q. The probability of the complex event is then
taken as q=n. This works well in game of chance, for which it was devised in the
seventeenth century, but quickly falls apart in less well-structured problems in which
partitions of equally likely events are absent. Nonetheless, for most of us it is the
form of probability that we meet earliest in our schooldays.

The frequentist view of probability takes probability to be the long run frequency
of occurrence of some event in a series of repeated trials. It is the conception that
underlies our first introduction to statistics. It is intuitive and very powerful, when
it works. However, it does not deal with epistemological uncertainty since it is very
difficult to imagine a series of trials in which one learns and unlearns knowledge
repeatedly. Learning a piece of knowledge is, at least for a rational person with
a good memory, a one-off, unrepeatable event. So frequentist approaches to
probability do not fit with expert judgement studies.

Both classical and frequentist views of probability make probability an objective
property of the system under observation. The logical view of probability takes
a different approach. It assumes that probability is an objective property of the
language in which the system is described. As knowledge accumulates some
propositions in the language are observed to be true and others false. If one starts
conceptually with the language and absolutely no knowledge, i.e. no proposition
is known to be true or false, then one can develop a full theory of probability
in which the probability of a proposition represents how likely it is to be true.
Moreover, the way in which knowledge accumulates is entirely compatible with
Bayesian updating: see, e.g., Jeffreys (1961). Unfortunately, it turns out to be very
difficult, many believe impossible, to articulate the complete ignorance with which
such theories of probability need to begin.

Which brings us to subjective views of probability (Ramsey 1926; Savage 1972;
De Finetti 1974, 1975). Here probability is a property of an observer of a system,
representing his or her degree of belief in something happening or of the value
of a quantity. There are subjective theories which simply articulate an individual’s
uncertainty in this sense; and there are also approaches which combine subjective
uncertainty with subjective values to create theories of rational decision based upon
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subjective expected utility (French and Rios Insua 2000). It is these latter theories
that underpin much of modern Bayesian risk and decision analyses and that are
implicit in the Bayesian approaches to the use of expert judgement. In this chapter,
we adopt an explicitly subjective approach to probability.

There is a further issue we need consider in thinking about the meaning of
probability in expert judgement studies. Whose probabilities are we modelling: the
decision maker’s, the experts’, someone else’s, . . . ? Clearly in the strict Bayesian
formalism above, the experts articulate their own probabilities and these are
captured in the Q. The decision maker’s beliefs are modelled by the probability
distributions PDM.A/;PDM.QjA/;PDM.AjQ/, etc. In the expert problem this is a
straightforward interpretation. In the group decision problem, the same is true if
we consider each member individually. In the textbook problem, things are far from
clear: there is no decision maker to own the probabilities. Moreover, if we consider
societal risk and decision analysis as it needs to be practised by regulators such
as EFSA, then again things become unclear. There may be a well-structured risk
or decision model, but the situation may not correspond neatly to either the expert
problem or the group decision problem. Either there is no explicit decision or, more
likely, once scientific and socio-economic analyses are complete, decisions are taken
by political processes, often somewhat nebulous political processes. There is no use
of subjective expected utility to guide the final decision (French and Argyris 2016).
In such cases, it is common to re-interpret the analyses as producing a model of what
a rational scientist or supra-decision maker might believe in the light of the evidence,
including expert advice, available. We shall return to this point in the discussion
below. For a related comments, see O’Hagan and Oakley (2004). Need the experts,
decision maker and analyst use the same interpretation? This may seem a strange
comment, but from a Bayesian perspective, while the decision maker’s probabilities
are clearly subjective, to her the experts’ probabilities are simply data. The decision
maker’s likelihood encodes how see perceives this data, i.e. their statements, relate
to the uncertainties of interest. Such likelihoods could be constructed, at least in
principle, however each expert interprets the probability that he or she states. Indeed,
different experts might use different interpretations; what matters is that the decision
maker and analysts know which interpretation they are using.

The ethics behind calibration is interesting. In the context of the expert problem,
the experts’ judgements are data to the decision maker and it is entirely appropriate
for her or her analyst to correct/adjust their judgements for poor calibration, just
as it is appropriate to correct empirical data for known biases and flaws in the
observation process. It may be difficult to do so, but the ethical position is clear.
However, in the case of group decision making, things are not so clear. Each member
might adjust what he or she learns from the other group members’ judgements
for any miscalibration in their judgements. But should each member adjust their
own judgements? Why, if it is what they truly believe? Surely, as decision makers
sharing in responsibility and accountability for the decision, they should each vote
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or whatever according their beliefs, even if others perceive these as miscalibrated?
Moreover, any process which involves an individual recalibrating his or her own
probability risks entering an infinite regress.

If we turn to societal decision making and the textbook problem, things become
more interesting. Firstly, there is no clear individual decision maker, so the Bayesian
paradigm which is essentially individualistic, does not apply transparently. One has
to develop the concept of a hypothetical rational scientist or supra decision maker,
who listens to all the expert judgements and forms a reasonable synthesis of these.
With this interpretation, it is sensible to assume that this hypothetical being is
well-calibrated, but that the real experts may be poorly calibrated. Here it seems
reasonable to recalibrate the experts’ judgement. But there are legal issues. If a
panel of experts is charged with giving their best judgements to some body such
as a regulator or the government itself, is it legitimate to adjust those judgements
in subsequent analyses? Even if adjustment is legitimate, would it be acceptable to
many stakeholders? Will they placidly accept some risk management strategy when
the judgements that have been used to justify it have been ‘blatantly tampered with’?

The Bayesian perspective does not give any easy answers to any of these
questions, but it does make them explicit and open to discussion.

6.4 Survey of Bayesian Models for Structured
Expert Judgement

Bayesian models have evolved considerably since their inception. The first models
used conjugate prior methods, which simplify the calculations by utilising a
restricted set of distributions in the Bayesian model to make the mathematics easier.
Examples of such models may be found in Winkler (1981), Lindley et al. (1979) and
Wiper and French (1995). These models conceptually demonstrated the power of the
Bayesian approach, often producing favourable results on small datasets, however,
in practice were not broadly adopted. The reasons for this relate to the restrictions
the conjugate assumption put on the model, the complexity in modelling approach
in comparison with intuitively simpler opinion pooling methods, and the sensitivity
to inputs that was apparent in some of these approaches.

Following the conjugate prior models, there was some further investigation
into other Bayesian approaches that could be fruitful. Some progress was made
on Bayesian Nonparametrics (Lichtendahl 2005) and Copulas (Jouini and Clemen
1996). Working with multivariate distributions, those with more than one dimension
(a phenomena prevalent throughout structured expert judgement (SEJ) studies), can
increase complexity significantly. Copulas simplify the process by separating what
are known as the marginal distributions, which are distributions for the individual
dimensions, from the dependence structure which demonstrates how they are linked
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Fig. 6.1 Bayesian Network for aggregating expert judgement

together. There were some positive signs from these models, however, empirically
there were questions over the method (Kallen and Cooke 2002)5

In more recent years there has been some resurgence in the use of Bayesian
analysis for expert judgement studies; however the focus has now shifted to
Markov Chain Monte Carlo (MCMC) approaches. These methods are a class of
algorithms for stochastically approximating Bayesian posterior multi-dimensional
distributions. Despite MCMC approaches having existed for many years, the use
of these techniques in expert judgement studies is a recent development. One of
their attractions to Bayesian expert judgement studies is the ability to describe the
model through the use of a Bayesian Network. This seemingly simple box and arrow
diagram, Fig. 6.1, can allow the analyst to easily demonstrate to the decision maker
what the different variables or parameters are and how they are linked together,
thereby hiding much of the modelling complexity.

In this toy example we see a simple expert judgement aggregation model for
the expert problem6 described. Here, experts have their beliefs elicited in the form

5It is important to note that the models themselves encode expert judgement and therefore cannot
be thought of as ad-hoc. Indeed it would be reasonable to question whether it is appropriate to
separate the elicitation exercise from the modelling process, however in doing this some of this
encoded knowledge would be lost. Therefore we need to be very careful with the treatment of
elicited data outside of the modelling paradigm, a particular challenge in the Textbook context
outlined earlier.
6It is interesting to consider whether it would be possible to create a Bayesian Network (BN)
for the group problem or the textbook problem in addition to the expert problem. Unfortunately
this is significantly less trivial. For the textbook problem, by definition, the problem statement
is not known at the time of elicitation and therefore it is impossible to generate a corresponding
BN. It would be feasible to generate specific networks as individual problems are solved but a
generic version does not exist. For the group problem, there is significant work looking at complex



6 Elicitation and Calibration: A Bayesian Perspective 129

of a set of quantiles, these quantiles are utilised as representatives of the experts
‘true’ belief which is in the form of a parameterised distribution with parameters
�e (e.g. in the standard Gaussian �e D .�e; �e/). Quantiles are often elicited,
rather than parameters, due to the relative complexity of asking experts to think
in terms of distributions. The decision maker’s beliefs, represented by �DM , again
parameterised, are, as in the standard Bayesian model outlined, updated based on
the underlying prior she had PDM.�/, combined with the probability assessments
from each expert. The actual inference over this network would be produced
by running an MCMC algorithm which would infer an output distribution for
each of the unknown variables. Another advantage of MCMC algorithms is that
they maintain uncertainty throughout and therefore it is possible to visualise the
underlying distributions for each of the points of interest within the model, such
as the expert’s true beliefs or the decision makers full posterior distribution. With
the appropriate treatment, this also allows the decision maker to understand more
complex items such as the correlation between experts, or their relative calibration,
without explicitly trying to elicit or model these separately.

One of the early MCMC models for SEJ was from Clemen and Lichtendahl
(2002). In this paper the authors tackled a specific portion of the expert judgement
problem, the issue of expert calibration. It is important to remember the change
in terminology here vs. previous chapters. Bayesian models normally approach
calibration by uncovering parameters by which the decision maker believes the
expert’s tend to over/under forecast and adjust the resultant forecasts accordingly,
analogously similar to the adjustments a conductor might ask a player to make to
the valve in an instrument in order to ensure harmony. This is different to calibration
in the Classical model context where experts’ forecasts are never adjusted but
simply weighted according to their statistical accuracy. As outlined in the previous
section, the legal and philosophical validity of this as an activity may be very
context dependant. Building on ideas from Cox (1958) and Morris (1974); Clemen
and Lichtendahl (2002) developed a model of expert overconfidence using past
data to estimate, what they term, ‘inflation factors’ for assessed distributions post
hoc. While some common models treat all experts as exchangeable, Clemen and
Lichtendahl use hierarchical MCMC models which allow experts to be calibrated
individually. Here, for simplicity we can imagine, the model has a parameter,
˛, for each expert which describes whether that expert displays consistent bias
(i.e. continuously over/under estimating) on their best guess, (or 50% quantile)
across forecasts. The MCMC algorithm then sequentially reviews experts’ previous
performance at forecasting, over a set of data known as the ‘seed data’, and infers
the value for ˛ (it will ultimately be a distribution rather than a point estimate).
From this the decision maker can decide how to consider each experts judgements
for future forecasts. The authors then extended this model to consider the other

decisions involving both groups and Bayesian networks in the field of adversarial risk analysis.
Due to the focus of the EFSA guidance on the expert problem, a detailed review of group decision
problems is not given in this chapter. One paper covering this topic is French (2011).
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elicited quantiles and expert to expert correlation by creating further parameters,
which represent the non-independence of experts.

Clemen and Lichtendahl did not explicitly consider the choice of variables used
for calibration, though this is clearly important. As mentioned, the underlying
assumption of all calibration techniques is that the behaviour experts’ display on
the seed variables is indicative of their final behaviour on the variables of interest.
In particular, there are systematic biases, of a similar nature to those outlined by
Kahneman et al. (1982), in consistent evidence which should be removed from the
decision maker’s analysis. The case for this is compelling but critically, only when
the variables used for calibration are representative of the target variables of interest.
A decision maker should not expect an expert’s performance with relation to a
weather forecast to be indicative of their ability to accurately assess the likelihood
of a bolt breaking in a suspension bridge. Similarly, the data must be on a similar
scale. Experts are notoriously inaccurate when assessing probabilities for extremely
rare events and one would expect that behaviour seen here would not correlate
with behaviour seen for more commonly occurring variables. Assessing the right
variables to use for a calibration model remains a question, and something that
should be researched further.

Although Clemen and Lichtendahl tackle the question of how we calibrate
multiple experts whilst assessing the expert to expert correlation, they do not
consider the issue of what a decision maker should do once she has received this
data. Utilising the authors’ methods a decision maker would be able to translate
multiple experts elicited quantities into their unbiased counterpart’s, however, how
the decision maker would actively use these is not apparent. It would seem a shame
to precisely calibrate experts but then for the decision maker to update her belief in a
method that does not use this richness of information. To this extent, it is important
to examine Bayesian methods of aggregating the data also.

More recently, Albert et al. (2012) proposed such a model. Their model is
known as a Supra-Bayesian parameter updating approach. This outlines a class of
models which assume that the aggregation represents the belief of an overarching
rational, but hypothetical, decision maker, the Supra Bayesian, who has beliefs
that can be represented by particular parameters. For example, they may believe
that the output is Gaussian with an unknown mean and variance. The model then
updates these parameters based on inference over the experts judgements (here, as
usual, utilised as data). Similar to the calibration model, this method also considers
expert judgements from indirect elicitation, i.e. rather than trying to elicit a mean
and a variance for each expert’s beliefs, expert’s knowledge is elicited on more
intuitive observables, such as quantiles, and the parameters then inferred. Here
the inference is made by mapping the elicited quantiles (or similar) to a selected
parameterised distribution, using distribution fitting. Different models often use
different parametrisations for this. The parameters of the fitted distribution are
assumed to represent the expert’s underlying belief that often cannot be directly
elicited due to the complexity of mentally processing these concepts.

The model that Albert et al. (2012) use is hierarchical in nature and captures
correlation in an interesting way. One of the drivers of inter-expert correlation is
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that experts may have had similar education or historic frames of references. The
proposal from the authors of this paper therefore was to group experts together into
homogeneity groups, where each group is defined by like-minded experts. Here
the authors take like-minded to mean ‘similar background or schools of thought’,
although do not go into specific detail on how this may be assessed. For now
we will assume that experts can be appropriately grouped in some way, however
we will return to this shortly. The aggregation model will then assume that each
expert’s beliefs are linked to that of the other experts in their group and the groups
likewise are linked to each other. Each group, h, will have a parametrised distribution
�h defined by the beliefs of its expert members. The final combined posterior
distribution represents the updated decision maker judgement and is calculated
through MCMC. A simple diagram of this model is shown in Fig. 6.2. This is an
extension of the simpler model outlined earlier.

The motivation for this expert partition is that rather than explicitly calculating
the correlation for each expert, the grouping approach is used to appropriately
weight the impact of each expert in the final model, offsetting over-confidence
effects driven by correlation. The theory here is that past experience and knowledge
is one of the underlying key drivers of this correlation. One of the advantages of this
approach is that the hierarchical model can capture both the consensus and diversity
between experts, and this is very compelling. As mentioned above, one of the areas
not overtly tackled by the authors was how to support a decision marker or analyst in
assigning experts to groups. The authors of this chapter are currently researching an
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algorithmic approach to this assignment utilising Dirichlet process mixture models,
which are a form of clustering technique.

For Bayesian models there has also been much discussion about a more advanced
set of properties that could be expected of a Bayesian SEJ model such as external
Bayesianity (Madansky 1964; French 2011), in which the final decision of a group
of Bayesians should in turn be perceived as Bayesian, or marginalisation (Genest
1984; French 1985). However we shall not discuss these in detail here.

Overall, with these recent developments, it appears that the goal of finding a,
practical Bayesian framework for SEJ is not an impossibility and MCMC may be
a critical design element. The more recent models outlined also show the potential
for the Bayesian approach to take a significant step forward in being more context
agnostic. There is, however, a number of complex idiosyncrasies that make these
techniques challenging in a practical environment compared to the Classical model,
in particular:

• Technical details being intractable to non-analytical decision maker’s
• Complexity (and model overdependence) in setting the correct priors
• Overreliance on hard to gather calibration data.

Some of these issues can be resolved by research into the modelling techniques
utilised, however, others can be better addressed by considering the processes and
procedures that may need to be different for a Bayesian model of SEJ.

6.5 Practical Procedures

Of the major texts covering the processes and procedures surrounding structured
expert judgment, the European Food Safety Authority’s (EFSA 2014) guidance is
possibly the most complete. Many of the topics and models are also outlined in
other texts such as Meyer and Booker (1991), Cooke and Goossens (2000), and the
Sheffield Method by O’Hagan and Oakley; but we shall take EFSA (2014) as an
exemplar to discuss process and procedural issues from a Bayesian perspective.

It is important at this stage to note the role of EFSA,7 the European Agency. It
operates independently of both the European legislative, executive institutions and
EU Member States, and is responsible for risk assessment in the area of European
food safety. This is completely separate from risk management or policy making,
and was legally established under the General Food Law—Regulation 178/2002.
EFSA plays an important role in collecting and analysing data to ensure that risk
assessment is supported by scientific information, including expert judgement, and
then appropriately communicating this to both stakeholders, such as policy makers,
and the public at large. Acting in this way, EFSA will be most interested in
evidence and analysis for societal decisions, impacting the approaches and contexts

7https://www.efsa.europa.eu/en/aboutefsa.
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in which EFSA operates SEJ. EFSA is a regulator and so deals with expert problems
or, occasionally, textbook problems. In these contexts, EFSA would seem to be
developing probability distributions that represent the views of a rational scientist.

The EFSA SEJ process starts with the formation of a Working Group. The
Working Group comprises individuals accountable for the overall program of work.
They are tasked with problem definition and the development of a risk assessment
model. In undertaking these they will identify when limited evidence is available for
some of the critical variables, deciding that there is a requirement to consult experts
to fill such knowledge gaps.

At this stage, the Working Group will typically hand the program over to a second
group, the Steering Group. The role of the Steering Group, inter alia, is to refine
the parameters to be elicited and to identify the precise expert knowledge that is
needed. Once these elements have been finalised, it is critical to select the experts
themselves, which may have implications for the elicitation method used and thus
the final aggregation model. The final decision on each of these elements lies with
the Steering Group.

In practice, the selection of the experts is not a trivial matter and can be impacted
by a number of variables quite outside considerations of their expertise on the
parameters. Availability is obviously a critical factor; and for EFSA there are
potentially political constraints factored into the decision. There may, for example,
be quotas on attendance from EU member-states or other issues of representation.
This constraint may impact the analysis as it potentially introduces a further risk
of expert bias which may need to be controlled as part of the elicitation/modelling
process. This issue is not just limited to EFSA nor to similar contexts, it is a common
phenomenon in SEJ that experts may be assigned rather than selected. From a
Bayesian perspective, were this assignation to happen, having a clear understanding
of these affiliations may be critical for the creation of the homogenisation groups
and the ultimate reduction of bias within the model.

In selecting the model, the Steering Group can choose from three approaches
ratified by EFSA, these approaches are the Sheffield method, Cooke’s method or a
version of the Delphi method. Each of these versions have different requirements
and the ultimate selection of the model will depend on factors such as geographical
split of the experts, diversity of backgrounds, or simply time or skill requirements.

Following the selection of the elicitation method and the model to be used, the
Steering Group will hand over to an Elicitation Group. The Elicitation Group will
typically be more familiar with facilitation and elicitation, and will be accountable
for training the experts to help them understand the process, the requirements
necessary and to also help them be aware of their own biases and how to mitigate
these. Following this the Elicitation Group will perform the elicitation and any
subsequent modelling necessary. The information from here is then either handed
back to the Steering Group or directly translated into a set of Post Elicitation
documentation. Please see Fig. 6.3 for a simple visual of the process.

In a typical EFSA study, there are a wide variety of individuals involved
throughout the process. It is imperative to ensure that common understanding of
context and models flow through the groups. Documentation is a critical component
to this. In other SEJ contexts, it is feasible that the process is much leaner and the
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Fig. 6.3 The EFSA expert knowledge elicitation process, reproduced from EFSA 2014

Working Group and the Steering Group are compressed. Or in certain decisions, it
is feasible that a decision maker will come directly to an analyst for insight that
will ultimately lead the analyst to play the role of all three of the groups outlined
here. In these circumstances the common understanding is much simpler to achieve,
however the training and documentation requirements may be harder to implement
with limited resource.

If a Bayesian adjustment of EFSA were considered, a number of other elements
would need to be addressed. As highlighted, the key difficulty in the Bayesian
approach is often the development of tractable likelihood models, PDM.QjA/ or
PDM.Qj�/, as these are the most mathematically complex elements. However, when
considering the EFSA procedures the decision on who should own the prior for the
model PDM.A/ is an equally important consideration. In a fully subjective context,
i.e. when there is a single decision maker who is ultimately accountable for the
output of the SEJ, e.g. a commercial leader who is utilising SEJ to invest their own
money, it is very reasonable for this individual to own the prior personally. EFSA
is typically looking for the view of a rational scientist, and therefore potentially
a Supra-Bayesian approach, as utilised in Albert et al. (2012) is necessary. This
hypothetical Supra-Bayesian would evidently still need to have prior’s assigned.
There are a couple of areas of potential ownership:

• The Working Group—Ultimately accountable for the output of the SEJ as it
feeds into the risk assessment model, one option would be to have the Working
group define and own the priors.

• The Steering Group—Closer to the refined parameters being elicited, the
experts and the final method utilised, the Steering Group would also be a logical
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owner for the priors. If any quantitative assessment of the variable of interest
was made during the initialisation of the pre-elicitation phase then this could be
considered as a prior.

• The analysts performing the modelling—If naive priors8 were used and
therefore limited knowledge encoded within the prior specification, the analysts
could feasibly act as a proxy for the rational scientist.

• The experts themselves—Another source of priors would be the experts them-
selves or a subset of other experts. Utilising the experts for the prior however,
would draw us closer to the group decision problem, rather than the rational
scientist expert judgement problem typified in the EFSA model. This is not
inherently a problem however does bring about a number of other constraints
to be considered and blurs the boundary of the role of the expert vs. the decision
maker. If this approach were to be taken, a very different set of processes would
need to be considered. For an expert problem all knowledge from the expert’s
should be codified in the likelihood function.

The most compelling of these options would appear to be the Steering group,
as they represent a body close enough to the problem whilst still in a position of
accountability. There are also multiple priors being assessed, there are priors over
the variables of interest but also over the experts (and their potential correlations)
themselves. It would be a considerable risk for the analyst to be accountable for
these priors due to the potential impact on the output and the legal ramifications
discussed before.

Regardless of the ownership, decisions need to be made on whether naive priors
should be considered. Naive priors would focus the final output much more directly
on the expert judgement, however, would clearly reduce the amount of data that
could be encoded into the problem. The context itself here is important, in a fully
subjective model with a specific decision maker it would be unwise to utilise naive
priors as ultimately you are trying to update someone’s belief in the light of expert
opinion and the decision maker’s belief is naturally a critical starting point to this.
For EFSA and the rational scientist viewpoint it would appear sensible to aim for
naive priors over the variables of interest. However, we would argue that priors
over the experts should not be so naive. If for example we consider calibration;
starting from the belief that experts are well calibrated and only recalibrating with
significant evidence (where significance here is determined by the application of
Bayes rule with a calibration data set) rather than starting as agnostic to calibration
issues, would appear an appropriate decision for the Steering Group.

Another critical component of the EFSA process that must be analysed from
a Bayesian perspective is documentation. One constituent of the EFSA guidance
is often a shared evidence dossier. This dossier captures all of the known data
regarding the parameters of interest, and the risk assessment model, ahead of the
elicitation exercise and is shared with all of the experts. This is important for

8Naïve priors are very flat distributions which seek to represent complete lack of knowledge or
something close to it.
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transparency; and from an auditing perspective, it would appear to be unethical to
with-hold evidence from an expert before they are due to make judgements that may
impact critical decisions. The legal ramifications of a decision being recommended
when data was withheld may be substantial. However, there is both a technical
and philosophical issue with this approach. The technical issue is that in creating
this evidence dossier the Steering group may inadvertently increase the correlation
between experts as, by definition, they are given a shared body of knowledge from
which to base their judgements. From a philosophical perspective there is also an
issue with this approach as it makes assertions about the evidence base that may not
be complete, indeed as we are engaging in a SEJ study it is incomplete by definition.
Sharing this partial data with the experts may further bias the results, for example
it increases the risk of the availability bias being demonstrated, or for experts to
become increasingly overconfident. There are a couple of ways that this issue could
be handled in the Bayesian model:

• Evidence Dossier shared with experts pre-elicitation as per the standard EFSA
guidance—Increases the risk of bias and correlation but ensures that no data is
withheld.

• Evidence Dossier shared with experts during elicitation—It would in theory
be feasible to elicit the experts knowledge before they see the Evidence Dossier
and then perform a second elicitation after this has been shared. This would
allow the analysts to directly ascertain the impact of the evidence dossier and
consider this within the final recommendation, however, would put a significant
burden on the elicitation process.

• Utilise the Evidence Dossier in prior definition—As empirical evidence, it
would be potentially feasible for the evidence dossier to be used by the Steering
Group, rather than the experts, in the definition of the priors. This would ensure
that priors encoded knowledge, but only empirically generated knowledge, and
would also help to ensure that the data is utilised in the process. Here the experts
never see the evidence dossier and therefore there is no increase in cross expert
correlation, however, the issue of data being withheld is reduced as any final
recommendation will be net of any existing evidence.

The decision of which approach to use in any analysis may again be context
dependant.

A further decision to be made is; How to pass back qualitative knowledge
along with the consensus distribution? The final output of any structured elicitation
exercise should not just be the consensus distribution itself but also the qualita-
tive knowledge experts utilised to inform their decision making. This qualitative
knowledge can be critical in getting decisions ultimately implemented and to
enrich/explain the outputs of the analysis. Any documentation requirements should
consider these elements in addition to the distributions.

Finally, in addition to the processes and procedures in place, it is also important
to consider the software utilised to support any elicitation or to perform any analysis.
Currently there are a number of pieces of software available on a mixture of
different platforms with various levels of validation. One element that is critical
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to many decision making contexts is security and so for broad use it is probably
important that software is not web-based. However, transparency and auditability
in the software itself is paramount, in order to ensure that the usage is adopted
in many different contexts. Work needs to be done to harmonise the existing
approaches, and any new models as they develop, into a single toolkit for analysts
and decision makers alike. Integrating the software in this way could provide the
support necessary to further enhance the procedural guidance, such as EFSA, that is
already available. We propose this ‘meta-software’ would further help to embed the
use of structured expert judgement into currently untapped contexts.

6.6 Conclusions

This chapter has discussed some of the considerations needed when utilising a
Bayesian approach to structured expert judgement and the impact these have on
existing processes and procedures. It is evident much of the broad framework exists
in the current literature, however, some of the more important nuances to this outline
when considering a more subjective viewpoint, or indeed some of the more complex
contexts, are yet to be considered.

Much more than simply a modelling approach, the Bayesian perspective provides
opportunity to step back and consider the basic framework of probability a decision
maker is utilising when undertaking a piece of structured expert judgement. Consid-
ering the subjective perspective with both aleatory and epistemological uncertainty
in this way gives a broad view of the easily glossed over challenges facing decision
makers.

Some major elements, we have proposed, to be researched further to develop a
full subjective approach to structured expert judgement are:

• The role calibration plays in different SEJ contexts
• Correlation between (and within) experts and decision makers
• The role information, such as evidence dossiers, play in updating expert’s beliefs

during analysis
• Validated SEJ software

Whilst we have outlined some of the approaches that could be taken to incorpo-
rate these into the current guidelines, it is clear that there is much work to do.

One key element apparent in all of the discussion is the role that context
plays in how these issues can and should be solved. What is appropriate in the
context of producing a piece of analysis representing the viewpoint of a rational
scientist for a societal decision is not the same as the truly subjective decision of
a commercial stakeholder choosing to invest their own money wisely. As much of
the literature available today has developed from current utilisations of structured
expert judgement, particularly in the context of regulators, it often focuses on a
single contextual viewpoint. The Bayesian paradigm through its fundamental view
on the definition of probability and uncertainty appropriately raises philosophical
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questions about other contexts and, through the modelling approaches available,
provides options on how to tackle these.

As the use of MCMC for expert judgement evolves and research builds on
the work of Clemen and Lichtendahl (2002) and Albert et al. (2012), Bayesian
models are likely to become much more tractable than historically and provide
legitimate options for analysts to tackle some of these more complex context
dependant challenges. As this happens the Bayesian paradigm will become more
than an interesting philosophical set of challenges but a viable modelling option and
included alongside the other approaches outlined in the standard literature. We are
not here today, but the immediate future is looking bright.
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Chapter 7
A Methodology for Constructing Subjective
Probability Distributions with Data

John Quigley and Lesley Walls

Abstract Our methodology is based on the premise that expertise does not reside
in the stochastic characterisation of the unknown quantity of interest, but rather
upon other features of the problem to which an expert can relate her experience.
By mapping the quantity of interest to an expert’s experience we can use available
empirical data about associated events to support the quantification of uncertainty.
Our rationale contrasts with other approaches to elicit subjective probability which
ask an expert to map, according to her belief, the outcome of an unknown quantity
of interest to the outcome of a lottery for which the randomness is understood and
quantifiable. Typically, such a mapping represents the indifference of an expert on
making a bet between the quantity of interest and the outcome of the lottery. Instead,
we propose to construct a prior distribution with empirical data that is consistent
with the subjective judgement of an expert. We develop a general methodology,
grounded in the theory of empirical Bayes inference. We motivate the need for such
an approach and illustrate its application through industry examples. We articulate
our general steps and show how these translate to selected practical contexts. We
examine the benefits, as well as the limitations, of our proposed methodology to
indicate when it might, or might not be, appropriate.

7.1 Introduction

Our goal is to acquire a probability distribution consistent with an expert’s belief
about the true value of a quantity of interest. In this chapter we explain how to
construct such a prior probability distribution using observed data by adopting an
empirical Bayes method embedded within an elicitation process to achieve consis-
tency between the distribution obtained and the judgement of an expert. Motivated
by the need to elicit subjective distributions within real industry applications, the
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methodology is grounded in core theoretical principles and aims to provide a useful,
scientifically sound approach.

Core to our reasoning is the consideration of the ways in which an expert might
assess uncertainty through analogy with similar events. In this respect we adhere to
the view expressed by David Hume (1748) who wrote that “All our reasonings
concerning matter of fact are founded on a species of analogy”. Others have
acknowledged the role of empirical data for similar events in making assessments of
uncertainty. For example, Kahneman and Lovallo (1993) proposed using empirical
data as a means of correcting for overconfidence and optimism bias which might
exist when an expert is asked to express her subjective assessments directly. Inherent
in their so-called outside view is the mapping between the observed histories of the
similar events and the future histories of the events associated with the quantity
of interest. Practically, such an approach can be operationalised in various ways,
including as a read-across process as discussed in EFSA (2015). Earlier, Koriat
et al. (1980) articulated three stages for elicitation of probability judgements from
an expert: first, memory is searched for relevant information; second, evidence is
assessed to arrive at a feeling of uncertainty; and third, the feeling has to be mapped
onto a conventional metric. However, they recognised that an expert’s lack of
experience in performing the internal mapping between feeling and a metric might
lead to a corresponding lack of reliability, and/or incoherence, in the probabilistic
expression of uncertainty. This chapter contributes a methodology consistent with
an outside view which builds upon the initial stages of a probability elicitation but
avoids the need for an expert to make an internal mapping. We aim to systematically
support an expert to perform an appropriate mapping by grounding an analogy
assessment in domain knowledge to select relevant empirical data for similar events
which can then be translated into a defensible subjective probability distribution.

We begin by describing selected industry examples where both the need to
express uncertainty about a quantity of interest and the opportunity for an expert
to match the event to be predicted with an analogous pool of events exists. By
abstracting from these examples, and by drawing upon theory from the wider
literature, we present general steps for eliciting a subjective probability distribution
using empirical data. The rationale and activities involved in each step are explained.
Examples of implementing our approach illustrate how the general principles can be
applied. We conclude by examining the benefits and shortcomings of our proposed
approach to provide some insight on when it can be useful, when it might not be
applicable, and issues to consider during implementation.

7.2 On the Nature of the Problem

7.2.1 Motivating Industry Challenges

Let us consider two industry contexts. Both examples are simplifications of real
issues for which probabilities are required for variables within models developed to
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support management decision-making. Here, we focus only upon issues related to
the expression of the prior probability distributions.

First, consider a situation where a supply chain manager has procured a new
supplier and wishes to assess the uncertainty in the true non-conformance rate of the
parts to be supplied as an input to modelling quality related decisions (Quigley et al.
2018). The manager is uncomfortable making subjective probability assessments
because the concept of quantifying some outcome that will in time be observable
is cognitively challenging. But she is able to match the new supplier with similar
existing suppliers since all have been subject to the standard procurement process.
Hence the manager is relatively more comfortable in making analogy assessments
between suppliers in terms of characteristics that might impact their performance.
This judgement guides the creation of a relevant data set for existing suppliers
providing a comparator pool that can be used to estimate a prior distribution. Of
course, the uncertainty in the non-conformance rate of the new supplier represented
by the estimated prior distribution should be checked for consistency with the beliefs
of the supply chain manager.

Now consider a context where a new engineering design for an aerospace system
is being developed as a variant of an earlier generation product (Walls et al. 2006).
Typically the designers match the functionality of the new design specification and
existing products to assess what aspects of the existing designs can be transferred.
In addition, innovations relating to technologies, materials, processes and such like
are introduced to create a new system design. The designers are asked to provide
estimates of the probabilities associated with key failure modes of the new system
design as part of a reliability analysis which in turn impacts the development budget.
As in our first example, the designers are not entirely comfortable in expressing
subjective probabilities. In part, this is because their mind-set implies designs
are created to function not to fail hence thinking through negative outcomes is
challenging. But also, because assessing probabilities arising from the myriad of
scenarios across which uncertainty might be manifested is cognitively complex.
Since the designers naturally match the functionality of the new system to analogous
existing system designs we build upon this natural comparison to obtain our
probability assessments of the failure of the new system to function as required.
We take as our primitive for expert judgement the engineering relationship between
the new and heritage system designs so that we can select relevant operational
experience data from earlier generation products for the latter to obtain an empirical
prior distribution for given failure modes of the former.

7.2.2 Generalisation of the Problem

Abstracting these two industry contexts allows us to establish three common
features of our elicitation problem.

First, we consider situations in which we are effectively anticipating data about
events that might be realised in future and for which there exists observed data
for analogous entities. For example, the number of non-conformances in future
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parts delivered by a new supplier or the number of failure events in the future
operational use of the new system design. In each situation data are available for
existing suppliers or systems, and a data set associated with the new supplier or
system will become available, at least in principle if not also in reality.

Second, we can articulate a set of models to explain the variability in the antic-
ipated data set. That is, the data set that comprises the future event history for the
quantity of interest that does not yet exist but might be realised. This model family
is indexed by parameters to describe the variability in the data generating process
(DGP) associated with the event history. For our examples, a simple probability
model for the DGP could be a Poisson distribution parameterised by the underlying
true rate. For the supplier non-conformance and the new system development
examples, the Poisson model describes the count of the non-conformances and the
count of failure events per unit time parameterised by the true non-conformance
rate and the true failure rate respectively. The true rate is not known with certainty,
therefore we can represent the uncertainty in the parameter using a prior distribution
if we follow a Bayesian approach.

Third, we require expert judgement to specify the prior probability distribution
representing the uncertainty in the quantity of interest. For example, the prior
distribution provides a set of plausible values representing the uncertainty about
the true non-conformance rate of the new supplier or the true failure rate of the new
system design. The challenge is to elicit a prior distribution so that it is meaningful
and defendable, making appropriate use of expert judgement.

7.2.3 Implications of Inference Principles for Elicitation

If we approach elicitation from a Bayesian perspective then we are effectively asking
an expert to map her beliefs about the quantity of interest onto a mechanism where
the uncertainty is fully understood. This mechanism can be conceptualised by, for
example, chips or a probability wheel (Spetzler and Stael von Holstein 1975), all
of which translate to asking questions during elicitation to obtain an answer to a
question such as ‘what is the probability of a non-conforming part being delivered
by the new supplier?’. The elicitation intends to encourage an expert to think about
a self-consistent betting regime. Take a simple probability wheel conceptualisation,
as shown in Fig. 7.1. If an expert states there is a 50% chance that the next part
delivered by the new supplier is a non-conformance then we could map this outcome
to the white or black implying that an expert is effectively mapping her belief as a
bet she is willing to take onto a mechanism whose stochastic characteristics are fully
known.

But what happens when an expert more naturally makes analogies to her
experience related to, say, past suppliers based on an assessment of similarity
between characteristics believed to be influencing quality performance. Based upon
the evidence of achieved performance for similar suppliers for whom empirical data
are available, we can construct a class of plausible non-conformance rates for the
new supplier. In this situation, an expert is essentially forming a comparator data set



7 Constructing Subjective Probability Distributions with Data 145

representing the extent of her knowledge about the uncertainty in the true rate. More
abstractly, we can say the expert needs to assess the characteristics of a DGP for the
non-conformance rate of the new supplier so that a comparator pool of DGPs for
which empirical data already exists can be identified. We argue that this matching
of the DGPs for the new and similar existing suppliers represents the extent to which
we can make reliable use of expert judgement. Achieving a match implies that the
probability distribution representing the variation in the comparator pool allows us
to empirically estimate the prior distribution for the true non-nonconformance rate.

Theoretically, we reason that if the comparator pool reflects the beliefs of
an expert then, as the number of DGPs within the pool increases, the empirical
distribution characterising the uncertainty in the quantity of interest will converge
to the subjective prior distribution obtained through mapping to a probability
mechanism that is fully understood; see Fig. 7.1. Practically, of course, constraints
are likely to exist on the amount of experience which can be accumulated by an
expert meaning that an infinite pool is infeasible which in turn implies that we
lack complete understanding of the probability mechanism. If expert judgement is
based on finite pools, or equivalently incomplete experience, then this leads us to
question the general adequacy of a prior distribution elicited solely using subjective
expert judgement. To address the challenges of some practical contexts, such as
those discussed in our motivating examples, we propose an alternative approach
that aims to make use of an expert’s judgement as well as relevant empirical data
with the goal of eliciting a meaningful prior distribution for parameter uncertainty.
Our proposed approach is grounded in the method of empirical Bayes inference.

Comparator pool 

Limit as number in 
pool tends to infinity 

Bayesian 
approach

Empirical Bayes 
approach

Quantity of interest

Probability mechanism 

Fig. 7.1 Empirical Bayes and Bayesian reasoning for subjective probability elicitation
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7.2.4 Principles of Empirical Bayes Inference

Figure 7.2 illustrates the concepts of empirical Bayes inference. Multiple data gen-
erating processes (i.e. the m DGPs) are required to form a comparator pool of data
for the quantity of interest. Each DGP is described by a family of probability models
for which empirical observations are available to support parameter estimation.
We use the term family deliberately since the probability models are all of the
same type (e.g. Poisson) but the parameter values of each distribution can differ
to characterise the variation in each individual DGP. Importantly in our context, the
empirical data across all DGPs are pooled to estimate the parameters of the prior
distribution, which represents the variation in the comparator pool. For example, if
the probability model family for the DGPs is a Poisson distribution parameterised
by the non-conformance rate, then the empirical prior mean estimated by pooling
data provides a point estimate of the true non-conformance rate of the new supplier
while the full prior probability distribution characterises the uncertainty.

Although not the focus of this chapter, it is worth mentioning that Bayes theorem
can be used to generate a posterior distribution by updating the prior distribution in
light of empirical data for a given DGP, whether the DGP relates to the events for a
new or an existing entity, such as a supplier. In general, the posterior estimate will
be a weighted average of the comparator pool and the individual estimate, where the
weighting depends on the degree of experience. Typically less weight is given to an
individual and more weight to the pool for those DGP with limited histories, with
greater weight given to an individual with more data.

In summary, empirical Bayes adopts the same basic steps as a Bayesian method-
ology by articulating a prior distribution and having the capability of updating

Prior distribution

Data 1 Data mData 2

Model mModel 2Model 1

Posterior 1 Posterior mPosterior 2

Form 
comparator pool

Estimate parameters 
of prior distribution

…

…

Prior distribution for 
quantity of interest

Data

Posterior…

Key steps in expressing uncertainty in quantity of interest Optional future steps to update prior 

Fig. 7.2 Rationale of an empirical Bayes approach to obtain a prior distribution
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this prior with data to generate a posterior distribution. The difference is that
under empirical Bayes the prior distribution is estimated using observed data for
a comparator pool while a full Bayes approach uses a subjective prior distribution.
The roots of empirical Bayes reasoning can be traced to von Mises (1942), with
Robbins (1955) formalising the terminology and providing the first serious study
of the method within a non-parametric framework. Further details about empirical
Bayes can be found in the seminal papers by Good (1965), Efron and Morris (1972),
Efron and Morris (1973), Efron and Morris (1975), Efron et al. (2001). While Carlin
and Louis (2000) as well as Efron (2012) provide introductory texts.

7.3 General Methodological Steps

We propose a five step approach to obtain the prior distribution using relevant
empirical data, as shown in Fig. 7.3.

7.3.1 Characterise the Population DGP

We begin by identifying those factors characterising, what we call, the population
DGP. This is the process generating the anticipated data or future events for the
quantity of interest. This is an important step because it defines the criteria by
which data sets (i.e. the sample DGPs) are subsequently selected for inclusion in
the comparator pool used to construct the prior distribution.

The characterisation of the population DGP should be driven by problem domain
experts, suitably facilitated by an analyst. An expert has an important role in this
step because it is the expert who possesses substantial accumulated understanding
of what is likely to influence the realisation of events and, with the support of the
analyst, articulates the factors to provide the basis for similarity matching.

3. Sentence empirical data to construct comparator pool of sample DGPs

4. Select probability model for the population DGP

5. Estimate model parameters with comparator pool data to obtain prior distribution

1. Characterise the population DGP 

2. Identify candidate sample DGPs matching the population DGP  

Fig. 7.3 Key steps in constructing a prior distribution using empirical data
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The way in which we might approach characterisation of the population DGP
can be considered a specific instance of the ideas inherent within the wider context
of statistical sampling. Much has been written in the literature on, for example,
survey sampling about the need to identify appropriate factors to define population
characteristics to support sound inference and to share insights into how such factors
might be identified within applications. See, for example, Cochran (1975).

There has also been consideration of this issue within the context of the so-called
reference class problem (Reichenbach 1971). This is concerned with classifying
an event such that appropriate data can be used to infer probability. According to
the Oxford English dictionary a reference class within the context of probability
theory and the philosophy of science is “the class of entities sharing a property
with respect to which a theory or a statement of probability is framed”. Cheng
(2009) has examined the challenges associated with identifying reference classes
in legal practice where it is acknowledged that a finite number of possible (i.e.
sample) DGPs exist for a given case and a key question is “how does one
choose the comparison group?”. Although the paper is framed as inference within
an adversarial context, with perhaps information asymmetry between the two
opponents, many points raised have more general currency providing examples of
defining the population characteristics, including some where an apparent lack of
consideration of the appropriate factors to define the population DGP has resulted
in misleading inference.

7.3.2 Identify Candidate Sample DGPs Matching Population

The argument underpinning the approach proposed by Cheng (2009) is that
“reference class-style reasoning is equivalent to using a highly simplified form of
regression modelling” where the factors characterising the population DGP can be
switched on/off for candidate data sets effectively providing a means of making a
relative assessment of relevance against a set of criteria. Cheng (2009) also points
out that in practice the goal is not to find the optimal class but simply to find
the best available data sets to make reasonable and timely inference. This is an
important point in relation to our purpose since we are also likely to be constrained
by the availability of a finite number candidate data sets. Also, unlike other types
of statistical sampling, we are not in a position to collect primary data to match the
characteristics of the target population. Instead we are matching the characteristics
of the population DGP with secondary sources of data that already exist. Hence a
formal means of matching the similarity between the population and the candidate
sample DGPs (i.e. available data sets) in terms of the factors characterising the
former is important and necessary.
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7.3.3 Sentence Empirical Data to Construct Sample DGPs

Once the preferred data sources have been selected, the events recorded should be
scrutinised in collaboration with a domain expert to assess the representativeness
of the records for the type of experience to which our anticipated DGP will be
exposed and to sentence these records, if required. The intention is to create a data
set that is not only appropriate in terms of its similarity matching to the population
characteristics but is also relevant in terms of the events and the circumstances
under which these have been realised. The nature of sentencing can vary with
application contexts and the associated modelling. For example, sentencing can
include selecting records for events within a sub-set of the realised data set to form a
representation of the anticipated experience or simply to screen out events that have
been realised under unusual circumstances that are not representative.

More formally, we can reason through an assessment between the population and
sample DGPs as follows. Although the data sets formed to create candidate sample
DGPs are heterogeneous with respect to their stochastic characteristics (e.g. means
and standard deviations), the expert should not be able to meaningfully discriminate
between these DGPs based on any information other than their realisations. Care
must be taken with the data analysis since the realisations within any DGP will
be correlated as belonging to the same DGP, but the sets of event data records
between DGPs are assumed independent. Confirming the suitability of the data
records essentially requires checking that the predictive distributions for each DGP
are independent and identically distributed. This can be achieved by conceptualising
as a comparison of order statistics. Let jXiWn denote the ith smallest value from a
sample of n records from the jth DGP where j D 0 denotes the DGP associated
with the quantity of interest for which an estimate of uncertainty is to be made. The
comparator pool of sample DGPs will be appropriate, if an expert can confirm that
based on the covariate information only the following statement is true:

Pr
�
Min .0XiWn; 1XiWn; ::; mXiWn/ D jXiWn

� D Pr .Min .0XiWn; 1XiWn; ::; mXiWn/ D kXiWn/ ;

8i; j; k; n:

In words, based on the reference factors used to characterise the population DGP,
the minimum of any order statistic is equally likely to be generated from any of the
sample DGPs; this is true for all order statistics and for all possible sample sizes.
Practically this implies that when assessing the order statistics an expert may simply
reflect upon whether the extremes and the typical values of the comparator data sets
are appropriate for the quantity of interest.
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7.3.4 Select Probability Model for Population DGP

The family of probability models considered suitable for describing the population
DGP will be largely determined by the context so that it supports suitable inference,
not only in terms of meaningful parameters but also in terms of mathematical and
computational implementation.

For the two motivating examples, we indicated that the Poisson distribution is
an appropriate simple model to describe the variation in the count of events and
hence capture the aleatory uncertainty as the within-process variation. Since the
prior probability distribution predicts the epistemic uncertainty in the true rate then
choosing a conjugate parametric form leads naturally to the Gamma distribution to
model the between-process variation across the comparator pool of sample DGPs.

Therefore it is important to select a model family that allows coherent repre-
sentation of the variation both within and between the DGPs to articulate both the
aleatory and epistemic uncertainties, even though it is the latter that is of primary
interest to us in the elicitation context.

7.3.5 Estimate Model Parameters to Obtain Prior Distribution

Statistical inference to estimate the parameters of the model for the population
DGP can be conducted using standard approaches such as Maximum Likelihood or
Method of Moments (e.g. Klugman et al. 2012). The mathematics of the inferential
procedure will depend upon the parametric form of the probability models. For
example, Quigley et al. (2007) provides mathematical details of the statistical
inference methods for the Poisson-Gamma model family.

The parameter estimates obtained using the data in the comparator pool formed
from the sample DGPs allow the prior probability distribution to be fully specified.

7.4 Example Applications of the Elicitation Process

Two examples are presented. Both relate to industrial applications of risk and
reliability analysis for which the quantity of interest relates to the frequency of
events over time. We have deliberately selected examples where related probability
models are chosen for the population DGP since it allows us to show how
different application considerations give rise to adaptation and customisation of
the general methodology. Each example presents distinct challenges in relation to
the characterisation of the population DGP, the identification and sentencing of
empirical data to create sample DGPs, and the method selected to estimate model
parameters for the given the probability models. We present the examples in order
of their relative complexity of the emergent elicitation issues. For this reason we
focus our discussion on the distinctive elements of each example even though the
elicitation for both examples did require careful consideration of each step.
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7.4.1 Assessing Uncertainty in Supplier Quality

A project aimed to model the risk in supplier performance for a manufacturer of
complex, highly engineered systems reliant on an extensive, international supply
chain for parts and sub-assemblies. The modelling problem under consideration
involved supporting decisions about whether, or not, to develop a supplier given
only information gained about quality from company standard contracting and
procurement processes. Quigley et al. (2018) describe the wider modelling method-
ology and results. Here we focus upon the elicitation of the subjective distribution
representing the uncertainty in the quality performance of the new supplier, where
quality is measured by the true non-conformance rate associated with parts delivered
from the supplier to the manufacturer.

7.4.1.1 Characterise the Population DGP

To characterise the population DGP, we need to identify the reference factors in
partnership with a suitably qualified expert. Taking an expert to be a person(s)
with substantive experience in relation to the event for which uncertainty is to be
assessed, then the natural set of experts for this problem are those staff within the
manufacturing company with qualifications and experience in managing the supply
chain and production operations.

As is common more generally (e.g. Slack et al. 2016), the manufacturer organises
its parts supply base into coherent commodity groups each of which correspond
to classes of technologies and processes. Such a classification allows managers to
share the responsibility for the procurement and development of a set of suppliers
within a given market. Importantly, it also implies that the manufacturer has already
considered classification of parts in terms of common factors that are likely to
influence the nature of the functional specification and hence the opportunity to
conform (or not) with that requirement as a consequence of the type of part being
supplied.

Much has been written about the types of factors affecting supplier quality and
the risks associated with supply chain performance (Nagurney and Li 2016; Sodhi
and Tang 2012; Talluri et al. 2010; Zhu et al. 2007). Hence secondary information
about the possible types of factors which might influence the new supplier quality
performance is available to the analyst leading the elicitation. Such information can
be useful in preparing to elicit those factors which are considered by an expert to be
influential for the case under consideration.

So who is our expert and how do we identify the factors believed to be important
in characterising the population DGP? Our expert is a supply chain manager
who possesses the experience of the day-to-day management of the supply base
within the company as well as wider expertise in managing operations in similar
organisational contexts. In this sense our expert is suitably qualified to share his
knowledge and experience during the elicitation. Through multiple conversations
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taking the form of semi-structured interviews, supported where appropriate with
diagramming techniques, we have surfaced the expert’s beliefs about influencing
factors and the relationships between them. Factors identified include the nature of
the part technology, design, production and shipping, including type, complexity
and scale, as well as the nature of the supplier experience, capability, capacity and
location.

7.4.1.2 Identify Candidate Sample DGPs Matching Population

Next we identify empirical data sets in terms of their match to the population
characteristics as defined by the reference set of influential factors.

To manage operations, the manufacturer has databases containing empirical
records associated with supplier and part details as well as their transactional data
for events related to the placing and receiving of parts ordered for engineering
projects, including the quality of parts received at goods inwards. More generally,
such databases or enterprise resource planning (ERP) systems are core to managing
operations (Gallien et al. 2015). They can be extensive both spatially, in terms of
part/supplier coverage, as well as temporally, given the dynamic nature and scale
of manufacturing production. This means that in terms of matching and subsequent
sentencing of empirical data sets, we need to consider the records to be used in
terms of both coverage of ‘similar’ event histories for suppliers and also the relevant
time window in order to obtain a reliable predictor of the uncertainty in the true
non-conformance rate of the new supplier.

In our application, our choices about possible matches to the population DGP
includes event history data for a super-set of all suppliers, a set of suppliers
within the commodity group to which the new supplier belongs, a sub-set of this
commodity group defined by those suppliers/parts possessing common identifiable
factors. We have used the commodity group data as the basis for our candidate
samples from the population DGP because this best matches those factors believed
by our expert to most influence the supplied part quality. The commodity grouping
confounds the influential effects of part technology and processes on the opportunity
to deviate from conforming to functional specification. We discounted the other two
alternatives mentioned for the following reasons. Using a super-set of all suppliers
mixes multiple groupings each with different degrees of opportunity and so would
tend to overestimate the uncertainty in the true non-conformance rate of the new
supplier. Using a sub-set of suppliers within the commodity group might under-
estimate the uncertainty since the reduction could only be based on recorded factors
such as geographical location, which experts judge to be less influential than other
factors such as supplier production capacity and loading which are not directly
observable.

While our decision to select particular data sets has been based upon the
judgement elicited from the domain expertise of the supply chain manager, we have
also been able to explore the degree of historical influence of certain recorded factors
on the variation in the observed non-conformance rate of existing suppliers using,
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for example, regression modelling. Although not an exhaustive analysis since the
covariate information is incomplete, the findings of such data analysis can help us
to challenge and to elicit judgements from an expert.

The choices we make in selecting data sets will ultimately affect the number
of sample DGPs we use to estimate the prior distribution. For example, taking the
commodity group of 35 suppliers as a baseline, then by definition there will be
more (less) candidate sample DGPs in the super-set of all suppliers (sub-set of the
commodity group). Obviously, the number of sample DGPs, as well as the amount
of data in each, will impact the degree of sampling error and hence inference.

7.4.1.3 Sentence Empirical Data to Construct Sample DGPs

Having selected the candidate data associated with the existing suppliers, we now
require to finalise the set of event records for each supplier in order to form the
comparator pool of sample DGPs to be used for inference.

Two types of data sentencing are needed. First, to choose the relevant records
from past event data. Second, to cleanse the selected records to deal appropriately
with any anomalies whether they arise due to data recording errors or unusual cir-
cumstances affecting the suppliers. The latter is standard statistical data preparation,
therefore we focus discussion on the former.

Since the purpose of selecting the data records is to form a distribution
representing the uncertainty in the unknown true non-conformance rate, we need to
consider historical events for existing suppliers only insofar as they are likely to be
reliable predictors of the future for the new supplier. Hence again expert judgement
will be vital in assessing the relevance of choosing data from different time horizons.
In our application, data are recorded daily but management reports use summaries
on weekly, monthly, annual windows associated with different purposes bringing a
tendency for the expert to anchor upon conventional time frames. Given the length of
our engineering procurement projects, which last several years during which there
is turnover in the supplier base, we elect to use time windows defined on annual
basis on our initial sentencing of the data. Of course, there can be a tension between
the relevance of the time windows selected and sample size given that focussing on
the recent past implies a shorter sampling history than had we chosen a longer time
horizon. However this is a trade-off that needs to be made since relevance of the
selected events over time is preferred to simply more event data per se.

In our application we agree upon a data set to represent the sample DGPs that
includes the number of non-conformances over the specified annual time intervals
for 35 similar suppliers. Although not shown in its raw form, there is a degree of
heterogeneity in the data from the comparator pool and this is used to capture the
distribution from which the new supplier’s ‘future experience’ can be considered to
be randomly selected.

In assessing the order statistics between the DGP associated with the true non-
conformance rate of the new supplier and the candidate sample DGPs for the
existing suppliers, it is sufficient to assess whether the minimum rate for the new
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supplier is equally likely to be from any of the existing suppliers, if we are assuming
a Poisson-Gamma probability model. However, to assess the parametric distribu-
tional assumptions requires the expert to reflect upon the order statistics more fully
as described in Sect. 7.3.3. For example, if an expert identifies that one supplier is
much more volatile than another but each have similar median performances, then
this would indicate the distributional assumptions are in question.

7.4.1.4 Select Probability Model for Population DGP

We use a Poisson-Gamma probability model because it provides a flexible family
capable of representing a wide class of patterns of uncertainty and, as a conjugate
of the Poisson, computations are easily supported (Carlin and Louis 2000). Given
the prior is estimated empirically it is also possible to check the statistical fit of this
assumed model family by, for example, comparison of the observed and expected
percentiles of the fitted predictive distribution.

Figure 7.4 shows an annotated version of the empirical Bayes approach, origi-
nally given in Fig. 7.2, for this supplier non-conformance rate application.

More formally, denote the number of non-conformances Ni.ti/ accumulated by
time ti for the ith supplier to be conditionally independently Poisson distributed
with mean 	iti. We follow an empirical Bayes methodology, whereby a two
stage hierarchical model is assumed, such that the rate for each supplier, ƒi; i D
1; 2; : : :m, is treated as though independent and identically distributed (i.i.d.) from
a continuous prior distribution, the form of which is assumed to be Gamma with
shape parameter ˛ and scale parameter ˇ:

ƒi
i:i:d� G.˛; ˇ/

Nijƒi D 	i
indep� Po.	iti/:

Poisson ( 1) 

Gamma , prior distribution

Data 1 Data mData 2

Poisson ( )Poisson ( 2) 

Form 
comparator pool

Estimate and

…

…

Gamma ( , ) prior distribution 
for true non-conformance rate of 

new supplier

Fig. 7.4 Empirical Bayes reasoning for the Poisson-Gamma probability model for supplier non-
conformance rate
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7.4.1.5 Estimate Model Parameters to Obtain Prior Distribution

The parameters of the prior distribution, ˛ and ˇ, are estimated using the empirical
data in the sample DGPs by calculating the predictive distribution, which then forms
the basis for the likelihood function for the model. For our Poisson-Gamma model
the predictive distribution takes the form of the Negative Binomial distribution
(Greenwood and Yule 1920):

P .Ni .ti/ D nij˛; ˇ/ D
1R

0

.	iti/
ni e�	i ti

niŠ

ˇ˛	i
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Following Arnold (1990), a likelihood function for the data can be constructed
by taking the product of the predictive probability functions for the ith supplier
evaluated at each of the associated realisations of non-conformance events for that
supplier:
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Thus the Type 2 (Good 1976) Maximum Likelihood Estimators (MLE) of the
pool parameters, denoted by . Ǫ ; Ǒ/, can be obtained as confidence regions for the
parameters.

Figure 7.5 shows the form of the Gamma prior Probability Density Function
(PDF) obtained for the data in our comparator pool of sample DGPs and an

(a) (b)

Fig. 7.5 (a) Estimated prior PDF for 	, the true non-conformance rate of the new supplier and (b)
Fit of the Poisson-Gamma model to comparator pool data based on the predictive distribution and
empirical percentiles
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(a) (b)

Fig. 7.6 (a) Relative Likelihood function and (b) 95% confidence region for pool parameters

assessment of the statistical adequacy of the probability model for the data used.
The prior distribution in Fig. 7.5a has a long right tail with a prior mean of nearly
50 non-conformances per unit time. The plot of observed and expected percentiles
based on the predictive distribution in Fig. 7.5b indicates a reasonable fit of the
Poisson-Gamma model to the empirical data given that the points fluctuate around
the 45ı line. Thus the data used is consistent with the probability model selected for
the population DGP.

Figure 7.6 illustrates the relative likelihood function and the associated 95%
confidence region for the pool parameters estimated from the 35 sample DGPs. In
Fig. 7.6a the peak corresponds to the Maximum Likelihood Estimates (MLE) and is
assigned a value of one from which the likelihood of any combination of parameter
values are measured relatively. Figure 7.6b shows that, based on the 95% confidence
region, ˛ is between 0.048 and 0.148 while ˇ is between 0.00035 and 0.00511.
Moreover, the parameter estimates are not independent since some the coverage of
some pairings are not within the confidence region, in particular the high values of
˛ coupled with the low values of ˇ.

Figure 7.7 provides a pointwise 95% tolerance interval for the prior Cumulative
Distribution Function (CDF). The long right tail of the distribution is evidenced by
the steep climb of the CDF followed the relatively flat growth. The MLE of the CDF
provides an estimate of the probability that the true rate, 	, is less than a specified
value. For example, although not discernible in the plot, there is a 0.4 probability
that 	 will be less than 0.01. More apparently, as 	 increases to 0.1 and again to 1
then the corresponding cumulative probabilities rise to 0.49 and 0.6, respectively.
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Fig. 7.7 Piecewise 95% tolerance interval for the CDF of new supplier true non-conformance rate

More interesting is the width of the tolerance intervals. For example, over the range
of 	 values between 0.01 and 1 the width remains relatively constant between 0.36
to 0.30, respectively; that is, approximately one third. This has implications for
the degree of uncertainty in the prior distribution. In this example, our tolerance
intervals allow us to acknowledge the uncertainty in the prior distribution estimated
from the 35 sample DGPs in the comparator pool.

Although the prior distribution is estimated empirically using the data selected
by expert judgement, we also require the expert to assess whether the estimated
prior distribution adequately represents his beliefs about the uncertainty in the true
non-conformance rate of the new supplier. In our application we make such an
assessment by providing the expert with visual feedback, say, in the form of the
prior distribution plot. Since the methodology has been developed for estimating
the prior parameters from data, it is also relatively easy to provide alternative prior
distributions based on different selection of data, as might correspond to different
matching of sample DGPs from the population. For example, we have shown
the findings based on selection of a pool of suppliers from the same commodity
group. But it is also possible to generate equivalent plots using, say, the super-set
of all suppliers or a sub-set of commodity group suppliers to present an expert
with alternative prior distributions representing different degrees and patterns of
uncertainty. Such a tactic provides a form of internal consistency checking between
the explicit reasoning about the influential factors affecting the uncertainty in the
non-conformance rate and the representation of these beliefs in the form of a prior
probability distribution.
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7.4.2 Assessing Uncertainty About Reliability
of an Engineering Design

Our second example is based on a project to model the reliability of an engineered
unit during its design and development phase. The unit will be part of a new
generation aircraft. The ultimate purpose of modelling is to support decisions about
the efficient allocation of resources to grow the reliability performance of the unit
design to meet its required specification (Walls and Quigley 1999; Walls et al. 2006;
Johnston et al. 2006; Wilson and Quigley 2016). The modelling approach adopted
requires elicitation of the sources of uncertainty regarding any design weaknesses
and the time to their realisation as failures if not removed or mitigated. The
design under consideration is a variant of an established product family and so the
manufacturer has extensive operational data on performance of earlier generations
of the unit type. Such data contains information about all life events for each unit
within a fleet, including entry into service, failure and maintenance events.

In order to identify possible weaknesses of the new unit design, structured expert
judgement is elicited from relevant engineers to both express their concerns and
to quantify the uncertainties about the existence of these concerns as subjective
probabilities. The process supporting this subjective elicitation is given in Walls
and Quigley (2001) while reflections on the practice of implementation are given
in Hodge et al. (2001). Specifically for this example, a representative selection of
thirty engineers have been interviewed, including designers, programme managers,
as well as specialists in components, environmental test, procurement, and manu-
facture. These engineers have identified their concerns and assessed their chance of
occurrence in system operation resulting in a subjective Poisson prior distribution
with means ranging from approximately 3–11 across different classes of engineering
concern.

Our focus in this chapter is upon the expression of an empirical prior distribution
for the epistemic uncertainty associated with the time to realisation of engineering
concerns as failures which can be estimated from relevant observational data from
variants of the unit design already in service. A different expert to those involved in
sharing engineering judgement about the nature of concerns is involved in providing
judgement about the selection of the empirical data to be used to model the failure
occurrences within specified time intervals. The expert working with the analyst to
develop the empirical priors assumes a more systems level view of the new unit
than those engineers who had provided judgements about the nature of epistemic
uncertainties in relation to the concerns about the new design. The expert assuming
the role in empirical data preparation is an experienced technical engineer with a
breadth and depth of experience of the product family. Earlier he supported the
facilitation of the subjective judgement from domain experts about design concerns
from a systems perspective and so provides a link in interpreting the engineering
detail about specific design issues with the observational data available for product
families.
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Quigley and Walls (2011) describe the full methodology for combining the sub-
jective prior distribution on engineering concerns with empirical prior distributions
to support reliability growth decision making. Here we consider the application
steps in constructing the prior distribution only.

7.4.2.1 Characterise the Population DGP

The nature of the engineering concerns are pivotal to the characterisation of the
population DGP since these concerns capture the potential for types of failure to
occur due to a mismatch between the conceptual design ‘strength’ and the ‘stresses’
to which it will be exposed. Engineering concerns may relate to, for example,
choices about electronic component rating, material characteristics, manufacturing
processes, topology and so on. More generally concerns relate to aspects of the
design, manufacture, operation and maintenance where opportunities for stressors
to challenge the intended functionality of the unit might arise.

There are, of course, more tangible factors that might characterise the population
DGP in the form of the specified requirements of the unit design. Such requirements
will articulate the function, environment, duration as well as other influential
features of the design specification. It is based on such factors that design engineers
might select a base design from an existing product family in order to develop a new
variant (Pahl and Beitz 2013). While such factors can also aid characterisation of the
population DGP, it might be too naïve to consider them only since they effectively
represent the factors that drive the choices of the designers in developing a new unit.
It is the consequences of these design and other choices in engineering the unit that
give rise to concerns.

In essence, the concerns represent the epistemic uncertainties of the engineers
about the ability of the new design to function as intended in its operational
environment. The nature of how the concerns will be realised as failures provides a
means of characterising a sub-population DGP which is needed because each type of
concern will be associated with a distinct pattern of realisation. For example, if the
electronic components are insufficient for the operating stresses then this concern
is likely to be realised early in service as a form of shock failure, whereas material
characteristics may imply a faster rate of degradation than intended, resulting in a
failure later in service but before the anticipated lifetime of the unit and so sooner
than desired.

The elicitation of engineering concerns is very important because it allows us
to understand the possible effects of failures that might be realised due to the
causal reasoning from design choices through to operational functioning. This
understanding allows us to define the reference factors relevant to each class
of concern in terms of their temporal realisation as failures and so specify the
characteristics of the population DGP at a sub-population level.
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7.4.2.2 Identify Candidate Sample DGP Matching Population

As mentioned, the company has operational data on life events for related products
within the unit family. For earlier generations of the unit design, no elicitation
of engineering concerns had been formally conducted although other forms of
reliability analysis are available which provide insight into anticipated failure modes
and why these did or might have occurred. To identify our candidate data sets we
need to consider the concerns elicited for the new design and the equivalent data
for past heritage designs given the relative similarity between design variants in
terms of the consequences of the choices about externalities of function, form and
environment so that we understand the relative opportunities for vulnerabilities to
exist and to be experienced.

In our application, we identify several existing unit designs for which there
are data sets offering candidate sample DGPs. However, there is not a one-to-one
similarity match between the full set of concerns, and the reasons for these concerns,
between the new unit design and the existing units. This is not unexpected given we
have characterised the population DGP at the sub-population level. In this context,
the sources and coverage of our data sets for the candidate sample DGPs can vary
for different sub-populations depending on the classification of the engineering
concerns.

Figure 7.8 summarises the principles underpinning the formation of the sample
DGP for this example. Each concern class in the centre of the diagram represents
a sub-population DGP defined in terms of common reference factor settings for the
engineering concerns. The links between the individual concerns and the classes

A

C1

C3

C2

C4

B

C

Engineering Concerns Concern Class Empirical Event Records

Fig. 7.8 Conceptual relationship between engineering concerns for new unit design and event
history records for related designs



7 Constructing Subjective Probability Distributions with Data 161

represent the mapping between the engineering judgement and their expression
as reference factors for the similarity matching with heritage unit designs which
have empirical data. The data records shown on the right side are in the form of
event histories with rows corresponding to accumulated time to an observed failure
and columns giving covariate information, such as heritage unit and failure mode.
The shading of the records indicates the distinct data sources selected for different
heritage units that are candidate sample DGPs. The links between the concern
classes and individual events represents the failure data records to be included in
the sample DGPs. If a class contains only one concern for which there is a match
between the relevant reference factors and the observed failure event codings, then
this can be conceptualised by mappings such as C1 ! A and C4 ! C. A class
might be formed if individual concerns can be meaningfully grouped in terms of
their likely pattern of realisations through time, as shown by the mapping C2 [ C3
! B. For example, specific unit build vulnerabilities can be grouped together if the
pattern of realisation of the resulting shock failures due to manufacturing issues are
assessed by the engineering experts to be the same.

7.4.2.3 Sentence Empirical Data to Construct Sample DGPs

So far we have built up our argument in terms of defining our population DGP in
order to match suitable sample data sets. For this reason we show the mapping from
concerns to classes to empirical records in Fig. 7.8. However, as we acknowledged
earlier, sentencing data is a craft built upon scientific principles, hence we also need
to take into account the state of the empirical data sets into consideration during the
process of constructing the sample DGPs.

In our example, the empirical data sets included the individual unit reference,
accumulated flight hours, date stamp, number of flight cycles, type of aircraft,
operator, fault type, failure mode code, failure effect code, text description of event
occurrence, amongst others. Having data that describes the context, the nature and
a classification of that event is not atypical in a reliability engineering context
(e.g. Cooke 1996). In particular, the classification of events is embedded in the
manner in which much historical failure event data has been stored and shared
both within organisations and at industry sector levels (e.g. Rausand and Hoyland
2004). Although it can be convenient to use the standard classes within the empirical
data set to define the classes of engineering concerns, we urge caution in simply
automatically back-fitting. It is important to define classes grounded in the nature
of the engineering concerns for the new design for which the prior distribution, and
ultimately the reliability, are assessed. Even with historical data, rich information
can be found in event descriptions to form sets of records that match to appropriate
classes, which might be a sub-set of the standard grouping of events. As an
example, consider a situation with two distinctive engineering concerns articulated
in relation to some electronic components in the unit. One concern might relate to
the geometry of one component’s siting and another concern might relate to the
material properties of another component. These concerns, should they exist as real
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problems, are reasoned to be realised in different ways since the former will be
likely to occur more quickly as it will be vulnerable to operating stresses within a
flight cycle, while the latter might be realised more slowly since events are more
likely to occur as experience is accumulated between flight cycles. The empirical
data set categorises all events related to the electronic components together and
so mixes the time to failure distributions that relate to the concerns. If sufficient
information is available from the textual description then the records within the
electronics components categories can be partitioned into more appropriate classes
that better match the population characteristics of the concerns.

It is possible that using empirical records from past units to assess the times
to failure of some engineering concerns is judged to be inappropriate by the
engineering experts. This might occur when there are novel aspects of the design
for which reasoning through the physical science of the failure mechanisms might
provide a better assessment of uncertainties. Within the context of probabilistic risk
analysis for engineering design, Fragola (1996) introduces the notion of “tolerance
uncertainty” which relates to this issue. Tolerance uncertainty corresponds to an
engineering expression of the relevance of historical failure data in relation to an
anticipated failure mode for a new design so that credible choices are made about
the selection of relevant data for analysis. Following this logic, we are effectively
arguing that if the empirical data on observed events for related designs are judged
by the engineering experts to be tolerable assessments of the anticipated occurrences
of failures due to an engineering concern for a new design then the empirical
data can be selected to form the prior distribution. However, empirical data should
not be used if it is judged by the engineering experts to be intolerable since this
implies an alternative source, such as subjective assessments of uncertainty based
on understanding of the underlying science supplemented by engineering analysis
and test data, are arguably more justifiable.

Focusing upon the use of empirical data only, then like our first example, choices
also need to be made about issues relating to the boundaries of data in terms of time
and coverage as well as treatment of data anomalies. In this example we need to
consider the inclusion or exclusion of data from particular units within the fleet for
the existing design that is to be used to inform the prior. Some units might be spares
and so experience long periods in storage followed by short periods of intensive use
and so have unusual operational profiles compared with the majority of units which
will be operated on aircraft in very similar flight patterns. Also, choices need to be
made about the time windows over which empirical data will be selected. In this
context there will be considerable relative stability for long periods given the nature
of the certification and operational use of aircraft, however there can be scheduled
upgrades which roll out part design changes across the fleet and so should be taken
into consideration if it affects particular engineering concerns.

For our example, we have used an empirical source data relating to over 400
heritage units and extracted records relating to events occurring over several years.
For this stage of the modelling we work closely with the engineering expert
who possesses the expertise and extensive experience in the design process and
technology together with the responsibility for managing the reliability development
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programme. The empirical data selection and sentencing is led by the analysts
who drive the methodological approach but the choices made are based upon the
judgement of our expert. Ultimately we have created a data set containing the times
to first occurrence of events within each of eight classes relating to the engineering
concerns surfaced.

We also partition the operating time horizon into five intervals with natural break-
points corresponding to the accumulated flying hours at nominal inspection periods
associated with units of different ages. This choice was made for a combination
of engineering and modelling reasons. The engineers are most interested in the
likelihood of failures occurring during stages of a unit life, while the analysts are
thinking ahead to candidate probability models which will be consistent with the
data and the wider purpose of analysis. Further, since we have partitioned time into
five mutually exclusive intervals, the expert has to assess the equivalence of the
probabilities for each interval as a means of operationalising the assessment of the
equivalency of the order statistic distributions for each DGP in the comparator pool,
as described in Sect. 7.3.3.

7.4.2.4 Select Probability Model for Population DGP

The reliability in this example is taken to be a measure of the duration of unit failure
free operating time and is parameterised by both the engineering concerns and their
time to realisation. More formally we can write this as follows. Let J denote the
number of concern classes, Nj represent the number of concerns in class j that
will be realised as failures and let I denote the number of mutually exclusive and
exhaustive partitions of the distribution of times to realisation of concerns. Then the
prior distribution is sought on the .I � J/matrix, denoted by P, whose .i; j/ element,
denoted by pij, represents the probability that a concern associated with class j will
be realised in the ith epoch. Hence the probability that a unit will not fail by time
t0, denoted by Tu, conditioned on the matrix P, and the vector N D fNi; : : :NJg is
given by:

P .Tu > t0 jN;P / D
JY

jD1

 
1 �

t0X

iD1
pij

!Nj

:

A multinomial distribution provides a simple and reasonable model to describe
the sampling variation in the number of failures within time partitions of the concern
classes. Each interval is assigned a parameter to measure the chance that a failure
arising due to a concern would be realised in that time interval and the set of
probabilities for any failure class are constrained to lie within a simplex. Further,
the vectors of probabilities across classes are assumed to be independent and be
Dirichlet distributed. We seek the empirical prior on these Dirichlet distributions;
one for each class.
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7.4.2.5 Estimate Model Parameters to Obtain Prior Distribution

A likelihood function to obtain Type 2 MLE for a concern class can be derived
by first taking the product of all multinomial distributions for each sample DGP
in the comparator pool and subsequently taking the expectation with respect to the
Dirichlet prior.

Let mik denote the observed number of failures realised in time period i from
the kth sample DGP created after sentencing the relevant historical data and let M
denote the corresponding matrix of data. The likelihood function for the kth DGP,
which is a function of the vector Pk D .p1k; : : :pIk/ , can be expressed as:

Lk.Pk/ D
0

@
IP

iD1
mik

m1k; : : : ;m1k

1

A
IY

iD1
pmik

ik :

Following Ng et al. (2011), we assume the conjugate prior of the multinomial
distribution to be the Dirichlet distribution of the form:

� .p1; : : : ; pI/ D



�
IP

iD1
ai

�

IQ
iD1

 .ai/

IY

iD1
pai�1

i ; pi � 0;

IX

iD1
pi D 1; ai > 0:

By taking the expectation of the likelihood equation with respect to the Dirichlet
prior distribution, the new likelihood is obtained as a function of the parameters in
the prior distribution and is given by:

L .a1; : : : ; aI/ D
KY

kD1




�
IP

iD1
ai

�

IQ
iD1

 .ai/

:

 .ai C mik/




�
IP

iD1
ai C mik

� ; ai > 0

from which the Type 2 maximum likelihood estimates (MLE) of the ai can be
obtained.

Table 7.1 gives the Type 2 MLE of ai together with the empirical prior mean
proportion of failures in each time period and the proportion of failures observed
in each of the eight classes corresponding to engineering concerns. Note that the
empirical Bayes inference does not impose a monotonic function on the form of the
prior distribution.
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Table 7.1 Estimates of empirical Dirichlet prior distribution parameters for unit concern classes

Observed proportion of events in classes

Time
interval

MLE
of ai

EB prior
estimates
of P C1 C2 C3 C4 C5 C6 C7 C8

1 6.74 0.28 0.34 0.20 0.00 0.30 0.50 1.00 0.33 0.18

2 3.27 0.14 0.09 0.00 1.00 0.07 0.00 0.00 0.00 0.08

3 8.08 0.34 0.27 0.20 0.00 0.50 0.50 0.00 0.33 0.49

4 4.66 0.20 0.10 0.60 0.00 0.13 0.00 0.00 0.33 0.25

5 1.03 0.04 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7.5 Summary and Conclusions

We have proposed a methodology for elicitation that aims to preserve the character
of early stage judgements by using empirical data, where possible, to express
a probability assessment of uncertainty consistent with an expert’s beliefs. Our
rationale is based upon the premise that expertise does not reside in the stochastic
characterisation of the events, but rather upon other problem features to which an
expert can relate her domain knowledge. Thus we map the quantity of interest to an
expert’s experience when there are associated data sets to support the quantification
of uncertainty. Empirical Bayes inference is used to estimate the prior probabilities
with the relevant observational data to provide a distribution representing the
epistemic uncertainty about the quantity of interest.

We contribute a methodology consistent with an outside view of uncertainty
assessment as discussed by Kahneman and Lovallo (1993). Our approach avoids
imposing conformance upon an expert when assessing uncertainties probabilisti-
cally. Therefore it is capable, in principle, of overcoming some biases acknowledged
to exist when an expert makes a subjective assessment through an internal mapping
to an assumed probability mechanism.

7.5.1 Methodological Steps

Table 7.2 summarises our methodology in the five key steps, which can be
summarised by the acronym CISSE corresponding to the initial verbs associated
with the purpose of each step. The tasks involved in translating the general steps
to an application are described to provide an analytical guide. Cross-references to
the choices made for the two example applications are provided for illustration.
Specifically, the role of the expert within each step is shown to highlight how
subjective judgement is kernal to obtaining a meaningful prior distribution estimated
using empirical data.
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7.5.2 Effect of Sample Size on Prior Distribution

Given our reliance on empirical data, there is an obvious question relating to
the impact of ‘sample size’ on estimation and hence upon the representation of
uncertainty in the prior distribution. Heuristically we can appreciate that there
are two competing sample size effects. The relationship between these effects on
inference might be complicated but we can reason through the effects of the choices
we make in steps 2 and 3 by considering the effect of the length of a sample DGP
and the number of sample DGPs separately.

Firstly, as the number of sample DPGs increases then the sampling variation in
estimating the parameters of the prior distribution will reduce. This implies that
the confidence regions for the comparator pool parameters will be tighter, and
the associated tolerance intervals of credible prior distributions consistent with the
empirical data will be narrower, when a larger number of sample DPGs are selected
to match the population DGP. For example, we showed analysis of the sampling
variation on the pool estimates based on the 35 suppliers used in our first example
application. Had we used a larger (smaller) number of data sets providing equivalent
similarity matches then we would expect the tolerance intervals to be narrower
(wider) than those shown in Fig.7.7.

Secondly, as the history of a sample DGP increases then this will primarily
reduce parameter estimation error associated with that individual DGP with only
a marginal error reduction in estimates for the comparator pool. For example, an
empirical Bayes estimate of the non-conformance rate for an individual supplier
will be affected more by changes in the length of the event history for that supplier
than the corresponding estimates based on the comparator pool which provides the
prior distribution for the true rate of non-conformance of a new supplier.

We emphasise that our reasoning is limited to consideration of the mutually
exclusive effects of the number and length of sample DGPs. However, it is important
to appreciate such sample size effects because of the resulting implications for the
degree of uncertainty inferred in the empirically constructed prior distribution. It is
possible, as shown for our first example, to quantify the effects of sampling error
allowing us to appreciate the implications for the assessment of uncertainty.

7.5.3 Caveats and Challenges

We acknowledge some caveats associated with our approach. Importantly, it will
only be feasible in situations where it is possible to construct a comparator pool
of data consistent with an expert’s articulation of the reference factors defining
the population DGP. This might not always be the case. For example, radical
innovations leading to very novel engineering designs in a reliability context, or
long term predictions in a supply chain management context are problem contexts
for which our approach is less credible. More generally, if no candidate sample
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DGPs can be identified then constructing a prior through our proposed empirical
approach should not be pursued. Even when comparator pools do exist then the
analyst has considerable responsibility in ensuring that the data used are relevant
and defensible given the impact of making choices about candidate data sets and
forming relevant sample DGPs. A formal means of allowing an expert to assess the
credibility of the empirical prior provides a degree of mitigation against this risk.

It is well known that empirical Bayes inference improves as comparator pool
homogeneity increases (e.g. Efron 2012; Carlin and Louis 2000). Here we have
constructed sample DGPs through a process involving subjective expert judge-
ment. It is possible to scientifically aid the homogenisation process by including
homogenisation factors within the probability model. See, for example, Quigley
et al. (2011) who examine the role of expert judgement to specify homogenisation
factors.

In our example applications we have illustrated the choices made during
elicitation using the type of empirical data available at the time of analysis. Both
contexts considered relate to scenarios where extensive data already exists but has
not being fully utilised to understand the degree of uncertainty associated with the
quantities of interest relevant to engineering development and operational decision-
making. There are potentially interesting challenges affecting data selection and
sentencing with more extensive or unstructured data that might be available in
future. For example, in a reliability context many engineering systems are fitted
with many sensors implying more empirical data is available for covariates (Meeker
and Hong 2014) that may relate to the reference factors that define the population
characteristics. Such explanatory data from sensors and other automated data
collection might be used to support more effective and/or efficient formation of
comparator pools.

Since we have proposed and illustrated how to construct a ‘subjective’ probabil-
ity distribution using data, we conclude by emphasising the importance of engaging
an expert in key steps. The nature of our approach also requires us to examine the
roles of both the subject domain experts and the analytical experts because both
make choices that impact the prior probability distribution obtained. The analyst
makes choices in our methodology, as indeed in any elicitation process, in relation
to issues such as who are experts, how should they be engaged and how should
their judgements be credibly expressed. However we also require the analyst to
be actively engaged in data preparation, probability model and inference method
selection. Most importantly, where possible, we are not asking an expert to express
his or her uncertainty about some event of interest as a subjective probability. Rather
we advocate using the subject domain expertise to structure the characteristics of
the population DGP for the quantity of interest and to be involved at the key stages
of matching candidate data sets, sentencing records and assessing the credibility
of probability distributions, both in terms of any underlying assumptions and the
resulting profile of uncertainty. Our goal is to construct empirically a probability
distribution that is consistent with the subjective assessment of uncertainty about a
relevant quantity by the expert.
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Chapter 8
Eliciting Multivariate Uncertainty from
Experts: Considerations and Approaches Along
the Expert Judgement Process

Christoph Werner, Anca M. Hanea, and Oswaldo Morales-Nápoles

Abstract In decision and risk analysis problems, modelling uncertainty proba-
bilistically provides key insights and information for decision makers. A common
challenge is that uncertainties are typically not isolated but interlinked which
introduces complex (and often unexpected) effects on the model output. Therefore,
dependence needs to be taken into account and modelled appropriately if simpli-
fying assumptions, such as independence, are not sensible. Similar to the case of
univariate uncertainty, which is described elsewhere in this book, relevant historical
data to quantify a (dependence) model are often lacking or too costly to obtain. This
may be true even when data on a model’s univariate quantities, such as marginal
probabilities, are available. Then, specifying dependence between the uncertain
variables through expert judgement is the only sensible option. A structured and
formal process to the elicitation is essential for ensuring methodological robustness.
This chapter addresses the main elements of structured expert judgement processes
for dependence elicitation. We introduce the processes’ common elements, typically
used for eliciting univariate quantities, and present the differences that need to be
considered at each of the process’ steps for multivariate uncertainty. Further, we
review findings from the behavioural judgement and decision making literature on
potential cognitive fallacies that can occur when assessing dependence as mitigating
biases is a main objective of formal expert judgement processes. Given a practical
focus, we reflect on case studies in addition to theoretical findings. Thus, this chapter
serves as guidance for facilitators and analysts using expert judgement.
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8.1 Introduction

Probabilistic modelling of uncertainties is a key approach to decision and risk
analysis problems. It provides essential insights on the possible variability of a
model’s input variables and the uncertainty propagation onto its outputs.

Typically, uncertainties cannot be treated in isolation as they often exhibit
dependence between them which can have unanticipated and (if not properly
modelled) possibly misleading effects on the model outcome. Therefore, modelling
dependence of uncertainties is an area of ongoing research and several modelling
approaches have been developed, serving different purposes and allowing for
varying levels of scrutiny. A common challenge with regards to model quantification
is a lack of relevant historical data while simplifying assumptions, such as that of
independence, are not justifiable. Then, the only sensible option for quantifying a
model is by eliciting the dependence information through expert judgement. This is
even necessary when relevant data on the marginal probabilities are available.

A structured approach to eliciting multivariate uncertainty is encouraged as
it supports experts to express their knowledge and uncertainty accurately, hence
producing well-informed judgements. For instance, cognitive fallacies might be
present when experts assess dependence which can inhibit the judgements’ accu-
racy. Therefore, mitigation of these fallacies is a main objective of an elicitation
process. Further, a structured process addresses other questions which affect the
reliability of the elicited result and hence model outcome, such as aggregating
various judgements. Lastly, a formal process makes the elicited results transparent
and auditable for anyone not directly involved in the elicitation.

8.1.1 Objective and Structure of the Chapter

Complementary to the case of eliciting univariate uncertainty, this chapter’s objec-
tive is to outline the main elements of formal expert judgement processes for
multivariate uncertainty elicitation. This is done by discussing theoretical and
empirical findings on the topic, though the reader should note that fewer findings
are available for eliciting joint distributions than for the elicitation of univariate
quantities.

The structure of this chapter is as follows. In the remainder of this section we
introduce a definition of dependence for the subjective probability context which
establishes a common language and understanding of the key concept discussed
here. In Sect. 8.2, the importance of formal expert judgement processes is discussed
and an overview of the necessary adjustments for dependence elicitation is given.
This provides the reader with the scope of the topic. Section 8.3 outlines the
heuristics and biases that might occur when eliciting dependence. Then, Sect. 8.4
discusses the preparation of an elicitation (or the pre-elicitation stage) which
for instance entails the choice of the elicited forms and the training of experts.
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In Sect. 8.5, we present considerations for the actual elicitation phase, including
structuring and decomposition methods as well as the quantitative assessment. In
Sect. 8.6, we review required alterations of the process for the post-elicitation stage,
such as when combining the expert judgements. Finally, Sect. 8.7 concludes the
chapter by summarising the main points addressed and discussing the status-quo of
this research problem.

8.1.2 Dependence in the Subjective Probability Context

In this chapter, we use the terms dependence and multivariate uncertainty inter-
changeably and in a general sense. They contrast the specific association measures
(or dependence parameters) that quantify a dependence model and are therefore
often used as elicited variables. When discussing dependence in a general sense, we
refer to situations with multiple uncertain quantities and when gaining information
about one quantity, we change the uncertainty assessments for the others. More
formally, we say that two uncertain quantities X and Y are independent (for experts)
if they do not change their beliefs about the distribution of X after obtaining
information about Y . This is easily extended to higher dimensions in which all
quantities are independent of one another if knowing about one group of variables
does not change experts’ beliefs about the other variables. It follows that dependence
is simply the absence of independence.

Note that dependence in a subjective probability context is a property of
an expert’s belief about some quantities so that one expert’s (in-)dependence
assessment might not be shared with another expert who possesses a different state
of knowledge (Lad 1996).

8.2 Structured Expert Judgement Processes: An Overview

The necessity for a structured and formal process when eliciting uncertainty from
experts, such as in form of probabilities, has been recognised since its earliest
approaches. For instance, it has been acknowledged in the area of Probabilistic Risk
Analysis (PRA) which comprises a variety of systematic methodologies for risk
estimation with uncertainty quantification at its core (Bedford and Cooke 2001).
From a historical perspective, main contributions in PRA have been made in the
aerospace, nuclear and chemical process sector. Hence, after expert judgement was
used only in a semi-formal way in one of the first full-scale PRAs, the original
Reactor Safety Study1 by the US Nuclear Regulatory Commission (USNRC 1975),

1The study is also known as WASH-1400 and as the Rasmussen Report due to Norman Carl
Rasmussen. At that time, the use of expert opinion for assessing uncertainties was often viewed
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major changes towards a more scientific and transparent elicitation process were
made in the subsequent studies, known as NUREG-1150 (USNRC 1987; Keeney
and Von Winterfeldt 1991). When reflecting on the historical development of PRA,
Cooke (2013) highlights the improvements made through a traceable elicitation
protocol as a newly set standard and main achievement for expert judgement studies.

Another pioneering contributor to formal approaches for expert judgement is the
Stanford Research Institute (SRI). The Decision Analysis Group of SRI similarly
acknowledged the importance of a formal elicitation process when eliciting uncer-
tainty from experts. Therefore, they developed a structured elicitation protocol that
supports a trained interviewer through a number of techniques to reduce biases and
aid the quantification of uncertainty (Spetzler and Staël von Holstein 1975; Staël
von Holstein and Matheson 1979).

Following from these early contributions, various proposals for formal expert
judgement processes have been made and its various components were further
developed. While not one particular step-by-step process to follow exists given the
varying and particular objectives of each elicitation, there is agreement regarding
which high level steps are essential. Fairly complete elicitation protocols are for
instance presented in Merkhofer (1987), Morgan and Henrion (1990), Cooke and
Goossens (1999), Walls and Quigley (2001), Clemen and Reilly (2014) and EFSA
(2014). Even though these references explicitly address the case of eliciting a
univariate quantity, they serve as guidance for our purpose of presenting and
discussing the considerations for eliciting dependence.

The elicitation of dependence follows historically from advances made for
eliciting univariate uncertainty and an overview of the historical development of
expert judgement in risk analysis is presented in Cooke (2013). This development
is not surprising given that marginal distributions need to be specified (at least
implicitly) before any dependence assessment can be made. Furthermore, univariate
quantities are (typically) more intuitive to assess. Whereas some findings for
eliciting univariate uncertainty are still applicable in the multivariate case, for other
parts of the process adjustments need to be made. Figure 8.1 shows the main
elements of elicitation processes with the modifications that are necessary when
eliciting dependence.

Regarding the different roles during an elicitation, in this chapter we consider
the situation of a specific decision or risk analysis problem that is of importance
for a decision maker. Experts assess the uncertainty on the variables without
any responsibility for the model outcome or consequences of the later decision.
The experts are chosen based on their substantive (also subject-matter) expertise,
meaning they are experts on the particular topic of the decision problem. This
implies that the experts might not have normative expertise, thus they are not

highly sceptical, however a main challenge was that until then no nuclear plant accident had been
observed. Therefore, the report, together with its use of expert opinion, was only revived due to
the Three Mile Island accident (1979). After the incident, the report’s results were prescient. In
particular, the inclusion of human error as a source of risk made the case for expert judgement.
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(4.1) Problem Identification:

Identify relationships between variables, specify depen-
dence problem/determine modelling context
Design elicitation for chosen dependence model

(4.2) Choice of Elicited Parameters:

Account for desiderata of elicited forms
Consider prevalence of cognitive fallacies for certain forms
Account for experts’ familiarity with dependence parameter

Preparation of Background Information, Brief-
ing Document and Elicitation Document

Expert Identification and Selection

(4.3) Specification of Marginal Distributions:

Assess from historical data (if available) or decide whether
to assess in same or separate EJ session

Trial-Run of Elicitation

(4.4) Training and Motivation:

Familiarise the expert with elicited form
Complement feedback of training questions with
simulation-based learning approaches
Explain common biases

(5.1) Knowledge and Belief Structuring:

Assess experts’ rationale behind assessment

(5.2) Quantitative Elicitation

(6.1) Aggregation of Expert Judgements:

Decide on reasonable aggregation method
Base probabilistic independence on structural information
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Fig. 8.1 Overview of the expert judgement process adjusted for eliciting dependence (steps
discussed in this chapter are in grey)



176 C. Werner et al.

statistical or probabilistic experts. The facilitator, who manages the actual elicitation
part of the overall process, might be either the same person as the decision maker
or an independent third type of attendee at the elicitation workshop. The facilitator
clarifies any questions from the experts. An analyst on the other hand is usually in
charge of the whole process. This includes the preparation of the elicitation and the
finalisation of results afterwards. Such a situation with a given, formulated problem
and clearly defined roles is often the case, however other ones are possible. French
(2011) discusses various elicitation contexts and their potential implications.

We regard an elicitation as successful if we can be confident that the experts’
knowledge is captured accurately and faithfully, thus their uncertainty is quantified
through a well-informed judgement. However, the assessments’ reliability might
be still poor if little knowledge about the problem of interest prevails. This often
implies that there is high uncertainty in the area of the decision problem overall.

8.3 Biases and Heuristics for Dependence Elicitation

In this section, we review main findings from the behavioural judgement and
decision making literature on assessing dependence as psychological research shows
that experts are not guaranteed to act rationally when making such assessments.
Hence, the goal of this section is to raise awareness of departures from rationality in
the hope to minimise them in the elicitation. Briefly, rationality implies that experts
make assessments in accordance with normative theories for cognition, such as
formal logic, probability and decision theory. Irrationality, on the other hand, is the
systemic deviation from these norms. While this definition suffices here, the topic is
much more complex and a critical debate on the concept of rationality can be found
in Stanovich and West (2000) and Over (2004). In contrast to normative theories
that describe how assessments ought to be made, descriptive research investigates
how assessments are actually made. This relates directly to our earlier definition of a
successful elicitation (Sect. 8.2) that states our aim of eliciting accurate and faithful
assessments from experts. In other words, a successful elicitation aims at mitigating
a range of potential biases.

For expert judgement, in particular two types of biases, cognitive and motiva-
tional, are of importance as they can distort the elicitation outcome severely.

Cognitive biases refer to the situation in which experts’ judgements deviate
from a normative reference point in a subconscious manner, i.e. influenced by
the way information is mentally processed (Gilovich et al. 2002). This bias type
occurs mainly due to heuristics, in other words because people make judgements
intuitively by using mental short-cuts and experience-based techniques to derive
the required assessments. The idea of a heuristic proof was used in mathematics to
describe a provisional proof already by Pólya (1941), before the term was adopted
in psychology, following Simon (1957) with the concepts of bounded rationality
and satisficing.
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Motivational biases may deviate experts’ judgements away from their true
beliefs. In other words, experts ought to make the most accurate judgements
regardless of the implied conclusion or outcome, yet they do not. Motivational
biases happen consciously and depend on the experts’ personal situations. For
instance, social pressures, wishful thinking, self-interest as well as organizational
contexts can trigger this type of biases (Montibeller and Von Winterfeldt 2015).
Given that motivational biases are not different for univariate and multivariate
uncertainty assessments we will not consider them in our review in Sect. 8.3.2.

Regarding the mitigation of biases, a motivational bias can be addressed in
a technical way by introducing (strictly proper) scoring rules or as well by the
direct influence of a facilitator who encourages truthful answers. A cognitive bias is
mainly counteracted through training of experts, decomposing and/or structuring the
experts’ knowledge prior to the quantitative elicitation as well as a sensible framing
of the elicitation question(s). The latter also entails the choice of the elicited form.

Over the last 40 years, the number of newly identified heuristics and biases has
increased tremendously. Nevertheless, only a few findings are available for the case
of assessing dependence. We present these findings in the remainder of this section
and Table 8.1 provides an overview. For discussions on some main univariate biases,
we refer to Kynn (2008) and Montibeller and Von Winterfeldt (2015).

As can be seen in Table 8.1, most identified heuristic and biases that are appli-
cable for the case of multivariate uncertainty concern conditional assessments, such
as conditional probabilities. While conditionality is a common way to conceptualise
probabilistic dependence, it is shown that in addition to the explicit fallacies (as
introduced in the following), understanding and interpreting conditional forms

Table 8.1 Main biases and heuristics for dependence elicitation
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remains a challenge in today’s statistics and probability education (Díaz et al.
2010). An explanation for this difficulty comes from Carranza and Kuzniak (2009)
who note that a main focus of probability education is on frequentist approaches
to probability together with (idealised) random experiments, such as coin tosses.
Regarding conditional probabilities, such a position is however problematic as
with equally likely cases, reducing the subspace has no clear impact on the equal
probabilities. With a subjective view on probability (Sect. 8.1.2) on the other hand,
a conditional probability is more intuitive as one simply revises judgements given
new information that has become available (Borovcnik and Kapadia 2014).

8.3.1 Causal Reasoning and Inference

Before we address in detail the biases from Table 8.1, recall that we are interested
in the experts’ ability to assess dependence in accordance with Sect. 8.1.2. Usually
this is done through specifying a dependence parameter and we address the choice
of an elicited form in Sect. 8.4.3. While emphasizing that assessing dependence,
e.g. as a correlation, is not the same as claiming a causal relationship, we consider
experts’ mental models about causal relationships as a main determinant for their
assessments (despite the missing statistical noise). Therefore, we briefly address
findings of behavioural studies on causal reasoning and inference first.

The concept of causation itself is highly debated2 and its discussion is out of
scope here, yet it is proposed that in most situations people believe that events
actually have causes. In other words, their belief is that events mainly occur due
to causal relationships rather than due to pure randomness or chance (Hastie 2016).
Moreover, it is argued that people have systematic rules for inferring such causal
relationships based on their subjective perception (Einhorn and Hogarth 1986). They
then update their mental models of causal relationships continuously and might
express summaries of causal beliefs in various forms, such as serial narratives,
conceptual networks or images of (mechanical) systems (Hastie 2016).

Due to incomplete knowledge and imperfect mental models, we emphasize the
concept of probabilistic causation (Suppes 1970). A formal framework that has been
used widely for representing probable causes in fields such as statistics, artificial
intelligence, as well as philosophy of science and psychology, is a probabilistic
(causal) network. The topic of causation within probabilistic networks is however
not without criticism and generates debate. Extensive coverage of this topic is given
in Spirtes et al. (2000), Pearl (2009) and Rottman and Hastie (2014).

2There has been ongoing philosophical debate about the meaning of causation. While some refuted
the concept of causation in science altogether (Russell 1912), others focused on specific aspects.
For us, probabilistic causation (Suppes 1970) and its perception/inference are of interest. Hume
(1748/2000) proposes one of the most established accounts for that. He proposes a (unobservable)
causal mechanism which is inferred through the regularity of an effect following a cause.
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A first type of information for inferring a probabilistic causal relationship is the
set of necessary and sufficient conditions that constitute a presumed background of
no (or only little) causal relevance (i.e. they are not informative for inference), but
which need to be in place for an effect to happen. These conditions are known as
causal field. For instance, when inferring the cause(s) of someone’s death, being
born is a necessary and sufficient condition, nevertheless it is of little relevance for
establishing a causal explanation (Einhorn and Hogarth 1986). The causal field is a
key consideration when structuring experts’ beliefs about relationships as it relates
to model boundaries and determines which events should be included in a graphical
(or any other) representation of the system of interest. We discuss structuring beliefs
in Sect. 8.5.1.

Another type of information that is assumed to be in place for making causal
inferences is summarised as cues-to-causality. Most of these origin with Hume
(1748/2000) and comprise temporal order, contiguity in time and space, similarity,
covariation, counterfactual dependence and beliefs about the underlying causal
mechanism as seen by events’ positions in causal networks (Hastie 2016). Generally,
the presence of multiple cues decreases the overall uncertainty, even though
conflicting cues increase it. The way in which these cues are embedded in the causal
field and how both types of information together shape one’s causal belief is shown
by Einhorn and Hogarth (1986) with the following example:

Imagine that a watch face has been hit by a hammer and the glass breaks. How likely was
the force of the hammer the cause of the breakage? Because no explicit context is given, an
implicitly assumed neutral context is invoked in which the cues-to-causality point strongly
to a causal relation; that is, the force of the hammer precedes the breakage in time, there is
high covariation between glass breaking (or not) with the force of solid objects, contiguity
in time and space is high, and there is congruity (similarity) between the length and strength
of cause and effect. Moreover, it is difficult to discount the causal link because there are few
alternative explanations to consider. Now imagine that the same event occurred during a
testing procedure in a watch factory. In this context, the cause of the breakage is more often
judged to be a defect in the glass.

This simple example shows that by changing the contextual factors while keeping
the cues constant, someone’s causal belief can change rather dramatically.

The ways in which these types of information influence a causal perception are
important for the remainder of this section as experts’ causal beliefs and inferences
often serve as candidate sources for several biases.

8.3.2 Biased Dependence Elicitation: An Overview

In the following, the main cognitive fallacies that can occur when eliciting depen-
dence, as shown in Table 8.1, are presented in more detail. In addition to introducing
the examples that the original researchers of the different biases propose, we illus-
trate each bias with a simplified example from the area of project risk assessment.
Explaining all biases with the same example allows for a better comparison between
their relevance and the context in which they apply.
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Suppose, we manage a project with an associated overall cost. The project’s
overall cost is determined by various individual activities which are essential for
the project completion and which each have their own cost. We denote the cost of
an individual activity by ca and when we distinguish explicitly between two different
activities, we do so by indexing them as 1 and 2, so as ca1 and ca2 . It follows
that we are interested in modelling and quantifying the dependence between the
individual activities’ costs and the dependence’s impact on the overall cost. Note
that assuming independence between the activities might severely underestimate
the likelihood of exceeding some planned overall cost. In order to better understand
the dependence relationships, we take for instance into account how the individual
activities can be jointly influenced by environmental and systemic uncertainties.
In this simple example, we consider whether (and if yes, how) such uncertainties
impact the activities’ costs, e.g. due to affecting the durations of certain activities.
The duration or time an activity takes is represented by ta. A main area of research
in PRA that focuses on modelling implicit uncertainties, which have a joint effect
on the model outcome but that are not well enough understood to consider these
factors explicitly, is common cause modelling. For an introduction, see Bedford and
Cooke (2001).

Confusion of the Inverse A common way of eliciting dependence is in form of
conditional judgements, such as conditional probabilities (Sect. 8.4.2). A main bias
for conditional forms of query variables is the confusion of the inverse (Meehl and
Rosen 1955; Eddy 1982; Dawes 1988; Hastie and Dawes 2001). Villejoubert and
Mandel (2002) provide a list of alternative names proposed in the literature. For
that, a conditional probability P.XjY/ is confused with P.YjX/. In our project risk
example, this might happen when considering the time that an activity takes and
whether this influences its own (but also other activities’) cost. When eliciting the
conditional probability P.ca � vjta � w/ where v and w are specific values, an
expert might confuse this with its inverse, P.ta � wjca � v/.

An empirical research area in which this fallacy has been studied more
extensively is medical decision making. It is shown that medical experts
often confuse conditional probabilities of the form P.test resultjdisease/ and
P.diseasejtest result/. In a pioneering study, Eddy (1982) reports this confusion
for cancer and positive X-ray results. More recently, Utts (2003) lists the confusion
of the inverse among the main misunderstanding that “educated citizens” have when
making sense of probabilistic or statistical data. Further, Utts (2003) outlines several
cases in which being prone to this fallacy has led to false reporting about risk in the
media.

One explanation for confusing the inverse is attributed to the similarity of X
and Y . Therefore, some researchers suggest that this bias is linked to the better
known representativeness heuristic (Kahneman and Tversky 1972; Kahneman and
Frederick 2002). For that, people assess the probability of an event with respect
to essential characteristics of the population which it resembles. For dependence
assessments this implies that experts regard P.XjY/ D P.YjX/ due to the resem-
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blance or representativeness of X for Y and vice versa (O’Hagan et al. 2006). For
instance a time-intensive project activity might resemble a cost-intensive one and
vice versa.

Another explanation for this fallacy is related to neglecting (or undervaluing)
base-rate information (Koehler 1996; Fiedler et al. 2000). Generally, the base-rate
neglect (Kahneman and Tversky 1973; Bar-Hillel 1980) states that people attribute
too much weight to case-specific information and too little (or no) to underlying
base-rates, i.e. the more generic information. With regards to confusing the inverse,
Gavanski and Hui (1992) distinguish between natural and non-natural sampling
spaces. A natural sampling space is one that is accessed more easily in one’s
memory (this may or may not be the sample space as prescribed by probability
theory). In the fallacy’s classical example of P.test resultjdisease/ for instance, the
sample space of “people with a disease” often comes to mind easier than that of
“people with a certain test result”, such as “positive”, given that the latter can
span over several types of diseases. Similarly in our project risk example, for
P.ca � vjta � w/ an expert ought to regard the activities exceeding a certain
duration before thinking of the activities within this subspace that exceed a certain
cost. However, the sample space of activities exceeding a specified cost might be
more readily available so that from this the proportion of the activities exceeding a
certain time is considered.

A last suggested source for the inverse fallacy stems from experts’ (potentially)
perceived causation between X and Y . Pollatsek et al. (1987) attribute a potential
confusion between conditionality and causation to similar wordings such as “given
that” or “if”. Remember that temporal order is important for determining the
cause(s) and the effect(s) of two or more events. For instance, Bechlivanidis and
Lagnado (2013) show how causal beliefs influence the inference of their temporal
order and vice versa, i.e. how temporal order informs causal beliefs. Thus, when
eliciting the dependence between two activities’ durations, experts might confuse
P.ta1 � wjta2 � w/ with its inverse if the durations are not easily observed, e.g. due
to lagging processes, and the first completed activity is seen as causing the other.

In the medical domain, in which this confusion has been observed most often,
we note that for P.test resultjdisease/ the test result is observed first (in a temporal
order) even though the outbreak of the disease clearly preceedes in time. Therefore,
the cause is inferred from the effect. This is a situation in which Einhorn and Hogarth
(1986) see the confusion of the inverse very likely to occur, even though temporal
order has no role in probability theory. By some researchers, this is called the time
axis fallacy or Falk phenomenon (Falk 1983). Another interesting example from
medical research concerns the early days of cancer research and the association
between smoking and lung cancer. While it is now established that smoking causes
lung cancer, some researchers have also proposed the inverse (Bertsch McGrayne
2011). Indeed, the question of whether a certain behaviour leads to a disease
or whether a disease leads to a certain behaviour can be less clear. A potential
confusion of the inverse is then subject to the expert’s belief on the candidate cause.
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Causality Heuristic The close connection between conditional assessments and
causal beliefs can be the source of another cognitive fallacy. In a pioneering study,
Ajzen (1977) coined the term causality heuristic, claiming that people prefer causal
information and therefore disregard non-causal information, such as base-rates with
no causal implication. Other researchers (e.g. Bes et al. 2012) have since then
confirmed this preference for causal information. At a general level, the causality
heuristic relates to causal induction theories in contrast to similarity-based induction
(Sloman and Lagnado 2005). For instance, Medin et al. (2003) found that people
regarded the statement “bananas contain retinum, therefore monkeys do” as more
convincing than “mice contain retinum, therefore monkeys do” which shows that
the plausibility of a causal explanation can outweigh a similar reference class.

In the context of conditional assessments, it is noteworthy that people assess a
higher probability for P.XjY/ when a causal relation is perceived between X and
Y , even though according to probability theory, a causal explanation should make
no difference in the assessment (Falk 1983). This is shown further by people’s
preference to reason from causes to effects rather than from effects to causes (Hastie
2016). As a result, causal relations described as the former are judged as more
likely than the latter even though both relations should be equally probable. For
our example of assessing P.ca � vjta � w/, we therefore need to consider whether
experts perceive a causal explanation and how it influences the assessment outcome.

In an experimental study, Tversky and Kahneman (1980) asked subjects whether
it is more probable that (a) a girl has blue eyes if her mother has blue eyes?, (b)
a mother has blue eyes if her daughter has blue eyes?, or (c) whether both events
have equal probability? While most participants (75) chose the correct answer (c),
69 participants responded (a) compared to 21 that chose (b). Whether this result
can be fully attributed to the role of participants’ perception of causation is however
questionable given other possible influences on the assessments such as semantic
difficulties (Einhorn and Hogarth 1986). Nevertheless, it is an indicator for how
experts are led by preferences about perceiving a conditional relation (which might
contradict the elicited one) once they regard the variables as causes and effects.

While sometimes being regarded as a different bias, the simulation heuristic
(Keren and Teigen 2006) affects judgements in a very similar manner. Here, the
premise is that conditional probability judgements are based on the consideration of
if-then statements. This is an idea originating with Ramsey (1926) and his “degree
of belief in p given q”, roughly expressing the odds one would bet on p, the bet
only being valid if q is true. Hence, it is proposed that for assessing a conditional
probability, P.XjY/, one first considers a world in which Y is certain before assessing
the probability of X being in this world. The simulation heuristic states then that
the ease with which one mentally simulates these situations affects the probability
judgement. People often compare causal scenarios and tend to be most convinced
by the story that is most easily imaginable, most causally coherent and easiest to
follow. However, they then neglect other types of relevant information together with
causal scenarios that are not readily available for their conception.
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Insufficiently Regressive Prediction A fallacy that might occur when people
interpret a conditional form as a predictive relation is insufficiently regressive
prediction. Kahneman and Tversky (1973) show that when assessing predictive
relationships, people do not follow normative principles of statistical prediction.
Instead, they “merely translate the variable from one scale to another” (Kahneman
and Tversky 1973). In the project risk example, when predicting an activity’s
cost from its duration, e.g. through conditional quantiles, experts might simply
choose the value of the cost’s ith quantile based on the time’s ith quantile. This
is problematic as typically there is no perfect association between the variables.
Hence, people do not adjust their assessment for a less than perfect association
between the variables. O’Hagan et al. (2006) give an example of predicting the
height of males from their weight while assuming a correlation of 0:5 between the
variables. Then, for a male who is one standard deviation above the mean weight,
the best prediction for his height should only be 0:5 standard deviations above the
mean height. However, people tend to assess the prediction too close to one standard
deviation above the mean height.

A common explanation for this fallacy is again the representativeness heuristic.
Regarding one variable representative for the other, e.g. viewing tall as represen-
tative for being heavy or a time-intensive project activity as representative for a
cost-intensive one, experts disregard the aforementioned imperfect association.

As shown in Sect. 8.4.2, eliciting conditional quantiles is one common way to
elicit dependence information.

Bayesian Likelihood Bias Research investigating experts’ conditional assess-
ments in the context of intuitively using Bayes’ Theorem3 formulated what is
named (by some) the Bayesian likelihood bias (DuCharme 1970). Bayes’ Theorem
is proposed as a normative rule for revising probabilities given new evidence. The
fallacy is that people are too conservative in their assessment (Edwards 1965),
at least for certain framings (see Kynn (2008) for a critical discussion on this
fallacy). The univariate equivalent is the conservatism bias. It refers to the finding
that higher probabilities are underestimated while lower ones are overestimated,
i.e. assessments vary less from the mean and avoid extreme values. For P.ca1 �
vjca2 � v/, experts might make too conservative assessments in light of new
information about another activity’s cost. In a pioneering study by DuCharme
(1970), participants assessing the probability of a person’s gender given the height,
P.genderjheight/, tended to underestimate the number of tall men and overestimate
the number of tall women.

3Bayes’ Theorem is named after Thomas Bayes (1701–1761) who first proposed it. Since then
it has been further developed and had its impact in a variety of problem contexts (see Bertsch
McGrayne 2011 for a historical overview). In its simplest form, for events X and Y , it is defined as
P.XjY/ D P.YjX/P.X/

P.Y/ whereas P.Y/ ¤ 0.
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Confusion of Joint and Conditional Probabilities A cognitive fallacy that might
be present when assessing dependence for events occurring together, i.e. the
conjunction of events, such as in a joint probability assessment is the confusion
of joint and conditional probabilities.

Consider the framing of the elicitation question: “What is the probability of ca1 �
v and ca2 � v?” While a more precise framing (specifying that we elicit the joint
probability) or eliciting a joint probability still framed differently (see Sect. 8.4.3)
would be helpful, it is important to note that from the view of probability theory,
when using the word “and”, we would expect the expert to assess P.ca1 � v \
ca2 � v/, i.e. the conjunction of the events. However, it is shown that this is often
interpreted differently. For some people “and” implies a temporal order (which has
no role in probability theory), so they assess the conditional probability of P.ca1 �
vjca2 � v/ instead (Einhorn and Hogarth 1986). This fallacy is closely related to the
confusion of the inverse for which one explanation is based as well on an implicit
influence of temporal order.

Conjunction Fallacy A more extensively studied bias that is relevant when elic-
iting the conjunction of events is the conjunction fallacy (Tversky and Kahneman
1983). In experiments, subjects assessed the probability of a conjunction of events
P.X \ Y/ as more probable than its separate components, i.e. P.X/ or P.Y/, despite
its contradiction to probability theory. For instance, when Lagnado and Sloman
(2006) asked participants which of the following two statements is more likely: (a)
a randomly selected male has had more than one heart attack, and (b) a randomly
selected male has had more than one heart attack and he is over 55 years old, (b) was
judged more probable than (a) by most participants. Similarly, experts in our project
risk example might assess P.ca � v \ ta � w/ as more probable than P.ca � v/ or
P.ta � w/ separately.

As with the confusion of the inverse, a suggested source for the conjunction
fallacy is the representativeness heuristic. However, while this is the most common
explanation, it is not without criticism and numerous other candidate sources for this
fallacy exist (Costello 2009; Tentori et al. 2013). For example, another explanation
is the aforementioned causality heuristic. Hence, the constituent events are related
through a causal explanatory variable. The additional information that constitutes
the subset is then judged as causally relevant, as e.g. in our earlier examples being
over the age of 55 is seen as causally relevant for having a heart attack, and an
activity exceeding a certain duration for exceeding a certain cost.

In the context of assessing conditional probabilities, Lagnado and Shanks (2002)
discuss the conjunction fallacy through the related concept of disjunction errors.
People assess the conditional probabilities through subordinate and superordinate
categories. For example in their example, a subordinate category, Asian flu, was
regularly judged as more probable than its superordinate category, flu, given a set
of symptoms. A possible explanation is based on a predictive interpretation for the
conditional probability. Participants view the symptoms as more predictive for the
subordinate category and base their likelihood judgement on it.
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Cell a Strategy Some research focuses on interpreting and assessing dependence
as the concordance of events whereas this is based on a frequency (or cross-
sectional) interpretation for the event pairs. In other words, it explicitly requires
a population to draw from. At the most general level, this relates to people’s ability
to assess dependence in form of the “perhaps simplest measure of association”
(Kruskal 1958), the quadrant association measure. It gives the probability that the
deviations of two random variables from (for instance) their medians have regularly
the same signs, i.e. positive or negative. This is closely related to assessing a
concordance probability which is introduced in Sect. 8.4.3.

In some situations this is the way how people perceive association between
(binary) variables and a research stream that investigates this form of dependence
perception is associative learning (Mitchell et al. 2009). A common cognitive
fallacy is the cell A strategy (Kao and Wasserman 1993) which is named like this
for reasons that will become apparent.

While certain activities are highly standardised and performed similarly across
numerous projects, it is still rather an idealised case to serially observe whether
or not the duration of the same activity exceeded a certain value for j projects with
j D 1; 2; : : : ; J, i.e. whether ta;j � w or ta;j < w, before obtaining this information for
its cost. Despite its idealisation, this is how experts would perceive dependence in
this case. Similarly in his pioneering study, Smedslund (1963) worked with medical
experts and the variables referred to symptoms and diseases. The experts were given
information about the presence or absence of a disease following information on the
presence or absence of a symptom and then assessed its correlation.

This information can be ordered within four quadrants. The upper left corre-
sponds to the presence of both variables, the lower right shows the joint absence
and the remaining two quadrants relate to one variable being present while the
other is absent. Whereas in normative theory, all four quadrants should be equally
informative, it is found that people focus on the joint presence of both variables
disproportionally in relation to the observed frequencies, so that this quadrant
has a larger impact on the assessment. This quadrant has also been called cell A
when labelling the four quadrants from A to D4 which explains the name of this
fallacy. It suggests that subjects fail to use all relevant information available and
in fact, a preference order exists in form of .XC;YC/ > .XC;Y�/ � .X�;YC/ >
.X�;Y�/ (McKenzie and Mikkelsen 2007). Mandel and Lehman (1998) offer two
explanations. The first considers the frequencies (or observations) per quadrant as
a sample from a larger population and assumes presence is rare (P < 0:5) while
absence is common (P > 0:5). Then a joint presence is more informative to judge
a positive relationship in contrast to joint absence. In other words, it would be
more surprising to observe a joint presence rather than a joint absence. The second

4 When, C indicates the presence of variables X and Y , and � their absence, the quadrants can be
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explanation relates to hypothesis testing and since the quadrant of joint presence is
evidence in favour of the hypothesis, this is again (typically) more informative in
contrast to both non-joint quadrants that are evidence against it.

Illusory Correlation A cognitive fallacy that is not subject to the specific form of
an elicited variable but applies at a general level is known as illusory correlation. For
this, experts assess that two uncorrelated events show a (statistical) dependence or
the correlation is (at least) overestimated. Note that this bias is a systematic deviation
that experts may make consistently and not simply a false belief that one expert has
but not another. Illusory correlation can be present due to prior beliefs that people
have about the co-occurrence of events so that a statistical dependence is expected
even though actual observations/data do not confirm this.

In their pioneering research in psychodiagnostics, a field of psychology studying
the evaluation of personality, Chapman and Chapman (1969) found that medical
experts assessed an illusory correlation for the relation of symptoms and personality
characteristics. The phenomenon of assuming a correlation where in fact no exists
was since then confirmed in different settings and experiments (Eder et al. 2011) and
explains various social behaviours, such as the persistence of stereotypes (Hamilton
2015).

One explanation for the (false) expectation of a correlation is that it is triggered
by the availability bias. This bias implies that people are influenced considerably by
recent experiences and information that can be recalled more easily (Tversky and
Kahneman 1973). For instance, one might be overvaluing the recent observation of a
co-occurrence of two events by regarding it as a commonly observed co-occurrence.
In our project risk example, this could apply when having recently observed a
project delay before seeing its cost exceeding a certain value and regarding this
co-occurrence as a frequent observation for similar type of projects. Another source
of this fallacy is attributed to pre-existing causal beliefs (Bes et al. 2012). In this
regard, the prior belief about the correlation stems simply from a false belief about
an underlying causal mechanism, as shown in the causality bias.

8.3.3 Implications of Biases for the Elicitation Process

After having presented the main biases that are relevant for eliciting dependence
from experts in various forms, we briefly outline the implications that these findings
have for the design of the elicitation process.

One finding is that various biases are triggered from the different possible ways
that experts might interpret a dependence relationship. In particular, for conditional
forms of elicitation, such as conditional probabilities, it is crucial for a facilitator to
understand whether the experts might assess the conditional relationships based on
similarity/representativeness, causation (e.g. temporal order), or predictive power.
As shown, each of these different interpretations can have an effect on the
amount and type of information that experts take into consideration when making
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assessments. In other words, each of the interpretations biases the outcome of
an elicitation in a certain way. While more research is necessary to understand
how different interpretations are triggered and affect an assessment, we highlight
the importance of structuring experts’ knowledge and beliefs about a dependence
relationship qualitatively, prior to the quantitative elicitation. This ensures that the
decision maker and the experts have the same understanding about the dependent
variables and more insight about experts’ interpretation might be provided. Further,
it helps experts to clarify their own understanding and interpretation. This is
essential for ensuring confidence in the resulting elicitation outcome as well as for
supporting transparency and reproducibility of the expert judgement process.

In addition, the different interpretations and their implications should be
addressed in a training session for the experts, in which misunderstandings, such as
semantic ones, are resolved. Then, common pitfalls, such as confusing conditional
statements and conjunction of events, can be avoided.

Another finding is that several of the presented fallacies originate with (and are
closely linked to) more common biases that are not only observed when assessing
dependence, e.g. the representativeness heuristic, base-rate neglect and availability
bias. For these, research has addressed debiasing methods through alternative
framing of elicitation questions, eliciting variables in various forms and training.
Montibeller and Von Winterfeldt (2015) discuss and give an overview to debiasing
methods. Further, Table 8.1 lists specific debiasing techniques for the discussed
biases.

8.4 Elicitation Process: Preparation/Pre-elicitation

As can be seen in Fig. 8.1, the elicitation process starts already before actually
interacting with any experts. The different elements of the preparation (or pre-
elicitation) phase ensure that the decision maker’s problem is addressed properly
and in accordance with the underlying model for which the right variables need to be
quantified by suitable experts. In addition, the choices made in this phase allow the
experts to assess the uncertain variables as intuitively as possible. In the following,
we present the various elements of the this part in more detail.

8.4.1 Problem Identification and Modelling Context

The first step in an elicitation process is the identification of the actual problem
at hand in accordance with the decision maker or stakeholder. This step has been
termed for instance background (Clemen and Reilly 2014) or preparation (O’Hagan
et al. 2006) and includes typically not just the definition of the elicitation’s objective
but also the identification of the variables of interest.
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Fig. 8.2 Schematic representation of modelling and elicitation context

When drawing conclusions from one of the earliest experiences on formal
processes for probability elicitation, Spetzler and Staël von Holstein (1975) referred
to this step as the deterministic phase. They describe it as the part of the modelling
process in which relevant variables are identified and their relationships are
determined before uncertainty assessment is considered (in the probabilistic phase).

Likewise for dependence elicitation, a main consideration during this part of the
process is to design the elicitation in accordance with the underlying dependence
model. A multivariate stochastic model might be pre-determined by the decision
maker or is decided upon at this point in accordance with the analyst. In this
regard, a broad variety of dependence models exists and their applicability is
subject to particular problem situations as they serve different purposes and allow
for varying degrees of scrutiny. Werner et al. (2017) review the elicitation for
several dependence models and discuss how decisions in the modelling context are
related to the elicitation by outlining elicitation strategies for three different, broad
dependence modelling situations which are shown in Fig. 8.2.

At this general level, we have a vector of output variables T which depends
deterministically on the vector of stochastic variables S in the model. Further,
R represents auxiliary variables that are used to evaluate the uncertainty on S.
Through the solid arrows uncertainty is propagated as they show the deterministic
relationships between variables. Before we provide an illustrative example, note that
it is common for there to be dependence between the output variables arising from
the functional dependence in arrow (a), in particular when we cannot regard the
variables in S as stochastically independent and hence have to model and assess
dependence on S.

The first modelling context (a) refers to modelling the dependence relationships
in S directly before the uncertainty is then propagated through the model (arrow
(a)) to T . This is the predominant approach in the literature with common models,
such as Bayesian (Belief) nets (BNs) (Pearl 1988, 2009), copulas (Joe 2014) as
well as parametric forms of multivariate distributions (Balakrishnan and Nevzorov
2004) and Bayes linear methods (Goldstein and Wooff 2007). Given that later in this
chapter we will discuss examples in which dependence is elicited for the two former
models, we briefly define them here. A BN consist of a directed acyclic graph in
which random variables are described by nodes while arcs represent the qualitative
dependence relationships between the variables. The direct predecessors/successors
of a node are called parent and child nodes accordingly and a BN is quantified
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(for example in the discrete case) by assessing for every child node its conditional
probability distribution given the state of its parent nodes. With a different modelling
focus, a copula might be used to model dependence. Due to Sklar (1959), any
multivariate distribution function can be decomposed into its marginal distribution
functions and a function which is known as the copula. This can be reversed,
meaning that any combination of univariate distribution functions through a copula
is a multivariate distribution function. Various common copulas belong to either one
of two main families, the Elliptical or Archimedean one. A main difference is that
copulas in the former family are radially symmetric while this is not true for the
copulas in the latter, implying a main difference for modelling.

In modelling context (b), a set of auxiliary variables is introduced. This is helpful
if it allows an easier quantification of the multivariate uncertainty, for instance in
the case of too little knowledge for direct modelling and therefore being more
comfortable to quantify the uncertainty on the auxiliary variables. In fact, one
might chose these so that they can be considered stochastically independent and
the dependence in S arises from the complex relationships between the variables in
R and S as shown with arrow (b). A common modelling type for this context is a
regression model.

The last modelling context is (c). For that, we consider an alternative set of
the output variables (see dotted node) given that a direct assessment of S is too
difficult, but the dependence structure must satisfy reasonable conditions on the
output variables which are easier to understand and quantify. The alternative set
is not identical to T as otherwise we would simply assess its uncertainty directly.
The multivariate model is then determined through backward propagation of the
uncertainty on S as shown by arrow (c). The arrow is dotted to indicate the key
difference to the solid arrows. The backward-propagation problem has no unique
solution (or even no solution) so that criteria, such as maximum entropy methods,
need to be used to select a unique solution, which can then be used to forward-
propagate from S to T for looking at other output contexts. A common model type
in this situation is Probabilistic Inversion (Kurowicka and Cooke 2006).

For context (b) and (c), we extend the model (beyond the variables strictly
needed to specify the dependence) in order to simplify the necessary understanding
of the underlying factors determining the multivariate uncertainty. This influences
(or is even determined by) the experts’ knowledge on the particular problem.
As aforementioned in Sect. 8.3.2, in PRA several methods have been developed
for capturing and incorporating implicit uncertainties that are not well enough
understood to consider these factors explicitly.

We illustrate the different choices that can be made in the modelling and
elicitation context (Fig. 8.2) and how these choices are influenced by the ease with
which we can quantify the multivariate uncertainty with our earlier, simplified
example from the area of project risk management (Sect. 8.3.2). Recall, we are
managing a project which has an overall cost. This is represented by the output
variable T (or vector of variables when managing several projects). The overall
cost is determined by individual activities, which are important for the project’s
completion, and each have their own associated costs. The costs of these individual
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activities are given by S. If we now want to model the stochastic dependence
between these activities’ costs, a first option is by doing so directly. The models that
are often used for this are the ones mentioned earlier for modelling context (a). If
the direct modelling of the cost elements is not satisfactory in terms of its outcome,
we have the choice to include explanatory variables R, which might help us in
understanding the relationships better, and for which we can quantify the uncertainty
in the cost easier. The models that are used here are from modelling context
(b). For our project, environmental uncertainties can be included as explanatory
variables if we believe that they (partly) influence the project cost. Lastly, modelling
systemic impacts of the project, such as the (un-)availability of qualified staff, can
be necessary to capture some subtle dependencies which have been excluded in
the earlier modelling contexts. For that, we use modelling techniques from context
(c). With these, we model the distribution of the overall cost (or features of it)
separately which leads to a changed model for the previous joint distributions (as
modelled within (a) and (b)). Similarly, modelling context (c) can be applicable if
we model a more complex situation with various projects. Then, we can assess the
uncertainty for one project and propagate the uncertainty back to the activity costs
S and obtain a better understanding about the overall costs of the other projects in
T . The underlying idea is that we only ever specify parts of the joint distribution
and hence might choose modelling techniques from other contexts to add to our
understanding.

The implication for the remainder of the process is that the choices in the
different modelling contexts are determined by the level of understanding about the
dependencies to be modelled and therefore formulate our variables of interest. These
in turn, define the applicability of elicited forms for a satisfactory representation of
the experts’ information in the model. Therefore, decisions on the model strongly
affect the choice of which dependence parameter to elicit as discussed next.

8.4.2 Choice of Elicited Parameters

The next step in the preparation phase is the choice of an appropriate elicited
form for the dependence information. Werner et al. (2017) review commonly
elicited dependence parameters extensively with regards to the modelling context
(Sect. 8.4.1) as well as the assessment burden for experts. These two considerations
for choosing an elicited form formulate already main desiderata for this choice,
however more are worth discussing.

While some desiderata are the same as for eliciting univariate uncertainty, others
are of particular concern when eliciting multivariate quantities. Two desiderata
that stem from the univariate case, are: (1) a foundation in probability theory,
and (2) the elicitation of observable quantities. A foundation in probability theory
ensures a robust operational definition when representing uncertainty. Observable
quantities are physically measurable, and having this property may increase the
credibility and defensibility of the assessments (Cooke 1991). Moreover, the form
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of the elicited variable should allow for a low assessment burden. Kadane and
Wolfson (1998) emphasise practicality in this regard. The elicited variables should
be formulated so that experts feel comfortable assessing them while their beliefs
are captured to a satisfactory degree. For the former, the elicited parameter should
be kept intuitively understandable and for the latter, the information given by the
experts should be linked (as directly as possible) to the corresponding model. When
eliciting dependence, it might be preferred (for instance due to a potential reduction
in the assessment burden) to elicit a variable in a different form than the one
needed as model input, in which case we need to transform the elicited variable.
Then, it is important to measure and control the degree of resemblance between
the resulting assessments (through the model) and the dependence information as
specified by the expert (Kraan 2002). The transformation of dependence parameters
is typically based on assumptions about their underlying bivariate distribution. For
instance, when transforming a product moment correlation into a rank correlation,
the most common way assumes bivariate normality (Kruskal 1958). Similarly, when
transforming a conditional probability into a product moment correlation, we might
assume an underlying normal copula (Morales-Nápoles 2010). A potential issue
is that positive definiteness is not guaranteed (Kraan 2002), leading to the next
desideratum which is coherence. Coherence means that the outcome should be
within mathematically feasible bounds. If it is not, it might need to be adjusted
such that it still reflects the expert’s opinion (as good as possible). Another solution
to incoherence is to fix possible bounds for the assessment a priori, even though
this can severely decrease the intuitiveness of the assessment. Both solutions are
rather pragmatic and show why forms of elicited parameters that result in coherent
assessments while being intuitive should be preferred. A last desideratum relates
to the (mathematical) aggregation of numerous expert judgements (Sect. 8.6.1).
When combining expert judgements, it is desirable to base this combination on
the accuracy of experts’ assessments measured by performance against empirical
data. Therefore, an easily derived dependence parameter from related historical
data based on which we can measure such performance is preferred. While there
is no query variable that fulfils all of these desirable properties, the desiderata serve
as guidance for which elicited parameter to choose under certain circumstances.
For instance, an analyst might choose an elicited form that corresponds directly to
the model input given a familiarity of the experts with the dependence parameter,
therefore having intuitiveness ensured.

At a broad level, most elicited forms can be categorised into probabilistic and
statistical representations. Table 8.2 outlines some main elicited forms in more
detail.

We note that the majority of approaches for eliciting dependence fall under the
probabilistic umbrella. Probabilistic forms have two main advantages: they (usually)
elicit observable quantities and they are rooted in probability theory. Moreover, they
are the direct input into various popular models, such as discrete BNs (Pearl 2009,
1988) and its continuous alternative (Hanea et al. 2015). For instance, Werner et al.
(2017) found in a review of the literature on dependence elicitation and modelling
that 61% of case studies, in which dependence was elicited, a BN was used for
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Table 8.2 Overview of elicited forms

modelling the dependence. The predominant form for the elicited parameter was a
conditional probability (point estimates and quantile estimates).

A potential issue with the forms elicited in the probabilistic approaches, such
as conditional and joint probabilities, is that they are regarded as non-intuitive
and cognitively difficult to assess. Clemen et al. (2000) compare their assessment
with other approaches, such as the direct assessment of a correlation coefficient,
and found that conditional and joint probabilities were among the worst per-
formances for coherence and in terms of accuracy against empirical data, i.e.
not well-calibrated. In particular, joint probability assessments seem cognitively
complex.

This is even true for independence assessments which are (typically) among
the easier judgements to express. A further concern is the assessment of a con-
ditional probability with a higher dimensional conditioning set, as discussed
in Morales-Nápoles (2010) and Morales-Nápoles et al. (2013). The growing
conditioning set poses a challenge for experts and this method is (in its cur-
rent form) difficult to implement. Similarly, expected conditional quantiles (per-
centiles) are difficult to assess as they require the understanding of location
properties for distributions together with the notion of regression towards the
mean (Clemen and Reilly 1999).

As a more accurate and intuitive probabilistic way to assess dependence,
concordance probabilities have been proposed (Gokhale and Press 1982; Clemen
et al. 2000; Garthwaite et al. 2005). A requirement, which may restrict the variables
of interest that can be elicited in this way, is the existence of a population to draw
from and a certain familiarity with the population.
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Alternatively to eliciting probabilistic forms, we can ask experts to assess
dependence through statistical dependence measures. While theoretical objections,
such as non-observability (Kadane and Wolfson 1998), persist for the elicitation of
moments and similarly cross-moments, they seem to perform well with respect to
various desiderata (other than theoretical feasibility). For instance, the direct elicita-
tion of a (rank) correlation coefficient is shown to be accurate and intuitive in some
studies (Clemen and Reilly 1999; Clemen et al. 2000; Revie et al. 2010; Morales-
Nápoles et al. 2015), even though some research is not in agreement with this finding
(Gokhale and Press 1982; Kadane and Wolfson 1998; Morgan and Henrion 1990).
The contrasting opinions may arise from the difference in normative expertise that
the experts in the studies have or as well from the difference in the complexity
of the assessed relationships. For example, in the studies which conclude that
eliciting a correlation coefficient is accurate and intuitive, the assessed correlations
are on rather simple relationships, such as height-weight, or as well on relationships
between stocks and stock market indices. This suggests that regarding relationships
for which experts have a certain familiarity and maybe even some knowledge about
historical data, the direct statistical method is indeed advantageous. Support for
this conclusion comes from findings of weather forecasting. Here, experts obtained
frequent feedback on correlations which allowed them to become accurate assessors
(Bolger and Wright 1994). Neurological research concludes similar findings after
evaluating the cognitive activity in a simulation game where participants obtained
regular feedback on correlation assessments (Wunderlich et al. 2011).

An indirect statistical approach is the assessment of dependence through a verbal
scale that corresponds to correlation coefficients (or other dependence parameters).
Clemen et al. (2000) for example provide a scale with seven verbal classifiers.
Generally, verbal assessment is seen as intuitive, directly applicable and has
therefore enjoyed further consideration. Swain and Guttman (1983) introduce the
Technique for Human Error Rate Prediction (THERP) which uses a verbal scale
for assigning multivariate uncertainty between human errors. Since its introduction,
THERP has been developed extensively in the field of human reliability analysis
(HRA) and it has been applied in various industries (see Mkrtchyan et al. 2015 for
a review on modelling and eliciting dependence in HRA).

Further, some BN modelling techniques, originating with noisy-OR methods
(Pearl 1988), make use of verbal scales. For instance, in the ranked nodes approach,
random variables with discretised ordinal scales are assessed by experts through
verbal descriptors of the scale (Fenton et al. 2007).

While these are the main approaches for eliciting a dependence parameter, note
that when quantifying some models, such as parametric multivariate distributions
and regression models, more commonly so called hyperparameters are elicited.
They allow (through restructuring) for eliciting (mainly) univariate variables.

For a more detailed and comprehensive review of the elicitation methods and
elicited forms mentioned above together with some additional ones, see Werner
et al. (2017).
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8.4.3 Specification of Marginal Distributions

Before dependence can be elicited, the marginal distributions for the variables of
interest need to be specified. In some situations, this information is available from
historical data and we can simply provide the experts with this data (if they do not
know it already). If this is not the case however, we need to elicit the information
on the marginal distributions prior to eliciting dependence. This is important as
otherwise the experts base their dependence assessments on different beliefs.

Consider for instance, we elicit dependence from experts in a conditional
form. If the marginal distributions have not been specified formally, each expert
will base their assessment on their own implicit judgement and as a result each
assessment will be conditional on different marginal probabilities. While this leads
to dependence assessments which are not comparable and therefore cannot be
combined for model input, the implicitly specified marginal probabilities are also
likely to lack the scrutiny that a formal elicitation process would allow for. In other
words, even if eliciting multivariate uncertainty only from a single expert, a formal
process for specifying the marginal distributions is still highly encouraged to ensure
less biased and better calibrated assessments. Note that if we omit the specification
of the marginal distributions, experts might even refuse to assess dependence as they
regard the process as flawed.

Various expert judgement methods exist to elicit univariate quantities (as pre-
sented elsewhere in this book) and the process is similarly complex as the one
presented here. This is an important remark as we need to decide whether all
(univariate together with multivariate) variables are elicited in the same session or
whether this is done separately. Eliciting all variables in one session is likely to be
tiring for the experts while arranging two separate elicitation workshops might be
challenging in terms of availability of experts and organisational costs.

8.4.4 Training and Motivation

Training and motivating are likely to improve elicitation outcomes for various
reasons, one of which being the effort to mitigate motivational and cognitive biases
(Hora 2007). Recall from Sect. 8.3.2 that although it is possible for experts to have
an intuitive understanding of probabilistic and/or statistical dependence parameters,
psychological research shows that interpreting and assessing dependence is often
cognitively difficult and results may be distorted. Therefore, we try to counteract
the influence of biases and a main approach to achieve this is to train and motivate
experts. As aforementioned, motivational biases are not specific to quantifying mul-
tivariate uncertainty and are therefore not discussed in this chapter. Consequently,
we will further consider only training (not motivating) experts.

Generally, a training session serves to familiarise the experts with the form in
which the query variables are elicited by clarifying its interpretation. For univariate
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quantities this (typically) includes introducing the experts to particular location
parameters, such as the quantiles of a marginal distribution. This ensures that these
are meaningful to the experts and they feel comfortable assessing them. Further,
experts are made aware of the main cognitive fallacies that might affect their
assessments so that they can reflect on them and make a well-reasoned judgement
by taking a critical stance. While this ability is an important characteristic of
someone’s statistical literacy (Gal 2002), we emphasise a pragmatic approach to
training experts as even experienced statisticians often have difficulties with such
critical examining and reasoning.

For assessing multivariate uncertainty, the objectives are similar. As concluded
in Sect. 8.3.3, main determinants of cognitive biases when assessing dependence
are the different interpretations of the elicited forms (in particular of the conditional
form). Recall that causal, predictive as well as similarity-based interpretations have
a misleading influence on assessments. Therefore, a first focus of an effective
training is on explaining the correct interpretation of the dependence parameter to
be elicited. This involves an emphasis on the probabilistic and statistical features,
such as randomness, in contrast to causal, predictive as well as similarity-based
relationships. For instance, causal relationships are often regarded as deterministic,
i.e. if Y is understood as the cause of X, then it follows that P.XjY/ D 1 as X is
always present when Y is present. However, P.XjY/ D 1 is not claiming a causal
relationship and we might need to account for other factors that affect X and Y (Díaz
et al. 2010). As aforementioned, the confusion of the inverse as well as the causality
heuristic (Sect. 8.3.2) are two main biases that can be explained by such a misleading
interpretation. In this regard, some researchers have mentioned their concern about
the language that is used in many statistics textbooks to teach fundamental concepts
such as independence (Díaz et al. 2010). For instance, the phrase “whenever Y has
no effect on X” is used to explain that two variables, X and Y , are independent and
their joint distribution is simply the product of their margins. However, for many
experts, the term “effect” might imply a causal relationship. This shows that training
on the elicited form should also address any semantic misunderstandings at this step
of the elicitation process.

In the same manner, we can address the other misinterpretations. For example, in
order to avoid that conditional assessments are based on similarity, i.e. resemblance
of X for Y , we should stress that the assessments might also be influenced by other
factors. As such, a specific outcome, such as a certain diagnosis, can be typical for
a certain disease but still unlikely (O’Hagan et al. 2006).

While probabilistic reasoning is commonly included in school curricula, its
teaching is often done through formula-based approaches and neglects real-world
random phenomena (Batanero and Díaz 2012). Therefore, it is common that experts
hold misconceptions on probabilistic/statistical reasoning which are hard to erad-
icate. In fact, they might even consider this kind of reasoning as counterintuitive.
A possibility to enhance a better understanding of these concepts might be to
complement the practice of forming probability judgements and providing feedback
on training questions (as commonly done before elicitations) with simulation-
based approaches. There is empirical evidence that multimedia supported learning
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environments successfully support students in building adequate mental models
when teaching the concepts of correlation (Liu and Lin 2010) and conditional
probability (Eichler and Vogel 2014).

Once the experts are familiar with the elicited form and its correct interpretation,
an additional focus of the training session is on outlining the common biases
as identified in Sect. 8.3.2. This allows the experts to obtain a better conceptual
understanding and we can address potential issues more specifically, such as
recognising that a conditional probability involves a restriction in the sample space,
distinguishing joint and conditional probabilities or as well distinguishing the
inverses.

8.5 Elicitation Process: Elicitation

After the preparation/pre-elicitation phase is concluded, the actual elicitation starts.
Note that this is the phase in the overall process in which the facilitator works
interactively with the experts, first when supporting experts to structure their
knowledge and beliefs (or rationale), and second when eliciting the uncertain
variables quantitatively. We will explain both steps in more detail below.

8.5.1 Knowledge and Belief Structuring

Neglecting existing knowledge and data that can be relevant for an assessment is
another reason for biased elicitation outcomes in addition to misinterpreting the
elicited form (Sect. 8.3.3). However, experts often have cognitive difficulties in
exploring the underlying sample space to a satisfactory degree. Therefore, they
need support for making better use of their knowledge and beliefs, a procedure
we call structuring or which is also known as knowledge evocation (Browne et al.
1997). Apart from mitigating biases, structuring experts’ knowledge and beliefs
about a joint distribution prior to eliciting dependence quantitatively is essential for
ensuring confidence in the later assessment as well as for supporting transparency
and reproducibility of the expert judgement process. In fact, when quantifying
multivariate uncertainties, identifying the factors that are relevant to the particular
problem is a main outcome of the structured expert judgement process. In other
words, knowledge structuring allows for obtaining an insight into the details of
experts’ understanding about the dependence relationships, thus their rationale.

Howard (1989) views this step of probability elicitation as the most challenging
one in the process. This is due to people possessing knowledge about uncertain
events or variables which is composed of many fragmented pieces of information,
often all being of high relevance. Further, people typically know more than they
think, therefore neglecting this step could result in less informative judgements.
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Structuring knowledge might be part of a hybrid approach to dependence mod-
elling in which qualitative, structural information about dependence relationships is
specified first, before probabilistic quantification is considered. Typically, graphical
models are used to reduce the cognitive load on experts’ short term memory,
even though other structuring methods, such as directed questions (checklist-
based approaches) have been proposed (Browne et al. 1997). Some commonly
used graphical models are knowledge maps (Howard 1989), event and fault trees
(Bedford and Cooke 2001), influence diagrams5 (Shachter 1988; Howard and
Matheson 2005) and BNs (Sect. 8.4.1). Note that we can nevertheless also include a
structuring part when quantifying a dependence model with experts which offers
no such a graphical representation. In this case, rather than including the result
of knowledge structuring in the actual model, we use it solely for supporting the
experts. That being said, when reviewing the literature on eliciting dependence in
probabilistic modelling, Werner et al. (2017) found that the dependence model,
which is used most often together with expert judgement, is in fact a BN. A reason
for its popularity is likely that it allows for an intuitive graphical representation.
According to Zwirglmaier and Straub (2016), deriving the structure of a BN can
be achieved in four ways. First, the structure can be specified through transforming
existing probabilistic models of the problem, such as event and fault trees. Such a
transformation is straightforward as the necessary structural information is already
given in the existing models and it can be sensible as BNs are more flexible. Second,
a BN structure can be inferred from some empirical or physical model. Third, the
structure can be built based on existing historical data and fourth, it can be elicited
from experts. The last way is of most interest for us as it is a common situation
that not only the probabilistic information needs to be elicited from experts, but
also the qualitative relationships (Pollino et al. 2007; Flores et al. 2011). Further, it
corresponds directly to the knowledge structuring part of the process.

Zwirglmaier and Straub (2016) propose to begin the structural elicitation with
identifying the relevant variables and to achieve this, they refer for instance to
organized interviews (Hanea and Ale 2009). Then, the actual arcs are elicited,
either interactively (as we describe below) or through reusable patterns of structures
(Fenton and Neil 2013). Last, they deal with unquantifiable variables (e.g. through
proxies).

As mentioned before, one way to derive the graphical structure is by eliciting
the experts’ input on these interactively (Norrington et al. 2008). One advantage
of such an interactive procedure is that it allows (typically) for discussion among
experts about the justification of nodes and arcs. In other words, pre-existing
knowledge is challenged and elaborated on if necessary. Further, experts obtain a
greater ownership of the model which they structured themselves so that they are
more comfortable in quantifying it later on. A potential difficulty, which needs to
be considered, is that the consensus on the final model structure might have been

5In the literature on event trees and influence diagrams, the idea of decomposition is often
mentioned as it describes a “divide and conquer” technique (Hora 2007) that allows to ease the
assessment in particular of conditional probabilities (see e.g. Kleinmuntz et al. 1996).
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achieved by a dominating expert who dictated the result or due to group-think,
i.e. without critical evaluation. Regarding these potential issues, Walls and Quigley
(2001) suggest to elicit a structure from each individual expert, whenever there is
a concern about not capturing the opinion of less confident experts. Aggregating
diverse structural information coherently through rules (as opposed to consensus)
is discussed in Bradley et al. (2014). While for hybrid dependence models a
combined graphical structure is necessary, in terms of knowledge structuring it
is also of interest how sharing knowledge and rationales among experts affects a
later assessment. For instance, Hanea et al. (2017) integrate group interaction in
a structured protocol for quantitative elicitation as it is shown to be beneficial in
assessment tasks.

Besides the initial structuring step, Henrion (1989) mentions the potential
necessity to refine a model structure during the actual quantification. In particular,
the violation of conditional independence is of concern. By definition of a BN, the
successor nodes (children) are conditionally independent given their parents. If this
is not the case when observing the final model, an additional node is required. Pearl
(1988) regards conditional independence therefore as a guiding principle as where
it fails, further clarification about an assumed, hidden variable is needed.

8.5.2 Quantitative Elicitation

After structuring experts’ knowledge and beliefs about the factors that influence the
variable(s) of interest, the quantitative assessment follows. This step of the process
is also named encoding (Spetzler and Staël von Holstein 1975). In this step, experts
assess the variable(s) of interest in the form that was chosen to be appropriate with
respect to various desiderata (Sect. 8.4.3).

The main considerations herewith are similar to those of eliciting univariate
uncertainty. Likewise, we need to decide on how much interaction between the
experts we allow for (we address the aggregation of assessments in Sect. 8.6.1).
Further, at least one facilitator is present to answer questions regarding the under-
standing of the query variables. Prior to the session, experts should have received a
briefing document which helps them to familiarise themselves with the purpose and
structure of the elicitation (Cooke and Goossens 2004).

As there are no differences to univariate uncertainty elicitation in this part, we
devote the remainder of this sub-section to illustrating an exemplary assessment
which has been used similarly in an actual dependence elicitation problem. Morales-
Nápoles et al. (2015) and Morales-Nápoles et al. (2016a) elicit and quantify
dependence between rain amount and rain duration in the Netherlands through
conditional exceedance probabilities. The elicited results are used as model input
for quantifying parametric copulas. Modelling dependence in this way informs
resilience analysis for critical components of road networks, such as tunnels and
road sections. The aim of this analysis is to improve the understanding about the
effects of extreme rainfall for the development of probabilistic models in reliable
infrastructure risk analysis.
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Fig. 8.3 Exemplary elicitation question with visualisation

Figure 8.3 shows a way of presenting experts with the elicitation question:

For Rotterdam, NL, consider all samples for which the rain duration in hours
.X/ is larger than its 95th quantile (4 h). What is the percentage of this set
of samples, for which the rain amount in mm .Y/ is also larger than its 95th
quantile (6mm)?

This can be expressed as P.Y � 95th quantilejX � 95th quantile/ or
likewise as P.Y � 6mmjX � 4 h/.

Please provide your assessment:

The inclusion of a visualisation can be helpful for experts to obtain a better
understanding about the framing of the elicitation question.

8.6 Elicitation Process: Post-elicitation

The last phase in the overall elicitation process (Fig. 8.1) is the post-elicitation part.
The two main steps that are of importance here are aggregating the assessments
of various experts and providing feedback to the experts. We address both steps in
more detail below.
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8.6.1 Aggregation of Expert Judgements

In order to capture a broad perspective on the uncertainties that we model and
quantify, we (usually) elicit judgements from a variety of experts. Therefore, a
main aspect of the post-elicitation phase is the aggregation (or combination) of the
assessments from several experts.

As in the univariate case, a distinction at a broad level is made between
behavioural and mathematical (or algorithmic) aggregation methods. The first
type aims at reaching consensus so that the outcome is a single assessment upon
which the group of experts has agreed. This might be achieved within a group
elicitation session or through methods, such as Delphi (Rowe and Wright 2001).
Given that these methods are the same as for univariate elicitation, they are not
further discussed here. Recall however that a potential shortcoming of these methods
(in the univariate as well as multivariate case) is that the consensus might be
reached through one expert dominating the elicitation discussion or even dictating
the elicitation’s outcome (French 2011).

For aggregating judgements mathematically, in particular two approaches are
common. The first is the Bayesian approach which allows for modelling quality
aspects of individual expert distributions, for example overconfidence. The second
approach is a pooling function which is typically seen as more robust and easier to
use (Hora and Kardeş 2015).

For Bayesian aggregation, we apply Bayes’ Theorem (Sect. 8.3.2) while regard-
ing the expert judgements as data. If we are interested in an event or unknown
quantity x, we elicit its probability or set of quantiles and obtain the experts’
individual prior opinions, f0;e.x/ for experts e D 1; 2; : : : ;E. We denote the
set of elicited distributions as D D .f0;1.x/; : : : ; f0;E.x//, and get the combined
posterior distribution for x, f1;DM.xjD/ through f1;DM.xjD/ / f0;DM.x/LDM.Djx/.
It is then necessary to elicit the likelihood function of observing D given x, i.e.
LDM.Djx/ (Wilson 2017). A Bayesian aggregation model which has been used more
commonly is Mosleh and Apostolakis (1986).

A pooling function on the other hand assigns weights to individual assessments
to derive a weighted combination of the experts’ judgements. The weights are either
equal for each expert or they reflect an expert’s competence or performance (in terms
of statistical accuracy, if empirical data can be used for measuring this). For equal as
well as performance-based weighting, all weights are non-negative and sum to one.
A commonly used pooling function is linear averaging, for which the combined
assessment is DM.f1.x/;:::;fn.x// D PE

eD1 wefe.x/, with we being the weight of expert e.
Alternatively, other pooling methods exist, such as logarithmic pooling, for which
the combined assessment is defined as DM.f1.x/;:::;fn.x// D k

QE
eD1 fe.x/we where k is

a normalising constant.
Linear pooling functions originate with Stone (1961) and DeGroot (1974) and

the legitimacy of their application from an axiomatic perspective is primarily
based on event-wise independence (or the weak set-wise function) and unanimity
preservation (Aczél and Wagner 1980; McConway 1981; Dietrich and List 2016).



8 Eliciting Multivariate Uncertainty: Considerations and Approaches 201

The first axiom implies that the collective probability of an event is only determined
by the individual probabilities for that specific event (and not that of other ones).
Unanimity preservation holds that if all experts give the same assessment, then this
will be the collective one.

For aggregating dependence assessments, mainly linear pooling functions have
been used (Werner et al. 2017), which is why we address them in more detail.
Before we discuss these however, note that a possible concern with mathematical
aggregation in the multivariate case is that not all dependence assessments are
preserved. For instance, a linear combination of correlation matrices is still a
correlation matrix, however conditional independencies such as in a BN are not
preserved. Further, an axiomatic issue might be that of preserving probabilistic
independence which ensures that if all experts regard two variables as (condition-
ally) independent, then this is preserved in the combined assessment. For several
pooling functions (e.g. linear as well as logarithmic ones) this is problematic.
However, it might be argued that unless independence assessments are also based on
structural judgements (Sect. 8.5.1), i.e. they are not purely accidental, this normative
constraint is questionable (Bradley et al. 2014). Note that this is a question of
whether one regards dependence information as fully represented by probabilistic
(un-)conditional dependence or only in addition to structural judgements in form of
graphical representations (such as in BNs). As we have emphasised in Sect. 8.5.1
that structural information should be elicited either within the same modelling
framework or separately, the independence axiom is not of concern and we regard
linear pooling methods as applicable for dependence information.

Equal Weighting One option to set weights in a linear pooling function is by
equally weighting all assessments (simple average). When eliciting correlation
parameters directly, overall accuracy improved in that way through adding experts
(Winkler and Clemen 2004). The authors tested the robustness by removing/adding
experts and found that the mean absolute error (MAE) decreased when the number
of experts increased.

Performance-Based Weighting Alternatively, Winkler and Clemen (2004) also
showed that taking the average of only the top performing cohort of experts (in
terms of lowest MAE) instead of the whole set of experts reduces the overall
MAE further. This finding is consistent with expert judgement studies for univariate
quantities (Cooke and Goossens 2008) and therefore motivated the idea of using
a measure of calibration to assess experts’ performance in terms of statistical
accuracy as a score for multivariate assessments. Before we introduce this score,
note that there is an indication that a common calibration method for univariate
expert judgements (Cooke 1991) might not be feasible for aggregating dependence
assessments (Morales-Nápoles et al. 2013).

The first and only calibration score for multivariate assessments (according to
the authors’ knowledge) is the dependence calibration score introduced in Morales-
Nápoles and Worm (2013) which is based on the Hellinger distance. In order to
assess this score (similar to Cooke’s Classical model (Cooke 1991)) seed variables
known to the facilitator but not the experts are elicited in addition to the target
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variables. Then, two bivariate copulas fC (a copula model used for calibration
purposes) and fE (a copula estimated by expert opinions) are used to derive the
Hellinger distance, H, which is defined as:

H.fC; fE/ D
“

Œ0;1�2

s
1p
2
.
p

fC.u; v/ �
p

fE.u; v//2dudv

In Abou-Moustafa et al. (2010) an overview of different distances between distri-
butions is given. If the distributions are Gaussian, these distances can be written in
terms of the parameters of the Gaussian distributions (i.e. the mean and covariance
matrix). Under the Gaussian copula assumption, H may be parametrised by two
correlation matrices:

HG.†C; †E/ D
s
1 � det.†C/1=4det.†E/1=4

. 1
2
det.†C/C 1

2
det.†E//1=2

Here †C is a correlation matrix used for calibration purposes and †E the one
estimated by experts. The d-calibration or dependence calibration score is:

D D 1 � H

The score is 1 if an expert’s assessments correspond to the calibration model exactly.
Conversely, it differs from 1 as the expert’s opinion differs from the calibration
model. Under the Gaussian assumption, i.e. when using HG, the score approaches
1 as †E approximates †C element-wise and it decreases as HG differs from HC

element-wise. A score equal to zero means that at least two variables are linearly
dependent in the correlation matrix used for calibration purposes and the expert fails
to express this. Or contrary to this, an expert expresses perfect linear dependence
between two variables when this is not the case. For more details, see Morales-
Nápoles et al. (2016b). In the same paper (Morales-Nápoles et al. 2016b), the
method discussed in Morales-Nápoles and Worm (2013) is extended by using the
Hellinger distance to compare a Gumbel copula generated from precipitation data
with a copula constructed from experts’ assessments of tail dependence between
rain amount and duration in Rotterdam and De Bilt, in the Netherlands. The experts’
assessments are obtained by a similar framing as shown in Sect. 8.5.2 and varying
the elicited quantiles, e.g. 50th and 95th (see Morales-Nápoles (2010) for more
details). An overview of the results in given in Table 8.3.

In this study, the combination of expert opinions based on the dependence
calibration score outperforms individual expert opinions as well as weighting
experts equally. In fact, the equal weights approach does not give satisfactory
results. We observe that the performance-based aggregation is much closer to the
actual empirical rank correlation. Further, it was noticed that experts with highest
calibration scores for univariate assessments are not necessarily the experts with the
highest dependence calibration score.
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Table 8.3 Dependence calibration results based on rank correlation, Gaussian (HG) and Hellinger
(H) distance (Morales-Nápoles et al. 2016b)

Rotterdam De Bilt Rotterdam De Bilt

Name X > 0:95 X > 0:95 X > 0:5 X > 0:5

1 � HG

Expert 1 0.809 0.812 0.894 0.897
Expert 2 0.889 0.892 0.766 0.769
Expert 3 0.960 0.963 0.853 0.856
Expert 4 0.746 0.769 0.960 0.963
Expert 5 0.832 0.812 0.979 0.982
Expert 6 0.733 0.736 0.730 0.733
Expert 7 0.787 0.790 0.730 0.733
Expert 8 0.809 0.812 0.894 0.897
1 � H
Expert 1 0.822 0.825 0.900 0.903
Expert 2 0.895 0.899 0.784 0.787
Expert 3 0.962 0.965 0.862 0.865
Expert 4 0.767 0.787 0.962 0.965
Expert 5 0.843 0.825 0.980 0.983
Expert 6 0.756 0.759 0.753 0.756
Expert 7 0.802 0.805 0.753 0.756
Expert 8 0.822 0.825 0.900 0.903
Calibration score

Equal weighting 0.814 0.817 0.837 0.841
Performance-based weighting 0.960 0.963 0.979 0.982
Rank correlation (result)

Equal weighting 0.264 0.264 0.326 0.326
Performance-based weighting 0.578 0.578 0.608 0.608
Realisation 0.622 0.617 0.622 0.617

In order to combine dependence assessments, experts are weighted according
to their dependence calibration score. Similar to the univariate case, a cut-off level
is established, either chosen by the facilitator or by optimising the performance of
the combination. If an individual expert falls below this level, their score will be
unweighted for the pooling function.

8.6.2 Feedback and Robustness Analysis

Similar to eliciting univariate uncertainty, one of the final steps of the depen-
dence elicitation process is testing the robustness of elicited results and providing
feedback to the experts after a combined assessment has been constructed. While
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this procedure is not much different for the multivariate case, it should be noted that
many dependence models produce graphical outputs, such as scatter plots. Depend-
ing on the experts’ understanding of the graphical output and their willingness to
examine such outputs, it might be possible to feedback such a visualisation and
assess their agreement with it.

8.7 Conclusions

In this chapter, we have presented the main considerations for eliciting multivariate
uncertainty from experts. As shown, there are several important adjustments that are
necessary when eliciting dependence given that many of the findings from expert
judgement processes for univariate quantities are not readily applicable.

A first remark for concluding this chapter is that a few areas still lack insight
to a considerable extent. For instance, we have discussed that the biases and
heuristics which influence dependence assessments might be mitigated by training
and knowledge structuring. In particular, experts’ potential misinterpretations of
dependence parameters need to be corrected and ways to do so might be informed
by the educational literature on teaching concepts such as conditional and joint
probabilities. Nevertheless, we need to acknowledge that experiences here might
not be directly transferable to designing experts’ training due to a different
understanding of that of students and therefore further research in training design is
necessary.

Further, more insight is needed on the exact triggers of the potential biases
and their relative influence on judgements. It would be desirable for behavioural
researchers to take a similar interest in this field as they do with the more common
(typically univariate probability) heuristics and biases. This would allow developing
the various (undeveloped) steps in the pre-elicitation phase, e.g. format choices.

In the elicitation phase, in particular the topic of structuring knowledge is
identified as a key area for which further research is necessary. For instance, the
graphical representation of BNs offers a way to incorporate qualitative dependence
information. However issues still remain such as eliciting the structure of highly
complex BNs as well as eliciting tail dependencies graphically. Therefore, again,
we need to obtain more experiences for this part of the elicitation process.

Lastly, we have discussed that when combining assessments mathematically,
more research is necessary for addressing some common desiderata for this step,
such as performance-based as well as mathematically coherent aggregation.

Acknowledgements We would like to thank the editors for the feedback on the previous version
of this chapter.



8 Eliciting Multivariate Uncertainty: Considerations and Approaches 205

References

Abou-Moustafa KT, De La Torre F, Ferrie FP (2010) Designing a metric for the difference between
Gaussian densities. In: Angeles J, Boulet B, Clark J J, Kövecses J, Siddiqi K (eds) Brain, body
and machine. Springer, Berlin, pp 57–70

Aczél J, Wagner C (1980) A characterisation of weighted arithmetic means. SIAM J Algebr
Discrete Methods 1(3):259–260

Ajzen I (1977) Intuitive theories of events and the effects of base-rate information on prediction. J
Pers Soc Psychol 35(5):303–314

Allan LG (1980) A note on measurement of contingency between two binary variables in judgment
tasks. Bull Psychon Soc 15(3):147–149

Balakrishnan N, Nevzorov VB (2004) A primer on statistical distributions. Wiley, Hoboken
Bar-Hillel M (1980) The base-rate fallacy in probability judgments. Acta Psychol 44(3):211–233
Batanero C, Díaz C (2012) Training school teachers to teach probability: reflections and challenges.

Chilean J Stat 3(1):3–13
Bechlivanidis C, Lagnado DA (2013) Does the “why” tell us the “when”? Psychol Sci 24(8):1563–

1572
Bedford T, Cooke RM (2001) Probabilistic risk analysis: foundations and methods. Cambridge

University Press, Cambridge
Bertsch McGrayne S (2011) The theory that would not die. Yale University Press, New Haven
Bes B, Sloman S, Lucas CG and Raufaste E (2012) Non-Bayesian inference: causal structure

trumps correlation. Cogn Sci 36(7):1178–1203
Bolger F, Wright G (1994) Assessing the quality of expert judgment: issues and analysis. Decis

Support Syst 11(1):1–24
Borovcnik M, Kapadia R (2014) From puzzles and paradoxes to concepts in probability. In:

Chernoff EJ, Sriraman B (eds) Probabilistic thinking. Springer, Dordrecht, pp 35–73
Bradley R, Dietrich F, List C (2014) Aggregating causal judgments. Philos Sci 81(4):491–515
Browne GJ, Curley SP, Benson PG (1997) Evoking information in probability assessment:

knowledge maps and reasoning-based directed questions. Manag Sci 43(1):1–14
Carranza P, Kuzniak A (2009) Duality of probability and statistics teaching in French education.

In: Batanero C (ed) Joint ICMI/IASE study: teaching statistics in school mathematics, p 5
Chapman LJ, Chapman JP (1969) Illusory correlation as an obstacle to the use of valid

psychodiagnostic signs. J Abnorm Psychol 74(3):271–280
Clemen RT, Reilly T (1999) Correlations and copulas for decision and risk analysis. Manag Sci

45(2):208–224
Clemen RT, Reilly T (2014) Making hard decisions with decision tools. South-Western, Mason
Clemen RT, Fischer GW, Winkler RL (2000) Assessing dependence: some experimental results.

Manag Sci 46(8):1100–1115
Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in Science. Oxford

University Press, New York
Cooke RM (2013) Uncertainty analysis comes to integrated assessment models for climate change

and conversely. Climatic Change 117(3):467–479
Cooke RM, Goossens LHJ (1999) Procedures guide for structured expert judgment. Commission

of the European Communities, Brussels
Cooke RM, Goossens LHJ (2004) Expert judgement elicitation for risk assessments of critical

infrastructures. J Risk Res 7(6):643–656
Cooke RM, Goossens LHJ (2008) TU Delft expert judgment data base. Reliab Eng Syst Saf

93(5):657–674
Costello FJ (2009) How probability theory explains the conjunction fallacy. J Behav Decis Mak

22(3):213–234
Dawes RM (1988) Rational choice in an uncertain world. Harcourt, Brace, Jovanovich, New York
DeGroot MH (1974) Reaching a consensus. J Am Stat Assoc 69(345):118–121



206 C. Werner et al.

Díaz C, Batanero C, Contreras JM (2010) Teaching independence and conditional probability.
Boletín de Estadística e Investigación Operativa 26(2):149–162

Dietrich F, List C (2016) Probabilistic Opinion Pooling. In: Hajek A, Hitchcock C (eds) The oxford
handbook of probability and philosophy. Oxford handbooks. Oxford University Press, Oxford,
pp 179–207

DuCharme WM (1970) Response bias explanation of conservative human inference. J Exp Psychol
85(1):66–74

Eddy DM (1982) Probabilistic reasoning in clinical medicine: problems and opportunities. In:
Kahneman D, Slovic P and Tversky A (eds) Judgment under uncertainty: heuristics and biases.
Cambridge University Press, New York, pp 249–267

Eder AB, Fiedler K, Hamm-Eder S (2011) Illusory correlations revisited: the role of pseudocon-
tingencies and working-memory capacity. Q J Exp Psychol 64(3):517–532

Edwards W (1965) Optimal strategies for seeking information: models for statistics, choice
reaction times, and human information processing. J Math Psychol 2(2):312–329

EFSA=European Food and Safety Authority (Bolger F, Hanea AM, O’Hagan A, Mosbach-Schulz
O, Oakley J, Rowe G, Wenholt M) (2014) Guidance on expert knowledge elicitation in food
and feed safety risk assessment. EFSA J 12(6):3734

Eichler A, Vogel M (2014) Three Approaches for Modelling Situations with Randomness. In:
Chernoff EJ, Sriraman B (eds) Probabilistic thinking. Springer, Dordrecht, pp 75–99

Einhorn HJ, Hogarth RM (1986) Judging probable cause. Psychol Bull 99(1):3–19
Falk R (1983) Conditional probabilities: insights and difficulties. In: Tall D (ed) Proceedings of the

third international conference for the psychology of mathematics education, Warwick, 1983
Fenton NE, Neil M (2013) Risk Assessment and Decision Analysis with Bayesian Networks.

Taylor and Francis Group, Boca Raton
Fenton NE, Neil M, Caballero JG (2007) Using Ranked Nodes to Model Qualitative Judgments in

Bayesian Networks. IEEE Trans Knowl Data Eng 19(10):1420–1432
Fiedler K, Brinkmann B, Betsch T, Wild B (2000) A sampling approach to biases in conditional

probability judgments: beyond base rate neglect and statistical format. J Exp Psychol Gen
129(3):399–418

Flores MJ, Nicholson AE, Brunskill A, Korb KB, Mascaro S (2011) Incorporating expert
knowledge when learning Bayesian network structure: a medical case study. Artif Intell Med
53(3):181–204

Fountain J, Gunby P (2011) Ambiguity, the certainty illusion, and the natural frequency approach
to reasoning with inverse probabilities. N Z Econ Pap 45(1-2):195–207

French S (2011) Aggregating expert judgement. Revista de la Real Academia de Ciencias Exactas,
Fisicas y Naturales. Ser A Mate 105(1):181–206

Gal I (2002) Adults’ statistical literacy: meanings, components, responsibilities. Int Stat Rev
70(1):1–25

Garthwaite PH, Kadane JB, O’Hagan A (2005) Statistical methods for eliciting probability
distributions. J Am Stat Assoc 100(470):680–701

Gavanski I, Hui C (1992) Natural sample spaces and uncertain belief. J Pers Soc Psychol
63(5):766–780

Gilovich T, Griffin D, Kahneman D (2002) Heuristics and biases: the psychology of intuitive
judgment. Cambridge University Press, New York

Gokhale DV, Press SJ (1982) Assessment of a prior distribution for the correlation coefficient in a
bivariate normal distribution. J R Stat Soc Ser A (General) 145:237–249

Goldstein M, Wooff D (2007) Bayes linear statistics, theory and methods. Wiley, Chichester
Hamilton DL (2015) Cognitive processes in stereotyping and intergroup behavior. Psychology

Press, New York
Hanea A, McBride MF, Burgman MA, Wintle BC, Fidler F, Flander L, Twardy CR, Manning B,

Mascaro S (2017) Investigate discuss estimate aggregate for structured expert judgement. Int J
Forecast 33:267–279

Hanea A, Morales Nápoles O, Ababei D (2015) Non-parametric Bayesian networks: improving
theory and reviewing applications. Reliab Eng Syst Saf 144:265–284



8 Eliciting Multivariate Uncertainty: Considerations and Approaches 207

Hanea D, Ale B (2009) Risk of human fatality in building fires: a decision tool using Bayesian
networks. Fire Saf J 44(5):704–710

Hastie R (2016) Causal thinking in judgments. In: Keren G, Wu G (eds) The Wiley Blackwell
handbook of judgment and decision making. Wiley, Chichester, pp 590–628

Hastie R, Dawes RM (2001) Rational choice in an uncertain world. Sage, Thousand Oaks
Henrion M (1989) Some practical issues in constructing belief networks. In: Kanal L, Levitt T,

Lemmer J (eds) Uncertainty in artificial intelligence. Elsevier Science Publishing Company,
New York, pp 132–139

Hora SC (2007) Eliciting Probabilities from Experts. In: Edwards W, Miles RF Jr, Von Winterfeldt
D (eds) Advances in decision analysis - from foundations to applications. Cambridge University
Press, New York, pp 129–163
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Chapter 9
Combining Judgements from Correlated
Experts

Kevin J. Wilson and Malcolm Farrow

Abstract When combining the judgements of experts, there are potential corre-
lations between the judgements. This could be as a result of individual experts
being subject to the same biases consistently, different experts being subject to
the same biases or experts sharing backgrounds and experience. In this chapter
we consider the implications of these correlations for both mathematical and
behavioural approaches to expert judgement aggregation. We introduce the ideas
of mathematical and behavioural aggregation and identify the possible dependen-
cies which may exist in expert judgement elicitation. We describe a number of
mathematical methods for expert judgement aggregation, which fall into two broad
categories; opinion pooling and Bayesian methods. We qualitatively evaluate which
of these methods can incorporate correlations between experts. We also consider
behavioural approaches to expert judgement aggregation and the potential effects
of correlated experts in this context. We discuss the results of an investigation
which evaluated the correlation present in 45 expert judgement studies and the
effect of correlations on the resulting aggregated judgements from a subset of the
mathematical methods. We see that, in general, Bayesian methods which incorporate
correlations outperform mathematical methods which do not.

9.1 Introduction

In this chapter, we consider problems for which we consult multiple experts and
elicit their judgements on quantities of interest. Earlier chapters of this book have
considered different approaches to treating the judgements of the experts, in most
cases attempting to coerce the judgements of the different experts into a single
probability distribution on each unknown representing the uncertainty about its true
value. We will characterise these approaches as either “mathematical aggregation”
or “behavioural aggregation” in the next section. We call the probability statements
resulting from an aggregation method the aggregated judgements.
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We could think of the judgements on a single unknown quantity from a group of
experts as a sample of data on that quantity. A typical assumption made when fitting
models to data is that the data are independent. This is also a common assumption
made in methods to aggregate expert judgements. However, there are good reasons
to believe that the judgements of different experts on a single quantity of interest,
or the judgements of a single expert on multiple quantities, are not independent.
One possible reason for this is that experts in a certain field may all come from
similar backgrounds They may all have been educated on similar courses at similar
universities or colleges. They may have worked together in the same organisation.
They may have worked on the same part of a larger process.

Another possible reason for correlations between the judgements given by
experts is that they may share common biases associated with the heuristic processes
people often use to assess probabilistic information on unknowns. If a single expert
is subject to the same biases consistently then the errors in their assessments of
unknown quantities are likely to be correlated. Similarly, if two experts are subject
to the same biases, then the errors in their assessments of a single unknown are also
likely to be correlated. We consider this in the context of some common heuristics;

1. judgement by availability
2. judgement by representativeness
3. anchoring

Judgement by availability concerns the ability of an expert to call to mind
examples of an event occurring. Suppose we are interested in the number of
deaths per year as a result of a number of different causes. There are certain
newsworthy events, such as natural disasters or plane crashes, which are easy to
call to mind but occur relatively rarely. The number of deaths by such causes
tend to be overestimated in peoples’ judgement. Conversely, there are other deaths,
for example as a result of common diseases such as cancer, which typically go
unreported in the media and so examples of deaths by these causes are, relatively,
more difficult to recall. The result is that they tend to be underestimated. Two
experts who both use judgement by availability to assess unknowns are likely to
overestimate and underestimate the same unknown quantities.

In judgement by representativeness, experts assess the likelihood of events by
considering similarity to the description of that event, crucially ignoring base rates.
For example, when asked to estimate the probabilities of death by a paragliding
accident, cancer and in a house fire of a man who is described as “an adrenaline
junkie, who enjoys travelling, outdoor sports and looks after his body through a
healthy diet and no alcohol or fast food”, somebody using judgement by repre-
sentativeness may give the highest probability to a paragliding accident, ignoring
the very small number of people who die each year as a result of paragliding
accidents and the much larger number who die of cancer. Again, there are likely to
be correlations between the errors in the judgements of two experts using judgement
by representativeness.

Anchoring is an effect resulting from the order in which an expert considers
numerical values for unknowns. It appears as a reluctance to move far enough
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from a previously considered value, at which the expert’s judgement seems to be
“anchored”. This could be not adjusting a prior judgement sufficiently when new
information is received or it could be staying close to a value considered in a
previous question. For example, if an expert were to be asked whether the number
of deaths per year in the UK from road accidents were smaller or larger than 10,000
the expert might judge it to be smaller. However, when the expert is then asked for
a judgement of the number of deaths from road accidents, the expert would take
10,000 as the starting point and there is a tendency then to provide an estimate too
close to 10,000. If multiple experts are asked the same questions in the same order,
there is a possibility of correlations between the errors in their answers induced by
anchoring.

There are other issues which could lead to biases in expert judgements. Examples
include pruning bias, which implies that model complexity has an influence on
the judgements given by experts, partition bias, in which peoples’ judgements of
the likelihood of events change based on how options to a question are set out,
and framing bias. Additionally, in behavioural approaches to aggregation, there is
the possibility of social pressure, for example “group think”, to bias the experts.
While elicitation methods are typically set up to minimise biases, it would be
naive to assume that the resulting judgements are always free from bias. Much
work has been undertaken to consider heuristics and biases in expert judgement.
For more information see Chap. 15 of this book (Montibeller and von Winterfeldt
2018): biases and pitfalls, Section 3.4 of O’Hagan et al. (2006) and Slovic (1972),
Kahneman and Tversky (1971), Bar-Hillel and Neter (1993), Garthwaite et al.
(2005).

In the next section we describe in general mathematical and behavioural methods
for the aggregation of expert judgement, making specific reference to earlier
chapters in this book. In Sect. 9.3 we identify all of the possible sources of
correlation in expert judgement studies and focus our attention on those representing
correlated experts. In Sect. 9.4 we describe some commonly used approaches to
mathematical aggregation, and discuss their ability to capture correlations between
experts. In Sect. 9.5 we return to the idea of behavioural aggregation methods, and
consider them in the light of correlations between experts. Section 9.6 is concerned
with an evaluation of a subset of the mathematical aggregation methods described
in Sect. 9.4, specifically focussing on the effect of correlations between experts
on the aggregated judgements resulting from the aggregation methods. Section 9.7
concludes the chapter with a summary and a consideration of future directions for
the field.

9.2 Mathematical and Behavioural Aggregation

There are two main approaches to aggregating the judgements of multiple experts
into a single probability distribution for each unknown; mathematical aggregation
and behavioural aggregation. In mathematical aggregation methods, a subjective
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probability distribution is elicited from each member of a group of experts and these
distributions are then combined by a procedure outside the group. In behavioural
methods the combination of judgements takes place within the group. The experts
themselves come to a single consensus distribution by means of discussion and
interaction.

Behavioural methods may be structured. That is the experts go through a
prescribed sequence of stages, usually under the guidance of a facilitator, to help
them to reach a consensus. The SHELF protocol (Oakley and O’Hagan 2016) is a
structured method.

In a mixed approach to aggregation, behavioural and mathematical aggregation
are combined. While the experts do interact, a final mathematical aggregation stage
may be applied so that the experts are not forced to reach agreement. The well-
known Delphi procedure and the recently developed IDEA protocol, (Hanea et al.
2016a,b) are mixed aggregation procedures.

In mathematical aggregation, a mathematical rule is used to aggregate the
judgements. Two classes of techniques have been advocated for doing this. The first
is opinion pooling, in which the aggregated probability distribution is a weighted
average of the individual distributions of the experts. The average can be arithmetic
or geometric. Opinion pooling aims to give weights to individual experts. The
aggregated distribution for an unknown quantity � is then the weighted average
of all of the experts’ judgements for that quantity.

Suppose that expert i, for i D 1; : : : ;E, gives elicited values which result in the
distribution fi.�/. Typically quantiles are elicited from each expert, a convenient
parametric probability distribution is used and the parameters of this distribution
are chosen to match the quantiles elicited from the expert. A simple example of
parameter estimation based on elicited quantiles is given in Appendix 1 to illustrate
this approach. Further suppose that the weight attached to expert i is wi, 0 � wi � 1,
where

PE
iD1 wi D 1. Define D D .f1.�/; : : : ; fE.�// to be the set of expert

distributions for � . The aggregated distribution will take one of two forms, a linear
pool

f .�/ D
EX

iD1
wifi.�/;

or a logarithmic pool,

f .�/ D k
EY

iD1
fi.�/

wi ;

where k is a normalising constant to ensure that the distribution integrates to 1.
Note that, in the logarithmic pool, if any expert gives � a probability of 0 then it
will have a probability of 0 in the aggregated distribution. In Chap. 2 of this book
(Quigley et al. 2018), we saw the most commonly used opinion pooling method, the
Classical Method.
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In the Classical Method, weights for the experts were chosen based on their
performance on questions to which the answers were known to the facilitator, but
not the expert. Other methods have investigated alternative performance weighting
schemes. We will investigate three such methods in Sect. 9.4.2. Alternative methods
to weighting the experts are to use equal weights, to allow the analyst or decision
maker to choose the weights or to weight the experts on their views of their own
or each other’s expertise. Each approach has strengths and weaknesses. A recent
review of different approaches to weighting experts is given in Bolger and Rowe
(2015) and the accompanying discussions.

The alternative to opinion pooling is Bayesian aggregation. This uses the
continuous version of Bayes Theorem to aggregate the individual distributions of
the experts. It relies on the existence of a decision maker, sometimes called a
“supra-Bayesian”, who may be the analyst combining the judgements. Suppose we
are interested in an event or unknown quantity which we shall call � . Then the
experts will give us, through an elicited probability or quantiles of � , individual
prior distributions, f0;i.�/, for experts i D 1; : : : ;E. The set of these elicited
distributions is D D .f0;1.�/; : : : ; f0;E.�//. A Bayesian aggregation method then
works by applying Bayes Theorem,

f1;DM.� j D/ / f0;DM.�/LDM.D j �/; (9.1)

where f0;DM.�/ represents the decision maker’s prior probability distribution for
unknown � , LDM.D j �/ is the decision maker’s likelihood of observing D given
� and f1;DM.� j D/ is the decision maker’s posterior distribution for � .

The main challenge in this method is eliciting from the decision maker the
likelihood function LDM.D j �/. It is in this likelihood function that the correlations
in the expert judgement study can be captured. We see that the outcome of Bayesian
aggregation methods is a subjective probability distribution which gives the updated
beliefs of the decision maker in the tradition of a subjectivist Bayesian analysis. In
this sense, the Bayesian method has an advantage over opinion pooling methods, in
which the aggregated distribution does not represent the views of any single person.
However, in opinion pooling the contribution of each of the experts to the final
aggregated distribution is more transparent than in the Bayesian approach, through
the expert weights, wi.

The methods explored in Chap. 6 of this book (Hartley and French 2018) took
the Bayesian approach to expert judgement aggregation. We consider four Bayesian
aggregation methods in Sect. 9.4.1.

9.3 Sources of Correlation

There are several different areas within group expert judgement studies in which
there are potential correlations. They were identified in Wilson (2016) and we will
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review them here. Such correlations have the potential to affect the accuracy of the
aggregated distribution resulting from expert judgement studies.

In order to identify the potential correlations present in expert judgement studies,
it will be useful to consider two types of uncertainty which are relevant to experts
making judgements. The first is aleatory uncertainty, which represents randomness
in the state of the world. For example, if we were to roll a die, we are uncertain as to
how many spots will end face up. It doesn’t matter how many times we have rolled
the die in the past, this will always be an uncertain event. The second type we shall
consider is epistemic uncertainty, which represents our own lack of knowledge. For
example, if someone were to hand us a loaded die then we would have additional
uncertainty around how likely we are to see a six, for example. We could reduce our
uncertainty about this event by rolling the die a large number of times and counting
the number of sixes.

The possible correlations within an expert judgement study are:

1. Correlation between the experts for individual quantities: these could be a result
of the similar past experience and common knowledge of the experts or because
the experts are susceptible to the same biases through their use of heuristics.

2. Correlation within individual experts’ assessments of different quantities: these
could be as a result of a consistent susceptibility of an expert to the same biases.

3. Correlation between the experts for different quantities: these could be as a result
of multiple experts being consistently susceptible to the same biases.

4. Underlying aleatory correlation between the values of the quantities to be
assessed in the expert judgement study: plotting one against another there is a
relationship.

The first three types of correlation are conditional on the true value of the
underlying variable. In the Bayesian mathematical aggregation methods there are
a further two possible correlation types. They are:

5. Underlying epistemic correlation between the quantities in the study: learning
about one quantity will inform us as to the likely value of another.

6. Correlation between the experts’ judgements and the decision maker’s judge-
ments (French 2011). These could again come about as a result of common
knowledge or susceptibility to the same biases.

In this chapter, our focus is on combining judgements from correlated experts.
This could be multiple experts whose judgements are correlated with each others’,
or a single expert whose judgements over several unknowns are correlated. Thus our
focus is on correlations of types 1–3 from the list above.

The correlations between experts for individual quantities and within individual
experts for multiple quantities can be assessed empirically for a given study using
seed variables, questions which are related to the current problem but for which the
answers are known to the analyst, as long as experts are being asked to give values
for multiple quantities. This can then be built into aggregation methods.

The correlations between the judgements of the experts and the judgements of
the decision maker can in theory also be estimated empirically if the decision maker
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also gives their judgements for each of the unknown quantities in the study. This is
rare in expert judgement studies.

Simply because these correlations exists within a study it does not necessarily
mean that they are having an influence on the accuracy of the outputs of an
aggregation method, however. There is of course a difference between statistical
importance and practical importance.

9.4 Mathematical Aggregation Methods

In this section, we review some mathematical aggregation methods, both opinion
pooling and Bayesian, from the literature. The methods have been chosen to provide
a range of techniques, to assess the ability of the methods to incorporate correlated
experts. We do so qualitatively in Sect. 9.4.3 and quantitatively in Sect. 9.6.

9.4.1 Bayesian Methods

Multivariate Normal model

Winkler (1981) proposed the use of a Bayesian model for unknown � in which the
variable of interest was the error of expert i, ui D �i � � , where �i is the mean of
expert i’s prior distribution f0;i.�/. The posterior distribution then took the form

f1;DM.� j D/ / f0;DM.�/f0;E.�1 � �; : : : ; �k � �/;

and so LDM.D j �/ D f0;E.�1��; : : : ; �k ��/, where the likelihood incorporates the
dependence between the errors in estimation from the experts. Winkler suggested
using a flat prior for the decision maker and using data to calibrate individual expert
densities. He proposed the use of the multivariate Normal distribution for f0;E.�/ of
the form N.0;˙/, where

˙ D

0

BBBB@

�21 � � � � � � �1;k
::: �22

:::
:::

: : :
:::

�k;1 � � � � � � �2k

1

CCCCA
(9.2)

so that expert marginal distributions are univariate Normal with mean �i and
variance �2i . He proposed taking the experts’ specifications for the marginal
distributions and estimating the correlations either from data or if none were
available from the judgements of the decision maker. An inverse Wishart distribution
was suggested as a prior for ˙ .
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Copula Model

Jouini and Clemen (1996) proposed a Bayesian aggregation model which was based
on the idea of copulas: joint probability distributions incorporating dependence on
the unit square with given marginal distributions.

Their approach assumed a non-informative prior for the decision maker,
f0;DM.�/, and is sufficiently flexible to consider the bias in experts and the
correlations between experts. Both were assessed by the decision maker. If the
decision maker did have some substantive prior knowledge, they could be included
as an extra expert in the likelihood. The model used Kendall’s Tau as its measure of
dependence between experts due to its exposition in terms of concordance.

In particular the authors advocated use of Archimedian copulas. The decision
maker’s posterior distribution becomes

f1;DM.� j D/ / f0;1.�/ � : : : � f0;E.�/ � c� .F0;1.�/; : : : ;F0;E.�//;

where, for ui D F0;i.�/, the Archimedian copula takes the form

c� .u1; : : : ; uE/ D  ..u1/C � � � C .uE//;

where  .�/ is a completely monotonic function and .�/ a function which satisfies
 .u/ D �1.u/; u 2 Œ0; .0/� and is zero elsewhere. If the experts are assumed
to be exchangeable a priori then the dependence reduces to a single Kendall’s Tau
between experts.

Empirical Bayes Model

Ganguly (2017) worked in the context of considering multiple assessments by mul-
tiple experts. She proposed a parametric model which assumed that the difference
between the true values of the unknowns and the estimates from the experts, i.e.
the errors ui, followed a multivariate Normal distribution for the vector of expert
assessments. The standard deviation for each was inferred from a self-assessment
by each expert and free to change question by question.

The correlations between the experts were assumed constant for all questions.
The correlations were estimated pairwise relative to the difference between an
expert’s estimates and the group averages for the unknowns as their true values were
not known. An empirical prior was assumed across all question and an empirical
Bayesian solution was implemented.
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9.4.2 Opinion Pooling Methods

Cooke’s Classical Method

Perhaps the most widely used opinion pooling method is Cooke’s Classical Method
(Cooke 1991). This is a linear pooling method which gives performance-based
weights to experts. These weights are based on the performance of the experts on
seed questions, for which the answers are known to the analyst, on two criteria;
calibration and information.

Each expert is asked for quantiles, usually 5%, 50% and 95%, for each seed
variable. Then, if an expert were well calibrated, the proportion of true values to
fall into the m bins created by these quantiles would be p D .p1; : : : ; pm/, where
usually m D 4 and p D .0:05; 0:45; 0:45; 0:05/. Let the actual proportions be
.s1.e/; : : : ; sm.e// for expert e. Let D.u j v/ denote the Kullback-Leibler divergence
of u from v, where u and v are probability distributions, and let

r D 2ND.s.e/ j p/ D 2N
mX

iD1
si.e/ log

�
si.e/

pi

�

where N is the number of seed questions. Under the hypothesis He, that the interval
containing the true value for each variable is drawn independently from p, r is a
realisation of a random variable which has approximately a chi-squared distribution
on m � 1 degrees of freedom. Then the expert’s calibration score is

C.e/ D Pr.X � r j He/;

where X has a chi-squared .m � 1/ distribution. The expert’s information score is
given by

I.e/ D 1

N

NX

iD1
D.fe;i j gi/;

where fe;i is the expert’s density for seed quantity i and gi is a background
distribution which is typically chosen to be uniform or log-uniform. The weights
are then calculated to maximise the joint calibration and information score of a
global or item based decision maker. The weight given to expert e is proportional
to C.e/I.e/. The Classical method is an asymptotically proper scoring rule. A full
explanation of the Classical method is given in Chap. 2 of this book (Quigley et al.
2018).
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The Moment Method

The moment method (Wisse et al. 2008) is also a linear opinion pool which uses
performance based weighting as a result of questions on seed variables. Instead of
probability judgements, however, its inputs are moments. In the case where 5%,
50% and 95% quantiles are elicited they can be approximately converted to a mean
and variance using the Pearson-Tukey method (Smith 1993).

The method assigns weights on the basis of a penalty function. When experts
assess means and variances then this penalty function takes the form

.a; b/ D
NX

iD1
c1.xi � ai/

2 C
NX

iD1
c2.x

2
i � bi/

2;

where the realised values of the variables are x1; : : : ; xN , the expert’s assessment for
the first two moments are a D .a1; : : : ; aN/ and b D .b1; : : : ; bN/ and c1; c2 are
constants which dictate the relative importance of the two moment assessments.

To give the first two moment assessments equal total penalty (Wisse et al. 2008)
set c1 D 1 and c2 such that r D 0:5, where

r D
PN

iD1 c2.x2i � bj/
2

.a; b/
:

Both the Classical Method and the moment method make use of a threshold, ˛. If
the weight of any expert falls below this threshold, then they are excluded from the
aggregated distribution.

Babuscia and Cheung Approach

Babuscia and Cheung (2014) proposed a four part method to linear pooling aggre-
gation incorporating probabilistic thinking, calibration, elicitation and aggregation.
In the calibration step the calibration score for expert e is

S.e/ D 100

(
1 � 1

N

NX

iD1

�
ei � ri

ri

�2)
;

where ei is the expert’s assessment and ri is the true value of the seed variable for
question i. The value for ei is limited to 2ri. This score is then combined with the
score from the probabilistic thinking part of the process and the weightings for the
experts are found by intersection: the highest scoring expert receives weight 0.5, the
second highest receives weight 0.25, etc. The two lowest scoring experts receive the
same weight.
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Non-parametric Approach

Ganguly (2017) proposed a non-parametric approach to assess the optimal weights
in a linear opinion pool. In this approach the same covariance matrix was assumed
as in the Empirical Bayes Model. In this case, however, rather than making
an assumption of multivariate Normality, the correlations between experts were
estimated using a squared loss function.

9.4.3 Correlations in Mathematical Approaches

In this section we consider the seven mathematical aggregation approaches detailed
in Sects. 9.4.1 and 9.4.2 in reference to the three types of correlation between experts
we identified as relevant in Sect. 9.3: correlation between experts for individual
quantities, correlation within individual experts’ assessments of different quantities
and correlation between the experts for different quantities.

In Table 9.1 we provide details about the relevance of each of these types of
correlation to each of the methods.

We see that the main thing missing from those methods considered here is the
ability to incorporate correlations between errors in the judgements of the experts
over different quantities of interest. In a Bayesian context, this could represent either
an extension of the multivariate Normal model or the copula model to consider
multiple unknowns �1; : : : ; �k.

9.5 Correlations in Behavioural Approaches

An argument which is used in favour of behavioural approaches is that the
interaction between the experts themselves is beneficial. That is, by seeing or
hearing each other’s opinions and judgements, the experts are able to combine
different knowledge and experience to produce an improved collective judgement.

In this section we consider specifically how behavioural approaches relate to the
possible correlations listed in Sect. 9.3.

As a starting point, let us consider a Bayesian approach and consider the
problem from the point of view of a “supra-Bayesian” decision maker. In a
“mathematical” Bayesian approach, the decision maker applies Bayesian inference
to the judgements of the individual experts using (9.1). This requires the decision
maker to assess her likelihood function LDM.D j �/. For example, one possibility
is to consider the distribution of the experts’ prior means, given the true value of
an unknown quantity, to be multivariate normal. In the case of a single unknown
quantity, the covariance matrix of this multivariate normal distribution would take
the form (9.2). This can, of course, be extended to the case of several unknowns
in which case the covariances within ˙ could reflect between-question correlations
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within an expert and between experts as well as the between-expert correlations for
a single unknown suggested by (9.2). The weights given to the judgements of the
experts, in the decision maker’s revised judgement f1;DM.� j D/, will depend on the
elements of ˙ so that, for example, the weight given to two experts who are judged
to be strongly positively correlated will be less than twice the weight which would
be given to just one of this pair.

Suppose that the decision maker’s initial view of ˙ is that she might revise
her assessment of ˙ in the light of new information about the experts. Thus, in
a mathematical approach, seed questions might be used and the assessment of ˙
revised after seeing the results. We can represent this by saying that ˙ depends
on some unknown parameters  and data can be used to update the decision
maker’s beliefs about  . For example Winkler (1981) suggested using an inverse
Wishart prior for˙ . However the decision maker may have a vague prior for˙ , the
information available from the use of seed questions may be fairly limited in terms
of learning about ˙ , a model as outlined here may not be a good representation
of the real situation and the decision maker may feel that a more effective means
of producing an aggregated judgement, with appropriate weights given to the
experts, would be to use the experts’ own knowledge and insights about their own
and each others’ judgements to determine the aggregation. Behavioural methods
might be supposed to work in this way. So we now need to consider the extent to
which behavioural methods are likely to deal appropriately with correlations. These
considerations apply even if there is no identifiable supra-Bayesian decision maker.

Typically a behavioural group elicitation process will involve a carefully
designed structure and one or more facilitators. Both of these have roles to play
in helping the process to be successful. See, for example, Reagan-Cirincione
(1994). A recent example of a behavioural group elicitation process is given by
Gosling et al. (2012). Although there is a considerable literature on behavioural
approaches to group elicitation and efforts to reduce various biases and to avoid
the domination of the group by a minority of participants, little is said about the
problem of correlations. The participants themselves may be able to take account of
correlations but this depends, among other things, on the information available to
participants. Some methods, such as the Delphi method, conceal from participants
the source of other opinions and so may restrict the ability of participants to use
their judgements about correlations. In mixed procedures there is a combination of
behavioural interaction within the group with a final mathematical aggregation by
the facilitator, or someone else, for example when consensus is not reached. At this
stage the facilitator or decision maker may be able to take account of correlations
but it is not clear, for example, how correlations which might be measured using
seed questions given to individual experts might relate to effects remaining after
group interaction.

In the Delphi method (e.g. Dalkey and Helmer 1963; Linstone and Turoff
1975), typically opinions are communicated anonymously between participants.
In each of a number or rounds, answers to questions and comments giving the
reasoning for these answers are collected by the facilitator. The facilitator then
summarises this material and passes the summary to all participants, without
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identifying contributors. The idea is that, in a sequence of rounds, a consensus
will be approached. A final aggregation may be used if complete consensus is not
reached. The anonymity of the process may limit the ability of the participants to
use their knowledge of possible associations and correlation between and within the
other experts in judging how much they should adjust their own responses in the
light of the responses of the other experts. On the other hand the anonymity may
also reduce the “bandwagon effect” and thus reduce the effect of a between-expert
correlation which might otherwise be induced by the group-interaction process
itself.

The Sheffield Elicitation Framework (SHELF) (Oakley and O’Hagan 2016),
detailed in Chap. 4 of this book (Gosling 2018), involves three stages. First a
distribution is elicited from each expert independently. This is followed by a group
discussion in a “workshop”. This discussion is not anonymous and would typically
take place with all of the experts together in a room. Finally the experts are asked
to judge what would be the distribution of another, hypothetical, person called
the Rational Impartial Observer, or “RIO”. The RIO is supposed to have seen the
individual judgements and heard the group discussion.

This procedure does give the participants some opportunity to use their judge-
ment about correlations in the experts’ judgements although it is difficult to
assess how effectively they are able to use this opportunity. Advice is given to
the facilitator on managing the group discussion phase, for example encouraging
quieter participants to give their views and preventing outspoken participants from
dominating the discussion. However the advice does not explicitly address the
problem that the group may contain a number of experts whose similar backgrounds
and experience might lead a rational observer who knows of this reasonably to
suppose that their judgements might be correlated and to assess them as correlated
for the purpose of her own aggregation. On the other hand, advice is given in the
SHELF material on the recruitment of experts, including that the group should have
“sufficient diversity of experience and opinion.” The desirability of diversity is also
mentioned by Wintle et al. (2012).

The IDEA (“Investigate Discuss Estimate Aggregate”) protocol (Hanea et al.
2016a,b), described in Chap. 5 of this book (Hanea et al. 2018), is a Delphi-
like method. Experts first give individual judgements. These are then passed
anonymously to all of the other participants. The collection of initial judgements
is then debated in a facilitated discussion involving all of the participants. After
this, each expert then gives a separate revised judgement. Up to this point IDEA
follows an “estimate–talk–estimate” pattern as described by Gustafson et al. (1973).
However, finally the revised judgements are aggregated mathematically. The method
for mathematical aggregation may involve the use of seed questions. The IDEA
protocol is thus a mixed method.

The desirability of diversity among the participants in an IDEA group is
emphasised by Hanea et al. (2016b). Such diversity may tend to avoid between-
expert correlations. The anonymity of the individual judgements is justified by
Hanea et al. (2016b) on the grounds of avoiding dominance and “halo” effects,
a “halo” effect being where participants feel under pressure not to disagree with
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an individual with a strong reputation. The halo effect could, of course, induce
between-expert correlation and so avoiding it is desirable. However the anonymity
also makes it more difficult for participants to make judgements about possible
correlations between other participants which might inform their decisions about
how far ro revise their own opinions. The revised judgements are also anonymous
to help avoid participants feeling under pressure to conform to the opinions of
more dominant experts. Hanea et al. (2016a) discuss dependence between experts,
propose a method for measuring this and discuss some results from an experiment.
According to these results, the between-expert correlation appears to change little
between the judgements before and after the discussion phase. However this does
not address the question of whether proper account is taken of these correlations
either in revising the individual judgements or in the final aggregation.

While much has been published comparing different behavioural methods with
each other and with mathematical aggregation, relatively little attention has been
paid to the problem of correlations between judgements in behavioural methods.
One exception is Hanea et al. (2016a). So far, the most constructive relevant advice
seems to be to select a diverse collection of experts in order to try to avoid between-
expert correlation.

9.6 Evaluation of Mathematical Approaches

In this section we consider empirical evaluation of the presence of dependence
between experts in expert judgement elicitation, and the effect of incorporating
this dependence into the modelling on the accuracy of aggregation techniques.
The analysis will take two stages, initially considering the ability of aggregation
techniques to predict the value of an unknown and then considering the ability of
the aggregation techniques to capture the uncertainty around the unknown.

To do so, we require data from expert judgement elicitations in which multiple
unknowns have been elicited from multiple experts. As part of Cooke and Goossens
(2007), the data from 45 expert judgement elicitations conducted by TU Delft and
analysed using the Classical Method, were released. The findings which follow are
based on an analysis of the data from all 45 elicitation. For each elicitation:

• there were multiple experts (between 3 and 77),
• each was asked each of the seed questions (between 5 and 48),
• quantiles were provided for each unknown by each expert (typically 5%, 50%

and 95%),
• the true value of the seed variable is known.

The name of each elicitation in Cooke and Goossens (2007), the number of seed
variables and the number of experts are given in the table in Appendix 2. Full details
of each of these elicitations are given in Cooke and Goossens (2007).
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9.6.1 Prediction

Wilson (2016) analysed the TU Delft elicitations in terms of their ability to make
predictions. Their analysis produced a number of findings; general findings on
elicitation, findings on the extent of dependencies in expert judgement elicitation
with multiple experts and findings on the effect of the incorporation of these depen-
dencies on the accuracy of predictions resulting from mathematical aggregation
models. We now summarise each of these groups of findings, beginning with the
general findings.

F1 There is a strong positive relationship between the true values of the seed
variables and the medians given by the experts.

F2 A large amount of overconfidence is observed in the experts. The true values
of the seed variables fall between the 5% and 95% quantiles assessed by the
experts just 52% of the time.

The findings on the extent of dependencies in expert judgement elicitation with
multiple experts were:

F3 A large proportion of the elicitations contain pairs of experts whose errors
in their judgements, with respect to their medians, are strongly positively
correlated using both Pearson and Kendall correlation (for Pearson, 93% above
0.67 and 73% above 0.95).

F4 A small proportion of the elicitations contain pairs of experts whose errors in
their judgements are strongly negatively correlated (for Pearson, 16% below
�0.67 and 4% below �0.95).

F5 There are very few elicitations in which the errors on the judgements of
individual experts for multiple unknown quantities are highly correlated.

Wilson (2016) compared the prediction from four mathematical approaches, two
Bayesian and two opinion pooling. The Bayesian methods used were the multi-
variate normal approach of Winkler (1981) and the copula approach of Jouini and
Clemen (1996) and the opinion pooling approaches were the Classical Method of
Cooke (1991) and the method of Babuscia and Cheung (2014). As we have seen,
the two Bayesian approaches incorporate correlations between experts and the two
opinion pooling methods do not. Both in-sample validation and leave-one-out cross
validation were used to compare methods. The numbers reported here are those from
the in-sample validation. The main findings were:

F6 When compared to equal weighting of experts, all of the mathematical aggre-
gation methods provide better prediction in over 50% of the elicitations using
Mean Absolute Percentage Error (MAPE), Residual Mean Square Percentage
Error (RMSPE) and Maximum Absolute Percentage Error (MAXPE).

In Fig. 9.1 we see the MAXPE for each elicitation for both equal weights and each
of the four mathematical aggregation methods. In each case, we see the majority
of the points lying above the line of x D y indicating that the method outperforms
equal weights.
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Fig. 9.1 Scatter plots comparing the MAXPE from Multivariate Normal, Copula, Classical and
Babuscia and Cheung methods to equal weights

F7 The two Bayesian approaches to aggregation provide the best prediction in 60%
(MAPE), 64% (RMSPE) and 75% (MAXPE) of the elicitations.

F8 If we consider only the elicitations in which at least one pair of experts is highly
correlated (Kendall correlation above 0.75), all of the methods still provide
better prediction that equal weighting in more than half of the elicitations.

In Fig. 9.2 we see the MAXPE for each elicitation for both equal weights and each of
the four mathematical aggregation methods for only the elicitations in which there
was at least one pair of highly correlated experts. We see, as in Fig. 9.1, the majority
of the points lying above the line of x D y indicating that the method outperforms
equal weights.

F9 The two Bayesian aggregation approaches provide superior predictions more
often when we consider only the elicitations with highly correlated experts than
when we consider all of the elicitations. The Bayesian aggregation approaches
offer the best predictions in 60% (MAPE), 68% (RMSPE) and 88% (MAXPE)
of the elicitations with highly correlated experts.
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Fig. 9.2 Scatter plots comparing the MAXPE from Multivariate Normal, Copula, Classical and
Babuscia and Change methods to equal weights for the elicitations with highly correlated experts

9.6.2 Uncertainty

To assess the uncertainty of the aggregated distributions we consider the best
performing Bayesian method and the best performing opinion pooling method
from above: the multivariate Normal approach of Winkler (1981) and the Classical
Method of Cooke (1991). Correlations between experts were estimated empirically
using the seed questions for the Bayesian aggregation method. From the 45 TU
Delft studies, we investigate three: the flange leak study (number 1), which has 8
seed variables and 10 experts, the space debris study (number 4) which has 18 seed
variables and 7 experts and the return1 study which has 15 seed variables and 5
experts. The highest Kendall correlations between experts in the three studies are
0.84, 0.98 and 0.38 respectively and so we are considering one study (space debris)
with at least one pair of very highly correlated experts, one study with at least one
pair of reasonably strongly correlated experts (flange leak) and one study with only
moderately correlated experts (return1).

In each case we assess the 5%, 50% and 95% quantiles of the aggregated
probability distribution for each seed variable. If the aggregated expert is well-
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calibrated, then the true value of the seed variable should fall between the 5% and
95% quantiles with a probability of approximately 0.9. The three quantiles for the
aggregated distributions using the two approaches and the realisation of the seed
variable for all of the seed variables in the return1 study are given if Fig. 9.3.

We see that both of the methods include the seed variable within the upper
and lower 5% quantiles for all 15 of the seed variables. The biggest differences
between the methods in this case is that the aggregated distribution resulting from
the multivariate Normal method typically has larger uncertainty than that from the
Classical method. If we consider the four probability bins made up by these four
quantiles (below 5%, between 5% and 50%, between 50% and 95% and above
95%), then we might hope to see 5%, 45%, 45% and 5% of the seed variables lying
in these four bins respectively. In the case of the Classical Method, these proportions
are (0,0.33,0.67,0) for this study and for the multivariate Normal method they are
(0,0.27,0.73,0).

We can perform the same analysis for one of the studies with at least one pair
of strongly correlated experts. Let us consider the flange leak study. The equivalent
plot to Fig. 9.3, showing the three quantiles for the aggregated distributions using
the two approaches and the realisations of the seed variables for each of the seed
variables in the flange leak study are given in Fig. 9.4.

We see a very different picture in this case. The Classical Method is still giving
5% and 95% quantiles between which the true realisation of the seed variable lies the
majority of the time. However, the multivariate Normal method is now producing
quantiles which display far too little uncertainty. The result is that the true value of
the seed variable lies between the 5% and 95% quantiles rarely in this case. The
proportion of seed variables lying in the four bins for this study using the Classical
Method are .0:125; 0:5; 0:375; 0/ and for the multivariate Normal method they are
(0.25,0.125,0.125,0.5).

A similar story presents itself when we analyse the results of the two aggregation
approaches for the space debris study. The relevant plots are given in Fig. 9.7
in Appendix 3. Again, the Classical Method is giving reasonable estimates of
the uncertainty on the seed variables whereas the multivariate Normal method is
typically underestimating the uncertainty. The proportions of observations falling
into the four bins from the two methods (0.27,0.23,0.44,0.06) and (0.44,0,0.06,0.5)
respectively.

From these three studies, it would appear that highly correlated experts have the
effect of reducing the uncertainty in the aggregated distribution resulting from the
multivariate Normal model to the extent that the true observations often fall outside
the 5% and 95% quantiles. By contrast, the Classical Method appears to estimate the
uncertainty on the seed variable reasonably well for both uncorrelated and correlated
experts.

In fact, we can use a simple example to show that the multivariate Normal method
does indeed have particular problems assessing uncertainty when experts are highly
positively correlated. Consider an elicitation with two experts. Suppose that, from
elicited quantiles, expert 1’s mean and variance for unknown � are .�1; �21 / and
expert 2’s mean and variance are .�2; �22 /. Further suppose that the correlation
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Fig. 9.3 The three quantiles for the aggregated distributions using the Multivariate Normal (M)
and Classical methods (C) and the realisation of the corresponding seed variable (R) for all of the
seed variables in the return1 study
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Fig. 9.4 The three quantiles for the aggregated distributions using the Multivariate Normal (M)
and Classical methods (C) and the realisation of the corresponding seed variable (R) for all of the
seed variables in the flange leak study

between experts 1 and 2 is �. Then Winkler (1981) shows that the mean and variance
of the aggregated distribution are

�� D .�22 � ��1�2/�1 C .�21 � ��1�2/�2
�21 C �22 � 2��1�2 ;

��2 D .1 � �2/�21 �22
�21 C �22 � 2��1�2 :

Suppose that �21 D 1. We can see the effect on the variance of the aggregated
distribution for � of varying �22 between 0 and 10 and specifying � to represent
virtually uncorrelated and highly correlated experts. In Fig. 9.5, the black line
represents � D 0:05 and the red line represents � D 0:95.
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Fig. 9.5 The aggregated variance using the multivariate Normal method for varying �22 with � D
0:05 (black) and � D 0:95 (red)

We see from the plot that when � D 0:05 as the uncertainty expressed by expert
2, in the form of �22 , increases, this leads to increased uncertainty, in the form of
�2, in the final aggregated distribution for � . However, when � D 0:95, then there
is a maximum in the plot, beyond which, as expert 2’s uncertainty about the true
value of � increases, the uncertainty about its value in the aggregated distribution
decreases.

It can be shown that the turning point in general is �22 D �21 =�
2. We see that, as

the correlation between the experts, �, increases, the variance for which this strange
behaviour will begin to happen decreases.

We can see the effect of this behaviour in terms of the aggregated quantiles
resulting from the specifications of the two experts. Suppose that the means for
experts 1 and 2 are �1 D 1; �2 D 1 respectively. Then, for the variances used
previously and � D 0:05, the median and 5% and 95% quantiles of the aggregated
distribution for � are given in the left hand side of Fig. 9.6.

We see that, as �22 increases, the 90% uncertainty limits for � become wider, as
we would expect. The same plot, with � D 0:95, is given in the right hand side of
Fig. 9.6. In this case we see the effect of the increasing aggregated variance up until
the turning point at �21 =�

2 D 1:1. Beyond this value, the uncertainty in � in the
aggregated distribution is reducing as expert 2’s uncertainty increases.

Thus we see that the multivariate Normal method is not suitable for assessing the
uncertainty in the aggregated distribution when there are highly correlated experts
in the elicitation.
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Fig. 9.6 The median (black), 5% and 95% quantiles (red) of the aggregated distribution using the
multivariate Normal method for varying �22 with � D 0:05 (left) and � D 0:95 (right)

9.7 Summary and Future Directions

In this chapter we have considered the problem of combining judgements from
correlated experts. We have seen that there are several sources of correlation which
are relevant to any expert judgement study. In particular, correlations between
experts and between experts’ judgements for multiple questions could have the
effect of introducing biases into aggregated judgements, whether judgements are
aggregated using behavioural or mathematical methods. We made the distinction
between correlations resulting from aleatory and epistemic uncertainty and it is
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important to separate as much as possible these two types of uncertainty when
eliciting unknowns from experts.

We considered some specific mathematical aggregation methods and identified
which of the types of correlation identified were relevant to each. In general, opinion
pooling approaches could not incorporate the correlations between experts, and
typically assumed that different experts give independent information. In contrast,
the Bayesian methods considered could all incorporate correlations between the
judgements of different experts and also correlations between the judgements of
individual experts for different quantities.

The issue of correlations between the judgements of experts is not usually
considered in commonly used behavioural methods. However, we found that
behavioural methods are typically designed to try to minimise the biases of the
experts via the use of training and the order in which questions are asked. Also,
the advice given in many behavioural methods to select a diverse collection of
experts was identified as good practice to try to reduce the correlations between
the judgements of the experts.

We saw in our empirical investigation that mathematical aggregation methods
which incorporate correlations between experts typically produce slightly better
point predictions for quantities of interest than those which do not, particularly
for studies in which there are pairs of highly correlated experts. However, the best
of these methods for point prediction which we considered, the Winkler method,
produced estimates of uncertainty for the quantities of interest which were often
far too tight for studies in which experts were highly correlated. In contrast, the
Classical Method, which does not incorporate correlations between experts, still
produced reasonable uncertainty estimates for studies in which there were highly
correlated experts.

There is clearly much scope for future work in this area. In terms of mathematical
methods, Bayesian methods are promising as they can explicitly account for
correlations in judgements between and within experts. What is needed, is a method
which can provide both good point prediction and good uncertainty estimation when
there are highly correlated experts in a study. There have been some recent efforts
in this direction, and an assessment of these in an analysis such as the one reported
in this chapter would be a good first step towards this.

In a purely behavioural approach, attempts to deal with the issue of correlation
depend on the selection of a diverse group of experts, training and facilitation.
However there is scope for more experimental study to try to measure the effects. In
mixed approaches, where there is a final mathematical aggregation phase after the
behavioural phase, there is the possibility of using the results of seed questions to
measure correlations and allowing for these correlations in the aggregation phase.
This could be done, for example, by an extension of the IDEA protocol.

Expert judgements play a crucial role in scientific theory, for example in the
quantification of inputs for climate models. If we do not assess the correlations
present in the judgements of experts and model them appropriately, then this could
have very serious impacts on the decisions being informed by the outputs from these
models.
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Appendix 1

Suppose we have elicited from an expert the quantiles q1; : : : ; qk corresponding
to probabilities p1; : : : ; pk for unknown � . For example, if p1 D 0:5 then q1
would be the expert’s median for � . Now suppose that we will use an exponential
distribution to represent the beliefs of the expert as expressed in the quantiles. For
the exponential distribution, quantiles are given by

Q.pi; 	/ D � log.1 � pi/

	
;

for rate parameter 	 which is estimated based on the elicited quantiles. One way to
achieve this is to choose 	 to minimise the sum of squared differences between the
expert’s judgements and the quantiles of the exponential distribution, i.e.,

O	 D min
	2Œ0;1/

(
kX

iD1
.qi � Q.pi; 	//

2

)
:

We can find this value analytically by differentiating once and setting the differential
equal to zero. Doing so gives

kX

iD1

�
qi C log.1 � pi/

O	

��� log.1 � pi/

O	2
�

D 0;

and so

O	 D �Pk
iD1Œlog.1 � pi/�

2

Pk
iD1 qi log.1 � pi/

:

For example, suppose that three quantiles are elicited from an expert, the lower and
upper quartiles and the median. Then p1 D 0:25; p2 D 0:5; p3 D 0:75. Suppose
that the elicited values are q1 D 0:3; q2 D 0:7; q3 D 1:5. In each case, there is an
exact value of 	 which satisfies this individual quantile. They are 	1 D 0:96; 	2 D
0:99; 	3 D 0:92. Using the method above, we can find our estimate of 	 which
approximately satisfies all three quantiles. This is O	 D 0:94. Thus, we would say
that this expert’s distribution for unknown quantity � is

� � Exp.0:94/:



9 Combining Judgements from Correlated Experts 237

Appendix 2

Number Study Seed variables

1 Flange leak 8
2 Crane risk 11
3 Propulsion 13
4 Space debris 18
5 Composite materials 12
6 Option trading 38
7 Risk management 11
8 Groundwater transport 10
9 Acrylo-nitrile 10
10 Dispersion panel TUD 36
11 Dispersion panel TNO 36
12 Dry deposition 24
13 Ammonia Panel 10
14 Sulphur trioxide 10
15 Water pollution 11
16 Environm. panel 28
17 Montserrat volcano 8
18 Campylobacter NL 10
19 Campy Greece 10
20 Oper. risk 16
21 Infosec 10
22 PM25 12
23 Falls ladders 10
24 Dams 11
25 MVOseeds Monserrat follup 5
26 Pilots 10
27 Sete cidades 10
28 TeideMay 05 10
29 VesuvioPisa21Mar05 10
30 Volcrisk 10
31 Sars 10
32 A seed 8
33 Atcep 10
34 Bswaal 8
35 Dcpwwlwl 48
36 Guadeloupe 5
37 Greece NL Carma 10
38 Infoseces 10
39 Oninx 47
40 Pbearlyh 15
41 Return1 15
42 ReturnAfter 31
43 S seed 31
44 Dww exp 15
45 Exp dd 14
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Appendix 3

C R C R C R C R C R C R

C R C R C R C R C R C R

C R C R C R C R C R C R

Fig. 9.7 The three quantiles for the aggregated distributions using the Multivariate Normal (M)
and Classical methods (C) and the realisation of the corresponding seed variable (R) for all of the
seed variables in the space debris study
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Chapter 10
Utility Elicitation

Jorge González-Ortega, Vesela Radovic, and David Ríos Insua

Abstract This chapter introduces key concepts in modelling preferences under
uncertainty, focusing on utility elicitation, both in single and multiple attribute
problems. We also discuss issues in relation with adversarial preference assessment.
We illustrate all concepts with a case combining aspects of energy and homeland
security.

10.1 Introduction

This chapter targets eliciting decision maker (DM) preferences under uncertainty.
Complementing the many other contributions in this volume referring to modelling
beliefs, it provides the other ingredient required to support decision making under
uncertainty, if we opt for a Subjective Expected Utility (SEU) model. We briefly
introduce basic concepts such as utility function, risk aversion and independence
preference conditions. We also refer to issues concerning adversarial preferences.
Our focus will be on modelling aspects and practical issues in relation with eliciting
utility functions.

Before proceeding, we note the distinction between value and utility functions:
the first one encodes preferences under conditions of certainty and may include a
notion of strength of preference, see Chap. 12 in this volume (Morton 2017); the
second one encodes both preferences and also an attitude towards risk, so that they
may be used meaningfully in SEU models. The key difference is thus that values
do not reflect the risks present in decisions under uncertainty. Therefore, expected
values are not of use in such contexts due to preferences being typically non-linear in
payoffs: decisions based on expected utilities are better suited when taking risks into
account. Thus a utility function is a value function, but not vice versa. Note, though,
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that it is possible to assess a value function using strength of preference comparisons
and, then, transform this to a utility function, as we sketch in Sect. 10.2.

We initially refer to problems with just one criterion. We then deal with
problems with multiple criteria and, finally, with adversarial problems. To support
the discussion, we illustrate the main concepts with a case referring to energy
security, which we briefly introduce now.

Case: Energy Security in Serbia. Energy is a fundamental input for the global
community and every country’s normal functioning. Thus, energy security has
become a priority issue, particularly within the European Union. Recall, as an
example, the recent crisis in Ukraine. The International Energy Agency (IEA)
defines energy security as the “uninterrupted availability of energy sources at an
affordable price”. Its achievement requires “to reduce risks to energy systems, both
internal and external, and build resilience in order to manage the risks that remain”.

Serbian energy supply is highly influenced by international relations, consider
e.g. the gas supply crisis in 2009. In practical terms, such risks can be mitigated and,
consequently, energy security improved, by diminishing dependence from a single
energy origin and diversifying to other energy sources. However, difficulties arise as
Serbia legislated against the use of nuclear energy in 1989 and numerous obstacles,
mostly in transmission systems, affect the use of renewables. Due to these factors,
electricity from thermal and hydropower plants is the only one in use. A stable
and secure energy infrastructure is an imperative for Serbia, being an important
part of its national security. In order to follow the EU’s Programme for European
Critical Infrastructure Protection, Serbia has to protect its energy infrastructure
against numerous threats, both anthropogenic and natural.

Internal and external energy dependence prevents the country from providing
an adequate level of energy security. Thus, the Serbian government is trying to
decrease its energy dependence from Russia and diversify its sources of natural
gas. Western governments are trying to help it by promoting two alternative ways to
import energy: the Trans-Adriatic Pipeline (TAP) and a pipeline from the Croatian
gas storage facility. The EU has also devoted a specific budget for the creation of the
Trans-Balkan Power Corridor interconnecting the electricity transmission systems
from Serbia, Montenegro and Bosnia and Herzegovina to those of Croatia, Hungary,
Romania and Italy.

Some other issues, such as ethnic and internal political divisions, create also
threats to energy security in the country. For example, the Serbian-Kosovo conflict
results in unsolved energy issues in the region. Experts believe that the Balkans
constitute a unique and complex territory where terrorism poses a major threat to
future development, being the most likely threats lone wolf attacks, related to Al-
Nusra and other parts of the Islamic State, and small terrorist cells, for example in
Kosovo and Sandzak. Last, but not least, there are also numerous cases in which
wild fires impact the Serbian electrical transmission system, as well as criminal acts
in which transformation stations and other facilities are broken and robbed.

Threats to energy infrastructure in Serbia are, therefore, numerous. Future tasks
for policy makers include planning and designing a more resilient energy infras-
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tructure, evaluating the work of the emergency management sector and creating
Preventive Action and Emergency Plans, reducing dependency and deciding about
the optimal protection level, having in mind the increasingly dynamic regional and
international relations.

10.2 (Single Attribute) Utility Elicitation

We introduce key concepts in utility elicitation focusing on the single attribute
case. We assume that a DM needs to make decisions under risk. This corresponds
to choosing among lotteries p, also referred to as gambles, which will be simple
distributions over a consequence set C. The set of such lotteries is designated
P . We first recall the basic mathematical structure leading to the expected utility
model, then describe a protocol for utility elicitation and remind key concepts
in risk aversion, temporal preferences and behavioral issues affecting preference
modelling.

Under this framework, utility measurement helps the prescription of decisions
under risk. By eliciting the DM’s preferences for simple lotteries, which may be
introspected with confidence, choice in more complex situations can be extrapo-
lated. However, consistency in the evaluation of lotteries must be ensured. Basic
utility elicitation is therefore performed by repeatedly asking the DM to assign
expected utilities to different gambles, through various methods.

10.2.1 Basic Utility Concepts

In expected utility theory under risk, a preference relation - is assumed over P ,
which satisfies three axioms due to Von Neumann and Morgestern, see French and
Ríos Insua (2000):

A1: Weak-order: - on P is complete (that is, for all p;q 2 P , either p - q or
q - p) and transitive (that is, for all p;q; r 2 P , p - q and q - r imply
p - r).

A2: Archimedean: For all p;q; r 2 P , if p 	 q 	 r, there exist ˛; ˇ 2 .0; 1/ such
that ˛ p C .1 � ˛/ r 	 q 	 ˇ p C .1 � ˇ/ r.

A3: Independence: For all p;q; r 2 P and ˛ 2 .0; 1�, ˛ p C .1 � ˛/ r - ˛ q C
.1 � ˛/ r if and only if p - q.

Under these conditions, there is a function u, called utility function, such that for all
p;q 2 P:

i. p - q , u.p/ � u.q/.
ii. u.˛ p C .1 � ˛/q/ D ˛ u.p/C .1 � ˛/ u.q/.
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From this, we easily deduce that

p - q () Ep Œu� � Eq Œu� ;

where Ep Œu� represents the expected utility of lottery p.
Note that representation theorems show that utility functions are unique up to a

positive affine transformation: two utility functions u.�/ and w.�/ represent the same
preferences if and only if for some ˛ > 0 and �1 < ˇ < 1,

w.�/ D ˛ u.�/C ˇ;

The results are extended to more general consequence and lottery sets, see French
and Ríos Insua (2000).

10.2.2 An Elicitation Protocol

We suggest now how a utility function over a general consequence space C may be
elicited. To start with, the DM is asked for her preferences between simple gambles
in which the randomisations are based upon a reference experiment with outcomes
drawn from C. In the simplest case, two consequences c� 	 c� are fixed and for
each c 2 C with c� - c - c�, the DM is asked to determine a value of p for which
she is indifferent between:

Gamble A W c for certainI

Gamble B W
(

c� with probability p;

c� with probability 1 � p:

To support the elicitation, we may consider, for example, a probability wheel and
adjust p by varying the size of one sector of the wheel. Moreover, we may design
a protocol which iteratively bounds p above and below until sufficiently specifying
it. As mentioned, u.�/ is unique up to a positive affine transformation, so we may
set u.c�/ D 1 and u.c�/ D 0, without loss of generality, and deduce from her
indifference:

u.c/ D p u.c�/C .1 � p/ u.c�/ D p:

For finite or bounded C it is usual to choose c� and c� as the most and least preferred
consequences, respectively.

Once with a procedure to assign the utilities of specific consequences, we may
introduce an elicitation protocol to assess the utility function, which may run as
follows:
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1. Determine the range of interest for the attribute.
2. Assign utility 0 to the worst value c� and utility 1 to the best one c�.
3. Assign utilities to a few intermediate values c1; : : : ; cn; say u1; : : : ; un, respec-

tively.
4. Fit a utility function to the data ..c�; 0/; .c1; u1/; : : : ; .cn; un/; .c�; 1//, e.g.

through non-linear least squares.
5. Check for consistency, by asking a few verification questions.

Note that when the utility function has been fitted, step 4, the elicitation process is
not over yet. The DM’s preferences should be rational, i.e. transitive and complete,
so consistency must be checked, as step 5 suggests. Also, sensitivity analysis
methods, see Ríos Insua (1990), may provide relevant information about the stability
of the result and how critical are the analysis conclusions with respect to the elicited
preferences. In particular, it might be the case that utilities are elicited imprecisely
within the intervals. It is also important to take into account and counter the potential
DM’s inaccuracies and biases, some of them described in Sect. 10.2.4.

The key point thus is to assess the utility values of a few points, with the required
amount determined by the nature of the selected utility function and the desired
accuracy as well as the time available. The classic paper by Farquhar (1984) surveys
a wide variety of forms of indifferences which may be sought in elicitation, being
probability equivalence and certainty equivalence methods the most frequently
used, which we briefly outline.

Probability equivalence methods include our above motivating example. In them,
the DM is required to specify a probability equivalent p such that a gamble with
values x 	 y with respective probabilities p and 1 � p is equally preferred to a
certain value w (Œx; yI p� � w). We begin by selecting two reference points c� and c�
in C, where c� 	 c�. The task is to assess the utilities of the points c� 	 c1 	 : : : 	
cn 	 c�, possibly using one of the following methods:

1. Extreme gambles: Œc�; c�I pi� � ci. The reference points in C are used as extremes
in every gamble. If the utility of a value c not lying between c� and c� is needed,
one can ask additional questions of the form Œc�; cI p� � c� for c� 	 c or
Œc; c�I p� � c� for c 	 c�. The method is easy to use, but is susceptible to serial
dependence in the responses and biases from range effects, if c� and c� are too
extreme.

2. Adjacent gambles: Œci�1; ciC1I pi� � ci. Instead of using extreme values as
reference points, this method uses gambles over the “locally best and worst”
values for each ci. Points outside the range are easily determined by additional
comparisons of the form Œcn; cI p� � c� for c� 	 c or Œc; c1I p� � c� for
c 	 c�. One advantage over the previous method is the attenuation of biases
from range effects, though further comparisons of the form Œci�k; ciCkI p� � ci

are recommended to provide consistency checks on the assessed utilities.
3. Assorted gambles: Œcji ; cki I pi� � ci, where ji < i < ki. This method generalizes

the previous ones, yet requires further structure on the gamble comparisons. In
any case, it is appropriate for making consistency checks.
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Certainty equivalence methods ask the DM to specify a sure outcome w, called
the certainty equivalent, for which Œx; yI p� � w. Although weaker assumptions
are possible, we consider a continuum of values in C so that w exists and strictly
increasing preferences on C so that w is unique. We begin by fixing two reference
points c� and c� in C, where c� 	 c�, u.c�/ D 0 and u.c�/ D 1, and a set of
probabilities 0 < p1 < : : : < pn < 1. The task is to identify the points c1 	 : : : 	 cn

corresponding to each of the probabilities, possibly using one of the following
methods:

1. Fractile: Œc�; c�I pi� � ci. This method is similar to the extreme gambles one,
with analogous advantages and disadvantages. Simple implementation faces
biases from range effects when the reference points are far apart and potential
distortions in risk behaviour and other biases when probabilities are too close to
0 and 1.

2. Chaining methods: Œci0 ; ci00 I pi� � ci, where ci0 ; ci00 2 Si�1 D Si�2 [ ci�1 with
S0 D fc�; c�g. This method makes use of previously elicited values in subsequent
gamble comparisons, obtaining chained responses. Well-known methods in this
category are the fractionation or the midpoint methods. These allow us to assess
additional values one at a time until sufficient points are available to estimate
the utility function satisfactorily. Its drawbacks include serial dependence, range
effects and certainty effects, among other biases.

A crucial issue is choosing the functional form of the utility function. Monotonic-
ity is often a guide to sketching the function: e.g. more profit is invariably preferred
to less. Concavity is also specially important, and we refer to it in the next section.

10.2.3 Risk Attitudes and Utility Functional Forms

Obviously, since expectation is a linear operator, linear transformations of utilities
do not affect the ordering given by expected utilities. Two utility functions which
represent the same preferences are said to be strategically equivalent. This is an
equivalence relation over utility functions and those in the same equivalence class
share the same risk attitude.

In supporting this claim, we limit the discussion to the case in which conse-
quences are monetary, and C is an interval of the real line. Then, for any lottery p we
may consider two expectations: the expected utility, EC Œu.c/ j p�, and the expected
monetary value, EC Œc j p�, which gives the average sum that the DM would receive
if she could take the gamble repeatedly. In line with Sect. 10.2.2, the certainty
equivalent, cp, of a gamble is the monetary value that the DM would place on taking
it a single time:

u.cp/ D EC Œu.c/ j p� ;
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or, equivalently,

cp D u�1.EC Œu.c/ j p�/:

The risk premium, �p, of a gamble is the difference between its average monetary
value if it is taken infinitely often and its monetary value if taken just once:

�p D EC Œc j p� � cp:

It provides a financial evaluation of the benefit gained by the DM by being able to
“play the odds” in repetitions of the lottery.

The sign of �p is determined by the shape of u.�/. If it is concave, the risk
premium of a gamble is necessarily non-negative. The DM would, therefore, value
a single opportunity to take a gamble less in monetary terms than its average payoff.
She is averse to the risk inherent in a single play. Thus, concave utility functions
represent risk averse preferences. A risk-averse person prefers a small guaranteed
payoff to a random payoff that has larger expected value but some chance of being
very small. Concave utility is the foundation of the insurance industry. Similarly, if
u.�/ is convex, the risk premium of a gamble is necessarily non-positive. The DM
values a single play of the gamble more in monetary terms than its average payoff.
Convex utility functions represent risk prone preferences. When u.�/ is linear, the
risk premium is identically zero and the preferences are said to be risk neutral.

Pratt (1964) defined the local risk aversion of an increasing utility function as

r .c/ D �u00.c/
u0.c/

D � d

dc
.ln.u0.c///; (10.1)

assuming that the consequences c are represented by a continuous variable and
preferences increase with its value, e.g. money. If r.�/ is everywhere non-positive,
u.�/ is convex and models risk prone preferences. Similarly, if r.�/ is everywhere
non-negative, u.�/ is concave and models risk averse preferences.

A simple but very useful form of utility function arises when the local risk
aversion is set to a constant, in which case we have Constant Absolute Risk Aversion
(CARA). Integrating (10.1) gives:

u.c/ D 1 � exp.�� c/; if � > 0; i:e: constant positive risk aversion

u.c/ D c; if � D 0; i:e: positive risk neutrality

u.c/ D �1C exp.� c/; if � > 0; i:e: constant positive risk proneness

where strategic equivalence has been used to set arbitrary constants of integration to
conventional values of ˙1. Another important case is when u.c/ D .c�˛/1�ˇ=.1�
ˇ/, which corresponds to Hyperbolic Absolute Risk Aversion (HARA).

The use of exponential utility functions is specially convenient as it limits
the number of utility values to be elicited, say certainty equivalents, to one of
such values to assess the parameter �, called the risk tolerance coefficient, and
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characterises the function. Assume, for example, that the DM is risk averse and
her utility function is u.c/ D 1�exp.�� c/. One way of eliciting it is to ask the DM
to determine the largest stake cmax for which she would accept the 50-50 gamble:

50-50 Gamble W
(
2cmax with probability 1

2
;

�cmax with probability 1
2
:

Then, the DM would be indifferent between 0 (the current fortune) and the 50-50
gamble, leading to the expression:

u.0/ D 1
2

u.2cmax/C 1
2

u.�cmax/

()
1 D 1

2
.exp.�2� cmax/C exp.� cmax//;

whose approximate solution is � � 1
2cmax

. Of course, consistency checks would lead
us to elicit additional values.

Note that utility functions may exhibit many shapes other than concave, convex
or linear. Many empirical studies have suggested that individuals’ utility for money
passes through regions of convexity and concavity as the sums involved increase,
with risk proneness changing to risk aversion. Furthermore, an individual’s utility
for money and her risk attitude is undoubtedly related to her total assets. Thus, in
assessing a DM’s utility, it is usual to “integrate” monetary outcomes into her final
level of wealth. For example, the gamble hp1; c1I p2; c2I : : : I pr; cri, which offers
potential changes in assets of ci, would be framed for her as hp1;w C c1I p2;w C
c2I : : : I pr;w C cri, where w is her total wealth before the gamble.

Case: Utility Function. We assess now a utility function for the introduced case.
In the past, Serbia has had to spend enormous financial means to mitigate the
consequences of natural disasters in the energy sector due to lack of prevention.
In fact, the Global Climate Risk Index 2016 (Kreft et al. 2015) considered Serbia as
the country most affected by the impact of weather-related loss events in 2014. Thus,
one of the key objectives considered is the minimisation of natural risks measured
through the total amount of money spent on repairs of the energy infrastructure, see
Fig. 10.2.

The best value for this criterion would be 0Me if consequences of natural
disasters were negligible and no extra funds were needed. On the other hand, we
shall base the worst value on the effect of floods in Serbia in 2014 which accounted
to almost 500Me. We use a probability equivalence method to assess the utilities
of three intermediate values, as expressed in Table 10.1. Observe that the utility
function is decreasing, since it refers to costs.

Table 10.1 Utilities for five
values of consequence repair
costs

Cost (Me) 0 100 250 400 500

Utility 1.00 0.89 0.67 0.48 0.00



10 Utility Elicitation 249

Fig. 10.1 Utility values and
fitted utility function u.�/

As an example, for a cost of 250Me, the associated utility is 0:67. This means
that our expert found equally desirable a sure loss of 250Me to a lottery which
gives her a cost of 0Me with probability 0:67 and 500Me with probability 0:33.
To come out with that value, we first offered the DM the reference lottery with
probability 1=2 D 0:5 and she responded that she preferred the certain amount of
250Me, therefore suggesting that u.250/ > 0:5. Then, we offered her the reference
lottery with probability 1=2C1=4 D 0:75 and she said that she preferred the lottery,
therefore suggesting that u.250/ < 0:75 and, consequently, 0:5 < u.250/ < 0:75.
Next, we offered her the reference lottery with probability 1=2 C 1=4 � 1=8 D
0:625 and she again preferred the certain amount. We iterated the procedure until
equivalence was found in the 6th iteration, rounding the value to 0:67.

Figure 10.1 shows the fitting of the utility function based on the data in
Table 10.1. The data suggest fitting a curve of the form u.c/ D 1C 	 .1� exp.� c//
where 	; � � 0. Through least squares we identify that the parameters are 	 �
0:15319 and � � 0:00398. This corresponds to a risk averse behaviour.

We finally performed some consistency checks. As an example, we asked the
DM to choose between these two lotteries:

A W
(

0Me with probability 1
2
;

500Me with probability 1
2
:

B W
(
100Me with probability 1

2
;

400Me with probability 1
2
:

She found lottery B more preferred, which coincides with the ranking based on her
expected utilities, since the expected utility of A is 0:5 and the expected utility of B
is 0:685.
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10.2.4 Behavioural Issues

Chapter 15 by Montibeller and von Winterfeldt (2017) in this volume discusses
behavioural aspects related with the elicitation of subjective probabilities, in
connection with psychological biases. Similar issues apply to the elicitation of
preferences and value judgements.

As an example, we must pay attention to framing issues to ensure that the DM
understands the questions asked to her. Gambles A and B stated above are framed as
briefly with as many assumptions as in Allais Paradox (French and Ríos Insua 2000)
and so are susceptible to similar “misunderstandings”. Thus, in interacting with the
DM, the analyst must discuss the description of the hypothetical choice to ensure
that she understands the judgement asked of her. Also, the entire elicitation process
should be enhanced with consistency checks to ensure that her judgements cohere,
as illustrated above. Typical biases include certainty effects, anchoring based on
the initial values assessed, serial dependence or risk distortions when dealing with
probabilities close to 0 or 1. Moreover, we must take into account the imprecision in
the DM’s judgements, see Ríos Insua (1990). French et al. (2009) offer a description
of an interview between an analyst and a DM, which illustrates some of these points.

10.3 (Multi-Attribute) Utility Elicitation

We describe now issues in relation with utility elicitation when the consequence
space has a multi-attributed structure: a DM’s preferences for the possible con-
sequences are usually complex, formed by balancing conflicting objectives, so
they must trade-off a variety of factors. We use the term attribute to name a
factor which the DM wishes to take into account when making a decision. The
term (sub-)objective is used to specify a factor which one wishes to maximise or
minimise: i.e. an objective is “an attribute plus a direction of preference”.

10.3.1 Multi-Attribute Hierarchies

As Brownlow and Watson (1987) point out, structuring attribute trees can help a
DM overcome the cognitive overload brought by the volume of information which
needs to be integrated into the solution of large, complex issues. There are cognitive
advantages in arranging attributes in an attribute hierarchy or tree.

There are a number of ways that an analyst can work with DMs to build
an attribute hierarchy. He may ask “top down” questions such as “What issues
are you thinking about when you talk of energy security?”. To which she may
reply: “Oh, I guess natural and anthropogenic risks would be key factors.” “What
anthropogenic risks?” “Well, diversity of supply sources, legislative limitations,
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workforce risks and terrorist threats, obviously.” And so on. Such a discussion
explores the meaning of the DM’s overall objective analysing its components in
a logical fashion. Alternatively the analyst may get the DM to brainstorm factors
which will affect her preferences and then draw these together into a hierarchy.
Moreover, the process may be a mixture of the two. Keeney (1992) is a key text
describing how hierarchies can be built to meet a DM’s needs.

Case: Attribute Hierarchy. Figure 10.2 provides a hierarchy for our case.
The overall objective of maximising energy security—a nebulous concept—is
broken down into two groups of attributes relating to the impacts of natural and
anthropogenic risks. This last one is analysed further and divided into diversity of
supply sources, legislative limitations, workforce risks and terrorist threats.

In such a manner, issues that matter in a decision are identified and grouped in a
cognitively sensible way. In reality, the tree might be more highly structured than in
Fig. 10.2 with, say, impacts of natural risks broken down into impacts of different
types of natural disasters.

There are several requirements that objectives must meet if they are to be useful,
see Keeney and Gregory (2005). Some of them correspond to being:

i Comprehensive: Covering the whole range of relevant consequences for the
corresponding alternatives.

ii Measurable: Either objectively or subjectively, for each consequence.
iii Non-overlapping: Since two attributes should not measure similar aspects of

consequences.
iv Relevant: In the sense of being capable of distinguishing between the alterna-

tives.
v Unambiguous: Having a clear relationship between consequences and their

description using the attribute.
vi Understandable: With consequences and value trade-offs made using the

attribute readily understandable and clearly communicated.

The lowest nodes in the tree provide a series of dimensions, say q of them, which
may be used to describe the consequences of alternatives, energy security policies
in our case, and uncertain scenarios. The intention is that each of these attribute
scales may be quantified, allowing each consequence to be represented as a vector
of attribute levels: c D .c1; c2; : : : ; cq/. We distinguish three types of scales.

Natural A natural attribute gives a direct measure of the objective involved and the
attribute is universally understood. For example, repair costs in e is a natural
attribute to evaluate the impacts of natural hazards, which we aim at minimising.

Constructed Some objectives are clearly subjective, lacking a clear, agreed mea-
sure: e.g. the external image impact of physical terrorist attacks. We used the
number of attacks as a means of evaluating this attribute, but an alternative
would have been to build an artificial ordinal scale, say from 1 to 10. Level 1
would have been associated with a situation of minimal impact. On the other
hand, level 10 would have been associated with a maximum impact accident
with total destruction of the Serbian energy infrastructure and numerous
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Fig. 10.2 Objectives of ES management at state level. The Serbian case

fatalities resulting in a tremendous image loss for Serbia. Henceforth, we would
associate each of the levels with a qualitative description of severity with
respect to image. Constructed (or subjective) attributes are created for a specific
decision context and, therefore, are not universally understood.
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Proxy Proxy attributes are used because of its perceived relationship to the objec-
tive, when no natural attributes are available and constructed scales are deemed
ambiguous. The DM believes that variations in a proxy attribute correlate well
with the issue of concern to her: e.g. legislative limitations could be measured
through the amount of legislative changes, although it should be recognised that
different laws may have different repercussion.

10.3.2 Multi-Attribute Utilities

Throughout the following, we assume that C D C1 � C2 � : : : � Cq 
 <q and write
c D .c1; c2; : : : ; cq/. We discuss here under what conditions can u.�/ be written in a
simplified form, e.g. an additive one. These are known as independence conditions.

We note first the importance of the simplification brought by such conditions.
Without these, the DM could find the task cognitively complicated. Consider the
choice between gambles A and B, similar to that in Sect. 10.2.2:

Gamble A W .c1; c2; : : : ; cq/ for certainI

Gamble B W
(
.c�
1 ; c

�
2 ; : : : ; c

�
q / with probability p;

.c1�; c2�; : : : ; cq�/ with probability 1 � p:

Here the DM is being asked simultaneously to trade-off potential differences in q
attributes and account for her attitude to risk. Since she is likely to find such tasks
very difficult, the structured support of decision analysis may facilitate them.

Let I 
 f1; 2; : : : ; qg be an index set, which we use to designate a subset of
the components of c, and let J D I{. Then, we write c D .cI ; cJ/ to represent
a consequence in which we re-order the attributes to list first the attribute levels
on CI D Q

i2I Ci, and then those on CJ D Q
i…I Ci. We say that attributes CI are

preferentially independent of CJ for the DM if

.cI ; ˛J/ - .c0
I ; ˛J/; for some˛J H) .cI ; ˇJ/ - .c0

I ; ˇJ/; 8ˇJ :

Preferential independence seeks to capture the judgements behind statements of the
form: “All other things being equal, I prefer. . . ”. When this holds whatever the index
set I is taken, the attributes are said to be mutually preferentially independent for the
DM. In decision making problems under certainty in which preferences may be
modelled with a value function, we may decompose this into an additive form, see
Chap. 12 in this volume (Morton 2017).

Turning to the case of modelling preference under uncertainty, we discuss
two conditions: utility and additive independence. For an index set I, the DM’s
preferences for CI are utility independent of CJ if her preferences for gambles in
which for all possible consequences the levels of CJ are fixed at a common value cJ

do not depend upon such fixed value. Then, her marginal utility function on CI can
be assessed independently of the attributes CJ; and her marginal attitude to risk on
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CI does not depend upon CJ . As an example, suppose that C D C1�C2 and the utility
function is

u.c1; c2/ D u1.c1/C u2.c2/C k u1.c1/ u2.c2/

D .1C k u2.c2// u1.c1/C u2.c2/ D ˛.c2/ u1.c1/C ˇ.c2/:

It is clear that if ˛.c2/ > 0 for any c2, u.c1; c2/ considered as a utility function for
c1, for fixed c2, is strategically equivalent to u1.c1/; i.e. C1 is utility independent of
C2. A similar rearrangement shows that C2 is utility independent of C1; and so C1
and C2 are mutually utility independent. The converse is also true in the case of two
attributes.

We consider now the main decompositions in q dimensions: attributes
C1; C2; : : : ; Cq. In all three cases considered, u.�/ will be normalised so that
u.c�

1 ; c
�
2 ; : : : ; c

�
q / D 1 and u.c1�; c2�; : : : ; cq�/ D 0 for some c� - c�; and ui.�/ will

be a marginal utility function on Ci, normalised so that ui.c�
i / D 1, ui.ci�/ D 0,

for i 2 f1; 2; : : : ; qg. The involved constants are often called weights or scaling
constants.

When the attributes are mutually utility independent, then

u.c/ D
qX

iD1
ki ui.ci/C k

qX

iD1; j>i

ki kj ui.ci/ uj.cj/

C k2
qX

iD1; j>i; `>j

ki kj k` ui.ci/ uj.cj/ u`.c`/

C � � �
C kq�1 k1 k2 : : : kq u1.c1/ u2.c2/ � � � uq.cq/;

where ki D u.c�
i ; cfig{�/ and k satisfies 1 C k D Q

.1C k ki/. Note that if k D 0,
we have an additive utility function; whereas if k ¤ 0 we have a form called a
multiplicative utility function which, after simple rearrangements, is 1 C k u.c/ DQ
.1C k ki ui.ci//.
When the DM only holds each Ci to be utility independent of the other .q � 1/

attributes, then

u.c/ D
qX

iD1
ki ui.ci/C

qX

iD1; j>i

kij ui.ci/ uj.cj/

C
qX

iD1;>i; `>j

kij` ui.ci/ uj.cj/ u`.c`/

C � � �
C k12:::q u1.c1/ u2.c2/ � � � uq.cq/;
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where the constants are defined by

ki D u.c�
i ; cfig{�/;

kij D u.c�
fi;jg; cfi;jg{�/ � ki � kj;

kij` D u.c�
fi;j;`g; cfi;j;`g{�/ � ki � kj � k` � kij � ki` � kj`;

etc. This form is known as a multi-linear utility function. When q D 2, the
multiplicative and multi-linear forms coincide.

The attributes are additively independent if the DM’s preferences between
gambles on C D C1 � : : :� Cq depend only on her marginal probability distributions
over the Ci (and not the full joint distribution over C). Additive independence implies
that her attitude to risk on each of the attributes does not depend on the other .q �1/
attributes. Therefore, if the attributes are additively independent, then

u.c/ D
qX

iD1
ki ui.ci/;

where ki D u.c�
i ; cfig{�/.

We noted in Sect. 10.1 that a utility function u may be constructed by transform-
ing a value function: u.�/ D �.v.�//. Suppose that v.c/ D P

vi.ci/ is additive and
we take �.x/ D 1 � exp.�� x/ to be an exponential unidimensional utility. Then

u.c/ D 1 � exp.��
X

vi.ci// D 1 �
Y

exp.�� vi.ci//:

It follows that the attributes must be mutually utility independent. Thus, the previous
expression must provide an alternative form of the multiplicative utility function. We
can show that if the attributes C1; C2; : : : ; Cq (q � 3) are compatible with an additive
value function v.c/ D P

vi.ci/ and Ci is utility independent of the remaining .q�1/
attributes, then the utility function u.�/ must have one of the following forms:

1. u.c/ D 1 � exp.�� P vi.ci//; � > 0.
2. u.c/ D P

vi.ci/.
3. u.c/ D �1C exp.�

P
vi.ci//; � > 0.

10.3.3 Time Dependent Utilities

We consider now the form of utility functions when each consequence results in
a timestream of outcomes. We focus on monetary outcomes and assume that a
particular consequence comprises the receipt of a sum ci at time ti. Assume that
the times ti are equally spaced for i D 1; 2; : : : ; q (although this is not strictly
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necessary). The problem is structured so that the consequences are multi-attributed:
c D .c1; c2; : : : ; cq/. When q is finite, we may use all the above developments to
structure and assess u.�/; but doing so misses the extra structure brought in by the
temporal context. Here we describe a number of key issues.

Firstly, discounting models are commonly used to develop u.�/, having the form:

u.c/ D
qX

iD1
�i�1 !.ci/; (10.2)

where � is a discount factor and !.�/ is a uni-dimensional utility function common
to all times. In case that the ci are monetary and !.�/ is the identity function, (10.2)
gives the net present value (NPV). This model can be justified in a number of ways,
but the most telling involves a principle of stationarity.

Stationarity. Let .c/t be a timestream in which c is received at time t and nothing is received
at any other time. Then, the DM holds .c/t - .d/s if and only if .c/tC` - .d/sC` for any
` > 0.

Stationarity demands that the DM’s intertemporal trade-off between two periods
depends only on the relative time between the periods and not on the absolute time
they occur.

Economists and others have long found such arguments persuasive: see, e.g.
Strotz (1955–1956). Therefore, discounting models are extremely common. For
instance, NPV, in which the !.ci/ in (10.2) are taken as monetary values, is used
throughout much of industry, commerce and government to evaluate projects. It has
the property that as q ! 1, the later terms in (10.2) tend rapidly to zero. This can
be a vital property since it guarantees convergence of many of the summations that
need be evaluated.

It is unfortunate that this rapid convergence of terms to zero is precisely the
property that brings some applications of discounting into question. For instance,
its implications in decisions on disposal of nuclear waste are that financial and other
costs on future generations are effectively neglected. For this reason several authors
have suggested models which decay more slowly; e.g. Ahlbrecht and Weber (1995)
investigate models of the form:

u.c/ D
qX

iD1
�˛.i/!.ci/:

This is the standard discounting model when ˛.�/ is a linear function; but it can
accommodate slower (or faster) decay for other choices of ˛.�/. The difficulty is
that unless ˛.�/ is linear, the preferences modelled cannot be stationary. For many,
this is not a problem because for any real DM her information and circumstances
do change over time and the opportunity to make a decision may only occur at one
point in time and be irrevocable later.
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Atherton and French (1997) provide a survey of behavioural studies on intertem-
poral preferences and discounting, while Atherton and French (1998) offer an
alternative structuring of long term consequences which avoids many of the
discounting issues.

10.3.4 An Elicitation Protocol

We discuss now how multi-attribute utility functions may be elicited. Consider first
the additive or multiplicative case. A protocol would run like this:

1. Elicit the q single attribute utility functions ui.�/ separately with the methods in
Sect. 10.2.2.

2. Identify the scaling constants ki. This can be accomplished, for example, by
swing-weighting (von Winterfeldt and Edwards 1986) in which trade-offs under
certainty are required between a pair of attributes. First the DM is asked to order
the attributes such that for i < j:

.c�
i ; cfig{�/ � .c�

j ; cfjg{�/:

This might be done by asking her if she has the worst possible consequence c�
and could increase just one attribute level to its best value, which would it be.
Then, which is the second attribute that she would choose to raise, and so on.
Next she is asked to consider pairs of attributes, keeping the other .q � 2/ fixed
at their worst values and to identify ci such that:

.ci; cfig{�/ � .c�
j ; cfjg{�/:

Because of her ordering of the attributes, ci will lie below c�
i in her marginal

preference order on Ci. Such indifferences give simple linear equations from
which the ki may be determined.

In the multiplicative case, a further indifference will be required in which
one consequence has two attributes different from the worst values in order to
determine the single k.

3. Finally u.�/ may be formed by the appropriate additions and multiplications of
the marginal utilities.

Keeney and Raiffa (1993) contain further discussion of these elicitation processes
and also of the multi-linear case, which with its greater number of scaling constants
needs a more subtle series of elicitations. Besides, the swing-weighting method
mentioned above, there are other methods for direct elicitation of the various
attribute weights in decision analysis including the ratio method (Edwards 1977)
and the trade-off and pricing-out methods (Keeney and Raiffa 1993).
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An alternative and possibly easier approach to eliciting multi-attribute utilities is
to use u.�/ D '.v.�//, where v.�/ is a multi-attribute value function. This process
clearly separates the task of trading off attributes from that of considering attitude
to risk and thus again helps the DM by not confounding two cognitively difficult
tasks. Assuming that an additive value function is appropriate, we have the following
assessment process:

1. Assess a measurable value function 'i.�/ on each attribute Ci.
2. Noting that each 'i.�/ is unique up to a positive affine transformation, it is next

necessary to bring each to a common scale. This may be done, for example, by
swing weighting, as discussed above. Take vi.�/ D ki 'i.�/ as the consistently
scaled marginal value function on Ci.

3. Form the overall measurable additive value function by addition:

v.c/ D
X

ki 'i.ci/:

4. The interval Œv.c�/; v.c�/� now defines a domain for a uni-dimensional utility
function. This may be assessed by the methods described previously with the
complication that the consequences involved in the elicitation, say the c in
Gamble A, need be chosen so that:

a. They identify sufficient, well spaced points along Œv.c�/; v.c�/� for u.�/ to be
sketched in.

b. As many as possible of the attribute levels in c are set at their extreme values
so that the DM can focus her judgements on changes in one or two attributes
only.

For an example in aviation safety, see Ríos Insua et al. (2016).

Case: Multi-Attribute Utility Function. We describe now the assessment of the
multi-attribute utility function in our case. For space reasons, we just limit the
assessment to two of the attributes in Fig. 10.2:

1. Mitigation of the risks associated with natural hazards (total amount of e spent
in repairs).

2. Attenuation of the internal image impact for physical terrorist attacks (days of
shortage in supply per year).

The utility u1.�/ for the first attribute was assessed in Sect. 10.2.3. Using similar
methods, we assess the utility function for the second attribute, which we represent
in Fig. 10.3, with the form u2.c2/ D 1 C � c2 where � � �0:00848. This
corresponds to a risk neutral component utility.

We determine that the utility function is additive. We used a swing-weighting
method to determine the corresponding weights at k1 � 0:36 and k2 � 0:64.
For example, for a combined cost of 500Me (worst case) and shortage of 0 days
(best case), the associated utility is 0:64. This means that our expert found equally
desirable a sure loss of 500Me with no shortage to a lottery which gives her a
combined cost of 500Me and shortage of 120 days with probability 0:64 and
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Fig. 10.3 Utility values and
fitted utility function u2.�/

no cost and no shortage with probability 0:36. To come out with that value, we
first offered the DM the reference lottery with probability 1=2 D 0:5 and she
responded that she preferred the certain loss of 500Me with no shortage, therefore
suggesting that k2 > 0:5. Then, we offered her the reference lottery with probability
1=2 C 1=4 D 0:75 and she said that she preferred the lottery, therefore suggesting
that k2 < 0:75 and, consequently, 0:5 < k2 < 0:75. Next, we offered her the
reference lottery with probability 1=2C 1=4� 1=8 D 0:625 and she again preferred
the certain amount. We iterated the procedure until equivalence was found in the 6th
iteration, rounding the value to 0:64. Then, the utility function used is

u.c1; c2/ D 0:36 .1C 0:153 .1 � exp.0:004 c1///C 0:64 .1 � 0:008 c2/

D 1:055 � 0:055 exp.0:004 c1/ � 0:005 c2:

10.4 Eliciting Adversarial Preferences

The previous sections outlined how to assess the preferences of a DM we aim to
support. Recently, see Banks et al. (2015) for a review, there has been an interest in
modelling the preferences of adversaries whose decisions affect the performance of
a system of interest to the DM we support. Typical applications include security,
cybersecurity, competitive marketing or social robotics. The problem is also of
interest in non-cooperative game theory, see e.g. Gibbons (1992), although its
literature remains silent about this problem.

To start with, we shall usually have information about the multiple interests of
the attackers. For example, Keeney (2007) and Keeney and von Winterfeldt (2010)
provide what may be viewed as catalogues from which we can choose appropriate
criteria in the domain of terrorism. Keeney (2007) suggests that methods similar to
the ones described in Sects. 10.2 and 10.3 may be used by interviewing experts in
the problem at hand, therefore producing utility functions modelling the preferences
of the adversaries.



260 J. González-Ortega et al.

However, note that we are not directly eliciting preferences from the adversary,
but rather from a surrogate of the adversary. Thus, intrinsically we have uncertainty
about the adversarial preferences. One possible approach, illustrated in Banks et al.
(2015), would aggregate the objectives with a weighted measurable value function,
as in Dyer and Sarin (1979). Using the relative risk aversion concept (Dyer and
Sarin 1982), we could assume risk proneness when modelling the attacker’s utility
function, see Sect. 10.3.2. Finally, the uncertainty associated with the attacker’s
utility would be reflected through distributions over the weights and risk proneness
coefficients. For this, we may ask experts to elaborate such distributions, or ask
several experts to provide point estimates of the weights and coefficients and build
a distribution from them.

An alternative approach for obtaining a distribution over the adversaries pref-
erences is described in Wang and Bier (2013). As before, we assume that the
adversarial preferences are represented by a multi-attribute utility function, which
may include unobserved attributes that are important to the adversary but have not
been identified by the defender. For simplicity, we consider the adversary’s utility
to be linear in each of the attributes and these attributes to be additively independent
of each other. The task is then to derive probability distributions that can match
the rank orderings of target valuations provided by several experts. To do this,
we use as input such rankings and as output a distribution over the adversaries
preferences. Two methods are suggested by Wang and Bier (2013). One is an
adaptation of probabilistic inversion due to Neslo et al. (2008); basically, it identifies
a probability distribution over the attribute weights that can reproduce the stated
(theoretical or empirical) marginal distributions over the experts’ rank orderings of
target attractiveness, based on a closeness criteria according to Kullback-Leibler
distance. The other one uses a Bayesian density estimation approach, see Müller
et al. (2015).

Case: Adversarial Preferences. We assess some of the adversarial preferences for
the case study. We focus on the adversary Al-Nusra, whose attack strategy is based
on lone wolves. Their objectives will be different to more organised groups like Al-
Qaeda or adversarial states. In the case of lone wolves, their main objective would
be to kill as many people as possible.

Our expert provides her preferences over such attribute based on her knowledge
of that organisation. The minimum number of dead people over the planning period
would be 0 (no victims). As the maximum we adopt 55, associated with the
bloodiest suicide bombing event carried out by an Al-Nusra terrorist. We use again
a probability equivalent method to assess the utilities of three intermediate values,
as displayed in Table 10.2.

Table 10.2 Utilities for five
values of killings

Deaths 0 10 25 40 55

Utility 0.00 0.27 0.33 0.58 1.00
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Fig. 10.4 Utility values and
fitted utility function uA.�/

Table 10.3 Utility intervals for five values of killings

Deaths 0 10 25 40 55

Utility 0.00 Œ0:22; 0:29� Œ0:30; 0:36� Œ0:52; 0:65� 1.00

Figure 10.4 shows the fitting of the utility function based on the data in
Table 10.2. The data suggest fitting a curve of the form uA.c/ D 1C 	 .exp.� .c �
55//� 1/ where 	; � � 0. Through least squares we identify that the parameters are
	 � 1:24359 and � � 0:02501, corresponding to a risk prone utility.

To come out with a random utility model, we may proceed in several ways. For
example, rather than assuming precise utilities as in Table 10.2, intervals based
on the answers of the expert prior to fixing the probability equivalents may be
considered, as in Table 10.3.

We then fit the utilities to the upper and lower probability equivalents with
results:

• 	� � 1:72835 and �� � 0:01423;
• 	� � 1:10233 and �� � 0:03416.

Following that the random utility model is defined by u.c/ D 1 C ƒ.exp.P .c �
55// � 1/, with ƒ � U.1:10233; 1:72835/ and P � U.0:01423; 0:03416/.

10.5 Discussion

We have provided an introduction to preference modelling and utility elicitation.
The cases of single and multiple criteria have been covered as well as issues in
relation with adversarial preferences. We have illustrated the methods with a case in
energy security.

With reference to preference modelling, we note the seminal works of Keeney
and Raiffa (1993) and Keeney (1992). Discussions of multi-attribute modelling may
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be found in French et al. (1998) and Wright and Goodwin (1999). Other relevant
references include Bell et al. (1977), Belton (1990), Edwards (2013), French (1986),
French and Smith (1997) and von Winterfeldt and Edwards (1986). For further
discussion of attitudes to risk and their relation to utility function shapes, see
Eeckhoudt et al. (1995), Gelles and Mitchell (1999), Keeney and Raiffa (1993),
Pratt (1964) and Prelec and Loewenstein (1991). The elicitation and assessment of
utilities are discussed in Farquhar (1984), Keeney and Raiffa (1993) and Wright and
Goodwin (1999).

In light of experiments as in Allais’ or Ellsberg’s paradoxes, see French and
Ríos Insua (2000), non-expected utility theories seek to weaken the assumptions
of SEU in the hope that the weaker axioms will be more acceptable to DMs. Such
generalisations of SEU are known as: non-linear preference theories, because they
often reject or modify independence conditions which are responsible for SEU’s
linearity with respect to the probabilities; non-transitive utility theories, because
the generalisation allows preferences to be intransitive in certain circumstances; or,
simply, non-expected utility theories, for obvious reasons. For a review see Wakker
(2004).

Drawing on recent developments in technology and social media, there has been
an upsurge in preference analytics, that is the elicitation of preferences based on
information obtained from social networks such as Twitter or search engines such
as Google, see Daniell et al. (2016). Related big data issues call for the research of
new techniques. Applications are wide, but normally focus on the identification of
customer preferences as a means to deliver personalized services. As an example,
online games capable of analysing the preferences of players have been developed
recently with the aim of providing more attractive products. Areas of interest
include combining preference elicitation methods as here described with preference
analytics methods and using preference analytics in adversarial problems.
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Chapter 11
Elicitation in Target-Oriented Utility

Robert F. Bordley

Abstract Target-oriented utility theory interprets the utility of a consequence as the
probability of the consequence exceeding some benchmark random variable. This
shifts the focus of utility assessment to the identification of the benchmark and the
sources of uncertainty in that benchmark. Identification of the benchmark is often
easy when the benchmark is based on a status quo outcome, a preferred outcome or
an undesirable outcome. Benchmarks are generally easy to communicate and easy to
track. Once identified, data and models can then be used to describe the uncertainty
in the benchmark. This approach can be useful in those applications where the utility
function needs to be justified to others.

11.1 Introduction

Target-oriented utility theory interprets the utility of a consequence as the prob-
ability of the consequence exceeding some benchmark random variable. In many
problems, the benchmarks are easy to interpret and communicate. As a result, the
problem of utility assessment simplifies to the problem of assessing probabilities
over this uncertain benchmark. This is useful since many clients of decision analysis,
while familiar with probability theory, are unfamiliar with the concept of utility (as
understood by decision analysts.)

In addition defining the utility function in terms of probabilities allows the utility
function to be informed by data and models. A data-based utility function can be
useful when the decision maker must justify that utility function to others. For
example,

1. An executive may want colleagues (both current colleagues and their future
successors) to accept the utility function they use. This can be critical in long-
term decisions where that executive may be replaced by new management before
the decision is fully implemented. The executive’s successors cannot always be
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expected to continue implementing a decision if they do not understand, or agree
with, the rationale for the previous decision.

2. An executive’s decision can often be contested by disappointed third parties.
For example, government procurement officers are often concerned with being
sued by the vendor to whom a procurement contract was not awarded. If sued,
they must prove to a judge that the utility function was not arbitrary, not driven
by inappropriate personal considerations and consistent with what a ‘reasonable
man’ would use.

Of course, data is sometimes used in the conventional approach to utility
assessment. For example, General Motors executives were once asked to specify
their willingness to pay for fuel economy. But before making this assessment, they
were told the average amount by which a 1% change in fuel economy reduce
a household’s life-time gasoline costs. The executives then adjust this estimate
upwards to reflect the strategic value associated with improving fuel efficiency. But
as will be shown later, target-oriented utility assessment allows for an even more
intensive use of data in informing the utility function.

Before discussing these aspects of target-oriented utility, we review its theoretical
rationale. First suppose that an individual’s preference for an outcome is solely
determined by whether it exceeds some possibly uncertain benchmark. For example,
suppose the individual is a firm trying to increase its sales. Then expected sales
is the sum of the probability of each buyer choosing the firm’s products over the
competitor’s products. The buyer’s probability of choosing the firm’s products is
the probability of the buyer’s perceived value for the firm’s products and services
exceeding the perceived value of competing products and services. As a result, the
sales-maximizing firm will use a target-oriented utility with the benchmark being
the perceived value of competing products.

This example showed that there are many important applications in which the
utility function is target-oriented. But we now show that this, at least in theory,
is true in all cases, i.e., that ANY utility function can ALWAYS be written as the
probability of exceeding some benchmark random variable:

1. The axioms of utility theory presume that, in the absence of uncertainty, all
consequences of interest can be ranked based on their preferability. This ranking
(or any monotonic transformation of this ranking) is a value function. The utility
function is a special kind of value function, i.e., a special kind of transformation
of the ranking function, which adjusts for risks in an especially useful way.

2. Since utility functions are bounded, utility can be rescaled to lie between
zero and one. Utility is non-decreasing in the value function (and typically
right-continuous). This implies the existence of a benchmark random variable
(Billingsley 1995) whose cumulative distribution function is the utility function.
So the utility of any consequence is the probability of that consequence’s value
exceeding this benchmark random variable.

3. Since the utility of a gamble is the expected value of the utility of its outcomes,
the utility of a gamble will likewise correspond to the probability of the gamble
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having outcomes exceeding the benchmark random variable. (Exceeding this
benchmark will be referred to as ‘achieving success.’)

As a result, any individual satisfying the decision theory axioms of rationality
will make decisions as if they maximized

(a) Either the expected value of some appropriately defined utility function.
(b) Or the probability of achieving success

The axioms of rationality make no assertion about how a rational individual actu-
ally makes decisions. What they do imply is that if we could elicit an individual’s
subjective probabilities, their utility function and their ‘success probabilities’, then
we could determine what decisions the individual should make if they were rational.

This suggests two different approaches toward prescriptive decision analysis,
i.e., toward helping individuals make rational decisions. Both approaches require
the elicitation of an individual’s subjective probabilities. One approach elicits the
utility function directly using ‘conventional’ techniques. The other ‘target-oriented’
approach elicits the random benchmark. So which approach is more useful in
practice?

Eliciting the random benchmark involves specifying what it means to exceed
the benchmark and thus involves specifying the success event in sufficient clarity
so as to satisfy Howard’s clairvoyant test (Howard 1988). As a result, the event
must be defined so that it is hypothetically possible, at some point in the future,
to unambiguously determine whether or not an outcome has exceeded this random
benchmark. The clairvoyant test can never be satisfied for certain quantum mechan-
ical events because of Heisenberg’s Uncertainty Principle. And likewise, it may not
always be possible to define a random benchmark which satisfies the clairvoyant
test. Of course, there may be surrogate measures that do satisfy the clairvoyant test
which can be used in place of the actual benchmark. (Surrogate measures, e.g.,
normalized scores or monetary values, are also commonly used in conventional
utility assessment). But for an example of where target-oriented utility might not
be useful, consider a consumer choosing among desserts on the basis of which is
most pleasurable. The utility function would be target-oriented if the consumer was
maximizing the probability of the dessert’s pleasurability equaling or exceeding
the pleasurability of some past desert whose pleasurability was measurable. But
the utility function would not be target-oriented if the consumer simply wanted to
maximize the pleasure they obtained from the desert.

Hence this paper does not claim that the target-oriented approach is always more
useful than the conventional approach.

So a key challenge in using the target-oriented approach is identifying contexts
where the benchmark random variable can be meaningfully defined. To specify
some contexts in which the benchmark is meaningful and observable, note that
applying the mathematical techniques of decision analysis presumes

• A decision maker
• A choice set of alternatives from which the decision maker will choose,
• Some preferences over the possible consequences of each alternative.
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But before these three presumptions are satisfied, there will typically be:

1. A default decision: There is some default decision, e.g., to continue with
current plans, which the decision maker would have implemented if decision
analysis were not used. In some cases, the decision maker temporarily suspends
implementing this default decision in order to explore decision analysis.

2. Goals: There are higher-level goals which shape the decision maker’s preferences
over alternatives. Problem framing may identify higher-level goals.

3. Screening criteria: The actual choice set was created by starting with a larger list
of choice alternatives and then using screening criteria to eliminate all but the
few considered in the choice set.

4. Innate expectations: Most decision makers have expectations which shape their
preferences over alternatives.

Target-oriented utility elicitation differs from conventional utility elicitation in
explicitly using these factors to structure the utility function in terms of random
benchmarks. Once the benchmarks are specified, probability elicitation (Spetzler
and Stael von Holstein 1975) is required to define a probability of outperforming
the benchmark. This probability then defines the utility function. Since probability
elicitation methods are discussed elsewhere in this volume, this section focuses on
the identification of the benchmark.

The next four sections focus on benchmarks based on default decisions, goals,
screening criteria and expectations respectively.

11.2 Default Decisions

In the absence of any explicit decision, a decision maker will continue on some
default course of action (e.g., make no change to current plans). Hence, before any
decision can be made, the decision maker has to ‘declare a decision’, (Parnell et al.
2013) i.e., declare that they are willing to invest time and resources in contemplating
a change from the default course of action. Suppose that the decision maker, upon
declaring a decision, chooses to make that decision using decision analysis.

The outcomes of the decision recommended by decision analysis will typically
be uncertain. But the outcomes of the default course of action will also typically
be uncertain. There has been growing interest in encouraging businesses to run
controlled experiments to evaluate the merits of different methodologies (Davenport
2009; Anderson and Simester 2011; Thomke and Manzi 2014). Such an approach,
applied to decision analysis, would

1. Develop a process for identifying decision problems requiring resolution
2. Randomly decide which decision problems would undergo decision analysis and

which would not. (The company might use stratified sampling to ensure that there
was no difference in impact between the problems assigned to decision analysis.)
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3. Define the control group as the set of problems where the default course of action
(and not decision analysis) was implemented

4. Define an experimental group of problems where decision analysis was applied
5. Use statistics to compare the size of the difference in the goodness of the

outcomes in the experiment group with the control group.

The most general statistical measure of the size of a difference is the common
language effect size measure1 which includes many commonly used effect size
measures as special cases. The common language effect size measure is simply
the probability of the payoffs in the experimental group exceeding the payoffs in
the control group. Thus it is the probability of a randomly chosen decision recom-
mended by decision analysis outperforming a randomly chosen default decision.
This statistical effect size measure corresponds to a target-oriented utility if the
random benchmark is defined as the uncertain outcomes of default decisions. Hence
the target-oriented utility can measure the incremental benefit of using decision
analysis.

While there is growing interest in having companies experimentally test different
methodologies, companies typically do not randomly assign problems in this way.
An alternate approach records the default course of action, and then compares the
outcomes of the decision analysis with what one thinks might have happened with
the default course of action. A more sophisticated approach to identifying what
might have happened with the default course of action uses Bayesian structural
time-series and state-space diffusion-regression models (Brodersen et al. 2015) to
infer the counterfactual response had no intervention taken place. A less rigorous
approach is to simply make within industry comparisons of companies who use
decision analysis with companies that do not. In this case, the uncertain benchmark
becomes the performance of the companies not using decision analysis. Thus it is
common to compare the market capitalization of Chevron, an avid user of decision
analysis, with the market capitalization of other large oil companies who do not use
decision analysis.

If the uncertain outcomes of the default decision are used to specify the random
benchmark, then maximizing the target-oriented utility will identify that alternative
with the highest probability of outperforming the default decision. This can be an
appealing criterion to champions of decision analysis who want to minimize the
probability of users regretting following the recommendation of a decision analysis.
Since good decisions can lead to bad outcomes, this probability will usually be
non-zero. As the author learned at General Motors, organizational enthusiasm for
decision analysis usually wanes when the decisions recommended by decision
analysis do not improve upon the default decision.

1Effect size measures (Grissom and Kim 2005), while originally introduced by Fisher and Pearson,
as a complement to their statistical significance measure, is now sometimes used in place of
it. Arguably one of the most widely used effect size measures, Cohen’s d, is simply the mean
difference between experimental and control outcome divided by the standard deviation. It is a
special case of the common language effect size measure when all uncertainties are Gaussian.
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If there is a single decision maker, there will generally be a single default
decision. But in many cases, there are multiple stakeholders which each have
their other default decisions. For example, in negotiation theory, each partner to
the negotiation has a best alternative to a negotiated agreement (BATNA). This
represents the minimum that each partner should be willing to accept from the
agreement. If a designer is attempting to design a system that all N parties to the
negotiation find acceptable, then the designer will want to make design decisions
that have the highest probability of exceeding everyone’s BATNA. So if Xk is the
uncertain payoff from the kth stakeholder’s BATNA, the designer wants to make
decisions with an uncertain payoff, X, exceeding the maximum of X1 : : : .XN. If
these uncertain payoffs are independent and distributed with a Gumbel distribution:

Pr .Xk � x/ D exp .� exp .� .x � mk/ =s//

Then the probability of the maximum of X1 : : : .XN being less than x will also
have a Gumbel distribution:

Pr .max .X1 : : :Xn/ � x/ D exp
�
�n exp .�x=s/C

X
exp .mk=s/

�

D exp
�
� exp

�
� �

x � m�� =s
�

where m* D s ln ((1/n)
P

exp(mk/s))). See Fig. 11.1.
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Fig. 11.2 Logistics utility
distribution
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If the uncertain outcomes of the decision analysis are also described by a Gumbel
distribution, then the probability the decision analysis leads to outcomes equaling
or exceeding all the stakeholder Gumbel distributed BATNA’s has a logistics
distribution (See Fig. 11.2).

Note that this target-oriented utility, the logistics distribution, is S-shaped indi-
cating the individual is risk-prone for gambles involving lower-valued consequences
and risk-averse for gambles involving higher-valued consequences.

To highlight the ease with which target-oriented utility maximization—based on
the default alternative—can be implemented, it is useful to review the Pugh (1991)
controlled convergence rule for product design. In applying the Pugh rule,

(a) A matrix is constructed with each row corresponding to each of the relevant
design criteria and each column corresponds to a different alternative.

(b) A single reference alternative is specified but not scored on the criteria.
(c) Other alternatives get a score of one on a criteria if they are superior to the

reference alternative on that criteria, score of minus one if they are inferior and
a score of zero if they are comparable.

(d) Weights are assigned to each of the criteria.
(e) The score of each alternative is a weighted average.
(f) Before selecting the highest scoring alternative, the Pugh method focuses on

developing hybrid alternatives with fewer minuses and more positives on the
more important criteria. (Development of hybrid alternatives was a critical factor
in the success of decision analysis at General Motors in the 1980’s).

The Pugh rule has been criticized because it presumes additivity between
problem criteria. Also its assignment of pluses and minus to each attribute ignores
the difference between doing well on a criteria and doing extremely well.

But there is a situation in which the Pugh rule’s conventions are theoretically
defensible. Suppose each of the different criteria correspond to the performance of
the alternative in a different scenario. Also suppose the list of possible scenarios
are mutually exclusive and collectively exhaustive. Let the weight assigned to
each criteria be the probability of the associated scenario occurring. Then the
alternative’s aggregate Pugh score is proportional to the probability of the alternative
outperforming competing alternatives. Hence the Pugh Rule is just effect size utility
maximization, i.e., maximization of a possible target-oriented utility function. This
example highlights how utility maximization could be implemented as a version of
an already widely used engineering rule.
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So the default decision (or control treatment) can be used, like a yardstick, in
evaluating the other alternatives. Changing which treatment is considered the control
is equivalent to changing the yardstick (and thus the utility function). As a result, it
is important to use the same default decision in evaluating all interventions. It can
be argued, however, that using the default decision as the reference overly focuses
on what is possible. Since Keeney (1992) criticized alternative-focused thinking in
decision analysis because of its focus on what is possible, the next section considers
goal-oriented approaches to specifying the benchmark random variable.

11.3 Goals

At the individual level, the nineteenth century economist Menger argued that an
individual’s utility function was determined by how well various biological needs
were satisfied (Menger 1985). Greater utility was attached to satisfying more
important needs (survival) than less important needs (shelter). The ranking of these
needs was lexicographic, i.e., there was no value in satisfying a lower-ranked need
until a higher-ranked need was satisfied. While Menger’s theory was qualitative like
Maslow’s related hierarchy of needs, this paper considers a variant on that theory
which is quantitative. If there are n needs, then for each k � n, define

1. P(k) as the probability that the k most important needs were met but the (kC1)st
most important was not. (Note that it doesn’t matter whether any needs less
important than the (kC1)st are satisfied given that the (kC1)st need is not
satisfied.)

2. P(Sjk) as the probability the individual was considered successful at meeting
their needs given that the k most important needs (but not the (kC1)st most
important need) were met

Menger did not introduce the concept of P(Sjk) in his theory which made his
formalism qualitative. But with P(Sjk), the probability of the individual’s needs
being met at an acceptable level becomes

P.S/ D
X

kD1P .Sjk/P.k/

This quantification presents Menger’s theory in the form of an additive utility
model.

We can further extend Menger’s model to allow for non-lexicographic needs by
defining X(k) to be the performance on need k with X(k) being the weighted sum
of the value obtained from achieving a set of micro-needs associated with need k.
Hence if k represents the need for food, the micro-needs might representing the
need for different kinds of food with P(k) being the probability of X(k) exceeding
the random benchmark. In this case, increasing the consumption of one kind of food
decreases the need for consumption of a second kind of food. Micro-needs are not
ordered lexicographically although needs are lexicographic.
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Menger’s theory focused on needs, i.e., on desires which are ultimately driven by
an individual’s biology. But professionals and professional codes of ethics provide
another example. Most codes of ethics require that a professional act to meet their
client’s goals:

1. A project manager’s task is to complete the project satisfying their client’s cost,
schedule and scope requirements.

2. A doctor’s task is to restore the patient’s health
3. An engineer’s task is to design a product which, when manufactured, will be

accepted and used by the intended customers for that project
4. An employee’s task is to complete what their employer orders them to do.

In certain cases, these responsibilities are formalized as a contract with the
professional’s goal being to satisfy the terms of this contract. In this case, the goal of
being a good professional drives satisfying the goals set by one’s clients. Typically
the contract provides incentives which make it in the professional’s interest to serve
the client. However many professional organizations do ask their members to take
oaths to place duty to client and society over self-interest.

The conventional contract typically obligates the signatories either to deliver (or
to accept delivery of) specified levels of products or services at specified levels of
performance. This presumes that the individuals signing the contract can and will
assume responsibility for controlling all of the uncertainties that might interfere with
successful completion of the contract. Thus in tactical decision making (as opposed
to strategic decision making), the decision maker is often viewed as responsible for
managing uncertainties to achieve some goal.

But in professional (and even in non-professional work), there are many uncer-
tainties about commodity prices, competitor behavior, etc. which are outside
the control of both parties to the contract. This increases the riskiness of the
contract. This has motivated the development of contingent contracts (Bazerman
and Gillespie 1999; Brett 2007) which explicitly

(a) Identify certain future uncertainties which will only be observable when the
contract is near completion

(b) Make the terms of the contract contingent upon the outcomes of these future
uncertainties

Hence the goal of each signatory to the contract is contingent upon future
uncertainties. As a result, the goal is a random variable and each action by a
signatory is evaluated based on its probability of achieving this uncertain goal. In
this case, it is natural to choose the random benchmark to be the contingent goal.

Note that even though target-oriented utility seems appropriate whenever there
are contingent goals, there are important decisions that must be made before the
individual agrees to a contingent contract. In particular, the individual must make a
strategic decision about which clients to choose, which markets to enter, and which
profession to join. If these strategic decisions are made with conventionally elicited
utility functions, then conventional utility elicitation will have been made at one
stage of decision making with target-oriented elicitation being made at a later stage.
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Some goals are not contingent but are still uncertain. For example, an individual
raised in poverty might have a strong drive to accumulate enough wealth to
maximize the probability that neither they nor their children will ever know poverty
again. In this case, each increment in wealth decreases the probability that sudden
misfortune could eventually reduce the person or their children to poverty. The
random benchmark is the uncertain amount by which misfortune might decrease
the individual’s wealth. This goal is an absolute goal, i.e., not defined relative to the
performance of anyone else.

But some goals are relative, e.g., an individual who maximizes the probability
of being able to afford whatever their role models (e.g., family, neighbors, col-
leagues, etc.) were able to perform. In this case, the random benchmark is whatever
those role models would be able to afford.) Certain goals are inherently relative,
e.g., an individual seeks the top prize in some competition and hence seeks to
outperform all other contenders. In this case, the random benchmark is the quality
of the uncertain performance of other contenders. Target-oriented utility is well-
equipped to handle either absolute or relative goals.

Menger’s formulation, while plausible for individuals, is especially plausible for
an organization. Thus in the 1970’s General Motors initially focused on research
projects that looked at the long-run future of transportation. But as unexpected com-
petition began to threaten the company’s market share, research priorities shifted
toward improving the company’s marketing, manufacturing and design processes.
And once the prospect of bankruptcy began to loom, priorities further shifted toward
those projects most directly connected with short-term cash generation.

In most cases, the organization’s highest priority need is the avoidance of
bankruptcy. Borch (1968) considered an insurance company whose objective is to
survive (avoid financial ruin) as long as possible. Avoiding ruin for an insurance
company requires that its ability to pay claims exceed the uncertain amount of
claims made against the company. Thus the insurance company needs to balance
its investment in illiquid assets with higher expected return and more liquid assets
with which to pay claims. Thus if Tt is the uncertain amount of claims filed at time
t, then the insurance company needs to have liquid assets vt at time t such that
vt> Tt for all times t. This defines the utility function as one minus the probability
of ruin. When claims arrive according to a Poisson process, the probability of
ruin (Huzak et al. 2004) is described by the Pollaczek-Khinchine formula. In the
case where claim sizes are exponential distribution, the probability of ruin has the
form a exp.(-bx) if x is the starting wealth of the firm. Thus the firm’s utility as a
function of starting wealth x is 1-a exp.(-bx) which, with suitably rescaling, gives the
widely used exponential utility. Note that managers who optimize an organizational
utility—based on a goal of long-term organizational survival—may also optimize
the probability of their having a personal legacy that others will remember.

‘Mere’ survival, i.e., the avoidance of bankruptcy may not fully encompass all
the needs of the organization. For example, suppose the organization has the higher-
level need to be recognized as the top organization in its segment, e.g.,
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1. A firm might want to be recognized by Forbes as the most admired provider of
information technology services

2. A university might wish to be listed by US News and World Report as the public
university with the best business school in the world.

The articulation of such needs, which is related to the organizational vision, is
typically set at the highest levels of the organization. In some companies, this vision
has been specified using decision analysis with conventional utility functions.

This makes no specific statement about how the firm will design or deliver its
products or services. However typically achievement of these higher-level goals
is linked to how well its products or services meet the goals of stakeholders (i.e.,
customers, stockholders, the public, etc.) In public sector projects, considerable
effort is often required to determine whether a stakeholder is a key stakeholder,
i.e., is both

1. Impacted by the decisions the organization makes
2. Able to impact the organization based on its reaction to those decisions

Once the key stakeholders (e.g., customers who can afford a firm’s product) have
been identified, the goals of those stakeholders must be identified. This involves
identifying the functional objectives, i.e., the functions which the stakeholders
want accomplished and the performance objectives which qualify how well these
functions must be accomplished. For example, the functional objective of a car is
to transfer people and luggage from a starting point to a destination point. It also
involves identifying performance objectives which focus on how much people and
luggage the car transfers, the passenger comfort during the journey, and how long
the journey requires. Quantitative marketing techniques can typically be applied
to understand performance objectives once the functional objectives are identified.
This provides understanding of what the organization must do to meet its goal. The
next step is to translate this into organizational action.

Many hierarchical organizations employ management by objectives to set
customer-tailored goals for each employee. Starting at the top of the organization,
each level of the organization specifies goals for their subordinates in the next
lower level. Goal-setting is based on a dialogue between manager—whose goals
have been set by their leadership—and the manager’s subordinates—who is more
aware of what can realistically be delivered. Goals must be consistent, specific
(unambiguous), measurable, time-related and focused on a result without specifying
how the employee must achieve that result. As a result, attainment of the goal is a
success event satisfying Howard’s clairvoyant test.

Organizations use management by objectives because setting and tracking goals
has been shown to be among the most valid and practical theories of employee
motivation in organizational psychology (Miner 1980; Pinder 1984). They direct
attention toward goal-relevant activities and away from goal-irrelevant activities
(Rothkopf and Billington 1979) and can lead to the discovery and use of task-
relevant knowledge and strategies (Wood and Locke 1990). In setting a goal, a
manager must balance the fact that more difficult goals can motivate more effort
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(Bandura and Cervone 1986) but can also increase the riskiness of strategies
individuals use. Compared goals of equal difficulty and found that performance
increases the more the individual believes the goal is achievable. Commitment to
the goal (Seijts and Latham 2001) is also important in inducing performance when
goals are difficult (Latham et al. 1994).

The effectiveness of goals in driving behavior is a major reason why they will
continue to be so widespread. They provide an invaluable information source for
target-oriented utility elicitation.

11.4 Screening

Value-focused thinking (Keeney 1992) highlights the importance of searching for
new alternatives to make the choice set as rich as possible. In the absence of
such an aggressive expansion of the choice set, conventional decision analysis can
sometimes be reduced to ‘choosing the best of a potentially mediocre lot.’ (Gregory
et al. 2012).

But in other problems, there is the opposite problem of having a choice set which
is much too large. For example in purchase decisions, consumers often review
possibly hundreds of products with possibly more than 50 product attributes and
make screening decisions rapidly, sometimes in seconds (Payne et al. 1988, 1993).
Because this screening process is designed to shortcut the more lengthy analysis
used in the selection phase, it uses less information than selection. This can lead to
certain paradoxes which have substantial importance in practice.

For example, in the automotive industry with more than 350 brands, the typical
consumer only has two to four brands in their consideration set. It was observed
that the Buick brand in 2008 had low sales relative to its competition even though it
was.

1. Tied in 2008 with Lexus as the top-ranked automobile on a JD Power depend-
ability study,

2. The top-ranked American car by Consumer Reports and.
3. Produced from the top-ranked US factory for quality.

Since Buick was comparable on other attributes, Buick’s manufacturer did not
understand how Buick sales could be so low when it did so well against such
key competitors as Lexus on all the key attributes. The paradox was not resolved
until the manufacturer collected survey data indicating that two thirds of California
buyers wouldn’t even consider GM cars in their choice. National studies showed
that roughly half of all potential customers did not even spend the time to learn
about Buick’s superior performance on dependability and quality. This inability
to even be considered reduced the value of automotive investments in reliability,
quality, safety, ride and handling, comfort etc. and played an important role in the
subsequent bankruptcy of two of the three major automotive manufacturers.
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In the automotive industry, this understanding of the customer choice process was
formalized in the so-called industry purchase funnel (Lancaster and Withey 2006)
which postulated four stages in the consumer choice process:

1. Awareness: Customers become aware of a product
2. Consideration: Customers screen out products which are unacceptable on certain

‘screening criteria’
3. Evaluation: Customers identify a smaller set of products which they will compare

by gathering further information. They will also schedule test drives of vehicles
in the consideration set.

4. Closing: Customers negotiate with the dealer on price and other details before
determining the product they will ultimately buy.

The purchase funnel can also be viewed as a two-stage process of screening
and selection. In screening, the customer becomes aware of products and screens
out those that seem ‘unworthy’ of future consideration. In selection, the customer
focuses on the remaining items in the choice set, gathers further information, and
engages in a more systematic process to choose one of those options.

Screening is important with complex infrequently purchased durable products
like automobiles. But it is also important with frequently purchased products, such
as deodorants, where customers only consider a small fraction of the products
available. Hauser and Wernerfelt (1990) found that only 10% of the products
were in the final choice set. Evidence from other industries (Paulssen and Bagozzi
2005) similarly documents that customers initially screen the list of products to
form a smaller list of products (the consideration set) and then focus attention on
choosing products from the consideration set. Hauser (1978) found that 80% of
the uncertainty about what a customer will choose can be explained from simply
knowing their consideration set.

However instead of inferring the consideration set from choices, reliable data can
often be collected by simply asking individuals to specify their consideration set.
The reliability of responses to the question can be enhanced if the individual believes
they will win a prize with the prize depending upon the quality of their answers
(Ding 2007). In these cases, truthful responses are dominant. Such directly elicited
considerations have enhanced a wide variety of new product forecasts (Hauser
1978).

There is also considerable research on the heuristics individual uses in screening
their choice set. Heuristics, while less cognitively demanding, are often effective in
real world choice environments because consumers can rely on market regularities,
e.g., the fact that many market features are correlated. For example, automobiles
with large engines tend to have good leg room, good trunk room and luxurious but
also tend to be expensive and get lower gas mileage. As a result, these heuristics
can be effective and reliable given conventional market regularities. But it is
often relatively easy for experimental studies to create counter-examples—based
on artificial environments without these correlations—in which these heuristics
lead to absurd outcomes. Unfortunately when market circumstances change, these
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heuristics, consistent with experimental studies, can fail. This is especially the case
in rapidly changing competitive environments as well as in military environments.

Nonetheless using heuristics that worked well under current conditions can be
risky when current conditions change. Target-oriented utility assessment applied to
screening involves

1. Identifying and quantifying the heuristic a customer is using
2. Determine whether the heuristic is still appropriate for the problem at hand by

(a) Identifying the logical limitations in that heuristic and discuss that with the
decision maker

(b) Gathering the individual’s feedback either on possible rationales for this
behavior and communicate the relevant insights from the behavioral decision
theory literature to the individual

(c) Identifying other ways in which the heuristic is exhibiting behavior which
the decision maker does not consider reflective of their values

3. Discussing whether this decision rule applies to the existing application of
interest

4. Producing an altered decision rule based on the heuristic which is consistent
with expected utility theory and reflects how the decision maker would like the
decision rule to make decisions for the applications in question.

For example, reliability-based design optimization is a commonly used approach
for designing physical structures (bridges, planes, automobiles, etc.) which formal-
izes a heuristic where

1. Alternatives are first screened based on risk criteria
2. An alternative is selected from the screened criteria based on cost or other

attributes.

Reliability-based design optimization formalizes this heuristic as a mathematical
programming problem which maximizes some payoff function subject to a con-
straint on expected risk. So if there are two solutions

1. One which exactly meets the expected risk constraint and
2. The other which is negligibly more expensive and has no risk

reliability-based design optimization always chooses the first. But reliability-
based design optimization is often applied in the design of structures, vehicles,
planes etc. where the consequences of a risk can lead to an individual being injured
or killed. American product liability law indicates that a product design is defective
if an individual is injured and there is a solution (like the second solution) that could
have avoided this risk at negligible cost. Hence the heuristic, in this case, could lead
the firm to lose an expensive lawsuit.
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The expected utility formulation of this problem is equivalent to maximizing the
probability of

1. Cost being less than some uncertain threshold
2. The design not leading to injury or death

which is a target-oriented utility. Because of the continuity axiom of decision
theory (von Neumann and Morgenstern 1944), this formulation will choose the
second solution if its nonzero cost is small enough and will choose the first solution
otherwise.

These undesirable features of screening heuristics should be explained to the
decision maker to determine whether these considerations persuade them to adopt
the more rigorous formulation made possible by target-oriented utility. As we now
show, the structure of the heuristics people use in practice often makes this transition
from heuristics to the rigorous formulation especially easy with target oriented
utility. Commonly studied heuristics customers use in making decisions are

1. Disjunctive—a product is considered if it has at least one feature above a
threshold.

2. Conjunctive—a product is used if all features are above their threshold. The
conjunctive rule favors a ‘balanced’ product which is acceptable on all attributes
to an ‘unbalanced’ product which is outstanding on most attributes but inferior
on a few attributes.

3. Subset conjunctive—a profile must have at least some of its features above a
threshold

4. Disjunction of conjunctions: a product must have at least one conjunction to be
considered

5. Elimination by aspects

The marketing literature illustrates how the heuristics used by an individual can
be estimated from the individual’s observed behavior. For example, Gillbride and
Allenby (2004a, b) specified a model in which individuals first screen products and
then use an additive choice rule to select among those products. They then used
a Bayesian approach to estimate the thresholds individuals used. (They found that
92% of individuals used a screening rule even when the choice set was modest.)
Andrews and Srinivasan (1994), Chinag et al. (1999), Erdem and Swait (2004),
Swait and Ben-Akiva (1987) used choice set explosion with maximum likelihood
techniques to estimate thresholds. They assumed that individuals first made a
choice among all possible choice sets (for n attributes, there will be 2n -1 possible
consideration sets.) Given a choice set, the individuals then pick an alternative using
logit.

These particular heuristics, once identified, can be represented by a fault tree
(see Fig. 11.3) or alternatively a reliability block diagram (also called a dependence
diagram.) The fault tree representation begins with a highest-order success event.
This success event is then logically related to the occurrence of some collection of
higher-order success events. The occurrence of each of these higher-order success
events is then related to the occurrence of some lower-order success events, etc.
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Fig. 11.3 A fault tree
diagram

The fault tree continues decomposing success events into sub-events until it reaches
a level of granularity (e.g., the part level) where assessing the probability of part
failure is straightforward.

Bordley and Kirkwood (2004) showed that the normative multilinear multiat-
tribute utility model is, in fact, isomorphic to a fault tree representation—when all
sub-events are independent and each sub-event corresponds to an attribute. Thus in
Fig. 11.1, a conjunction node indicates that both nodes 7 and 8 must be false for
the conjunction node to be false. This is then followed by a disjunction node which
indicates that either node 6 or the conjunction node must be false for the disjunction
node must be false. This is then followed by a disjunction node which indicates the
subsystem has failed if either the disjunction node associated with nodes 1 and 2, the
disjunction node associated with nodes 3, 4 and 5, or the disjunction node associated
with nodes 6, 7 and 8 are false. The fault tree (or reliability block diagram) allows
the representation of all possible combinations of conjunctions and disjunctions in
order to determine the state of the subsystem.

Tsetlin and Winkler (2006) showed how this sub-event independence assumption
could be relaxed using copulas. Because of this isomorphism with the multiattribute
utility formulation, heuristics expressed as fault trees are readily transformed into
utility models. Once we have found the choice model the individual appears to
be implicitly using, we can then use the previous process to modify the empirical
decision model to reflect a model which the individual would wish to be applied in
making future decisions.

For example, some of the heuristics assume that an alternative is discarded if
its score exceeds some threshold, regardless of whether it slightly exceeds that
threshold or substantially exceeds that threshold. Since measurement error could
easily cause an outcome which is above the threshold to appear below the threshold
(or vice versa), we need to address this with the individual and considering making
the probability of discarding an alternative depend on the degree to which it violates
the threshold.
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11.5 Expectations

One of the most accepted findings from behavioral decision theory is the reference
point effect. Individuals are risk-averse for prospects offering improvements above
the reference point and risk-averse to prospects offering losses below the reference
point. A value function can be developed whose curvature describes differences in
individual attitudes toward risk above and below the reference point. This, of course,
is similar to the behavior of an individual maximizing the probability of trying to
exceed an uncertain benchmark where the reference point is the modal value of the
benchmark.

Samuelson and Zeckhauser (1988) proposed interpreting the reference point as
the status quo. But Locke and Lackham (2006)’s review of their own seminal work
on goal setting theory highlighted that the goal in their theory was empirically
very similar to the reference point in prospect theory. Heath et al. (1999) likewise
found empirical evidence establishing a correspondence between prospect theory’s
reference point and goals for individuals with explicit goals. Noted the correspon-
dence between falling short of a goal and dissatisfaction and exceeding a goal
and satisfaction. More recently Koszegi and Rabin (2006, 2007, 2009) proposed
interpreting the reference point as expectations. Since individual expectations are
often easy to manipulate, this interpretation of the reference point as expectations
provides an explanation for why the reference point can be manipulated by changing
how experimental questions are worded.

To develop a normative model explaining the role of expectations, Viscusi
(1989) considered a model in which individuals, instead of taking a gamble at
face value, developed their own beliefs about what the gamble would pay off based
on their prior experience with the payoffs of gambles. This is especially plausible
in marketing settings where customers typically view the claimed (or advertised)
performance of different brands with some suspicion (Bordley and Hazen 1991).
Bordley (1992) expanded Viscusi’s model to the context of multiple alternatives
and showed that it allowed for:

1. Context-dependence, i.e., the goodness of a gamble depended upon the value
of the other alternatives in the choice set. This kind of effect is often seen
in commercial settings where many retailers want to be able to display ‘halo’
vehicles (e.g., sporty vehicles) in their showrooms. Retailers know that most
customers have no interest in buying halo vehicles but are nonetheless attracted to
brands that offer a halo vehicle. To explain the impact of halo vehicles, note that
a company which offers a successful sporty vehicle is advertising its capability
to create such a vehicle which, in turn, reflects positively on the quality of the
other vehicles it produces.

2. Preference reversals: where adding an alternative to the choice set reversed how
an individual rated the relative desirability of two different alternatives in the
choice set
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In this model, apparently non-normative behavior reflected individuals using
the existence of certain alternatives in the choice set as information about the
desirability of other alternatives. However these models are only normative because
they presume certain market regularities, e.g., the fact that many market features
are correlated, to make inferences about other alternatives in the choice set. Since
these presumptions are often implicit, it is valuable to articulate them to determine
whether they are still appropriate. Once this behavior and its apparent rationale is
described to the decision maker, it can potentially be modified.

Interpreting the benchmark as individual expectations is consistent with customer
satisfaction research (Bordley 2001) which defines customer satisfaction with a
service as the gap or difference between what the service provides and customer
expectations. When there are many customers, this probability will approximate the
fraction of customers for whom the product exceeds expectations. Many groups
within the firm often focus on spending their budgets to maximize the number
of satisfied customers at a given price point. (The decision of how much money
to allocate to various customer groups has sometimes been made previously at
the strategic level.) These groups will therefore maximize a target-oriented utility
defined as the probability that the service outperforms expectation (which is also an
effect size measure of the gap.)

Reference points which are interpretable as goals (and not expectations) can also
be unstable. Suppose the goals are SMART goals and time-bound, i.e., there is time
in the future when the goal will either have been met or unmet. At this point, the
probability of achieving the goal (and the utility function goes to zero or one.) Upon
achieving or failing to achieve a goal, Simon’s theory of bounded rationality then
advised the individual to

1. Become satisfied and make no further changes to their life plans until external
events disrupt their equilibrium

2. Set new goals

Organizations generally view an employee’s successful (or unsuccessful) com-
pletion of a goal as the stimulus for the setting of another goal. As a result,
organizations treats goal setting as a cyclical discrepancy-creating process (Bandura
1997). If people attain the goal they have been pursuing, they generally set a
harder goal for themselves. The high-performance cycle explains how high goals
lead to high performance, which in turn leads to rewards, such as recognition and
promotion. Rewards result in high satisfaction as well as high self-efficacy regarding
perceived ability to meet future challenges through the setting of even higher goals.
Of course, the manager must set these higher-level goals to be intertemporally
consistent. If intertemporal inconsistency is observed, then the goal-setter needs
to be challenged in order to discover whether there is an underlying goal which
resolves the apparent inconsistency. (As a trivial example, if an individual flies from
Boston to Los Angeles on Sunday and then flies from Los Angeles to Boston on
Tuesday, this apparent intertemporal inconsistency is resolved by noting that the
individual’s goal was be in Los Angeles on Monday while being in Boston prior to
Sunday and after Tuesday.)



11 Elicitation in Target-Oriented Utility 283

So goals (as well as expectations) vary systematically over time. To model
dynamic expectations, define the expectations about what is required to be happy
at time tC1 as a function of

• A random component, T*
• A time-dependent component, ft.

For example, suppose that expectations are the sum of T* and ft. with ft. equalling
the value achieved in the previous time period, vt-1. Then the probability of the
value achieved in the current period, vt, exceeding the uncertain threshold, T, is the
probability of the increase in value from the past period exceeding the expectations-
independent component, i.e., the probability that vt - vt-1 exceeds T*. In this case, the
success event is achieved at time t if the level of improvement, vt - vt-1, is acceptable.
But if it is achieved, the individual now has a new goal to achieve an acceptable
level of improvement in vtC1 - vt at time tC1. Thus expectations are dynamically
updated at each point in time. This guarantees the familiar economic property of
non-satiation where the economic agent constantly seeks more.

Since f is essentially a forecast based on previously experienced values, standard
time-series methods could be used to provide a more sophisticated forecast.
For example, exponential smoothing could be used to write the time-dependent
component as a discounted weighted average of value in past periods, e.g.,

ft D w vt�1 C w2 vt�2 C w3 vt�3 C w4 vt�4 C : : : :

Simon had argued that if high value outcomes were easy to achieve, then
the individual would set more aggressive goals. In contrast, if they were harder
to achieve, individuals would set less aggressive goals. Simon’s property will
automatically be satisfied by dynamic updating of expectations. More complex
specifications of f are possible (Bordley 1986). Thus the rate at which value
increases, dv/dt, might be proportional to the amount of value left unachieved, (1-v).
This implies that vt D 1- exp.(-kt) for some constant k.

Note that these dynamic expectations do lead to a stable utility function defined
over the rate at which value changes with time.

11.6 Conclusions

Target-oriented utility assessment is an approach for eliciting utility functions based
on identifying random benchmarks that are often important in formulating the
decision problem. This chapter has highlighted several advantages:

1. In many real problems, there are often easily identifiable benchmarks. For
example, firms strive to outperform their closest competitors while also satisfying
certain cash flow needs. Individuals strive to achieve goals and satisfy needs.
Decision analysis is often expected to lead to decisions that outperform decisions



284 R.F. Bordley

that would have been made without decision analysis. The existence of these
benchmarks often makes the process of quantifying the utility function more
straightforward and ‘objective.’

2. Certain benchmarks are often familiar to the decision makers. This can make
them more comfortable with a target-oriented utility function based on these
benchmarks.

3. It is often easy to get other individuals to agree on the appropriateness of these
benchmarks. This can help the decision maker justify the target-oriented utility
to their peers and decrease the chances their decision will be overturned should
they be replaced with another person.

There are added advantages to estimating benchmarks. Specifically the optimiza-
tion of a conventional utility function typically is optimization subject to various
constraints. Thus in selecting an airplane design, Boeing’s value function depends
on customer convenience, speed, fuel efficiency and cost. Because of uncertainties
in these variables, a utility function is defined over the value function. This expected
utility is optimized subject to constraints screening out plane designs that

1. Require airports to dramatically extend their runways.
2. Are cost prohibitive because of the extensive use of exotic materials
3. Require technological breakthroughs that seem unlikely
4. Are strongly opposed by at least one key stakeholder

Since both the costs of future materials and technological breakthroughs are
uncertain, Boeing cannot be sure about whether it is excluding some items from the
choice set that are feasible. And conversely Boeing cannot be sure about whether
certain options included in the choice set will eventually be found to be infeasible.
Hence the constraint functions involve uncertainties. As a result, the constrained
optimization problem must be formulated as the optimization of the product of

1. The expected utility of an airplane design given the constraints are satisfied
2. The probability of the constraints being satisfied

Using benchmarks, the expected utility can be written as the probability of
the value function exceeding the uncertain benchmarks. If we define an optimal
solution as a solution whose value exceeds the uncertain benchmarks and a feasible
solution as a solution which satisfies the constraints, then the constrained utility
maximization problem is simply the selection of a design which maximizes the
joint probability of being both feasible and optimal. Thus target-oriented utility
integrates the identification of the feasible choice set with the problem of selecting
an optimal solution from that choice set. By making the constraints part of the
objective function, target-oriented utility can reduce the computational effort require
to solve utility maximization problems.

This emphasis on addressing the larger context in which utility functions are used
is reflected in target-oriented utility elicitation’s focus on

1. The benchmark alternative to the outcome of decision analysis
2. The larger goals which the decision maker feels their efforts should support.
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3. The screening of alternatives to identify the choice set
4. The expectations based on prior experience with other choice sets

Thus target-oriented utility elicitation can be an invaluable part of the decision
analyst’s tool kit.
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Chapter 12
Multiattribute Value Elicitation

Alec Morton

Abstract Multiattribute Value Theory (MAVT) methods are perhaps the most
intuitive multicriteria methods, and have the most theoretically well-understood
basis. They are employ a divide-and-conquer modelling strategy in which the value
of an option is conceptualised as a function (typically the sum) of the scores
associated with the performance of the option on different attributes. This chapter
outlines the concept of preferential independence, which has a critical underpinning
role of elicitation within the MAVT paradigm. I also present MAVT elicitation
in the context of the overall Decision Analysis process, comprising three broad
stages: Designing and Planning; Structuring the Model; and Analysing the Model.
I outline some of the main practical methods for arriving at the partial values
and weighting them to arrive at an overall value score, including both traditional
methods relying on cardinal assessment, and the MACBETH approach which uses
qualitative difference judgements. A running example of a house choice problem is
used to illustrate the different elicitation approaches.

12.1 Background

The Multi-Attribute Value Theory (MAVT) approach, and in particular the additive
model, is perhaps the most intuitive of all Multi-Criteria Decision Analysis (MCDA)
methods. The decision aiding procedure suggested by MAVT is to line up the
options, compare them according to a common set of criteria, assign scores to each
option according to their performance on each criterion, weight these criteria and
calculate an overall score for each option. The computations involved in applying
MAVT are relatively straightforward compared to the methods of the outranking
school—see Chap. 14 in this book (Dias and Mousseau 2018), and hence the method
is transparent and easily understood. One of the insights of this MAVT paradigm
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is that this seemingly simple procedure, involving nothing more than elementary
arithmetic, actually requires quite a high level of conceptual sophistication to use
well and appropriately.

The need for conceptual sophistication arises when one attempts to specify
formally the meaning of the scores and weights in the procedure of the previous
paragraph. The meaning of a probability, by contrast, is relatively clear, in the fol-
lowing sense. Although the exact interpretation of a probability statement depends
on one’s preferred axiomatics (French 1986; French and Ríos Insua 2000), proba-
bilities are ultimately rooted in the procedure of counting which is a natural first step
on the path to quantification. If an assessor is well-calibrated, of the class of events
she assesses as having probability 50%, half will be realised, and half will not.

By contrast, value is not rooted in counting, but in preferring. However, whereas
counting establishes an association between a set of things and a number, preferring
merely establishes a relationship between two things: one thing is better than, more
attractive than, or more desirable than, another. From such a binary relation, it is
easy to see how to establish a ranking of objects. However, how might one go about
associating numbers to options according to their criterion-wise performance in a
principled way?

The central concept of MAVT is that as well as possessing an idea of preference,
we also possess an idea of strength of preference (Dyer and Sarin 1979; Köbberling
2006). Thus, when thirsty on a hot day, I may have a slight preference for iced tea
over iced coffee, but a strong preference for an iced drink over no iced drink. The
difference between the scores I give to iced tea and iced coffee should therefore be
relatively small, but the difference between these scores and no iced drink should
relatively large. However, unlike preferences, which can be observed by an outside
party who studies the elicitee’s choice behaviour (I offer you a menu consisting of
iced tea and coffee and see which, if either, you choose), strengths of preference
are not observable. Nevertheless, the concept seems to be one which is intuitive and
natural to most of us from casual introspection and ordinary discourse.

An alternative way to assign numbers to multiattributed options is the Multi-
Attribute Utility Theory (MAUT) approach—dealt with in Chap. 10 of this book
(González-Ortega et al. 2018). MAUT, like MAVT, provides a framework for
deriving scores and weights. However, the interpretation of the scores and weights
in MAUT does not use a strength of preference concept—rather it uses an approach
based on equivalent gambles. MAUT is necessary if we are dealing with uncertain
events, for instance in a multiattribute decision tree. However, while the MAUT
mode of questioning can be appropriate in many settings, it presupposes a facility
with probabilistic thinking which many people do not have, and involves asking
questions which are often experienced as confusing and irrelevant.

In this chapter, I do the following. I begin with a discussion of the concept of
preferential independence which is a foundational concept in the use of scoring and
weighting methods based on MAVT. The main section presents MAVT elicitation
in the context of the decision analysis process, from establishing aims through to
sensitivity analysis and stress testing of the model. To assist readers who may be
interested in using these procedures, I also provide some “troubleshooting” hints

http://dx.doi.org/10.1007/978-3-319-65052-4_10
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and tips. I conclude with some suggestions for future prospects for MAVT methods.
The interested reader is referred for comparison to other textbooks which deal with
similar material such as Goodwin and Wright (2014) and Howard and Abbas (2016)
as well as the seminal text of von Winterfeldt and Edwards (1986).

12.2 Preferential Independence: A Foundational Concept
of Multiattribute Value Theory

A natural starting point is to ask the question: under what circumstances can
MAVT be used? As it happens there is a very clear and mathematically well-
specified answer to this question (Krantz et al. 1971; French 1986). To explain this
answer I introduce the idea of a representation theorem. Representation theorems
connect qualitative properties of preferences with functions which represent these
preferences. (A function is said to represent preferences if it assigns a higher number
to a more preferred object). Representation theorems have the following generic
two-part form. The main action revolves around the relation %, read “is weakly
preferred to” or “is at least as good as”.

12.2.1 Generic Representation Theorem

1. (Sufficiency) If the relation % has such and such properties, then there exists a
real valued function v(•) of such and such a form such that a % b if and only if
v(a)�v(b).

2. (Necessity) If there exists a real valued function v(•) of such and such a form
such that a % b if and only if v(a)�v(b), then the relation % has such and such
properties.

Note the differing role of these two parts of the theorem: the sufficiency part
tells us that if an elicitee has a preference relation with certain characteristics, then
there exists a real value function, whereas the necessity part tells us the opposite.
(In general the sufficiency part is harder to prove than the necessity part.)

An example of a representation theorem (Krantz et al. 1971) is the following
theorem which guarantees the existence of a general function.

12.2.2 Representation Theorem for the Existence
of a Representing Function

1. (Sufficiency). If % is complete and transitive, then there exists a v(•) which
represents %.

2. (Necessity). If there exists a v(•) which represents %, then % is complete and
transitive.
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What this tells if that if an elicitee has preferences which are non-transitive—she
tells us she prefers tea to coffee and coffee to hot chocolate, and hot chocolate to tea,
there is no representing function for her preferences. A moment’s reflection shows
why this is so: it would require finding three numbers x, y and z such that x>y, y>z,
and z>x, which is plainly impossible.

A more interesting and subtle question is under what circumstances can scoring
and weighting be used to arrive at an evaluation of options. Scoring and weighting
implicitly involves the use of an additive value function v.a/ D P

j wjvj.a/, where
vj is a scoring function which assigns scores for each criterion j to each option a and
wj is the weight of criterion j. Is there a representation theorem which tells us when
this value function can be used? As it happens, there are several such representation
functions. One useful illustrative example is the following.

12.2.3 Representation Theorem for the Existence
of an Additive Representing Function

Let % be a preference ordering on a set of biattributed options with well-defined
partial preferences %i for iD1 and 2. Given certain technical assumptions, the
Reidemeister condition is necessary and sufficient for the existence of a representing
additive value function.

As this chapter aims for informality, I do not propose to explain this Theorem in
detail here. In particular I ignore the role of technical conditions such as solvability
and the Archimedean axiom in proving the result. However, the Reidemeister
condition is insightful and it is worth taking some time to present in detail. To
understand the condition, consider Fig. 12.1 (the illustration is based on that in
Belton and Stewart 2002).

Figure 12.1 shows points in a biattribute space, with dimensions x and y. For
example, in choosing a house, x and y could be square footage and (the negative
of) purchase price. A and A’; B and B’ and C and C’ are pairs of points in this
space (each pair representing a larger, more expensive house, and a smaller, cheaper
house) between which the elicitee is indifferent, i.e. prefers neither one nor the other.

The Reidemeister condition is a condition on the elicitee’s preferences. An
elicitee’s preferences obey this condition if, whenever she is indifferent between
A and A’; B and B’ and C and C’ respectively, she is also indifferent between D
and D’. To see why this condition is sufficient for the existence of a representing
additive value function is hard: the proof involves using the condition iteratively to
construct a grid of points which have the interpretation of a value function of the
additive form. But to see the necessity is easy. Consider Fig. 12.2. If the elicitee’s
preferences are represented by an additive value function, then the formulae for the
values of these indifferences can be written as shown on the grid. The reader can
verify that by adding the equations corresponding to the indifferences between B
and B’ and C and C’ respectively, and subtracting the equation corresponding to A
and A’, the result is the following:

wxvx .x2/C wyvy . y2/ D wxvx .x2 � m2/C wyvy .y2 C n2/
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Fig. 12.1 Four pairs of points in a biattribute space, illustrating the Reidemeister condition

wxvx(x1)+ wyvy( y1)= wxvx(x1-m1)+ wyvy(y1+n1)

wxvx(x2)+ wyvy( y1)= 
wxvx(x2-m2)+ wyvy(y1+n1)

wxvx(x1)+ wyvy( y2)= wxvx(x1-m1)+ wyvy(y2+n2)
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A

x1-m1

y1+n1
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x2x2-m2

C’

C

y2

B

y2+n2

B’

Fig. 12.2 Value functions associated with the indifferences between A and A’, B and B’, and C
and C’
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But this equation expresses nothing other than the idea that D is indifferent to D’.
Hence any elicitee whose preferences are represented by an additive function must
obey the Reidemeister condition.

It is not always or necessarily the case that the Reidemeister condition holds.
In the case of buying a house, I may feel that the value of difference in space
m2 depends on the price which I am prepared to pay for the house. When I pay
a lower price for the house, I can use the space to host fabulous parties, and hence
the additional space has some value to me. But when I pay a higher price, I have
no spare money for entertaining and the additional space just means that I have to
spend more time cleaning. Hence, it does not make sense to give “points” to the
additional space irrespective of the financial purchase price of the house.

If the Reidemeister condition or its equivalents fail to hold, that does not
necessarily mean that all is lost. There are models which represent situations where
there are interactions between criteria. The simplest and most intuitive example is
that the “Quality Adjusted Life Year”, or QALY, which has found widespread use
in health economics as a measure of health benefit associated with a life extension
or enhancement (for axiomatics, see Pliskin et al. 1980; Miyamoto et al. 1998). At
its simplest the key idea of the QALY is that an individual’s life can be considered
as characterised in two dimensions: length and quality of life. Figure 12.3 illustrates
two individuals, one of whom enjoys a short healthy life and the other of whom
experiences a long miserable life.

For health gains, it makes no sense to calculate the value of a health gain as a
weighted sum of duration and quality of life. To see why not, consider the extreme
case of a life extension of zero (or infinitesimal) duration. Such a life extension

Time

As 
good 

as
dead 

Full 
health

Health state

100 
years

Short healthy 
life

Long miserable life

Fig. 12.3 Two possible lifecourses
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clearly has no value, no matter how good the health state. This is not compatible
with an additive model where the contribution of a set number of years of life to
overall value is fixed, independently of the number of years lived in that health state.
For this reason, QALYs are calculated as the length of life multiplied by a factor
representing the quality of life (this can be visualised as the area of the rectangles
in Fig. 12.3). Indeed, one popular way to elicit the value of a health state is to ask
a so-called time tradeoff question, where a number is associated with a health state
h (being blind, for example) by asking the elicitee for a number of years n such
that they would be indifferent between n years in state h and 1 year in full health
(Drummond et al. 2015).

12.3 The Decision Analysis Process

Having sketched the foundational concept of preferential independence, I now turn
to the question of how to actually elicit scores and weights. Attempting to elicit
scores and weights in the context of a poorly specified decision problem is a
hopeless undertaking: before elicitation can take place, the problem context, and
the basic elements of the model must be clearly specified and understood by all
relevant parties in the elicitation. Accordingly I will structure this chapter through a
map of the decision analysis process (see Fig. 12.4).

Design and planning
Step 1. Establish the aims of the analysis

Step 2. Identify decision makers, stakeholders, and persons with rele-
vant expertise

Step 3. Design the intervention

Structuring the model

Step 4. Identify the options 

Step 5.  Identify the criteria

Step 6. Score the options on the criteria

Step 7. Weight the criteria

Analysing the model
Step 8. Compute overall ranking

Step 9. Conduct sensitivity analysis

Fig. 12.4 Schematic of the decision analysis process
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12.3.1 Design and Planning

12.3.1.1 Step 1. Establish the Aims of the Analysis

A sensible starting point is to identify the objectives of the decision. For example,
the objectives could be: to grow the organisation (in terms of revenues, reputation,
market share, or profitability); to contribute to social welfare (e.g. through the
provision of healthcare or recreation facilities); to contribute to equity objectives
(for example health equity, equity in income distribution); to contribute to some
other stated policy objective (such as reducing error in tax collection or benefits
payment); or to help an organisation (e.g. a government agency or social enterprise)
fulfil its mission.

The analysis may be intended to support different problem statements or
problématiques (Roy 1985):

• Single choice (choose one option from n options)—for example choosing a site
for a new airport.

• Multiple choice (choose k options from n options)—for example members of a
team or a board.

• Budget allocation (choose options subject to a budget constraint of B)—for
example determining a portfolio of R&D projects, or military equipment for
purchase.

• Development of a priority ordering—for example ranking applicants for a
scholarship in terms of their merit.

• Accepting or rejecting an option (for example, deciding whether a new drug can
be provided by the national healthcare system).

Articulating both aims and the problématique is often a useful starting point for
analysis.

12.3.1.2 Step 2. Identify Decision Makers, Stakeholders, and Persons
with Relevant Expertise

It is important to identify early on both the decision makers, stakeholders, who
may be individuals, organisational units, or organisations, and persons with relevant
expertise. A decision maker is someone who has the authority to make a decision. A
common definition of a decision is that it is “an irrevocable allocation of resources,
in the sense that it would take additional resources, perhaps prohibitive in amount, to
change the allocation” (Matheson and Howard 1983). Thus, to qualify as a decision
maker, one must have the power to allocate resources. A stakeholder is someone who
can affect or is affected by a decision (for interesting discussions of the stakeholder
concept, see Bryson 2004; Ackermann and Eden 2011). An expert, by contrast, is
someone who has knowledge relevant to the assessment of the characteristics of the
options at hand (for more discussion, see European Food Safety Authority 2014,
Appendix A.2.2).
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12.3.1.3 Step 3. Design the Intervention

Often, MAVT is used in a participative way—in what Franco and Montibeller (2010)
call the “facilitated mode” of analysis. Sometimes, the entire decision analysis
process will take place in a workshop or series of workshops (this is sometimes
known as “decision conferencing”—Phillips 2007). Workshops are often valuable
as they build consensus and enable disagreements to be explored and sometimes
resolved, however, they can be time-consuming and expensive. On other occasions,
analysis may be done entirely “in the backroom”—such behind the scenes analysis
can still be valuable contribution to clarifying the problem and guiding a path to a
decision.

Sometimes, it may be most useful to have a hybrid process. For example, scoring
can be done “offline” by individuals, so that when face-to-face discussion takes
place it can focus on where there are differences of opinion in the scoring. In
thinking through the design of an intervention, it may be useful to fill in a matrix of
the form shown in Table 12.1.

Different modes of working may make sense in different contexts. For example,
when options are scientific projects which contribute to public welfare, it may
make sense to have scientists identify the options and perform the scoring on an
individual basis, but for representatives of the relevant stakeholders to do weighting
in workshop.

12.3.2 Structuring the Model

12.3.2.1 Step 4. Identify the Options

Options (sometimes called alternatives or actions) are things which could be done.
Options should be:

• Creative. It is important to canvass a wide range of options, even options which
are not immediately doable.

• Manageable in the time available. The number of options drives the length of
time required by the analysis.

Table 12.1 Matrix for
determining involvement in a
MAVT application

Who to involve? How to involve?

Options
Criteria
Scoring
Weighting
Sensitivity analysis
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• Homogeneous—they should be the same sort of thing. For example

– A facility which will deliver benefits over a 5 year timeframe cannot be
directly compared with a facility which will deliver benefits over a 100 year
timeframe.

– An investment option which costs £50 cannot be directly compared with an
investment option which costs £1,000,000.

• If more than one option can be done, options should be evaluatively independent,
that is, it should be possible to evaluate an option a without knowing whether a
second option b is to be implemented.

Let us look at an example where evaluative independence might fail. I cannot
evaluate “coffee” without knowing whether I am also to receive “milk” (as it
happens, I prefer not to drink my coffee black) and vice versa. If options are not
evaluatively independent they can sometimes be restructured to achieve evaluative
independence (e.g. I combine “coffee” and “milk” into a single option). Sometimes
this is not possible, and more complex approaches are required, such as the use of
mathematical programming methods.

It is good practice to identify a baseline level of activity (“do nothing”). This
is particularly important where the problem is not a problem of single choice.
In multiple choice contexts, failure to identify an appropriate baseline can lead
to paradoxical behaviour where model results change depending on seemingly
arbitrary features of model specification—see Morton (2015) for more details.

12.3.2.2 Step 5. Identify the Criteria

Criteria are the measures of performance by which an option is judged. Just because
in MAVT—and indeed in Multi-Criteria Decision Analysis (MCDA) procedures
more generally—the aim is to identify criteria which can be used to guide choice,
this does not mean that that these criteria really “exist” in the world: they have to
be discussed, negotiated and agreed between the various decision makers. Indeed,
research tells us that people are often not even sure what their own objectives are,
even in problems which are quite important to them (Bond et al. 2010): this is a
reason why there needs to be a structured process to discuss these objectives and
arrive at a model which everyone can sign up to.

A useful question to identify criteria is consider the options and ask the question
“what would distinguish between a good and bad choice in this decision problem?”
Criteria thus form a bridge between the options and the objectives.

Criteria have a sense or direction of preference:

• If one prefers more of the criterion to less (e.g. revenue), one says it has an
increasing direction of preference

• If one prefers less to more (e.g. cost) one says it has a decreasing direction of
preference.
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Table 12.2 Performance matrix for the house choice problem

Criteria
House Financial cost (£) Closeness (zone) Character Size (Sq footage)

1 220 A Yes 600
2 180 B Yes 600
3 130 C No 700
4 120 C No 500
5 180 B No 600

Once criteria have been identified, it should be possible to describe how the
options perform against the criteria. This can be done by specifying a perfor-
mance matrix, with options along the vertical dimension and criteria along the
horizontal direction. The individual performances are described in the cells: these
can be described either in terms of natural attributes (e.g. number of lives saved);
constructed attributes (e.g. numbers of stars which summarise further disaggregate
information); or qualitative descriptions (e.g. “very good”; “barely adequate”).

Suppose one is choosing a house to purchase. Table 12.2 shows an example
of a performance matrix (this example also appears in Morton and Fasolo 2009).
Here, Financial Cost is operationalised through money (in £); Closeness to the
city centre is operationalised through the zone of the city in which the house is
located (A is closest to the centre and C is furthest way); Character is assessed
as a simple “yes” or “no”; and size is measured in square footage. Size thus has
increasing direction of preference (more preferred to less) whereas Financial cost
has decreasing direction of preference (less preferred to more). The measures which
are used to operationalise the criteria are called attributes: unlike criteria which are
expressions of a decision maker’s aspirations in a decision problem, attributes are
objective characteristics which can be “read off” from a description of the options
themselves.

Sometimes it is possible to identify options which are dominated. An option
a is said to be dominated by a second option b if b is at least as good as a on
each criterion and strictly better than a on at least one criterion. In single choice
problems, dominated options will always be ranked at least second, and so can be
eliminated from consideration. For example, in the house choice problem, House 5
is dominated by House 2. It performs the same as House 2 on every criterion except
Character: House 2 has character and House 5 has no character.

If there are a large number of criteria, it may be worthwhile structuring the
criteria as a hierarchical value tree—see e.g. Fig. 10.2 of Chap. 10 (González-Ortega
et al. 2018). As a whole, the set of criteria should be (Keeney and Raiffa 1976):

• Discriminatory. They should distinguish between options. Sometimes there may
be objectives which are felt to be very important but which do not distinguish
between the options under consideration (e.g. how a software program is
designed may have no impact on climate change). In this case, there will be no
criterion associated with this objective in this decision problem.

http://dx.doi.org/10.1007/978-3-319-65052-4_10
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• Complete. Criteria should capture everything which the decision makers and
stakeholders care about.

• Small in number. As with options, a large number of criteria result in options will
increase time and care should be taken not to list too many criteria.

• Non-redundant. Criteria should not duplicate each other: there should be no
double counting.

• Preferentially Independent (as discussed earlier in this chapter). One useful way
to test whether preferential independence holds in practice is to see whether it
is possible for the elicitee to assess the value of performance on one criterion
independently of the level of performance on another criterion. If not, this
suggests that preferential independence does not apply and so the model should
be restructured, or a non-additive value model should be applied.

As I have stressed above, preferential independence is critical if scoring and
weighting approaches are to be used. Here is an example where preferential indepen-
dence might fail in our house choice setting. In choosing a house a purchaser may
care about whether there is a park nearby, and about whether there is a swimming
pool nearby: but if there is a park, she no longer care so much about the swimming
pool (and vice versa). Often, as in this case, failure of preferential independence
indicates that there is a higher order value (in this case, whether there are facilities
for exercise), and if the two preferentially dependent criteria are replaced with
the single more fundamental one, the problem is resolved. For a discussion of
models which make implausible preference independence assumptions in the health
domain, see Morton (2017).

12.3.2.3 Step 6. Score the Options on the Criteria

MAVT involves making numerical assessments of value and of relative importance.
Sometime this can be hard for people to do because they are used to thinking
of numbers as representing data about things which are “out there in the world”.
This is the wrong way to think about the numbers which are used in MAVT:
numbers are used but as part of a language to express how people feel about their
values. Questions which are mathematically equivalent from the point of view of
the multicriteria model can often be experienced psychologically as being quite
different (Morton and Fasolo 2009). For this reason it is often useful to have
different ways to ask MAVT elicitation questions: I will review some of these
different ways in this subsection.

It is conventional to use a scale bounded by 0 and 100 within each criterion to
score options. The performance levels which are defined as 0 and 100 are called the
lower and upper reference points. In single choice problems, a common approach
is to set the worst performance level in each criterion as 0 and the best as 100;
an alternative approach is to anchor the scale at 0 by some absolute idea of a
“neutral” level of performance and at 100 by some absolute idea of a “good” level
of performance. In problems other than single choice problems, it is good practice
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to set the do nothing baseline level of performance equal to zero (this may mean that
some options have negative scores). This is required in order to ensure that the value
of two options together (against the baseline) is equal to the sum of the individual
values of the options (against the baseline) (see Morton 2015, for more details).

Once 0 and 100 have been assigned, it remains to score the remaining options.
The scores should have a preference intensity interpretation. This means, they
should represent how intensely option a is preferred to be b relative to how intensely
c is preferred to d. For instance, if the difference between the scores of a and b is
40 points, and the difference between the scores of c and d is 20 points, then a is
preferred to b twice as strongly as c is preferred to d.

To actually establish the value scores of these intermediate points, it is helpful to
have multiple ways to help the elicitee access their values. For example, one can ask
the elicitation question as follows:

Suppose you living in a house in Zone C and you woke up one morning to find your house
had been moved to Zone A. You would feel happy, right? Fix in your mind how happy you
would feel : : : Now, suppose instead of your house moving from Zone C to Zone A, it only
moves to Zone B : : : . You would still feel happy, but you would feel less happy, right? Now,
can you tell me how big is the second amount of happiness as a fraction of the first amount
of happiness?

If the answer to this line of questioning is, say, “I would feel two thirds as happy”,
then the value Zone B should be 67 (on a scale where Zone C is zero and Zone A
is 100). It is normally to do “consistency checks” on such number. For example,
if Zone B does indeed have a score of 67, this means that a move from Zone C to
Zone B should give twice as much happiness as a move from Zone B to Zone A. It is
generally worth checking out with the elicitee whether this does indeed correspond
to how they feel about the options.

Often there is a certain amount of initial resistance to expressing such quantitative
judgements. The elicitor should give the elicitee time to surface the qualitative
arguments which may support a judgement of preference intensity. To facilitate the
expression of a preference judgement, it is often useful to draw measurement scales
and or different numbers or smileys to represent different degrees of happiness (see
Fig. 12.5). In group settings, a useful way to get a discussion going is to ask each
member of the group to privately assess a score and then compare and discuss
differences.

Closeness ACloseness C

67% 33%
0 10067

Closeness B

Fig. 12.5 Assigning a score for the intermediate level of closeness
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Fig. 12.6 Establishing value scores for cost: the MACBETH approach

One way to avoid the reluctance which many people feel to putting numbers
on their feelings is to ask not for quantitative scores but for qualitative statements
about strength of preference. This is the approach of Analytic Hierarchy Process
or AHP approach and the MACBETH approach (see Belton and Stewart 2002 for
a presentation of both approaches in a comparative context). MACBETH is fully
compatible with the MAVT paradigm, whereas AHP has been criticised in the
decision analysis literature on the grounds that it can lead to rank reversals (Dyer
1990).

A screenshot from the MACBETH software is shown in Fig. 12.6. In the
software, options are arranged in a matrix, and elicitees are invited to make
statements about the qualitative strength of preference between a number of
different pairs. For example, the elicitee may state that the difference in preference
in terms of cost between House 4 (the cheapest) and House 1 (the most expensive) is
“extreme”, whereas the difference between House 4 and House 3 (the next cheapest)
is merely “very weak”. The MACBETH software will then construct a value scale
placing the options at appropriate points on the scale, by using linear programming
optimisation in which the variables are the scores. The software also facilitates
other forms of analysis. In particular the software has an inbuilt function which
performs consistency checks on the matrix of comparisons (to identify situations
where e.g. a is strongly preferred to b and b is strongly preferred to c but a is only
weakly preferred to c) and suggests how consistencies can be resolved. For further
introduction to MACBETH, see Bana e Costa and Chagas (2004) of Bana e Costa
et al. (2012).

Table 12.3 shows some possible scores in the house choice problem, with the
lower reference point set as the worst level of performance and the upper reference
point set as the best level of performance.

Note that the criterion-specific scores as depicted in Table 12.3 are simply
vectors of numbers. If the underlying attribute is continuous (e.g. money, quantity
of emissions etc.), it may be possible to draw a value function. A value function
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Table 12.3 Attribute scores
for the house choice problem

Criteria
House Financial cost Closeness Character Size

1 0 100 100 67
2 50 70 100 67
3 95 0 0 100
4 100 0 0 0
5 50 70 0 67
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Fig. 12.7 A possible value function for cost

captures graphically how incremental value changes as the level of performance
changes. Figure 12.7 shows a possible value function for cost. Note that this value
function is decreasing, capturing the idea that lower costs are preferred to higher
ones; it is also non-linear, capturing the idea that the decision maker cares more
about an increment of £40,000 in cost from a base of £180,000 than from a base
of £120,000 (i.e. the difference in value between £120,000 and 160,000 is about 30
whereas the difference in value between £180,000 and 220,000 is 50).

One natural way to elicit a value function is to use the bisection method. When
using this method, one asks the elicitee to find a price point x such that a reduction
in cost from the highest level (£220 K) to £x yields the same amount of value as a
reduction in cost from £x to the lowest price level (£120 K). Since the most preferred
price point has a score of 100 and the least preferred a score of 0, £x should therefore
have a score of 50. By iterating this procedure, price points corresponding to value
scores of 25, and 75 can be found, and then corresponding to 12.5, 27.5, 62.5 and
87.5 : : : . to any required degree of articulation.

It should be noted that value functions are quite different from performing
an (often arbitrary) normalisation of the attribute scales. Normalisations are an
automatic mathematical operation that does not represent preferences. A value
function represents preferences and therefore must result from an elicitation process.
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12.3.2.4 Step 7. Weight the Criteria

Once scores have been established, the next step is to weight the criteria. The
reason for weighting is that although options have been scored on individual criteria,
criteria scales are not commensurable: a unit of value on one criterion scale is not
the same as a unit of value on another scale. It is as if the options had been valued
in terms of different currencies: UK pounds, euros, US dollars, etc..

Weighting thus sets the “exchange rates” between the different criteria. It is
critical to do weighting properly as this is what distinguishes MAVT from ad hoc
approaches. In ad hoc approaches, people often set weights by asking questions
such as “how important is this criterion relative to that criterion?”. Although people
can answer such questions, the questions themselves are meaningless (Morton and
Fasolo 2009). In MAVT, the weighting questions are phrased in terms of increments
on different scales.

To see this the difference, consider the question “Which is more important,
saving money or saving lives?”. This question as posed is ill-formed. However,
the question of how much one is prepared to pay to correct implement a safety
feature which will save on average such-and-such a number of lives is a well-formed
question. MAVT relies on questions of this latter type.

The most popular method of weighting in MAVT depends on the concept of
swings. A swing is typically defined as an increase in performance from the level
of performance associated with the lower reference point on some criterion to the
level of performance associated with the upper reference point. A weight reflects the
value of a swing, i.e. the value of improving an option which performs at the lower
reference point level on some criterion, so that it performs at the upper reference
point level on that criterion. Conventionally the weight of the most valued swing is
set as 1 and the weights of the other swings are set as fractions of the most valued
swing.

Just as in scoring, swing weighting involves asking questions about hypothetical
changes in options. The following question can be used to produce a ranking of the
swings.

Imagine you are going to buy a house which has the worst performance levels on all criteria
(it costs £220K, is situated in Zone C, has no character, and is only 500 square feet in size).
One day, your fairy godmother appears and offers to grant you some wishes. She is unsure
how many wishes she has to grant and asks you to prioritise. You may reduce the cost to
£120K, change the location from Zone C to Zone A, bestow the flat with character, and
increase the size to 700 sq feet. Which do you choose first, which second, which third, and
which fourth?

This procedure generates a ranking of the swings. (In our case, suppose the
ranking is Financial Cost, Closeness, Size and Character.) The next step is to ask the
“how much” question: how much do you like the second swing as a proportion of
how much you like the first? how much do you like the third swing as a proportion of
how much you like the first? how much do you like the fourth swing as a proportion
of how much you like the first?
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The principles behind asking and answering such questions are exactly the
same as, and build on the scoring questions: allow elicitees time to reflect and
debate, visualise, and make consistency checks to ensure that results “feel right”.
The MACBETH software can also be used for weighting, by eliciting qualitative
statements about strength of preference (“extreme”, “very strong”, etc.) between the
possible swings. a particular advantage of this software is that it also incorporates
dominance checks which can supplement quantitative scores by showing how strong
the evidence is that one option is overall more highly ranked than another.

Table 12.4. shows swings and associated swing weights for the house choice
problem.

As in the case of scoring, where attributes are continuous, this allows an
alternative procedure for weighting, called tradeoff weighting. The idea in tradeoff
weighting is to adjust the more preferred swing until it yields as much value as the
less preferred swing. The concept is depicted in Fig. 12.8. Suppose we have two
options, Option 1 which is cheap but poky (£120 K, 500 sq ft) and Option 2 which
is roomy but expensive (£220 K, 700 sq ft). We like both of these flats better than an
expensive and poky flat (£220 K, 500 sq ft, called the “nadir”). Moreover, we know
from the answer to our fairy godmother question that we would prefer the Option 1
to Option 2: Financial Cost is our most valued swing.

Now we want to ask the “how much” question. But instead asking it directly,
we can ask in the following way. Suppose that I adjust Option 1 downwards, in the
direction of the nadir, by increasing the price. At some point, Option 1 will cease to
be better than Option 2, and become first indifferent and then worse. By locating the
point at which indifference occurs, I can find a weight for Size in terms of Financial

Table 12.4 Swings and weights for the house choice problem

Criteria
Financial cost Closeness Character Size

Worst performance level 220 3 No 500
Best performance level 120 1 Yes 700
Swing 220 ! 120 3 ! 1 no ! yes 500 ! 700
Unnormalised swing weight: 1.00 0.85 0.30 0.50

Fig. 12.8 Sketch of the
procedure for tradeoff
weighting

Option2 

£220k, 40 
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£220k , 20 
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£220k, 40 min
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cost. The reasoning works as follows: I read the price level of the indifference price
(£180 K, say), and look it up on my value function for cost. From this I see that a
price of £180 K as compared to £120 K is worth 50 value points, measured on the
scale of the value function for cost. Since the value of the swing from 500 to 700 sq ft
is 100, measured in the scale of the value function for size, if I want to express the
value of square footage in a way which is commensurable with the value of cost, I
must divide the value scores for size by 2, i.e. use a weight of 0.5.

12.3.3 Analysing the Model

12.3.3.1 Step 8. Compute Overall Rankings

Given the scores and weights, and if the options and criteria have the properties
outlined in Steps 4 and 5, then it is legitimate to compute an overall value score for
each option a using the following formula

v.a/ D
X

j

wjvj.a/

where wj is the weight of criterion j and vj(a) is the score of option a on criterion j.
This provides a ranking of all options, and can be used to identify the best option,
or k best options.

It should be noted that “weight of criterion j” is something we often say in
common language, but more formally it should be called “the scaling constant
associated with value function vj”. Since these weights might not match the decision
makers’s intuition (e.g., “how come safety has such a low weight?”) it might be
useful to communicate it as the weight of value function vj (or the weight of swing
j). Bana e Costa et al. (2008) present an interesting and instructive application
where particular attention was paid to designing the swing weighting procedure so
that the swing weights corresponded closely to the decision makers’ natural prior
understanding of criterion importance.

Sometimes where there multiple options can be implemented together and there
is a concern for value for money, an alternative formula

vfm.a/ D
P

j wjvj.a/

c.a/

may be used, where j indexes the criteria on the benefit side of the value tree only,
and c(a) is the cost of option a (excepting the “do-nothing” option which has cost
of zero). This formula has the advantage that ordering the options according to this
formula and proceeding down the list until the budget is exhausted, will give a good
solution to the budget allocation problem, especially if there are many options. For
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more ideas on how to deal with this particular problématique, see Salo et al. (2011)
and Morton et al. (2016).

12.3.3.2 Step 9. Conduct Sensitivity Analysis

Often people consider that a multicriteria analysis is complete when they have
scored options and weighted criteria and arrived at a ranking of options. Nothing
could be further from the truth. The aim of MAVT is not to find the “right answer”—
where there are conflicting objectives, no right answer exists—but to enable decision
makers and stakeholders to explore the problem and come to a considered decision.
Sensitivity analysis involves varying scores or weights in an interval and noting
the impact on the model results. Sensitivity analysis can reveal how important
uncertainties or disagreements (such as those identified in Steps 6–7) are on the
final results.

I now present three sensitivity analysis displays for the house choice problem:
the stacked bar chart, the Pareto chart, and the parameter-wise sensitivity analysis.

Figure 12.9, the stacked bar chart, shows the composition of aggregate value for
the different options. From this it can readily be seen what options are cheap (a lot of
the value of Houses 3 and 4 is due to their strong performance on the cost criterion).
House 4 in particular has nothing to recommend it except that it is cheap. House
1 gets a great deal of value from closeness and if the elicitee really cared about
closeness she would choose this option, but the winner seems to be—given these
scores and weights—House 2 which has the advantage that it is a good all-rounder,
with cost, closeness, character and size reasons to recommend it.

1 2 3 4 5
Houses

Size

Character

Closeness

Cost

Fig. 12.9 Stacked bar chart for the house choice problem
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Fig. 12.10 Efficient front display for house choice problem

Figure 12.10 shows a Pareto chart. In this display, the scores for Financial
cost are plotted against a weighted combination of the scores of all other criteria
(“Benefits”). Houses on the frontier of the enclosed area are efficient in the sense that
for each house, that there is some assignment of weights to “Costs” and “Benefits”
which makes that house the highest valued house. House 1 is the point on the vertical
access (it has all the benefits but is expensive); House 4 is the house on the horizontal
axis (it has no benefits but is cheap) and Houses 2 and 3 are the points on the curve,
both representing a compromise between costs and benefits. Note that House 5 is
not efficient in this display. This is a consequence of house 5 being dominated. It is
however possible for an option to be not efficient even if it is not dominated.

Figure 12.11 shows a parameter-wise sensitivity analysis for the criterion
Closeness. This display shows how the valuation of the options changes as the
weight on Closeness is varied relative to the weight on the other criteria whilst
holding the relative weights on the Benefit criteria fixed. From this display it can be
easily seen that: House 1 is a good option if Closeness is high weighted relative to
the other criteria; House 2 is a good option if Closeness is intermediate weighted
relative to the other criteria; and House 3 is a good option if Closeness is low
weighted relative to the other criteria. The other two options do not, for this analysis
and given these numbers, make it into the running.

Although sensitivity analysis in MAVT can be done using spreadsheets, it is
often more efficient to use software (for example, Hiview or VISA or MACBETH
or WISED for single choice problems; Equity or PROBE for multiple choice and
budget allocation problems) as these softwares have built-in sensitivity analysis
tools. The technical literature has a wider selection of ideas and tools for performing
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All weight on Closeness No weight on closeness

House 1
House 2
House 3
House 4
House 5

Fig. 12.11 Parameter-wise sensitivity analysis: value of options varying weight on Closeness for
house choice problem

sensitivity analysis (e.g. Ríos Insua and French 1991; Dias and Clímaco 2000;
Borgonovo and Plischke 2016) but these have not yet generally been incorporated
in professional commercially-available user-friendly software.

12.3.4 Troubleshooting

In this section of the chapter, I consider some commonly occurring problems in
applying MAVT in practice, and suggest some ways to approach such problems.

1. There are too many options. Consider using a small number of screening
criteria to establish a shortlist (e.g. would this option require new legislation
to implement? Would it cost more than £x?). If several options are similar (e.g.,
small variations), consider evaluating only one from each group/cluster and, if
it turns out to be among the best, only then evaluate the ones similar to it.

2. There are not enough options. Look for solutions which other organisations
have implemented when faced this or similar decisions. Consider holding a
brain storming session. Consider enlarging the scope of the analysis. E.g.,
someone suggests you do voluntary work at an hospital 2 h per week. Instead of
considering the alternatives “yes” and “no”, you might consider the alternatives
are how many hours will you devote to this organisation, or consider the
alternatives are different organisations where you could do voluntary work.
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3. The options do not seem to be comparable. Come up with a description of
what options should be (e.g. “facilities”; “development plans”). Restructure the
options by merging some or deleting some.

4. The options cannot be evaluated independently of each other. Consider restruc-
turing the options (e.g. merging options which have a dependence relation;
assuming that one option on which several others depend will be done).
Alternatively, consider using more complicated analytic techniques such as
mathematical programming. Consider using Portfolio Decision Analysis meth-
ods, see Salo et al. (2011) and Morton et al. (2016).

5. There are too many criteria. Look for criteria which are redundant, i.e. which
duplicate each other; which do not discriminate between options. Consider
merging similar criteria into higher level criteria.

6. There are not enough criteria. Look for criteria which other organisations
have implemented when facing this or similar decisions. Consult published
documents such as strategic plans. Consider holding a brain storming session.
Consider what important attributes might differentiate two alternatives that are
similar on the criteria you already have.

7. The criteria are not preferentially independent. Consider restructuring the
criteria (e.g. merging two criteria which are dependent because they are
alternative ways of achieving some higher order goal). Use a non-additive value
model.

8. Participants don’t understand scoring and/or weighting. Use software, or draw
pictures on flip charts to help participants visualise. Ask questions in different
ways, using the different questioning modes listed in this chapter. Use analogies
to communicate weight and scale concepts (e.g. exchange rates; metric and
imperial scales; Celsius and Fahrenheit). Build models in real-time allowing to
observe how outputs change as inputs also change.

9. The overall values don’t “feel right”. Ask yourself and your decision maker
why the answers don’t feel right. Is there a missing criterion? Do you really
believe the scores and weights? Use sensitivity analysis to explore the model.

10. There isn’t enough time to do everything properly. One option is to proceed with
incomplete information and check what is robust to save time, see Dias (2007).
However, a decision analysis can take various forms—from a quick back-of-
the-envelope analysis in an hour or two to workshops spread over several days.
Use the time you have, and be realistic about what you can achieve.

11. The decision makers or significant parties do not have time to participate. Do
not demand very exact answers (e.g are you sure the score is 50 and not 49 or
51?). Often, sensitivity analysis shows that small imprecisions do not matter
(“flat maxima principle” of von Winterfeldt and Edwards 1986). Remind the
decision maker that the analysis is a tool to help them structure and think
through the decision, not something which will or should try to take the decision
for them. If time is an issue, not everyone has to be involved in every stage of
the decision process (for example a small working group may define criteria
and options which can be scored by a larger group).
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12. The decision makers or significant parties are afraid of losing control of the
decision. Not everyone has to be involved in every stage of the decision process
(for example weights may be defined by the management team or by a single
client). Control is not absolute in any case, and often decisions which are arrived
at by a non-transparent process are hard to implement because of stakeholder
resistance.

13. The decision makers do not agree on some inputs. Build different models in
parallel or use incomplete information they agree with (e.g., they do not agree
on the weights w1 and w2, but agree that w1>w2. Assess what common results
can be obtained. Often, different inputs lead to the same outputs.

14. The decision makers refuse the idea of trade-offs (e.g., harm to the environment
vs. harm to health vs. costs). This may be caused by options with unacceptable
performance on key criteria that the decision makers feel cannot be com-
pensated by good performance in another criterion. In such cases, consider
removing these unacceptable alternatives. Otherwise, using MAVT might not
be the best option and outranking methods (see Chap. 14 of this book (Dias
and Mousseau 2018)) or other approaches might be appropriate to such type of
decision makers.

12.4 Concluding Remarks

The founding texts of MAVT (Keeney and Raiffa 1976; von Winterfeldt and
Edwards 1986) are now 40 and 30 years old respectively. Although younger by
several decades (or centuries, depending on how one counts) than probability theory,
MAVT can therefore also be considered to be a mature technology.

Is it a successful technology? Considered in its broadest sense, the answer has to
be yes: the scoring and weighting approach is (as far as one can tell) very widely
used in applied settings, such as R&D prioritisation and procurement. However,
many users of scoring and weighting have never heard of MAVT, and are unaware
that that a body of theory-based knowledge exists about how to perform elicit
scores and weights. To some extent this is also true of probabilistic modelling also.
However, much of the use of probabilistic concepts is mediated by software such as
spreadsheet simulation packages and such software provides an easy bridge for users
to learn more about probabilistic concepts. Software based around MAVT concepts
has not (yet) enjoyed such widespread success.

Like the authors of the Chap. 9 (González-Ortega et al. 2018, in their Discussion
section) I see huge potential for MAVT methods in an increasingly digital and data-
rich world. Currently if one is shopping online for hotel rooms or flights, the search
engines allow one to rank order options on the basis of holistic assessments, or on
the basis of individual criteria, but provide little in the way of support for locating
the option which has the ideal balance of attributes given one’s preferences. It is
plausible that increasingly demanding online consumers will at some point start to

http://dx.doi.org/10.1007/978-3-319-65052-4_14
http://dx.doi.org/10.1007/978-3-319-65052-4_9
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ask for and expect better decision support to enable them to cope with the vast mass
of undigestable information which is regularly served up to them.

However, the original promise of MAVT as a rigorous yet transparent framework
for choice was to help support big policy decisions as well as small personal ones.
There are some signs in some domains that multicriteria methods are meeting with
increasing favour. In the area of health technology regulation and assessment, for
example, there has been a recent upsurge in interest in the use of multicriteria
methods to support medicines regulation and reimbursement decisions (Thokala
et al. 2016; Marsh et al. 2016). However, there is still a substantial gap between the
potential for the formal use of MAVT to beneficially support substantial decisions in
government and business, and actual current practice. Hopefully that gap will close
in the years and decades ahead.
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Chapter 13
Disaggregation Approach to Value Elicitation

Nikolaos F. Matsatsinis, Evangelos Grigoroudis, and Eleftherios Siskos

Abstract The philosophy of preference disaggregation in multicriteria decision
analysis encapsulates the assessment/inference of preference models, from given
preferential structures, and the implementation of decision aid activities through
consistent and robust operational models. This chapter presents a new outlook on
the well-known UTA method, which is devoted to the elicitation of values through
the inference of multiple additive value models. On top of that, it incorporates the
latest theoretical developments, related to the robustness control of both the decision
model and the surfacing decision aiding conclusions. An application example on
job evaluation is elaborated as an educative example, while other potential areas
for future use applications of the methodological framework are listed. The chapter
concludes with several promising directions for future research.

13.1 Introduction

The philosophy of preference disaggregation in multicriteria analysis is to
assess/infer preference models from given preferential structures and to address
decision-aiding activities through operational models within the aforementioned
framework. In simple words, assuming that a decision is given, the preference
disaggregation approach is focused on finding rational basis for the decision being
made. Therefore, it is possible to assess the Decision-Maker’s (DM’s) preference
model leading to exactly the same decision as the actual one (Siskos et al. 2016).

Preference disaggregation has been proven especially competent for complex
decision making systems, in the presence of multiple conflicting and heterogeneous
criteria (Jacquet-Lagrèze and Siskos 2001; Siskos et al. 2016). In such cases, the
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standard explicit elicitation of preferential parameters, especially when the DMs are
ignorant of the rationale and methods of Multiple Criteria Decision Aid (MCDA),
is a complicated task, which poses a heavy cognitive burden, and often leads to
results of questionable value and acceptance. These decision making systems can
be alternatively addressed with the aid of the implicit procedures of preference
disaggregation. Such procedures are also suitable and convenient for the case of
multiple DMs (Group Decision Making), where the preference models of each are
aggregated to a global one (Siskos and Grigoroudis 2010; Stavrou et al. 2018).

In the context of preference disaggregation, goal programming techniques have
been the first approaches applied in order to assess/infer preference/aggregation
models or develop linear or nonlinear multidimensional regression analyses (Siskos
1983). Among other, these first research efforts include the works of Charnes
et al. (1955) and Karst (1958), who applied goal programming approaches in
order to assure the consistency of the developed models with available data. In
particular, Charnes et al. (1955) developed a linear model of optimal estimation
of executive compensation (salaries), as consistent as possible with the data from
the goal programming point of view, while the goal programming approach of
Karst (1958) was a single linear regression model, minimizing the sum of absolute
deviations. Later Wagner (1959) generalizes the Karst’s model in the case of
multiple linear regression and Kelley (1958) proposed an alternative optimality
criterion (i.e., minimize Tchebycheff’s criterion). Other early important efforts may
refer to the works of Srinivasan and Shocker (1973) who proposed a linear value
function assessment approach based on ordinal regression and pairwise judgments
and the study of Freed and Glover (1981) who developed an inference approach
for estimating the weights of linear value functions in the context of discriminant
analysis using goal programming techniques.

The case of ordinal criteria in preference disaggregation is considered by
the early works of Young et al. (1976) and Jacquet-Lagrèze and Siskos (1978)
which focused on the inference of additive value functions by disaggregating a
ranking of reference alternatives. In particular, Jacquet-Lagrèze and Siskos (1978)
in the “Cahiers du LAMSADE” series present the UTA method ensuring that the
additive value function is optimally consistent with the given ranking through linear
programming (LP) techniques, contrary to Young et al. (1976) where optimality is
not ensured given the adopted least squares techniques. The research presented in
the “Cahiers du LAMSADE” series may be considered as the actual initiation of the
development of disaggregation methods.

In the context of MCDA, the general decision-making methodology includes
the modeling process of a consistent family of criteria fg1, g2, : : : gng, where each
criterion is a non-decreasing real valued function defined on A, as follows:

gi W A ! 	
gi� ; g

�
i


 
 R=a ! g.a/ 2 R (13.1)

where
	
gi�; g�

i



is the criterion evaluation scale, gi

�

and g�
i are the worst and the

best level of the i-th criterion respectively, gi(a) is the evaluation or performance of
action a on the i-th criterion and g(a) is the vector of performances of action a on
the n criteria.
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From the above definitions, the following preferential situations can be deter-
mined:

�
gi.a/ > gi.b/ () a � b .a is preferred to b/

gi.a/ D gi.b/ () a � b .a is indifferent to b/
(13.2)

So, having a weak-order preference structure on a set of actions, the problem is to
adjust additive value or utility functions based on multiple criteria, in such a way that
the resulting structure would be as consistent as possible with the initial structure.
This principle underlies the disaggregation approach, where the preference models
are inferred given a set of global preference, contrary to the traditional aggregation
paradigm, where the criteria aggregation model is known a priori, while the global
preference is unknown.

In this context, the preference disaggregation approach (Jacquet-Lagrèze and
Siskos 1982, 2001; Siskos 1980; Siskos and Yannacopoulos 1985) aims at analyzing
the behavior and the cognitive style of the DM.

As noted by Jacquet-Lagrèze and Siskos (2001) the clarification of the DM’s
global preference necessitates the use of a set of reference actions AR, which may
include:

(a) A set of past decision alternatives (AR: past actions);
(b) A subset of decision actions, especially when A is large (AR 
 A) or
(c) A set of fictitious actions, consisting of performances on the criteria, which

can be easily judged by the DM to perform global comparisons (AR: fictitious
actions).

As shown in Fig. 13.1, a combination of the previous options may also be
applicable (i.e., AR may include a subset of A, as well as a set of fictitious actions).
According to Fig. 13.1, the preference disaggregation focuses on the following
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question: based on preference information transformed to a compatible preference
model, what is the consequence of using the whole set A? In the procedure the DM
is asked to externalize and/or confirm his/her global preferences on the set AR taking
into account the performances of the reference actions on all criteria. The resulting
DM’s aggregated value system is then applied to A, thus the main aim of such an
approach is to aid the DM to improve his/her knowledge on the decision situation
and his/her way of preferring, which entails a consistent decision to be achieved.

The main aim of this chapter is to present a new perspective on the well-known
UTA method, emphasizing on the elicitation of values through the inference of
multiple additive value models. For this reason, the latest theoretical developments,
related to the robustness control of both the decision model and the surfacing
decision aiding conclusions are discussed and an educative example referring
to an application on job evaluation is presented. The chapter concludes with
the presentation of future research directions, as well as existing and potential
applications of the proposed methodological framework.

13.2 A New Look on the UTA Method

13.2.1 Problem Statement and Notation

The UTA (UTilité Additive) method proposed by Jacquet-Lagrèze and Siskos
(1982) aims at inferring one or more additive value functions from a given ranking
or other preference statements (e.g., pairwise comparisons) expressed on a reference
set AR. The method uses LP techniques to assess these functions so that the
ranking(s) obtained through these functions on AR is (are) as consistent as possible
with the reference preference statements.

The criteria aggregation model in UTA is assumed to be an additive value
function of the following form (Jacquet-Lagrèze and Siskos 1982):

u .g/ D
nX

iD1
ui .gi/ (13.3)

subject to normalization constraints:

8
<

:

nP
iD1

ui
�
g�

i

� D 1

ui .gi�/ D 0 8i D 1; 2; : : : ; n
(13.4)

where ui, i D 1 , 2 , : : : , n are non-decreasing real valued functions, named marginal
value or utility functions.

Both the marginal ui(gi) and the global u(g) value functions have the monotonic-
ity property of the so-called “true criterion”. For instance, in the case of the global
value function the following properties hold:
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�
u Œg.a/� > u Œg.b/� () a � b .preference/

u Œg.a/� D u Œg.b/� () a � b .indifference/
(13.5)

13.2.2 The UTASTAR Algorithm

The UTASTAR method proposed by Siskos and Yannacopoulos (1985) is an
improved version of the original UTA model (Jacquet-Lagrèze and Siskos 1982).
UTASTAR uses a double positive error function, so that the value of each alternative
a 2 AR can be written as:

u0 Œg.a/� D
nX

iD1
ui Œgi.a/� � �C.a/C ��.a/ 8a 2 AR (13.6)

where �C and �� are the underestimation and the overestimation error, respectively.
In addition, the monotonicity constraints in the UTASTAR method are taken into

account through the following transformations:

wij D ui

�
gjC1

i

�
� ui

�
gj

i

�
� 0 8i D 1; 2; : : : ; n and j D 1; 2; : : : ; ˛i � 1 (13.7)

and thus, the monotonicity conditions may be replaced by the non-negative con-
straints for the variables wij (˛i is the number of points, on which the value function
ui is assessed).

Based on the above, the UTASTAR algorithm may be summarized in the
following steps:

13.2.2.1 Step 1

Express the global value of reference actions u[g(ak)], k D 1 , 2 , : : : , m, first in
terms of the marginal values ui(gi), and then in terms of the variables wij:

8
<

:

ui
�
g1i
� D 0 8i D 1; 2; : : : ; n

ui

�
gj

i

�
D

j�1P
tD1

wit 8i D 1; 2; : : : ; n and j D 2; 3; : : : ; ˛i
(13.8)

In order to estimate the corresponding marginal value functions, when necessary,

linear interpolation is applied. For example, if gi.a/ 2
h
gq

i ; g
qC1
i

i
the marginal value

function is given by:
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ui Œgi.a/� D ui
�
gq

i

�C gi.a/ � gq
i

gqC1
i � gq

i

h
ui

�
gqC1

i

�
� ui

�
gq

i

�i D
q�1X

tD1
wit C gi.a/ � gq

i

gqC1
i � gq

i

wiq

(13.9)

13.2.2.2 Step 2

Introduce two error functions �C and �� on AR by writing for each pair of
consecutive actions in the ranking the analytic expressions:

�.ak; akC1/ D u Œg .ak/� � �C .ak/C �� .ak/ � u Œg .akC1/�

C �C .akC1/ � �� .akC1/ (13.10)

13.2.2.3 Step 3

Solve the following LP:

Œmin� z D
mX

kD1

	
�C .ak/C �� .ak/



(13.11)

Subject to:

�.ak; akC1/ � ı if ak � akC1
� .ak; akC1/ D 0 if ak � akC1

�
8k

Pn
iD1

P˛i�1
jD1 wij D 1

wij � 0; �C .ak/ � 0; �� .ak/ � 08i; j and k

(13.12)

where ak and ak C 1 are two successive actions in the DM’s ranking and ı is a small
positive number.

13.2.2.4 Step 4

Test the existence of multiple or near optimal solutions of the LP (12) (stabil-
ity/robustness analysis); in case of non-uniqueness, find the mean additive value
function as the most representative (barycenter) of those (near) optimal solutions
which maximize/minimize the objective functions:

ui

�
gj

i

�
D

j�1X

tD1
wit for i D 1; 2; : : : ; n and j D 2; 3; : : : ; ˛i (13.13)
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on the polyhedron of the constraints of the LP (12) bounded by the new constraint:

mX

kD1

	
�C .ak/C �� .ak/


 � z� C " (13.14)

where z� is the optimal value of the LP in step 3 and " is a very small positive
number.

The number of LPs that have to be solved in this step (and the corresponding
value functions obtained) is 2 �Pn

iD1 .˛i � 1/. In most of the UTASTAR applications
one usually seeks value functions that are free of errors (all errors variables � are
zero) and no relaxation from the minimal error is allowed ("D 0).

13.3 Interactive Disaggregation and Robustness Control

13.3.1 Bipolar Robustness Control

The UTASTAR inference engine shows that the DM’s preference model may not
be a unique additive value function but a set of functions, all being compatible
with the holistic preference statements provided to the analyst. This infinite set of
functions comprises a polyhedral set, confined under some linear constraints, in thePn

iD1 .˛i � 1/ dimension space, where ai is the number of points on which the value
function ui is assessed.

Greco et al. (2010) proposed a general methodological framework, named
Robust Ordinal Regression (ROR), which can be implemented synergistically to
the disaggregation methods and aims at enhancing the robustness of the estimated
results. ROR is based on the principle, according to which the decisions and
proposals emerge after considering all those parameters that are compatible with
the preferences of the DM. This principle contradicts the theoretical approaches
of many MCDA methods, which select only specific parameters for the estimation
of the results. The latter is considered theoretically arbitrary and at the same time
excludes potential additional information regarding the whole set of alternative
actions. On the other hand, ROR considers all value functions, which are consistent
with the information provided by the DM and calculates necessary weak and
possible weak preference relations. The former preference relation holds when an
alternative is at least as good as another one for all instances, which are compatible
with the DM’s preference information, and the latter when there exists at least one
instance that an alternative is at least as good as another one.

Recently Siskos and Psarras (2016) proposed an interactive bipolar robustness
control, which manages robustness in both phases/poles of the interactive decision
support process, namely the disaggregation and the aggregation one. Through
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this integrated procedure, the analyst has the possibility to examine, measure and
analyze in a systematic way the robustness of the decision model’s parameters
and the results that emerge after the implementation of the additive value model.
Although bipolar robustness control is coupled perfectly to the UTA-type methods,
it can be just as well implemented under a synergy with several other MCDA
methods.

Regarding the family of UTA methods, the robustness control process is initiated
after the inference of the additive value model, which leads to the ranking of
the reference actions. It then proceeds to the analysis of the robustness of the
model, with the option of discontinuing the modeling process, if the results are
not satisfactory. In this case, the analyst asks the DM to enrich the reference set
with additional reference actions or add other new preference statements. Ciomek
et al. (2016) note that this additional information can impose excessive cognitive
burden on the DM and they proposed heuristics for prioritizing pairwise elicitation
questions.

In the reverse direction, the process moves from the disaggregation to the
aggregation pole, where the MCDA model is implemented and the ranking of the
real actions is achieved. Robustness is again measured in this pole, in terms of the
stability of the ranking positions of each action. If the robustness of the results is
adequate enough to support a sound decision, the algorithm ends, otherwise the
analyst returns to the disaggregation pole and asks the DM for the acquisition of
additional preferential information. Figure 13.2 illustrates the algorithm that an
analyst may apply during the implementation of bipolar robustness control.

The robustness control framework, when coupled with any UTA family method,
uses two separate sets of robustness indices to judge: (1) the efficacy of the additive
model in the disaggregation pole and (2) the robustness of the final results, achieved
after the extrapolation of the model on the whole set A, in the aggregation pole. The
calculation of these indices requires the implementation of certain techniques and
standalone methods, in parallel with the decision support procedure.

13.3.2 Robustness Indices

The indices, related to the disaggregation pole of the robustness control framework,
focus on the efficacy/stability of the model to produce results that are stable and not
misleading or ambiguous. The objective of these indices is to build a robust decision
model that accurately reflects the preferences of the DM. On top of that, these
indices have a practical meaning, since they prevent the analyst from performing
heavy, pointless computations, which are certain to reach results of low quality.
The whole computational effort is therefore decreased and the goals of the DM are
reached by spending fewer resources.

The robustness indices proposed by Siskos and Psarras (2016) are categorized,
based on which pole they apply to. Certain representative indices, which are also
calculated in the application example of Sect. 13.4, are presented below.
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322 N.F. Matsatsinis et al.

13.3.2.1 Robustness Indices on the Disaggregation Pole

Two indices can be recognized in this category. The use of these indices presupposes
the production of multiple sets of preferential parameters. A usual way to achieve
this, when implementing the UTA-type methods is the max–min LPs technique (see
for example step 4 in Sect. 13.2.2). During this procedure, all or a subset of model’s
parameters are successively minimized and maximized, under the set of feasibility
constraints, and then visualized.

Let prs denote the set of the model’s parameters produced by a robustness dis-
aggregation technique, where r denoted a specific instance in which the parameter
is estimated (r D 1, 2, : : : , R) and s denotes a specific parameter (s D 1, 2, : : : , S).

For example, in the proposed approach, where ui

�
gj

i

�
are examined during step 4

of the UTASTAR algorithm, the number of instances is R D 2
Pn

iD1 .˛i � 1/ and
the number of parameters is S D Pn

iD1 .˛i � 1/. In the case of the UTA II method,
where only ui

�
g�

i

�
are minimized and maximized we have R D 2n and S D n when

ui
�
g�

i

�
are examined or S D Pn

iD1 .˛i � 1/ when ui

�
gj

i

�
are examined.

Average Range of the Preferential Parameters (ARP)

This index reveals the range of an average preferential parameter, after considering
the preference information extracted by the DM. The calculation of the ARP requires
the a priori implementation of the max–min LPs technique and is defined as follows:

ARP D 1

S

SX

sD1

h
max

r
.prs/ � min

r
.prs/

i
(13.15)

where prs is the r-th instance of the s-th preferential parameter and S is the number
of all the different instances considered during the max–min LPs procedure.

This index ranges in [0, 1] and receives lower values, when the robustness of
a model increases. ARP receives the value of 0 when a unique preference model
reflects the preference statements of the DM.

Average Stability Index (ASI)

The average stability index is a robustness index proposed by Siskos and Grigor-
oudis (2010) and indicates the average value of the normalized standard deviation
of the preferential parameters (see also Grigoroudis and Siskos 2010 for a theoretical
discussion and Delias et al. 2013b and Delias and Matsatsinis 2013 for some
indicative applications). ASI is assessed as:
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ASI D 1 � 1

S

SX

sD1

vuuuut
R
PR

rD1p2rs �
�PR

rD1prs

�2

R
PR

rD1p02
rs �

�PR
rD1p0

rs

�2 (13.16)

where p0
rs is the possible value of the r-th instance of the s-th preferential parameter

that maximizes the variance of a particular parameter during the max–min LPs
procedure. ASI also ranges in [0, 1] and returns the value of 1 when perfect
robustness is achieved.

In this chapter, ASI has the following form:

ASI D 1 � 1Pn
iD1 .˛i � 1/

nX

iD1

˛iX

jD2

r
Pn

iD1 .˛i � 1/PR
rD1

�
ur

ij

�2 �
�PR

rD1 ur
ij

�2

2
pPn

iD1 ˛i � .n C 1/

(13.17)

where ur
ij is the r-th instance of uij during the max–min LPs procedure with R D

2
Pn

iD1 .˛i � 1/.

13.3.2.2 Robustness Indices on the Aggregation Pole

The exploitation of the indices related to the disaggregation pole offers a com-
prehensive view of the robustness of the decision model. However, this does not
guarantee the acquisition of robust results after the implementation of the decision
model. The proposition of appropriate indices in the aggregation pole (2nd pole)
is therefore necessary. Again, these indices work under the condition that certain
techniques are implemented.

Average Range of the Ranking (ARRI) and Ratio of the Average Range
of the Ranking (RARR)

The average range of the ranking index and the ratio of the average range of the
ranking are coupled with the Extreme Ranking Analysis technique proposed by
Kadziński et al. (2012). ARRI depicts the possible number of positions that an
average action can occupy in the whole ranking, while RARR reflects the ratio of
the aforementioned deviation, with respect to the whole number of the alternatives
under evaluation. The optimal values of ARRI and RARR are 1 and 0%, respectively,
and they are calculated using the following formulae:



324 N.F. Matsatsinis et al.

ARRI D 1

m

mX

kD1

�jR�.k/ � R�.k/j C 1
�

(13.18)

RARR D ARRI � 1
m � 1 � 100% (13.19)

Where R
�

(k) and R� (k) are the worst and best possible ranking positions,
respectively for the k-th alternative and m is the number of reference actions.

Statistical Preference Relations Index (SPRI)

The statistical preference relations index (SPRI) offers a comprehensive way to
examine the stability of all the ranking positions achieved by the whole set of
alternatives. It is performed in synergy with random sampling techniques, the
Manas-Nedoma algorithm (Manas and Nedoma 1968) that extracts all the vertices of
the model’s polyhedron, and generally methods that provide a statistically adequate
number of sets of preferential parameters, within the feasible area. SPRI calculates
the separate probabilities, that each alternative occupies a single ranking position in
the final ranking, and forms a meaningful measure, which gives a clear insight of
the robustness of the final results.

Specifically, the estimation of the probability that an alternative ak gets ranked in
the t-th position is performed using the following relation:

Pk
t D ck

t

R
� 100% (13.20)

where ck
t is the number of samples/instances that position an alternative ak in the

t-th position (t D 1, 2, : : : , m) and R is the number of all the samples/instances.
The statistical preference relations index is then calculated using the following

equation:

SPRI D 1

R

mX

kD1

mX

tD1
Pk

t (13.21)

SPRI reaches the optimal value of 100% when all the alternatives occupy a
single ranking position with a probability of 100%. In other words, the same
ranking exactly occurs for all the preferential parameters samples/instances under
consideration.
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13.4 An Application Example

13.4.1 Problem Presentation

The example presented in this section is inspired from a successful real world
application of the UTA method in a job evaluation problem in a leading Greek
organization (Spyridakos et al. 2000). Job evaluation is a systematic process that
enables the design and establishment of human resources improvement procedures
and fair reward systems.

In the organization under examination, job evaluation concerns the assessment
of a value system that encapsulates the importance of the parameters that reflect the
global responsibility and duties of each different job position. It should be noted
that this evaluation does not concern the real persons in these positions, but the
jobs themselves, the responsibilities associated with them, and their contribution to
productivity and profitability. The evaluation positively influences the competence
and performance management, since it: (1) aids the establishment of a reward
system that links the importance of the jobs to the payment offered, and (2) supports
the design of human resources development requirements, in order to improve the
effectiveness of the positions’ operations. Three evaluation criteria are the following
(see details in Table 13.1):

• Criterion 1 (input criterion): Required qualifications and skills (i.e., basic
knowledge, expertise, skills, experience), measurable in the numerical scale (5,
20).

• Criterion 2 (process criterion): Contribution to decision making (e.g., partici-
pation to committees, position in the hierarchy, problem solving, quantity and
importance of the decisions), measured using an ordinal scale: (limited, medium,
high, very high).

• Criterion 3 (output criterion): Responsibility (e.g., qualitative results, geograph-
ical area, degree of responsibility, perspectives, strategic role in development
activities, and support to other units), measured using an ordinal scale: (limited,
medium, high, very high).

Using the aforementioned criteria, ten job positions are evaluated, as shown in
Table 13.2.

Table 13.1 Job evaluation criteria for the application example

Criteria name Point of view Type Evaluation scale

g1: Required qualifications
and skills

Input Measurable Numerical scale (5, 20)

g2: Contribution to decision
making

Process Ordinal (limited, medium, high, very
high)

g3: Responsibility Output Ordinal (limited, medium, high, very
high)
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Table 13.2 Multicriteria evaluation of ten job positions

Job
position

Criterion 1 (required
qualifications and skills)

Criterion 2 (contribution to
decision making)

Criterion 3
(responsibility)

A 7 Medium High
B 12 High Medium
C 15 Limited Limited
D 5 Medium Medium
E 10 Limited Very high
F 19 Very high Limited
G 12 Limited High
H 8 High High
I 16 Limited Medium
J 6 Medium Very high

13.4.2 Reference Set and Preference Elicitation

The decision analyst develops a dialogue with the DM in order to construct
a reference set of job positions and help the DM to articulate his preference
statements. An excerpt of the dialogue between the analyst and the DM is the
following:

Analyst: Let’s take the job position E which requires graduate studies but no
experience and no special skills. According to the job description, this position does
not require the participation to committees but has very high responsibilities in the
organization (see Table 13.2). Comparing to a fictitious job position, Z1, which has
the same responsibilities, a high contribution to decision processes and requires
only a high school degree (g1 D 5), which one is globally most important for the
organization?

DM: I think the second one is most important.
Analyst: Let’s compare now the same job position E to a new fictitious job,

namely Z2, which requires the same qualifications and has a high contribution to
decision processes and high responsibilities. Which one is globally most important
for the organization?

DM: It seems to me that the two jobs are globally equivalent.
Analyst: Would you now rate a fictitious job position, namely Z3, which requires

significant qualifications and skills (g1 D 15) but with medium scoring to both the
contribution to decision making and the responsibility?

DM: In my opinion this position is clearly inferior to job position E.
Analyst: Perfect. Let’s summarize the comparisons. Your complete ranking of

the four jobs is the one that appears in Table 13.3, right?
DM: Yes.
Consequently, the constructed reference set of reference jobs includes one real

job position from the set A and three fictitious job positions, i.e., AR D fZ1, E, Z2, Z3g
as presented in Table 13.3.
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Table 13.3 DM’s ranking of the four reference job positions

Reference
job position

Criterion 1 (required
qualifications and skills)

Criterion 2 (contribution
to decision making)

Criterion 3
(responsibility)

Ranking
position

Z1 5 High Very high 1
E 10 Limited Very high 2
Z2 10 High High 2
Z3 15 Medium Medium 4

13.4.3 Preference Disaggregation Using UTASTAR Method

13.4.3.1 Step 1

According to the first step of the UTASTAR algorithm, the following expressions
are calculated:

u Œg .Z1/� D u1.5/Cu2 .high/Cu3 .very high/D0C .w21Cw22/C .w31Cw32Cw33/
D w21 C w22 C w31 C w32 C w33

u Œg .E/� D u1.10/C u2 .limited/C u3 .very high/Dw11 C 0C .w31 C w32 C w33/
D w11 C w31 C w32 C w33

u Œg .Z2/� D u1.10/C u2 .high/C u3 .high/ D w11 C .w21 C w22/C .w31 C w32/
D w11 C w21 C w22 C w31 C w32

u Œg .Z3/� D u1.15/C u2 .medium/C u3 .medium/ D .w11 C w12/C w21 C w31
D w11 C w12 C w21 C w31

13.4.3.2 Step 2

For each pair of consecutive actions in the ranking, the following differences are
obtained:

�.Z1;E/ D u Œg .Z1/� � �C .Z1/C �� .Z1/ � u Œg .E/�C �C .E/ � �� .E/
D .w21 C w22 C w31 C w32 C w33/ � �C .Z1/

C�� .Z1/ � .w11 C w31 C w32 C w33/C �C .E/ � �� .E/
D �w11 C w21 C w22 � �C .Z1/C �� .Z1/C �C .E/ � �� .E/

� .E;Z2/ D u Œg .E/� � �C .E/C �� .E/ � u Œg .Z2/�C �C .Z2/ � �� .Z2/
D .w11Cw31Cw32Cw33/ � �C .E/C�� .E/

� .w11 C w21Cw22 C w31 C w32/C �C .Z2/ � �� .Z2/
D �w21 � w22 C w33 � �C .E/C �� .E/C �C .Z2/ � �� .Z2/
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�.Z2;Z3/ D u Œg .Z2/� � �C .Z2/C �� .Z2/ � u Œg .Z3/�C �C .Z3/ � �� .Z3/
D .w11 C w21 C w22 C w31 C w32/ � �C .Z2/C �� .Z2/

� .w11 C w12 C w21 C w31/C �C .Z3/ � �� .Z3/
D �w12 C w22 C w32 � �C .Z2/C �� .Z2/C �C .Z3/ � �� .Z3/

13.4.3.3 Step 3

The following LP is solved:

Œmin� z D �C .Z1/C �� .Z1/C �C .E/C �� .E/C �C .Z2/C �� .Z2/

C �C .Z3/C �� .Z3/

Subject to:

�w11 C w21 C w22 � �C .Z1/C �� .Z1/C �C .E/ � �� .E/ � 0:05

� w21 � w22 C w33 � �C .E/C �� .E/C �C .Z2/ � �� .Z2/ D 0

� w12 C w22 C w32 � �C .Z2/C �� .Z2/C �C .Z3/ � �� .Z3/ � 0:05

w11 C w12 C w13 C w21 C w22 C w23 C w31 C w32 C w33 D 1

w11;w12;w13;w21;w22;w23;w31;w32;w33 � 0

�C .Z1/ ; �� .Z1/ ; �C .E/ ; �� .E/ ; �C .Z2/ ; �� .Z2/ ; �C .Z3/ ; �� .Z3/ � 0

where ı is initially set to 0.05.

13.4.3.4 Step 4

The previous LP has a zero error solution (z D 0), which means that there exists at
least one additive value function that is fully compatible with the DM’s ranking of
the four reference jobs. The results, obtained after the first solution of the LP in Step
3, appear in the first row of Table 13.4. All the results have been rounded to the third
decimal place.

Next, according to step 4 of the UTASTAR algorithm, the analyst seeks for
a set of 2 � (3 C 3 C 3) D 18 extreme solutions of the solution polyhedral set, by
successively solving the LPs of the following type:

Œmax� or Œmin�
j�1X

tD1
wit for i D 1; 2; 3 and j D 2; 3; 4

(see Table 13.4, rows 3–20).



13 Disaggregation Approach to Value Elicitation 329

Table 13.4 Value function solutions of the UTASTAR method

Type of solution w11 w12 w13 w21 w22 w23 w31 w32 w33

ıD 0.05 0.3 0 0 0.3 0.05 0 0 0 0.35
[min]w11 0 0 0 0.45 0.05 0 0 0 0.5
[max]w11 0.3 0 0 0.3 0.05 0 0 0 0.35
[min]w11 C w12 0 0 0 0.45 0.05 0 0 0 0.5
[max]w11 C w12 0.225 0.225 0 0 0.275 0 0 0 0.275
[min]w11 C w12 C w13 0 0 0 0.45 0.05 0 0 0 0.5
[max]w11 C w12 C w13 0 0 0.9 0 0.05 0 0 0 0.05
[min]w21 0.3 0 0 0 0.35 0 0 0 0.35
[max]w21 0 0 0 0.475 0 0 0 0.05 0.475
[min]w21 C w22 0 0.425 0 0.05 0 0 0 0.475 0.05
[max]w21 C w22 0 0 0 0.45 0.05 0 0 0 0.5
[min]w21 C w22 C w23 0 0.425 0 0.05 0 0 0 0.475 0.05
[max]w21 C w22 C w23 0 0 0 0 0.05 0.9 0 0 0.05
[min]w31 0.3 0 0 0.3 0.05 0 0 0 0.35
[max]w31 0 0 0 0 0.05 0 0.9 0 0.05
[min]w31 C w32 0.3 0 0 0.3 0.05 0 0 0 0.35
[max]w31 C w32 0 0 0 0 0.05 0 0.9 0 0.05
[min]w31 C w32 C w33 0 0 0.9 0 0.05 0 0 0 0.05
[max]w31 C w32 C w33 0 0 0 0 0.05 0 0.9 0 0.05
Barycentera 0.079 0.060 0.100 0.182 0.071 0.050 0.150 0.056 0.253

aAverage of the 18 solutions of the post-optimality analysis step

Subject to:

�w11 C w21 C w22 � 0:05

� w21 � w22 C w33 D 0

� w12 C w22 C w32 � 0:05

w11 C w12 C w13 C w21 C w22 C w23 C w31 C w32 C w33 D 1

w11;w12;w13;w21;w22;w23;w31;w32;w33 � 0

All the obtained solutions are listed in the rows 3–20 of Table 13.4, while the
barycenter (average solution) appears in the last row (row 21). The maximum and
minimum possible, and the barycentric marginal value functions are summarized in
Fig. 13.3.

13.4.4 Bipolar Robustness Control

The implementation of the UTASTAR procedure reveals results of significantly low
quality with regard to their robustness; no decision on the ranking of the ten job
positions can therefore be supported at this current stage of the analysis.
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Fig. 13.3 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (1st iteration)

Specifically, the ASI index takes the value of 0.733, while the average range of the
preferential parameters (ARP) is 0.686 (i.e., equals to 68.6% of their whole possible
ranging area). In particular, certain parameters, such as w13, w23, and w31 can range
from 0 to 0.9, being in essence uncontrollable.

Consequently, the bipolar robustness control procedure does not allow us to move
to the aggregation pole (2nd pole of robustness control).

13.4.4.1 UTASTAR Re-Activation (2nd Iteration)

The analyst decides to ask new preference statements from the DM with a view to
ameliorating the robustness of the results. In this procedure, care should be taken
in order to ensure that the new preference information is consistent with the old
preferential statements. The following dialogue excerpt is characteristic:
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Analyst: It seems that the mathematical input required by the method is not
sufficient for a good assessment of your preference model. Would you please insert
to your ranking of Table 13.3 a highly qualified job (17 points), named Z4, with a
“very high” contribution to the decision making processes but without any important
responsibility (limited)?

DM: I would rate this job fourth, between Z2 and Z3.
Accordingly, the analyst tests the compatibility of the fictitious job Z4 with the

DM’s former ranking, before proceeding to the common calculations. Due to the
increasing number of reference alternatives, the analyst decided to decrease and
stabilize the value of ı to 0.01.

13.4.4.2 Step 1

u Œg .Z4/� D u1.17/C u2 .very high/C u3 .limited/ D .w11 C w12 C 0:4w13/
C .w21 C w22 C w23/C 0

D w11 C w12 C 0:4w13 C w21 C w22 C w23

It should be noted that u1(17) is calculated using linear interpolation in (15, 20).
More specifically, applying formula (Eq. (13.9)) we have:

u1.17/ D
2X

tD1
w1t C 17 � 15

20 � 15w13 D w11 C w12 C 0:4w13

13.4.4.3 Step 2

�.Z2;Z4/ D u Œg .Z2/� � u Œg .Z4/�C �C .Z4/ � �� .Z4/
D .w11 C w21 C w22 C w31 C w32/ � .w11 C w12 C 0:4w13 C w21 C w22 C w23/

C �C .Z4/ � �� .Z4/
D �w12 � 0:4w13 � w23 C w31 C w32 C �C .Z4/ � �� .Z4/

� .Z4;Z3/ D u Œg .Z4/� � �C .Z4/C �� .Z4/ � u Œg .Z3/�
D .w11 C w12 C 0:4w13 C w21 C w22 C w23/ � �C .Z4/C �� .Z4/

� .w11 C w12 C w21 C w31/
D 0:4w13 C w22 C w23 � w31 � �C .Z4/C �� .Z4/



332 N.F. Matsatsinis et al.

Table 13.5 Values of the four new fictitious jobs in the 3rd iteration

Reference
job position

Criterion 1 (required
qualifications and skills)

Criterion 2 (contribution to
decision making)

Criterion 3
(responsibility)

Y1 5 Medium Limited
Y2 ? Limited Limited
Y3 ? Limited Limited
Y4 5 Limited Medium

13.4.4.4 Step 3

Œmin� z0 D �C .Z4/C �� .Z4/

Subject to:

�w11 C w21 C w22 � 0:01

� w21 � w22 C w33 D 0

� w12 � 0:4w13 � w23 C w31 C w32 C �C .Z4/ � �� .Z4/ � 0:01

0:4w13 C w22 C w23 � w31 � �C .Z4/C �� .Z4/ � 0:01

w11 C w12 C w13 C w21 C w22 C w23 C w31 C w32 C w33 D 1

w11;w12;w13;w21;w22;w23;w31;w32;w33; �C .Z4/ ; �� .Z4/ � 0

The solution of the LP shows that the DM’s ranking is cohesive. However, the
min–max procedure that follows reveals that the ASI index is still very low (0.772),
while ARP is 0.567, which equals to 56.7% of their whole possible ranging area
(see the corresponding value functions in Fig. 13.4). The negligible increase of the
ASI index, shows that the new alternative added to the ranking, reduced slightly the
volume of the hyperpolyhedron of the feasible solutions. Consequently, the analyst
is forced to return and ask the DM for additional preference information.

13.4.4.5 2nd Request for Feedback (3rd Iteration)

Analyst: It seems that your preference model is still not adjusted in a robust way. I
would propose adding some additional preference information in a different way this
time, according to the MAUT (Multiattribute Utility Theory) questioning paradigm.
Suppose you have the four fictitious jobs, namely Y1, Y2, Y3, and Y4, as shown in
Table 13.5. Comparing Y1 and Y2 what qualification degree is required for the job
Y2 to compensate exactly the difference “medium”–“limited” on decisions?

DM: I suppose 17.
Analyst: Ok. So, in this way, you are indifferent between Y1 and Y2. Right?
DM: Right.
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Fig. 13.4 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (2nd iteration)

Analyst: Let’s compare now Y3 and Y4. What qualification degree is required
for the job Y3 to exactly compensate the difference “medium”–“limited” on
responsibility?

DM: I would say 12 units.
Based on the previous, two separate indifference comparisons are created now:

Y1 � Y2 and Y3 � Y4 or equivalently:

u Œg .Y1/� D u Œg .Y2/� and u Œg .Y3/� D u Œg .Y4/�

where

u Œg .Y1/� D u1.5/C u2 .medium/C u3 .limited/ D 0C w21 C 0 D w21

u Œg .Y2/� D u1.17/C u2 .limited/C u3 .limited/
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D w11 C w12 C 0:4w13 C 0C 0 D w11 C w12 C 0:4w13

u Œg .Y3/� D u1.12/C u2 .limited/C u3 .limited/ D w11 C 0:4w12 C 0C 0

D w11 C 0:4w12

u Œg .Y4/� D u1.5/C u2 .limited/C u3 .medium/ D 0C 0C w31 D w31

Consequently, the required constraints are:

w21 � w11 � w12 � 0:4w13 D 0

w11 C 0:4w12 � w31 D 0

Two couples of positive errors are introduced to these equations, before adding
them to the previously constructed compatible system of four preference relations,
as follows:

w21 � w11 � w12 � 0:4w13 � 	C
1 C 	�

1 D 0

w11 C 0:4w12 � w31 � 	C
2 C 	�

2 D 0

Therefore, the UTASTAR enforcement LP formulation becomes as follows:

Œmin� z00 D 	C
1 C 	�

1 C 	C
2 C 	�

2

Subject to:

�w11 C w21 C w22 � 0:01

� w21 � w22 C w33 D 0

� w12 � 0:4w13 � w23 C w31 C w32 � 0:01

0:4w13 C w22 C w23 � w31 � 0:01

w11 C w12 C w13 C w21 C w22 C w23 C w31 C w32 C w33 D 1

w21 � w11 � w12 � 0:4w13 � 	C
1 C 	�

1 D 0

w11 C 0:4w12 � w31 � 	C
2 C 	�

2 D 0

wij � 08i; j; 	C
1 ; 	

�
1 ; 	

C
2 ; 	

�
2 � 0

The optimal values of the error variables are zero and the results obtained after
following the min–max procedure are presented in Fig. 13.5. The ASI index again
increases and receives the value of 0.795, while ARP is 0.427. Nevertheless, the
analyst is not confident to proceed to the aggregation pole and asks again for DM’s
feedback.



13 Disaggregation Approach to Value Elicitation 335

0 0 0

0.194 0.202

0.45

0.034 0.045

0.181

0

0.5

1

5 10 15 20

Skills

0 0.01 0.01

0.23

0.495 0.495

0.099
0.159

0.211

0

0.5

1

l m h vh

Decisions

0 0.01

0.36

0.194

0.98
0.99

0.038

0.448

0.607

0

0.5

1

l m h vh

Responsibility

Fig. 13.5 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (3rd iteration)

Table 13.6 Values of the two new fictitious jobs in the 4th iteration

Reference job
position

Criterion 1 (required
qualifications and skills)

Criterion 2 (contribution
to decision making)

Criterion 3
(responsibility)

Y5 ? Medium High
Y6 5 High Very high

13.4.4.6 3rd Request for Feedback (4th Iteration)

In the 3rd request for feedback, the analyst provides the DM with two additional
reference job positions, as presented in Table 13.6. The following dialogue excerpt
arises:

Analyst: Comparing Y5 and Y6 what qualification degree (if any) is required for
the job Y5 to compensate exactly the difference in the other two criteria?

DM: I would say the perfect score of 20.
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Fig. 13.6 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (4th iteration)

The DM’s answer reveals the following new UTASTAR constraint in the form of
an equation:

w11 C w12 C w13 � w22 � w33 D 0

The constraint is inserted to the previous set of preferential constraints, and the
UTASTAR LP problem is validated for its cohesion (all over-under-estimation errors
get zeroed). Next, the min–max procedure is executed and its results are presented
in Fig. 13.6. The ASI index again increases and receives the value of 0.808, while
ARP decreases significantly to 0.370.

At the current stage, the analyst decides to gain some insight on the robustness
of the results that are obtained after the implementation of the additive value model.
The extrapolation to the ten real job positions of Table 13.2 with the aid of the
Extreme Ranking Analysis (ERA), is depicted in Fig. 13.7, which presents the
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Fig. 13.7 Results of the Extreme Ranking Analysis in the 4th iteration

Table 13.7 Values of the two new fictitious jobs in the 5th iteration

Reference
job position

Criterion 1 (required
qualifications and skills)

Criterion 2 (contribution to
decision making)

Criterion 3
(responsibility)

Y7 15 High ?
Y8 15 Very high Medium

ranking of the ten real jobs in descending order (diamond dots), as well as the best
and worst possible ranking position of each job, with the use of the two sided arrows.

The results obtained after the implementation of the ERA show that some
significant instability exist, with regard to the ranking positions of the majority of
the jobs, especially those that get ranked in the middle positions. Indicatively the
ARRI is 3.4, while the RARR is 26.7%.

The analyst considers that the robustness of the ranking, obtained in the
aggregation pole, is not acceptable and decides to revisit the disaggregation pole.

13.4.4.7 4th Request for Feedback (5th Iteration)

Analyst: Suppose you have the two new fictitious jobs Y7 and Y8 as shown in Table
13.7. What level of responsibility may compensate the gap “high”–“very high” on
decision making?

DM: I think “high”.
The next equation is therefore added to the previous set of constraints and the

standard procedure is followed:

�w23 C w32 D 0
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Fig. 13.8 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (5th iteration)

The ASI index again increases and receives the value of 0.898, while ARP is
0.214, which equals to 21.4% of their whole possible ranging area (see Fig. 13.8).

The analyst visits again the aggregation pole to rank the ten jobs (see Fig.
13.9). The obtained robustness indices after the implementation of the ERA are:
ARRI D 2.9 and RARR D 21.1%.

The ERA shows that the head and the tail of the ranking are stable, but significant
instability remains regarding the middle positions in the ranking. Consequently, the
analyst decides to make a last effort to increase robustness with regard to the jobs
that belong to the in-between positions of the ranking.

13.4.4.8 5th Request for Feedback (6th Iteration)

The analyst discusses the previous ranking with the DM, in search of results that are
not in convergence with the DM’s viewpoints. As expected, the DM disagrees with
the fact that job E can surpass job F, and he therefore demanded that this statement
is reflected on a new constraint. Consequently:



13 Disaggregation Approach to Value Elicitation 339

1

2

3

4

5

6

7

8

9

10

J E F H B A G D I C

Fig. 13.9 Results of the Extreme Ranking Analysis in the 4th iteration

u Œg .F/� > u Œg .E/�

This preference provokes the following two inequalities, which replace the
inequality w11 C w21 C w22 � 0.01, in order to assure the cohesion of the set of
preference constraints:

w12 C 0:8w13 C w21 C w22 C w23 � w31 � w32 � w33 � 0:01

�w11 � w12 � 0:8w13 � w23 C w31 C w32 C w33 � 0:01

The new additive value model appears in Fig. 13.10. The ASI index increases
again and receives the value of 0.909, while the ARP is 0.175, which equals to
17.5% of the whole possible ranging area. These results encourage the analyst to
perform the ERA in the aggregation pole, the results of which are presented in Fig.
13.11.

After the visualization of the ERA, the DM endorses the adequacy of the results
and decides to keep the final ranking as definitive. The ranking and the global values
depicted at Table 13.8 have resulted after the implementation of the additive value
model, using the barycentric value functions.

The decision support procedure, coupled with the bipolar robustness framework,
ends at this stage. Table 13.9 depicts the evolution of the robustness indices,
throughout the six iterations, along with their amelioration (in percentage) after each
consecutive iteration.
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Fig. 13.10 Visualization of the variation of the three additive value functions (maximum, barycen-
ter and minimum) from the application of the bipolar control iterations (6th iteration)

Table 13.8 Global
evaluation of the ten job
positions

Ranking Job position Global value

1 J 0.580
2 F 0.539
3 E 0.509
4 H 0.480
5 A 0.430
6 G 0.348
7 B 0.315
8 D 0.204
9 I 0.180
10 C 0.081
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Fig. 13.11 Results of the Extreme Ranking Analysis in the 6th iteration

Table 13.9 Evolution of the robustness indices after each iteration (percentage amelioration in
parentheses)

Iteration ARP ASI ARRI RARR

1 0.686 0.733 – –
2 0.567 (17.3%) 0.772 (5.3%) – –
3 0.427 (24.8%) 0.795 (3.0%) – –
4 0.370 (13.3%) 0.808 (1.6%) 3.4 26.7%
5 0.214 (42.2%) 0.898 (11.1%) 2.9 (14.7%) 21.1% (21.0%)
6 0.175 (18.1%) 0.909 (1.2%) 2.2 (24.1%) 13.3% (37.0%)

13.5 Brief Overview of Existing Applications

The family of UTA-based methods is the main initiative and the most representative
example of preference disaggregation theory. These methods cover different variants
of the UTA approach (Siskos et al. 2016):

(a) Alternative optimality criteria (e.g., Kendall’s tau between the estimated and
the DM’s ranking)

(b) Different forms of global preference (e.g., pairwise comparisons, intensity
of DM’s preferences, additional properties of the assessed value functions,
construction of fuzzy outranking relations based on UTA’s post-optimality
analysis)

(c) Non-monotonic preferences (i.e., non-monotonic marginal value functions)
(d) Meta-UTA techniques (i.e., alternative post-optimality techniques)
(e) Stochastic UTA method, UTA II or UTA-type sorting approaches
(f) UTA-like multiobjective optimization approaches
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UTA-based methods have been applied to several real-world decision-making
problems, covering different fields:

• Job evaluation and human resources management (Spyridakos et al. 2000;
González-Araya et al. 2002; Grigoroudis and Zopounidis 2012)

• Project evaluation (Jacquet-Lagrèze 1995; Beuthe et al. 2000)
• Environmental management (Siskos and Assimakopoulos 1989; Hatzinakos et al.

1991; Demesouka et al. 2013)
• Healthcare management (Manolitzas et al. 2013a, b; Doumpos et al. 2016)
• E-government evaluation (Siskos et al. 2013a, b; Giannakopoulos et al. 2010)
• Recommendation systems (Lakiotaki and Matsatsinis 2012; Delias et al. 2013a)
• Energy management (Diakoulaki et al. 1999; Androulaki and Psarras 2016;

Angelopoulos et al. 2017)
• Education (Manouselis and Sampson 2002; Matsatsinis and Fortsas 2005; Kras-

sadaki et al. 2015)
• Strategic management (Mastorakis and Siskos 2015)
• Marketing of agricultural products (Siskos and Matsatsinis 1993; Baourakis et al.

1993, 1996; Matsatsinis et al. 1999, 2000, 2007; Siskos et al. 2001; Matsatsinis
and Siskos 2001, 2003)

• Consumer behavior (Siskos et al. 1995a, b; Baourakis et al. 1995; Kettani
et al. 1998; Matsatsinis and Samaras 2000; Manouselis and Matsatsinis 2001;
Matsatsinis 2002; Lakiotaki et al. 2009, 2011)

• Sales strategic management (Richard 1983; Siskos 1986)
• Portfolio management (Hurson and Zopounidis 1997; Zopounidis et al. 1999;

Samaras et al. 2003; Hurson et al. 2012)
• Country risk assessment (Cosset et al. 1992; Oral et al. 1992; Zopounidis et al.

2000)
• Business financing (Siskos et al. 1994; Zopounidis et al. 1996; Zopounidis and

Doumpos 1998; Zopounidis 2001)
• Maritime operations risk assessment (Stavrou et al. 2018)
• Venture capital evaluation (Siskos and Zopounidis 1987)
• Business failure prediction (Zopounidis 1987; Zopounidis and Doumpos 1999;

Doumpos and Zopounidis 2002)

Variants of UTA have also been applied for conflict resolution in multi-actor
decision situations (Jacquet-Lagrèze and Shakun 1984; Bui 1987; Matsatsinis and
Samaras 2001) and have been extended in the case of multiple DMs (Matsatsinis
et al. 2005; Siskos and Grigoroudis 2010; Delias and Matsatsinis 2013). Moreover,
UTA-based approaches have been combined with multi-agent systems (Matsatsinis
et al. 1999, 2000, 2001; Manouselis and Matsatsinis 2001; Matsatsinis and Delias
2003; Matsatsinis and Delias 2004; Delias and Matsatsinis 2013).

The bipolar robustness control procedure presented in this chapter may be
applied in all of the aforementioned application domains in order to manage
robustness in the disaggregation, as well as the aggregation stage of the UTA
methods.
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Finally, several real-world applications have been focused on the synergy
between UTA methods and other MCDA approaches (Hurson et al. 2012; Lakiotaki
and Matsatsinis 2012; Delias et al. 2013a, b; Krassadaki et al. 2015; Siskos et al.
2013a, b; Demesouka et al. 2013; Doumpos et al. 2016).

13.6 Conclusions

The interactive aggregation-disaggregation approach presented in this chapter aims
to infer preference models using preferential structures, provided by the DM. In
particular, the proposed approach may be considered as a new outlook on the UTA-
family methods, devoted to the elicitation of values through the inference of multiple
additive value models.

In general, robustness analysis should be considered as a tool of resistance of
decision analysts against the phenomena of “vague approximations” and “ignorance
zones”. As noted by Roy (2010), robustness analysis should be considered differ-
ently from “sensitivity analysis”, since the latter does not include all the forms of
vague approximations and zones of ignorance that must be resisted or protected
against (e.g., approximations due to simplifications, ill-defined data or arbitrary
options and zones of ignorance due to imperfect knowledge about the complexity
of the phenomena or the systems of values). Therefore, robustness analysis refers
to a capacity for withstanding the aforementioned “vague approximations” and/or
“zones of ignorance” in order to prevent undesirable impacts (see also Roy 2005).
Moreover, robustness analysis should include the measurement of the robustness
of a decision model, the development of appropriate robustness indicators, and
the potential improvement of robustness (Siskos and Grigoroudis 2010; Siskos and
Psarras 2016).

In this context, several robustness indicators are presented in this chapter, while
the proposed bipolar robustness control procedure is able to take into account the
different perspectives of robustness:

• Analyst’s point of view during the 1st pole (disaggregation) that examines if a
decision model is reliable.

• DM’s point of view during the 2nd pole (aggregation) that examines if the results
of a decision model are acceptable.

Based on the above, the interaction between the analyst and the DM is necessary
during any robustness control procedure in UTA methods. In general, this interac-
tion procedure may include:

(a) The consistency between the assessed preference model and the a priori
preferences of the DM;

(b) The assessed values (e.g., values, weights, utilities);
(c) The overall evaluation of potential actions (extrapolation output).
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Future research regarding the presented approach may examine additional inter-
action protocols between the analyst and the DM or explore additional robustness
indicators. In this context, the additional preferential structures, given by the DM,
during the robustness control procedure, can be further examined in order to analyze
the required information (e.g., amount or consequences of information). Additional
potential future research directions may include the further experimental evaluation
of disaggregation-aggregation procedures.
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Chapter 14
Eliciting Multi-Criteria Preferences: ELECTRE
Models

Luis C. Dias and Vincent Mousseau

Abstract Outranking methods are a specific type of Multi-Criteria Decision Aiding
methods. They are based on the construction of binary relations validating or
invalidating, for any pair of alternatives .a; b/, the assertion “a outranks b”.
This comparison is grounded on the evaluation vectors of both alternatives, and
on additional information concerning the decision maker’s preferences, typically
accounting for two conditions: concordance and non-discordance. In decision
processes using these methods, the analyst should interact with the decision maker
in order to elicit values for the parameters that define a preference model. This can
be done either directly or through a disaggregation procedure that infers parameter
values from holistic judgements provided by the decision maker. In this chapter we
discuss the elicitation of an outranking-based preference model, focusing on the
valued outranking relation used in the ELECTRE III and ELECTRE TRI methods.

14.1 Introduction

As described in Chap. 12 in this book (Morton 2018), a common approach in the
field of Multiple Criteria Decision Aiding (MCDA) is to aggregate the performances
of an alternative being assessed on multiple criteria into a single number synthesiz-
ing its overall value (see also Keeney and Raiffa 1993). However, a different type of
methods has been developed in parallel, which obtain a binary relation on the set of
alternatives without aggregating multiple performances into a synthesis value. These
methods are usually referred as outranking methods in the MCDA literature and
have been, by and large, associated with the so-called European school of MCDA
(see Roy and Vanderpooten 1996). This allows for decision aiding approaches able
to model not only situations of preference or indifference between alternatives, but
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also situations in which alternatives are deemed to be incomparable in the light of the
preference information elicited. Incomparability typically occurs when the strengths
and weaknesses of two alternatives are so different that one cannot conclude that
one is better than the other, but it is equally unwarranted to conclude that they are
indifferent (i.e., similarly preferred).

Outranking methods ground the recommendations to the Decision Maker (DM)
on the construction of one (or several) binary relation(s) representing the preference
among pairs of alternatives (see Roy 1991; Roy and Bouyssou 1993). A simple
binary relation is dominance: an alternative dominates another one if it is better
on some criteria and it is not worse in any other criterion. It does not require any
subjective parameters such as criteria weights, but the relation is usually poor (i.e.,
it applies to few pairs of alternatives). Outranking methods use additional inputs to
enrich this relation. Examples of outranking methods include ELECTRE methods
(Figueira et al. 2013), PROMETHEE methods (Brans and Vincke 1985; Majid
Behzadian et al. 2010), RUBIS (Bisdorff et al. 2007), NAIADE (Munda 1995),
and qualitative approaches (Martel and Matarazzo 2005). This chapter will focus
on preference elicitation for ELECTRE methods, but analogous procedures can be
applied for other outranking-based approaches.

Let us consider a decision situation involving a finite set of alternatives A D
fa1; a2; : : : ; alg evaluated on n criteria g1; g2; : : : ; gn, (F D f1; 2; : : : ; ng denotes the
set of criteria indices).

The construction of an outranking relation S amounts at validating or invali-
dating, for any pair of alternatives .a; b/ 2 A2, an assertion aSb, whose meaning
is “a is at least as good as b” or, in other words, “a is not worse than b”.
This comparison is grounded on the evaluation vectors of both alternatives a and
b, i.e., .g1.a/; g2.a/; : : : ; gn.a// and .g1.b/; g2.b/; : : : ; gn.b//, and on additional
information concerning the DM’s preferences. To validate a statement aSb, two
basic conditions should be verified: concordance and non-discordance (or non-veto).

A criterion gk is said to be concordant with the assertion aSb if a is at least as
good as b with respect to criterion gk. The concordance condition is fulfilled for
the assertion aSb when the subset of criteria concordant with aSb is a “sufficient
majority”. A criterion gk is said to veto the assertion aSb if a is so much worse
than b on this criterion that the difference of evaluation jgk.b/ � gk.a/j becomes
incompatible with the assertion aSb, whatever the evaluation on the other criteria.
The non-discordance condition is fulfilled when no criterion opposes a veto to the
assertion aSb.

Constructing an outranking relation S involves the elicitation of values for
preference-related parameters, such as weights, majority thresholds and veto thresh-
olds. The next section provides details about these parameters and how they shape
a model of the DM’s preferences. Sections 14.3 and 14.4 in this chapter discuss
how to elicit parameter values. The elicitation of preference-related parameters can
be done either in a direct way centered on parameters (discussed in Sect. 14.3)
or indirectly through a disaggregation procedure centered on examples, that infers
the parameters values from holistic preferences provided by the DM (see Jacquet-
Lagrèze and Siskos 2001) (discussed in Sect. 14.4). Inference is usually performed
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through an optimization program that accounts for the aggregation model and
minimizes an “error function”. This disaggregation approach has been largely used
in additive models (e.g. see Jacquet-Lagrèze and Siskos 2001 and Chap. 13 in
this book Matsatsinis et al. 2018). Section 14.5 discusses the elicitation process,
namely focusing on the order parameters are elicited and how precise should the
elicitation be. Section 14.6 closes the chapter summarizing the main takeaways and
highlighting the research challenges that still lie ahead.

14.2 Preference Models with ELECTRE

This section briefly presents the ELECTRE preference model, namely describing
how a valued outranking relation on the set of alternatives is built in methods such
as ELECTRE III (see Roy 1978) and ELECTRE TRI (see Yu 1992a,b; Roy and
Bouyssou 1993).

14.2.1 Outranking Relations for a Single Criterion

ELECTRE builds, for each criterion gj, a valued outranking relation Sj modelling
the comparison of alternatives on that single criterion. For any ordered pair .a; b/ 2
A2, Sj.a; b/ is defined by (14.2) on the basis of gj.a/, gj.b/ and two thresholds:
indifference qj and preference pj (0 � qj � pj). We consider the thresholds pj and
qj as constant, although it is possible to consider them as affine functions (for such
cases see Roy et al. 2014). For a more compact notation, we will write:

�j.b; a/ D gj.b/ � gj.a/; (14.1)

which for each pair .a; b/ 2 A2 represents the advantage of b over a on the jth
criterion. This assumes, without loss of generality, that the evaluations are coded in
such a way that the higher the value, the better it is (if this is not the case, one simply
considers that �j.b; a/ D gj.a/ � gj.b/).

Sj.a; b/ represents the degree to which alternative a outranks (is at least as good
as) b, defined as (Fig. 14.1):

Sj.a; b/ D

8
<̂

:̂

0; if �j.b; a/ > pj
pj��j.b;a/

pj�qj
; if qj < �j.b; a/ � pj

1; if �j.b; a/ � qj

(14.2)



352 L.C. Dias and V. Mousseau

Fig. 14.1 Partial valued outranking relation

14.2.2 Concordance Relation

The valued concordance relation C.a; b/ aggregates the relations Sj (j 2 F), and
it represents the level of majority among the criteria in favor of the assertion “a is
at least as good as b”. When computing this majority level, each criterion gj has a
weight wj � 0 representing its voting power. Without any loss of generality, we will
consider

P
j2F wj D 1. Therefore, C.a; b/ can be written as follows:

C.a; b/ D
X

j2F

wjSj.a; b/ (14.3)

14.2.3 Discordance Relations

ELECTRE also builds, for each criterion gj, a valued discordance relation dj

restricted to that criterion. This relation dj.a; b/ is traditionally defined by (14.4) on
the basis of gj.a/, gj.b/, a veto threshold vj and a preference threshold pj (pj < vj;
note we consider pj < vj, although ELECTRE also allows pj D vj) (see Fig. 14.2).
We consider the thresholds vj as constants (as we already did for pj and qj), although
it is possible to consider them as affine functions.

dj.a; b/ D

8
<̂

:̂

1; if �j.b; a/ � vj
�j.b;a/�pj

vj�pj
; if pj < �j.b; a/ < vj

0; if �j.b; a/ � pj

(14.4)

The overall valued non-discordance relation ND.a; b/ as originally defined (Roy
1978) is grounded on C.a; b/ and on the relations dj, j 2 F; it represents the degree
to which the minority criteria collectively oppose a veto to the assertion “a is at least
as good as b”. The classical way of defining ND.a; b/ is given in (14.5). ND.a; b/ D
0 corresponds to a situation where some minority criteria are totally opposed to aSb
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Fig. 14.2 Partial valued discordance relation

Fig. 14.3 Partial discordance relation d0

j .a; b/

whereas ND.a; b/ D 1 means that none of the criteria oppose a veto to aSb.

ND.a; b/ D
Y

j2F

1 � dj.a; b/

1 � C.a; b/
where F D fj 2 F such that dj.a; b/ > C.a; b/g

(14.5)
This expression is equivalent to (14.6):

ND.a; b/ D
Y

j2F

NDj.a; b/; (14.6)

where:

NDj.a; b/ D Min

�
1;
1 � dj.a; b/

1 � C.a; b/

�
: (14.7)

Mousseau and Dias (2004) have proposed an alternative valued non-discordance
relation defined by (14.8)–(14.9), where uj 2 Œpj; vjŒ is a new parameter (discordance
threshold) for the j-th criterion (Fig. 14.3):

ND0.a; b/ D
Y

j2F

ND0
j.a; b/ D

Y

j2F

�
1 � d0

j.a; b/
�

(14.8)
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d0
j.a; b/ D

8
<̂

:̂

1 if �j.b; a/ � vj
�j.b;a/�uj

vj�uj
if uj < �j.b; a/ < vj

0 if �j.b; a/ � uj

(14.9)

A second alternative to define a valued non-discordance relation is the following
(see Mousseau and Dias 2004), which is simpler but only takes the highest
discordance into account:

ND00.a; b/ D Minj2FND0
j.a; b/ (14.10)

Both definitions (14.8) and (14.10) follow ELECTRE’s intention of allowing
one minority criterion to veto the conclusion sustained by the majority of the
criteria, if the performance difference is too large (and worse). These two definitions
are mainly relevant when used in indirect elicitation (regression) processes, since
they allow easier mathematical programming models to infer parameter values,
especially variant ND00.a; b/.

14.2.4 Valued Outranking Relations

ELECTRE’s valued outranking relation combines the concordance and non-
discordance relations:

S.a; b/ D C.a; b/ ND.a; b/; (14.11)

or, according to the two alternative definitions of the discordance concept,

S0.a; b/ D C.a; b/ ND0.a; b/ (14.12)

S00.a; b/ D C.a; b/ ND00.a; b/ (14.13)

From a valued outranking relation such as S.a; b/, S0.a; b/ or S00.a; b/ it is
possible to define a family of nested “crisp” outranking relations S	. These crisp
relations correspond to 	-cuts of S.a; b/, where the cutting level 	 2 Œ0:5; 1�

represents the minimum value for S.a; b/ so that aS	b holds.

14.2.5 Exploitation of the Outranking Relation

Depending on the type of decision problem different ELECTRE methods can be
applied. Roy (1996) identifies three main “problématiques” depending on the type
of result sought:
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• Selection (or choice): to identify the best alternative (or a predefined number of
best alternatives) among a set of possibilities. Example: to select the best project
among a set of possible variants.

• Ranking: to obtain a preference order among the alternatives, from best to worst.
Example: a prioritization of projects defining the order by which they should be
implemented.

• Sorting problems aim at assigning alternatives to categories, which are typically
defined a priori and ordered. Example: sorting projects among the categories “not
urgent”, “urgent” and “very urgent”.

Methods ELECTRE I and IS (Roy and Bouyssou 1993; Roy and Skalka 1984)
have been proposed to deal with selection problems. Since the outranking relation
is usually not transitive and not complete, often these methods are unable to identify
a single winner. Their purpose is more modestly to identify a subset, named kernel,
of candidates to be the most preferred alternative. The methods try to make this
kernel as small as possible by excluding alternatives that are outranked. Alternatives
in the kernel are incomparable, which typically means they are too different to be
compared with the information requested by ELECTRE.

Methods ELECTRE II, III, and IV (Roy and Bertier 1973; Roy and Bouyssou
1993; Vallée and Zielniewicz 1994) have been proposed to deal with ranking
problems. As in the case of choice, the lack of transitivity and incompleteness of
the outranking relation hinder obtaining a clear-cut result. These methods yield a
partial preorder as an output, i.e., an incompletely defined ranking allowing ties and
in which some of the alternatives are incomparable.

Although ELECTRE methods for ranking and sorting have been used in many
applications (Govindan and Jepsen 2016), the inconclusiveness of its results may
disappoint some DMs and analysts. On the other hand, this inconclusiveness may
be seen as a strength in that ELECTRE I-IV do not force the result to be more
conclusive than warranted by the data and the preferences elicited. Another concern
that has been much debated (e.g., Figueira and Roy 2009) is the fact that adding,
removing, or modifying a possibly irrelevant alternative can change the relative
position of the remaining alternatives. New ranking methods overcoming the latter
issue have been proposed more recently (Rolland 2013).

Finally, ELECTRE TRI (Yu 1992b) and its variants are devoted to sorting
problems. Since they do not compare the alternatives being evaluated against each
other, adding, removing, or modifying an alternative has no effects of the results
concerning the other alternatives. In ELECTRE TRI the alternatives are sorted
based on how they compare to the profiles that define the available categories.
These profiles are multidimensional preference vectors (each profile indicates one
performance value for each criterion), which constitute new preference-related
parameters to be elicited.

The original version of ELECTRE TRI (Yu 1992b) defined category profiles as
bounds delimiting the categories: a profile b1 separates category C1 from category
C2 (b1 can be considered a lower bound for C2 and an upper bound for C1); a profile
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b2 separates category C2 from category C3, and so on. This version is sometimes
referred to as ELECTRE TRI-B.

A subsequent version of ELECTRE TRI is ELECTRE TRI-C (Almeida-Dias
et al. 2010), which proposes to define profiles as central elements of the categories:
a profile b1 it the typical (characteristic) element of category C1, a profile b2 it the
typical element of category C2, and so on. Later, the extension ELECTRE TRI-nC
was proposed to allow each category to be defined by more than one characteristic
element (Almeida-Dias et al. 2012). By analogy, it is also possible to create an
ELECTRE TRI-nB version (Fernández et al. 2017).

14.3 Direct Elicitation

14.3.1 Single-Criterion Concordance Parameters

It makes sense to start the process of eliciting an ELECTRE model by the single-
criteria concordance parameters, since the parameters to be elicited afterwards are
used in computations that refer to the relations Sj. Furthermore, the discussion about
these parameters is not as cognitively demanding as for other parameters, and allows
introducing the cornerstone concept of concordance in ELECTRE.

Given a pair of alternatives .a; b/, Sj.a; b/ assesses the degree to which a
outranks (is at least as good as) b according to the criterion gj. According to (14.2),
this depends on the advantage of a over b, denoted �j.a; b/ D ��j.b; a/ and
two parameters to be elicited: the indifference threshold qj and the preference
threshold pj.

In the oldest ELECTRE methods (Roy 1968, 1971) the single-criterion concor-
dance would be an absolute yes, i.e. Sj.a; b/ D 1, if �j.a; b/ � 0, or it would be an
absolute no, i.e. Sj.a; b/ D 0 otherwise. If a was worse than b on criterion gj then
there was no concordance at all, however small this difference might be. There are
however some reasons why this model might be inadequate for some criteria:

• A small difference might be considered insignificant in relative terms concerning
orders of magnitude. For instance, a difference of $1 between two projects
involving over $1 million is not likely to be valued by any DM.

• Performances may be assessed in an imprecise way using measuring instruments
or statistics. If the performance of a is 100˙5 and the performance of b is 101˙5,
many DMs will be indifferent between one or the other because the performance
difference is much lower than the acknowledged imprecision.

• Performance assessed may be just an imperfect indicator (or even a proxy)
of real-world performance. For instance, the advertised fuel consumption of a
car corresponds to its behavior in an idealized circuit (e.g., the New European
Driving Cycle). If the performance of a is 5:0 l=100 km and the performance of b
is 4:9 l=100 km, many DMs will be indifferent between them because they know
that none of these values correspond to real-life performance. Likewise, when
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recruiting a college graduate, the DM knows that the grade point average (GPA)
of their degrees is just an imperfect indicator: a student with a GPA of 3.5 is not
guaranteed to be more knowledgeable than another one with a GPA of 3.4.

The ELECTRE methods introduced later acknowledge these situations by allow-
ing the DM to set an indifference threshold qj, which is the largest difference such
that the DM does not distinguish between two alternatives in terms of preference. A
question addressing the need for such a threshold can be the following:

“If the difference between two alternatives on criterion j is not equal to zero then
one of them must be preferred on that criterion, or can this difference be so small
that you would not distinguish them in terms of preference?”

In the latter case, it is possible to ask for a limit to this indifference situation:
“How large can a performance difference be until you start hesitating about the

indifference between two alternatives?”
The DM can reply in absolute terms, e.g., 2.0, or in relative terms, e.g., 2%.

Although most ELECTRE software implementations allow modelling qj.gj.a// as
an affine function ˛j C ˇjgj.a/ for some parameters ˛j and ˇj, typically this option
is not used and this function is either a constant value (ˇj D 0) or a proportion of
the performance (˛j D 0). For simplicity, in the remainder of this text we assume it
is a constant value. When thresholds are modelled as functions of the performance
levels special care must be taken to ensure their consistency (Roy et al. 2014).

It is possible to ask verification questions and adjust the parameter by trial and
error:

“If gj.a/ has value xa and gj.b/ has value xb (for some relatively close values
xa and xb) would you say that on criterion j the two alternatives are indifferent, or
would you have a clear preference?”

It is not uncommon that up to a difference ı1 the DM feels clearly indifferent,
for a difference larger than ı2 (ı2 > ı1) the DM has a clear preference, and for
differences in-between ı1 and ı2 the DM exhibits some hesitation in answering such
a question. This allows setting qj D ı1 and pj D ı2, since the preference threshold
pj corresponds to the minimum difference such that the DM has a clear preference
for one of the alternatives.

The elicitation of qj and pj can therefore result in one of these typical situa-
tions:

• pj > qj > 0, meaning that some differences are too small to warrant preference,
and that up to a certain point there is a clear indifference, then some hesitation,
and finally a clear preference as the difference in performance increases.

• pj > qj D 0, meaning that above a given threshold there is a clear preference, and
below this threshold the DM hesitates if the alternatives are indifferent or one is
better than the other.

• pj D qj, and possibly both are null, in some cases concerning a discrete scale
(e.g., number of rooms in a house, or number of stars of an hotel).
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14.3.2 Weights and Cutting Level

As presented in Sect. 14.2.2, criteria weights are used to aggregate the concordance
of the different criteria concerning an outranking relation. Although they are used in
a weighted sum of concordance indices, they should not be interpreted as trade-off
weights. Unlike a typical additive aggregation model (e.g., Keeney and Raiffa 1993)
weights are not scaling coefficients such that the ratio of two weights indicates the
conversion rate between units of value (or utility) on two different criteria.

An adequate analogy for eliciting weights in ELECTRE is that of voting.
Suppose for the moment that all indifference and preference thresholds are null,
i.e., the single-criterion concordances are either 0 or 1. Suppose also that there
is no discordance (veto thresholds are not set or are extremely high), so that
S.a; b/ D C.a; b/ for any pair of alternatives .a; b/. Then, a outranks b if the weights
of the coalition of criteria that add up to C.a; b/ reaches at least cutting level 	.
Then, the cutting level 	 can be interpreted as representing the required majority
for establishing an outranking relation. Typical values for this parameter are 0.50
or 0.51 (a simple majority), 0.67 (requiring a 2/3 majority), etc., up to 1 (requiring
unanimity). A direct elicitation question could be:

“How strong must the majority of the criteria that agree that a is at least as good
as b be, in order to establish this conclusion, taking criteria weights into account?
(in the absence of strong discordance)”

In a trial-and-error process tentative symbolic majority levels can be suggested,
such as 1/2, 2/3 or 3/4. Otherwise, communicating in terms of percentages is
preferable to decimal numbers (i.e., 60% communicates better the sense of a
required majority than 0.60). The higher the majority level required, the less will
the number of outranking relations be but the stronger is their justification. Often,
a compromise is sought between the richness of the relation (number of pairs for
which outranking holds) and the strength of the justification, by observing the effects
of varying this parameter.

In the particular case of sorting problems with ELECTRE TRI (ELECTRE TRI-
B) it may be more appropriate to inquire about the cutting level in a way that matches
more directly its effects on the results:

“How strong must the majority of the criteria that agree that a is at least as good
as the lower profile of a category be, taking criteria weights into account, to warrant
that an alternative can be sorted on that category, if not better? (in the absence of
strong discordance)”

Indeed, to be sorted in a given category (if not better) an alternative must outrank
the category’s lower profile. This parameter can be interpreted as denoting how
much demanding the decision maker is. A high cutting level makes it more difficult
for the alternatives to be classified in the best categories. Again, symbolic majority
levels can be tentatively suggested.

Having the voting majority analogy in mind, then criteria weights simply reflect
how much they count in the formation of such majorities. This means that weights
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Table 14.1 Example of
criteria weights

Criteria: g1 g2 g3 g4 g5
Weights (wk): 0.15 0.20 0.15 0.15 0.35

match the analogy of weights in the physical world. A direct elicitation question
could be:

“Considering that the support of all criteria for an outranking relation amounts to
a 100% majority (unanimity), how much weight (or voting power) would you assign
to criterion gj alone?”

Confirmation questions can be asked concerning the elicited weights. Consider
for instance the weights in Table 14.1. Since w1 < w2 one should confirm that
having the support of the first criterion for an outranking relation is less important
than having the support of the second criterion. Since w1 C w2 D w5, one should
confirm that the last criterion counts as much as the other two criteria. These are just
two examples among many possible. Further confirmatory questions may interrelate
the elicited weights and the cutting level. For instance, if 	 D 0:55, one should
confirm that:

• No criterion alone is strong enough to warrant an outranking relation.
• The only coalition of two criteria strong enough to warrant an outranking relation

is g2 together with g5 (since w2 C w5 D 0:55 D 	)
• No coalition of three criteria is a sufficient majority unless g5 is in it.
• Any coalition of four criteria is a sufficient majority (at the minimum, w1C w2C

w3 C w4 D 0:65, which is larger than 	).

If indifference and preference thresholds are not null, the single-criterion concor-
dances can be any value between 0 or 1, but this does not change the logic of the
elicitation process. One simply has to reason that if, for instance, the performance
of alternatives a and b is such that Sj.a; b/ D 0:50, then criterion gj contributes with
half of its weight to the coalition supporting that a outranks b.

An alternative to directly asking for numerical criteria weights has been proposed
by Simos (1990) and later revised by Figueira and Roy (2002). DMs can use
cards with criteria names to indicate how they would rank the criteria by order of
importance. Two or more cards can be placed together to indicate the respective
criteria should have the same weight. In addition, DMs can place blank cards to
indicate a higher difference in weights between ranks. For instance, DMs could
indicate the following ranking: g1 and g2, g3, (blank), g4, (blank), (blank), g5. This
indicates that g1 and g2 are the two criteria with higher weight, followed by g3,
then g4 and finally g5. The blank cards in this example entail that one should have
w4�w5 D 3.w2�w3/ and that w3�w4 D 2.w2�w3/. Since there are many weight
vectors fulfilling these inequalities the revised Simos technique requires DMs to
set a ratio between the first and the last ranked weights. The authors also propose
a rounding technique if the resulting weights are required to have a predefined
maximum number of decimal digits (for details see Roy and Figueira 2002).
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14.3.3 Discordance Parameters

14.3.3.1 Parameters Defining dj.a; b/

Being a noncompensatory preference model, ELECTRE allows specifying that a
large disadvantage on one criterion may not be compensated by advantages on other
criteria. Let us recall the way the non-discordance condition is implemented through
ND.a; b/ as in Eq. (14.5). If gj.b/ � gj.a/ exceeds vj for at least one criterion then
aSb is invalidated, i.e., 9j 2 F W dj.a; b/ D 1 ) S.a; b/ D 0. This may happen even
when the total concordance C.a; b/ is higher than the cutting level 	.

Traditionally, ND.a; b/ accounts both for the values of dj.a; b/ and C.a; b/: the
way ND.a; b/ accounts for dj.a; b/ is amplified when C.a; b/ is low. This reflects
the idea that a veto situation should be accentuated when the concordance relation
is not firmly established. On the other hand, if C.a; b/ is high, then low values of
dj.a; b/ are not taken into account: the overall non-discordance relation defined in
(14.5) considers the dj.a; b/ only for criteria such that dj.a; b/ > C.a; b/.

The interplay between dj.a; b/ and C.a; b/ in measuring discordance makes the
process of eliciting veto thresholds vj prone to misunderstandings. The typical
question asked is often:

“What would be a performance difference in criterion j so large that it cannot be
compensated, i.e., that would make this criterion oppose a veto to any concordant
majority of other criteria?”

Suppose for instance that the previous steps of the elicitation process had let to
set pj D 10 and kj D 0:20, for some j 2 F. Suppose also that the answer to the
previous question had led to set vj D 50, possibly by “trial and error”. The DM
was found to have the opinion that if the performance difference is equal to 50 units
or more, then there would be a veto, but if the difference was less than 50 then an
outranking would be allowed. However, in this case any difference higher than 45
would necessarily veto an outranking relation:

From (14.4), pj D 10, vj D 50, and �j.b; a/ > 45 imply dj.a; b/ > 7=8.
Even assuming that there is no other discordance and C.a; b/ D 1 � kj D 0:8,

Eq. (14.7) together with dj.a; b/ > 7=8 yield NDj.a; b/ < 0:625.
Finally, Eqs. (14.6) and (14.11) yield S.a; b/ < 0:5.
Since 	, the required majority, is at least 0.5, a cannot outrank b.
This means that the traditional question for eliciting a difference large enough

to warrant a veto situation leads to an overestimation of this difference. A more
rigorous way to question about the veto threshold, provided that criteria weights
have been elicited, is the following (assuming the parameter values of this example):

“Suppose that j is the only discordant criterion, meaning that a coalition of 80%
of the criteria weights agrees that aSb. What would be a performance difference in
criterion j so large that it cannot be compensated, i.e., that would make this criterion
oppose a veto to that coalition, even if 	 was as low as 0.5?”

It the DM provided the same answer, 50, then to obtain the desired behavior it
would be necessary to set:
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vj D pj C C.a; b/.�j.b; a/ � pj/

C.a; b/ � 0:5.1 � C.a; b//
D 10C 0:8.50 � 10/

0:8 � 0:5.1 � 0:8/ D 55:71429:

(14.14)

14.3.3.2 Parameters Defining d0
j.a; b/ for Relation S0.a; b/ or S00.a; b/

The indices d0
j.a; b/ are defined by (14.9) on the basis of gj.a/, gj.b/, a veto threshold

vj and an additional threshold uj which we call discordance threshold. uj represents
the difference of evaluation gj.b/ � gj.a/ above which the discordance condition
starts to weaken concordance C.a; b/ in the definition of S0.a; b/. This discordance
threshold uj can be considered either:

• as an additional preferential parameter to be elicited through an interaction with
the DM, or

• as a technical parameter (rather than a preference-related one), an option that
should be used only when the DM does not wish to use the added flexibility
offered by uj, preferring to work with the thresholds vj only. In such cases, a
reasonable “rule-of-thumb” is to set uj D pj C 0:75.vj � pj/ (see Mousseau and
Dias 2004).

In case the discordance threshold uj is to be elicited, then the main difference
in the use of relation S0.a; b/ rather than S.a; b/ is that criteria that intervene in the
product are not restricted to those for which d0

j.a; b/ > C.a; b/, i.e., small values of
d0

j.a; b/ will impact ND0.a; b/. Moreover, the concordance relation C.a; b/ does not
intervene in the non-discordance implementation.

In model S0.a; b/, the discordance d0
j.a; b/ corresponds to a correction factor

to the concordance of all other criteria taken together. One possibility is to ask
two questions defining the performance differences that correspond to two distinct
d0

j.a; b/ values, e.g., a 10% correction (decrease) and 25% correction. For the former
case the question would be (the question pertaining the latter is similar):

“Suppose that j is the only discordant criterion, meaning that all other criteria
agree that aSb. What would be a performance difference in criterion j that would
warrant decreasing the weight of all concordant criteria by 10%?” (Note that unlike
relation S there is no need to refer to the exact weight of the criteria).

If, for instance, the DM would state that �j.b; a/ D 40 warrants decreasing the
weight of all concordant criteria by 10% and �j.b; a/ D 50 warrants decreasing
the weight of all concordant criteria by 25% then, based on Eq. (14.9), solving the
system

(
40�uj

vj�uj
D 0:10

50�uj

vj�uj
D 0:25

(14.15)

leads to the solution uj D 100=3 and vj D 100.
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It is also possible to ask only one of the above questions, and use a different
question to elicit uj:

“Suppose that j is the only discordant criterion, meaning that all other criteria
agree that aSb. At what point (performance difference) would a veto effect start to
occur, in that the weight of all concordant criteria would start to be decreased?”

If, for instance, the DM would reply that a veto effect gradually begins at a
difference of 40, and that �j.b; a/ D 50 warrants decreasing the weight of all
concordant criteria by 25% then, based on Eq. (14.9),

50 � 40
vj � 40 D 0:25 yields vj D 95: (14.16)

14.3.4 Profiles in Sorting Problems

The elicitation of profiles in sorting problems in the framework of ELECTRE
models must take into account their distinct nature in different variants of ELECTRE
TRI: in the original version (ELECTRE TRI-B) the profiles are limits separating
the consecutive categories, whereas in ELECTRE TRI-C the profiles are central
elements of the categories.

Let us first address the original version (ELECTRE TRI-B). Here, a profile bk

separates category Ck from category CkC1 (it can be considered a lower bound for
CkC1). If there are ncat categories, then ncat � 1 profiles need to be elicited. A lower
bound for the first (worst) category, b0, needs not be elicited by assuming that aSb0 is
true for every conceivable alternative a. Similarly, An upper bound for the last (best)
category, bncat , needs not be elicited by assuming that aSbncat is false and bncat Sa is
true for every conceivable alternative a.

Considering the convention that C1 is the worst category and Cncat is the best
category the following conditions should be ensured:

• Each profile dominates the profiles of lower categories: if k0 > k then gj.bk0

/ �
gj.bk/ for criteria gj to be maximized and gj.bk0

/ � gj.bk/ for criteria gj to be
maximized, with at least one of these inequalities being strict.

• Profiles should not be so close to each other that an alternative might be
indifferent to both: for two different profiles bk0

and bk there is no alternative
a such that aSbk0

and bk0

Sa and at the same time aSbk and bkSa.

The sorting of alternatives in ELECTRE TRI can be performed according to a
pessimistic (pseudo-conjunctive) perspective or an optimistic (pseudo-disjunctive)
perspective. Whenever the alternative to be sorted is incomparable to some profiles,
the pessimistic perspective places it a lower category than the optimistic perspective;
otherwise, both perspectives sort it in the same category. In this chapter we will
consider the pessimistic perspective, according to which an alternative is sorted in a
category Ck if it is good enough to outrank its lower bound but not good enough to
outrank its upper bound:
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ai is sorted in Ck , aiSbk�1 ^ :aiSbk (14.17)

Elicitation of the profiles can be conducted by considering one criterion at a
time. For each criterion gj, the profiles for the successive categories can be asked in
ascending order (starting from the worst one) or in descending order (starting from
the best one). In descending order the performance value for gj.bncat�1/ can be asked
as follows:

“On criterion gj, what level of performance is required for this criterion to vote
in favor of sorting an alternative in the best category, Cncat ?”

Then, the performance value for gj.bncat�2/ can be asked as follows:
“On criterion gj, what level of performance is required for this criterion to vote

in favor of sorting an alternative in category Cncat�1? (if not better)”
Then, performances gj.bncat�3/,. . . ,gj.b1/ would be elicited in the same way,

before moving on to a different criterion. Focusing on one criterion at a time makes
the task easier for decision makers, who are in this way invited to consider how each
criterion would sort the alternatives, if there was not any other criterion.

As an alternative, the elicitation can focus on one category at a time, considering
all the criteria, but often this task is harder. Decision makers would have to provide
multi-criteria performances for a profile bncat�1 such that all alternatives outranking
it would be placed in the best category. Then, they would need to provide multi-
criteria performances for a profile bncat�2 such that all alternatives outranking it (but
not outranking bncat�1) would be placed in the second best category, and so on.

Let us now address the central profiles version ELECTRE TRI-C. Here, a profile
bk is the most representative (also called characteristic) element of category Ck. If
there are ncat categories, then ncat profiles need to be elicited. For these profiles to
be consistent, a profile for one category, say bk, cannot be better than the profile
bkC1 from a better category. At the minimum, S.bk; bkC1/ < 1, but more stringent
conditions such as S.bk; bkC1/ < 0:5 or S.bk; bkC1/ < 0 can be placed (Almeida-
Dias et al. 2010). The basic idea of this method is to sort each alternative to the
category such that the alternative outranks and is at the same time outranked by the
profile as much as possible, i.e., with the largest minfS.ai; bk/; S.bk; ai/g (for details,
see Almeida-Dias et al. 2010).

As in the case of ELECTRE TRI-B, elicitation of the profiles can be conducted
by considering one criterion at a time. For each criterion gj, the profiles for the
different categories can be asked, in any order. The performance value for gj.bk/

can be asked as follows:
“On criterion gj, what level of performance best characterizes an alternative in

category, Ck?”
As an alternative, the elicitation can focus on one category at a time, considering

all the criteria. In this case, a profile can be regarded as an ideal example
characterizing the sort of performances the decision maker associates with each
category. Method ELECTRE TRI-nC (Almeida-Dias et al. 2012), which extends
ELECTRE TRI-C, even allows the decision maker to provide different examples of
profiles to characterize each category.
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14.4 Indirect Elicitation (Regression)

Assigning values to the parameters involved in the definition of an ELECTRE
model might be a difficult task for the DM. The disaggregation approach (see
Jacquet-Lagrèze and Siskos 2001) allows to infer parameter values from holistic
preferences (i.e., global preferences rather than a criterion-by-criterion analysis).
Holistic statements might be a ranking of a set of alternatives, comparisons of
alternatives, or, in the case of sorting problems, the proposal of classification
examples. The alternatives that are compared in a holistic manner might be a small
subset of a much larger set of alternatives to be evaluated, or alternatives considered
in past decision processes (possibly knowing how well they performed previously),
or even examples constructed in a way that facilitates comparisons.

The disaggregation approach is usually performed using mathematical programs.
Such inference programs can either be partial if only a subset of parameters is
being inferred (the values of the other parameters being fixed), or global if all
parameters are to be inferred. The inputs for the mathematical program are the
holistic preference statements and the values of the parameters that are not being
elicited. The decision variables are the parameters to be inferred. The objective
function is to minimize an “error function” measuring how well the holistic
preferences are reproduced by the inferred model. The constraints reflect the holistic
preferences and also constraints that the method imposes on the model (e.g., weights
are nonnegative and they add up to 1).

As described in Sect. 14.2.5, in ELECTRE methods the final choice set, or
ranking, or sorting result is derived from the outranking relation. For ELECTRE
TRI’s pessimistic (or pseudo-conjunctive) variant, a statement in the form of a
sorting example can be translated in two statements concerning outranking relations
(Mousseau and Dias 2004). For instance, a statement “alternative a should be
classified at least in the second category and at most in the third category” is
translated into two outranking statements: “a outranks the lower profile of the
second category” and “a does not outrank the lower profile of the fourth category”.
Unfortunately, statements based on ELECTRE methods devoted to choice or
ranking problems, such as ELECTRE I-IV, do not have an easy direct translation
into outranking statements. Therefore, the literature has concentrated on the cases
of sorting problems or inferring parameters from outranking statements.

In order to elicit values for preference-related parameters (i.e., wj, vj.gj/, pj.gj/,
qj.gj/, and limits of categories in ELECTRE TRI) it is possible to proceed using a
disaggregation procedure that infers the parameters values from holistic preferences
provided by the DM. Hence, it is necessary to formalize S.a; b/ through an
optimization program that minimizes an “error function” that measures how much
the values of the inferred parameters contradict the stated holistic preferences.
However, S.a; b/ is rather “optimization unfriendly”. Difficulties arise mainly from
the way the non-discordance condition is implemented, i.e., the way ND.a; b/ is
defined.
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More precisely, two features of the non-discordance relation are concerned. First,
the subset of criteria F (see (14.5)) is difficult to integrate into an optimization
program. Second, the fact that C.a; b/ intervenes in the definition of ND.a; b/
implies that the optimization program will necessarily be non-linear, even when
all the parameters are fixed except the weights.

The problem of inferring the parameters of an ELECTRE method (ELECTRE
TRI) based sorting examples translated into outranking statements was initially
studied by Mousseau and Slowinski (1998). The resulting mathematical program-
ming was nonlinear and would require global optimization techniques to find a
solution. A simpler formulation was proposed to infer only the weights and the
cutting level in situations without veto thresholds, in which S.a; b/ D C.a; b/. In
this case, an easy to solve linear programming formulation could be devised.

If veto thresholds are allowed, then the problem can no longer be solved by linear
programming, even if the only parameters to be inferred are weights and the cutting
level. Indeed, S.a; b/ is a non-differentiable and quasi-concave nonlinear function of
the weights in the domain where it is strictly positive and therefore a constraint like
S.a; b/ < 	 (which reflects a holistic statement of the form :aSb) does not define
a convex set (Dias and Climaco 1999). For this reason, Mousseau and Dias (2004)
proposed variants for the outranking relation, S0 and S00 (presented in Sect. 14.2.4)
that allow using linear programming in such cases.

To provide an example of the mathematical programming approach to inference,
the following section briefly recalls the inference of weights and cutting level for
relation S0. The ensuing section overviews the literature on eliciting other subsets of
parameters.

14.4.1 Inferring Weights and Cutting Level from S0
Outranking Statements

Let us suppose that the DM is not able (or not willing) to assign directly values to
the preference-related parameters involved in the outranking relation, but can state
crisp statements about this relation for some specific pairs of alternatives (a; b/, i.e.,
either aSb (a outranks b) or :aSb (a does not outrank b). Our purpose is to find
criteria weights and a cutting level that restore the DM’s statements.

Let A denote a set of alternatives. Let SC D f.a; b/ 2 A2 such that the DM stated
aSbg and S� D f.a; b/ 2 A2 such that the DM stated :aSbg. Then, a combination of
parameter values is able to restore the DM’s request iff S.a; b/ � 	; 8.a; b/ 2 SC
and S.a; b/ < 	; 8.a; b/ 2 S�, which may be written as S.a; b/�	 � 0; 8.a; b/ 2
SC and 	 � S.a; b/C " � 0; 8.a; b/ 2 S� (" being a small positive value).

The mathematical program given below (14.18)–(14.23) maximizes a common
slack ˛ for all these constraints, to obtain a relatively “central” combination of
parameter values. Whenever the optimum value of ˛ is negative, there is no
combination of parameter values complying to all the constraints, i.e., the DM



366 L.C. Dias and V. Mousseau

provided inconsistent information (a procedure to deal with such inconsistencies
is proposed in Mousseau et al. 2003). Alternative objective functions can be
considered (see Beuthe and Scannella 2001 and Mousseau and Slowinski 1998).

Max ˛ (14.18)

s:t: ˛ � S.a; b/ � 	; 8.a; b/ 2 SC (14.19)

˛ � 	 � S.a; b/C "; 8.a; b/ 2 S� (14.20)

	 2 Œ0:5; 1� (14.21)

vj.gj/ > pj.gj/ > qj.gj/ � 0; 8j 2 F (14.22)
Xn

jD1 wj D 1I wj � "; 8j 2 F: (14.23)

Some additional constraints can be added to this program, in order to inte-
grate explicit statements of the DM concerning the values of some parameters.
From (14.5) and (14.11), it is obvious that this is a difficult nonlinear program if all
the parameters were considered as variables. A solution to circumvent this difficulty
is to formulate partial inference programs, where only a subset of the parameters
are considered as variables, while the remaining ones are elicited by other means.
Among the partial inference problems, previous research on related problems has
focused mainly on inferring the weights and the cutting level (see Mousseau et al.
2000; Dias et al. 2002; Miettinen and Salminen 1999). This is an important partial
inference problem because the weights and the cutting level are the only parameters
involving inter-criteria judgements (the remaining parameters do not interrelate the
criteria).

Let us consider the case where S0 is used. In this case each product
Q

j2F.1 �
d0

j.a; b// D ND0.a; b/ is a fixed constant 8.a; b/. The following constraints
concerning outranking statements are hence linear, since C.a; b/ is an affine function
of the weights.

˛ � C.a; b/
Y

j2F

�
1 � d0

j.a; b/
� � 	; 8.a; b/ 2 SC (14.24)

˛ � 	 � C.a; b/
Y

j2F

�
1 � d0

j.a; b/
�C "; 8.a; b/ 2 S� (14.25)

Considering S0.a; b/ instead of S.a; b/, the weights and the cutting level can be
inferred by solving a linear program whose variables are ˛, w1, . . . , wn, and 	,
where (14.24) and (14.25) appear as (14.27) and (14.28):

Max ˛ (14.26)

s:t: ˛ �
Xn

jD1 wj Sj.a; b/ ND0.a; b/ � 	; 8.a; b/ 2 SC (14.27)
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˛ � 	 �
Xn

jD1 wj Sj.a; b/ ND0.a; b/C "; 8.a; b/ 2 S� (14.28)

	 2 Œ0:5; 1�; (14.29)
Xn

jD1 wj D 1 wj � "; 8j 2 F (14.30)

If the maximum value of ˛ is positive, then the values of w1, . . . , wn, and 	 at the
optimum are able to restore all the statements defining SC and S�. Otherwise, the
inferred values provide suggestions for changing those examples. The DM should
ponder whether they want to change the sets SC and S�, or to analyze the values of
ND0.a; b/. Indeed, some of the differences among the current model and the DM’s
requests may stem from inadequate values for the veto and discordance thresholds.
Considering S00.a; b/ instead of S0.a; b/ leads to a similar linear program.

As a particular case, the pessimistic procedure of ELECTRE TRI assigns
alternative a to category Ch (bh�1 and bh being the lower and upper profiles of Ch,
respectively) iff S.a; bh�1/ � 	 and S.a; bh/ < 	 (	 2 Œ0:5; 1� is the chosen cutting
level).

Suppose the DM has specified a set of assignment examples, i.e., a subset of
A� 
 A such that each ak 2 A� is associated with CM.ak/ (Cm.ak/, respectively)
the maximum (minimum, respectively) category to which a should be assigned
according to his/her holistic preferences. Hence ŒCm.ak/;CM.ak/� defines an interval
of possible categories to which ak can be assigned to. Cm.ak/ D CM.ak/ D Chk

means that the DM wants ak to be assigned to Chk precisely (we will note ak !DM

Chk such statement), while Cm.ak/ < CM.ak/ corresponds to an imprecise statement
(ak !DM ŒCm.ak/;CM.ak/�).

Inferring all ELECTRE TRI parameters is a difficult nonlinear program
(Mousseau and Slowinski 1998). But if we consider S0.a; b/ instead of S.a; b/,
the weights and the cutting level can be inferred by solving a linear program (all
other parameters being given as inputs). The linear program for this partial inference
problem is equal to (14.26)–(14.30) if we define:

SC D ˚
.ak; bCm.ak/�1/ 2 A� � B W ak !DM ŒCm.ak/;C

M.ak/�


(14.31)

S� D ˚
.ak; bCM.ak// 2 A� � B W ak !DM ŒCm.ak/;C

M.ak/�


(14.32)

Considering S00.a; b/ instead of S0.a; b/ leads to a similar linear program.

14.4.2 Inferring Different Parameters for Sorting Problems

In recent years, several papers dealt with the learning of ELECTRE TRI parameters.
As mentioned previously, the first paper devoted to the learning of ELECTRE

TRI parameters has been proposed by Mousseau and Slowinski (1998). The learning
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algorithm takes as input a set of assignment examples and their associated vector of
performances with respect to the problem criteria. The paper shows the difficulties
to learn the parameters of ELECTRE TRI without veto. The main difficulty is the
non-linearity of the partial concordance indices. Indeed, it makes the concordance
index not differentiable which prevents the use of gradient optimization algorithms.
In order to tackle this difficulty, Mousseau and Slowinski (1998) propose to
approximate the partial concordance indices by sigmoid functions.

Learning all the parameters of an ELECTRE TRI model involves the determi-
nation of a lot of parameters. It requires a lot of cognitive effort from the user.
Mousseau et al. (2001) consider the subproblem of finding the weights and the
cutting threshold of an ELECTRE TRI model with fixed profiles and indifference
and preference thresholds. In the paper, a linear program is proposed and some
experiments are conducted. It shows that learning only a subpart of the ELECTRE
TRI model simplifies the problem. Fewer assignment examples are required to
obtain good results.

Ngo The and Mousseau (2002) proposed a mixed integer program in order to
infer the profiles of an ELECTRE TRI model with fixed weights and thresholds. The
mixed integer program presented in the paper finds the partial concordance indices
in a first step. The second step consists in deducing the values of the profiles from
the partial concordance indices. They propose to use this mixed integer program in
combination with the linear program of Mousseau et al. (2001) in order to determine
the whole set of parameters of an ELECTRE TRI model.

Mousseau and Slowinski (1998), Mousseau et al. (2001) and Ngo The and
Mousseau (2002) consider only ELECTRE TRI models without veto. Dias and
Mousseau (2006) present a manner to learn vetoes of an ELECTRE TRI model with
fixed profiles, thresholds and weights. In the paper, two subproblems are treated.
The first one considers the inference of veto parameters for a single criterion. The
second considers the inference of all veto parameters for multiple criteria at the
same time.

Doumpos et al. (2009) proposed a metaheuristic in order to learn all the
parameters of an ELECTRE TRI model, including the veto thresholds. They
developed a genetic algorithm in order to learn all the parameters of the model at
the same time. The interest of this approach is that it allows to deal with larger data
sets than mixed integer program based algorithms.

However ELECTRE TRI integrates a large number of preference parameters
that are to be determined. MR-SORT is a simplified version of ELECTRE TRI
which keeps the philosophy of ELECTRE TRI with the advantage of using less
parameters (no veto thresholds and no discrimination thresholds are considered).
Leroy et al. (2011) propose a mixed integer program in order to learn the parameters
of such a model based on assignment examples. The experimental results presented
in the paper show that the mixed integer program is able to find MR-SORT models
which perform well in generalization. However, the experiments show the limitation
of such an algorithm in terms of computing time. For a small problem involving
five categories and three criteria, more than 100 s are required to restore all the
parameters of a MR-SORT model on the basis of 100 assignment examples.
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Damart et al. (2007) are the first to consider the problem of learning the
parameters of an ELECTRE TRI model in the context of multiple decision makers.
They propose an approach that aims at determining a set of fictitious alternatives
that contain enough information to obtain a model that is satisfactory for all the
DMs. The procedure is applied to an illustrative example.

Later, Cailloux et al. (2012) developed two mixed integer programs in order to
learn the parameters of a MR-SORT model in the context of multiple DMs. The
first mixed integer program aims at finding a set of profiles that is common to all
the decision makers. The second mixed integer program learns a set of weights
compatible with the preferences of each DM. The paper presents experimental
results on real and fictitious applications.

Recently, Sobrie et al. (2013), Sobrie (2016) proposed an heuristic to efficiently
infer MR-SORT parameters (weights and profiles) from large sets of assignment
examples (over several thousands).

14.5 Elicitation Process

After reviewing elicitation techniques, we now focus on elicitation as a process that
evolves in time, involving at least one DM and an analyst conducting the process.
Two issues are discussed: elicitation sequence and numerical precision.

14.5.1 Elicitation Sequence

The elicitation sequence defines which parameters are elicited, in which order
(or simultaneously), and using which technique.

All the parameters of an ELECTRE model should be discussed with the DMs,
but not necessarily elicited from them. Indeed, there are at least three situations in
which some parameters are not elicited:

• Indifference and preference thresholds, unlike preference-based parameters such
as weights, may be considered technical parameters (Rogers and Bruen 1998;
Roy et al. 2014) that can be set by the analyst, possibly with the help of experts
on the domain that a criterion refers to. For instance, an analyst may set both
thresholds equal to zero if a scale is ordinal, or an expert may set these thresholds
based on considerations about the method that measures the performance of the
alternatives on a cardinal scale, or a scientist may inform which differences in,
say, noise levels, are negligible because a human cannot perceive them (Rogers
and Bruen 1998).

• Veto thresholds may not be necessary, at least for all the criteria. The DMs may
deem that no veto power is granted to some criteria, meaning that the discordance
from those criteria is always null.
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• The DMs may feel uncomfortable about setting criteria weights. In such cases,
they may resort to ELECTRE IV, a method that does not ask for weights (Roy
and Hugonnard 1982), or they may consider some freedom in setting the weights,
as discussed in the following section. Many DMs may simply ask that all criteria
have the same weight, but such a conclusion should result from (or be confirmed
by) elicitation questions (Sect. 14.3.2).

There is no mandatory order by which parameters should be elicited. A possible
sequence is the one followed by Sect. 14.3. Indifference and preference thresholds
are clearly related and thus should be elicited simultaneously, one criterion at a time.
Then, since the concordance part of the outranking relation is being addressed, the
elicitation of weights may ensue. If the cutting level 	 is communicated as a required
majority level, then this parameter can be discussed simultaneously with weights, as
described in Sect. 14.3.2. Finally, the possibility of veto is discussed, eliciting veto
and non-discordance thresholds.

A different strategy is to initially focus on one criterion at a time and elicit
indifference, preference, discordance and veto thresholds for each criterion. Then,
criteria weights and the cutting level, which interrelate multiple criteria, would be
elicited.

When an indirect elicitation (regression approach) is followed, multiple types of
parameters can be inferred simultaneously, although that is a difficult optimization
problem. Inferring only a subset of the parameters at a time allows overcoming
this difficulty, and has an additional advantage. Since the DMs interactively revise
the information they provide and observe the results of the mathematical program,
partial inference problems allow them to focus their attention on a subset of
parameters at a time and to better understand the consequences of modifying the
examples they provide. We believe that inference programs should not be considered
as a problem to be solved once, but rather as problems to be solved many times
throughout an interactive learning process. Furthermore, it is possible to mix direct
and indirect elicitation questions for different sets of parameters, and even for the
same parameters (for confirmation purposes). Finally, the notion that parameters are
elicited in a sequence does not mean that the elicitation process is linear. Often, the
analyst may find out that the discussion concerning a subset of parameters puts into
question the values elicited previously for another subset of parameters.

14.5.2 Numerical Precision

The issue of precision (and accuracy) arises in both direct and indirect elicitation.
By precision we mean the freedom of variation one accepts for a parameter. For
instance, setting the weight of the first criterion as w1 D 0:288 is more precise than
setting w1 2 Œ0:28; 0:29�, which is more precise than setting or w1 2 Œ0:25; 0:30�.
The elicitation process is developed during a finite time window in which the DMs
are available (and attentive!). Therefore, one has to accept the elicitation results
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might not be “accurate” in the sense that they include the exact parameter values that
would result from a much longer process. In a direct elicitation process, a DM would
hardly state that w1 D 0:288. Probably he or she would state 0.29 or 0.3 which are
“rounder” numbers. Typically these inputs are accepted even knowing they might
be slightly inaccurate: no analyst would ask if it should really be a value of 0.299
or 0.301 instead of 0.3. Analysts know that rounder numbers are more comfortable
for the DMs and reckon it would not be worthwhile to trouble a DM for a degree
of precision that might be irrelevant to the results of the analysis. These concerns
can be addressed at the end by means of a sensitivity or a robustness analysis (Roy
1998).

In indirect elicitation processes the mathematical programs might admit many
different solutions able to reproduce the examples provided by DMs. For instance,
experimental studies have been developed (Mousseau et al. 2001) showing that
to infer relevant values for wj and 	, the cardinality of SC and S� should be
“sufficiently” large. On the other hand, accepting less precision leads to higher
confidence that the elicitation results (a subset of the parameter space) contains the
parameter vector that would result from an ideally long elicitation process.

There are two possible outcomes of an indirect elicitation process: a set of
constraints defining a partial information set (a subset T of the parameter space) or
a (precise) vector of parameter values t� 2 T (the best fit found by a mathematical
program). For instance, the IRIS implementation (Dias and Mousseau 2003) of an
indirect elicitation process for ELECTRE TRI (Dias et al. 2002) infers a suggested
parameter vector and displays the resulting sorting of the alternatives, but it always
displays all other sorting possibilities that are compatible with examples and other
constraints provided by DMs.

Often, precision is not required for a model to be requisite (as defined by Phillips
1984). The analyst can follow a strategy of progressively reducing the variation for
the parameters by means of new questions depending on the observation of results
that are robust relatively to information provided before Dias (2007). The process
stops when the DMs feel the precision in the results is requisite for their purposes.
As an example we can mention an application for sorting plots of land according to
their suitability for photovoltaic plants (Sánchez-Lozano et al. 2014). A subset of
20 plots was considered as potential sorting examples. At the outset, an interval of
weights was considered based on the maximum and minimum values indicated by
a panel of stakeholders. Then, a DM observed the range of categories in which each
plot could be sorted given their characteristics and the weight intervals considered.
The DM then sorted a few of these plots according to his experience-based opinion,
one at a time, and observed how the range of possible categories for each plot was
reduced as a result of the new constraints associated with the example. After sorting
the seventh plot the number of constraints collected defined a region in the parameter
space that was sufficiently precise to be able to sort each one of the remaining 13
plots into a single category. The model was considered to be requisite, concluding
the elicitation process.

Setting a precise figure for each parameter value may also be an elusive
goal when seeking the agreement of multiple DMs, due to differences in their
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preferences. It is easier for them to agree that w1 2 Œ0:25; 0:30� than to agree that
w1 D 0:288, and often conclusions are robust to vector variations within a subset of
the parameter space. DMs may agree on a result although they would not be able to
agree on precise values for the input parameters (Dias and Clímaco 2000). In such
cases, DMs can start with little information and progressively constrain the subset
of the parameter space they consider.

Avoiding eliciting precise figures is also a possibility to cope with situations in
which DMs do not wish to set criteria weights, particularly in sensitive situations
(e.g., impacts on the environment and on human health, or social impacts). Such
DMs wish to treat criteria in a value-neutral way. An alterative to considering all
criteria have the same weight is to consider that all criteria share a common interval
of weights (for an example, see Domingues et al. 2015). This makes no distinction
between the criteria importance, but does not entail they have the same weight. In
this case, DMs would discuss the acceptable interval of weights for the criteria,
discussing for instance that no criterion should weight more than all other criteria
(kj < 0:5), or defining a maximum acceptable ratio between any two weights (e.g.,
a criterion’s weight cannot be more than ˛ times greater than any other criterion’s
weight, Domingues et al. 2015).

14.6 Concluding Remarks

A large literature exists concerning the way by which ELECTRE methods can
be implemented in practice and in particular with respect to the integration of
the DM judgement in the preference model. Preference elicitation for ELECTRE
methods have been largely developed and this chapter provides a synthesis of the
corresponding literature.

However, there are still many challenges to be faced. An important one concerns
the indirect elicitation of ELECTRE models for ranking problems: as ELECTRE
methods are not invariant with respect to third a alternative, i.e, a DM can provide a
statement “a is preferred to b”, the inferred model will reproduce this comparison,
but when applied to rank a larger set of alternatives, b can be better ranked than a.

Another challenge related to inference of ELECTRE model is related to the
multiplicity of preference parameters. When eliciting indirectly these preference
parameters, we usually can obtain a rather limited amount of preference statements
(e.g. pairwise comparisons, or assignment examples). The contrast of the great
flexibility of the preference models with the limited preference information makes
it difficult to set the values of the preference parameters without some form
of arbitrariness. In some applications, it might be relevant to consider some
simplification of the original ELECTRE methods (avoiding some of the parameters).
Another path is to collect la large amount of preference information, but this implies
computational challenges related to the inference of ELECTRE models with large
sets of preference statements.
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A third challenge is to elicit and integrate “soft” requests, such as “I would like
that criteria weights are not too different”, or “I would like that more important
criteria have greater veto power than the remaining ones” in direct and especially in
indirect elicitation processes.

Finally, group decision making places many different challenges. A strategy to
deal with lack of agreement is working with less precise information, as suggested
in the previous section. But if the DMs wish to somehow aggregate their opinions
assigning different weights for the DMs’s requests (e.g. reflecting their expertise or
past performance), then there is lack of research on how to take this into account in
eliciting ELECTRE’s parameter values.
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Chapter 15
Individual and Group Biases in Value
and Uncertainty Judgments

Gilberto Montibeller and Detlof von Winterfeldt

Abstract Behavioral decision research has demonstrated that value and uncertainty
judgments of decision makers and experts are subject to numerous biases. Individual
biases can be either cognitive, such as overconfidence, or motivational, such as
wishful thinking. In addition, when making judgements in groups, decision makers
and experts might be affected by group-level biases. These biases can create serious
challenges to decision analysts, who need judgments as inputs to a decision or risk
analysis model, because they can degrade the quality of the analysis. This chapter
identifies individual and group biases relevant for decision and risk analysis and
suggests tools for debiasing judgements for each type of bias.

15.1 Introduction

Behavioral decision research has identified a large number of behavioral individual
biases in human judgment and decision making. Most of its findings address
cognitive biases—faulty mental processes that lead judgments and decisions to
violate commonly accepted normative principles. Equally important, but much
less studied, are motivational biases, which include conscious or subconscious
distortions of judgments and decisions because of self-interest, social pressures,
or organizational context. Beyond these individual level biases, group biases are
also relevant, whenever judgments involve teams of experts or groups of decision
makers.

These biases create serious challenges to decision analysts, who want to use
judgments of experts and preferences of decision makers as inputs to their analyses.
This chapter identifies the individual and group biases relevant for decision and risk
analysis and suggests debiasing tools. We start by exploring the relevant cognitive
and individual biases, drawing from a recent literature review that we conducted
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on this topic (Montibeller and von Winterfeldt 2015). We then extend this review
to group-level biases, suggesting which biases are relevant for decision and risk
analysis. The chapter concludes with some directions for further.

15.2 Relevant Individual Biases

We distinguish two groups of individual biases which are relevant in the elicitation
of value and uncertainty judgements: cognitive biases and motivational biases. For
each relevant bias we will mention some common debiasing tools, drawing from our
experience, best practices in decision and risk analysis, as well as from the limited
literature on the topic (Arkes 1991; Larrick 2007; Milkman et al. 2009). Debiasing
refers to attempts to eliminate, or at least reduce, cognitive or motivational biases.

15.2.1 Relevant Individual Cognitive Biases

A cognitive bias is a systematic discrepancy between the “correct” answer in a
judgmental task, given by a formal normative rule, and the decision maker’s or
expert’s actual answer to such a task (von Winterfeldt and Edwards 1986). There is a
vast literature on cognitive biases and excellent compilations of papers are provided
in Kahneman et al. (1982) and Gilovich et al. (2002).

We distinguish between cognitive biases that are relevant for decision and risk
analysis and those that are less or not at all relevant. Relevant cognitive biases are
difficult to correct in decision and risk analysis processes. Biases that are difficult
to correct tend to be resistant to logic, decomposition, or the use of training and
tools. Examples of these biases are the overconfidence bias (Lichtenstein et al. 1982;
Lichtenstein and Fischhoff 1977), anchoring and insufficient adjustment (Tversky
and Kahneman 1974), and the equalizing bias (Jacobi and Hobbs 2007).

In contrast there are biases that are less or not relevant to decision and risk
analysis, because they are easy to correct by logic and decomposition. Examples of
biases that are easy to correct are the conjunction fallacy (Tversky and Kahneman
1983), which can be corrected by demonstrating the probability logic, and the
neglect of base rates (Bar-Hillel 1980; Kahneman and Tversky 1973), which can
be eliminated by eliciting base rates and conditional probabilities separately.

We list each relevant bias below and suggest debiasing techniques (for details see
Montibeller and von Winterfeldt 2015):

Anchoring The estimation of a numerical value is based on an initial value
(anchor), which is then insufficiently adjusted to provide the final answer (Tversky
and Kahneman 1974).
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There is evidence of this bias occurring in several types of judgments, such as
estimation tasks, pricing decisions and also in negotiations (Furnham and Boo 2011;
Mussweiler and Strack 2001).

Debiasing includes avoiding anchors, providing multiple and counter-anchors,
and using different experts who use different anchors.

Availability/Ease of Recall The probability of an event that is easily recalled is
overstated (Bazerman and Moore 2013; Tversky and Kahneman 1973).

This bias occurs in judgments of simple frequency estimates (Tversky and
Kahneman 1973; Wänke et al. 1995); frequency of lethal events (Lichtenstein et
al. 1978); rare events that are anchored on recent examples.

Debiasing techniques include conducting probability training, providing counter
examples, and providing statistics.

Certainty Effect Decision makers prefer sure things to gambles with similar
expected utilities; they discount the utility of sure things dramatically, when they
are no longer certain (Allais 1953; Kahneman and Tversky 1979).

This bias occurs in elicitation of judgments employing probability vs. certainty
equivalent methods, which produce different results (Hershey and Schoemaker
1985; Schoemaker and Hershey 1992).

Debiasing techniques include avoiding sure things in utility elicitation, separating
value and utility elicitation, and exploring relative risk attitude parametrically.

Equalizing Bias Decision makers allocate similar weights to all objectives (Jacobi
and Hobbs 2007) or similar probabilities to all events (Fox et al. 2005; Fox and
Clemen 2005).

This bias has been observed in the elicitation of probabilities in decision trees
(Fox et al. 2005; Fox and Clemen 2005) and elicitation of weights in value trees
(Jacobi and Hobbs 2007).

Debiasing techniques include ranking events or objectives first then assigning
ratio weights and by eliciting weights or probabilities hierarchically.

Gain–Loss Bias Alternative descriptions of a choice and its outcomes (Tversky
and Kahneman 1981), either as gains or as losses, may lead to different answers
(Frisch 1993; Levin et al. 1998; Tversky and Kahneman 1981).

There are several types of judgments where this bias occurs, involving choices
of risky options, evaluation of a single option on an attribute, and the way
consequences are described to promote a choice (Kühberger 1998; Levin et al.
1998).

Debiasing techniques include clearly identifying the status quo (SQ), expressing
values as marginal changes from SQ for value functions, eliciting utilities for gains
and losses separately for utility functions and by cross checking utilities for mixed
gambles to ensure consistency.
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Myopic Problem Representation An oversimplified problem representation is
adopted (Payne et al. 1999) based on an incomplete mental model of the decision
problem (Legrenzi et al. 1993; Legrezni and Girotto 1996).

This bias leads to focus on a small number of alternatives (Eisenhardt 1989; Nutt
1998), a small number of objectives (Bond et al. 2008, 2010), or a single future state
of the world (Russo and Schoemaker 1989). See also Payne et al. (1999) for further
evidence.

Debiasing techniques include explicitly encouraging decision makers to think
about more objectives, new alternatives, and other possible states of the future. In
addition, it helps to involve multiple experts and stakeholders to improve the range
of alternatives, objectives, and states of the world.

Omission of Important Variables An important variable is overlooked (Jar-
gowsky 2005), for example, in the definition of objectives (Bond et al. 2008, 2010),
identification of decision alternatives (Butler and Scherer 1997; Pitz et al. 1980),
and in hypothesis generation (Fischhoff et al. 1978; Thomas et al. 2008).

Debiasing techniques include prompting for alternatives and objectives by pro-
viding specific guidance and categories, asking for extreme or unusual scenarios and
by using group elicitation techniques. The use of multiple experts and stakeholder
also helps.

Overconfidence Laypeople and experts provide estimates for a given parameter
that are above the actual performance (overestimation) (Lichtenstein et al. 1982;
Lichtenstein and Fischhoff 1977) or when the range of variation they provide is too
narrow (over-precision) (Moore and Healy 2008).

This bias has been demonstrated in many quantitative estimates, such as in
defense, legal, financial and engineering contexts (Lin and Bier 2008; Moore and
Healy 2008). It is also present in judgments about the completeness of a hypothesis
set (Fischhoff et al. 1978; Mehle 1982).

Debiasing techniques include providing probability training and demonstrations
of overconfidence, by starting elicitations with extreme estimates (low and high),
avoiding central tendency anchors, by using counterfactuals to challenge extremes
and by using fixed value elicitations instead of fixed probability elicitations.

Splitting Biases The way the objectives are grouped affects the weights on
objectives (Borcherding and von Winterfeldt 1988; Pöyhönen et al. 2001; Weber
et al. 1988); or when the way events in a fault tree are grouped affects the event
probabilities.

This bias occurs in the elicitation of weights in multi-criteria models (Borcherd-
ing and von Winterfeldt 1988; Fischer 1995; Pöyhönen et al. 2001; von Nitzsch and
Weber 1993; Weber et al. 1993) and in the elicitation of probabilities in event and
fault trees (Fischhoff et al. 1978; Ofir 2000).

Debiasing techniques include splitting objectives or events that receive high
weights or probabilities and not splitting objectives or events that receive lower
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weights or probabilities, using hierarchical estimation of weights or probabilities,
and using ratio judgments instead of direct estimation or distribution of points.

Proxy Bias Proxy attributes receive larger weights than the respective fundamental
objectives (Fischer et al. 1987).

This bias has been reported in the elicitation of weights in multiattribute utility
and value measurement (Fischer et al. 1987).

Debiasing techniques include avoiding proxy attributes or building models
relating proxies and fundamental objectives and providing weights for fundamental
objectives.

Range Insensitivity Bias The weights of objectives are not properly adjusted to
changes in the range of attributes (Gabrielli and von Winterfeldt 1978; von Nitzsch
and Weber 1993).

This bias occurs in the elicitation of weights in multiattribute utility and value
measurement (Gabrielli and von Winterfeldt 1978; von Nitzsch and Weber 1993).

Debiasing techniques include making attribute ranges explicit and using swing
weighting procedures and by using trade-off or pricing out procedures.

Scaling Biases A family of stimulus-response biases (Poulton 1982, 1989) which
comprises: contraction bias (underestimating large sizes/differences and overesti-
mating small/size differences); logarithmic response bias (using step-changes in
the number of digits used in the response, which fit a log scale); range equalizing
bias (using most of the range of response whatever is the size of the range of the
stimuli); centering bias (producing a symmetric distribution of responses centered
on the midpoint of the range of stimuli); and equal frequency bias (using equally all
parts of the response scale).

These biases have been reported in the assessment of judgments related to
physical and social measurements of various kinds (Poulton 1982, 1989).

Debiasing techniques include developing scales that match stimuli and responses
and by choosing appropriate scaling techniques for the measurement required.

15.2.2 Relevant Individual Motivational Biases

We define motivational biases as those in which judgments are influenced by the
desirability or undesirability of events, consequences, outcomes, or choices (see also
Kunda 1990, von Winterfeldt 1999 and Molden and Higgins 2012). An example of a
motivational bias is the deliberate attempt of experts to provide optimistic forecasts
for a preferred outcome. Another example is the underestimation of the costs of a
project to provide more competitive bids.

Motivational biases do not always have to be conscious. For example, estimates
of the time it takes to complete a software project are often overly optimistic
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(Connolly and Dean 1997) even when there is no outside pressure or value in
misrepresenting the actual time. We focus here on outcome-motivated biases, as
they matter in several modeling steps, but recognize that lack of motivation to
provide accurate judgments is also an issue in the elicitation of judgments (Molden
and Higgins 2012). Contrary to cognitive biases, all motivational biases are hard to
correct, thus relevant to decision and risk analysis.

We list each motivational bias below and suggest debiasing techniques against
the bias, when eliciting value and uncertainty judgments (for details see Montibeller
and von Winterfeldt 2015):

Affect-Influenced Bias An emotional predisposition for, or against, a specific
outcome or option taints judgments (Finucane et al. 2000; Slovic et al. 2004).

Several studies have reported this bias, assessing the role of affect causing an
inverse perceived relationship between positive and negative consequences related
to climate change, pandemics, consumer products, technologies, and human-caused
hazards (Siegrist and Sütterlin 2014). There is also evidence that affect influences
the estimation of probabilities of events (Rottenstreich and Hsee 2001).

Debiasing techniques include avoiding loaded descriptions of consequences in
the attributes, cross-checking judgments with alternative elicitation protocols when
eliciting value functions, weights and probabilities, and by using multiple experts
with alternative points of view.

Confirmation Bias The desire to confirm one’s belief, leading to unconscious
selectivity in the acquisition and use of evidence (Nickerson 1998).

This bias has been reported in several experimental settings, such as in infor-
mation gathering, selection tasks, evidence updating, and own-judgment evaluation
(Klayman 1995; Nickerson 1998). Also in real-world contexts, such as medical
diagnostics, judicial reasoning, and scientific thinking (Nickerson 1998).

Debiasing techniques include using multiple experts with different points of view
about hypotheses, challenging probability assessments with counterfactuals, and by
probing for evidence for alternative hypotheses.

Desirability of a Positive Event or Consequence The desirability of an outcome
leads to an increase in the extent to which it is expected to occur (Krizan and
Windschitl 2007, p. 96). It is also called “wishful thinking” (Seybert and Bloomfield
2009) or “optimism bias” (Weinstein 1980).

This bias occurs in the prediction of outcomes in games of chance (Krizan and
Windschitl 2007); impact on estimates of probabilities of future outcomes in expert
foresight (Ecken et al. 2011; Tichy 2004), estimates of costs (Dillon et al. 2002) and
duration (Connolly and Dean 1997) in projects, as well as some possible effect in
sport tournaments (Bar-Hillel et al. 2008).

Debiasing techniques include using multiple experts with alternative points of
view, using scoring rule and place hypothetical bets against the desired event
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or consequence, and by using decomposition and realistic assessment of partial
probabilities to estimate the event probability.

Undesirability of a Negative Event or Consequence The desire to be cautious,
prudent, or conservative in estimates that may be related to harmful consequences
(Chapin 2001; Dolinski et al. 1987).

Most evidence about this bias is related to probabilities of life events (Chapin
2001; Dolinski et al. 1987); but also in long-term estimated of future events in expert
foresight (Tichy 2004) and estimates of risks and benefits about risky technologies
(Marks and von Winterfeldt 1984); some risk assessments that are intentionally
biased towards “conservative” estimates in each step (as discussed in the recent
report by the Institute of Medicine 2013) involve this bias.

Debiasing techniques include using multiple experts with alternatives points of
view, using scoring rules and place hypothetical bets in favor of the undesired event
or consequence, and by using decomposition and realistic assessment of partial
probabilities to estimate the event probability.

15.3 Relevant Group Biases

Most organizational decisions are made in groups, in which members have to
express their preferences for different outcomes and indicate their value trade-offs
(Keeney 2002). In addition, behavioral aggregation of expert judgments is often
employed when eliciting parameters about uncertainties.

There are many benefits of engaging with groups instead of individuals (Kerr
and Tindale 2004, 2011). Expert groups providing judgements concerning future
events may benefit from an increase of accuracy (from the pooling of information
and perspectives, from error checking as well as from motivation gains). There are
also benefits associated with social goals, such as procedural fairness and satis-
faction/enjoyment. In tasks involving group preferences about different decision
alternatives or outcomes there is no accuracy goal, as there are no true values in
such cases. Yet, these groups also benefit from the pooling of information and
perspectives, from error checking as well as from motivation gains. In addition,
to procedural fairness and satisfaction/enjoyment, such groups can benefit from a
sense of common purpose and agreement on the way forward (Phillips 2007).

However, in both types of tasks, group biases might affect the quality of the
preference statements and judgments. Behavioral decision research has shown that
groups may increase or attenuate individual biases, depending on the type of group
decision/judgment process, the type and strength of the bias and the individual
preferences among members of the group (Kerr and Tindale 2004).

Facilitated modelling (Franco and Montibeller 2010), in which a decision analyst
works with the group eliciting their preferences, such as the ones employed in
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decision conferences (Phillips 2007), may alleviate group biases and increase the
effectiveness of group decision processes. In the same way, well designed elicitation
protocols for teams of experts, such as the Delphi technique, can increase the quality
of their judgments while reducing group biases.

We list each relevant group bias below and suggest debiasing techniques, when
eliciting preferences about decision outcomes and judgments about uncertainties.
We base these lists of biases on the comprehensive reviews on group biases for
forecasting elicitation (Kerr and Tindale 2011) and, in particular, on team-based
decision making (Jones and Roelofsma 2000). Because the debiasing techniques
are similar for all group biases, we discuss them after the presentation of each bias.

False Consensus The individual group participant overestimates the similarities
between his/her judgements and the others, while viewing alternative perspectives
as uncommon or deviant (Ross et al. 1977). This may lead to judgments in
which individual members base their decision on incorrect assumptions about
other members of the team, anchoring their judgments about others on their own
perspective, even if they are aware about their information deficiencies (Jones
and Roelofsma 2000). The evidence about this bias comes from studies in social
psychology and we are not aware about evidence directly related to decision making
or group expert judgment.

Groupthink Members in very cohesive groups that are focus on getting consensus,
no matter how it was formed, to the detriment of realistically appraising other
courses of action (Janis 1983). In groups affected by this bias, there is a strong
pressure to conform and dysfunctional shared representations (Kerr and Tindale
2011). It affects several decision making tasks, such as an incomplete search for
alternatives, the consideration of too few objectives, and limited information search
(Jones and Roelofsma 2000).

Group Polarization The group discussions enhance the position/opinion that was
initially held by the majority of its members (Lamm 1988). When a group is affected
by this bias, if group members are initially in favor of a given, further group
discussions will increase such favorability for most individuals. This also affects
the group’s risk attitude, which may become more risk averse than the original risk
aversion of individual members or, conversely, may become more risk seeking than
the original risk seeking attitude of each member (see Isenberg 1986 for details).

Group Escalation of Commitment Groups continue to support a course of action
that is clearly failing, presenting negative outcomes. This is related to the sunk-cost
bias (Arkes and Blumer 1985) and also influenced by the loss-gains bias (Tversky
and Kahneman 1981) at individual level but exacerbated in groups, by groupthink
and group polarization (Jones and Roelofsma 2000). Group think prevents dissenters
of confronting the majority in challenging the sunk-cost bias. Group polarization
makes groups take riskier choices, already influenced by the risk prone attitude
created by a large loss, as predicted by Prospect Theory (Tversky and Kahneman
1992).
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Group Overconfidence Groups affected are more confident in the accuracy of
their judgments than the individual overconfident members (Plous 1995), particu-
larly when the decision task is complex (Sniezek 1990). There are several possible
causes for this bias, such as the use of a limited amount of shared information,
the trust placed by the group in the accuracy of its judgements, the convergence in
preferences generated by the group, or the social validation promoted by reaching
consensus (Kerr and Tindale 2011). This bias affects all judgment task affected by
individual overconfidence, as described previously.

The debiasing techniques against group biases are similar for each bias. They
encompass using multiple experts with alternatives points of view from different
organizations, encouraging different perspectives, using structured elicitation pro-
cedures and facilitated decision processes.

While face-to-face meetings have many content and social benefits, as described
previously, they are also more prone of group biases. Thus the crucial importance
of a well-trained facilitator and carefully designed elicitation protocols, which
maximizes their benefits while reducing the occurrence of group biases.

Table 15.1 summarizes the cognitive, motivational, and group biases affecting
value and uncertainty judgments for each type of analyses: risk analysis for uncer-
tainty modeling, multi-criteria analysis for decisions with conflicting objectives, and
decision tree analysis for decision making under uncertainty. We also identify which

Table 15.1 Bias affecting value and uncertainty judgements in decision and risk analysis

Type of analysis Biases

Risk analysis

Modeling tasks: • Affect influenced bias (M) [UM2]

UM1: Definition of target variable and events; • Anchoring bias (C) [UM2, UM3]

UM2: Assessment of probabilities; • Availability bias (C) [UM1, UM2]

UM3: Aggregation of probabilities. • Confirmation bias (M) [UM1]

• Desirability biases (M) [UM2, UM3]

• Equalizing bias (C) [UM2]

• Myopic problem representation

• Omission bias (C) [UM1]

• Overconfidence bias (C) [UM1, UM2,
UM3]

• Scaling biases (C) [UM2]

bias (C) [UM1]

• False consensus (G) [UM1, UM2, UM3]

• Groupthink (G) [UM1, UM2, UM3]

• Group polarization (G) [UM1, UM2, UM3]

• Group escalation of commitment (G)
[UM1, UM2, UM3]

• Group overconfidence (G) [UM1, UM2,
UM3]

(continued)
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Table 1 (continued)

Type of analysis Biases

Multi-criteria analysis

Modeling tasks: • Affect influenced bias (M) [VM3, VM4]

VM1: Definition of objectives; • Anchoring bias (C) [VM3]

VM2: Definition of attributes; • Availability bias (C) [VM1]

VM3: Elicitation of value or utility functions; • Certainty effect bias (C) [VM3]

VM4: Elicitation of attribute weights. • Desirability of options bias (M) [VM3,
VM4]

• Equalizing bias (C) [VM4]
• Gain-loss bias (C) [VM2, VM3, VM 4]
• Myopic problem representation bias [VM1]
• Omission bias (C) [VM1]
• Proxy bias (C) [VM2, VM4]
• Range insensitivity bias (C) [VM4]
• Scaling biases (C) [VM2, VM4]
• Splitting bias (C) [VM4]
• False consensus (G) [VM1, VM2, VM3,
VM4]
• Groupthink (G) [VM1, VM2, VM3, VM4]
• Group polarization (G) [VM1, VM2, VM3,
VM4]
• Group escalation of commitment (G)
[VM1, VM2, VM3, VM4]

• Group overconfidence (G) [VM1, VM2,
VM3, VM4]

Decision tree analysis

Modeling tasks: • Affect influenced bias (M) [CM1, CM3,
CM4]

CM1: Identification of alternatives; • Anchoring bias (C) [CM1, CM3, CM4]

CM2: Identification of events and outcomes; • Availability bias (C) [CM1, CM2, CM3]

CM3: Assessment of probabilities; • Confirmation bias (M) [CM2, CM3]

CM4: Estimation of consequences • Desirability biases (M) [CM3, CM4]

• Desirability of options bias (M) [CM1]
• Equalizing bias (C) [CM3]
• Gain–loss bias (C) [CM3]
• Myopic problem representation bias (C)
[CM1, CM2]
• Omission bias (C) [CM1, CM2]
• Overconfidence bias (C) [CM2, CM3,
CM4]
• Scaling biases (C) [CM4]
• Splitting bias (C) [CM3, CM4]
• False consensus (G) [CM1, CM2, CM3,
CM4]

(continued)
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Table 1 (continued)

Type of analysis Biases

Decision tree analysis

• Groupthink (G) [CM1, CM2, CM3, CM4]
• Group polarization (G) [CM1, CM2, CM3,
CM4]
• Group escalation of commitment (G)
[CM1, CM2, CM3, CM4]
• Group overconfidence (G) [CM1, CM2,
CM3, CM4]

Key: C cognitive bias, G group bias, M motivational bias

specific modeling task is affected by every bias in brackets, see Montibeller and von
Winterfeldt (2015) for details.

15.4 Conclusions

The elicitation of values and uncertainties about decision outcomes is a key feature,
and a major strength, of decision and risk analysis. It supports decision makers
in thinking clearly about the tough decisions that they have to make. It enables
analysts to employ expert judgments in problems where levels of complexity and
uncertainty are too high just to extrapolate past trends. However there are numerous
biases in value and uncertainty judgments that can affect the quality of decision
or risk analyses. The very large number of biases1 poses a challenge for decision
analysts who want to make sure that they are eliciting unbiased judgments from
decision makers and experts. The question they face is: Which of these biases should
I worry about and how can I correct them, if they occur?

This chapter provides a road map for decision analysts to navigate into the
extensive and rather fragmented literature on biases in judgments and decision
making. We focused on biases that are relevant for decision and risk analysis. We
also classified such biases by their underlying cause: as cognitive or as motivational.
In addition we extended this coverage, which was originally focused on individual
biases, to include group-level biases.

Some cognitive biases are not relevant to decision analysis, because they are easy
to correct; however all motivational biases are relevant. When elicitation processes
involve groups, all group biases are relevant. Regarding the latter, the trend of
using facilitated decision modeling (Franco and Montibeller 2010) to support group
decision making in complex societal decisions (e.g. Morton et al. 2009; Del Rio
Vilas et al. 2013; Ferretti and Montibeller 2016) means that more attention must be
devoted in understanding group-level biases and how to minimize them in decision
conferencing workshops.

1For a compiled list see: https://en.wikipedia.org/wiki/List_of_cognitive_biases.

https://en.wikipedia.org/wiki/List_of_cognitive_biases
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There is a very limited literature on debiasing and few attempts of assessing their
effectiveness in improving judgments and the statement of preferences (Montibeller
and von Winterfeldt 2015). Our recent research efforts are in this direction, as
exemplified by our study on how to debias over-precision in the elicitation of
cumulative distribution functions techniques (Ferretti et al. 2016). We hope that
future research will be able to match debiasing techniques with the underlying
cause of a bias and thoroughly evaluate their effectiveness in mitigating the bias.
It is an exciting and important research endeavor for decision and risk analysis and
anyone interested in improving the quality of judgment and preference elicitation
processes.
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Chapter 16
The Selection of Experts for (Probabilistic)
Expert Knowledge Elicitation

Fergus Bolger

Abstract Several different EKE protocols are reviewed in this volume, each with
their pros and cons, but any is only as good as the quality of the experts and their
judgments. In this chapter a structured approach to the selection of experts for EKE
is presented that is grounded in psychological research.

In Part I various definitions of expertise are considered, and indicators and
measures that can be used for the selection of experts are identified. Next, some
ways of making judgements of uncertain quantities are discussed, as are factors
influencing judgment quality.

In Part II expert selection is considered within an overall policy-making process.
Following the analysis of Part I, two new instruments are presented that can help
guide the selection process: expert profiles provide structure to the initial search,
while a questionnaire permits matching of experts to the profiles, and assessment of
training needs. Issues of expert retention and documentation are also discussed.

It is concluded that although the analysis offered in this chapter constitutes a
starting point there are many questions still to be answered to maximize EKE’s
contribution. A promising direction is research that focusses on the interaction
between experts and the tasks they perform.

16.1 Introduction

Sound decision and policy making depend upon quantitative analysis but hard data
for analysis is not always available or of good quality. There is consequently a need
to supplement (or substitute for) empirical evidence with expert judgement. Unfor-
tunately expert judgement is also often poor due to the operation of psychological
and social factors that lead to error and bias: this is particularly true when it comes
to the assessment of uncertainty surrounding judgements. For this reason structured
methods have been developed—referred to as expert knowledge elicitation (EKE)
techniques—to help improve the quality of expert judgement: these methods are
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based on both psychological research, and statistical and logical principles. EKE
techniques are becoming increasingly used in some areas (e.g. risk analysis) and are
starting to be applied in forecasting and foresight (Bolger and Wright 2017).

In this chapter I consider the application of EKE to judgement of quantities
(with particular reference to the assessment of the uncertainty surrounding these
quantities). Although the debiasing methods incorporated in EKE are very important
for promoting judgement quality, perhaps even more important is the selection of
sufficient and appropriate experts in the first instance. For this reason, rather than
concentrating on the EKE techniques themselves—which are described elsewhere
in this volume—I wish to focus on the identification and selection of experts for
such (probabilistic) EKE’s.

If experts are considered sources of data then their selection, and subsequent
use can all be discussed in terms of their effectiveness for the maximization of the
reliability and validity of the experts’ judgmental inputs: as such I will discuss the
measurement of expertise for screening, weighting and establishment of training
needs, as well as initial identification, selection and recruitment. Management of
experts—particularly, motivation and retention, and provision of feedback—are also
relevant to maintaining the quality of expert judgment, however, these will be only
touched upon because they depend more on the characteristics of specific protocols,
which are dealt with in other chapters in this book.

In the first part of this paper I will discuss some general issues regarding defining,
identifying, and measuring expertise. In the second part I will work through in
detail—using a case study—a two stage expert recruitment strategy whereby, in the
first stage a long list of potential experts is created with the help of an instrument
called the ‘expert profile matrix’, and in the second stage this long list is reduced
to a short list using a second instrument called the ‘Expert-Skills Questionnaire’
(E-SQ).

16.2 Part I: Defining, Identifying and Measuring Expertise

16.2.1 Defining Expertise

In order to select experts for EKE you must first have some idea of who might be
considered expert in the domain of interest, in other words, who is likely to make
the best estimates of the target quantities. To this end it is worth considering how
expertise is commonly defined.

16.2.1.1 Expertise as Superior Knowledge and/or Ability

Probably the feature that is most associated with expertise is superior knowl-
edge; thus, an expert is: “ : : : anyone especially knowledgeable in the field : : : ”
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(Meyer and Booker 1991, p. 85). However, there may be more to expertise than
simply a large body of domain knowledge as experience is not just about learning
facts and rules, but about recognising how to apply this knowledge appropriately
(and also how to acquire more knowledge). Hence the Nobel Prize-winning
physicist Niels Bohr described an expert as: “A person that has made every possible
mistake within his or her field”. Thus, experience of the practical use of knowledge
is important because it provides a ‘reality check’: knowledge can be modified in
the light of feedback about when it does and does not apply. This is in contrast to
‘textbook learning’ or ‘armchair philosophising’, where knowledge is acquired or
elaborated without any verification against what is true in the world or works in
practice. A related component of practical expertise is the ability to solve problems
by applying knowledge to new situations that have not previously been encountered,
and having strategies for acquiring knowledge when it is found to be lacking (e.g.
scientific research methods or how to use data resources).

16.2.1.2 Socially Defined Expertise

Although we expect experts to be more knowledgeable in their field than non-
experts, expertise is often ascribed on the basis of role (and symbols of that role such
as the scientist’s or doctor’s white coat). Meanwhile those whom we know well,
and see as being like us, are less likely to be ascribed expert status than strangers—
the comedian Will Rogers summed this up in his comic but astute definition of an
expert as: “A man fifty miles from home with a briefcase”. This ‘social’ expertise
must be treated with caution because the correlation between social rank and skill
or knowledge is often weak due to the many ways of gaining rank other than by
knowing a lot (e.g. ‘old boy’ networks, being a ‘squeaky wheel’, appearing to work
hard, coming from a wealthy family, being in ‘the right place at the right time’
etc.).

16.2.1.3 Properties of Experts

Two basic views of expertise underlie the definitions above respectively. In the first,
expertise is seen as a property of individuals, mainly as a consequence of extensive
practice, but also partly as a function of characteristics thought to be innate (e.g.
personality and intelligence). In the second, expertise is regarded as an emergent
property of ‘communities of practice’ (Lave and Wenger 1991; Wenger 1998) such
that the practices, indicators and standards of expert performance are defined by
consensus within a particular group, for example a professional group such as
doctors or lawyers.

Although seemingly of less relevance to the goal of selecting experts for
elicitation, the view that expertise is socially constructed should not be ignored
because it impacts on who is considered to be ‘expert’ and thus put into the pool
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of people to be potentially approached for an elicitation. Professions, trades and
other groups formed to provide some specific good or service that is perceived
by the general public—or sold to them—as requiring knowledge or skills beyond
what an average person could achieve without training, usually have a set of ‘good
practices’ that define their activities. For example, academics will have certain
standards regarding teaching (e.g. dealing with student queries, providing feedback
on work, and use of audio-visual aids) and research (e.g. citing and referencing,
ethical procedures and responding to requests to peer review articles). Some of
these practices may be formalised (e.g. in handbooks, guidelines and employment
contracts) and others may not. Conformity with these practices is part of what
identifies an academic as an academic and distinguishes him or her from other
similar individuals (e.g. teachers, industrial scientists).

MacIntyre’s notion of a practice as applied to such activities may be of relevance
here. Practitioners, in MacIntyre’s sense, engage collectively in a “coherent and
complex form of socially established cooperative activity” in which they seek
to achieve “those standards of excellence which are appropriate to, and partially
definitive of, that form of activity” (MacIntyre 2007, p. 187; see also Moore and
Beadle 2006).

In many cases there will be some peer or professional accreditation of stan-
dards of practice (e.g. society membership, awards, sinecures, etc.) to reinforce
‘agreed’ good practices, but what might be considered good practice by peers and
professional bodies may not necessarily be the criteria applied by the public or
even managers (e.g. good pedagogical practice might not be evaluated highly by
students). The point relevant to our current concerns is that those who are considered
experts by their peers may often be so because of perceived conformity to good
practices whereas different criteria (e.g. confidence, fame, how arcane it appears)
might be used by outsiders—neither the former nor the latter criteria for social
expertise are necessarily well correlated with knowledge or skill-based expertise:
I will return to this later.

16.2.1.4 Expertise Continuum

Clearly there is a continuum of expertise from the ‘naive’ or ‘lay’ person, who has
no specialist knowledge or experience of the task domain, to the novice, who is
just starting to acquire skills in the domain, to the intermediate whose knowledge
and skills are yet to plateau, to ‘grand master’ who is unlikely to learn significantly
more. Grand master level might not always be the most desirable for elicitation
purposes as knowledge and skills often become ‘compiled’ with experience (i.e.
move from deliberate conscious strategies to automatic unconscious ones) and so
less accessible to introspection (see e.g. Bargh 1994; Dror 2011). Thus, if the
aim is to model decision processes then an intermediate or even a novice might
be more useful. However, for the purpose of eliciting quantitative estimates, and
associated uncertainty, we would normally wish to recruit experts with as much
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relevant experience as possible; there are a couple of exceptions, though. First, if
there has been some ‘structural change’ in the world, then an expert who has many
years of experience, but mostly before the change point, may be less useful than
an expert who has fewer years of experience in total, but more of these have been
acquired after the change point. Second, if there is reason to believe that greater
experience leads to entrenched thinking or biases in probability judgement such as
overconfidence or risk aversion.

With regard to the former, it may seem at first sight that such structural
change would be very rare. However, there are actually many reasons why such
change might occur; for instance, there may be new technological or scientific
developments, there may be revisions of legal or regulatory frameworks, or experts
may simply move from one country to another. The development of entrenched or
biased thinking is perhaps a more pervasive problem, though, and difficult to spot.
It was observed many years ago that experts are often insensitive to the differential
diagnosticity of information, such that giving them more information simply leads
to an increase in confidence but no improvement in performance (e.g. Oskamp
1965). Another example is the institutionalisation of risk aversion among social-
workers and doctors (Dalgleish 1988)—a notable illustration of this is the Cleveland
child abuse case in the UK, where instances of abuse were hugely overdiagnosed,
presumably because the costs of missing an instance were greater than the costs of
false positives.

16.2.1.5 Granularity and Scope of Expertise

As well as amount of knowledge held by the expert we need also to consider its
level of specificity: “ : : : the individual should not be considered expert unless he or
she is knowledgeable at the level of detail being elicited : : : ” (Meyer and Booker
1991, p. 85). For example, an expert entomologist might be less able to estimate
the risk to a crop of a particular sort of insect than an expert who specialises in that
type of insect. However, more specific of fine-grained expertise is not necessarily
better than more general, coarser-grained expertise. In the example just considered,
an even better choice of expert might be someone who has studied a variety of
threats to crops—including the insect in question—particularly if they have local
contextual knowledge: specific domain knowledge coupled with a broad perspective
will therefore often be the best choice.

16.2.1.6 Types of Expertise

Procedural Versus Declarative

Procedural knowledge is about how to do things (e.g. drive a car) whereas
declarative knowledge is about rules and facts (e.g. the Highway Code). The latter
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may be, but is not necessarily, easier to express—hence the label ‘declarative’ (i.e. it
can be declared). With a great deal of practice how we do things becomes automatic
in many domains (e.g. Anderson 1982), and not available to consciousness; instead
we just see the results of expertise. A consequence of this is sometimes that the
more expert an expert is, the harder it is for him or her to teach others about it.1 In
the current context—assessing uncertain quantities—it may appear that the manner
in which these assessments are arrived at is unimportant, and thus that the problem
of automaticity, and consequent lack of access, is not a problem. However, as I will
argue later, this is not the case: the manner in which quantitative judgements and, in
particular, assessments of uncertainty, are made has important consequences for the
quality of these judgements, the method of EKE that is best used, and the training
that experts might need.

The distinction between procedural and declarative knowledge might be blurred,
though. For instance, probability distributions are unlikely to be stored in experts’
heads, and thus may not be the same as facts and rules. Rather, the expert may
have to construct the distribution de novo during the elicitation exercise. This being
the case, it may be advantageous for the expert to be able to state the reasoning
processes whereby probabilities are derived to the elicitor: there may therefore be
arguments for using less experienced experts for whom reasoning processes have not
become implicit. At very least it may be useful from the perspective of improving
assessment of uncertain quantities to examine those with less experience in order
to better understand the judgement processes involved. As I will argue later, such
understanding might assist in designing more effective EKE procedures.

A concern related to the procedural-declarative distinction is whether
knowledge—in the broadest sense (i.e. including strategic knowledge)—is available
to consciousness. As I have just implied, procedural knowledge is less likely to be
available to consciousness than declarative, but this is not necessarily the case.
For instance, facts and rules could be applied to judgement unconsciously (e.g.
well-learned mental arithmetic using number facts and mathematical rules) whereas
some heuristic procedures could be applied deliberately and consciously (e.g.
judging likelihood of class membership of an exemplar by its similarity to the
prototypic member of the class). Further, much of what appears to be conscious and
deliberate has been shown to be actually unconscious and governed by processes
over which we have little control or awareness (see e.g. Nisbett and Wilson 1977).

With regard to the assessment of uncertainty, probabilities could be assessed
either consciously or unconsciously, or by a combination of these. For instance, in
some models of probability judgement (e.g. Support Theory; Tversky and Koehler
1994), uncertainty is assessed by weighing evidence for and against, say, the

1This is a manifestation of the ‘paradox of expertise’ (e.g. Dror 2011), which is that experts become
worse in some respects as they become more expert e.g. less flexible, creative and responsive;
more biased etc. This is because knowledge and reasoning become ‘fossilized’: less amenable to
inspection, change and communication.
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occurrence of a target event: this evaluation may or may not be conscious. In other
models (e.g. Probabilistic Mental Models; Gigerenzer et al. 1991) probabilities are
derived from implicit (i.e. unconscious) knowledge of how well cues predict criteria.
In yet other models (e.g. the Decision-Variable Partition model; Ferrell and McGoey
1980), there is a two-stage process: first a feeling of uncertainty is arrived at (usually,
but not necessarily, unconscious); second that feeling is mapped onto an external
scale (usually, but not necessarily, conscious). An important point here is that—
until we know more about the processes of uncertainty judgement—we should be
circumspect about judging the quality of this judgement on the basis of whether or
not it is conscious.

Theoretical Versus Practical

This distinction is often related to the previous distinction, but it is not exactly
the same. Theoretical knowledge is about general principles, while practical
knowledge is about how to apply the principles in specific cases (e.g. statistician
vs. actuary): the former often being declarative and the latter often procedural, but
not necessarily. In the context of eliciting judgements of quantities and probabilities
we are mostly concerned with practical expertise (i.e. the application of expertise
to predicting a particular target variable of interest) but possibly interested in
theoretical knowledge too (e.g. to formally document the elicitation process, or
if reasons for a probability judgement are required as, for instance, in a Delphi
procedure).2

Substantive Versus Normative

Again this is related, but not identical, to the previous distinctions. Substantive
knowledge concerns particular domains and is the type of knowledge most com-
monly associated with expertise. In contrast, normative expertise refers to formal
aspects of a knowledge domain such as commonly agreed units of measurement,

2In the Delphi procedure, ‘groups’ of experts—who never meet or interact directly, and are
anonymous to each other (all to reduce sources of social bias)—are polled for their opinions.
These opinions are usually point estimates or forecasts of event occurrence (see e.g. Chap. 5 for
a discussion of the elicitation and evaluation of such judgments) but can also be judgments of
uncertain quantities expressed as probability intervals or distributions (see Bolger et al. 2014):
reasons for judgments are also often elicited. Once experts have individually expressed their
opinions they are collated by a facilitator and fed back to the expert panel (most normally
quantitative estimates are averaged in some manner, and qualitative responses summarized,
although individual responses may also be fed back if the group is not too large). The experts
are then invited to revise their opinions in the light of the feedback and resubmit them to the
facilitator. The process continues through a number of iterations usually until opinion change
ceases. Normally the aggregated judgements from the final round are the output although partially
aggregated or disaggregated judgements can be submitted if the process fails to lead to consensus.

http://dx.doi.org/10.1007/978-3-319-65052-4_5
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general rules for evaluating and analyzing data, standards of assessment, procedures
of ‘best practice’ and so on. For instance, an ‘expert’ in experimental psychology
would know: procedures for running experiments so as to maximize internal validity
(a.k.a. experimental control), minimize sampling bias (e.g. random vs. convenience
sampling), and maintain ethical standards (e.g. principles of informed consent
and anonymity); the existence of relevant measurement instruments (e.g. tests of
memory, intelligence, mood, reaction times etc.) and their units and their properties
(e.g. reliability and validity); how to apply statistical tests to analyze data (ANOVA,
multiple regression, non-parametric tests), and the interpretation of the outputs of
such tests (e.g. F-ratios, standardized regression coefficients, chi-squared values);
and much more. None of this is directly related to their substantive knowledge
regarding the theories and empirical findings in their area of research, although it is
necessary for the conduct of original research and the interpretation of the research
of others.

While substantive expertise is what we are chiefly after, normative expertise
will usually assist in the elicitation of reliable and communicable judgements with
uncertainty estimates that are both realistic and in conformance with the laws of
probability. I have emphasized the latter part of the preceding sentence because this
is crucial to achieving good outcomes from an EKE, but is often difficult to achieve
in practice since available experts may lack normative expertise with regard to the
expression of uncertainty as probabilities. The distinction between substantive and
normative aspect of expertise will accordingly be reprised as a central component
of the following sections of Part I.

16.2.2 Identifying Expertise

In the previous section I identified some properties of experts and dimensions of
their expertise. For the practical purpose of selection and recruitment for an EKE it
is necessary to translate these properties and dimensions into concrete indicators and
measures of expert judgement in the target domain. Alvarado-Valencia et al. (2017)
distinguish between a priori indicators of expertise (e.g. things that can be gleaned
from a CV) and on-task measures (i.e. performance data). For the purposes of this
review, I will make a similar distinction: I will use ‘indicators’ to refer to things that
can potentially be found out about experts prior to directly approaching them (e.g.
biographical or bibliographical information, or peer/employer recommendations),
that can be used for the identification of experts to be added a long list of potential
candidates for EKE, and ‘measures’ to signify tests of expertise—including self-
assessments and reports—and any other performance data obtained once potential
experts have been long-listed, that can be used for screening, short-listing and
weighting. Of course, some indicators can also be used as measures and thus will
be discussed—in somewhat different ways—both here and in the next section on
measuring expertise.
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16.2.2.1 Substantive Expertise

Potentially good indicators here are those that are based on experts actually
knowing more about the domain in question, or having more experience of making
judgements in this domain, or both. Examples include: formal qualifications,
proof of completion of training courses, years of on-the-job experience, awards
and published papers. To my knowledge, with the exception of publications, the
reliability and validity of these metrics as indicators of expert performance has
not been systematically investigated and remains a topic to be investigated in
future research. It is worth noting, though, that these indicators are potential
enemies of heterogeneity in groups as they will tend to identify experts with similar
characteristics (e.g. white, middle-aged, male academics).

With regard to publications, it is not only their quantity but their quality that
should probably be taken into account thus, for example, peer-reviewed papers could
be given more weight than those which are not, while within peer-reviewed articles
the source journals could be evaluated in terms of their impact ratings and other such
metrics, rankings by professional bodies, and/or peer opinion. Attempts to weight
experts on the basis of evaluations of outputs alone have not proved to be particularly
successful (e.g. Burgman et al. 2011; Cooke et al. 2008) so I suggest that outputs
are only used for identifying experts in conjunction with other indicators: this may
preclude the use of some automated methods for finding experts (see e.g. Moreira
and Wichert 2013), at least as the sole methodology. Further, it may often be the
case that experts outside academia are required, as they will have valuable practical
knowledge. Such experts will be less likely to publish in peer-reviewed journals,
thus it will be necessary to look at trade publications, technical reports, conference
proceedings etc. However, due to confidentiality issues much of the output of
industry experts may not be in the public domain at all, so it may be necessary
to find other types of output that indicate expertise such as oral presentations, media
appearances, or patents. Outputs like papers and presentations (including teaching
experience) are not only evidence of domain-knowledge but also indicators of the
ability to communicate expertise, which can be useful in an EKE (e.g. when giving
rationales for judgements).

16.2.2.2 Normative Expertise

Recall that normative expertise refers to formal, abstract methods for expressing
domain knowledge. For instance, for a weather forecaster, normative knowledge
might be ways in which precipitation is measured, or how to express uncertainty in
forecasts on a probability scale; this is in contrast to a weather forecaster’s substan-
tive knowledge regarding factors affecting likelihood of precipitation. Clearly much
normative knowledge is domain specific and, as such, this sort of expertise may
be indicated in the same way as domain-specific substantive knowledge: through
examination of an expert’s CV, publications, and references from colleagues.
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However, in a probabilistic EKE all experts should ideally be able to express
uncertainty probabilistically.3 This kind of normative knowledge tends to be more
generic. Although some domains of expert activity may be associated with greater
experience of working with probability it could be difficult to establish which are
which a priori, and authorship of papers with statistical content are not necessarily
evidence of statistical expertise, particularly since most papers are multi-authored.
Qualifications and attendance of relevant training courses may be better evidence of
expertise in probability assessment, but could be difficult to appraise (e.g. Was the
syllabus appropriate? What exactly was the level of attainment?). Thus in the main
I propose that normative expertise will usually need to be appraised by specially
designed tests after long-listing.

16.2.2.3 Social Expertise

Many indicators of expertise that could be (have been) used are bad in the sense
that they are weakly, or unreliably, associated with expertise. These indicators often
reflect the social aspect of expertise, such as job title or position. As I already
mentioned, the problem is that title or position can be attained for numerous reasons
unrelated to expertise in the field in question, for example, nepotism, ‘old-boy’
networks, willingness to take on management or other administrative roles, or
simply being in the right place at the right time. Similarly, the reputation of the
organisation where the expert is stationed may be only loosely related to ability.
However, it should be noted that sometimes a big name from an elite institution
might be a useful asset on a project, for instance lending it credibility and thereby
facilitating the recruitment of other experts. Further, the principle of selecting
the ‘best’ experts might be violated in order to have balanced representation of
different interested parties on the expert panel and/or to demonstrate transparency
and openness of the elicitation process. Thus, experts may sometimes be selected
for reasons other than the quality of their knowledge.

Another poor indicator of expertise is confidence. It has been shown that
people tend to ascribe greater expertise to those perceived as being more confident
(evidence that people use what has been named as the ‘confidence heuristic’,
Price and Stone 2004). However, like most heuristics, while there is a certain
amount of truth to it, the evidence is that the relationship between confidence
and performance is actually rather weak (e.g. Gibbons et al. 2003; Phillips 1999;
Rowe and Wright 1996; Rowe et al. 2005) so caution should be exercised in using
peer assessments that might be influenced by perceptions of the target’s confidence
or other personality traits related to confidence, such as charisma, extroversion,

3Although potentially non-probabilistic modes of expressing uncertainty, such as natural-language
terms, could be used these have not been found to be easily converted to the probabilities usually
required for policy and decision-making (see e.g. Dhami and Wallsten 2005; Wallsten and Budescu
1995).
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drive, ambitiousness, and self-assuredness (possible effects on the quality of group
judgments of selecting judges who are high in such characteristics are discussed
later).

Giving numerous presentations and/or being a prolific writer may also not
be associated well with a high degree of substantive knowledge. For example a
popular speaker might receive frequent invitations to speak, but have a limited
repertoire, while numerous publications may reflect status as head of a laboratory
rather than up-to-date knowledge of the field. Similarly, having a large media
presence is no guarantee of expertise since this may be more indicative of
eloquence, photogeneticity, and contacts than anything more substantial (although
there are undoubtedly many scientists with high media profiles who are also very
knowledgeable the presence of criteria for media inclusion other than knowledge
will weaken the relationship). However, again, these ‘high-profile’ figures can be
useful for attracting other, perhaps more genuine, experts to an EKE.

Another method for identifying expertise that it is often used in peer recom-
mendation. While references from other experts might be usefully employed to
establish a long-list (e.g. by means of ‘snowballing’, see Part II), or to establish that a
potential expert has credibility within his or her field, uses beyond this—such as for
screening or weighting experts—must, however, be considered carefully. Reasons
for this include problems of establishing the expertise of recommenders in the first
place, and difficulty in controlling the basis of peer-assessments: peers may well
be using weak criteria such as confidence and charisma when evaluating expertise
levels. I will return to evaluate peer-assessment of expertise in more detail in the
next section on the measurement of expertise.

16.2.3 Measuring Expertise

When measuring things we have two main concerns: the reliability and validity of
those measures.

16.2.3.1 Reliability and Validity of Measurement

A reliable measure will give fairly consistent readings of the true underlying
quantity; ‘fairly’ because even if the quantities being measured are physical ones,
there will be some error in the measurement. For example, the length of a steel
ruler will vary slightly with temperature. When the quantity to be measured is a
psychological one—such as a degree of belief, or extent of knowledge—then this
measurement error can be quite large.

Validity refers to the extent to which a measure is actually measuring the target
quantity. Again validity of measurements tends to be higher for physical than
psychological quantities but it is still an issue for both. Measurement of the speed of
light, for instance, will need to be done under ideal conditions—a perfect vacuum
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away from gravitational fields et cetera—these ideal conditions may be difficult or
impossible to create. In psychology, we may seek to elicit ‘true’ beliefs but there
are a number of reasons why expressed beliefs may not correspond perfectly with
beliefs actually held: people may not have access to their beliefs, or if they do might
not be motivated to express them accurately, or beliefs may not be fully formed in
the first place, and thus may be created at the time of testing, potentially influenced
by the test instrument. The same holds for the measurement of any psychological
quantity although the problems are perhaps greatest for self-report data, particularly
when there are strong social conventions and/or the need for ego-protection. For
example, it is difficult to elicit true attitudes via self-report towards people of
different races, or giving to charity, so researchers prefer to observe physiological
responses to appropriate stimuli, that is not necessarily under conscious control, or
actual behaviour where ‘actions speak louder than words’. Getting experts to comply
with such procedures would be a challenge, though!

Other tactics to improve the validity of measurement of psychological variables
are to use multiple measurements, perhaps of different types (self-report, behaviour,
or physiological responses), and paying people to ensure high degrees of motivation,
perhaps in combination with ‘proper scoring-rules’ that are designed to reward
truthful responses. Ensuring the subjects of research also trust the researcher is also
important to ensure validity of responses.

Ecological and Face Validity

A number of different types of validity are distinguished but of particular relevance
here are ‘face’ and ‘ecological’ validity. In the current context, face validity refers to
experts perceiving measures of their expertise as actually measuring their expertise,
while ecological validity refers to measures of expertise measuring an aspect of
expertise as it is actually practiced by experts in their everyday job. Usually these
two types of validity will be related such that a measure low in ecological validity
will also often lack face validity: a test of skills not used by experts in performing
their job will tend not to be seen as valid by those experts. Lack of face validity
does not necessarily imply lack of ecological validity, though: a test might be good
one of experts’ everyday skills but just not appear to be so. I will argue below
that conclusions of poor performance in experts may sometimes be due to lack of
ecological validity of the measures of expertise used, however, it is worth noting
that even if there is ecological validity, conclusions regarding the quality of expert
judgement may also be degraded as a result of poor motivation to respond by experts
who perceive a lack of face validity.

The Relationship Between Reliability and Validity

As I have previously commented (Bolger and Wright 1993), if measurement is
unreliable then its validity is impacted too. Take, for instance, a metre ruler that
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changes length by plus or minus a centimetre then, for any single measurement, this
ruler cannot be considered an accurate (valid) measure of length (if a centimetre
either way is critical). If the change in length is random then taking several
measurements with the ruler will allow us to improve accuracy: such repeated
measurement is common practice, for example, in medicine. If the change in length
is not-random, in other words the ruler has a bias towards measuring too high or too
low, then that can also be accommodated once the direction and extent of the bias is
discovered, again by repeating measurement many times. In the extreme, our ruler
might have bias but no variation, for instance, it always measures 1 cm too high or
too low. This being the case, the ruler is now a reliable measure, but not valid, unless
the bias is perfectly understood, in which case the ruler becomes both reliable and
valid (once adjusted for bias).

The Reliability and Validity of Measures Versus Judgements

I have thus far been discussing the reliability and validity of measures of expertise
(i.e. experts’ beliefs, knowledge, judgements etc.), however, what we are really
interested in is the reliability and validity of the expertise itself. Of course, we cannot
directly observe expertise, only its effects (on what the experts do and say) thus we
must evaluate expertise on the basis of measuring its effects. Thus our measures of
expertise are a proxy for the real thing, which means at times we may be tempted to
talk about a measure as if it is the real thing (thereby implying that the measure is
perfectly reliable and valid): I will try to avoid doing this.

I have spent time on this discussion of aspects of reliability and validity because
they are important not only for the initial selection of experts for EKE but also for
the evaluation of expertise during and after the process, in particular, for screening
and weighting of experts. Accordingly, I will now consider issues of reliability and
validity in the assessment of expert judgements of uncertain quantities from the
perspective of the experts’ substantive and normative expertise in turn.

16.2.3.2 Measuring Substantive Expertise

Returning to my definitions of expertise above it is clear that for an expert to be
expert he or she should demonstrate good performance in the domain in question
where ‘good’ can be defined either in absolute or relative terms. In the context of
judging uncertain quantities we would expect that an expert’s judgments would be
reasonably close to the actual value of the target quantities (i.e. good in absolute
terms) and better than the judgments of a non-expert (i.e. good in relative terms). In
both cases, performance advantages will be manifest on average and in the long run,
as there will inevitably be a degree of error in judgments leading in accuracy varying
from one occasion to the next. Of course, judgment domains vary in difficulty from
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impossible4 to easy, so relative assessments, that control for variation in difficulty,
are often to be preferred (although expressions of confidence associated with a
judgment allow experts to indicate the difficulty level they perceive—see next
section on normative expertise).

Tests of Judgment Accuracy

Ideally an elicitor wishes to assess each expert on many judgments of the (exact
same) target then produce an average error score from the differences between
each judgment and the true answer. This error score can then be compared to
some benchmark for satisfactory performance (i.e. absolute accuracy) or to the
performance of others (such as non-experts or other experts, e.g. for screening or
weighting). However, this ideal procedure is not usually possible because the very
reason for performing EKE is that the value of the target variable is unknown.
For relatively short-term forecasting problems the true value of the target variable
(sometimes referred to as its ‘realization’) will become available within a useable
time-frame, examples being short-term forecasts of precipitation, sales or stock
prices. In other situations it will be necessary to use judgments for similar variables
to the target rather than the target itself, but where the answer is already known
(sometimes referred to as ‘seed variables’—and in sufficient numbers to reliably
measure expert performance.5

More generally, there is not very much or persuasive evidence that past perfor-
mance predicts future performance (even when target is the same as the test e.g.
Genre et al. 2013), although, recent longitudinal studies of geopolitical forecasting
show some promise in this respect (see e.g. Tetlock and Gardner 2016; Hanea
et al. Chap. 5). Reasons for a poor relationship between past and future judgment
performance may include regression to the mean and lack of generalizability of
skill (e.g. Solomon et al. 1985): the latter exacerbated by the fact that expertise is
associated with specialism. Heterogeneity, and/or over generality, of test items may

4For instance, stock price movements have been characterized as random (e.g. Fama 1965).
Although more recent research suggests that stock markets are, in fact, predictable in the long
term (e.g. De Bondt and Thaler 1989) it is still agreed that it is not in the short-term, contrary to
the beliefs of ‘day-traders’. It may often be the case that ‘experts’ believe there to be predictability
where there is not, or it is rather low. In such situations, there can, of course, be little or no expertise
(see e.g. forecasting of GDP growth, Budescu and Chen 2015) nor variation in performance.
Further, perceived ability where there is none is another name for ‘overconfidence’ (more generally,
insensitivity to task difficulty will lead to miscalibration).
5Bolger and Rowe (2015a) identify a number of problems with this approach, including finding a
sufficient number of suitable seeds—ones that draw on the same expert knowledge as the target.
They also comment that this ‘Classical Method’? is atheoretical, in that it is not founded on any
particular conceptualization of expert knowledge, and propose a cue-based approach that would
provide a reasoned basis for the selection of similar seeds (i.e. those that are related by the cues
used to judge them). This cue-based approach is outlined in Sections “Cue-Based Judgements” and
16.2.4.2 below.

http://dx.doi.org/10.1007/978-3-319-65052-4_5
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also play a role: the ability to make judgements about one sub-area of a knowledge
domain may not predict ability in another sub-area, while generic test items may
not predict performance well in the more specialist target sub-area. There are also
practical problems such as getting busy experts, who often hold themselves in high
regard, to take a test, and not cheat (e.g. if the test is completed remotely). For all
these reasons, in most cases other measures of expertise are used, such as social
indicators or self- or peer-assessments.

Social Indicators of Expertise

Perhaps the most commonly used indicators of expertise are social markers such
as job title or role—which can be used to identify potential experts, as discussed
above—and metrics such as years of professional experience, and number of awards,
citations, patents and publications. All of these can and have been used by automated
systems to select experts (e.g. Moreira and Wichert 2013) so could be a useful
tool, particularly if EKE becomes routine. Burgman et al. (2011) argue that the
use of such indicators of expertise is justified by what they refer to as the ‘social
expectation hypothesis’: society, which includes experts themselves, expects that
more experienced, better regarded, and more formally qualified individuals have
privileged access to knowledge through specialist training, and therefore perform
better. They go on to test this hypothesis by examining the correlations between
measures of years of experience, number of publications, extent of professional or
academic qualifications; and performance measured by peer- and self-assessments,
and questions designed to test substantive expertise (in topics such as animal and
plant biosecurity, weed ecology, and public health). Moderate to high correla-
tions between peer assessments, experience, publications and qualifications—and
between self- and peer-assessments—support the structure of the social expectation
hypothesis. However, weak (and not statistically significant) correlations of perfor-
mance as measured by peer-assessments or knowledge-test respectively, suggest that
the social indicators are not good measures of true substantive expertise.6

Peer-Assessed Expertise

In a different approach to peer assessment than collecting references, Germain
(Germain 2006; Germain and Tejeda 2012) has developed the Generalized Expertise
Measure (GEM), a questionnaire which seeks to capture aspects of the knowledge
and person-based views of expertise that can be used by someone to assess the

6However it must be stressed that this is just one study (which fails to report all the potentially
relevant correlations). Further, we do not know the extent to which the tests of substantive expertise
are good measures of actual expert performance on, for example, a real-world risk-assessment or
forecasting task.
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expertise of another. The GEM’s 18-item scale contains six ‘objective’ measures—
largely social indicators (e.g. education, training and qualifications)—and 12 more
subjective items (e.g. self-assurance, potential for self-improvement and intuition).
I have already discussed above the possible limitations of social indicators and
there is reason to believe that the subjective items in GEM will have even less
validity (e.g. confidence has been found to be poorly related to performance, see
e.g. Gibbons et al. 2003; Phillips 1999; Rowe and Wright 1996; Rowe et al. 2005).
It should be noted that since there are twice as many subjective items as objective,
the former are implicitly given more weight than the latter: this reflects Germain and
Tejeda’s finding that individuals place more weight on the subjective than objective
items when assessing the expertise of others. However, the subjective items could
have a use for identifying potential sources of bias in interacting groups (see e.g.
Bolger and Wright 2011). Further to this, it should be stressed that the GEM scale
is designed to measure perceptions of expertise rather than actual possession of
expertise, and, as such, Germain and Tejeda did not attempt to validate it against
measures of ‘true expertise’ (i.e. either past or subsequent job performance in the
target role): the authors do show that GEM has good internal consistency, though.

To my knowledge GEM has so far only been used once to try to differentiate
levels of true expertise. Alvarado-Valencia et al. (2017) sorted experts in demand
forecasting into high and low expertise groups on basis of GEM. The scale,
particularly the ‘objective’ knowledge sub-scale, had high reliability while high-
scoring experts made more accurate forecasts—and more useful adjustments to
forecasts—than low thereby demonstrating validity of GEM as a tool for identifying
expertise. The authors also commented that selection might be further improved if
personality characteristics associated with good forecasting could be identified and
a questionnaire tailored to specific domain knowledge requirements was developed.
I concur with the these points and suggest that, contingent on further research into
GEM’s reliability and validity—and into the potential for adding further items such
as creativity and the ability to argue and communicate (see e.g. Ivlev et al. 2015)—
GEM might best be used in conjunction with other measures of expertise that are
filled out by the experts themselves. These other measures should be ones that are
more readily completed in an impartial manner than GEM, such as the Expert-Skills
Questionnaire to be described in Part II. I will return to the potential of the GEM for
identifying expertise later in the section on selecting experts for the long list in Part
II, meanwhile I will briefly turn to consider assessment of expertise by the experts
themselves.

Self-Assessed Expertise

Excluding direct measures of performance/knowledge (already discussed above)
possibilities include:

• Personality. As already mentioned, personality traits may be associated with
being a ‘good expert’ in an EKE (Alvarado-Valencia et al. 2017). Certain
characteristics may help experts integrate different information sources and
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perspectives, keep them motivated and on task, or smooth the interaction with the
elicitor and other experts. For instance, of the ‘Big 5’ personality traits: openness
to experience; conscientiousness; and agreeableness would seem particularly
relevant to being successfully elicited.7

• Cognitive skills: IQ, working memory, creativity (the latter suggested by Ivlev
et al. 2015)—are all likely to be associated with substantive expertise. For
instance, we have found that working-memory capacity is related to the ability to
learn the relationships between cues and criterion in a multiple-cue probability
learning (MCPL) task (Bayindir et al. 2017).

• Susceptibility to biases: tests of rationality (e.g. choosing according to maximiza-
tion of expected utility, updating beliefs in line with Bayes’ Theorem), use of
intuition (e.g. as measured by the ‘Cognitive Reflection Test’—Frederick 2005),
and heuristics (e.g. anchoring or availability) when making judgements. All of
which could also be relevant to normative expertise, for example, tendency to be
overconfident.

It is arguable, however, whether such generic qualities really constitute sub-
stantive expertise itself but potentially could support or enable acquisition of
substantive expertise (as in our MCPL study) and/or be helpful in the EKE process,
such as the personality traits identified above.8 This is all speculation at present,
though, and warrants some research attention, however, practical utility might be
compromised by expert reluctance to take such generic tests (i.e. they may question
their relevance): tests of specific domain knowledge might therefore be easier to
‘sell’ to experts.

A compromise position between using generic instruments, or specific knowl-
edge tests, is to try to determine details of the judgment task at hand and the
skills and qualities each expert brings to bear as a result of their experience at
performing that particular task, and any relevant training they have received. This
is the approach I take in my E-SQ described in Part II and, although relevant to
measuring substantive expertise, is based on an analysis of studies of the realism
of probability judgment, hence I will defer further discussion of this issue to after I
discuss how realism of probability judgment is measured.

Effects of Self- and Peer-Assessed Expertise on Group Judgements

Generally in EKE we wish to garner the judgments and other opinions of several
experts in order to try and maximize the information base, and reduce error and bias

7The other two traits being extroversion and neuroticism.
8It is possible that the advantages of some personality traits are protocol-dependent. For example,
conscientiousness might be good for a remotely administered elicitation such as is often the case
in Delphi, while agreeableness might be particularly helpful in protocols that require face-to-face
interaction. Openness to experience is probably a useful characteristic in both protocols as it should
assist opinion change towards the true value.
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(through aggregation). However, in interacting groups there are social processes
that can undermine the goal of improving the outcome by means of adding more
experts. For example, dominant individuals can seriously skew the opinions of the
group as a whole as well as some other undesirable effects, including: ‘premature
closure’ (i.e. coming to a judgement before all the evidence has been considered),
and suppression of minority opinion—both features of ‘Groupthink’ (Janis 1982).
Measures are taken in EKE to reduce such effects, such as having a strong facilitator
in the Sheffield Method or not permitting experts to interact directly in the Delphi
and Classical methods. Despite such measures, experts’ opinions of their own and
other panellists’ expertise could still affect the quality of an EKE’s outcome. A
particular case in point is confidence. If experts vary in confidence in their own
knowledge then those higher in confidence may be more likely to stick to their
original views, while those who are less confident might be likely to shift their
opinions towards the more confident. This tendency is likely to be exacerbated
when the experts can see each and hear each other (i.e. perceive the differences
in confidence between panel members), although, it could also occur in Delphi
where it is common to feedback assessments of confidence. This would all be fine
if confidence was clearly related to expertise, but as I have already discussed, there
is no evidence that this is the case.9

16.2.3.3 Measuring Normative Expertise

Many aspects of normative expertise, such as the ability to use ‘tools of the trade’
(measures, procedures, software, tests, common models etc.) can be assessed in
the same way as for substantive expertise, for example, from CV’s, publications
and peer-recommendations. As is the case when measuring substantive expertise,
provisos regarding the reliability and validity of these measures apply: for instance,
CV’s are ‘sexed-up’, the contribution of an expert to publications may be obscure,
the appropriateness and quality of training courses may be largely unknown, and
peers may be influenced by salient surface qualities (e.g. confidence and charisma)
rather than more objective qualities (e.g. evidence of ability to analyse data) that
may be difficult to observe: the latter is a bias that has been proposed as a cause
of overconfidence, for instance, in personnel selection (see Griffin and Tversky
1992). Further, these sorts of measures are pretty blunt instruments that often do
not capture the nuances of a particular elicitation. In view of these considerations,

9Indeed, the ‘Theory of Errors’ (Dalkey 1975; Parenté and Anderson-Parenté 1987), which is the
leading account for why the Delphi technique works, assumes those who stick are on average
closer to the truth than those who shift—Bolger and Wright (2011) propose that in order to achieve
‘virtuous opinion change’—i.e. opinion change towards the truth—rationales for opinions should
be fed back between Delphi rounds rather than confidence as the former will be better indicators
that the expert is knowledgeable about the topic than the latter.
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it may be desirable to use a specially designed questionnaire, such as that described
in Part II, to measure aspects of normative expertise that are particularly relevant to
the assessment task in hand.

For a probabilistic EKE there is a necessity to express uncertainty probabilisti-
cally: this is often the stumbling block for experts, as substantive and normative
aspects of expertise frequently diverge when it comes to probability judgement.
This is because, although many experts might be required to express uncertainty
surrounding judgements, quantification of this uncertainty does not form part of
most experts’ modus operandi. Verbal uncertainty statements are generally the pre-
ferred way of expressing likelihood, however, the problem with verbal probability
statements is that they are unreliable—they are not consistent either between or
within experts (see e.g., Dhami and Wallsten 2005; Wallsten and Budescu 1995)—
and by dint of this also have low validity. At least we assume low validity as we
cannot properly test it—I describe how we test the quality of probability judgements
next.

There are two basic ways of assessing the quality of probability judgement: these
are known as ‘coherence’ and ‘calibration’ and can be considered as reliability and
validity criteria respectively (Bolger and Wright 1993). Coherence refers to the
consistency of probability judgements and their conformity to the laws, or rules,
of probability. Consistency and conformity criteria are related in that they both
apply across a number of probability judgements, rather than to a single judgement,
and conformity with probability theory is the logical and mathematical basis for
consistency. An example of ‘incoherence’ is that, logically, the judged probabilities
of a set of mutually exclusive and exhaustive events must sum to certainty, however,
the judgements of experts often do not (Tversky and Koehler 1994): this is a
phenomenon referred to as ‘sub-additivity’. Another commonly observed example
of incoherence is so-called ‘conservatism’, where people, experts included, fail to
update their probability beliefs sufficiently in the light of new information, where
sufficiency is determined by comparison with the degree of updating indicated by
Bayes’ theorem (Edwards 1968).

Calibration refers to the correspondence between subjective and objective prob-
abilities. Calibration is also sometimes referred to as ‘realism’ because a good
correspondence between probabilities in the head and in the world implies that the
judged probabilities are realistic assessments of uncertainty. As with coherence,
calibration is measured over a set of judgements rather than a single one. For
example, experts may be asked to make a series of judgements about the range
of uncertain quantities for given probabilities such as “what are the highest and
lowest judged values of x such that the true value of x will fall within this range
on 90% of occasions it is observed?” Over a number of such judgements—say
ten—a realistic (‘well-calibrated’) expert will have nine true values (sometimes
referred to as ‘realizations’) falling within his or her given ranges. In contrast, an
‘overconfident’ expert will have fewer than nine values falling within their ranges
(i.e. they tend to give ranges that are too narrow); this is what is typically observed
(e.g. Griffin and Brenner 2004; Lichtenstein et al. 1982; Lin and Bier 2008).
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It should be clear that in order to calculate calibration in this manner you need
to know what the true values are. The consequences of this limitation is that it is
difficult—and sometimes impossible—to assess calibration for most variables that
we wish to estimate using expert judgement because there is little or no historic
data directly pertinent to the target variables of interest to use as realizations (and,
if there were, then we may not need to use expert judgement in the first place). The
way around this is to calibrate experts on similar variables to the target where the
answer is known: this is what is done in the Classical Method (see Chap. 2), where
the calibration variables are known as ‘seed variables’.

As we pointed out in Bolger and Rowe (2015a, b), the assumption that good
calibration on the seed variables (as opposed to accuracy, which I discussed above
in the section on measuring substantive expertise) generalizes to the target variable
is a big one that has rarely properly been put to the test. This is because, since the
realizations of real-world target variables are often not available for quite some time,
the differential weighting of experts using calibration has typically been evaluated
using ‘cross-validation’, whereby calibration across a set of seed variables is used
to weight experts’ estimates of another seed variable. Although some of this cross-
validation research produces an advantage for the Classical Method relative to
equally weighting expert opinion (Cooke 2014; Eggstaff et al. 2014) other cross-
validation research does not (Clemen 2008; Lin and Cheng 2009), it depends on
the cross-validation procedure that is used. We argue (Bolger and Rowe 2015b) that
controlled experiments and simulations are required to settle the issue, but we are
sceptical that significant practical advantages for the Classical Method will be found
due to problems of low reliability and validity of calibration measures (Bolger and
Rowe 2015a).

At the start of the section on measuring expertise I differentiated absolute and
relative assessments. The Classical Method weights experts in terms of their abso-
lute performance (mostly normative—calibration—tempered by some consideration
of substantive expertise) in the sense that each expert’s independent performance on
the (same) seed variables directly affects an expertise score that is subsequently used
for weighting relative to other experts on the panel. In contrast, Budescu and Chen
(2015) propose assessing each expert’s performance relative to the performance of
the group (or ‘crowd’ as they call it) and use this as the basis of weighting. More
specifically, Budescu and Chen’s Contribution Weighted Model (CWM) assesses
how much each expert contributes to the overall crowd performance, increasing
weights for positive contributions and reducing them for negative. Although CWM
could potentially be applied to judgments made for seed variables it has not been so
far, rather it has been tested on longitudinal data from forecasting geopolitical events
and economic variables (inflation levels and GDP growth). In these instances, CWM
produced significantly better-calibrated probabilistic forecasts than unweighted
crowds (i.e. including all experts’ forecast on an equal basis) in most knowledge
domains and also performed better than using absolute performance weights. This
latter advantage can be credited to the fact that CWM always gives higher weights

http://dx.doi.org/10.1007/978-3-319-65052-4_2
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to those who do better relative to the crowd and thus takes into account variations
in the difficulty of the items. For absolute scoring an expert could get a high weight
if they just get easy items right (i.e. where the crowd majority also get it right)
whereas CWM particularly rewards correct answers to difficult questions (i.e. those
experts who make correct forecasts against the majority crowd predictions). CWM
requires more testing, though, and also suffers from the same primary limitation
as the approach taken by the Classical Method, namely, the need for sufficient
and appropriate data to measure performance in the first place (with the added
problem of also needing sufficiently large numbers of experts whose judgments can
be compared—although the application assumed by Budescu and Chen (2015) is a
‘crowdsourcing’ one i.e. lots of relatively inexpert forecasters).

A general conclusion from decades of research into the quality of probability
judgement of both experts and ‘laymen’ is that it is commonly unreliable and
biased. Typical findings are, of both incoherence and miscalibration, most usually
overconfidence, as I indicated above. This conclusion that probability judgement
is typically unreliable and biased has been questioned, for instance, in terms of the
‘ecological validity’ of tasks and judges used in much of the research this conclusion
is based on (i.e. tasks are artificial and judges are inexperienced at performing
them; see Bolger and Wright 1994), and as a result of problems in measuring
uncertainty beliefs (e.g. regression effects due to measurement error combined
with the requirements to map beliefs onto a fixed scale; see e.g. Olsson 2014).
Despite this, it seems clear that many people, including those regarded as ‘expert’
in some domain, have difficulty with expressing uncertainty probabilistically with
potentially negative consequences for the quality of the probabilities derived from a
probabilistic EKE.

Lack of normative expertise may be a reason why expert probability judgements
are sometimes little or no better than lay judgements, and demonstrate the same
biases. Koriat et al. (1980) propose that probability judgement progresses in three
stages. First, memory is searched for relevant information. Second, evidence is
assessed to arrive at a feeling of uncertainty. Third, the feeling has to be mapped
onto a conventional metric—if experts are unfamiliar with performing this mapping
then the quality of the resulting judgement of uncertainty may be poor. Thus, with
regard to this third, mapping stage, lack of experience at expressing uncertainty in
the form of numeric probabilities may lead to a corresponding lack of reliability,
and/or incoherence, in statements of probability, even if the underlying uncertainty
assessment processes (stages one and two) are sound. Further, as I argued above,
there will be knock-on effects of mapping failures that lead to incoherence because
reliable (i.e. coherent) probability judgements may be a prerequisite for valid (i.e.
realistic or ‘well-calibrated’) judgements (Wright et al. 1994). For these reasons
I (and others, e.g. Phillips 1987) propose that experts are trained in expressing
uncertainty as probabilities: determination of the need for such training is something
that perhaps can most usefully be assessed during the selection process rather
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than after it (e.g. it can help in assessment of the timeline, and selection of EKE
protocol).10 Accordingly I propose the identification of training needs a part of my
E-SQ described in Part II.

16.2.4 The Nature of Expertise in Judgement of Uncertain
Quantities

Although problems in mapping subjective assessments of likelihood onto numeric
probability scales are undoubtedly a major determinant of the final quality of
uncertainty judgements there is reason to suspect that errors and biases in judgement
might also occur during the first two of Koriat et al.’s (1980) stages. For this reason I
argue that training, while necessary, is not in itself sufficient to ensure the quality of
expert judgement in probabilistic EKE. To better understand the potential sources
of difficulties faced by expert judges—and thus to best assist them in producing
the highest quality judgments possible—I believe that it is useful to take a step
back and consider how an intelligent system, in general, might go about making
judgements of uncertain quantities across a range of different judgment tasks. Once
we understand this better we can then proceed to develop measures of expertise
that allow the selection of the best experts for a particular judgement task and to
improve the fit between experts and EKE through training.

In general, approaches to measuring expertise to date have not been based on
any deep theory or analysis of expert judgment, and consequently offer limited
possibility for validation. Further, research has tended to focus on the outputs of
judgment—how accurate or well-calibrated they are—rather than the psychological
processes leading to the judgments. This research still needs to be done but I offer
the following analysis as a starting point.

So how are judgements of uncertain quantities made? In order to answer this
question we need to break it down into two smaller questions, namely ‘how does
one go about making judgements of quantities?’ and ‘how does one estimate the
uncertainty in those judgements?’

16.2.4.1 Judging Quantities

At its base, judgment involves applying a mental model of the world to some data.
For example, if I need to judge how long it will take to get to the nearest airport
on a Friday afternoon I might use a mental model composed of a real or cognitive
map to estimate the distance, combined with knowledge of any current construction

10There is some empirical support for the suggestion that relative frequency is a more natural way
of representing uncertainty than probability (Gigerenzer and Hoffrage 1995) thus posing questions
as relative frequencies rather than probabilities might be an alternative to training.
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work (from the internet, memory, or asking colleagues who have recently made
the trip), plus an understanding of peak travel times (e.g. extended rush hour on
Fridays due to people going away for the weekend) and so on. This model is created
on the basis of observed or inferred regularities, which may have a known—or
hypothesized—causal basis (i.e. theoretical underpinning), or may be known rather
from manifest associations (i.e. empirical underpinning), or both. Models can differ
in the reliability and validity with which judgements can be made, which is in part
due to the inherent predictability of the domain, and in part due to the processes by
which models are developed, acquired and applied.

Our knowledge for models comes from one or other, or both, of two sources:
observation, or being taught about them by others (a distinction sometimes referred
to as ‘learning from experience versus learning from description’ e.g. Barron
and Erev 2003; Hertwig et al. 2004; Rakow and Newell 2010). The reliability
and validity of the models are therefore contingent upon how well they have
been observed (determined, for instance, by the quantity and quality of data
available, and how systematic the observation is) and/or how well the model has
been communicated (determined, for instance, by the coherence of the theory,
and expertise of the teacher). Acquisition by either route is further influenced by
model complexity, both in terms of the number of variables, and the nature of the
relationships between them (e.g. direct, mediated, hierarchical etc.): more complex
models will generally be harder to learn, and be more subject to error in their
application.

The models held by experts that they use to make judgements of quantities may
be fairly explicit and/or formal, particularly those that they have acquired in their
professional training (i.e. learned from description), or they may be implicit and/or
informal, particularly those acquired during their professional experience. In some
cases models might be a hybrid of both explicit-formal models and implicit-informal
ones. Experts’ judgement models might also either be well-established, or created
de novo for a particular circumstance, or again something of both.

From the viewpoint of selecting and preparing experts for a probabilistic EKE
then it could be useful to find out what explicit/formal models they use for assessing
uncertain quantities, and also the extent and circumstances of any judgemental
adjustment to the outputs of formal models. I propose that a questionnaire such
as that described in Part II is used for this purpose. If face-to-face EKE is performed
then this offers another opportunity to elicit information about the use of formal
models.

The same methods can be used to find out about the implicit/informal models
held, but it may be difficult to get at them since—as I discussed in the section on
Procedural versus Declarative types of expertise—expert knowledge tends to move
from explicit to implicit with experience, and this implicit knowledge may not be
represented in a way that allows easy access to its owner. So, although there is
no harm in asking—hence such questions included in my questionnaire described
in Part II—we can by no means guarantee that we will get at the ‘truth’. Face-to-
face we may do a better job, as we can apply specialist elicitation techniques such
as card-sorting, repertory grids, and verbal protocols (see e.g. Bolger et al. 1989)
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to reveal the underlying structures and processes of the experts, or use methods as
cognitive mapping and influence diagrams to elicit causal models directly (e.g. Eden
1988; Howard and Matheson 2005; Oliver and Smith 1990).11 All this is, however,
beyond the scope of the current paper because such methods have rarely been
applied in the context of probabilistic EKE,12 although they are more commonly
used in the development of expert systems (e.g. Bolger et al. 1989); the noted
problem of potential lack of accessibility of expert knowledge—known as the
‘knowledge acquisition bottleneck’—remains a serious barrier, though. The purpose
of the questions included in my E-SQ are not to elicit the actual implicit models of
experts but, amongst other things, to determine the balance and interaction of use of
‘intuition’ and formal models so that we can better determine the potential quality
of both quantitative assessments and uncertainty estimation.

I have identified five different ways in which quantitative judgments can be made:
rules; problem solving; evidence accumulation or argumentation; pattern matching;
cues. I will now outline these in turn as each way has implications for the accuracy
of the judged quantities as well as how uncertainty might be evaluated, and thus the
quality of probability judgment.

Rule-Based Judgement

Starting in the 1970s, ‘expert systems’ began to be developed based on ‘production
systems’: expertise was modelled by if-then rules applied to a knowledge-base,
for instance: ‘if x is true (i.e. matched in the knowledge-base) then do (say) y’
(Hayes-Roth et al. 1983; Klahr et al. 1987; Waterman and Hayes-Roth 1978). For
quantitative judgments this could be: ‘if x is true, or attains a certain value, then
y must have the value z’. Broadly, the rules used be experts can be categorized as
either algorithms or heuristics. In the former case, given an input a rule produces the
correct answer (e.g. a formula for converting Celsius to Fahrenheit), possibly with
some error (e.g. from misapplying or misremembering the algorithm). In the latter
case, heuristics produce approximate answers from inputs (e.g. clarity of an image
can be used as a guide to its distance from the viewer).

Problem Solving

Expertise is often seen as a facility to solve problems by, for instance, making
connections, or distinctions, that most people do not see. Some early artificial
intelligence (AI) systems were attempts to capture this aspect of expertise (e.g.

11In principle, many of these things could be done remotely but I am not aware of any existing
protocols or software to support this.
12However, Quigley and his colleagues use maps when eliciting priors with engineers assessing the
reliability of new systems (e.g., Hodge et al. 2001; Walls et al. 2006—with the aerospace industry).
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Newell et al. 1959; Newell and Simon 1972) and focused on extracting rules that
permitted them to solve problems such as the Missionaries and Cannibals and Tower
of Hanoi problems. Quantitative estimation could be characterized as a decompose-
recompose problem. For example, take estimating the number of letters posted each
day in US (MacGregor et al. 1988, 1991): first, estimate the population of the US;
next, make a correction so as to calculate the adult population; then reflect on how
many letters one personally sends in a year; divide this by 365 to get a daily figure;
finally multiply this daily figure by the estimate of the adult population.

Pattern Matching

One of the earliest and best-known conceptualizations of expertise, which was
developed from studies of chess masters (De Groot 1965; Chase and Simon
1973) is that experts remember patterns that lead to particular outcomes, such as
configurations of chess pieces that lead to winning or losing.

A development of this idea is Recognition-Primed Decision Making (RPDM)
that has primarily been applied to understanding decision-making in emergency
or other high-pressure situations (Klein 1998). For example, expert fire-fighters
recognize combinations of flame, smoke and building types indicating a particular
type of fire, and this informs their fire-fighting strategy. Although RPDM describes
categorical rather than quantitative judgements there is no reason why a particular
configuration could not be associated with a set of quantities, for instance, amount
and thickness of smoke, with a high ratio of combustible to non-combustible
materials, means a fire of temperature x.

Cue-Based Judgements

Rather than learning relationship between patterns and outcomes experts can learn
the covariation between several discrete or continuous cues and a criterion (e.g.
Brunswik 1955). For example, a doctor learns that symptoms such as a temperature
of x1, blood pressure of x2, and pulse-rate of x3 are associated with disease y. If
the criterion is continuous, for instance, recovery time, then this can be a means of
quantitative judgment.

Support Accumulation and Argumentation

Toulmin (1958) proposed a model of argumentation whereby claims are supported
by data, the relevance of which are established by ‘warrants’ and ‘backing’. An
example would be as follows: “Company X can take over Company Y (claim)
because Company X has acquired a majority share of Company Y (datum) per-
mitting the takeover since owning more than 50% of a company gives a controlling
stake (warrant) as set out in Company Law (the backing)” The same set-up could
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be used to justify a quantitative claim, for instance, levels of sales of a product
in a year’s time. A similar idea in this category is that people seek evidence in
support of a favoured (or ‘focal’) hypothesis relative to an alternative (e.g. Brenner
2003; Griffin and Tversky 1992; Koehler et al. 2002; Tversky and Koehler 1994).
These approaches—referred to as ‘support’ theories—are all probabilistic (i.e. the
probability of the focal or alternative hypothesis being true is increased as support is
received) and as such are descriptive counterparts of normative Bayesian updating.
While support theories typically describe revision of judged probabilities of events
(e.g. death from a particular cause) there is no reason why the focal hypothesis
could not be about the likelihood of particular value of a continuous variable being
achieved (although it raises questions about which alternative hypotheses should be
considered).

Some or all of these five methods might be equivalent in the sense that they
could be substitutable for each other. For example, Kleindorfer et al. (1993, pp. 85–
86) have pointed to similarities between argumentation and cue-based judgments,
while the patterns in the relationship between outcomes could equally be modelled
as the covariation of cues, and the covariation of cues could be expressed as
rules. However, each method has somewhat different requirements in terms of data
and processing that can have distinct influences on the quality of judgments at
a descriptive level. For instance, as already noted, cue-based representations are
better suited to judgements of continuous quantities, and pattern matching and
argumentation/support systems to discrete events, while problem-solving and rule-
based approaches are lacking in the ability to generalize to new situations relative
to the other approaches. Meanwhile, pattern-matching and cue-based systems seem
to model what people actually do quite well and thus score highest in terms of
psychological plausibility.

The way in which uncertainty is assessed is also likely to be linked to the way in
which the initial judgment of the quantity is made, although the strength of this link
may vary. For instance, in the cue-based approach criterion values, and the validities
of cues used to predict them, are intimately related in Brunswik’s ‘Lens’ model
(to be described further in the next section) so value estimation and uncertainty
assessment are two sides of the same coin for a Brunswikian judge. In contrast, a
judge who judges quantities using problem-solving may have to use a combination
of methods to assess uncertainty including top-down computations of errors in
problem steps and bottom-up assessments of the effectiveness of heuristics on the
basis of experience (which could be similar to cue-based assessments). Of course,
it is an empirical question as to both how experts make both sorts of judgment and
whether the same process is used for both, even for a Brunswikian judge.

16.2.4.2 Assessing Uncertainty

The cue-based model is perhaps the most well-developed of the above models
regarding the process by which uncertainty surrounding judgments of uncertain



16 The Selection of Experts for (Probabilistic) Expert Knowledge Elicitation 419

quantities might be assessed.13 For this reason—and because my point is just to give
an example of the kind of theoretical context that I believe is needed for expertise
assessment—I will discuss the cue-based model only in this section.

Brunswik (1955) proposed the Lens model whereby a person’s proximal judg-
ment of a distal variable or state of the world is formed from an analysis of the
relative strength of a set of cues acting like a lens between objects in the world and
the perceiver. More specifically, cues are stochastically related to a criterion: the
correlation between a cue and the criterion is the ‘ecological validity’ of that cue
and the correlation between a cue and the judge’s perceived value of the criterion is
a judge’s ‘learned validity’ for that cue. The subjective probability of a value of the
criterion given a cue can be obtained from the learned validity of the cue while the
subjective R2 value for regression of the perceived value of the criterion on all cues
provides the subjective probability of the criterion given those cues (which can be
calibrated against the R2 value for regression of the corresponding true value of the
criterion, if available).

Gigerenzer et al. (1991) proposed a theory of how people make probability
judgments when asked to make probabilistic forecasts of binary events (e.g. rain,
no-rain) or judge the likelihood of correctly answering 2-alternative forced-choice
(2AFC) questions (e.g. which is further north, New York or Rome?). Their theory of
Probabilistic Mental Models (PMM) is a Brunswikian model in that it is proposed
that people learn from experience the predictive validity of cues in their environment
and then use these cues both to choose between alternatives and judge probability.
Rather than using multiple cues, as in the Lens Model, in PMM judges use just
one cue: the best available one. So for example, to answer the question of whether
New York or Rome is further north a judge (who is unable to retrieve the correct
answer) might use climate as a cue and select New York as being on cooler on
average. The cue validity (i.e. the long-run, experienced success of the climate cue
in distinguishing northerliness between two alternative locations) is given as the
probability of being correct.

Findings of overconfidence in judgments of likelihood of correctly answering
2AFC general-knowledge questions (one of the two main ways in which the realism
of confidence has been assessed, see e.g. Lichtenstein et al. 1982) have been
attributed to test items being selected so as to be counter-intuitive (i.e. good tests
of general knowledge). Such selection means that the cues are successful less often
than experience tells people that they should be. In the case of the climate cue,
this may have quite high validity across all instances of its application so when used
people will state a high probability of being correct. Rome is, however, further north
than New York so if the climate cue is used to answer this question people will get
it wrong: several incorrect answers associated with high stated probability correct
will, of course, manifest overconfidence. When items are not misleading in this way

13Support Theory also is well-developed with regard to uncertainty assessment but its primary
focus is the assessment of the likelihood of categorical assessments (e.g. of event occurrences,
correctness, or truth) rather than values of continuous variables.
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(e.g. representatively sampled from an appropriate reference class for a cue) then
overconfidence reduces or disappears (Gigerenzer et al. 1991; Juslin 1993, 1994).14

In the following discussion I will adopt the cue-based account of how experts
might make judgments of uncertain quantities.

16.2.4.3 Limits of Expertise

When selecting experts for an EKE it is necessary to consider what levels of
performance we can reasonably expect from our experts, so that we do not waste
time trying to find experts performing at levels that are impossible to achieve, or
nearly so. Task domains vary greatly in how much ‘hard’ data is available, how easy
it is to generalize from one situation to another, how much variability there is in both
phenomena of interest and measures of them, and so on. For instance, sometimes
there are very distinct indicators of a target event and sometimes there are not (e.g.
measles vs. meningitis), and sometimes there are clear precedents or analogues for
events and sometimes there is not (e.g. the launch of an additive vs. a transformative
technology). Both these will affect the levels of judgement accuracy attainable by
even the most expert of experts.

One way of characterizing judgement tasks that may be useful, is in terms
of predictability and learnability: that is, some domains of knowledge are more
predictable than others, while some offer more opportunity to improve performance
through experience than others. Often the unpredictable and unlearnable domains
are one and the same, but not always. For example, predicting the eruptions of
volcanoes is difficult and the task is not very learnable either, due to the (thankfully)
infrequent occurrence of eruptions, and the rather unique circumstances surrounding
them. Likewise, predicting the likelihood of rain one week ahead (in somewhere
like the UK with rapidly changing weather) is also tricky but, in contrast to the
volcanology situation, there is plenty of data from similar weather situations, with
fairly rapid feedback on success of predictions, thus learnability is fairly high.
Although learnability and predictability impact on the quality of expert judgements
of quantity per se, they also have profound effects on the quality of uncertainty
assessment: I will therefore now devote some attention to this matter.

Effects of Learnability and Predictability on Calibration

Bolger and Wright (1994) analysed 20 studies of expert judgement—all of which
required the qualification of the judgements with probabilities—and concluded that
in half of the studies good and/or well-calibrated judgement (i.e. a good correspon-
dence between objective and subjective probabilities) would not be anticipated a
priori because the task assessed could not be learned and/or predictability was low.

14Although as already indicated, there is still an ongoing debate as to the source and degree (and
even existence) of overconfidence in such tasks—see Olsson 2014, for a recent review.
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We argued that to learn a task well enough to be able to produce realistic assessments
of uncertainty it is necessary to receive regular, rapid and reliable outcome feedback.
Returning to the example of weather forecasters making short-term forecasts of
precipitation, forecasters quickly find out if these forecasts are correct enough and
so can potentially learn how the weather cues they use are related to outcomes.
Further, the forecasts cannot affect the outcomes.

Some studies have shown such precipitation forecasts to be well calibrated (e.g.
Murphy and Brown 1985). In contrast, life underwriters predicting whether or not
claims will be made on applications do not receive good feedback on their risk
assessments as claims are usually made a number of years after the application has
been assessed. Further, even where feedback is received, it is not as diagnostic as it
could be because the underwriter does not know what happened to those applicants
who were not given cover—underwriters’ risk assessments have been found to be
similarly biased to those of students with no underwriting or actuarial experience
(see Wright et al. 2002).

Receiving good feedback is necessary, but may not be sufficient, for experts to
perform above non-experts—there has to be some predictability in a task to be
learned in the first place. For example, one can bet on the outcomes of a roulette
wheel, and get feedback very rapidly about outcomes that you cannot influence, but
unless the wheel is biased it is not predictable, so your forecasts will be as good
as anyone else’s—the same may be true of some other domains where expertise is
presumed and sought, such as the short-term movements of stocks (which are, in
essence unpredictable; see, for example, Malkiel 2011).

Clearly it is important to ascertain whether experts being considered for a knowl-
edge elicitation exercise are likely to produce useful estimates; thus, I have included
questions about the nature, availability and speed of feedback in the E-SQ that
can be used to screen potential experts for EKE (see Part II); additional questions
request assessment of the difficulty of making judgements in the domain. If the
results of most experts’ questionnaires indicate that learnability and predictability
is very low, then the nature of the elicitation exercise may need to be reassessed.
However, if high learnability and predictability are generally indicated, it may be
considered whether some other approach, such as statistical modelling, might be
more appropriate.

Data Available to Experts Regarding the Judgement to be Made

Both experts and statistical models perform better if they have access to good data. If
data are sparse we cannot expect experts to be able to make accurate judgements; for
instance, predicting the success of a new technology will be difficult because experts
will, by definition, have no previous data relevant to the task. Instead, he or she must
rely on analogy with similar technological developments in the past—analogies
that are likely to be only approximate because the technology will have different
features and the world is continually changing. Further, it has been questioned
whether probabilities attached to such essentially unique or one-off judgements can
be assessed against calibration or coherence criteria (see, for example, Keren 1991).



422 F. Bolger

To establish the quality and quantity of data available to experts, and thereby
establish whether expert judgements provided in the planned elicitation exercise
are likely to be useful, I pose several questions of potential experts in the E-SQ
regarding the nature, calibre and amount of data perceived in the task domain.
However, it should be noted that if a large amount of high-quality data are
available to experts, then it might be possible to form a statistical or mathematical
model to assess the target quantities and related uncertainties rather than use
expert judgement. Such models are to be preferred to expert judgements in that
they are more consistent (see, for example, Hardman 2009, pp. 10–13), permit
experimentation with parameters through simulation, and are readily available if
future forecasts are required. Expert judgement may be the only choice, though, if
few relevant data are available, or a risk assessment needs to be made quickly, or
there are significant new factors not represented in available data.

Ecological Validity of the Elicitation Task

In addition to learnability, Bolger and Wright (1994) also proposed that the quality
of expert judgment can be affected by the ecological validity of the elicitation tasks,
where ‘ecological validity’ refers to the match between the tasks used to elicit
judgments, and those for which the experts concerned make judgments during their
everyday professional activity (see Section “Ecological and Face Validity” above).
Clearly with regard to substantive areas of expertise, you would not expect, say,
a chess Grand Master to be able to answer questions about food safety, or food
scientists to solve chess problems: however, much smaller differences in substantive
focus—between food scientists specializing in microbiological versus chemical
risks, for example—can also significantly impact on the quality of judgment. For
this reason I propose that details of the relevant workday judgments of experts in an
elicitation are collected in Part B of the E-SQ (see Table 16.2 below).

With regard to the quality of expert probability judgment, there is a similar need
for ecological validity, thus if experts are not used to expressing their uncertainty as
probabilities, but rather are quite familiar with odds, then the quality of the elicited
judgments should be higher if odds are elicited rather than probabilities. Bolger
and Wright (1994) found that in studies with high ecological validity of probability
judgment task experts tended to be found to be better calibrated than those studies
with low ecological validity of tasks, particularly if learnability was also high. Part
C of the E-SQ attempts to determine experts’ degree of experience with expressing
uncertainty in various forms so that either the elicitation can be shaped around such
experience or appropriate training provided to them.15

15Bazerman and Moore (2008) suggest that experts also need to have coherent models (mental
or formal) in order to make good quality (probability) judgements. So models may be added to
learnability and ecological validity of tasks as a criterion for well-calibrated experts.
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The Nature of the Judgment Process

In Sect. 16.2.4.1 above I proposed several different cognitive processes whereby
uncertain quantities might be judged. It can be noted that these processes can vary
along a number of dimensions, such as how many steps there are, and the degree
of accessibility to consciousness (e.g. problem solving is a relatively conscious
analytic approach, potentially requiring many steps, whereas pattern matching is
more intuitive and holistic with just one or few steps). It seems plausible that these
differences impact on the quality of judgment so that, for instance, more steps may
lead to more error but, as is often assumed, use of intuitive, heuristic reasoning
leads to more bias: systematic investigation of the relationship between judgment
processes and judgment quality in the context of judging uncertain quantities in
EKE is clearly warranted.

Similarly, the role of affect (mood and emotion) in judgment and its implications
for resulting quality is, as yet, scarcely researched. For example, it is known that
mood can influence reasoning and performance (e.g., Ellis and Ashbrook 1989; Isen
and Erez 2002)—including mood that is incidental to the task at hand, such as that
due to the weather (e.g. Kliger and Levy 2003), and thus could impinge on an EKE
session—but clear effects on the quality of probability judgment have yet to be
demonstrated. Assuming such effects do exist it is plausible that they are stronger
for some judgment processes than others: perhaps those of a more holistic, intuitive
nature than those that are analytic and rational.

16.2.4.4 Determinants of the Quality of (Probability) Judgements

From the discussion above I suggest that there are several factors that determine the
quality of expert quantitative judgments in general, and probability assessments in
particular. These include:

• The number and comparability of instances/data
• The amount and quality of feedback
• Experience with expressing judgments in the required metric (e.g. uncertainty

probabilistically)
• The number of steps in the judgment process
• The nature of the judgment process (e.g. whether it is analytic or holistic, rational

or intuitive, conscious or unconscious, cognitive or affective etc.)

Some conclusions for probabilistic EKE that can be drawn from this analysis
are that the quality of probability judgment depends on the nature of the judgment
task in interaction with the cognitive, emotional and dispositional characteristics
of the experts, as well as, of course, their experience. This leads me to question
the status of expert judgments as probabilities that can be meaningfully calibrated.
In ideal situations (dispassionate, analytic judges, with lots of experience of both
making probability judgments and receiving rapid and useable feedback, for a
judgment task where there are several cues related well to the criterion for which
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information is readily available) then there is at least the potential for well-calibrated
judgments. Bolger and Wright’s (1994) review supports this view that, under the
right circumstances, expert probability judgment can be reliable. However, in most
cases where we actually need to perform an EKE many of these ideal features will
not be present (indeed where they are, there is a case for arguing that there is no need
for expert judgment in the first place as statistical or machine learning procedures
might produce better results, not least by reducing error in application of models16).
In the least favourable conditions the likelihood judgments of experts may well be
based on task-irrelevant factors such as the weather (e.g. Saunders 1993), or how
hungry the expert is (Hoefling and Strack 2010) and, as such it might be counter-
productive to elicit them in the first place—for instance, giving a spurious scientific
veneer to the EKE—and other ways of expressing uncertainty and criteria might be
better used (e.g. qualitative statements, coherence rather than calibration).

16.2.5 How Many Experts and How Many Judgements
from Each?

If EKE is considered a data collection methodology then one way of increasing
its reliability is to elicit estimates from as many experts as possible: aggregation
over these multiple experts then helps reduce error and bias. Other ways to improve
reliability is to ensure the quality of expert judgment by selection and training—or
by giving the more expert greater weight in the aggregation than the less expert—
and to measure expert performance reliably for these purposes generally requires
each expert to provide several judgements. Is it possible to determine how many of
each are required?

16.2.5.1 How Many Experts?

In a ‘standard’ probabilistic EKE, such as is the focus of this volume a few ‘top’
experts are sampled17: these may be the only ones available (period, or within
resource limitations), or good enough to pass screening. The Sheffield Method
(Chap. 3) and the Classical Method (Chap. 2) are both optimally carried out with
between 5 and ten experts (e.g. Bolger et al. 2014) as there are diminishing returns

16For example, ‘bootstrap’ linear models—models derived from regressing expert judgments onto
the cues that they are presumed to use—make better predictions of a criterion than do the original
unaided experts (e.g. Goldberg 1970) because they apply the judgment model more consistently.
17In contrast to the ‘crowdsourcing’ approach mentioned above whereby a large number of people
with little or no domain expertise are polled (see, e.g. Budescu and Chen 2015).

http://dx.doi.org/10.1007/978-3-319-65052-4_3
http://dx.doi.org/10.1007/978-3-319-65052-4_2
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to accuracy improvement as more experts are added. For example, Aspinall (2010)
comments regarding expert risk elicitation using the Classical Method:

“My experience with more than 20 panels suggests that 8–15 experts is a viable number—
getting more together will not change the findings significantly, but will incur extra expense
and time.” (p. 295)

However, as Meyer and Booker (1991) note:

“Having less than five experts reduces the chances of providing adequate diversity or
information to make inferences.” (p. 88).

Recommendations regarding the optimal number of experts have largely based on
practitioners’ opinion rather than on the theory or evidence, however, Budescu and
Chen (2015) offer an empirical analysis of the benefits of adding additional experts
in relation to their weighting system. They conclude that the best performance is
derived with between 3 and 16 experts, with six being optimal (however, note
that this is assuming that all experts make positive contributions to the group—
groups may need to be somewhat larger than six if there is some redundancy in
expertise). Budescu and Chen’s result support the claim of Mannes et al. (2014) that
averaging over a few top experts selected on the basis of Mean Absolute Error of
their judgments (i.e. an absolute measure, in contrast to Budescu and Chen’s relative
measure) can equal or outperform averaging over all a larger group of experts, or
just using a single top-performing judge (Mannes et al. 2014).

In the case of the Sheffield Method (see Chap. 2), the experts interact face-
to-face in a workshop, and this process gets more difficult to manage as the
number of experts increase: with each added expert the length of discussion
is potentially increased without a corresponding increase in information, while
it becomes difficult to ensure that everyone’s opinions are heard and discussed
thoroughly. Also with behavioural aggregation the desired endpoint is usually to
achieve consensus (although not necessarily, as some accounts suggest): clearly this
will be more difficult to achieve with larger groups.

In principle, if there were sufficient resources, it would be possible to have
more than one workshop: this might be a desirable strategy if there were distinct
groups with expertise relevant to a particular problem but with different knowledge
bases and, perhaps, technical language, who might be difficult to put together into
a single workshop. An example of this is an EFSA probabilistic-EKE exercise to
determine risks for European consumers from Rift Valley Fever, a disease endemic
in North African cattle, sheep and goats. Relevant experts included distinct groups
such as veterinary scientists, microbiologists, food transportation and preservation
specialists, and those with knowledge of the illegal trade in animals across the
Sahara (see Bolger et al. 2014). Another way in which a larger number of experts
could be accommodated within the Sheffield Method is by designating some experts
as advisors who provide the other—‘judging experts’—with information and
interpretations from their specialist knowledge, but who do not make judgements
themselves.

http://dx.doi.org/10.1007/978-3-319-65052-4_2
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In the Classical Method, experts are usually interviewed face-to-face and sepa-
rately, this is to ensure that they properly understand what they are being asked to do,
and to ensure that they do not attempt to ‘cheat’ by looking up the answers to seed
questions. This resource-intensive process is the principle practical limitation to the
number of experts that can be sampled, beyond identification of potential suitable
experts in the first place, which in itself can be a particular problem for the Classical
Method due to the need to also find seed questions to pose: this might, for instance,
be particularly challenging for experts with more practical than theoretical kinds of
expertise since the practical corpus of knowledge is less likely to be written down
then the theoretical (Bolger and Rowe 2015a). Probably the requirement for face-to-
face interviewing in the Classical Method could be relaxed with an ‘honour code’,
or checks for cheating, so that experts could be evaluated and elicited remotely,
thereby reducing the costs of using larger number of experts.

Similarly, the Delphi method can be applied remotely: in fact, in most respects
it does not matter where the experts are located since there is no need for direct
interaction between them. It could be useful for the facilitator to have face-to-face
communication with individual experts, though, in order to assist in explaining the
task, answering queries, and encouraging them to respond: any such interaction
increases demands on resources but, in my experience, not severely, and the effects
can be mitigated with appropriate software (e.g. for aggregation and provision of
feedback, as well as management of the interactions) so hundreds of experts can
potentially take part in a Delphi elicitation with only a couple of facilitators (see
e.g. Rowe and Bolger 2016).

If there are many more experts than can be managed or are needed then the
various instruments discussed above can be used to cut down the number to the
‘best’ for the purposes of the EKE. If there are many potential experts (i.e. who pass
the basic suitability criteria for the elicitation) and also the possibility of usefully
employing a large number of them, for instance, in a remote Delphi application, then
we might consider some kind of sampling. For example, in our large-scale Delphi on
future food-risk-assessment priorities we were required to sample experts broadly
across the member states of the EU, and across different domains of expertise
(microbiological, chemical, environmental and nutrition), and different roles (e.g.
risk management vs. risk assessment). To achieve these goals, while also mini-
mizing sampling bias, we combined probability sampling and quota sampling (e.g.
randomly sampled within categories such as broad geographical regions with similar
characteristics until a set of criteria were satisfied—see Rowe and Bolger 2016 for
details and Lohr 2009 for a discussion of sampling methods more generally). We
also over-sampled because the remote administration and requirement for repeated
responses in Delphi leads to much reduced final response rates relative to methods
requiring experts to physically attend meetings. Whatever the method, it is likely to
be useful to have some experts in reserve in case of drop-out.

Another consideration when determining how many experts to recruit, which
is related to the quota-sampling example above, is whether there is sufficient
heterogeneity in the expert panel. The main reasons for including several experts in
an EKE are first to broaden the information base by gathering together a number of
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different perspectives on an issue, and second to reduce bias and error by averaging
over differences in quality of judgment (assuming you cannot simply pick the most
accurate expert). With regard to the first of these reasons, it should be clear that just
adding more experts with exactly the same knowledge, and interpretation thereof,
will not improve the result of the EKE one bit, although it should help with regard
to the second reason. Further, many methods of mathematical aggregation assume
independence between expert judgments (as is discussed by Wilson, Chap. 9), so
excessive homogeneity can have an impact on the accuracy of judgments, unless the
dependencies are accounted for.

As I mentioned above, some selection methods have a tendency to introduce
homogeneity into groups. For example, selecting experts using social criteria such
as a senior position within an organization, or on the basis of number of publications,
can introduce age and gender biases (and also a bias towards academics in the
second instance). Snowballing can also encourage homogeneity as the invitation to
participate will tend to be passed around within a particular social network, rather
than between (although contacts can be asked to try and circulate to out-groups,
including those they know to hold different opinions to themselves). However,
since true random sampling of experts will rarely be a realistic prospect it may
be necessary to artificially introduce heterogeneity of opinion into panels by use
of methods such as ‘devil’s advocacy’ and ‘dialectical inquiry’ (e.g., Bolger and
Wright 2011). On the other hand, if the heterogeneity is too great, it can be difficult
to reach a consensus, and aggregation may not make sense.

16.2.5.2 How Many Judgements?

The answer to this question depends on several factors and what you are trying to
do. For example, if you are trying to use psychometric tests to measure an aspect
of expertise that has been shown in the past to be well measured by a handful of
items then you will only need an expert to answer these few items. Commonly
reliability of test items is indicated by values of Cronbach’s alpha of at least 0.7,
indicating that there is a high average correlation between items that purportedly
measure the same construct. Meanwhile predictive validity of test items is indicated
by high R-squared values (typically around 35% of variance accounted for in tests
of job performance, comparing to 16% for personality questionnaires and 14% for
semi-structured interviews), indicating that the items collectively predict well the
target variable, e.g. accuracy of the expert judgements. However, the application of
psychometrics to the selection of experts is in its infancy and thus the reliability and
predictive validity of instruments such as GEM or the E-SQ are not known. Until
such time that they are, reliability and predictive validity might be improved by
using multiple test instruments (i.e. increasing the number of questions each expert
has to answer) but the cost of this strategy is losing potential experts who may see
themselves as too busy (or important) to complete lots of tests.

http://dx.doi.org/10.1007/978-3-319-65052-4_9
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When attempting to assess expertise by examining the accuracy or calibration of
judgements then there are costs to asking for additional judgments beyond simply
deterring potential contributors to the EKE. As already discussed, finding seed
questions that are closely related to the target, have known answers, yet are not
too easy or too hard for the experts is challenging. For this reason studies using the
Classical Method tend to use rather few seed questions: modally only ten per study
in the 45 applications reported by Cooke and Goossens (2008). There is some debate
as to whether this is a sufficient number. We (Bolger and Rowe 2015a) calculated
that ten seed variables have insufficient power to detect all but the most poorly
calibrated experts with at least 60 judgments being a more reasonable number to
aim for. However, Quigley et al. (Chap. 2) show in a Monte Carlo simulation that
if we simply wish to discriminate between experts in terms of calibration—rather
than test the hypothesis that they are different from a well-calibrated expert—then
ten seeds is sufficient to achieve good discrimination.

I argue that further research is still needed to establish whether ten seeds is
a sufficient number for reliable assessment of expert performance across a range
of judgment tasks (e.g. varying in difficulty and heterogeneity of items). Also
even ten questions—with three or more probability judgments per question (to
elicit a distribution)—can prove burdensome to experts, so, as with psychometric
testing, incentives may be needed (if not financial, then anonymized feedback of
performance relative to others might suffice). Finally, it is important that judges are
encouraged to provide true expressions of belief so if any incentives are given they
should be in accord with a ‘proper scoring rule’ that is designed to do just this,
and that is also understandable to the experts (see Bolger and Rowe 2015a for a
discussion of proper scoring rules in relation to the Classical Method).

The number of experts and judgments has implications for the choice of
elicitation method. If there are numerous experts but relatively few judgments,
this might favour the use of methods that can easily be run remotely such as
IDEA—which has been carried-out using video or phone conferencing—or Delphi,
especially if the experts are widely geographically distributed and/or resources for
conveying them to an elicitation venue are limited. In contrast, if there are only a
few experts, but many judgments are to be made, a behavioural aggregation method
such as Sheffield, could be indicated. The Classical Method could potentially be
used well in either case—the main constraint here being the availability of seed
questions (however, if there are several judgments to be made regarding rather
disparate types of target variables then this could create additional problems for
finding seed variables in sufficient numbers as well as increasing the load on the
experts who might have to answer scores of seeds as well as making numerous
target judgments).

http://dx.doi.org/10.1007/978-3-319-65052-4_2
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16.3 Part II: A Structured Approach to the Selection
of Experts

I propose a two-stage expert recruitment process that is designed to maximize
the quality of experts in an EKE. The first recruitment stage occurs prior to
determination of elicitation method and thus is focussed on identifying those experts
who may have knowledge relevant to assessing the required target quantities. I
propose that this is achieved by means of an instrument referred to as a profile matrix
that defines both the type of knowledge required and the roles of experts who might
have such knowledge. Once this profile matrix has been used—in conjunction with
relevant databases and snowballing—to construct a long list of as many potential
experts as is practical within budget and time constraints, then the elicitation method
can be chosen. Both the profile matrix and the long list are needed to select the
method because different numbers, types and mixes of experts have implications
for the best method to be used.

In the second recruitment stage, the number, type and mix of experts might be
reappraised—possibly requiring a return to the first stage—and, if there are more
experts on the long list than is required by the method, screening might be applied
to create a short list of those experts thought to best fit the profile matrix. Screening
might also be used to achieve representation of various opinions, roles and so on,
or to create heterogeneous groups. I suggest a template for a questionnaire (the E-
SQ) that can be used for screening purposes, and can also be used to assess any
training needs: in particular, experts may need training in expressing uncertainty in
the form of probabilities. Other measures of expertise discussed in Part I can also
be used either independently or in conjunction with the E-SQ at this stage, both for
screening and weighting of experts, if the EKE method requires weighting. Once the
short-list is created experts can be invited, trained and elicited: steps need also to be
taken during this recruitment stage to ensure the retention of experts throughout the
elicitation process (which can be lengthy, depending on the method) and the quality
of their contributions.

16.3.1 The EKE Process

It is important to locate the two-stage process of the selection and recruitment
of experts described above within the broader context of the EKE process as a
whole, and the way such a process is managed. In a report for the European Food
Safety Authority (EFSA: Bolger et al. 2014) propose that once a problem has been
identified a Working Group (WG) is set up by the stake holder. The WG consists of
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Fig. 16.1 A possible EKE process (adapted from Bolger et al. 2014)

a set of experts 18 in the recognized problem area and is responsible for determining
the model and instigating the initial search for data. If a lack of ‘hard’ data is
identified then the WG makes a decision to conduct EKE and select a new group,
the Steering Group (SG), to manage the EKE process: The SG may be a subset
of the WG and/or comprise new members, perhaps with some knowledge of EKE,
and is responsible for analysing the problem of concern to a sufficient degree to
allow them to identify appropriate domain experts and select an appropriate EKE
method. The SG is also responsible for selecting a third group—the Elicitation
Group (EG)—to conduct the elicitation. The EG will consist of experts in the chosen
elicitation method and probably one or more members of the SG/WG with expertise
in the target problem. The EG will be responsible for managing the elicitation
and post-elicitation phases which involve not only administering the EKE method
but also training experts and evaluating and documenting the process. This entire

18These experts will be referred to later as ‘super-experts’ since they have an overview of the
problem as a whole and are responsible for recruitment, selection and management of any other
experts used in the process.
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process is illustrated in Fig. 16.1: the arrows pointing to the right and downwards
represent progression through the process and the arrows pointing up and to the
left feedback and communication: the latter can lead to changes, for example, in
composition of the groups, model specification, criteria for expert selection, and
choice of method.

A scheme similar to that proposed in Fig. 16.1 is being applied to risk assessment
projects in EFSA but at the time of writing an evaluation of its effectiveness is not
yet available.

16.3.2 From Problem Identification to Long-Listing (Stage 1)

In order to identify required expert knowledge, Bolger et al. (2014) recommend the
construction of an expert profile matrix. This is a table of essential and desirable
expert characteristics based on definitions and types of expertise described in Part
I and relevant ‘roles’ (e.g. the sort of job roles where required expertise might be
expected to reside—these roles help in the search for suitable experts but should
not be overly constraining i.e. attempts to look beyond these roles should ideally
be made). To illustrate what an expert profile matrix might look like we present the
following real example of a risk assessment exercise where a probabilistic EKE was
performed (EFSA 2013).

“To assess the risk of introduction of Rift Valley fever virus (RVFV) through the movement
of RVFV-infected (previraemic and viraemic) animals into designated countries of North
Africa and the Near East, also referred to : : : as the Region Concerned (RC).”

Table 16.1 shows an example profile matrix that could be applied to this
problem (it is not the one actually used as the concept of the expert profile matrix
was still under development at that time). The table should be read from left
to right. Thus there are three kinds of substantive expertise that it is essential
should be represented on the expert panel (epidemiological and/or virological,
disease surveillance, and risk assessment) and two other kinds of expertise that we
would ideally like represented on the panel (concerned with livestock transport and
food safety). Normative expertise, in this case knowledge of probability, was only
deemed essential for the risk assessment experts and was considered not applicable
to livestock transport experts. Specific expertise with regard to RVFV is only ever
considered desirable largely because of the few experts who have this specialism,
however, where possible experts from the RC were to be selected, partly for political
reasons, and partly for their specialist on-the-ground knowledge. An international
perspective was also considered desirable in most cases and essential in the case of
risk assessment and food safety issues. Finally, experts were sought from different
countries within the RC and in different roles: again partly for political reasons and
partly to introduce heterogeneity of perspectives on the problem.

The matrix suggests the kind of experts to search for, and the skills that they
should have, but it usually will not be necessary to have a representative for each
cell in the matrix (which is just as well because finding sufficient numbers of experts
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is often difficult). For instance, in the example in Table 16.1 there may not need to
be an expert of every role from every country, but merely a selection across both
dimensions (but see Sect. 16.2.5.1 above regarding quota sampling). Similarly a
balance of specialists and generalists might be sufficient rather than one of each for
each kind of substantive expertise, for which expert skills that are merely desirable
might be dispensed with (or perhaps provided through training). In the Rift Valley
case 18 experts attended Sheffield elicitations and this was deemed sufficient—
most experts could cover several cells of the matrix—however, it was noted that
no livestock transport experts were invited and that that was a potential limitation
(EFSA 2013).

Once a matrix, or some other list of criteria, has been created a long-list
of potential experts can start to be compiled on the basis of, for instance, SG
and WG suggestions, the sponsor’s and others’ databases, and social/professional
networks. The long-list can be further augmented via snowballing, in other words,
asking experts who have already been identified to nominate other potential experts
etcetera. It may be noted that snowballing can lead to biasing the sample of experts
towards particular interest groups and networks relative to others so, as a recruitment
technique, it should be used with open eyes (but the same can be said of any expert
recruitment method since it is not usually possible to sample randomly). The GEM
questionnaire and/or other peer assessment instruments could be sent out during the
snowballing process.

Some further issues about approaching experts for potential recruitment include:
who should approach prospective experts (e.g. someone known and trusted might be
more persuasive than a stranger, and someone with status might be more persuasive
than someone without); how approaches should best be made (e.g. a phone call
might be more effective than an e-mail); and how experts should be compensated
(e.g. while some financial reward may be a useful incentive to participation many
experts will have intrinsic motivation to take part and this can be ‘crowded-out’ by
large financial rewards).

As much information about experts should be collected as is necessary to
determine their fit to the Expert Profile Matrix. Some information may be available
in advance of approaching the experts, for instance, if an expertise database is held.
Other information, such as a CV can be requested when experts are first contacted
or, perhaps better, after they have indicated an interest in participation. As already
discussed, CV’s contain useful information for profiling experts, but may not hold
all the information required. It may therefore be necessary to construct a special
questionnaire regarding the particular abilities of the prospective experts relative to
the foresight task in question.

Bolger et al. (2014) present an example questionnaire for use in identifying
particular expert skills, which I already introduced above as the E-SQ: some
example questions are shown in Table 16.2.19 This questionnaire is designed find

19This questionnaire was an adaptation of the one first developed by Wright et al. (2004), based
on earlier work by Bolger and Wright (1994) and Rowe and Wright (2001): the example questions
presented in Table 16.2 have been further edited by the current author since the 2014 version.
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Table 16.2 Example items from the E-SQ

Part A. The nature of the expert’s job
• What is the title of your job?
• How would you describe your area of expertise?
• How many years of experience would you say you had in your area of expertise?
• Would you describe that experience to be practical and/or field-based vs. theoretical and/or

lab-based?
Part B. The type of judgments the expert makes while performing his/her job and what help, if
any, s/he receives in making these judgements

• Describe the most important judgements that you make on a regular basis in your job.
• When you have to make work judgements, to what extent do you rely on your judgement

alone, and to what extent do you rely on other information sources (such as manuals of
statistics, computer databases or programs, etc.)?

• Describe any other information sources you use.
Part C. Whether the job requires an expert to make probabilistic judgments and how such
judgments are made

• Considering the uncertainty you assess at work, do you ever make any of the following
types of judgments (I estimate the likelihood/probability of : : : , I estimate the chances
of : : : , I estimate confidence in : : : )?

• How often, on average, are you called upon to make risk judgments of these types?
• When you make uncertainty judgments, what forms do they take? For example:

- Numerical estimates (e.g. 0.5, 50%, 1 in 2)
- Verbal estimates (e.g. likely, infrequent)
- Comparative (e.g. ‘this likelihood is similar to another likelihood’)?

• If you make numerical estimates of uncertainty, what form do they take? For example:
- Percentages (e.g. 50% chance) ; Point probabilities (e.g. 0.5 chance)
- Confidence intervals (e.g. range within which you are 95% confident the true value falls)
- Probability distributions (as previous but more than one range assessed for each quantity)
- Frequencies (e.g. 3 out of 10 chances of occurring); Odds (e.g. odds of 2 to 1 against it

occurring)
- Ratings on scales (e.g. point 2 on a 7-point scale of likelihood)
- Other type of numerical judgement: please provide details

Part D. The nature of data and models used to make judgements, whether any feedback is
received about the quality of judgements, and whether any training has been received

• In making your work judgements, do you receive any feedback about their accuracy?
• If you receive some feedback, what form does this take?
• How soon after a judgement, on average, do you receive feedback?
• How would you rate the ease of making good judgements in your work?
• Do you make use of a formal model for making your work judgements?
• How would you rate the availability of data that you use for your work judgements?
• How would you rate the quality of data that you use for your work judgements?
• Did you receive any training to make judgements? If so please describe.

out about the nature of an expert’s job (Part A), and the type of judgments that he or
she makes while performing it and what help, if any, the expert receives in making
these judgements (Part B). In particular, we are interested in whether or not the job
requires an expert to make probabilistic judgments and how such judgments are
made (Part C). Finally, we are interested to find out what sort of data and models
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are used in making judgements whether any feedback is received about the quality
of judgements, and whether any training in making judgements has been received
(Part D). The questionnaire is inspired by Bolger and Wright’s (1994) analysis in
terms of learnability and ecological validity of tasks that we discussed above in
Sect. 16.2.4.2. For example, match between the judgments normally made by the
expert and those s/he will have to answer in the EKE can be determined from parts
A to C and possibilities for learning to make (probability) judgements from part D.
Information about training received given in Part D can be useful in determining the
training requirements for the experts prior to the elicitation exercise.

The E-SQ can be sent out either as expert names come available, in which
case the responses can be used to assist long-listing (by comparison with the
Profile Matrix), or can be distributed after a long list has been constructed. Once
responses are received they can not only be used for screening to produce a short
list, and assessing training needs, as I will describe in the next section, but also
can be helpful for determining the elicitation protocol to be used. For example,
the responses to the questionnaire could help to determine whether the nature of
the potential panellists’ expert practice is more qualitative, thus perhaps favouring
behavioural aggregation methods where there is ‘discussion’ between the experts
(e.g. Sheffield,), or more quantitative, thus favouring mathematical aggregation
approaches (e.g. the Classical Method), or a mixture of quantitative and qualitative,
thus favouring mixed aggregation methods (e.g. IDEA, or Delphi with exchange
of rationales). E-SQ responses could also indicate the potential availability of seed
questions for the Classical Method.

16.3.3 From Short-Listing to Wrap-Up (Stage 2)

16.3.3.1 Screening, Short-Listing, and Weighting

Depending on the choice of elicitation method it may be necessary to short-list
experts from the long-list created at Stage 1. For example, as I have already noted
above, behavioural aggregation methods usually require bringing experts together
physically to a workshop where experts discuss the topic at hand with each other,
and make their judgments, under the supervision of the elicitor. In the Classical
Method experts are usually asked to answer the seed questions individually and
again under the direct supervision of the elicitor. For such methods it may therefore
be too difficult or expensive to have more than a few experts. As I also noted in
Sect. 16.2.5 of Part I, there may be diminishing returns to having more than a few
experts. In the unusual situation where there are more experts on your long-list who
are willing to take part in the elicitation exercise than you need, those experts with
the most, and most relevant, expertise as indicated by responses to the questionnaire
could be put onto a short-list.
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The E-SQ described above can be used for screening here, for instance, by com-
paring responses to the essential and desirable features of the Expert Profile Matrix:
this is equivalent to common procedures for short-listing job applicants.20 Some
other EKE methods, such as the Classical Method, require weighting the experts
in terms of their performance on similar judgment problems (‘seed questions’).
Although in the Classical Method less capable experts are included in the elicitation
but given lower (or possibly, no) weight, such specially designed tests could also be
used to determine who is, or is not, short-listed.

Information from CV’s and other sources can similarly be used for screening but
if the intention is to weight experts on the basis of their perceived ability (other than
the crude weighting of accept or reject for the exercise) it is probably necessary to
ask additional questions to those in the E-SQ21 and to supplement the data normally
found on CV’s. Potential questions include specific ones relating to required aspects
of substantive or normative expertise: these are akin to the seed questions of the
Classical Method. Any questions designed to test substantive aspects of expertise
will presumably have to be posed by super-experts (probably from the WG). Peer or
self-assessments, or simple metrics such as years of experience in role or number of
publications and their impact (e.g. number of citations) could also be used, subject
to the caveats raised in Part I. Weighting of experts who have passed screening, and
are therefore participants in the elicitation exercise, is relevant if there are several
experts who may differ in judgment accuracy (defined variously from simple hit-rate
or judgment error to the realism of uncertainty assessments).

16.3.3.2 Training, Retention and Documentation

In the course of expert screening training needs may be identified thus this is a
good place to briefly discuss training (but only at a general level because details of
training requirements, delivery and content are specific to each particular protocol).

Training will most usually be related to expression of uncertainty (i.e. normative
rather than substantive aspect of expert judgment): the E-SQ has questions for
this purpose. Another approach is to give all experts normative training as part of
induction, perhaps using distance-learning materials such as a video presentation
or an e-learning package. Although not usual, training could also be given in
substantive expertise. For example, if forecasting would benefit from expertise from
several different specialisms then some training, for instance in terminology and
basic concepts, could be given across specialisms so as to assist communication (i.e.
knowledge exchange between experts). Such training in substantive issues might

20However, in some other important respects, expert selection is not like job selection i.e. you want
to find people with the right skills rather than reject people with the wrong skills : : : so it is more
akin to head hunting.
21Potentially, scores for weighting could be derived from this questionnaire but this has not been
attempted yet, let alone any validation of weights thus derived, therefore this is something for
future research.
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most easily be accomplished face-to-face in a facilitated workshop, but could also
conceivably be achieved online, for instance within a Delphi process.

Training in normative aspects is most usually given by the elicitors whereas
training in substantive aspects would most appropriately be given by domain
experts, perhaps the super-experts who have a broad view of the problem: as noted
earlier, super-experts are often those in the Working Group who identified the need
for EKE in the first place and are responsible for initial problem formulation, and
developing the Expert Profile Matrix and Expert-Selection Questionnaire. If training
is done remotely then there is more flexibility regarding who it is performed by (and
when it is done; i.e. if it is face-to-face then it is likely that you will want to do it at
the same time as the elicitation exercise itself).

As should by now be clear, experts are a valuable resource so you want to make
sure that they complete the EKE (and complete it to the best of their ability; i.e. have
not only appropriate training, as just discussed, but also sufficient motivation to try
hard to perform well at what are often difficult tasks): depending on the protocol,
some EKE’s may take many months to complete. It may also be the case that you
wish to re-use experts for follow up probes or future complete EKE exercises.
How to motivate and retain experts are therefore important considerations when
conducting an EKE.

I have already touched upon some aspects of motivating experts, such as
appropriate payment and proper-scoring rules that reward truthful answers (which
could be the basis for performance-related payment), however, in my experience, the
key to both motivation and retention is the maintenance of good—accurate, speedy,
friendly yet respectful—channels of communication between those conducting the
EKE and the experts. Intrinsic motivation can be kept at high levels if experts
feel involved and valued, and this can best be achieved by ‘keeping them in the
loop’. Thus any queries from experts should be answered rapidly (and without
making them appear that they are being a nuisance or ignorant, even if they are) and
feedback should be given about their contributions in particular, and the outcomes of
the EKE more generally, as soon as they become available. This may require some
management of expectations if the results may be limited in some way (e.g. due to
confidentiality issues) or, as is often the case, a long time in gestation.

This brings me to what is usually the final step in an EKE: documentation.
Documentation may be produced for many audiences (and purposes) including
the consumers (e.g. for decision and policy making), the elicitors (e.g. to inform
future elicitations), the commissioning organization (who may not necessarily
be either the consumers or the elicitors—also to inform future elicitations), and
the general public (e.g. to justify spending tax-payer money). The experts are
another audience and should receive appropriate documentation in a timely measure
with acknowledgment for their contributions if desired (some experts may prefer
anonymity so agreement over the level of disclosure must be agreed in advance of
publication).
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16.4 Conclusions

We have seen that expert judgments of uncertain quantities are frequently needed
to complete risk and forecast models used to inform decision and policy making.
While an increasing amount of research is being devoted to developing protocols
for eliciting such judgments in an unbiased manner as possible, relatively little
attention has been paid to the question of finding and managing the experts to be
used in an elicitation. In this chapter I have reviewed the ‘state-of-the-art’ with
regard to identifying, measuring and cultivating expertise and attempted to locate
this work within a framework that conceptualizes expert elicitation as a social-
science methodology that has at its heart the goal of producing data of the highest
possible quality in terms of its reliability and validity. To this end, I first explored
the nature of expertise which, through a classification of types of expertise—along
social, epistemic, psychological, and normative dimensions—produced a number of
different indicators that can be ranked in terms of their capacity to differentiate those
with real from those with apparent ability. Beyond indicators, the classifications also
give rise to extant and potential measures of expertise, which I argued are likely to
vary in terms of their reliability and validity.

Further research is needed to establish exactly how these indicators and measures
stand against each other, and what their relative strengths and weaknesses are in
terms of their utility for optimizing expertise in EKE. More generally there is a
need for theoretically grounded and empirically based research to answer a number
of questions relating to the use of experts in EKE, including: should we use expertise
measures just for selection or also to weight the experts? how many experts should
we use in an elicitation? and how many judgments? and if we use seed variables,
how many of them? and what are the upper limits to expert performance?

As a starting point for answering such questions I posed another question: how
might an intelligent system go about making judgments of uncertain quantities?
Once you start to explore this question one discovers that there are potentially
complex interactions between characteristics of the intelligent system on the one
hand and the features of judgment tasks (and elicitation protocols) on the other:
these interactions mean that answers to the superficially straightforward questions
in the previous paragraph become rather nuanced, depending on the personality and
past and current experience of the experts (including their ongoing affective states,
and training/instructions they have received), the judgment task (e.g. its familiarity
and similarity to those faced professionally), and the characteristics of the protocol
(e.g. do experts make their judgments independently or in direct discussion with
others?).

So, to conclude, there is still much work to be done but through careful analysis
of characteristics of experts and the judgment tasks they perform (in the context
of EKE) I believe we can move forward so as to develop both new instruments
for identifying and measuring expertise, and improved systems for selecting and
managing experts in EKE: ‘meta-protocols’ if you like. In Part II of this chapter
I took a few tentative steps in this direction, outlining an example template for
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conducting EKE’s in an organization, and two new instruments—the Expert Profile
Matrix and the Expert-Skills Questionnaire—which, although subject to evaluation,
may assist in the long-term goal of improving the quality of expert judgment input
to forecasting and risk models.
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Chapter 17
Eliciting Probabilistic Judgements
for Integrating Decision Support Systems

Martine J. Barons, Sophia K. Wright, and Jim Q. Smith

Abstract When facing extremely large and interconnected systems, decision-
makers must often combine evidence obtained from multiple expert domains, each
informed by a distinct panel of experts. To guide this combination so that it takes
place in a coherent manner, we need an integrating decision support system (IDSS).
This enables the user to calculate the subjective expected utility scores of candidate
policies as well as providing a framework for incorporating measures of uncertainty
into the system. Throughout this chapter we justify and describe the use of IDSS
models and how this procedure is being implemented to inform decision-making
for policies impacting food poverty within the UK. In particular, we provide specific
details of this elicitation process when the overarching framework of the IDSS is a
dynamic Bayesian network (DBN).

17.1 Introduction

In our increasingly interconnected world, large systems are becoming more common
and progressively more complex. This means that statistical modelling protocols
must also evolve to accommodate these changes. Typically, in this new situation,
decision-makers need to gather evidence from a variety of different expert domains.
Each such domain has a limited number of people who are deemed experts in
particular aspects of the interdependent system. So in such systems, we must
develop ways to combine together evidence from these different domains into a
coherent whole. The evidence we want to accommodate will typically be framed
probabilistically and will often be supported by domain-specific probabilistic
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predictive models. Fortunately, there is now a technique which makes possible
coherent inference over a network of these multi-faceted probabilistic systems that
can provide such decision support for policymakers. We call this composition an
integrating decision support system (IDSS), see Smith et al. (2015a,b).

17.1.1 A Probabilistic IDSS: Its Genesis and Functionality

One complication facing the coherent combination of judgements within an IDSS
is that in the twenty-first century users are now typically teams, here called decision
centres, rather than individuals. The implicit (albeit virtual) owner of beliefs
expressed by this team will henceforth be referred to as the supraBayesian (SB).
This SB embodies the beliefs of the decision centre. Through this construction we
are able to address issues such as statistical coherence or rationality as it applies to
the system as a whole.

Once a coherent system has been built, being probabilistic in nature, these
huge composite models enjoy many of the advantages seen in probabilistic models
of smaller systems. In particular, the algorithms to determine the efficacy scores
are based on widely accepted formulae. Furthermore, these algorithms permit the
smooth combination of expert judgements with any information obtained from
experimental or survey data that might be available to the centre.

The need for such integrated systems became clear to one author of this chapter,
whilst working with Simon French and others as part of a team designing a
decision support system for operations crisis control after an accidental release of
radiation from a nuclear plant. This research was organised as part of a large EU
programme called RODOS (Real-time On-line DecisiOn Support) (Caminada et al.
1999; French and Smith 2016). Part of the decision support led to fast evaluations
of the effectiveness of various candidate countermeasures, integrating information
from a variety of sources in what was then called an “evaluation subsystem”. When
addressing this massive problem, we were forced to separate the description of the
unfolding processes and their threats into components where, just as we described
above, each component was informed by a separate panel of experts. Each panel was
charged with providing its own domain information which was then delivered to the
centre and combined with the results from other panels to score the efficacy of the
different candidate countermeasures. To process information in this way, once the
prescribed inputs from other components were delivered, each component would
need to be able to take and then produce its outputs autonomously.

Although the RODOS development was seminal for its time and the long collab-
oration produced a valuable decision support engine, urgencies in its development
meant that the architects and methodologies on which RODOS depended were often
necessarily naïve. Furthermore, due to the constraints on computational availability,
such a composite system was constrained to fairly coarse scales.

The project raised some important questions about the construction of decision
support systems for multi-faceted problems like this. In particular there were two
main concerns:



17 Eliciting Probabilistic Judgements for Integrating Decision Support Systems 447

1. Firstly, this early system was unable to suitably allow uncertainties to be
incorporated into the combined assessment in a sound or comprehensive manner.
This meant that for example, if the expected consequences of one policy were
marginally better than another, but the uncertainties arising from the first policy
were much greater than the second, then suggesting to the decision centre that
the first option was better than the second was often not formally correct and it
may also have had disastrous consequences.

2. Secondly, the actual dynamics of the situation were often only partially incor-
porated into the evaluation of the system, meaning that it could only provide
snapshots of how scenarios were unfolding.

Now, at last, general probabilistic methodologies are in place that can be imple-
mented to properly process the dynamics of the system (Leonelli and Smith 2015,
2013a). We describe in this chapter how such an implementation is now being
enacted. The theoretical development for IDSS’s developed in Smith et al. (2015a)
needed to address two fundamental questions:

1. “Is it even theoretically and logically justifiable to compose inferential method-
ologies using an overarching system like the one used for RODOS?”.

2. “Can the scores associated with these formally correct and justifiable support
systems be structured in such a way that the necessary calculations can be made
quickly enough for the IDSS to be feasible?”.

The first of these two questions, regarding the logical justification of creating such
overarching systems, can be broken down into more specific queries: “What condi-
tions guarantee all uncertainties expressed by experts are appropriately represented
and processed in such an integrating system? Can the dynamic nature of such
processes be captured and the progressively fine-grained information be processed
appropriately? Can these, at least in principle, be constructed to guide the evaluation
of policies in a way that takes proper account of all the component uncertainties and
dynamics within such a composite system?”. In order to answer these questions
fully it was necessary to show that it was possible to break up a composite DSS
into different, autonomously updated components and subsequently aggregate them
together in a formally justifiable way.

Recently, we have been able to show that under commonly satisfied conditions,
and with a careful construction of the components of the system and their interfaces,
expected utility scores of candidate policies can be either perfectly calculated in
this distributed way or approximately so. The proofs of these recent discoveries are
necessarily rather mathematical and so beyond the scope of this book. However,
these are presented in the public domain formally appearing in Smith et al. (2015a)
and less formally in Smith et al. (2015b) and Leonelli and Smith (2015, 2013a,b).
Furthermore, we can show that within such an integrated system the rationale
behind the different component forecasts can be delegated to panels overseeing the
corresponding components delivering these outputs. Here, we simply present the
relevant summary results of this technical work.
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In addition to these methodological advances, the second question raised the
issue of computational feasibility in relation to speed of such systems for the IDSS
to be feasible. Recent results show the answer to this question also to be “Yes”. The
theory for this assertion, as it applies to various types of such systems is published in
Leonelli and Smith (2015). Therefore, the methodological obstacles that had faced
both the justifiability of the RODOS IDSS and its ability to quickly and effectively
calculate estimates and their associated uncertainties, have now been surmounted.

We note that both the theory and the algorithms referred to above apply to
probabilistic models where both the composite model and its components have
associated probability distributions. Here the changing, probabilistically expressed
beliefs of the expert panels need to be elicited and then processed. Precisely because
these systems are probabilistic, the relevant uncertainties associated with different
candidate policies can be expressed directly via distributions and the stochastic
dynamics represented in terms of various stochastic processes, using very well
understood methods of uncertainty handling.

Of course it is one thing to demonstrate that this type of IDSS is formally
justifiable and feasible to implement in principle, and quite another to apply the
proposed methodology to construct an actual working system that can be used
successfully to help inform a particular domain. Over the last couple of years we
have begun to build such a system for UK food security in collaboration with policy-
makers, using the theoretical development described above. This chapter describes
how we are currently implementing the methodologies and the practical challenges
we face when doing this.

17.1.2 The Running Example of Food Security

High on the UK government agenda is the issue of food poverty. The world
population reached 7.3 billion as of mid-2015, which is the result of an expansion
of approximately one billion people in the last 12 years and projections expect the
total to pass nine billion by 2050 (DESA 2015). It is therefore vital that optimal
use is made of the world’s finite resources for food production (Collier 2009). With
such a growth in population, the demand for food and its affordability has changed
everywhere in the world. Stresses have been exacerbated by an increasingly extreme
division of wealth between the rich and the poor, within and across nations, and the
emergence of food riots in 2008 and 2011 (Lagi et al. 2011). This has resulted in
making food poverty endemic worldwide and an increasingly serious threat to even
wealthy nations such as the UK. As a consequence, it is very timely to develop
decision support tools designed to help government policy-makers to assess the
effects of policies they might enact in order to address the various threats of food
poverty within their local domain. Strains felt by local government in the UK are
currently severe because of progressively decreasing budgets which requires them
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Fig. 17.1 A plausible schematic of information flows for the modules of a UK food security
IDSS, with colours depicting different expert panels. KEY: CoL—cost of living; Credit—access
to credit; Demog—Demography; Economy—UK economic forecasts; Farming—food production;
Food Avail—UK Food availability; Hh. disp. inc.—household disposable income; SES—Socio-
economic status; Supply disrupt—food supply disruption

to implement different forms of cutbacks to financial benefits and spending on social
support, within the populations for whom they are responsible.

In this context, local governments need an IDSS. The overarching food security
IDSS model integrates together all social, political and socioeconomic factors which
may affect food poverty within the UK, shown in the schematic below, see Fig. 17.1.

It is possible to use a variety of different overarching frameworks to embody this
integration. Here, we shall focus our attention on how we perform this integration
when the overarching framework is a dynamic Bayesian network (DBN) which we
define in Sect. 17.3.4.1. DBNs have already proven to be particularly useful when
we have multi-faceted, interdependent systems which need to incorporate multiple
models, natural processes and contextual information, for an example see Johnson
and Fielding (2010). As well as modelling the expected course of a process, these
networks can be used as a framework to intelligently integrate uncertainties about
the impact of different events which would result from selecting different policy
choices, driving mechanisms or external shocks. Furthermore, this framework can
be embellished into a full probabilistic model to enable the decision centre to
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combine expert judgement with data that tracks the unfolding process, as well as
utilising new experimental evidence as and when this arrives. These methods use
general probabilistic machinery, such as Bayes Rule, in ways discussed in Chap. 6
of this book (see Hartley and French 2018).

Whilst developing the IDSS we have found that, perhaps rather predictably,
the expert panels largely mirror panels already created by organisations and
governmental agencies. In the schematic, each colour depicts a different expert
panel. The model is informed through a number of sources, for example:

• Demography and socio-economic status statistics (SES) distributions are avail-
able from the Office for National Statistics (ONS),

• Costs of housing, energy and general cost of living (CoL) are available via the
consumer prices index (CPI),

• Food trade (imports and exports) and farming yields can be obtained from the
Department for Environment, Food and Rural Affairs (DEFRA),

• Supply chain disruption and overall food availability can be obtained through
DEFRA, the foods standards agency and the food and drink federation,

• Access to credit is available from the Bank of England,
• Household disposable income distributions come from ONS,
• Food costs are via the cost of a typical basket of food, which is systematically

calculated as part of the UK CPI as calculated by the ONS.

Within each of these expert panels lies a complex sub-network. For example, the
consumer price index (CPI) describes a typical basket of goods and services which
are purchased by an average UK household, see Gooding (2016), ONS (2013). The
average price of such a basket is reviewed both monthly and yearly. As we are
interested in variables such as food costs, we can use the food element of the basket
of goods as a measurable proxy. The model of the basket of food is disaggregated
into various pre-defined food subgroups such as meat, fruit, vegetables etc. By
probabilistically modelling each of these diverse subgroups individually and then
reflecting on natural dependencies between them we can derive sub-networks which
can be combined together to provide forecasts for the cost of the entire food basket
over time.

Another sub-network is concerned with modelling pollination of food crops
within the UK and this will form our detailed example in Sect. 17.3.2.5. It is
estimated that 70% of important food crops are pollinated by bees (Datta et al. 2013)
and the contribution of other insect pollinators is also significant (Rader et al. 2016).
So the status of pollinators, and of bees in particular, is a key concern in global food
security (Blaauw and Isaacs 2014; Lonsdorf et al. 2009).

In this chapter we will describe in some detail how we constructed the proba-
bilistic component relating to pollination within this system, itself a DBN. We will
discuss the implications of the sort of elicitation required within this context and
various sorts of diagnostics that can be used to check its plausibility.
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17.2 Framing a Complex Dynamic System

Although IDSSs may seem to be a suitable structure within which to model complex
dynamical processes, it is not always appropriate to formulate a problem in such
a manner. There are a number of criteria which must be fulfilled for an IDSS to
be fully justifiable. Building an IDSS for a multi-faceted, interdependent system
requires the following properties to hold:

1. Since the decision maker is typically a centre rather than an individual it is
necessary that the centre needs to be populated by individuals who want to act
constructively and collaboratively. In other words, the ‘centre’ must be motivated
to strive to act as a single coherent unit for a common goal.

2. In particular, there must be consensus about the appropriate utility structure on
which the efficacy of the candidate policies could be scrutinized, were certain
unfolding of events to be certain. For example, such a consensus might be that
the centre’s utility functions should have preferentially independent attributes,
see Keeney and Raiffa (1993).

3. Consensus also needs to be attained about an overarching description of the
dynamics driving the process. This can be allowed to take a variety of forms
depending on the context. In this chapter, we have assumed that this overarching
structure can be represented by a DBN (defined in Sect. 17.3.4.1) although other
frameworks can be used, for example see Leonelli and Smith (2015).

4. The necessary coherence of the group requires there to be a consensus about who
is expert about what in order to identify appropriate expert panels. In a formal
sense, this consensus in turn implies that individuals outside a domain should be
prepared to adopt the beliefs of the expert panel of that domain as their own, see
Smith et al. (2015a). It can then be proved that they should then delegate their
reasoning about every domain to the appropriate panel.

Within our two contexts, the overarching food poverty system and the pollinator
abundance sub-network, the first condition of a collaborative decision making group
was broadly met. This means that all local government officers agreed that food
poverty is an issue requiring action, although meeting this need impinged on several
budget-holding departments, so requires negotiation and co-operation. Also, the
recent National Pollinator Strategy was developed collaboratively. However, this
co-operative approach is not always taken. Many decision centres work more like
a court of law, especially those in public health policy making. In these cases,
advocates fight both the case for and then against a policy and win the argument
in a competitive way. In such a context, the support system we define here can then
at best only support one side of the argument. Note that the sorts of methods we
describe here have been used for exactly this purpose in a court of law (Puch and
Smith 2002).
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The second condition, utility consensus, is often delivered through decision
conferencing. Very briefly, a facilitated discussion encourages the centre to first
determine sets of broad objectives and preferences the centre should bear in mind
when assessing the efficacy of different candidate policies. Then agreement is
negotiated about a vector of attributes of the utility function that best capture the
essence of these objectives, see Fig. 17.2 and Sect. 17.3 for more details. These
vectors of attributes of the utility function must be specific enough to be measured
in an unambiguous way, i.e. passing the clarity test, see Howard (1988). Thus, for
example, an objective described as “minimising the number whose quality of diet
was low over the coming year” could not be treated as an attribute, while on the
other hand “reducing the number of individuals treated in hospitals A for conditions
which included explicit mention of malnutrition within a geographic region B from
Jan 1st 2020–2021” would be a candidate attribute.

The vector of attributes of the utility function then provides not only a transparent
and unambiguous picture of what might happen in the future, but also one that
balances different aspects implied by a given objective. In the context of the types of
decision support we give here, it is very common for the utility function to depend
on attributes that estimate the impacts of different candidate policies well into the
future.

The quantitative form of a utility function will eventually need to be elicited in a
manner which is appropriate to the centre. This utility is a function of the possible
set of future values of the whole composite vector of attributes. There are many ways
to do this that are described in detail in Edwards et al. (2005), French et al. (2009) or
Chaps. 6 and Chap. 10 in this book (see Hartley and French 2018; Gonzalez-Ortega
et al. 2018).

The next step in the elicitation process needs only to have identified the attributes
of the utility functions, but not the quantitative form of the utility function itself. So
although discussion needs to draw out those clearly specified measures on which
preferences might depend, at this stage it is unnecessary, and indeed often unwise,
to assign values of these attributes. This is often most efficiently performed once the
overall structure of the problem and its relationships to other processes has been at
least provisionally mapped out in a way we will describe below.

Remark 1 The elicitation of an IDSS can only be done robustly if performed
in an iterative manner, meaning we review the qualitative structure of the IDSS
repeatedly. At periodic intervals, previous steps of the process are reviewed and
checked in light of the more profound understanding of the process acquired
through further elicitation. This enables modification and improvement to the
various contributing elements defined in the construction of the qualitative form
of the model. The process continues until the decision centre is content that the
structure is fit for purpose, called “requisite” (Phillips 1984).

Remark 2 Since the process of elicitation is an iterative one, it is often wise to begin
with some simple measures, proceed with an initial structural elicitation, and then
to revisit the initial list of attributes of the utility to consider whether these need
to be adapted or supplemented so as to better measure the efficacy of the possible
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Fig. 17.2 A flowchart mapping the creation of an IDSS with section numbers to refer readers to
specific sections of this chapter for more detail
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candidate policies. In our experience it is often only after the science, economics
or sociology driving the process has been more fully discussed that the decision
centre can become fully aware of the suitability of certain types of utility attribute
measures.

Since household food security (food poverty) is not directly measured in the UK,
it was necessary for the local government decision-makers to devise a suitable proxy
for this measure which is both relevant to their areas of responsibility and measur-
able. Through a sequence of decision conferences, we elicited from council officers
three areas which they expect would be impacted by increasing household food
insecurity within their jurisdiction: educational attainment, health (as the effects of
malnutrition, or threats of malnutrition, on health in the short medium and long
term), and social cohesion. Finally, of course, the cost and resource implications
of applying any ameliorating strategy to address these negative consequences must
be taken into account. Discussions also determined suitable measurements of these
four attributes or proxies which would make suitable surrogates.

In the case of educational attainment, it is well-established that on average, pupils
who are entitled to free school meals have a lower educational achievement in public
examinations than pupils not entitled to free school meals. Eligibility for free school
meals is a proxy measurement for deprivation since it is based upon household
income. Educational attainment is assessed by a vector of different examination
results: students are expected to gain SATs level 4 or above at age 11, and five or
more GCSEs, including English and Maths, at grade C or higher at age 16. The
UK Department for Education defines disadvantaged pupils as any child in care of
the local authority, or any pupil who has been eligible for free school meals at any
time over the last 6 years. Pupils classified as disadvantaged have a lower average
educational attainment record than other pupils and there is a direct correlation
between level of qualification and future employment and earnings.

Health concerns are captured by admission to hospital with a primary or
secondary diagnosis of malnutrition, and death with malnutrition listed as a
contributory cause. Figures are available from the UK Hospital Episode statistics for
records of diagnoses of malnutrition and death records indicate whether malnutrition
was a contributing factor. It is well documented that malnutrition has long term
effects on the health of an individual, such as a greater risk of high blood pressure.
As well as directly impacting the quality of life for the individual concerned, long
term effects of malnutrition place a greater burden on the healthcare system. These
longer term health effects routinely measured using mortality and morbidity indices.

Social discontent might be expressed in terms of, for example, food riots
provoked by the inaccessibility of food stuffs, Lagi et al. (2011). The term ‘riot’
is tightly defined in UK law and although they are rare, they are a costly occurrence
which the decision-maker is keen to avoid. Crime statistics data collected by the
ONS record civil unrest including riots, criminal damage and looting.

Cost is measured directly by the amount of money that local councils must
spend to implement and uphold any change in policy. For example, estimated
costs associated with different intensities of disturbance can be estimated from the
resource implications and damage to infrastructure in past riots.
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Remark 3 Although the initial problem may look overwhelmingly complex, by
focusing the centre and its expert panels on those issues that really impact on
final outcomes we can vastly reduce the scope of deliberation. In particular, it
soon becomes apparent to all that it is not necessary to capture all available expert
judgements for decision support, but only those features that might be critical in
helping to discriminate between the potential effectiveness of one candidate policy
against another.

Once attributes of the utility have been decided, the next task is to construct
a description of the processes leading to the different values of the utility attribute
vector. This enables the centre to capture qualitatively how the system might respond
to key unfoldings of events, see Sect. 17.3.2. Although this issue has not yet been
addressed within this book, in our experience, this part of the elicitation process
is a critical part of the elicitation process. Fortunately, many useful techniques
for capturing these explanations have been widely documented and tested against
thousands of applications (Edwards et al. 2005). In the following sections we review
the basis of this work. We then describe how we are currently applying these
methodologies to construct an IDSS for policies related to household food poverty
and the sub-module within that IDSS pertaining to insect pollination of food crops.

17.3 An Agreed Picture of the Whole Probability Process

We shall now discuss in detail the process of creating and populating the IDSS.
The steps below are based upon published theory and experience of applying
these models to specific scenarios. We conclude this section with a look at our
food security application. Throughout this section it may be useful to refer to the
following flowchart (Fig. 17.2) which synthesises the process of creating an IDSS
and refers the reader to specific section numbers as required.

17.3.1 An Overarching Structure and Common Language

In Remark 1, we required the centre to agree an overarching qualitative structure
to provide a plausible description about how different features of the development
relate to one another and how the future might potentially unfold. Obviously this
description needs to be transparent enough to be understood by all experts in the
system. In this application it can be expressed as a graph of vertices and edges which
together express how variables in the system are believed to relate to one another.
The logical foundation and probabilistic compatibility of our description ensures the
graph can be expanded later into a full description of the stochastic process driving
the utility attributes in any given unfolding of events. This in turn will enable the
centre to evaluate the expected utility scores associated with those policy choices
open to it.
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This structure needs to be elicited and this elicitation should ideally include
representatives of all domain experts across the system as a whole, and is best
conducted using common language (as far as is possible). It follows that the type
of elicitation we use for this stage is most often behavioural: the experts discuss
various options and try to arrive at a consensus about the possible dependences, see
Korb and Nicholson (2011), Smith (2010).

Remark 4 If there is strong disagreement about whether or not a dependency exists
in the system then the group of domain experts should assume initially that a
dependency does exist and only later explore whether in the face of evidence such
dependence is supported. On the other hand, if there is a broad consensus that
if a dependence might exist it will be weak then it is usually wise to omit this
dependence in the description and only revisit and re-examine this assumption later
when the understanding of the underlying process is more mature. In this way we
are often able to contain the structure to a manageable size.

The question remains about how exactly we can capture such dependence
hypotheses formally without first eliciting probabilities. Fortunately, a mature
industry of graphical modelling has now provided us with a new set of inferential
axiomatic systems. One language is based on the semigraphoid axioms (Dawid
2001; Pearl 1988, 2000; Smith 2010). These rules simply specify two simple proper-
ties we might expect to hold whenever someone asserts that knowing one collection
of measurements X does not help the prediction of a vector of measurements Y once
the vector of measurements Z is known. More formally and precisely:

Definition 1 Suppose that the client believes that the measurement X is irrelevant
for predicting Y given the measurement Z (written Y ?? XjZ) so that once she
learns the value of Z then the measurement X will provide her with no extra useful
information with which to predict the value of Y.

We assume that all members of the decision centre accept that when they make
an irrelevance statement like the one above then two properties hold (Smith 2010).
The first, called the symmetry property, asks that for any three disjoint vectors of
measurements X;Y;Z W

X ?? YjZ , Y ?? XjZ:

In words this states that if Y is irrelevant for predicting X once Z is known then
also X is irrelevant for predicting Y once Z is known. It is simple to check that
this property holds for most probabilistic and many non-probabilistic methods of
measuring irrelevance.

Even more compelling is a second property, called perfect composition, see for
example Pearl (1988), for an explanation of this. This property asks that for any four
disjoint vectors of measurements X;Y;Z;W;

X ?? .Y;Z/jW , X ?? Yj.W;Z/&X ?? ZjW:
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More informally, this means that when forecasting X already knowing the value
of W, the statement .Y;Z/ are irrelevant to X is the same as saying Z is irrelevant
to X and that after learning the value of Z, Y provides no relevant information about
X either. Bayesian inference automatically satisfies this reasoning rule (as do many
other alternative inferential systems).

These two reasoning rules allow us to elicit a collection of irrelevance statements
from experts and deduce many others as logical consequences. More importantly,
we note that this can all be done without mentioning probability and therefore can
be done using common language. Furthermore, the graphs of the BN can be drawn
directly from these types of irrelevance statements, requiring only one assertion for
each vertex in the graph. The BN so constructed has a logical integrity and can be
used as an overarching framework based on verbal statements from experts that can
then be later embellished into full probability models. Each irrelevance statement
of the form above then just transforms into a conditional independence statement in
that probability model.

17.3.2 Defining the Features and Variables in a Problem

In any decision analysis we need to determine which parts of the process are both
intrinsic to the description of the process, and are as yet uncertain. Uncertainty in a
system can arise either due to lack of hard data in a certain element of the process
or because the knock on effects from the implementation of a specific policy are not
fully predictable.

17.3.2.1 What Are the Centre’s Attributes and Time Frames?

The decision analysts along with the decision centre first import into the discussion
the preliminary vector of utility attributes of the problem that might inform a one
step ahead prediction of the value of each utility attribute vector, (Smith 2010).
These are termed the “Level 1” vectors, see Fig. 17.2. We call the vectors which
have direct relationships with the attributes of the utility, the level one vectors. Those
variables which impact on the level one vectors, the level two vectors, and so on.

Within this early phase, the decision centre also need to decide what time step
is the most natural one to use for the purposes of the support of the IDSS. The
appropriate choice of these steps depends on a number of factors: for example
the speed of the process, how relevant data is routinely collected on some of the
components, and some technical acyclicity assumptions that are typically known
only to the decision analysts. In our pollination application, the agricultural cycle is
typically annual whilst pollination is required only for specific months of the year
and pollinator life cycles are measured in weeks. However, the abundance of honey
bees is measured in an annual survey. The most crucial factor in determining the
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most appropriate step length is the timing in which the success of the system will
be appraised. This early stage of the elicitation is perhaps the most delicate because
there is often conflict between the granularity of for example, informing economic
models of the process and sample survey regularity, and the needs of the system.
This is an important issue. The granularity needed is driven by the granularity of
the attributes of the utility. Decision analysts take a great deal of care to match
precisely the outputs of a donating panel with the requirements of a receiving panel,
see Remark 5. When these do not naturally align, then some translation may be
needed between them, the nature of which will be advised by the relevant expert.
It can also be shown that the further from the utility vectors a vector is, the less
precision is required, as these have a much smaller impact on the utility scores for
the candidate policies. Typically, the decision analysts would advise that the needs
of the centre and the time horizons at which they work should be prioritised when
making this trade-off.

17.3.2.2 Who Can Inform These Attributes and How?

We then need to identify experts who might understand how to forecast the future
value of each utility attribute vector, albeit in the light of some necessary input
information on these features, see the next point. Note that this elicitation will need
to be framed within the granularity of the support system as discussed above. These
experts will provide a provisional list of further candidates to populate the panels, as
described in bullet point 4 in Sect. 17.2. Note that sometimes it can be appropriate
for a single panel to be responsible for more than one utility attribute vector.

It is important to note that the entire process is highly iterative. General experts
on the system (for example academics) use literature and any prior knowledge to
sketch the potential process. Then experts are identified who might lead panels of
experts and they confirm or adjust the understanding of the systems component
variables and the dependencies between them. If new variables or subsystems are
so identified, then experts from these domains are consulted and their contributions
incorporated. This process continues until all the relevant variables are identified
and the relationships agreed.

17.3.2.3 Firming Up Meaningful Inputs and Outputs

Representatives of the expert panels are then asked what past or contemporaneous
values of the attribute vector or other “Level 2” features (see Smith 2010) they
would need to know before being able to calculate the forecast distribution of the
utility attribute they take responsibility for—again over the required granularity.
The newly identified Level 2 features must then be firmed up and clarified so that
they are able to pass the clarity test (Howard 1988, 1990). If the panel is supported
by its own domain specific probabilistic software then this question is often easy
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to answer. Since such software is usually more fine grained than is needed by the
encompassing IDSS, the required attribute forecasts are often simple aggregates—
across time and variables—of statistics already calculated by the software. However,
in this case our task is often simply to ask the panel to use their software and so in
this way to contribute various means and variances conditional on the values of their
required inputs. This, for example, is true of many of the economic components
used in our Food IDSS. On the other hand it is also often the case that no such
probabilistic model is currently available. In this situation the IDSS designers will
need to construct a probabilistic module that is able to do this job. Later in this
chapter we will describe in some detail how we have performed this task for the
pollination services sub-module within the food IDSS. We will see that this usually
involves the construction of another qualitative sub-system—often itself either a
BN or dynamic BN (DBN). First, new provisional panels need to be identified that
can discuss and describe these processes. We will then need to elicit from these
discussions a vector of measurement variables that can act as a surrogate for the
expert’s elicited understanding of the underlying processes. Out of this construction
the experts will need to specify inputs it needs to be able to forecast its output.
In the pollination example below, one of these concerns different types of weather
conditions provided through meteorological forecasting systems, determining how
insect pollinator abundance might fluctuate within a given year.

17.3.2.4 Iterations to Provide Causal Chains

We now take the Level 2 vectors of input measurements needed for the forecasts
of the utility attributes and repeat the process substituting these clearly defined
vectors for the attribute vectors above. The collections of any vectors needed as
input to these models that have not already appeared as either Level 1 or Level 2
vectors we label as “Level 3” vectors. So in the weather example above these new
components might involve various measurements of climate change like average
earth temperature that will affect weather changes.

We iterate this process, deepening the levels until all input variables have
currently known values or are sufficiently remote from the attributes of the process
to not have a major impact on the forecasts needed by the system to determine high
expected utility scoring policies.

17.3.2.5 Example

Within our Food IDSS one attribute of the utility function of the centre is health of
the given population as a function of possible malnutrition.

The predictions of this vector of health indicators appear as functions of other
“input” variables as defined by the relevant expert. One of the components of
this input variable is the cost of feeding a household, based on the cost of an
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appropriately defined basket of food for a household (a Level 2 variable), which
passes the clarity test, (Howard 1988). To provide an appropriate joint distribution
over components like these will be the primary task of our team. In this sense it will
constitute one of the attributes of this expert panel’s utility.

One of the inputs needed to forecast this food cost is a specific clarity tested
measure of the abundance of particular fruits which will be processed into products
in the basket of food above (a Level 3 variable). These in turn will be influenced
by pollinator abundance measures (a Level 4 variable). These measures will need
models as functions of other Level 5 variables, like weather and environmental
factors.

Once this process has been completed the centre will have elicited a collection
of random vectors partitioned into depth levels where the level of this depth reflects
its distance from the attributes of the decision centre’s utility function.

Remark 5 Within this process it is absolutely critical to ensure that the outputs
delivered by expert panels at deeper levels of the process precisely match the
input requirements of the receiving expert panel. Since the donating panels and the
receiving panels work in different domains there is a clear danger of confusion at the
interface. Unlike in many expert systems, note that in these composite systems the
output variables delivered by the expert panels are determined by the needs of the
receiving panel and are not self-determined. This helps simplify the system, but the
needs of the receiving panel can be unfamiliar to the donating panels. Sometimes
quite deep discussions are needed between representatives of the adjacent panels
before this delivery can be successfully understood and addressed. In extreme cases
this might require the panel to develop some interface software, using their domain
knowledge in conjunction with a statistical model to transform their standard output
to the needs of the composite system.

Remark 6 It can be shown both in a formal sense and also empirically that the
distribution of variables furthest away from any attribute tends to have the least
effect on the scores of competing candidate policies. So often ignoring uncertainties
and using a naïve plug in estimate for these variables, based on for example official
statistics and predictions, sample surveys or estimates from an expert who know the
field, will be sufficient. An experienced analyst will be able to guide the decision
centre when sufficient levels are in place. Typically we would go one level deeper
than needed so that deliberations of how things are affecting each other and any
associated significant dependences are informed by this extra level.

Notice that the random vectors informing levels of the system described in
Fig. 17.4 are often in practice vectors that will need to be indexed by time. So,
for example, pollination by bees is affected by weather conditions the previ-
ous winter—affecting colony overwintering survival—and also contemporaneous
weather conditions affecting bee activity levels. We often need to study and depict
these different categories of relationships in the next stage of the elicitation process.
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17.3.3 Listing Measurements in a Causal Order

Following the process described above we obtain a hierarchy of well defined random
vectors fX1;t;X2;t; : : : ;Xn;tg, where t D 1; 2; : : : for the prediction of the process in
the coming time period. The vectors associated with a given time period are called
a time slice. Each of these vectors can be associated with a delivered output from
one of the panels. In both our running example of the overarching food system and
pollinator sub-network, the natural forecast time periods turned out to be a year.
Note that the overarching model need not have the same time period as component
models. Here, we index these vectors so that the last vectors in the list corresponded
to the attributes of the decision centre’s utility function, whilst the earliest random
vectors correspond to the random vectors in the deepest levels of the process, Xi;t,
conventionally called its parents, as Pa.Xi;t/, i D 1; 2; : : : ; n,. Notice that from the
construction and labelling above Pa.X1/ is the null vector—because by definition
X1 will need no inputs from other components in the system. We call those vectors
Xi for which Pa.Xi/ is the null vector, i D 1; 2; : : : ; n, founder vectors.

We have consciously chosen the elicitation above to be consistent with the
principle that it is easiest to think about a vector by seeing this output as an effect
whilst inputs can be loosely seen as causes. We are now able to construct pictures,
as in Figs. 17.3 and 17.4, that depict processes consistent with this perceived causal
structure. For example, obviously it will not be possible to use variables associated
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Fig. 17.3 A more detailed view of the IDSS, highlighting the target variables in Level 1 and higher
level nodes. This is a DBN framework, note that the red lines indicate variables influencing another
variable in the next time step, see Sect. 17.3.4.2 or Korb and Nicholson (2011), Smith (2010)
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Fig. 17.4 In this fragment of the network, agricultural inputs training and pesticide regulation
operate through several layers of nodes which have more direct effects on pollinator abundance, so
neglecting the uncertainty in the estimates for these will have a less deleterious effect on the utility
scores that neglecting the uncertainty on the estimates of, for example forage or weather. Produced
in Netica, Norsys (1994–2016)

with future vectors along with predictive elements from the past and now at the
current time. Thus suppose at each time t there are Kl vectors on level l, where
l D 1; 2; : : : ;L and let

Xlt D .X1lt;X2lt; : : : ;Xklt; : : : ;XKlt/

Definition 2 We call a listing causally compatible if under the notation above
inputs of the component having Xklt as an output must be indexed before Xklt.

For simplicity we will henceforth assume here that for our particular IDSS the
elicitation admit at least one casually compatible ordering. This will enable us to
represent the overarching process as a DBN.

Remark 7 If this condition cannot be met initially then we can often induce it by
choosing a finer temporal step. Alternatively, if this transformation does not work
then it is sometimes possible to omit some of the entries in the parent set correspond-
ing to elicited contested or weak dependences. If neither of these reconstructions is
possible then we will need to represent the problem by a reciprocal graph (Koster
1996). The formal methods we describe below then still apply. However, the outputs
of the system are then less transparent and the calculations we can make directly
from the system are far more costly and time consuming to make.

Through the construction above we can allow that contemporaneous vectors Xklt

on the same level to depend on one another. However, the causal compatibility
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condition above ensures that inputs of the component having this as an output must
be indexed before Xklt. With this constraint we can now choose a listing of variables
time slice by time slice as follows:

Time 1 1 : : : 1 2 2 : : : 2 � � � T T : : : T
Depth L L � 1 : : : 1 L L � 1 : : : 1 : : : L L � 1 1

Vector XL1 X.L�1/1 X11 XL2 X.L�1/2 X12 XLT X.L�1/T X1T

Since through our elicitation process we preclude the possibility that higher time
indexed outputs can serve as inputs to lower time indexed ones, by concatenating
the vectors Xlt in the order above we obtain an ordering of the vectors that will
describe a causally compatible listing of vectors.

17.3.4 Bayesian Networks and Dynamic Bayesian Networks

The IDSS model works for many different frameworks depending on the underlying
purpose of the DSS. For our food security application we have chosen to use DBNs
and we shall therefore define this specific type of graphical model in this section.

17.3.4.1 Defining a Graph

Once this process is completed it is straightforward to express these elicited
dependence statements graphically.

Definition 3 A Bayesian Network of a causally compatible listing of random
vectors has as its vertices the set of these component vectors. A directed edge exists
from Xk0lt into Xklt if and only if Xk0lt is a component of Pa.Xklt/, with Pa.Xklt/ as
defined above.

In Smith (2010) we proved that this is indeed a Bayesian Network. In fact it
is also a Causal Bayesian Network in the sense of Pearl (2000) and can be used
as the basis of a DBN. So in particular, not only does this represent the genuine
beliefs of the expert panels about how one component of the system affects another,
it is not merely a representation but has a formal interpretation. This means that
the directed graph itself—representing the composite of dependences expressed in
terms of individual local judgements—can be interrogated for its plausibility of the
logically implied global picture of interdependences as a whole! So once the first
parse of elicitations takes place we can examine, through for example the use of the
d-separation theorem (Pearl 2000; Smith 2010), whether the composite structure
representation really can stand up to scrutiny. The way that such an interrogation
might proceed is discussed and illustrated in Smith (2010).

Finally, because of the formal compatibility of the system, after a sequence
of interrogation steps pick out a structure which to all responsible parties seems
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plausible we can immediately use this graph as a framework for constructing a
completely specified stochastic process. This is done by eliciting, for each vector
XkLt in the system, a probability distribution of this vector conditional on each
configuration of its parents. Explicitly the joint density of the whole process can
be defined by

p.x/ D
Y

k;l;t

pk;l;t.xk;l;tjPa.xk;l;t//

where pk;l;t.xk;l;tjPa.xk;l;t// are simply the conditional density or—in the discrete
case—conditional probability table (CPT) of Xk;l;tjPa.Xk;l;t/. Each of these com-
ponents in the formula may already be available from existing probability models
specific to a given domain. In reality once the system has been specified we will
inevitably find gaps where no such formal analysis has taken place. So to fill the
gaps, to obtain quantitative measures of the required expected utilities, we need
to elicit such distributions directly: see pollination example below. Often these
distributions will actually be margins of other BNs.

Remark 8 When experts design their own systems, sometimes the internal structure
of one component can share variables with the internal structure of another. So, for
example, flooding could disrupt both the production of food and its distribution and
yet these might be forecast using different components. In such cases, the coherence
of the system will be lost and the most efficient way to ensure ongoing coherence is
to separate out the shared variables and ask the panels concerned to take as inputs,
probability distributions from the expert panel in, for in this example, flood risk.

17.3.4.2 Feasible Graphical Models and Simplifying Structures

The construction described above, whilst formally powerful would also lead us
to build directed graphs which, in the contexts we are describing above might
have hundreds or even tens of thousands of vertices. Obviously, as pictures, such
graphs are very difficult to read or synthesise. Furthermore, the elicitation of the
various conditional probability tables or distributions needed for the system would
be prohibitive. However, there are now various techniques available to reduce the
number of specifications and to make the depiction of the underlying processes more
accessible.

There are two established collections of assumptions which restrict the under-
lying BNs to take a particular form and so vastly reduce the necessary inputs to
the system which make even very complex models amenable to a parsimonious
analysis. The two families of model are; the multiregression dynamic model (MDM)
(Queen and Smith 1993) whose use in conjunction with these complex dynamic
systems is discussed in, for example (Leonelli and Smith 2015; Smith et al.
2015a,b) and the two time slice dynamic Bayesian network (2TSDBN), see Korb
and Nicholson (2011). Accommodating various additional assumptions about the
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process reduces the picture to a graph over one or two time slices. Since the
2TSDBN is less technical and easier to describe and is used within our example
we will detail only this particular construction in this chapter.

The 2TSDBN simply elicits the DBN up to the variables in the second time
slice. It then makes an additional Markov assumption: it assumes that all the parent
components can be written as

Pa.xk;l;t/ D ˚
xk0;l0;t0 W k0 2 K0; l0 2 L0; t0 D tort � 1 :

The key point here is that we assume once dependencies between contempora-
neous values of measurements and the most recent past values are known, then the
more distant past provides no further useful information. Furthermore, we assume
that the process is time homogeneous after the first time point. Suppose the time step
is a year. Then under these assumptions determining the conditional distributions
associated with processes with what will happen next year and how this is affected
by what is happening this year, the process can be fully specified see Figs. 17.5
and 17.6. In particular, to depict the process we simply need to specify a graph on

Fig. 17.5 We model the fact that pollinator abundance in the current time is influenced by
pollinator abundance in the previous season, through the numbers entering overwintering. This
is shown as a red self-loop here, but this violates the DAG requirements. Produced in Netica,
Norsys (1994–2016)

Fig. 17.6 Here the 2 time-slice DBN has been expanded in time. Note that, as well as weather
and environment effects, at time [1] honey bee abundance is affected by honey bee abundance
at time [0] and the same is true for the other insect pollinator types. Produced in Netica, Norsys
(1994–2016)



466 M.J. Barons et al.

Fig. 17.7 Process of moving from natural language, to probability distributions, or vice versa

two time slices: containing vertices associated with measurements for this year and
measurements for next and the dependencies between variables in the two time-
slices. We illustrate this in the example below by unwrapping a 2TSDBN, Fig. 17.5,
into a non-dynamic Bayesian network, Fig. 17.6:

Each node in our schematic, shown in full detail in Fig. 17.1, represents a list of
random variables. An arrow is drawn between nodes when at least one variable
is causally connected to at least one other variable in another node, or if there
is a temporal relationship present. For specific classes of BNs such as Object
Orientated Bayesian Networks (OOBNs) we usually begin with the probability
distributions and then group similar objects together to create the overarching class
nodes, moving from left to right in Fig. 17.7. Note that the schematic for Fig. 17.7
can be formally interpreted as a BN provided that we understand the schematic as
representing a BN conditional on the relevant past variables from the time t�1 slice.
Such conditional BNs have recently proved a useful modelling tool in other contexts,
see for example Oates et al. (2016). However, in our application we are trying to
construct our BN using literature and experts, so we first use common language
to derive a general schematic and then more formally break these class nodes into
more specific and detailed probability distributions. Working from a coarse to fine
level in this way is a much more natural process for applications such as ours and is
equivalent to moving from right to left in Fig. 17.7.

Of course the formally elicited graph is still there and can be used for formal
deductions and construction. The simplified summary graph is nevertheless useful
for depicting some important features of the elicited dependence structure and
feeding this back to the panels for discussion and verification.

Remark 9 When studying and verifying these pictures of the elicited process of the
process it is often useful to compare a structure with various mind maps and other
schematic depictions informed by deep reflection by experts in the field. Although
such pictures of dependences rarely have a formal interpretation, they are often the
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result of deep reflection and provide supporting narratives which might produce
compelling reasons for adopting modified dependencies. Furthermore, they are
useful for helping populate provisional initial lists of vectors on which the process
needs to be built.

Remark 10 Before the elicitation starts it is always necessary to do some prepara-
tory work. With the help of various friendly domain experts, the analyst will need
to trawl any relevant literature and check which hypotheses found there might still
be current.

In this way, the elicitation of the qualitative structure of the determinants
of household food security in the UK began with the decision-makers, local
government, determining the attributes of their utility function.

Beginning with the schematic structure of the UK food system presented in
Collier (2009), a relevant literature search was used to construct a plausible model of
the qualitative structure, starting with the Level 2 elements which influence directly
the attributes of the utility defined by the decision-makers. This qualitative structure
was then iterated in consultation with food poverty domain experts from nutrition,
politics, sociology, crop science and the local authority decision-makers in person,
as well as using the reports and other resources they recommended. A final version
was produced which represents the consensus of these experts.

We stated that it is often necessary, especially in the context of food poverty
modelling, that the designers of the system will have to enable the panel to
build a bespoke probabilistic model as one of the components. Perhaps the most
straightforward way of doing this is to use DBN technologies with their supporting
softwares to define this, especially when the probabilities expressed in the processes
represent expert judgements. From a coding perspective we then have a DBN
“object” that represents a node and its dependency structures.

Over the last 2 years this element of our research programme has been so
important we will spend the next section describing one such elicitation in some
detail. The process for the elicitation of the sub-component is more focussed
and fine-grained, but otherwise identical to the elicitation methodology for the
overarching system. So in this way, since both structures we choose to define here
are dynamic forms of the BN, we can achieve both of these objects simultaneously.

So we next describe the process of eliciting the structure of the process leading
to pollination, by a panel who were expert in the process of pollination as it applied
to crop yield. This output would then inform any inputs associated with both the
availability and price of certain items in a basket of food available to a person
with stretched means and hence their health, educational attainment and social
discontent. The analysis gave some of the probabilistic judgements we needed with
a suite of BNs that were needed in relationships between the broad category labels
such as Weather & Environment and Farming, displayed in Fig. 17.1.
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17.4 Bayesian Networks for a Component Model: A Case
Study

Embedded in the crop production element of the UK food security model is a need
for pollination services. Since a large proportion of important food crops are insect-
pollinated and the current concern about falling numbers of pollinators impacts
on food production means this is an important element to model. There is also a
need for decision support for those charged with ensuring the implementation and
ongoing development of the UK’s National Pollinator Strategy. However, there is
considerable uncertainty and a dearth of evidence for some key parts of the DBN
representing the pollination system, so for this we conducted a structured expert
elicitation using the IDEA protocol: described in Chap. 5 of this book (see Hanea
et al. 2018).

17.4.1 Development of the Bayesian Network Structure

The UK pollinator strategy recently published by DEFRA (DEFRA (2014)),
provided the backbone for the development of the implicit utility function (pol-
linator abundance) and the relevant expert panels to provide evidence on factors
influencing pollinator abundance. The abundance of pollinators can be subdivided
into three categories; abundance of managed bees, abundance of other wild bees and
abundance of other pollinators. Having established that pollinator abundance with
regards to pollination of UK crops is the target of our model, the variables affecting
this directly and indirectly were then identified in an iterative process as follows.

Fig. 17.8 2014: first draft of DBN with academics. Produced in Netica, Norsys (1994–2016)
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The first draft of the BN was produced by academics, see Fig. 17.8, including one
of the authors of this chapter, contributing respectively, expertise on BNs, honey
bee disease dynamics and species distribution models. Using their background
knowledge the first sketch was drawn, challenged and re-drawn until the underlying
probability statements implied by the structure seemed plausible. The variables
identified at this stage were the availability of forage, suitable nesting sites and the
prevalence of disease. These in turn were influenced by the weather, pesticide use,
competition and land use including crop type distribution. A greater quantity of
documented research is available on the diseases, parasites and predators affecting
honey bees than wild bees and other pollinators, and this is reflected in the first draft
of the BN, Fig. 17.8.

The second step was to search the academic literature on pollinating insects and
incorporate the new insights gained into the next iteration of the BN. It became clear
that weather conditions affect the dynamics of the system on many more levels than
previously thought, for example affecting the prevalence of parasites of honey bees
and the availability of forage. Through its effects on weeds, fungi and insects that
attack food crops, weather also influences the specific pesticide product employed,
which in turn may affect pollinating insects. This was incorporated into the second
draft, Fig. 17.9.

The third stage was to conduct a series of interviews with pollinator experts,
undertaken by one of the authors of this chapter, ensuring we included as many
different types as possible: beekeepers, government agency experts, Queen breeders,
academics, honey producers, wild bee experts and government researchers. The
next iteration of the qualitative structure included the direct effect of weather on
the insects themselves—bees are prompted to forage by daylight and temperature
and colonies can fail to survive if a winter is too long or too cold and therefore

Fig. 17.9 The second draft incorporated insights from a detailed search of the academic literature.
Produced in Netica, Norsys (1994–2016)
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Fig. 17.10 Some experts annotated the network themselves

weather also affects numbers directly. These experts also informed us that the BN
should include human factors; in the case of honey bees, the competence of the
bee-keeper and for the environment, some measure of its management. As many of
these interviews as possible were carried out face-to-face and the experts, having
had the network explained to them, indicated changes that needed to be made or
annotated the network themselves as in Fig. 17.10. For those who were available
only by telephone, a list of questions was constructed to guide the conversation, but
they were also allowed to comment freely from their perspective. Further resources
recommended by these experts, such as government reports, policies, research
articles and other experts, were followed up and the structure adjusted accordingly.
Happily, there were no mutually exclusive opinions expressed, so the network
structure expresses the consensus of the domain experts. These interviewees also
helped to populate the decision space with the candidate policies which could
be enacted with an assessment of the likely efficacy under given circumstances,
although some of the interviewees were from overseas and so some of the strategies
were not appropriate to the UK due to the varying bee species and ecological
systems. These interviews were also very useful in helping to refine the definition
of each of the variables which informed us how they could be measured. Finally,
a DBN expert with extensive experience in using DBNs for decision support
in an ecological domain suggested that the disease/treatment pairs be explicitly
included, to evaluate fine-grained specific interventions for example the inclusion
of Antibiotics, Miticides and Pesticides nodes, Fig. 17.11.
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Fig. 17.11 Fully detailed DBN, including the time dependencies. Produced in Netica, Norsys
(1994–2016)

The final addition to our network was the time dependencies (seen in Fig. 17.11
as red loops or lines)—all variables influence each other within the same season, but
the abundance of pollinators entering the over-winter period directly affects their
abundance in the next season and similarly bee-keeper training affects management
in each subsequent season as well as the current one, so these are represented by
time-delay links in the DBN.

This completes the structural elicitation phase of this component.

17.4.2 Eliciting Conditional Probability Tables

Having established the qualitative framework and checked the implied conditional
probabilities make sense to domain experts, the next task was to populate the
conditional probability distributions of the variables at each node. The academic
literature is able to provide some estimates of these, particularity the marginal
probabilities, but the conditional probabilities were not so readily available. The
IDSS theory developed in Smith et al. (2015a) shows that we can legitimately and
coherently admit expert judgement as evidence in an IDSS alongside experimental
and observational studies. We therefore turned to expert judgement to populate the
conditional probability distributions for the parts of the system with least evidence
and most uncertainty.

A new set of UK experts in pollinators were gathered for a structured elicitation
exercise, using the IDEA protocol, to provide probability distributions for the effects
of weather, environment and disease on abundance of honey bees, other bees and
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Fig. 17.12 Expert elicitation was used to derive conditional probability distributions for the parts
of the system with least evidence and most uncertainty. Disease pressure, weather and environment
each had two levels, giving eight combinations to elicit for honey bees and four each for other bees
and other pollinators, 16 questions in all. Produced in Netica, Norsys (1994–2016)

other insect pollinators, such as hover flies. The fragment of the Bayesian network
for which quantities were elicited is shown in Fig. 17.12.

This new panel of experts were identified with the assistance of the government
agency responsible for pollination in the UK. Eleven experts participated in the
workshop, their expertise covering honey bees, plant-pollinator relationships, bees
and farming, hoverflies, pollinator viruses, wild pollinators and mathematical
epidemiology, including epidemiology of honey bee diseases and pests, in line
with the IDEA protocol. A list of resources was circulated as background reading,
to make the evidence available equally to all experts, and experts also forwarded
suggestions for further resources which were circulated.

One expert also attended for the previous day to lend domain knowledge to the
definition of the variables and refinement of the questions of interest to ensure that
they made sense to the domain experts, and were precisely and unambiguously
worded. The workshop started with a presentation of the problem and presentation
of the IDEA protocol. The question of biases was explained and the importance of
answering the questions in the order they are posed, in order to avoid anchoring,
was also discussed. The definitions of the variables were scrutinised and there were
some changes made at the request of the assembled expert panel. The experts then
gave their individual first-round subjective estimates of the lowest plausible, highest
plausible and best estimate of probabilities of interest, 16 combinations in all.

The subjective estimates were collected and data entered in anonymised form
to produce graphs for each question showing each expert’s estimates and upper
and lower bounds together with the group mean for each question side-by-side
on a graph. A facilitated discussion, led by Dr. Anca Hanea, of results followed
and each expert had the opportunity to contribute and give reasons for their
estimates. Discussion was encouraged especially when different opinions on values
were depicted in the graphs, but also when agreement was observed. During the
discussions experts were encouraged to note down anything that they considered to
be significant new information or compelling argument, especially if it had altered
their thinking about a question.

After the completion of the discussions, the experts gave a second set of indi-
vidual, subjective estimates for the same questions, having their original estimates
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returned to them for comparison. Finally, an on-line protocol was discussed for
running calibration questions, where the experts would be given several days to
fill in the first round estimates, have an on-line facilitated discussion and then give
a second round of estimates for the calibration questions. The experts indicated that
they understood the value of this element of the elicitation to the final results and all
agreed to participate.

Second-round estimates were received from nine experts who had provided first-
round estimates. The measures of performance we considered are:

• The Brier score (per question, per expert)—scores close to 0 are good
• The average Brier score (per expert)—scores close to 0 are good (a big score

corresponds to poor performance; a 0.5 score can be achieved by setting all
answers to 0.5 )

• The length of the uncertainty interval (per question, per expert)—small scores
are better

• The calibration term of the Brier score (one number per expert calculated from
all questions)—smaller scores are better

• Relative informativeness (one score per expert calculated from all answers)—
departure from the [0.5 0.5] distribution—larger scores are better

The differences in scores are not significant. This means that the original questions
can be combined with equal weighting. Following this, the experts’ judgements
were aggregated mathematically.

Now we have arrived at the first versions of the DBN for pollinator abundance.
Of course, this may need further refinement once the functionality of the composite
system is calibrated—see the next section. The probabilistic output of this polli-
nation sub-module provides the CPTs needed for part of the components of the
overarching food system, the “Farming” module, represented in Fig. 17.1. Once all
the components of the “Farming” model have been populated with probabilities
in analogous ways, the “Farming” module will have a fully specified set of CPTs
conditional on its input variables, here listed under the broad heading of Economy
and Weather & Environment.

Finally, this process needs to be repeated for each of the vertices in Fig. 17.1.
We have then elicited a probability model of features in the process needed to score
various policy options. The population of this model is obviously a massive task.
However, our small team has made significant strides in producing this IDSS which
we plan to deliver in prototype form in 2 years time.

17.5 Communicating the Results

Having successfully completed the construction, quantification and diagnostic
checks on the IDSS, the final and very important step is to make its outputs
available to the decision centre in a way that they find accessible, useful and
compelling. There are no set rules for how to do this; each decision centre and



474 M.J. Barons et al.

Fig. 17.13 UK food security:
an illustration of the use of
regional maps for decision
support. Here an indicator of
prosperity shows deprived
areas in red. A clustering of
deprivation (left map) is a risk
factor for social unrest, such
as food riots. Therefore,
policies which specifically
reduce and fragment large
areas of poverty (right map)
are to be preferred

Strategy 7 is preferred to Strategy 2:

Strategy 7 provides lower increase_in_food_poverty than 
Strategy 2.
• This judgement takes into account the effects of 

neagative_health_impact, 
reduced_educational_attainment, reduction_in_cost and 
reduced_social_cohesion

• While reduced_social_cohesion is the main reason to 
prefer Strategy 2, this is outweighed by considerations of 
neagative_health_impact along with other less 
important factors, that provide reasons to prefer Strategy 
7.

………………………………………………………………….

reduction_in_cost :

reduction_in_cost is a factor favouring  Strategy 7 over 
Strategy 2, although not a strong one
………
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Fig. 17.14 Often, a straight comparison of the top-scoring candidate policies is sufficient. A
natural-language report explaining in simple terms what has led to the ordering of one policy
ahead of the next will aid the decision-centre’s deliberations

domain will be different. In UK local government, historic data is often displayed
on the regional map since decision-makers understand the social, political and
administrative geographies within their region very well and the results they see
are immediately contextualised in their thinking. One option, then, is to follow
suit with the outputs of the IDSS, so that the effects of the various policies can be
compared, including as they vary over time, within the domain context in a familiar
way. The comparison of Policies A and B in Fig. 17.13 shows a stronger effect on
the northernmost region, known to be an area of deprivation, so knowing where
the effect is strongest can form part of the decision support. In other contexts, a
simple side-by-side comparison of utility scores is required (Fig. 17.14). In all cases
a natural language output explaining why one policy is scored higher than another
is valuable to support human decision-making.
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17.6 Quality Control of Integrating systems, Diagnostics and
Robustness

In any complex model it is absolutely critical that once built, the integrating system
produces credible composite forecasts of the processes of interest. This is true
of each subcomponent, component and of the whole IDSS itself. Even when the
overarching system is requisite to everybody and individually each component
appears plausible, at least from a theoretical point of view it is quite possible that
vital components or dependencies in the structure have been missed.

Our IDSS systems are usually intended for use by policymakers within govern-
mental agencies or industrial companies who may not include expert statisticians.
For example, our food IDSS is being co-created with local councils within the
UK. It is therefore imperative that we build into the software on-line diagnostics
and robustness alerts, so that red flags instantly appear if there is a potential error
in the information entered or if an outcome is predicted which is infeasible. This
will enable the user of the system to note any discrepancies and account for any
additional uncertainty they may obtain due to these causes.

However, because the integrating system has been modelled so that it is
probabilistically coherent, standard methods for checking the robustness and diag-
nostically checking any probabilistic system can be devised to address this domain.
Here we simply have a massive system, but the underlying suites of methodologies
are the same.

There are various methods we can use here to check out whether the integrating
system is fit for purpose and if not to modify it so that it is. These are often
called diagnostic checks. Here we illustrate quality checks that we will perform
on the Food IDSS, once fully populated, which we inherited from other modelling
activities.

Perhaps the most important consistency checks are ones that ensure that the IDSS
works predictively well. This is because it is these distributions which will determine
the way the centre scores various options open to it. The easiest element of this is to
check one-step ahead forecasts with observations that are actually seen. This can be
performed by retrospectively using the methods on a suitable number of past time
points, using informative forecasts available at the time. These can be constructed
retrospectively and the system run against this systematically, for example over or
under estimation of attribute vectors can then be identified.

We can also compare future predictions from our model to predictions that the
experts forecast. This would enable us to use any new information in the formulation
of the model and would also highlight any discrepancies which occur, for example
our model may predict certain outcomes which the expert knows will never occur.
This can then be fed back into the system, helping to improve future forecasts.

Diagnostic checks for BNs have been studied over the years, and we shall briefly
discuss three in particular which were introduced by Dawid et al. (1999) and further
discussed in Cowell et al. (2007) as a way of quantifying the difference between the
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specified prior and the data. We shall briefly discuss three of their diagnostics here:
a parent-child monitor, a node monitor and a global monitor

1. The Parent-Child Monitor examines the forecasting capability of the conditional
probability between a parent and child node. More specifically, if we can observe
the parent node, we can use the parent-child monitor to quantify the performance
of the BN when predicting the outcome of the child nodes.

2. The Node Monitor quantifies the performance of predictions on a specific
node, given all available evidence and can be categorised into two subsections:
unconditional node monitors and conditional node monitors.

3. The Global Monitor determines the overall performance of the graphical model.

These diagnostic checks all aim to quantify how well the model is performing after
the data is observed. This measurement of performance is done using formulae
which form proper scoring rules.

Any real probabilistic system has a degree of misspecification in it, either within
its assumed structure or the specification of the probabilities within it. Of course, one
way of addressing this is to perform a one at a time sensitivity analysis. However,
when examining the robustness of the types of massive system we consider here,
limited information about robustness can be gleaned in this way. Rather it is better
to consider the robustness of the outputs to perturbations of the whole system. One
spin-off of a formal analysis of this type is that we can discover before the BN is
fully elicited that the precision of probability specifications in parts of the system
can have little impact on the process however we fill in the CPTs. In this case little
effort needs to be expended on these elements of the process.

We note that if we are deciding between two models, Bayes Factor methods can
be utilised very simply to appreciate how much gain can be obtained in explanatory
power from using a more complicated model rather than a simpler one. In our
context here, all things being equal, we would advise the choice of a simpler
model over a complex one if the gain in using the complex one is marginal. These
techniques are widespread for standard graphical models, see Dawid et al. (1999),
Korb and Nicholson (2011), Smith (2010), and are currently being examined in this
specific context by two of these authors. Early results suggest that relative scores
are most affected by misspecification of input distributions and structural features
close to the attribute vector of the graph in the BN specification of the process.

17.7 Conclusions

Throughout this chapter we have introduced the idea of Integrated Decision
Support Systems (IDSSs) to provide coherent and transparent decision support
for complex systems. Although IDSSs can be applied within a wide range of
overarching frameworks, we have focussed solely on probabilistic graphical models
known as Bayesian networks (BNs). BNs have the advantage that they are a
visual representation of the complex problem and therefore can be easier for non-
statisticians, such as the problem-owner, to understand.
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We have presented our ongoing case study which provides decision support for
decision makers interested in enacting local policies regarding food poverty within
the UK. We have discussed two separate features of this IDSS for comparison
and clarity: the overarching food poverty model which aims to reproduce the cost
of an average household weekly shopping basket, and the pollinator subsystem
which forecasts pollinator abundance with regards to UK crop pollination. We have
demonstrated the iterative process of identifying the variables of interest and the
structure of the relationship between them. Iteration of the process also ensures
that the experts and decision centre are fully involved at every stage of the creation
process giving them ownership of the finished DSS and are therefore more likely to
use and update it. Due to the nature of complex systems it is common to find that
the model has hierarchical, interrelated components, however we have shown here
that many of the techniques for creating and populating the model can be used on
the overarching framework as well as the subsystems. In addition to describing how
to design and structure the model, we have provided an in-depth guide on how we
executed the elicitation workshop which populated the conditional probabilities in
part of the pollinator subsystem and results which entailed.

We have demonstrated that building a fully probabilistic IDSS is feasible and
been able to communicate some of our experiences in engaging in this activity. We
hope that others will follow our lead and start to produce similar tools to address
other large scale decision analyses. We believe that surmounting the challenges of
implementing such large scale tools will be increasingly important in the coming
years.
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Chapter 18
Expert Elicitation to Inform Health Technology
Assessment

Marta O. Soares and Laura Bojke

Abstract In the face of constrained budgets, unavoidable decisions about the
use of health care interventions have to be made. Decision makers seeking to
maximise health for their given budget should use the best available information on
effectiveness and cost-effectiveness, and for this purpose they may use a process of
gathering and combining existing evidence in this context called Health Technology
Assessment (HTA). In informing decisions, utilising HTA, expert elicitation can
provide valuable information, particularly where evidence is missing, where it
may not be as well developed (e.g. diagnostics, medical devices, early access
to medicines scheme or public health) or limited (insufficient, not very relevant,
contradictory and/or flawed). Here, formal methods to elicit expert judgements are
preferred to improve the accountability and transparency of the decision making
process, in addition to the important role in reducing bias and the use of heuristics.
There have been a limited number of applications of expert elicitation in health
care decision making, and in part this may be due to a number of methodological
uncertainties regarding the applicability and transferability of techniques from other
disciples, such as Bayesian statistics and engineering, to health care. This chapter
discusses the distinguishing features of health care decision making and the use of
expert elicitation to inform this, drawing on applied examples in the area illustrating
some of the complexities and uncertainties.

18.1 Introduction

There are many factors required to achieve health, or more specifically good health,
one of them being healthcare. Healthcare is viewed as an intrinsic right of every
individual and its consumption confers benefits to everyone in a population, either
for altruistic reasons or through externalities such as immunization (Folland et al.
2013).
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The conditions under which health care is supplied are very different from
the perfectly competitive model, and it has been argued that healthcare cannot be
provided efficiently through free market mechanisms. As such, in many countries,
the government steps in to provide healthcare either funded via social insurance,
general taxation or hypothecated tax. Systems to provide health care to a population
differ between countries, and are largely influenced by the specific social and
economic conditions. In some countries there is still little government involvement
and the majority of health care is funded through out of pocket payments. This
is more typical in less developed countries and a significant degree of health
inequalities exists as a consequence, with only those on higher incomes being able
to afford access to all required healthcare.

Even in systems where healthcare is centrally funded, such as the UK, Canada
and France, budget constraints will mean difficult decisions have to be made
regarding what can and cannot be funded. Without explicit consideration of the
budget constraint, the cost of healthcare would increase as consumers demand new
pharmaceuticals and interventions, and industry develops these products to meet
these needs.

In making these unavoidable decisions about the use of healthcare interventions,
the bodies with responsibility for such decisions must determine the objective
function of the healthcare system it is informing. In the UK, the objective function,
as interpreted by the National Institute for Health and Clinical Excellence (NICE), is
to maximise health and therefore the expectation is that new interventions will lead
to better health. In many countries, equity of access may be an equally important
criterion (Romanow 2002). There may be circumstances where an intervention that
is seen to improve the health of particular groups of individuals to a greater extent
than another group of individuals, for example on the basis of income, will be
adopted so as to achieve a ‘fair’ distribution of health (vertical equity) (Culyer and
Wagstaff 1993). Regardless of the objective function, where resources are limited,
these benefits must be put into context considering the resources required to generate
them, as any additional costs incurred will impact on access to healthcare for other
patients, and thus potentially health is foregone. The consideration of both the
benefits and costs of a health intervention, or competing health interventions, is
referred to as cost-effectiveness analysis (Bryan et al. 2007) and the process of
assessment is called Health Technology Assessment (HTA).

18.2 Representing Uncertainty in Adoption Decisions

A key feature of HTA is that it is unlikely that a single piece of evidence is entirely
informative, for example a trial is unlikely to capture all the costs and benefits of
all competing interventions over a sufficient time horizon (Sculpher et al. 2006).
Also, in supporting an accountable and transparent decision making process, it is
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essential that decisions are grounded on comprehensive evidence. Clinical evidence
is often considered to be of highest quality if drawn from all available randomised
controlled trials. This may be supplemented by longer term observational studies,
surveys and real world studies, particularly when evidence on resource use and
quality of life is required. This evidence needs to be synthesised to allow total costs
and health benefits associated with competing interventions to be estimated. For
this purpose, cost-effectiveness analysis employs decision modelling methods that
define mathematical relationships between a varied set of input parameters, in a way
that describes aspects of the history of the disease of interest and the consequences
of the interventions (Drummond et al. 2005).

However, it is often the case that the assessment of important input parameters
in decision models is supported by only limited empirical data; for example, the
evidence may not be available on ‘final’ outcomes (e.g. cancer products licensed
on evidence of progression-free survival). Due to uncertainty in the assembled
evidence and/or underpinning assumptions required for analysis, the expected cost-
effectiveness of an intervention is often not known with certainty, introducing
uncertainty in the decision (Griffin et al. 2011). Indeed, there may be circumstances
in which the inputs required to a decision model are missing entirely.

An assessment of uncertainty is required as models are typically complicated,
with non-linear relationships between inputs and outputs (Griffin et al. 2011), and
estimated expected cost-effectiveness can be biased if uncertainty in model inputs
is not reflected in the analyses. Also, additional evidence can reduce uncertainty
and provide a more precise estimate of cost-effectiveness. By explicitly quantifying
uncertainty, it is possible to assess the potential value of additional evidence, inform
the types of evidence that might be needed, and consider restricted use until the
additional evidence becomes available (Claxton 1999).

Given the incomplete nature of evidence often used to support decision making
in healthcare, expert judgements are often needed for a decision to be reached. In an
accountable decision making process, these judgements should be made explicit and
incorporated transparently into the decision making process, following the Bayesian
view of decision making (Briggs 1999).

This creates a primia facie case for considering the use of expert elicitation.
To date, formal expert elicitation has only been used to a limited extent in
healthcare decision making, perhaps due to the lack of clear guidance of what
methodologies may be appropriate in this context (Sullivan and Payne 2011). How-
ever, in informing decisions, expert elicitation can provide valuable information,
particularly where evidence is missing, where it may not be as well developed (e.g.
diagnostics, medical devices, early access to medicines scheme or public health)
or is limited (insufficient, not very relevant, contradictory and/or flawed). Where
expert judgements are used, analysts should strive for structured and formal methods
of elicitation to reduce bias and the use of heuristics, and improve the quality and
confidence in this evidence.
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18.3 Distinguishing Features of Health Care Decision
Making and Requirements for Expert Elicitation

Whilst there is a lack of guidance on the appropriate methodology for expert
elicitation in health care decision making, methods have received significantly
more attention in other disciplines, including engineering and Bayesian statistics
(Babuscia and Cheung 2014). These developments may be useful in suggesting
a range of possible methods for elicitation in health care. However, there are a
number of features of healthcare decision making that distinguish it from these
other disciplines and, thus, currently available guidelines and protocols for expert
elicitation need to be subject to further consideration. This is particularly true
where such protocols describe multiple options for particular elements of the design
process, for example the choice between consensus and mathematical approaches.

The first distinguishing feature of health care decision making is the need for
consistent use of methods. This warrants uniformity and transparency between
decisions made in potentially very different contexts (e.g. public health screening
compared to surgical intervention). Jurisdictions using HTA already define a set
of methodological principles for effectiveness and cost-effectiveness evaluations—
many define a reference case, departures from which need to be carefully justified.
The use of elicitation in this context should thus follow a standardised set of
principles, ideally under the form of an elicitation protocol sufficiently flexible to
ensure it is useful across evaluations. Given the decision making context, such a
protocol should have normative input from decision makers. It should focus on all
aspects of elicitation: those related to the design (what and how to elicit), conduct
(the role of the facilitator) and analyses (how to pool judgements).

It is also important that elements of the protocol for elicitation are tailored to
the specificities and requirements of health care. For example, likely substantive
experts in this area may be health professionals, which may not possess normative
skills. Normative experts have been defined as those whose skills lie in elicitation
methods or have good numeracy skills (O’Hagan et al. 2006). The lack of normative
skills may restrict the method of elicitation used. Such experts may, for example,
find it difficult to grasp the concept of quantiles required for the bisection method
(O’Hagan et al. 2006).

For HTA, it is also important that the elicited information represents how
uncertain experts are about the current state of knowledge regarding a parameter
of interest, and in this way reflect the imperfect knowledge they have (referred to as
epistemic uncertainty). An important concern is that uncertainty is misrepresented
in the judgements elicited. One of the reasons for this is that experts, when reflecting
on their own experiences, may include some level of variability. Variability refers
to the fact that individual responses to an intervention will differ between patients
with the same observed characteristics within the population. Another reason for
uncertainty to be misrepresented may relate to systematic biases well-known in
the elicitation literature, such as overconfidence; over-extremity (where bias affects
extreme values) or discrimination (when the expert cannot distinguish likely events
from those less likely) (O’Hagan et al. 2006, Gigerenzer and Hoffrage 1995).
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This may have important implications for the design and conduct of elicitation;
for example, consensus approaches have been shown to produce overconfident
statements (Grigore et al. 2016) and this may be a consideration when choosing
the method of aggregation.

Also, for HTA, it is generally accepted that the elicited information needs to
reflect the range of reasonable judgements that may be expressed across experts
(between-expert variation). This is for two reasons. Firstly, because the quantities
of interest are generally never known with certainty and thus trying to appropriately
reflect not just the individual’s own epistemic uncertainty but also any additional
variation between experts helps decision makers understand the full extent of the
uncertainty. Secondly, experts may be exposed to different settings or case-mixes.
This heterogeneity in the subpopulations that experts observe will be reflected in the
judgements elicited. Heterogeneity refers to individual differences in, for example,
response to treatment, that can be associated with differences in characteristics of
the patients or their disease. It is recognised that gathering opinions from multiple
experts is essential to quantify the current level of knowledge for a parameter,
including any uncertainty (O’Hagan et al. 2006), however there is little guidance
on how to aggregate these in a way that takes into account, in an appropriate way,
what is known or unknown about heterogeneity.

18.4 Methods for Expert Elicitation in Healthcare Decision
Making

A recent overview of methods for eliciting expert opinion to inform HTA, conducted
to inform a funding stream in the UK (Gosling 2014), identified no specific guidance
in the context of HTA, but did identify three generic protocols for the elicitation
of uncertain quantities: the Sheffield elicitation framework (SHELF), a modified
Delphi scheme extended from SHELF (European Food Safety Authority 2014) and
Cooke’s classical method (Cooke 1991).

The Sheffield elicitation framework—see Chapter 4: “SHELF: The Sheffield
Elicitation Framework” of this book (Gosling 2018)—is a package of materials
aimed at standardising the information recorded as part of a consensus group
elicitation exercise. It provides templates for: pre-session briefing notes, pre-
session pro forma to be sent out with the briefing notes to experts, elicitation
records regarding the context and purpose of the elicitation, and records for the
elicitation of each probability distribution. It also provides an R package for
fitting distributions using least squares. In terms of elicitation methods, SHELF
considers only univariate techniques, specifically SHELF offers the option of
eliciting probabilities (for two ranges of values), eliciting percentiles (specifically
quartiles through the bisection method and terciles), and the roulette method. It
is designed to be applied in a face-to-face workshop led by a facilitator, and to
reach consensus amongst participants, what is known as a behavioural approach.
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The process however starts with individual experts making their own quantitative
judgements, which are then linearly pooled by the facilitator and presented to the
group to encourage discussions. Recently, a web-based interface for SHELF has
been developed, called MATCH (Morris et al. 2014).

The Delphi iteration process proposed by the EFSA (2014) modifies the group
stage of the SHELF protocol to be undertaken remotely through a Delphi iteration
process. This entails that the experts’ judgements (accompanied by a description
of the rationale) are relayed back to all the experts individually (anonymously) and
they are invited to review their judgements and revise if they deem appropriate.
After two or more iterations rounds, the experts’ individual probability distributions
are averaged to provide the final aggregate distribution.

Contrary to SHELF and the modified Delphi, Cooke’s classical method does not
attempt to reach a consensus but uses mathematical elicitation coupled with linear
pooling. It does, however, take into account the performance of each of the experts
by using unequal weights. The weights are defined based on how accurately and
precisely each expert answers a set of seed questions (where answers are known to
the researcher but not to the expert). A software package using Cooke’s method is
available: EXCALIBUR. In addition to these three protocols, there exists a number
of ‘off the shelf’ software packages for elicitation. Others have summarised these
elsewhere (Expert Judgement Network 2016).

Despite SHELF (first released in 2008) and EXCALIBUR (latest version com-
piled in 2004) being freely available for a few years now, a recent review of
applications reporting the use of formal methods of elicitation in the context of
HTA has not revealed any examples of the use of these protocols (Grigore et al.
2013). Also, the review identified only 14 studies, which, in the context of the vast
HTA literature, represents only marginal use. In the existing applications, all except
one study used mathematical aggregation; three of the studies using mathematical
aggregation explored the potential use of calibration, but justified not using it
based on difficulty in choosing appropriate criteria. The most common methods of
elicitation used were: the histogram method (equivalent to the roulette proposed
within SHELF but using a fixed number of chips); the bisection method and
the elicitation of percentiles (commonly 95% confidence intervals). The preferred
aggregation method was unweighted linear pooling. Across applied examples, the
methods of elicitation appear to be heterogeneous and the reasons underlying choice
of methods are unclear.

The limited use of expert elicitation in an HTA context, and the limited use
of existing protocols, suggests that the appropriateness of available methods and
protocols may need to be considered specifically in the context of HTA. There
also appears to be a need for guidance to homogenise the methods used across
evaluations. Previous authors (Iglesias et al. 2016) do note that the quality of
reporting for elicitation in health care is particularly poor, and recommend the
development of guidelines for reporting, for example, in the form of a checklist.
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18.5 Examples of Applications in Health Care Decision
Making

This section describes the methods and results of two examples of formal elicitation
exercises implemented to inform HTA. These help to demonstrate some of the
practical and methodological challenges faced in this context.

18.5.1 Negative Pressure Wound Therapy (Soares et al. 2011)

Negative pressure wound therapy (NPWT), also known as topical negative pressure,
is a medical device used to treat full thickness wounds such as severe pressure
ulcers. It has been claimed that NPWT speeds healing and reduces infection rates
and costs as well as assists in the practicalities of wound management; however,
there is very little actual evidence for its clinical or cost effectiveness (Soares et al.
2013). NPWT is also a relatively expensive treatment used widely in the developed
world; thus, it likely incurs a significant burden on health care resources. Therefore,
there is a need to evaluate the cost effectiveness of NPWT and alternative treatments
for its various indications, including severe pressure ulcers. Additionally, given the
expected uncertainty surrounding the choice of treatment, it is important to explore
whether investing in further research regarding the use of NPWT is worthwhile and,
if so, what type of future research is most likely to offer the most value for money.

The study here used as an example aimed at evaluating the cost-effectiveness
of NPWT in speeding up the healing of grade 3 or 4 pressure ulcers and explored
whether further research regarding the use of NPWT was worthwhile and, if so,
what type of future research would be likely to offer the most value for money.
The latter analysis is an extension of the cost-effectiveness framework to consider
decision making under uncertainty, using quantification of the consequences of
making the wrong decision to establish the expected value of collecting further
evidence (Claxton 1999).

To establish cost-effectiveness, a mathematical decision model was used that
evaluated the long term costs and health effects of NPWT and relevant alternatives
(dressings such as spun hydrocolloid—HC; alginate—ALG; and foam dressings—
F). The model described how patients were expected to transit between three
health states (unhealed, healed and dead) and also distinguished the means to
healing (if through closure surgery or secondary healing) and the occurrence of
complications and discontinuation from treatment. A review of the literature was
conducted to identify evidence to inform the model, but the evidence-base was found
to be limited and sparse. However, NPWT and comparators were used extensively
within the NHS in the UK and excluding such experience could misrepresent the
current level of knowledge regarding these treatments. Thus, a formal exercise
was designed to systematically capture experts’ knowledge and uncertainty around
the treatment and progression of severe pressure ulcers. Evidence was collected
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in the form of probabilistic judgments around the speed of transitions between
health states (transition probabilities) and related events (except those associated
with mortality), including beliefs about the impact of the alternative treatments on
transition probabilities (relative effectiveness).

The authors identified a number of challenges in designing the elicitation
exercise. Nurses were identified as substantive experts but were highlighted to
have limited normative skills. The authors thus planned for a face-to-face meeting
where substantial training could be delivered. Also, only parameters of binomial
variables were elicited in order to simplify the task and abridge the training session.
The method of elicitation used was the histogram method, for its intuitiveness. In
specifying the quantities to elicit, a series of considerations were taken. Firstly, the
quantities of primary interest were expressed in terms of others whose distribution(s)
were thought to be easier to elicit. All quantities were thus directly observable. On
some of the quantities there was available (though sparse) data, and the quantities
elicited were thus defined keeping in mind the need for synthesising the elicited
evidence together with the existing evidence.

In total, twenty-three nurses attended and completed the elicitation exercise. Each
expert answered more than 30 questions, 18 of which were uncertain quantities
elicited through the histogram technique. Experts were asked to elicit their beliefs
individually and were discouraged from interacting (a mathematical approach to
elicitation was used); there was no attempt to achieve consensus.

For illustrative purposes, we will provide more detail on the methods and results
of the elicitation of judgements over the relative effectiveness on healing of NPWT
compared to a reference treatment, Hydrocolloid (HC). In this context, experts were
asked to first elicit the probability of healing with the reference treatment (HC) at
6 months (question 1 in Box 1). A box plot summary of each expert’s response is
shown in Box 1. Experts used a variety of distributional shapes to characterise their
strength of belief, showing that they felt comfortable in using the histogram method.
Results show a high level of variability between experts, with the median ranging
between 5% and 75%. This variation is far from unexpected: individual beliefs
will inherently differ from each other, and experts were recruited from a variety
of clinical contexts (e.g. primary care vs. hospital, specialist vs. community nurses).
From a decision making perspective, it is desirable that all views are represented
and the implications of between-expert variation explored.

Box 1: Elicitation
Six months after starting treatment with HC, what proportion of patients who
are alive do you think would have a healed reference ulcer? This is regardless
of whether patients are still receiving treatment with HC at this 6 months
point.

(continued)
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The judgements of individual experts were elicited using the histogram
technique. Results for each individual expert (from expert 1 to expert 23,
indicated in the x-axis) are summarised here using box-plots. The red box-plot
identified on the x-axis with the letter P reflects the linearly pooled judgements
from the 23 experts.

To elicit the effectiveness of the active treatment (NPWT), the authors elicited
absolute effectiveness but used an approach based on conditional independence.
The expert was asked to assume that the value they believe best represented their
knowledge about the effectiveness of the comparator treatment, HC, was true.
The same experts’ mode of the distribution elicited for HC was used to represent
this value. The absolute effectiveness of NPWT and its uncertainty was then
elicited, with the expert bearing in mind the conditioning value for HC—see Box 2.
The elicited information was a posteriori converted onto a relative effectiveness
measure (a log hazard ratio) using the conditioning value, and only then pooled
across experts. The relative effectiveness measure obtained in such a way assumes
independence of the absolute effectiveness of the comparator.

Experts expressed different views over the relative effectiveness of NPWT—
Box 2. The majority believed that NPWT would achieve a higher proportion of
healing at 6 months than HC (e.g. expert 1 and 11), with many experts retaining
the possibility of it being equally or less effective (e.g. expert 1 but not expert 11);
expert 7 was very uncertain, but indicated that the proportion healed with NPWT
was more likely to be lower than with HC (with the elicited median being below the
conditioning value) and expert 20 indicated a strong belief that NPWT and HC were
equal in terms of healing at 6 months.

Box 2: Elicitation
Your strongest belief was that «mode of elicited distribution for HC (Box
1)»% of patients had a healed ulcer 6 months after starting HC. Assume that

(continued)
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this value is true. Six months after starting treatment with topical negative
pressure therapy, what proportion of patients who are alive do you think would
have a healed reference ulcer?

1
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.
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The judgements of individual experts were elicited using the histogram
technique. Results for each individual expert (from expert 1 to expert 23,
indicated in the x-axis) are summarised here using box-plots. Red triangles
indicate the reference value used for each expert (the mode of the response
given to the question in Box 1). Also note that these histograms were preceded
by filter questions: “Think of UK patients with at least one debrided grade 3
or 4 pressure ulcer (greater than 5 cm2 in area). Assume that the deepest ulcer
was treated with spun hydrocolloid/hydrofiber (HC) as the primary contact
layer and a certain proportion healed. Do you think the proportion healed
would be different if instead of a HC patients were treated with NPWT? “.
Only experts suggesting treatments to be different proceeded to elicit relative
effectiveness and its uncertainty. In this way we avoided eliciting through the
grid when experts claimed to be fully certain that the treatment were similar
or to be fully uncertain about this. In this case, we assumed the density to be
fully allocated to the reference value or to be equally distributed by the range
of values available, respectively.

In a separate stream of work, evidence from the literature was systematically
sought to inform these same effectiveness parameters of the decision model
(Soares et al. 2014). The search identified one randomised controlled trial (RCT)
investigating NPWT, and 11 investigating dressings. The data from these trials
were linked within an evidence network and synthesised. Because most links in
the network were informed by a single study and the number of healing events in
some trials was small or zero, it was not possible to obtain inferences on one of the
comparators, foam (F). Therefore, in pooling the existing evidence an assumption
was made that there was a common effect across dressing treatments (implemented
using a random effect). Results of this analysis are presented as log hazards or
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Table 18.1 Results

Existing evidence Mean
[95% CrI]

Elicited evidence Mean
[95% CrI]

Existing and elicited
evidence collated
Mean [95% CrI]

Log hazard of
healing
for HC

�3.95 [�4.50 to �3.46] �3.74 [�5.96 to �1.52] �3.97 [�4.59 to
�3.46]

Relative effectiveness in relation to HC

Log hazard
ratio of
healing for F

0.03 [�1.97 to 1.86] �0.96 [�6.32 to 4.40] �0.91 [�2.14 to 0.21]

Log hazard
ratio of
healing for
ALG

�0.19 [�1.76 to 1.13] 0.003 [�0.63 to 0.64] �0.27 [�2.12 to 1.57]

Log hazard
ratio of
healing for
NPWT

0.18 [�2.17 to 2.63] 0.45 [�0.66 to 1.56] 0.47 [�1.18 to 2.10]

log hazard ratios in Table 18.1, with the ratios expressed using HC as a reference
treatment. Note that the assumption of common effect across dressings meant that,
in this analysis, F is assumed to be as effective as other dressings.

The second column in Table 18.1 shows the elicited evidence pooled across
experts on the log hazard scale. Experts, as a group, expressed different judgements
over the expected relative effectiveness of the treatments, suggesting that foam
dressings were expected to be less effective than the comparator (HC), alginate
dressings to have the same effectiveness and NPWT to be slightly beneficial. This
was a reflection of the individual replies of experts.

The two sources of evidence were collated using Bayesian updating, to generate
a combined posterior distribution (Table 18.1, third column) incorporating both the
prior distribution (elicited beliefs) and observations from the existing evidence. In
this scenario, the use of elicited data allowed the assumption of a common effect
across treatments to be dropped, and thus treatment effects for each dressing were
able to be estimated without information being exchanged across dressings.

When these findings were included in the cost-effectiveness analyses (results not
shown here but detailed in Soares et al. 2011; Soares et al. 2013), they had important
implications as they allowed ruling out foam (F) as a relevant alternative to NPWT
in clinical practice, and also determining that further research on foam was unlikely
to be worthwhile. When considering all sources of evidence, NPWT was evaluated
as cost-effective at expected values, but there was substantial uncertainty with a
probability of error of approximately 55% (in which case one of the other treatments
would have been better). The results of value of information analysis indicate that
further research is worthwhile and established the most efficient design as a 3-arm
trial comparing NPWT with ALG and HC, with a 2 year follow-up and recruiting
with approximately 400 patients.
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18.5.2 Photo Acoustic Mammography (PAM) (Haakma et al.
2014)

During the development of new imaging technology, Photo Acoustic Mammogra-
phy (PAM) for the diagnosis of breast cancer, an expert elicitation was conducted to
inform the cost-effectiveness of PAM compared to the currently available imaging
technique, Magnetic Resonance Imaging (MRI). In addition, the expert elicitation
aimed to establish its potential clinical value to guide further product development.
Specifically the elicitation focused on generating priors, expressed as probability
distributions, for the diagnostic performance of PAM (sensitivity and specificity). A
mathematical approach to elicitation was used to allow full uncertainty in experts’
beliefs and any between expert heterogeneity to be expressed.

Twenty radiologists were invited to participate in this study, although two were
unable to attend. These were selected for the study using purposeful sampling,
based on predefined characteristics such as expected level of knowledge and
experience using MRI. The questionnaire was administered on a face-to-face basis,
and a standardized script was used along with an Excel elicitation sheet designed
specifically for the task. Eighteen radiologists specialising in examining MR-
images of breasts first ranked tumor characteristics according to their importance
in detecting malignancies. This was undertaken to allow the experts to refresh their
knowledge on the features of a diagnostic imaging technique and start to explore
how these concepts may relate to PAM. The intention was to reduce the possibility
of bias in the elicited beliefs, including overconfidence and confirmation bias.

These tumour characteristics are identified from the BI-RADS (Breast Imaging–
Reporting and Data System) classification system to grade breast lesions and include
(1) mass margins; (2) mass shape; (3) mass size; (4) vascularization; (5) localization;
(6) oxygen saturation; and (7) mechanical properties. First the experts were asked to
express how important the tumor characteristics were in the examination of images.
The importance of tumor characteristics was expressed by allocating 100 points
between the characteristics. Following this, they were then asked how well MRI and
PAM can visualize these characteristics by assigning each characteristic with a value
between 0 and 100, where 0 indicates a low performance and 100 indicates a high
performance. The expected performance of MRI and PAM was then determined by
the following equations:

For MRI:

MRIp
�
tcj
� D

nX

iD1
wi

� �MRIpi
�
tcj
��

(18.1)

For PAM:

PAMp
�
tcj
� D

nX

iD1
wi
�
PAMpi

�
tcj
��

(18.2)
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Table 18.2 Distribution of importance of tumor characteristics

Mass
margins

Mass
shape

Mass
size Vascularisation

Oxygen
saturation

Location
mass

Mechanical
properties

Mean 30.78 29.02 5.59 19.02 4.67 3.94 10.40
SD 8.48 12.73 6.09 10.95 5.68 4.71 7.62
95% CI 20, 43 15, 54 0, 18 5, 43 0, 14 0, 11 0, 26

Table 18.3 Calibration factors explored in the PAM application

Years of experience (overall
weight assigned D 0.45)

Average number of MRI’s
examined per week (overall
weight assigned D 0.45)

Examining MRI’s in other
areas (overall weight
assigned D 0.1)

Level Score assigned Level Score assigned Level Score assigned

X < 3 1 X < 5 1 X D 0 1
X � 3 2 5 � X < 10 2 X > 0 2

10 � X 3

where (p) is the performance of each tumor characteristic (tcj), and wi accounted for
the weight (w) of each individual expert (i).

The mean importance of each of the tumor characteristics with their standard
deviations and 95% confidence intervals are shown in Table 18.2. Mass margins
and mass shape are shown to be particularly important, with oxygen saturation and
location mass seen as much less important in the examination of images.

In terms of the discriminatory ability of MRI and PAM in relation to these
characteristics, MRI was thought to perform better at visualizing mass margins
and mass shape, whereas PAM was thought to perform better at visualizing
vascularization and mechanical properties.

Fourteen of these experts then expressed their beliefs about the true positive
rate (TPR) and true negative rate (TNR) for PAM. Given that PAM is a new
diagnostic device, and therefore experts have little or no practical experience using
it, TPR and TPR were elicited relative to existing MRI data. Experts were asked
to express the mode (the most likely value) as this was thought to be the most
intuitive quantity. In addition experts expressed the lower, and the upper boundaries
(95% credible interval). A probability density function (PDF) was then generated
using the linear opinion pooling method in which weighting is applied to reflect
the performance of individual experts. These weights were generated based on the
clinical background of each expert. These characteristics were chosen to reflect
substantiveness of experts (years of experience and average number of MRI images
examined per week), and adaptive skills (examination of MR images in other areas).
Characteristics and weights are applied are shown in Table 18.3 below along with
the contribution each factor made towards the final weight (45%, 45% and 10%
respectively).

There was considerable heterogeneity between experts (radiologists) in estimat-
ing the diagnostic performance of PAM. The overall probability density function
indicated a sensitivity ranging from 56.1% to 86.9%, with a mode of 73.3%.
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The specificity ranges from 48.1% to 78.2%, with a mode of 64.7%. Experts
expressed difficulties estimating the performance based on limited practical expe-
rience, despite being asked to reveal their beliefs about the performance of MRI,
where there is considerable practical experience, in the first instance. PAM is an
early stage technology, for which only small-scale, experimental experience was
available. However, it remains uncertain if this is a more general problem with
providing estimations about technologies in the early stages of development or
if this uncertainty is specific to the application in breast imaging. In the early
stages of development, where experimental evidence is less developed, there is a
strong case for the use of formal elicited judgements, however the lack of practical
experience presents a problem for experts, and instead relies of their ability to use
any adaptive skills (O’Hagan et al. 2006), i.e. the ability to transfer knowledge
from one setting/technology to another. The method of weighting, based on clinical
experience, is also contrary to other methods of weighting, such as Cookes classical
method.

18.6 Conclusions and Requirements for Further Research

Around the world, decision making in health care is increasingly becoming explicit,
accountable, evidence-based, and focused on an explicit normative framework
defining an objective function as a metric of value, for example maximizing health
for a given budget. Where initially many jurisdictions defined HTA processes
focusing on medicinal products, there has been recently a move to expand these
processes to evaluate interventions/programs in areas where experimental evidence
may be difficult to collect or is not actively encouraged by the regulatory process,
e.g. public health, diagnostics, genomics. Additionally, health care technologies are
also being appraised earlier in the development pathway, especially as regulatory
agencies such as the European Medicines Agency’s (EMA) change the regulatory
pathway in efforts to improve timely access for patients to new medicines, for
example through the adaptive pathways approach.

In all these areas, the evidence supporting decision making processes may be
less well developed. This implies that judgements are needed for a decision to
be reached. In an accountable decision making process, these judgements should
be made explicit and incorporated transparently into the decision making, in
accordance with the Bayesian view on decision making. These judgements may be
appropriately informed by one or more experts, in which case structured and formal
methods of elicitation should be preferred to reduce bias and the use of heuristics,
and improve the quality and confidence in this form of evidence.

Despite there being elicitation protocols proposed in the literature, there has
not been, as yet, proper consideration of which protocols or elements of protocols
are appropriate for healthcare decision making. Forming a view over methodology
could form the basis for a reference case to be defined and used across evaluations
and in this way ensue consistency. It is also important, alongside this, to consider
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how formal expert elicitation would work alongside a HTA process, specifically
those for which there are time constraints and possibly resource constraints. In
some circumstances an optimal expert elicitation may not be achievable, in order
for decisions to be made in a timely manner. It is therefore important to consider
which elements of formal elicitation are necessary requirements for decision making
in health care, and which elements, although methodologically optimum, offer
a more marginal contribution. It may also be advantageous to consider which
available software facilitates the process, or indeed if alternative software needs
to be developed.
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Chapter 19
Expert Judgment Based Nuclear Threat
Assessment for Vessels Arriving in the US

Jason R. W. Merrick and Laura A. Albert

Abstract We demonstrate the use of extended pairwise comparisons for estimating
the relative likelihood that a vessel approaching US waters contains a nuclear
threat. We demonstrate an expert judgment based method consisting of a designed
set of extended pairwise comparisons and parameter estimation for a predictive
probability model using log-linear regression. Results are based on a proof-of-
concept questionnaire completed by eight experts in port security. The model and
parameter estimates obtained are used to demonstrate the type of predictions that
can be obtained.

19.1 Introduction

Our nation’s economic well-being is intrinsically linked with the success and
security at our ports. International trade accounts for more than thirty percent of
the United States economy. Ninety-five percent of international goods that enter
this country come through one of our nation’s maritime ports of entry, adding up
to more than nine million containers every year (Ebeling 2009). We know that
terrorist groups are trying to obtain radiological material to attack targets inside the
United States with radioactive dispersal devices, or dirty bombs (Gardner 2003).
Our maritime borders are one potential route for smuggling such a device into the
country. Providing a multi-layered approach for port security, while not disrupting
the flow of international trade, is challenging. There are enormous economic
consequences when our nation’s maritime port security system is compromised. The
need to protect our nation from nuclear attacks, as well the release of radiological
materials is an issue of vital national interest. Physical inspection and scanning
with radiation portal monitors is one part of the solution (Merrick and McLay
2010). However, threat assessments from intelligence analysts and customs and
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border patrol personnel adds an additional layer and allows inspection and scanning
resources to be used more effectively.

Intelligence analysts are often asked to forecast significant effects and must do
so based on limited data. This makes probabilistic reasoning the ideal mechanism
for representing the level of uncertainty and for combining multiple assessments
into a single forecast (Paté-Cornell 2002). Such events are contingent on either
previous events or factors that describe the situation in which the event may
occur. Clemen and Winkler (1999) review several models for combining experts’
judgments of probabilities with the decision maker’s prior information under the
Bayesian aggregation framework developed in Morris (1974, 1977, 1983). It would
seem natural to extend one of these techniques to incorporate the relevant factors.
However, empirical research has shown that experts overestimate probabilities
near zero (Cooke 1991). Research in judgment and decision-making suggests that
decision makers do not weight rare events according to their actuarial chances of
occurring. This is partly due to the use of a mental heuristic that we commonly
apply when forming probability judgments.

The availability heuristic can be used when a probability of an event’s occurrence
is assessed based on the ease with which one can retrieve similar events from
memory (Tversky and Kahneman 1973). It is often easier to recall instances of
large classes than those of less frequent classes. External events and influences can
have a substantial impact the availability of similar incidents, such as the media or
particularly emotional events (Combs and Slovic 1979). Tversky and Kahneman
(1983) suggest that the witnessing an accident will have a greater effect on a
person’s judgment of the probability of an accident than reading about it in a
newspaper. Tversky and Kahneman (1973) describe an experiment where subjects
were read lists of names of famous men and women and asked to assess whether
there were more men or women on the list. Some subjects were given lists where
the men were more famous and tended to respond that there were more men on the
list. Some subjects were given lists where the women were more famous and tended
to respond that there were more women on the list. Thus, the ease of recall affected
the judgment. This is also true, for instance, in searching memory and imagining
possible events. In the case of intelligence analysis, this heuristic could mean more
recent information could be over weighted in forming the judgment even though it
is less relevant. It could also mean that more dramatic and stimulating information
could be recalled more easily and weighed more heavily than less exciting, but more
relevant information.

Instead, in this work we use pairwise comparisons. To avoid asking for over-
weighed probability judgments, we ask for relative judgments. In our previous risk
assessment work, we have found that experts are more comfortable assessing the
relative probability of an event in two situations when each probability is low.
Thus, we ask experts to assess the ratio of the probabilities of the event for the two
scenarios. Por and Budescu (2016) show that pairwise assessments are significantly
more accurate than direct assessments. Multiple factors describe two scenarios to
the expert in a meaningful manner and in each comparison one factor is changed
between the two scenarios. The method is akin to that in Bradley and Terry (1952),
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but the aim is to estimate the effect of the multiple factors rather than developing a
ranking scale. In this case, the factors describe a vessel inbound to the United States
and the comparison asks the experts to assess which vessel is more likely to be used
to smuggle a nuclear threat into the country. Through several such questions with
varying vessel descriptions, we can form a model that predicts the probability that
any given vessel contains a nuclear threat and combines the judgments of numerous
experts.

In the next section, we describe the question format and how multiple questions
are used to assess threat probabilities across a range of possible vessels. We then
define the probability model and the analysis used to aggregate the judgments and
form a predictive probability forecast. Finally, we demonstrate the approach using
questionnaire responses from eight experts in the domain.

19.2 Questionnaires

The questions that make up our questionnaire are paired situation comparisons,
meaning that each situation differs by only one important element. Figure 19.1
shows an example. The columns in Fig. 19.1 are labeled Vessel 1, Vessel Descrip-
tion, and Vessel 2. Each expert is asked to compare Vessel 1 to Vessel 2 in using the
descriptions provided in their respective columns. The columns Vessel 1 and Vessel
2 differ by only one entry that is written in bold. Researchers and experts in the field
compose a series of factors that could potentially be linked to determining whether
a vessel is a threat. The first three rows of each question show factors involving
the countries in which the vessel has docked most recently, specifically the last
three countries: Last Country Docked, 2nd to Last Country Docked, and 3rd to last
Country Docked. We consider five countries that have been rated in the academic

Vessel 1 Vessel Description Vessel 2

Hong Kong Last Country Docked Hong Kong
US 2nd to Last Country Docked US

Singapore 3rd to last Country Docked Singapore
Monthly Frequency of US Calls Monthly

Major Company Vessel Ownership Major Company
> 10 years Age of Ownership Company > 10 years
Container Type of Vessel Container

Mixed products Type of Cargo Lead Materials

Company Employees Crew Company Employees

More?: 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 More?

Fig. 19.1 An example question from the questionnaire
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literature as higher risk for container-based threats, Bangladesh, Indonesia, Pakistan,
Turkey, and Yemen. The other countries considered have high cargo volumes and
are not considered high-risk, Hong Kong, Singapore, the Netherlands, and the US.
The next factor is the Frequency of US calls, which is broken down in to four
levels: monthly calls to the US, semi-annual calls to the US, annual calls to the US,
and the first call to the US. The next two factors are the type of Vessel Ownership
(major company, small or regional company, leasing company, or uncertain (multi-
layered) ownership) and the Age of Ownership Company. The Type of Vessel is
one of container vessel, bulk carrier, roll-on/roll-off vessel, or a general freighter.
The Type of Cargo is one of mixed products (such as a Wal-Mart cargo), ceramic
tiles, lead materials, or scrap metal. The last factor is Crew, that can be company
employees, labor union hall, short-term contracts, or crew of opportunity (picking
up crew members available at port). We do not consider all possible values of the
factors, just enough to assess whether the factor is important.

In Fig. 19.1, the Last Country Docked is Hong Kong, 2nd to Last Country Docked
is the United States, 3rd to last Country Docked is Singapore, Frequency of US
calls is Monthly, Ownership is a Major company (such as Maersk, Evergreen, or
Hunan), the Age of Ownership Company is more than 10 years, the Type of Vessel is
Container, and. The only thing that changes between the two vessels is the Type of
Cargo. For the purposes of this survey, Vessel 1 contains Mixed Products, which are
considered to be items common to Walmart or K-mart goods and products. Vessel 2
contains lead materials, such as auto parts, brake drums, or manifolds. Each expert
is asked to determine whether the single change between the two vessels elevates
the threat.

Now let us turn to the response scale below each question. There is a scale at 122
the bottom of the question. The ranking system ranges from 9 to 1 to 9. For the 123
example, if the expert considers that the change from Mixed Products in Vessel 1
124 to Lead Materials in Vessel 2 makes the expert feel that Vessel 2 has four times
125 the likelihood of containing a threat than Vessel 1, then the expert would check
126 the 4 to the right, closest to Vessel 2, as shown in Fig. 19.2. Alternatively, if the
expert 127 thinks Vessel 1 is five times more likely than Vessel 2 to have a nuclear
device 128 or illicit radiological materials smuggled onboard then the expert would
check the 129 number 5 on the side of Vessel 1. If 9 times the risk is not a sufficient
range and 130 the expert thinks Lead Materials on Vessel 2 is 12 times more likely
to harbor a 131 threat compared to Vessel 1 then the expert can simply type “12” in
the text box to 132 the right. If the expert sees no significant difference between the
two vessels in the 133 likelihood of a threat, then the response would be to check
the box marked 1.

Some questions in the questionnaire are similar. The key changes are highlighted
in bold. However, minor changes may be easily missed. For example, the two
questions in Fig. 19.3 are almost identical. Notice, though, that not only is the
key comparison important (Hong Kong compared to Bangladesh as Last Country
Docked), but also the 2nd to Last Country Docked is changed from the US as in
question 1 to Pakistan in question 16. These secondary factors are highlighted in
bold italics. This allows estimation of interactions between two factors. In this case,
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Vessel 1 Vessel Description Vessel 2

Hong Kong Last Country Docked Hong Kong

US 2nd to Last Country Docked US
Singapore 3rd to last Country Docked Singapore

Monthly Frequency of US Calls Monthly
Major Company Vessel Ownership Major Company

> 10 years Age of Ownership Company > 10 years

Container Type of Vessel Container

Mixed products Type of Cargo Lead Materials

Company Employees Crew Company Employees

More?: 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 More?

Fig. 19.2 An example of an expert’s response to the question in Fig. 19.1

Vessel 1 Vessel Description Vessel 2

Hong Kong Last Country Docked Bangladesh
US 2nd to Last Country Docked US

Singapore 3rd to last Country Docked Singapore
Monthly Frequency of US Calls Monthly

Major Company Vessel Ownership Major Company
> 10 years Age of Ownership Company > 10 years

Container Type of Vessel Container
Mixed products Type of Cargo Mixed products

Company Employees Crew Company Employees

More?: 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 More?

Vessel 1 Vessel Description Vessel 2

Hong Kong Last Country Docked Bangladesh
Pakistan 2nd to Last Country Docked Pakistan
Singapore 3rd to last Country Docked Singapore
Monthly Frequency of US Calls Monthly

Major Company Vessel Ownership Major Company

> 10 years Age of Ownership Company > 10 years
Container Type of Vessel Container

Mixed products Type of Cargo Mixed products

Company Employees Crew Company Employees

More?: 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 More?

Fig. 19.3 An example of two questions that combined allow the estimation of interaction effects
between factors
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the effect of Last Country Docked depends on 2nd to Last Country Docked. In fact,
we include a possible three-way interaction between Last Country Docked, 2nd to
Last Country Docked, and 3rd to last Country Docked, as the exact combination of
all three may be the cause of concern to the intelligence analyst.

The questionnaire takes between 30 and 45 minutes. We received questionnaires
from eight personnel with significant expertise in intelligence analysis in the
maritime domain.

19.3 Analysis

The occurrence and non-occurrence of a nuclear threat on board a vessel is modeled
by exchangeable Bernoulli trials with an unknown probability that depends on the
factors describing the vessel. The model assumed takes the form of a proportional
probabilities model (Merrick et al. 2000), based on the idea of the proportional
hazards model (Cox 1972). Let X D (x1, : : : , xq)T denote the q factors describing a
vessel that may contain a nuclear threat. The conditional probability of a nuclear
threat, given the vessel description defined by X, is assumed to be

P .ThreatjX; p0; ˇ/ D p0exp
�
XTˇ

�
(19.1)

where ˇD (ˇ1, : : : ,ˇq)T is a vector of q parameters and p0 is a baseline probability
parameter. Consider a single question that asks the expert to compare two vessel
descriptions defined by the factor vectors L (for vessel 1 on the left) and R (for
vessel 2 on the right). The experts are asked to judge which vessel is more likely to
contain a nuclear threat and by how much or

P .ThreatjR; p0; ˇ/
P .ThreatjL; p0; ˇ/ D p0exp

�
RTˇ

�

p0exp .LTˇ/
D exp

�
.R � L/Tˇ

�
(19.2)

where (R � L) denotes the difference vector between the two factor vectors. This
implies that the expert’s response is related to the difference between the two vessel
descriptions and the parameter vector ˇ.

Multiple experts complete each questionnaire, so there are multiple responses
to each question. Let the experts be indexed by j(D1, : : : , p) and the questions be
indexed by i(D1, : : : , N), so the experts’ responses can be denoted zi , j. We now
have that zi , j is the j-th expert’s estimate of the ratio of probabilities for the i-th
question, while the model gives this relative probability as exp((Ri � Li)Tˇ). If we
let Xi D (Ri � Li) then we can assume that zi , j and exp((Ri � Li)Tˇ) are equal up to
a random error, or

ln
�
zi;j
� D XT

i ˇ C ui;j (19.3)
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where ui , j is the residual error term representing the variation between the experts’
responses around the model. Assuming that the errors ui , j are independent and
normally distributed with zero mean and variance �2, this equation is a standard
linear regression, where yi , j D ln(zi , j) is the dependent variable, Xi is the vector of
independent variables, ˇ is a vector of regression parameters and ui , j is the error
term (Press 1982).

The regression analysis provides an estimate of ˇ, but does not provide an
estimate of p0. This means that we can estimate the ratio of the probability of a
nuclear threat for any two vessels, but we cannot predict the probability for a single
vessel without p0. How then does a decision maker obtain the actual probability
of a nuclear threat for a specific vessel for use in decision making? The decision
maker can assess the probability for one reference vessel, with vessel description
X0. Suitable techniques for aggregation of probability assessments are reviewed in
Clemen and Winkler (1999). The probabilities for any given other vessel with vessel
description X

�

can be found by multiplying

P .ThreatjX0; ˇ/ � P .ThreatjX�; ˇ/
P .ThreatjX0; ˇ/ D P .ThreatjX0; ˇ/ � exp

�
.X� � X0/

Tˇ
�

(19.4)

However, we must remember that experts overestimate low probability events,
which is our reason for using pairwise comparisons in the first place. This means
that higher values of P(Threatj X0 ,ˇ) are likely to be better calibrated. Thus, we
must choose X0 to be the vessel description with the highest possible chance of
containing a nuclear threat in the expert’s opinion.

19.4 Results

We obtained completed questionnaires from eight experts. Each expert had sig-
nificant expertise in the maritime security domain ranging from 27 to 42 years
and including commercial, US Coast Guard, Customs and Border Patrol, and
Department of Homeland Security roles. Each expert completed 35 questions,
allowing the estimation of all parameters.

Figure 19.4 shows the responses to the questions concerning the last three ports of
call as box plots. For each country, the individual responses are shown as points on
the plot and then the box includes a centerline for the median and an upper and lower
end of the box for the 75th and 25th percentiles of the responses. The whiskers of the
plot extend to the highest and lowest response value unless that value would make
the whisker more than 1.5 times the length of the box. Values beyond this range are
considered outliers. Figure 19.4 shows the same general pattern of response for the
last and second to last port of call. There is more disagreement between the experts
regarding the third to last port of call, although the ranking of the medians is the
same.
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Fig. 19.4 Box plots of the experts’ responses concerning the last three ports visited
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Figure 19.5 shows the responses to the questions concerning the cargo on the
vessel, the ownership of the vessel, and the manner of hiring crew for the vessel.
There is some disagreement as to the effect of ceramic tile, lead products, and
scrap metal on the likelihood of hiding a nuclear threat. This is because each of
these cargoes can cause problems for radiation screening equipment. Ceramic tiles
can be naturally occurring radioactive materials, or NORMs, causing false positive
alarms. Lead can shield radiation and so could be used to hide nuclear material from
screening equipment. There appears to be some disagreement between the experts
whether terrorists would be likely to mask true nuclear threats with NORM sources
or shield them in lead. However, the ranking of the median values is quite clear, so
there is a partial consensus with only a few experts in disagreement. There is also
some disagreement about the effect of a crew of opportunity. This essentially means
that crewmembers are hired as needed when the vessel arrives in port. However,
while the experts disagree as to how much worse this is than other hiring practices,
they all agree that it is worse.

Figure 19.6 shows the responses to the questions concerning the frequency of
calls to the US and the type of vessel. There is more general disagreement here.
Some experts think that yearly calls and first calls to the US should be of great con-
cern, whereas others think there is little difference. Furthermore, some experts are
more concerned about container vessels, while others consider freighters a higher
risk. We performed a stepwise regression on all factors in the model, including
second and third order interactions between the factors representing the last three
ports of call. As expected from Fig. 19.6, the disagreement about the frequency
of US calls and the vessel type made those factors statistically insignificant. The
interaction terms were also found to be insignificant, meaning that the pattern of the
last three calls is not important, just whether they contain calls to specific countries.
The final model is statistically significant (F-ratio D 19.2367, n D 275, and a p-
value of 9.13 � 10�21). The model had an R2 value of 33.5%, a reflection of the
disagreement of individual experts around the consensus represented by the model.
A lack of fit test on the model was insignificant with a p-value of 0.3994.

Table 19.1 shows the parameter estimates for the final model, including estimates
of the regression parameters, ˇ, their 90% confidence intervals, and their individual
p-values for significance (ˇ¤ 0). All factors are scaled from 0 to 1, with 0 being
the value of least concern and 1 being the value of most concern. Thus, the
parameter values represent the range in the log-linear scale from the least to the
most concerning values of that parameter. This means that we can compare which
factor causes the largest change in likelihood of a threat when swung from its least
concerning level to its most. We can see that ownership has the largest range from a
major company to an unknown owner. The next largest range is the last port of call
and then the type of crew hiring practices. In terms of the last three ports of call,
the ordering is as expected from the last to the third to last port of call. The smallest
range is for the type of cargo, probably because of the disagreement about cargoes
that can mask or shield nuclear threats.
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Fig. 19.5 Box plots of the experts’ responses concerning the cargo, owner, and crew
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Fig. 19.6 Box plots of the experts’ responses concerning the type of vessel and its frequency of
calling at US ports

Table 19.1 Parameter estimates for the final model

Term Estimate Std. error t ratio p-value Lower 95% Upper 95%

POC 1 1.907 0.211 9.022 3.72E-17 1.491 2.323
POC 2 1.691 0.172 9.819 1.26E-19 1.352 2.030
POC 3 0.993 0.172 5.767286 2.22E-08 0.654 1.333
Owner 2.280 0.428 5.331 2.08E-07 1.438 3.122
Owner age 1.726 0.356 4.848 2.12E-06 1.025 2.427
Cargo 0.512 0.227 2.254 0.050 0.065 0.958
Crew 1.896 0.405 4.69E C 00 4.43E-06 1.099 2.692
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19.5 Representative Threat Predictions

Consider the comparison of the two vessels in Fig. 19.7. Six factors have been
changed between the two vessels. Could we simply ask the expert to compare these
two vessels? The simple answer is no. The complexity of the task would make the
judgment at least questionable, if not ill advised. Instead, we can use the model to
predict the relative difference in likelihood between each vessel containing a nuclear
threat. Substituting these two vessels in to Eq. (19.3) with the parameter values in
Table 19.1, we obtain a best estimate of the log ratio of 3.89 with a 95% confidence
interval of [3.19, 4.59]. However, taking the exponential transformation to get the
ratio of the likelihoods, we obtain an estimate of 48.81 with a 95% confidence
interval of [24.29, 98.01]. The most important difference here is that in the second
to last country, which makes vessel 2 3.41 times as likely to contain a threat as
vessel 1. While ownership has the largest parameter and so difference across its full
range, the difference between a major company and a leasing company is small.
Thus, it is the combination of the specific factor changes and the parameter values
that determine the predicted ratio of the probabilities.

As a final analysis, let us consider the comparison of the least likely to the most
likely vessel to contain a nuclear threat. Figure 19.8 shows such a comparison. Note
that technically we should set vessel 2 to call in Yemen (ranked by all experts as the
largest concern) for the last three ports of call, but instead we chose the sequence
to be Yemen-Pakistan-Yemen-US. Substituting these two vessels in to Eq. (19.3)
with the parameter values in Table 19.1, we obtain a best estimate of the log ratio of
5.15 with a 95% confidence interval of [4.14, 6.16]. However, taking the exponential
transformation to get the ratio of the likelihoods, we obtain an estimate of 172.75
with a 95% confidence interval of [63.18, 472.33].

Fig. 19.7 An example of a vessel comparison with many differences
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Fig. 19.8 An example of a vessel comparison with largest possible differences

19.6 Conclusions

We have demonstrated the use of extended pairwise comparisons in predicting
the relative likelihood that a vessel entering US waters contains a nuclear threat.
We developed a questionnaire with 35 questions to populate the parameters of
a probabilistic prediction model and demonstrated how log-linear regression can
be used to estimate the parameters of the model by aggregating the questionnaire
responses from multiple experts. We obtained responses from eight experts with
significant knowledge of this problem domain and formed a predictive model based
on their judgments. The predictive model was used to compare two example vessels
and determine the relative risk associated with the most “risky” vessel and the least
“risky” vessel.

This study stands as a proof-of-concept for the technique. The questionnaire can
be designed to include additional factors, a larger set of possible ports of call, and
finer granularity in important factors. We have also demonstrated how interactions
between the factors can be included, although they proved not to be significant
in our final model. The approach can be used to predict absolute probabilities
using the threat probability for a reference vessel and then predicting the relative
likelihood for any vessel of interest in comparison to the reference vessel. Clearly,
this approach can be applied beyond nuclear threats and for situations beyond threats
on a vessel. The same approach could be applied to individual containers on a vessel
or even to air and land borders.

The frequentist regression analysis used here allows uncertainty to be represented
as a confidence interval. However, there was considerable disagreement between
the experts on the importance of the different factors, as indicated by the R2

value of 33% and the wide confidence intervals obtained on the predictions. One
might suggest that the calibration of the experts could be assessed—see Chapters
2: “Elicitation in the Classical Model” (Quigley et al. 2018) and 3: “Validation
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in the Classical Model” (Cooke 2018) in this book—and included in the analysis
through weighted least squares regression. However, the lack of experience with
such specific threats, and the relatively low occurrence of terrorist threats overall,
precludes such analysis. Thus, we are left with increasing the pool of experts
and correctly expressing the remaining uncertainty. Bayesian analysis offers a
more complete uncertainty analysis to be performed (Paté-Cornell 2002). Szwed
et al. (2006) propose a fully Bayesian analysis of extended pairwise comparisons,
while Merrick et al. (2005) propose an extended Bayesian analysis to allow for
dependencies in the experts’ responses due to overlapping information available to
the experts. Thus, the application of these techniques could provide a more accurate
expression of the remaining uncertainty in the threat probabilities predicted.
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Chapter 20
Risk Assessment Using Group Elicitation: Case
Study on Start-up of a New Logistics System

Markus Porthin, Tony Rosqvist, and Susanna Kunttu

Abstract This chapter presents a risk assessment for the start-up of a new logistics
system within the pulp and paper manufacturer Stora Enso. The risk assessment
was realised as a structured expert elicitation workshop using a computerised group
support system. Experts representing different parts of the logistics system were
invited to a one-day workshop to assess risks concerning the system start-up. The
main topics of the workshop were hazard identification, risk estimation and risk
control. Each identified risk scenario was assessed with regard to its likelihood
and three consequence types related to logistics: timeliness, product quality and
information quality. The top priority risks were identified and risk controls were
outlined.

The computerised group support system made the workshop more efficient due to
the possibility of simultaneous inputs from all participants to a shared environment,
versatile processing possibilities of the inputs, voting features with instant results
and automated documentation. An essential factor for the success of the workshop
was thorough preparation in cooperation between the analysts and the problem
owner. Each step of the workshop process was specified and special attention was
given to ensure the elicitation questions were clear and unambiguous.

The risk assessment resulted in a prioritised list of realistic risk scenarios for the
start-up of the logistics system and control ideas for the most important risks. The
results helped the company structure their work to ensure a problem free start-up. In
addition, the workshop participants found it valuable to meet representatives from
other parts of the logistics chain.

20.1 Introduction

Risk analysis often deals with poorly documented complex systems which are
hard to overview and for which data is difficult to obtain. Structured expert
elicitation through expert workshops is one way to overcome the lack of information
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(Cooke 1991; Weatherall and Hailstones 2002). In the workshops the expertise and
knowledge of different types of participants is exploited and interactively combined
in order to produce new information which could not have been received by
addressing the experts one by one. The use of computerised group support systems
results in more efficient, controlled and comprehensively documented workshops.

This chapter presents an application of structured expert workshop techniques
in change management through risk assessment of the start-up of a new logistics
system. In 2005–2007, Stora Enso was reforming its logistics system for transport-
ing paper products, mainly paper reels, from their mills in Sweden and Finland
to Central Europe. The main objectives of the change were to harmonize the
supply system for Nordic situated mills, increase resource and cost effectiveness
and flexibility as well as to lower the level of transport damages, improve data
quality and enable delivery tracking. A risk assessment was conducted by VTT
Technical Research Centre of Finland in order to identify the main risks that may
affect the start-up of phase 2 of the supply system in 2006 and to help the company
define action plans to control the risks in advance before start-up. The first phase
of the supply system did not have quite as smooth a start as hoped for and now the
company wanted to ensure a problem free start-up for the second phase. The risk
assessment was carried out through a structured computer assisted workshop with
participants representing different parts of the supply chain as well as the supply
system perspective.

According to the ISO 31000 (2009) standard risk assessment is a part of the risk
management process which should go through all levels of the organisation (e.g.
Hopkin 2014; Duijne et al. 2008; Arena et al. 2010). The risk management process
is presented by five main phases as shown in Fig. 20.1. The main focus of this case
study is on risk assessment.

Fig. 20.1 Risk management process (ISO 31000 2009)
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Networked computers and group support system software called GroupSystems,
nowadays known as ThinkTank (2017), were used in the risk assessment workshop.
The computerised system can be seen as an electronic substitute for conventional flip
chart and post-it techniques. It enables simultaneous inputs from all participants to
a shared environment, commenting on other participants’ inputs, grouping, merging
and editing of inputs as well as the use of various voting methods. The inputs can
be anonymous. The system automatically generates a meeting record containing
all inputs and voting results, thus reducing the secretarial work. Computer assisted
meetings are usually more structured than conventional ones. A typical session may
consist e.g. of exchanging of information and opinions, creation of ideas and actions,
exploring and evaluating of the ideas as well as voting on priorities and building
commitment. The reader is referred to Weatherall and Nunamaker (2000) for further
information on group support systems.

20.2 North European Transport Supply System

In 2005–2007 Stora Enso was reforming its logistics system for transporting mainly
paper reels from their mills in Sweden and Finland to Central Europe. The new
supply system called NETSS (North European Transport Supply System) was
based on transporting cargo in oversized containers, so called SECUs, (Stora
Enso Container Unit) via a hub in Gothenburg to the designated ports on the
European continent or the Great Britain. The purpose of the SECU containers, with
dimensions optimised for paper reels, was to enable efficient loading and lower
the level of transport damages through minimised direct handling of the reels. In
addition, the SECUs were equipped with radio tags to support efficient tracking.

The new system was launched in three phases (Fig. 20.2): The first phase in 2005
included the Swedish and Southern Finnish mills, the hub in Gothenburg, as well as
three discharge ports in Central Europe. In 2006, the Northern Finnish mills and the
port of Antwerp were included. Finally in 2007, Lübeck was added to the transport
system.

The risk analysis presented here focused on potential disturbances during the first
six months after the start-up of the second phase in 2006. The assessment covered
the system traffic from loading into SECU containers at the port of loading (in
Finland) or at the mill (in Sweden) until the arrival to the inland terminal in Central
Europe. Figure 20.3 shows the goods flow from the Finnish mills. From the mills
that are not situated by the port, the goods are first transported by rail or truck to the
port of loading where they are loaded into SECUs. The cargo continues to the hub
in Gothenburg by ships dedicated for this traffic, where the SECUs are re-arranged
according to the final destination and then shipped to the port of discharge. There
the SECUs are unloaded and the goods are transported by rail to the inland terminal.
Empty SECUs are shipped back to Sweden and Finland in returning ships.
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Fig. 20.2 The three phased start-up of NETSS system traffic

Fig. 20.3 Goods flow from Finnish mills to Central Europe

20.3 Pre Workshop Preparation

20.3.1 Planning of Workshop Process

The workshop was carefully planned in cooperation between the analysts and
the client over a series of meetings. To ensure the success of the workshop, the
process must be tailored to address the desired questions in an appropriate way.
The theme and objectives of the workshop were discussed and defined. Based on
this, the facilitators suggested a structure for the workshop, which was then refined
throughout the planning stage.

Each step of the workshop process was clearly specified. The likelihood and
consequences of the identified risks were to be assessed by voting. One important
task was to determine and accurately define the consequence types to account for
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Table 20.1 Likelihood scale Scale Description Probability

1. Very unlikely 0–5%
2. Unlikely 5–25%
3. Possible, “fifty-fifty” 25–75%
4. Likely 75–95%
5. Very likely 95–100%

and their associated voting scales. Three main quality attributes used in logistics
were chosen to represent consequences of the risks and their qualitative scales were
defined based on company specific conditions. The voting questions and scales
should not only be unambiguous but also easy to internalise by the experts in order
to aid the judgement process and prevent misunderstandings.

20.3.1.1 Definition of the Likelihood Scale

For the likelihood1 assessment of the risks a five step scale was prepared (Table
20.1). The workshop participants were to assess how likely each scenario was to
occur during the first 6 months of NETSS phase 2. The limits of the likelihood scale
were defined using practical experience that people tend to have a good idea whether
a scenario is likely or unlikely, but it may be harder to assess whether the probability
for a possible scenario should be e.g. 40% or 60%. The likelihood judgements
were subsequently converted into probabilities by using the middle points of the
corresponding probability intervals in order to calculate the risk indices.

20.3.1.2 Definition of Consequence Types and Scales

The consequences were decided to be assessed using three criteria: Deviation of
timeliness, Deviation of product quality and Deviation of information quality. The
scales were developed together by the VTT risk analysts and the client (Tables
20.2, 20.3, and 20.4). In order to define the consequence scales in an as descriptive
and intuitive way as possible for the workshop participants, each level on the
scale was given a tailored verbal description. The consequence levels were also
further clarified by expressing their effects on costs, customers and company internal
credibility of NETSS.

1Here the term likelihood is used instead of probability, because the elicitation was done using a
1–5 scale whereas probability per definition is a number between 0 and 1. However, probabilities
were used in the definition of the likelihood scale (Table 20.1).
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Table 20.2 Scale for consequence 1: deviation of timeliness

Scale Description
Extra costs
(resources)

Effect on
customers

Effect on
company internal
credibility of
NETSS

1. Problem is local and can be sorted out
on local level

Negligible No No/negligible

2. Problem is local but requires
cooperation

Moderate No Negligible/moderate

3. Problem is affecting subsystem
performance and requires cooperation
inside NETSS

Notable Moderate Notable

4. Problem decrease NETSS system
overall performance, requires
cooperation and possibly alternative
means for transportation/it messaging
etc. for some time

Notable Notable Substantial

5. Problem decrease NETSS system
overall performance to a degree that it
is difficult to compensate with
alternative actions (transportation,
messaging etc)

Substantial Loss of
credibility

Unrepairable

Table 20.3 Scale for consequence 2: deviation of product quality

Scale Description
Extra costs
(resources)

Effect on
customer
deliveries

Effect on
company internal
credibility of
NETSS

1. Problem is local and can be
sorted out on local level (i.e.
refurbishment). Corresponding
to current damage levels

Moderate No No/moderate

2. Problem is local but requires
increased effort. Moderately
increased damage level

Moderate/notable No Moderate

3. Problem is affecting subsystem
performance and requires
cooperation inside NETSS.
Increased damage levels
affecting delivery reliability

Notable Moderate Notable

4. Problem decreases NETSS
system overall performance.
Increased damage levels
affecting delivery reliability

Notable/substantial Notable Notable/substantial

5. Problem decreases NETSS
system overall performance.
Increased damage levels
affecting delivery reliability and
system reliability

Substantial Substantial Substantial
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Table 20.4 Scale for consequence 3: deviation of information quality

Scale Description of problem

Extra costs,
manual work
(resources)

Effect on info
to external
customers

Effect on info
to internal
customers

1. Problem is local and can be
sorted out on local level

Negligible/moderate No Negligible

2. Problem is local but requires
cooperation

Moderate No Moderate

3. Problem is affecting subsystem
performance and requires
cooperation inside NETSS

Notable Negligible Notable

4. Problem decrease NETSS
system overall performance,
requires cooperation and
possibly alternative means for it
messaging etc. for some time

Substantial Moderate/notable Substantial

5. Problem decrease NETSS
system overall performance to a
degree that it is difficult to
compensate with alternative
actions

Substantial Loss of
credibility

Unrepairable

20.3.2 Selection of Experts

The experts for the workshop were selected by the client with assistance by the
analysts. The experts were selected according to three criteria: (1) representation
from parties exposed to the highest degree of change (2) expertise in operations,
and (3) operational representation covering the whole NETSS chain including the
NETSS project personnel.

The selected experts for the workshop consisted of 24 persons from Stora Enso
and partners, representing operative and administrative key functions of the NETSS
system, and one supply chain expert from VTT. The workshop was facilitated in
cooperation by two risk analysts from VTT and a representative from the computer
system provider MeetingSupport.dk.

20.4 Computer Assisted Expert Workshop

The risk assessment was carried out through a one-day structured computer assisted
workshop consisting of hazard identification and risk estimation, identification of
top priority risks and preparation of risk control ideas. The workshop was led by
facilitators using techniques such as brainstorming, consensus building discussions
and voting, following an agenda planned in cooperation by the analysts and
the problem owner. The use of the computerised group support system gave all
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participants the possibility to express their views simultaneously without anybody
being able to dominate the discussion. The computer system enabled also further
processing of the given inputs and instant voting based on them. In addition, all
inputs were documented in the system. These features made the workshop more
efficient than if using traditional post-it and flip chart techniques.

The targets of the workshop were to first find out potential hazards associated
to the start-up of NETSS phase 2, then identify the most critical ones using
likelihood and consequence criteria and finally consider ways to address the risks.
The structure of the workshop is outlined below along with approximate duration of
each task, excluding breaks.

Task 0: Introduction (45 min)

a. Goals and scope of the workshop
b. Short description of the NETSS system
c. Description of the work method

Task 1: Hazard identification (2 h)

a. Generation of risk scenarios
b. Commenting risk scenarios
c. Moderated merging of scenarios

Task 2: Risk estimation (1 h 30 min)

a. Estimation of likelihood of scenarios (voting)
b. Estimation of consequences of scenarios (voting)

– Timeliness
– Product quality
– Information quality

c. Identification of top priority risks based on voting results

Task 3: Risk control ideas (1 h 40 min)

a. Small groups focussing on one risk at a time
b. Discussion about risk controls for top priority risks
c. Conclusions and closure of the workshop

20.4.1 Introduction of the Workshop

In the introduction, the goals and scope of the workshop as well as the NETSS
system were presented by representatives of the NETSS management. The facilita-
tors from VTT presented the workshop method. It was important to go through the
system under examination in order to give the participants a common understanding.
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20.4.2 Hazard Identification

The purpose of the hazard identification was to generate risk scenarios that might
occur in the NETSS system. The participants were grouped into groups of 1–
3 persons according to the part of the organisation they represented. The groups
typed in scenarios into the computer system simultaneously and anonymously.
To avoid duplicates, they could see what the other groups had already typed in.
The instructions in Tables 20.5, 20.6, and 20.7 were presented and given to the
participants.

The participants were instructed that a risk scenario should consist of a specific
adverse event, which leads to some deviations from the normal operations (Table
20.5). To facilitate the scenario generation process, a list of general adverse events
(Table 20.6) was given to the participants. The participants were also asked to
categorize the scenarios according to where the adverse event occurs (Table 20.7).

Table 20.5 Instruction to the participants on the generation of risk scenarios

Generation of risk scenarios
1. Choose a supply chain function where the adverse event occurs (see Table 20.7)
2. Give title: [Concise title specifying

(1) adverse event (see Table 20.6) and
(2) resulting deviation from normal operation
(3) at some location]

3. Comments:
[Give further description of the hazard, risk control procedures already in place : : : ]

Remember that the scenarios have to be related to NETSS step 2. Try to avoid very unrealistic
scenarios

Table 20.6 List of adverse events

Category Adverse event

Technical failures Cargo capacity problems
IT system performance capacity problems
IT system breakdown
Back up failure (IT & automation)
Equipment breakdown, e.g. vessel, scanner (specify)
Compatibility problems
Other technical problems (specify)

Information/data errors Delayed data
Missing data
Wrong or distorted data
Other data errors (specify)

Human errors related to operational
procedures

Error of commission (good intention, wrong outcome)

Error of omission (neglect)
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Table 20.7 Supply chain functions for categorizing the risk scenarios

Supply chain functions
Pre transportation

NETSS system traffic
Port of loading (SECU and vessel loading)
Hub operation
Port of discharge
Vessels/lines
Cross-docking
Capacity management (prioritization of SECUs, vessel capacity)
Order management (prioritization based on customer orders)

Distribution
Tracking & tracing within system traffic
Tracking & tracing from sales order to delivery
Other

This brought similar risks closer to each other and helped to process the results.
To share the knowledge, the participants were asked to comment on the scenarios
typed by the other groups. Before starting the scenario generation, examples of well-
defined risk scenarios were presented to the participants.

During the hazard identification the participants generated approximately 100
risk scenarios. Guided by the facilitators, the group went through all the scenarios
in order to merge overlapping scenarios, refine poorly defined ones, delete irrelevant
ones and put aside scenarios out of scope. After this “cleaning” activity 58 mostly
well-defined, specific enough and reasonable risk scenarios were left. Although the
workshop aimed at identifying the top risks, all 58 scenarios should be regarded
as relevant and at least checked whether they are already covered well enough for
NETSS phase 2. After all, at least someone of the participating NETSS experts was
concerned about each risk.

20.4.3 Risk Estimation

In the risk estimation task, each risk scenario was evaluated according to its
likelihood and consequences in a reasonable worst-case scenario. Each group
entered their judgements to each identified hazard into the computer system using
predefined five-step scales, presented previously in Tables 20.1, 20.2, 20.3, and 20.4.
After the evaluation, the scenarios were visualised by risk matrices where the most
critical risks lie in the upper right corner (see Fig. 20.4).

As an example, the voting results of one of the risk scenarios (“Order amendment
is not done correctly which leads to working based on wrong information”) is given
in Table 20.8.
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Fig. 20.4 Risk matrix with a
five step likelihood and
consequence scale as deemed
adequate for the NETSS risk
analysis

Table 20.8 Voting results for
the example risk scenario
“Order amendment is not
done correctly which leads to
working based on wrong
information”

1 2 3 4 5 Mean STD n

Likelihood 2 3 4 1 3.4 0.97 10
Timeliness 2 8 2.8 0.42 10
Product quality 7 2 1 1.4 0.7 10
Information quality 1 2 5 1 1 2.9 1.1 10

Columns labelled 1–5 indicate the number of votes given for each
score on the voting scales

The mean values of the voting results were then used to produce risk matrices
for the consequence categories, see Figs. 20.5, 20.6, and 20.7. The example risk
scenario is marked in the figures with a red square. As the analysis is totally based
on opinions and good guesses of the workshop participants, the results should be
regarded as indicative only. No very critical risks were identified. However, the
voting results clearly indicate which risks are regarded as more severe than others.

20.4.3.1 Risk Index

Risk indices combining the likelihood and consequence of the risk scenarios were
calculated for each consequence category. The indices were obtained by multiplying
the probability of occurrence of a risk with the consequences. To do this, the
likelihood index voting results (on a scale 1–5) were converted to probabilities. As
seen in Table 20.1, each number 1–5 on the voting scale corresponds to a probability
interval. An estimate for the group’s view of the probability of a risk scenario was
attained by representing each vote (1–5) by the middle point of the corresponding
probability interval and calculating the mean of the probabilities:
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Fig. 20.5 Risk matrix showing the likelihood and timeliness consequence of the risk scenarios.
The example risk scenario is marked with a red square

Fig. 20.6 Risk matrix showing the likelihood and product quality consequence of the risk
scenarios. The example risk scenario is marked with a red square
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Fig. 20.7 Risk matrix showing the likelihood and information quality consequence of the risk
scenarios. The example risk scenario is marked with a red square

bp.x/ D n1.x/ � 0:025C n2.x/ � 0:15C n3.x/ � 0:5C n4.x/ � 0:85C n5.x/ � 0:975
n.x/

(20.1)

where ni(x) is the number of likelihood votes i on risk scenario x and n(x) is the total
number of votes on x. The risk index for scenario x for each consequence category j
is then

riskj.x/ Dbp.x/ � consequencej.x/ (20.2)

where consequencej(x) is the mean score of consequence category j for scenario
x. To make the risks commensurable an overall risk index, accounting for all
consequence categories, was also calculated:

risk.x/ D riskTime.x/C riskProd.x/C riskInfo.x/: (20.3)

The likelihood votes for the example risk scenario were n1 D 0, n2 D 2, n3 D 3,
n4 D 4, n5 D 1 (see Table 20.8). Using Eq. (20.1) the probability estimate for the
scenario is thus 0.62. The risk indices for the scenario are shown in Table 20.9.
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Table 20.9 Risk indices for
the example risk scenario

Risk index

Timeliness 1.73
Product quality 0.86
Information quality 1.79
Overall 4.38

20.4.3.2 Identification of Top Priority Risks

Out of the 58 identified risk scenarios, the ones nearest to the upper right corner
of each risk matrix were selected as top priority risks for further examination. The
following risk scenarios were selected:

• The 10 risk scenarios with highest overall risk index (Eq. (20.3)).
• For all three consequence categories, the risk scenario with the highest conse-

quence specific risk index (Eq. (20.2)) out of the ones not in the top 10 overall
risks.

• For all three consequence categories, the risk scenario with the highest conse-
quence score.

20.4.3.3 Top Priority Risks

Generally speaking, the top priority risks had either to do with quality of informa-
tion, transportation and handling or the logistics process.

The information in the transport system may be inaccurate or lacking due to
technical or human errors. This may lead to working processes based on wrong
information, e.g. ports of discharge are unable to work with units without unit
information.

Local problems such as delay of a vessel or shortage of berthing places at ports
as well as unclear work prioritisation may cause delays further down the logistics
chain. Although the use of SECU containers was generally considered to lower the
amount of reel damage, it was thought that too tight loading into the containers may
also damage the reels.

The Stora Enso specific SECU containers which the NETSS cargo is transported
in must be transported back to the ports of loading for reuse. NETSS uses also
an early release principle, which means that cargo is sent forward in the transport
system as soon as possible after becoming available for transporting. If not properly
managed, these features can lead to logistic problems such as crowded warehouses
or lack of SECU containers at specific locations.
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20.4.4 Risk Control Ideas

Once the top priority risks were identified, the next task was to decide how to
address them. The participants were divided into small groups of 2–3 participants,
now mixed from the earlier tasks in order to bring different backgrounds together.
Each group could choose which risk to focus on first, and then move on to another
one. Finally the risk control or avoidance ideas were briefly discussed together in
the large group.

The risk control ideas consisted both of preventive measures concentrating on
the root causes of the disturbances and of contingency plans to be executed in case
a risk is realised. The main ideas can be summarised as follows:

• Proper training and instructions to the personnel throughout the NETSS system
and motivating the personnel by explaining the effects of their work on the
system.

• Optimisation of the system as a whole, avoiding sub-optimisation.
• Safety margins to make the system resilient.
• Key performance indicators and clear early warning signals on developing

disturbances.
• Premade backup plans in case of e.g. delays or full warehouses. E.g. alternative

routes, warehouses and vessels.
• Clear communication procedures to sort out problems.

20.4.5 Conclusion of the Workshop

In the conclusion of the workshop, the client representative informed the participants
on the next steps in the process to manage the NETSS start-up risks and named
the responsible persons for each task. A feedback channel was established using
which Stora Enso staff could give comments and remarks concerning the upcoming
NETSS phase 2 start-up. A workshop feedback questionnaire was also filled in by
the participants.

20.5 Post Workshop Actions

After the workshop, a report was compiled by VTT describing the workshop process
and the results. The top priority risks were briefly analysed and recommendations on
follow-up activities were given. Preparatory actions to be done before the NETSS
start-up as well as contingency plans to be executed in case a risk is realized were
suggested. The report contained also all written and numerical inputs recorded by
the computer system during the workshop.
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Stora Enso used the identified risk scenarios to structure their preparation
work for the start-up and bring attention to important questions. The scenarios
were utilised to follow up the performance throughout the NETSS start-up phase.
According to Stora Enso representatives, they benefitted greatly from the risk
assessment. They faced some minor disturbances in the eventual start-up, but to
most part it went very well.

20.6 Lessons Learned

Computerised workshops make it possible for people to participate not only face-to-
face, but also over the Internet from different locations or even at different times, if
taken into account in the workshop settings. In this case it was however decided to
hold a face-to-face meeting where the group and work process are easier to manage
than in distributed settings, despite the apparent challenge to arrange for all the
desired experts to be at the same place at the same time. The participants in face-
to-face workshops are usually highly motivated and can focus on the common task
without external disruptions. One of the challenges in workshops realised entirely
over the Internet is to ensure active participation by all parties. Remote workshops
are also demanding with regard to the clarity of the process and quality of the
instructions, when face-to-face instructions cannot be given.

The whole risk assessment workshop was carried out during one day, because it
was considered too challenging to gather all the needed experts for a longer time
period. This lead to an intense workshop and it turned out that the discussion on
risk control ideas in the afternoon could not be given quite as much time as some
of the participants would have desired. An optimal duration of the workshop could
have been one and a half days, moving the risk control ideas session to the morning
of the second day. Alternatively, the risk control ideas could have been covered in a
separate session over the Internet about one week after the workshop, giving also the
participants the possibility to provide input in between. Remote sessions are easier
to realise in follow-ups when the group is already familiar with each other than if
pursued with new groups.

Although the workshop itself took only one day, it gives only a part of the picture.
A successful expert workshop requires thorough preparation, as described earlier.
It is important that the workshop agenda meets its objectives. Each task must be
feasible in the workshop setting and allocated enough time. It is also important that
the participants can easily understand the purpose and requirements of the tasks.
After the workshop, resources must also be reserved for reporting, editing of the
gathered data and analysis of the results.

In the workshop, the participants worked in pairs sharing the same computer
(with some exceptions with one or three persons). In the two first tasks people
with similar background sat together, whereas the groups were mixed in the third
task. The setting invited for small discussions within the groups while working
with the tasks, resulting in probably a somewhat smaller number of inputs but also
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inputs of high quality and fewer duplicates. People with similar background could
support each other when brainstorming risk scenarios together, whereas groups with
different backgrounds were best prepared to come up with new and innovative risk
controls.

The workshop participants felt it was both useful and interesting to meet the other
parties of the NETSS chain and go through the possible risks well in advance before
the system start-up. The structured brainstorm methodology was well-received as
it enabled addressing of a broad scope in an efficient way. Despite a quite large
group, everyone had a chance to share their concerns on all topics discussed and
quite a lot of discussion about the main topics was possible. A broad participation
of main stakeholders made also the risk analysis results easily acceptable within the
company.
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Chapter 21
Group Decision Support for Crop Planning:
A Case Study to Guide the Process
of Preferences Elicitation

Pavlos Delias, Evangelos Grigoroudis, and Nikolaos F. Matsatsinis

Abstract The land of Paggaio, Kavala, Greece although very rich, has been
cultivated in ways that affected both local environment and economies disadvan-
tageously giving rise to the crucial problem of strategic crop planning. However,
because of the many actors involved, and of their conflicting interests, reaching a
consensus about what the objectives of such a planning should be, is a complex
and challenging task. So as a first, preparatory step for strategic crop planning,
the interested parties should acquire a clear view about what are the differences
in the preferences of the involved actors. In this chapter, we present the steps that
we followed in order to execute an end-to-end process for a client that needed to
unveil what are the criteria that guide the preferences of the actors and which actors
converge (or diverge) the most, with respect to the evaluation on these criteria.
Following a prescriptive approach (that assumes that a preference model exists),
we sketched the relevant problem situation and problem formulation, constructed
an evaluation model based on a multiple criteria technique, and eventually reached
some recommendations. The case study we present in this work could help analysts
to structure their own decision aid processes based on an established roadmap,
as well as to become aware of the process pitfalls. Regarding the referenced case
study, it showed that actors have strongly diverging preferences, so that it was not
possible to discover a robust collective model. However, we were able to identify the
points of major conflict in two criteria (environmental friendliness and economical
performance) and amongst certain stakeholders.
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21.1 Introduction

Crop planning is about deciding how to allocate a finite amount of agricultural
land among various competing crops that could be grown. Because it involves
multiple actors (potentially with conflicting interests), and it affects and is affected
by multiple criteria, it is a particularly complex problem (de Groot et al. 2010; Dury
et al. 2012). A common tactic in crop planning is to optimize the allocation plan
according to a certain set of objectives (Chetty and Adewumi 2014; Janová 2012),
nevertheless in order to be able to optimize, the involved actors must have first
decided about their objectives. This is exactly the aim of this paper: to try to unveil
how the involved actors are making their decisions and to figure out what are the
points of consensus or conflict in a process involving multiple actors.

Crop planning is a core problem in agriculture. Its implications are far-reaching
and related to many aspects such as land-use (Dai and Li 2013), environmental
impact (Núñez et al. 2013), market concerns (e.g., employment, food prices)
(Li et al. 2015), etc. Therefore, it is expected that the actors involved have conflict-
ing preferences. Acquiring an understanding of the various preferences, becomes
therefore a vital issue for key stakeholders. However, eliciting preferences in agri-
cultural economics problems has been identified as a hard task itself (Adamowicz
et al. 1998; Carson and Louviere 2011).

In this work, we describe an analytical, end-to-end process, to reach some
answers concerning both the above research questions (how decisions are made and
points of conflict). We build our plan on the multiple criteria decision aid paradigm
that dictates some concrete steps for the problem structuring, as well as for the
evaluation model construction. In particular, we present the process steps in tandem
with a case study in an effort to exhibit several pitfalls, and highlight the critical
milestones.

In the next section, we analyze the contents of different “problem situations”
hoping to support decision analysts to anticipate how their analysis would change
assuming a specific problem situation. A rigorous perception of the problem
situation should promote defining a fitting set of problem formulations among which
the analyst and the decision maker could select the most applicable one. In Sect. 21.3
we present an instantiation of a problem formulation, based on the case study. The
details of the end-to-end process are presented in Sect. 21.4, while a brief discussion
concludes the paper.

21.2 Problem Structuring

In this section, and following (Bouyssou et al. 2006), we will take the view that
a decision aiding process is a process “in which different agents endowed with
cognitive capabilities have to share some information and knowledge in order to
establish some shared representation of the process object”. During the first steps
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of the process, these pieces of information and knowledge take the shape of two
major deliverables, namely the problem situation and the problem formulation.
The former boils down to a representation that will ultimately aid the client to
better arrange herself regarding the decision procedure for which she asked the
analyst’s recommendation. This representation has mainly a descriptive, elucidative
nature. The latter (problem formulation), is actually a task of translating the client’s
interest into a format that decision support techniques and methods can address.
This is reached by using a formal decision support language, however since this
will inevitably lead to a reduced reality, we ought to point out the following pitfalls:
A problem formulation is not neutral to the final recommendation (solution), indeed
a different formulation is very likely to lead to a different recommendation. The
analyst’s defense of this is that following a problem formulation, the client will
eventually be able to anticipate the possible conclusions and check whether these
are compatible with her expectations. It is quite clear that the analyst shall not
continue the decision aiding process, unless the problem formulation is validated
by the client.

In this work, and in accordance with (Bouyssou et al. 2006; Morisio and Tsoukiàs
1997; Stamelos and Tsoukiàs 2003), we define a problem situation P to be a
triplet P D hA ;O;S i, where A are the actors involved in the process (as per
the client’s as well as the analyst’s points of view), O are the objects (problems,
interests, opportunities, stakes) introduced by each actor (for instance in choosing a
crop a farmer may be concerned with the corresponding profit, while a local citizen
may be concerned by the environmental impact the crop may bring), and S are
the resources (monetary or not) committed by each actor to each object of her
concern. Another triplet representation is employed for the problem formulation. In
particular, we define a problem formulation 
 to be a triplet 
 D hA;V;…i, where
A is the set of alternatives, the set of potential actions that the client may undertake,
V is a set of points of view (dimensions) from which the potential actions are
observed, analyzed, evaluated, compared, etc, and… is the problem statement (what
is expected to be done with the elements of A- some common problem statements
are choice, ranking, rejection, etc.).

21.2.1 Problem Types

21.2.1.1 Crop Choice (Farm Level)

Probably the most fundamental situation in agriculture is having to decide about
what to grow at a particular farm. This situation is historically important, yet still
currently relevant (Asrat et al. 2010; Gal et al. 2011; Kassie et al. 2011; Manos
et al. 2013). We selected this problem mainly because of its illustrative power and
its intuitiveness. Following the definitions of Sect. 21.2, we consider that:

ACH Is the set of actors that will assume the consequences of the decision,
namely the farm owner(s), as well as the actors that influence the decision:
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labour workers (because of their availability, working rate, and knowledge),
commission agents (because of their charging rates and their access to market
channels), purchasers, and the agronomist.

OCH Are the farm owners’ objectives (commonly the monetary profit, but can
include other objectives like risk mitigation, and commitment to networks), the
bargaining power of buyers and commission agents.

SCH Are the farm, the labour, the knowledge, the machinery and operation timing.
ACH Is a set of possible decisions, i.e., a crop list (e.g., wheat, barley, etc.)
VCH The evaluation dimensions include the farm’s characteristics (soil, irrigation);

physiological characteristics (fertilizers, tolerance to invaders, etc.); knowledge
about the crop (variety, cultivation practices); market elements (prices, chan-
nels)

…CH The scope of the evaluation is rather clear in this situation. It is to choose the
crop to be grown.

21.2.1.2 Crop Acreage

The crop acreage problem boils down to deciding what percentage of land to devote
to every crop (the assignment of a particular crop to each plot in a given piece of
land is known as the crop allocation problem, and is left out of the discussion of this
section) (Dury et al. 2012). This problem situation assumes a higher-level authority
that has the capacity and the interest to plan at a macro-level.

AAC In addition to the actors of ACH (farm owners, workers, commission agents,
purchasers, agronomist), in this set we shall include local communities, ana-
lysts/facilitators, and policy makers.

OAC We assume that the higher-level authority has an interest for the greater good,
so the objective here is sustainable development (expressed over dimensions
like economic growth, social cohesion, positive environmental impact, minimal
conflicts (e.g., agriculture vs. tourism)).

SAC In addition to the resources SCH (farm, labour, knowledge, machinery and
operation timing), in this set we shall count the political capital (of the high-
level authority) and the social capital (as induced by the local population and its
societal development).

AAC The possible solutions include different crop portfolios, i.e., the total areas of
land allocated for every crop.

VAC The most common evaluation dimensions used in the literature (Chetty and
Adewumi 2014) are water requirements, irrigation cost, lower and upper bounds
for every crop, profit, environmental impact, proximity constraints, employment
potential, and common agricultural policy (CAP) compatibility.

…AC The final evaluation is expected to rank the different portfolios. It is also
possible to require for a classification of the portfolios into predefined categories
(e.g., qualified, non-qualified).
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21.3 Case Study

21.3.1 Background

The land of Paggaio, Kavala, Greece although very rich (after reclaiming a dried
lake in 1930) has been cultivated in ways that affected both local environment and
economies disadvantageously. The case study presented in this work aims to reveal
the preferences of local stakeholders, and is based on the work of Delias et al.
(2013). The need for a strategic crop planning for that land has emerged because
of efficiency has declined significantly. Although no official scientific research
on the reasons for this decline has been conducted, it is empirically known such
a decline can be mainly justified by: the over-intensive farming that contributed
to soil erosion, rendering the land non-productive; the habit of stubble-burning;
the governmental and European Union subsidies that disrupted farmers’ planning
process. In addition, the turn towards more environmental friendly practices and in
general towards sustainable development demands for updates in the planning.

Nevertheless, reaching a consensus about what the objectives of such a planning
should be is far from being an easy task, mainly because local stakeholders have
conflicting interests. Indeed, interests may vary even among neighboring farmers.
So as a first, preparatory step for a strategic crop planning, the interested parties
should acquire a clear view about what are the differences in the preferences of the
involved actors. In the next section, we present in detail the end-to-end process that
we followed in order to make this first step.

21.3.2 Process Overview

The starting point for analysis is the client, who even though has high domain
knowledge, has a major concern and is actively looking for support. In our case,
the client is a key stakeholder, namely the president of the coalition of the local
agricultural cooperatives. He is evidently interested in acquiring some knowledge
about the preferences of the involved actors for a crop planning, so he initiated a
relevant project.

The next steps are not exactly linear, in the sense that although an ordering of
steps is suggested (aiming at a consistent and progressive deployment), this ordering
is not strict. Switching between steps is an expected as well as an essential part of the
decision aid endeavor. This is why we avoid presenting the steps visually (e.g., with
a flowchart). Anyway, expectedly, the next step is to define the problem situation
and formulation. Therefore, we proceed by defining:

APM Farmers, agronomist, local stakeholders (authorities), citizens, downstream
businesses (purchasers), decision analyst

OPM OCH [ OAC

SPM The resources SCH , as well as those of SAC, plus the social image of actors.
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APM Crops to be grown, belonging to categories such as energy crops-biofuels,
aromatic or medicinal plants and herbs, forages-feeding stuffs, and horticulture
plants. In addition, because of a regulation that was introduced in Greece at that
time and which promoted the installation of photovoltaic parks in agricultural
lands, we counted this option too.

VPM Similar to VAC.
…PM Ranking the alternatives, with the ultimate goal to disaggregate the preference

model.

Having established the problem formulation, and in order to provide a formal answer
for …PM , we need a representation for an evaluation model that will eventually
guide the selection/construction of the appropriate options (Sadok et al. 2008). In
Bouyssou et al. (2006), authors propose a 5-tuple to define an evaluation model, and
here we adopt that proposal. The particular assignment of these variables for the
case study is presented in Sect. 21.4. However, it is often the case that there is not
a single method that could be applied to the defined evaluation model. In Roy and
Słowiński (2013), authors present several key questions that can help the analyst
choose a right method. The first question refers to the problem statement. In our
case as…PM dictates, the method should be able to rank the set of alternatives either
by assigning a numerical value (utility) to each of them, or without associating any
numerical values. Then, the method should take into account the imprecision (or
even the lack) of some data, that will eventually make the definition of performances
profoundly subjective. Therefore, the method should provide a sensitivity and/or
robustness analysis, that will respond to the great need of comprehension of the
final solutions, and of explanations of the technique’s functioning.

Moreover, a major characteristic of the problem’s context is its hardness to collect
preference information, since stakeholders are not willing to answer to numerous
and protracted questions. Considering the convenience to get the preference infor-
mation, as well as the level of imprecision in the definition of performances, in
this work, we choose the method introduced in Delias et al. (2013), Delias and
Matsatsinis (2013). That method accepts a compensation of a poor performance on
one criterion by an exceptional performance on another criterion, and it assumes
that there is not any form of interaction among the criteria, two elements that are
acceptable within the problem context.

Then, and in order to collect the data, we prepared an evaluation table, namely
a dashboard with the profiles of the alternatives, to show it to the involved actors.
That was perhaps the most controversial step of the process, so in order to highlight
the relevant pitfalls, we provide some explanations in the next section. Following
the data collection, we applied the multi-criteria evaluation method, and got the
initial results. Because the first round of results were not satisfactory, we performed
a second round of data collection and re-ran the method. Finally, we were able to
provide some recommendations to the client.
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21.4 The Process Instantiation

As mentioned earlier, it is the client that triggers the process. In the previous section,
we tried to summarize his objectives as “acquiring some knowledge about the
preferences of the involved actors” and “disaggregate the preference model”. To
make things clearer, we present two particular questions that were the client’s major
concerns: (1) Are some criteria globally (or by an extended majority) considered as
important/unimportant? (2) Which actors seem to converge/diverge the most? The
client validated that the problem situation and formulation presented in Sect. 21.3.2
reflects his concerns, so we were able to proceed to the evaluation model definition.
In particular, we represent the evaluation model M as M D hA; fD;E g ;H;U ;Ri,
where A are the alternatives under evaluation, D is the set of dimensions (attributes)
under which the elements of A are observed, described, measured etc, E can
be considered as the “scales” of D, H are the ultimate evaluation criteria, U is
the uncertainty (if any) associated to the available information, and R are the
aggregation operators. The explicit list for A is:

• Cultivation of colza (to extract oil and exploit the cake left)
• Cultivation of white poplar (Populus alba – Salicaceae) for the paper industry

and biofuels
• Sugar beets (cultivated Beta vulgaris) for biofuels and the food industry
• Helianthus (sunflower) to mainly be used as a biofuel
• Stevia for pharmaceutical or food industry
• Photovoltaic parks
• Barley for mash production
• Wheat for the same purpose
• Soybean also for mash production
• Maize
• Pomegranate for the food industry as well as for pharmaceuticals.

Then for fD;E g there are plenty of elements that we could observe (see for instance
Bohanec et al. 2008). At this point, and in order to reach the set H, we had vigorous
discussions with the client about the aggregation operators that we should apply.
The client insisted that the issues of completeness and uncertainty for the set
of observed elements are burdensome, and that he could not validate any formal
aggregation method of D into H, so he advocated an empirical aggregation into a
linguistic ordinal scale. The evaluation criteria set that was suggested comprised:
Environment friendliness, exploitation of natural resources, land reuse potential,
economic performance, available information, investment attractiveness. All of
them were characterized by a 5-level ordinal scale with descriptive labels such as:
{Negative outlook, Poor performance, Moderate performance, Satisfactory perfor-
mance, Outstanding}. It is evident that such an empirical measurement withholds
inevitable imprecisions for the criteria performance evaluation. Let us illustrate this
with two examples: First, by enforcing 5-level scales for every criterion allows
manipulating the evaluations that are close to the bounds. For example, “Wheat
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for mash production” was ranked as “Outstanding” with respect to the “land reuse
potential”. The client let us know that wheat (as well as barley and colza) are the top-
performers among the alternatives, yet he was unsure if the term “Outstanding” fit
the description of their performance (there existed drawbacks in every alternative).
However, to differentiate their performance from the other alternatives, he assigned
the top-level evaluation to them. If we had preferred a scale with many levels (e.g.,
10), then we wouldn’t have put the top mark. A second example of inevitable
imprecisions is the following: “Maize” and “Pomegranate” were both ranked
as “Outstanding” (the top level) with respect to the “investment attractiveness”
criterion. However, pomegranate had greater potential to attract investors than maize
(due to special circumstances, such as a local, famous investor who had at that time
an established interest to promote pomegranate to the food industry). Nevertheless,
since the criterion scale was bounded from above, this superiority could not be
reflected. In other words, since scales are bounded above and below (by the highest
and the lowest points), equality in a characterization of one criterion for two
alternatives does not necessarily imply equality in performance. Nevertheless, this
tactic was fully endorsed by the client, who insisted on having simple, jargon-free
scales, and claimed that imprecision of performances are an inherent element of the
problem. After all, it allowed us to fill the evaluation table. The evaluation table is
actually a list of profiles of performances, i.e., every alternative was evaluated over
every criterion. The data of the evaluation table originated from client’s domain
knowledge, and were considered as certain.

That table was shown to interviewees during the interviews. In particular,
interviews were conducted at the work (or home) places of the interviewees. We
managed to conduct six interviews by picking actors of the APM set. More specif-
ically, the interviewees were an agronomist, the president of local cooperatives, a
feed mill owner, two farmers, and a local resident. The particular individuals were
selected on a convenience basis through a shortlist provided by the client. During an
interview, the corresponding stakeholder and the analyst first discussed the general
importance of a strategic crop planning. Then the analyst explained the objectives of
the study and demonstrated the evaluation table to the interviewee. The interviewee
had to declare her holistic preferences in terms of pairwise preference relations (e.g.,
sugar beets is an alternative at least as good as colza) and in terms of intensities of
those preferences (e.g., my preference of sugar beets to colza is more intense than
my preference of stevia to soybean). For instance, an interviewee (the agronomist)
declared the following preferences:

• Considering the holistic preference, “Photovoltaic parks” is at least as good as
“Maize”

• “Photovoltaic parks” is at least as good as “Soybean for mash production”
• “Photovoltaic parks” is at least as good as “Wheat for mash production”
• “Maize” is at least as good as “Wheat for mash production”
• “Maize” is at least as good as “Soybean for mash production”
• “Wheat for mash production” is at least as good as “Soybean for mash

production”
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• My preference for “Photovoltaic parks” to “Soybean for mash production” is
more intense than my preference for “Photovoltaic parks” to “Wheat for mash
production”

• My preference for “Photovoltaic parks” to “Wheat for mash production” is more
intense than my preference for “Maize” to “Soybean for mash production”

• My preference for “Maize” to “Wheat for mash production” is more intense
than my preference for “Wheat for mash production” to “Soybean for mash
production”

An important aspect for data collection is that the interviewee did not need to declare
explicitly his preferences (or intensities of preferences) for all pairs, but just for the
pairs for which she could determine such a relationship. We should also stress that
the stated preferences refer to the alternative as a whole, and that it is not required
to ask a separate question for each criterion. This is an intrinsic part of the method,
which proved to be very useful, because interviewees were willing to answer some
questions, but not too many.

The evaluation method that we applied (Delias et al. 2013; Delias and Matsatsinis
2013) can be classified in the family of aggregation-disaggregation methods (Siskos
et al. 2005). It solves a set family of linear programs to assess additive utility
functions for all the criteria, and consequently, the criteria significance weights.
Ultimately, the method assumes that the preference model of the stakeholders
can be represented by the pertinent utility functions, a common assumption in
the aggregation-disaggregation paradigm. In addition, among the outputs of the
methods are the average stability indices (a global index, as well as partial indices
for every criterion), and some metrics related to how divergent the involved actors
are. More specifically, during the post-optimality stage, as many linear programs
as the number of evaluation criteria are formulated and solved, which maximize
repeatedly the significance weight of each criterion. The mean value of the weights
of these linear programs is taken as the final solution, and the observed variance in
the post-optimality matrix indicates the degree of instability of the results.

To give an impression of the first round results, we present them in Table 21.1. We
shall note that weights are relative trade-offs and must sum to one, while for the ASI
index, a value of 1 means perfect stability. The smaller the ASI index, the larger the
deviation of the estimated weights during the post-optimality analysis. In practice,
any value less than 0.6 signifies that stability of the results cannot be accepted (i.e.,
the deviation of the estimated weights is too large). That was the case during the

Table 21.1 First round
results (adapted from Delias
et al. 2013)

Criterion Weight ASI

Environment friendliness 0:17 0:44

Exploitation of natural resources 0:21 0:49

Land reuse potential 0:18 0:52

Economical performance 0:11 0:44

Available information 0:15 0:45

Investment attractiveness 0:18 1
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first round. By examining in detail the linear program constraints, we were able to
discover that this instability was mainly due to the preferences of the president of
cooperatives, and the feed mill owner, who had the most divergent attitudes.

Hence, we started a second round of interviews with those two actors, plus the
resident because her preferences set included a small amount of relations. During
the second round of reviews we announced to the interviewees that results were
not satisfactory, but we didn’t disclose any details of convergency or divergence. In
particular, we explained to the interviewees (in natural language) that the variation
of the weights was too large to let us trust in them. We pointed out that probably
the main reason for that was the insufficient preferences statements, and that a
richer set of statements would hopefully produce more reliable results. Nevertheless,
we emphasized that another reason for the low stability of results could be the
inherent disagreement between the stakeholders, in order to be able to justify the
non-improvement of the results, if that happened. Ultimately, we didn’t ask from
interviewees to change their minds, but to elaborate more on their statements, to
reveal more of their preferences. All interviewees accepted that they could enrich
their initial set, and duly did so. Interviewees could make any modifications to
their initial set (add new ones, eliminate old ones, modify an existing preference
or intensity, etc.). However, the second round input data resulted in an even worse
performance of ASI (the criteria weights were only slightly modified).

The main implications from these results are twofold: First, the intuition of the
president that there is no consensus among involved actors was confirmed. Indeed,
the ASI indices were low after both rounds of interviews. We shall note that we did
not disclose the preferences of the interviewees to each other after the first round,
because we cared about assessing their preference model, and not about reaching
a consensus. What happened during the second round was collecting additional
declarations, which intensified the personal opinions of the interviewees. Should we
have cared about reaching a consensus, this procedure would not have been fruitful,
since we should have paid special attention in motivating each stakeholder to adjust
her preferences with the rest.

Second, after inferring the criteria weights, we observe some kind of convergence
just in the “Investment Attractiveness” dimension, while actors’ preferences are
really divergent concerning the “ Environmental friendliness” and the “Economical
Performance” dimensions. This is a popular pattern in agricultural communities
(how to trade-off the economic performance with the ecological performance of
a crop). We shall remind that significance weights are assessed through the LPs, and
that there is no requirement for the interviewees to declare preferences for the same
pairs of alternatives.

Last, because of the low stability, it is not safe to draw any conclusions for the
significance of the criteria. A more thorough presentation of the case study results
is out of the scope of this work, however we want to make clear that the final step
(making recommendations to the client) is an essential step of the process. During
this step, the analyst is expected to provide decision aid by participating in the final
decision legitimization (Roy and Damart 2002). In particular, the analyst should be
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able to enlighten and scientifically support decision-making, notably by Roy (1993):
making the objective stand out more clearly from the less objective (e.g., point-
out the limitations of the evaluation criteria scales); separating robust from fragile
conclusions (e.g., explain what the implications of a low ASI are); and by avoiding
the pitfall of illusionary reasoning by bringing out certain counter-intuitive results
(e.g., a criterion with extremely high weight).

21.5 Discussion

The decision process is a complex process that starts with the definition of a problem
situation, and eventually ends with the analyst’s recommendation to the client. These
recommendations should be based on formal models which by their turn, use data
that are collected and manipulated during the process. It should be acknowledged
that the construction of the formal model as well as data collection and manipulation
are tasks that will inevitably lead to a simplification of a complex reality. We should
therefore be realistic about our expectations for the precision of these models.
This fact should not render the models useless in the analysts’ minds, but rather
increase their cautiousness in the elaboration of the recommendations. Regarding
the current work, we presented the problem situation and formulation that we used.
We also presented two relevant (and popular) problem formulations to emphasize
the importance of this step, as well as to demonstrate to readers an established
roadmap to structure their own formulations.

The end-to-end procedure, counting from the moment that the client announced
definitely his desire to kick-off the project, was 4 months. The first month was
dedicated to multiple meetings with the client to reach a validated problem
formulation. Then, we needed 3 months to conduct the two rounds of interviews
and analyze the data. The bulk of this period was spent in communication activities
(e.g., contacting interviewees, scheduling interviews). It is worth noting that due to
the special (agricultural) nature of the profession of some of the interviewees, there
were several weeks during which their availability was very low. The first contact
was performed by the client, who was endorsing the project to his contacts. As
a result, all interviewees were positive in providing us with their preferences, but
some of them were quite guarded in giving a large set of declarations. All of them
claimed that their time was limited, and asked for short interviews.

It’s worth mentioning two points that we vigorously debated with the client: The
initial set of alternatives was very large. It comprised literally every possible crop
that was ever cultivated in the area. We tried to convince the client to keep the set of
alternatives small, because a large set would demand for a large set of declarations.
Our argument was that the reference set should contain some indicative alternatives,
and that we could extrapolate the results to every possible crop at a later phase.
Finally, the client was convinced to drop some alternatives, yet in our opinion, the
remaining set was still large. Some of the alternatives (colza, poplar, and stevia)
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were not included in any of the pairwise comparisons. If we had the resources for
additional iterations, we should have tried to repeat the interviews with a truncated
set. Without this test, we can not be sure for the impact of the non-used alternatives
on the final results.

A second point of debate was the scales for the evaluation criteria. At first, we
took the view that the labelling of the scales should include descriptive sentences and
not just a single word (for example, for the land reuse criterion, use a sentence such
as “needs crop rotation or a set-aside scheme” instead of “Moderate”). The client’s
point of view was that since not all interviewees are experts, they will be daunted
by a jargon-full labelling, especially by economic terms. In addition, he made the
point that the imprecision of performance of several alternatives (or his inadequate
knowledge about it) would render the filling of the evaluation table not possible,
unless a simplified scale was employed. Those were two compelling arguments,
that made us accept the client’s point of view.

In the core of our procedure is the multiple criteria technique, inspired from
the aggregation-disaggregation paradigm, which was applied to unveil the involved
actors’ preference model. We cannot stress enough that the process should not be
built around the method, and that the method should not be linked to the problem
formulation that has been adopted. In this case study, that particular technique was
chosen because of its best fit to the client’s requirements. Of particular importance
for the technique selection was its intelligibility. The linear programs that are
created, contain not only the utility functions variables, but variables for every
pairwise comparison, and for every intensity declaration as well. This fact allows for
a thorough analysis, since the magnitude of these variables indicate the stakeholders
with the greatest divergence, and allow analysts to trace back the reasons for any
inconsistencies.

Finally, it is clear that the model as well as the method are only suitable for
the given client in the described, particular context. In that particular context, we
assumed that all involved actors possessed a system of values independent of the
process, so the prescriptive approach, as conducted by the proposed steps and
techniques, appeared eminently suitable. However, it is within our future plans to
enhance the technique by allowing different evaluation tables, one per interviewee.
Last, we are considering how we could integrate the described procedures into a
broader, longitudinal study.

References

Adamowicz W, Boxall P, Williams M, Louviere J (1998) Stated Preference
Approaches for measuring passive use values: choice experiments and
contingent valuation. Am J Agric Econ 80(1):64–75. doi:10.2307/3180269.
doi:http://ajae.oxfordjournals.org/cgi/doi/10.2307/3180269

Asrat S, Yesuf M, Carlsson F, Wale E (2010) Farmers’ preferences for crop variety traits:
lessons for on-farm conservation and technology adoption. Ecol Econ 69(12):2394–2401.
doi:10.1016/j.ecolecon.2010.07.006. doi:http://dx.doi.org/10.1016/j.ecolecon.2010.07.006

http://dx.doi.org/http://ajae.oxfordjournals.org/cgi/doi/10.2307/3180269
http://dx.doi.org/http://dx.doi.org/10.1016/j.ecolecon.2010.07.006


21 Preferences Elicitation for Crop Planning 541

Bohanec M, Messéan A, Scatasta S, Angevin F, Griffiths B, Krogh PH, Žnidaršič M, Džeroski S
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