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Abstract. Blockchain technology enables the execution of collaborative
business processes involving untrusted parties without requiring a cen-
tral authority. Specifically, a process model comprising tasks performed
by multiple parties can be coordinated via smart contracts operating
on the blockchain. The consensus mechanism governing the blockchain
thereby guarantees that the process model is followed by each party.
However, the cost required for blockchain use is highly dependent on the
volume of data recorded and the frequency of data updates by smart con-
tracts. This paper proposes an optimized method for executing business
processes on top of commodity blockchain technology. Our optimization
targets three areas specifically: initialization cost for process instances,
task execution cost by means of a space-optimized data structure, and
improved runtime components for maximized throughput. The method
is empirically compared to a previously proposed baseline by replaying
execution logs and measuring resource consumption and throughput.

1 Introduction

Blockchain technology enables an evolving set of parties to maintain a safe, per-
manent, and tamper-proof ledger of transactions without a central authority [1].
In this technology, transactions are not recorded centrally. Instead, each party
maintains a local copy of the ledger. The ledger is a linked list of blocks, each
comprising a set of transactions. Transactions are broadcasted and recorded by
each participant in the blockchain network. When a new block is proposed, the
participants in the network agree upon a single valid copy of this block according
to a consensus mechanism. Once a block is collectively accepted, it is practically
impossible to change it or remove it. Hence, a blockchain can be seen as a
replicated append-only transactional data store, which can replace a centralized
register of transactions maintained by a trusted authority. Blockchain platforms
such as Ethereum1 additionally offer the possibility of executing scripts on top
of a blockchain. These so-called smart contracts allow parties to encode business
rules on the blockchain in a way that inherits from its tamper-proofness.
1 https://www.ethereum.org/ – last accessed 4/3/2017.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 130–146, 2017.
DOI: 10.1007/978-3-319-65000-5 8

https://www.ethereum.org/


Optimized Execution of Business Processes on Blockchain 131

Blockchain technology opens manifold opportunities to redesign collaborative
business processes such as supply chain and logistics processes [2]. Traditionally,
such processes are executed by relying on trusted third-party providers such as
Electronic Data Interchange (EDI) hubs or escrows. This centralized architecture
creates entry barriers and hinders process innovation. Blockchain enables these
processes to be executed in a distributed manner without delegating trust to
central authorities nor requiring mutual trust between each pair of parties.

Previous work [3] demonstrated the feasibility of executing collaborative
processes on a blockchain platform by transforming a collaborative process model
into a smart contract serving as a template. From this template, instance-specific
smart contracts are spawned to monitor or execute each instance of the process.
The evaluation in [3] put into evidence the need to optimize resource usage. Indeed,
the cost of using a blockchain platform is highly sensitive to the volume of data
recorded and the frequency with which these data are updated by smart contracts.
Moreover, the deployment of instance-specific contracts entails a major cost. In
order to make blockchain technology a viable medium for executing collaborative
processes, we need to minimize the number of contract creations, the code size, the
data in the smart contracts, and the frequency of data writes.

This paper proposes an optimized method for executing business processes
defined in the standard Business Process Model and Notation (BPMN) on top of
commodity blockchain technology. Specifically, the paper presents a method for
compiling a BPMN process model into a smart contract defined in the Solidity
language – a language supported by Ethereum and other major blockchain plat-
forms. The first idea of the method is to translate the BPMN process model into
a minimized Petri net and to compile this Petri net into a Solidity smart contract
that encodes the “firing” function of the Petri net using a space-optimized data
structure. The second idea is to restrict the number of contract creations to the
minimum needed to retain isolation properties. Furthermore, we optimized the
runtime components to achieve high throughput rates. The scalability of this
method is evaluated and compared to the method proposed in [3] by replaying
artificial and real-life business process execution logs of varying sizes and mea-
suring the amount of paid resources (called “gas” in Ethereum) spent to deploy
and execute the smart contracts encoding the corresponding process models.

The next section introduces blockchain technology and prior work on
blockchain-based process execution. Section 3 presents the translation of BPMN
to Petri nets and to Solidity code. Section 4 discusses architectural and imple-
mentation optimizations. Section 5 presents the evaluation, and Sect. 6 draws
conclusions.

2 Background and Related Work

2.1 Blockchain Technology

The term blockchain refers both to a network and a data structure. As a data struc-
ture, a blockchain is a linked list of blocks, each containing a set of transactions.
Each block is cryptographically chained to the previous one by including its hash
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value and a cryptographic signature, in such a way that it is impossible to alter
an earlier block without re-creating the entire chain since that block. The data
structure is replicated across a network of machines. Each machine holding the
entire replica is called a full node. In proof-of-work blockchains, such as Bitcoin and
Ethereum, some full nodes play the role of miners: they listen for announcements
of new transactions, broadcast them, and try to create new blocks that include pre-
viously announced transactions. Block creation requires solving a computationally
hard cryptographic puzzle.Miners race to find ablock that links to the previous one
and solves the puzzle. The winner is rewarded with an amount of new crypto-coins
and the transaction fees of all included transactions.

The first generation of blockchains were limited to the above functionality
with minor extensions. The second generation added the concept of smart con-
tracts: scripts that are executed whenever a certain type of transaction occurs
and which read and write from the blockchain. Smart contracts allow parties to
enforce that whenever a certain transaction takes place, other transactions also
take place. For example, a public registry for land titles can be implemented on
a blockchain that records who owns which property at present. By attaching a
smart contract to sales transactions, it is possible to enforce that when a sale
takes place, the corresponding funds are transferred, the tax is paid, and the
land title is transferred, all in a single action.

The Ethereum [4] blockchain treats smart contracts as first-class elements.
It supports a dedicated language for writing smart contracts, namely Solidity.
Solidity code is translated into bytecode to be executed on the so-called Ethereum
Virtual Machine (EVM). When a contract is deployed through a designated
transaction, the cost depends on the size of the deployed bytecode [5]. A Solidity
smart contract offers methods that can be called via transactions. In the above
example, the land title registry could offer a method to read current ownership of
a title, and another one for transferring a title. When submitting a transaction
that calls a smart contract method, the transaction has to be equipped with
crypto-coins in the currency Ether, in the form of gas. This is done by specifying
a gas limit (e.g. 2M gas) and gas price (e.g., 10−8 Ether/gas), and thus the
transaction may use up to gas limit × price (2M ×10−8 Ether = 0.02 Ether).
Ethereum’s cost model is based on fixed gas consumption per operation [5], e.g.,
reading a variable costs 50 gas, writing a variable 5–20 K gas, and a comparison
statement 3 gas. Data write operations are significantly more expensive than read
ones. Hence, when optimizing Solidity code towards cost, it is crucial to minimize
data write operations on variables stored on the blockchain. Meanwhile, the size
of the bytecode needs to be kept low to minimize deployment costs.

2.2 Related Work

In prior work [3], we proposed a method to translate a BPMN choreography
model into a Solidity smart contract, which serves as a factory to create chore-
ography instances. From this factory contract, instance contracts are created by
providing the participants’ public keys. In the above example, an instance could
be created to coordinate a property sale from a vendor to a buyer. Thereon, only
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they are authorized to execute restricted methods in the instance contract. Upon
creation, the initial activity(ies) in the choreography is/are enabled. When an
authorized party calls the method corresponding to an enabled activity, the call-
ing transaction is verified. If successful, the method is executed and the instance
state is updated, i.e. the executed activity is disabled and subsequent ones are
enabled. The set of enabled activities is determined by analyzing the gateways
between the activity that has just been completed, and subsequent ones.

The state of the process is captured by a set of Boolean variables, specifically
one variable per task and one per incoming edge of each join gateway. In Solidity,
Boolean variables are stored as 8-bit unsigned integers, with 0 meaning false
and 255 meaning true.2 Solidity words are 256 bits long. The Solidity compiler
we use has an in-built optimization mechanism that concatenates up to 32 8-bit
variables into a 256-bit word, and handles redirection and offsets appropriately.
Nevertheless, at most 8 bits in the 256-bit word are actually required to store
the information – the remaining are wasted. This waste increases the cost of
deployment and write operations. In this paper, we seek to minimize the variables
required to capture the process state so as to reduce execution cost (gas).

In a vision paper [6], the authors argue that the data-aware business
process modeling paradigm is well suited to model business collaborations over
blockchains. The paper advocates the use of the Business Artifact paradigm [7]
as the basis for a domain-specific language for business collaborations over
blockchains. This vision however is not underpinned by an implementation
and does not consider optimization issues. Similarly [8] advocates the use of
blockchain to coordinate collaborative business processes based on choreography
models, but without considering optimization issues. Another related work [9]
proposes a mapping from a domain specific language for “institutions” to Solid-
ity. This work also remains on a high level, and does not indicate a working
implementation nor it discusses optimization issues. A Master’s thesis [10] pro-
poses to compile smart contracts from the functional programming language
Idris to EVM bytecode. According to the authors, the implementation has not
been optimized.

3 From Process Models to Smart Contracts

BPMN 
process 
model

Simplified
net with 

data 
conditions

Solidity
contract

code

Petri net

Data 
conditions

Fig. 1. Chain of transformations

The first and central component of
the proposal is a method for trans-
forming a given BPMN process model
into a smart contract that can coor-
dinate the execution of one process
instance from start to end. Figure 1
shows the main steps of this method.

The method takes as input a BPMN process model. The model is first translated
into a Petri net. An analysis algorithm is applied to determine, where applicable,
the guards that constrain the execution of each task. Next, reduction rules are
2 https://github.com/ethereum/EIPs/issues/93 – last accessed 20/3/2017.

https://github.com/ethereum/EIPs/issues/93
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applied to the Petri net to eliminate invisible transitions and spurious places.
The transitions in the reduced net are annotated with the guards gathered by
the previous analysis. Finally, the reduced net is compiled into Solidity. Below,
we discuss each step in turn.

3.1 From BPMN to Petri Nets

The proposed method takes as input a BPMN process model consisting of the
following types of nodes: tasks, plain and message events (including start and
end events), exclusive decision gateways (both event-based and data-based ones),
merge gateways (XOR-joins), parallel gateways (AND-splits), and synchroniza-
tion gateways (AND-joins). Figure 2 shows a running example of BPMN model.
Each node is annotated with a short label (e.g. A,B, g1 . . .) for ease of reference.

Fig. 2. Loan assessment process in BPMN notation

To simplify subsequent steps, we pre-process the BPMN model to materialize
every skip flow as a dummy “skip” task. A skip flow is a sequence flow from an
XOR-split to a XOR-join gateway such as the one between g3 and g4 in Fig. 2.
Moreover, if the BPMN model has multiple end events, we transform it into an
equivalent BPMN model with a single end event using the transformation defined
for this purpose in [11]. In the case of the model in Fig. 2, this transformation
adds an XOR-join at the end of the process that merges the incoming flows of
the two end events, and connects them to a single end event. Conversely, if the
process model has multiple start events, we merge them into a single one.

The pre-processed BPMN model is then translated into a Petri net using the
transformation defined in [12]. This transformation can turn any BPMN process
model (without OR-joins) into a Petri net.3 The transformation rules in [12]
corresponding to the subset of BPMN considered in this paper are presented
in Fig. 3. Figure 4 depicts the Petri net derived from the running example. The
tasks and events in the BPMN model are encoded as labeled transitions (A,
B, ...). Additional transitions without labels (herein called τ transitions) are
introduced by the transformation to encode gateways as per the rules in Fig. 3,
and to capture the dummy tasks introduced to materialize skip flows.
3 The transformation cannot handle escalation and signal events and non-interrupting

boundary events, but these constructs are beyond the scope of this paper.
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Fig. 3. Mapping of BPMN elements into petri nets

Fig. 4. Petri net derived from the BPMN model in Fig. 2

The transformation in [12] produces so-called workflow nets. A workflow net
has one source place (start), one sink place (end), and every transition is on a
path from the start to the end. Two well-known behavioral correctness properties
of workflow nets are (i) Soundness: starting from the marking with one token in
the start place and no other token elsewhere (the initial marking), it is always
possible to reach the marking with one token in the end place and no other token
elsewhere; and (ii) Safeness: starting from the initial marking, it is not possible to
reach a marking where a place holds more than one token. These properties can
be checked using existing tools [12]. Herein we restrict ourselves to workflow nets
fulfilling these correctness properties. The latter property allows us to capture
the current marking of the net by associating a boolean to each place (is there a
token in this place or not?), thus enabling us to encode a marking as a bit array.

3.2 Petri Net Reduction

The Petri nets produced by the transformation in [12] contain many τ transi-
tions. If we consider each transition as an execution step (and thus a transaction
on the blockchain), the number of steps required to execute this Petri net is
unnecessarily high. It is well-known that Petri nets with τ transitions can be
reduced into smaller equivalent nets [13] under certain notions of equivalence.
Here, we use the reduction rules presented in Fig. 5. Rules (a), (b), and (e)–(h)
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Fig. 5. Petri net reduction rules

are fusions of series of transitions, whereas rules (c) and (d) are fusions of series
of places. Rule(i) deals with τ transitions created by combinations of decision
gateways and AND-splits. It can be proved that each of these reduction rules
produces a Petri net that is weak trace equivalence to the original one, i.e. it
generates the same traces (modulo τ transitions) as the original one.

The red-dashed boxes in Fig. 4 show where the reduction rules can be applied.
After these reductions, we get the net shown in Fig. 6a. At this point, we can
still apply rule (i), which leads to the Petri net in Fig. 6b.

Fig. 6. Reduced Petri net corresponding to the BPMN model in Fig. 2
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3.3 Data Conditions Collection

Some of the τ transitions generated by the BPMN-to-Petri net transformation
correspond to conditions attached to decision gateways in the BPMN model.
Since some of these τ transitions are removed by the reduction rules, we need
to collect them back from the original model and re-attach them to transitions
in the reduced net, so that they are later propagated to the generated code.

Algorithm 1 collects the conditions along every path between two consecutive
tasks in a BPMN model, and puts them together into a conjunction. Its output
is one conjunctive condition – herein called a guard – per task in the original
BPMN model. When given the start event as input, the algorithm applies a
classical recursive depth-first traversal. It uses two auxiliary functions: (i) suc-
cessorsOf, which returns the direct successors of a node; and (ii) cond, which
returns the condition attached to a flow. Without loss of generality, we assume
that every outgoing flow of a decision gateway is labeled with a condition (for a
default flow, the condition is the negation of the conjunction of conditions of its
sibling flows). We also assume that any other flow in the BPMN model is labeled
with condition true – these true labels can be inserted via pre-processing.

Algorithm 1. Algorithm for collection of data conditions
1: global guards: Map〈Node �→ Cond〉 = ∅, visited: Set〈Node〉 = ∅
2: procedure collectConditions(curr: Node, predicate: Cond)
3: guards[curr] ← predicate
4: visited ← visited ∪ { current }
5: for each succ ∈ successorsOf(curr) : succ 
∈ visited do
6: if curr is a Gateway then
7: collectConditions(succ, predicate ∧ cond(curr, succ))
8: else
9: collectConditions(succ, true)

We illustrate the algorithm assuming it traverses the nodes in the model
of Fig. 2 in the following order: [A,B, g1, g2, g3, E, . . . ]. First, procedure col-
lectConditions sets guards = {(A, true)} in line 3 and proceeds until it calls
itself recursively (line 9) with the only successor node of A, namely B. Note
that predicate is reset to true in this recursive call. Something similar happens
in the second step, where guard is updated to {(A, true), (B, true)}. Again, the
procedure is recursively called in line 9, now with node g1. This time guards is
updated to {(A, true), (B, true), (g1, true)} and since g1 is a gateway, the algo-
rithm reaches line 7. There, the procedure is recursively called with succ = g2 and
predicate = (true ∧ P ), or simply P , where P represents the condition “Applica-
tion complete?”. Since the traversal follows the sequence [A,B, g1, g2, g3, E, . . . ],
it will eventually reach node E. When that happens, guards will have the value
{(A, true), (B, true), (g1, true), (g2, P ), (g3, P ), (E,P ∧ Q)}, where Q represents
the condition “Pledged property?”. Intuitively, the algorithm propagates and
combines the conditions P and Q while traversing the path between nodes B
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to E. When the algorithm traverses E, the recursive call is done in line 9, where
predicate is set to true, i.e. the predicate associated with E is not propagated
further.

The guards gathered by the algorithm are attached to the corresponding
transitions in the reduced net. In Fig. 6b the collected guards are shown as
labels above each transition. To avoid cluttering, true guards are not shown.
The τ transition in the net in Fig. 6b corresponds to the skip task that was
inserted in the BPMN model in Fig. 2, hence this τ transition has a guard.

For each transition in the reduced Petri net, we can now determine the con-
ditions that need to be evaluated after it fires. To do so, we first compute the
set of transitions that are reachable after traversing a single place from each
transition, and then analyze the guards associated to such transitions. In our
example, we can reach transitions {C,D,E, τ} by traversing one place starting
from transition B. Hence, conditions P and Q need to be evaluated after task B
is executed. This is represented by attaching a label eval(P,Q) to transition B.

3.4 From Reduced Petri Net to Solidity

In this step, we generate a Solidity smart contract that simulates the token game
of the Petri net. The smart contract uses two integer variables stored on the
blockchain: one to encode the current marking and the other to encode the value
of the predicates attached to transitions in the reduced net. Variable marking is a
bit array with one bit per place. This bit is set to zero when the place does not
have a token, or to one otherwise. To minimize space, the marking is encoded as
a 256-bits unsigned integer, which is the default word size in the EVM.

Consider the reduced Petri net in Fig. 5b. Let us use the order indicated by
the subscripts of the labels associated to the places of the net. The initial mark-
ing (i.e. the one with a token in p0) is encoded as integer 1 (i.e. 20). Hence, we
initialize variable marking with value 1 when an instance smart contract is cre-
ated. This marking enables transition A. The firing of A removes the token from
p0 and puts a token in p1. Token removal is implemented via bitwise operations:
marking = marking & uint(∼1);. Similarly, the addition of a token in p1 (i.e. 21

hence 2) is implemented via bitwise operations: marking = marking | 2;.
Variable predicates stores the current values of the conditions attached to the

Petri net transitions. This variable is also an unsigned integer representing a bit
array. As before, we first fix order the set of conditions in the process model,
and associate one bit in the array per condition. For safety, particularly in the
presence of looping behavior, the evaluation of predicates is reset before storing
the new value associated with the conditions that a given transition computes.
For instance, transition B first clears the bits associated with conditions P and
Q (i.e. 20 and 21, respectively), and then stores the new values accordingly.

When possible, an additional space optimization is achieved by merging vari-
ables marking and predicates into a single unsigned integer variable. The latter
is possible if the number of places plus the number of predicates is at most 256.
Note that this is not a restriction of our approach: If more space is needed to
represent a process model, multiple 256-bit variables can be used.
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Algorithm 2 sketches the functions generated for each transition in the
reduced Petri net. Item 1 sketches the code for transitions associated to user
tasks, while Item 2 does so for transitions associated to script tasks and τ
transitions with predicates. For τ transitions without predicates, no function
is generated, as these transitions only relay tokens (and this is done by the step
function).

In summary, the code generated from the Petri net consists of a contract
with the two variables marking and predicates, the functions generated as per
Algorithm 2 and the step function. This smart contract offers one public function
per user task (i.e. per task that requires external activation). This function calls
the internal step function, which fires all enabled transitions until it gets to a
point where a new set of user tasks are enabled (or the instance has completed).

Algorithm 2. Sketch of code generated for each transition in the reduced net
1. For each transition associated to a user task, generate a public function with the following code:

– If task is enabled (i.e. check marking and predicates), then
(a) Execute the Solidity code associated with the task
(b) If applicable, compute all predicates associated with this task and store the results in

a local bit set, tmpPreds
(c) Call step function with new marking and tmpPreds, to execute all the internal functions

that could become enabled
(d) Return TRUE to indicate the successful execution of the task

– Return FALSE to indicate that the task is not enabled
2. For each transition associated with a script task or τ transition that updates predicates, generate

an internal function with the following code:
(a) Execute the Solidity code associated with the task
(b) If applicable, compute all predicates associated with this task and store the results in a

local bit set, tmpPreds
(c) Return the new marking and tmpPreds (back to the step function)

An excerpt of the smart contract generated for the running example is given
in Listing 1.1. The excerpt includes the code corresponding to transitions B, E
and the τ transition. Transition B corresponds to task CheckApplication. The
corresponding function is shown in lines 4–17 in Listing 1.1. Since this is a user
task, the function is called explicitly by an external actor, potentially with some
data being passed as input parameters of the call (see line 4). In line 5, the
function checks if the marking is such that p2 holds a token, i.e., if the current
call is valid in that it conforms to the current state of the process instance. If so,
the function executes the script task (line 6 is a placeholder for the script). Then
the function evaluates predicates P and Q (lines 8–9). Note that the function
does not immediately updates variable predicates but stores the result in a local
variable tmpPred, which we initialized in line 7. In this way, we defer updating
variable predicates as much as possible (cf. line 39) to save gas (predicates is a
contract variable stored in the blockchain and writing to it costs 5000 gas). For
the same reason, the new marking is computed in line 11 but the actual update
to the respective contract variable marking is deferred (cf. line 39).
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Listing 1.1. Excerpt of Solidity contract

1 con t r a c t BPMNContract {
2 u i n t marking = 1 ;
3 u i n t p r e d i c a t e s = 0 ;
4 f u n c t i o n CheckApp l i c a t i on ( – input params – ) r e t u r n s ( boo l ) {
5 i f ( mark ing & 2 == 2) { // is there a token in place p1?
6 // Task B’s script goes here, e.g. copy value of input params to contract variables
7 u i n t tmpPreds = 0 ;
8 i f ( – eval P – ) tmpPreds |= 1 ; // is loan application complete?
9 i f ( – eval Q – ) tmpPreds |= 2 ; // is the property pledged?

10 s t ep (
11 marking & u i n t (∼2) | 12 , // New marking
12 p r e d i c a t e s & u i n t (∼3) | tmpPreds // New evaluation for “predicates”
13 ) ;
14 r e t u rn t rue ;
15 }
16 r e t u rn f a l s e ;
17 }
18 f u n c t i o n App r a i s eP r op e r t y ( u i n t tmpMarking ) i n t e r n a l r e t u r n s ( u i n t ) {
19 // Task E’s script goes here
20 r e t u rn tmpMarking & u i n t (∼8) | 32 ;
21 }
22 f u n c t i o n s t ep ( u i n t tmpMarking , u i n t tmpPred i ca t e s ) i n t e r n a l {
23 i f ( tmpMarking == 0) { marking = 0 ; r e t u rn ; } // Reached a process end event!
24 boo l done = f a l s e ;
25 wh i l e ( ! done ) {
26 // does p3 have a token and does P ∧ Q hold?
27 i f ( tmpMarking & 8 == 8 && tmpPred i ca t e s & 3 == 3) {
28 tmpMarking = App r a i s eP r op e r t y ( tmpMarking ) ;
29 cont inue ;
30 }
31 // does p3 have a token and does P ∧ ¬Q hold?
32 i f ( tmpMarking & 8 == 8 && tmpPred i ca t e s & 3 == 2) {
33 tmpMarking = tmpMarking & u i n t (∼8) | 32 ;
34 cont inue ;
35 }
36 . . .
37 done = t rue ;
38 }
39 marking = tmpMarking ; p r e d i c a t e s = tmpPred i ca t e s ;
40 } . . . }

After executing B, if condition P holds the execution proceeds with the pos-
sibility of executing E or the τ transition. E is a script task and can be executed
immediately after B, if condition Q holds, without any further interaction with
external actors. For this reason, the Solidity function associated with task E is
declared as internal. In the Solidity contracts that we create, all internal func-
tions are tested for enablement, and if positive, executed. Specifically, the last
instructions in any public function of the smart contract call a generic step func-
tion (cf. lines 22–40 in Listing 1.1). This function iterates over the set of internal
functions, and executes the first activated one it finds, if any. For instance, after
executing B there are tokens in p2 and p3. If P ∧Q holds, then the step function
reaches line 28, where it calls function AppraiseProperty corresponding to transi-
tion E. This function executes the task’s script in line 19 and updates marking in
20. After this, the control returns to line 29 in the step function, which restarts
the while loop. Once all the enabled internal functions are executed, we exit the
while loop. In line 39, the step function finally updates the contract variables.
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4 Architecture and Implementation Optimization

In this section, we describe the improvements we have made in terms of archi-
tecture and implementation, relative to our earlier work on this topic [3].

Architecture Optimization. As introduced in Sect. 2, in [3] we proposed an
architecture wherein a process model is mapped to a “factory” smart contract.
For each instantiation, this factory contract creates an “instance” smart contract
with the code necessary to coordinate the process instance. The instance contract
is bound to a set of participants, determined at instantiation time. While this
ensures isolation between different groups of participants, it is wasteful if the
same group of participants repeatedly executes instances of the same model. In
the latter case, the code encapsulating the coordination logic is redeployed for
each instance, and contract deployment is particularly expensive.

To avoid this cost, we give the option to combine the factory and instance
smart contracts into one, i.e., one smart contract that can handle running mul-
tiple instances in parallel. Instead of creating one bitvector per instance, we
maintain an extensible array of bitvectors, each encoding the state of a process
instance. On deployment, the array is empty. Creating a process instance assigns
an instance ID and creates a new bitvector, which is appended to the array. This
option is applicable when one group of actors repetitively executes instances of
the same process. In situations where the actors differ across process instances,
the option with separate factory and instance contracts should be used.

Implementation Optimization. During initial throughput experiments, we
discovered that our original trigger implementation was a bottleneck on through-
put. Our hypothesis was that we should be able to optimize the performance of
the trigger to the point where it is no longer a bottleneck, i.e., a single trigger can
handle at least as much throughput as the blockchain itself. To test this hypoth-
esis, we improved our trigger by: (1) switching to asynchronous, non-blocking
handling of concurrent requests, to achieve a high degree of parallelism in an
environment that lacks full multi-threading. (2) Using the inter-process com-
munications (IPC) channel to communicate with the blockchain software, geth,
which runs the full blockchain node for a given trigger. During a small experiment
we found that IPC can be 25× faster than the previously used HTTP connec-
tion. IPC requires the trigger and geth to run on the same machine, HTTP
allows more flexible deployment architectures – but the performance advantage
was too significant to ignore it during performance optimization. (3) Switching
to asynchronous interaction with geth, which is a prerequisite for using IPC. The
above changes required an almost complete rewrite of the code. The resulting
throughput performance results are presented in the next section.

5 Evaluation

The goal of the proposed method is to lower the cost, measured in gas, for
executing collaborative business processes when executed as smart contracts
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on the Ethereum blockchain. Thus, we evaluate costs with our improvements
comparatively against the previous version. The second question we investigate is
that of throughput: is the approach sufficiently scalable to handle real workloads?

5.1 Datasets

We draw on four datasets (i.e., logs and process models) described in Table 1.
Three datasets are taken from our earlier work [3], the supply chain, incident
management, and insurance claim processes, for which we obtained process mod-
els from the literature and generated the set of conforming traces. Through
random manipulation, we generated sets of non-conforming traces from the con-
forming ones. The fourth dataset is stemming from a real-world invoicing process,
which we received in the form of an event log with 65,905 events. This log was
provided to us by the Minit process mining platform4. Given this log, we dis-
covered a business process model using the Structured BPMN Miner [14], which
showed a high level of conformance (> 99%). After filtering out non-conforming
traces, we ended up with dataset that contains 5,316 traces, out of which 49
traces are distinct. The traces are based on 21 distinct event types, including
one for instance creation, and have an average length of 11.6 events.

5.2 Methodology and Setup

Table 1. Datasets used in the evaluation.

Process Tasks Gateways Trace type Traces

Invoicing 40 18 Conforming 5, 316

Supply chain 10 2 Conforming 5

Not conforming 57

Incident mgmt. 9 6 Conforming 4

Not conforming 120

Insurance claim 13 8 Conforming 17

Not conforming 262

We translated the process mod-
els into Solidity code, using the
previous version of the trans-
lator from [3] – referred to as
default – and the newly imple-
mented translator proposed in
this paper – referred to as opti-
mized. For the optimized ver-
sion, we distinguish between
the two architectures, i.e., the
previous architecture that deploys a new contract for each instance, and the
architecture that runs all process instances in a single contract. We refer to these
options at Opt-CF (“CF” for control flow) and Opt-Full, respectively. Then we
compiled the Solidity code for these smart contracts into EVM bytecode and
deployed them on a private Ethereum blockchain.

To assess gas cost and correctness on conformance checking, we replayed the
log traces against all three versions of the contracts and recorded the results.
We hereby relied on the log replayer and trigger components from [3], with
the trigger improvements discussed in Sect. 4. The replayer iterates through the
traces in a log and sends the events, one by one, via a RESTful Web service call
to the trigger. The trigger accepts the service call, packages the content into a
blockchain transaction and submits it. Once it observes a block that includes the

4 http://www.minitlabs.com/ – last accessed 13/3/2017.

http://www.minitlabs.com/
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transaction, it replies to the replayer with meta-data that includes block number,
consumed gas, transaction outcome (accepted or failed, i.e., non-conforming),
and whether the transaction completed this process instance successfully. The
replayer has been modified to cater for concurrent replay of thousands of traces.

Experiments were run using a desktop PC with an Intel i5-4570 quadcore
CPU without hyperthreading. Ethereum mining for our private blockchain was
set to use one core. The log replayer and the trigger ran on the same machine,
interacting via the network interface with one another. For comparability, we
used the same software versions as in the experiments reported in [3], and a
similar blockchain state as when they were run in February–March 2016. For
Ethereum mining we used the open-source software geth5, version v1.5.4-stable.

5.3 Gas Costs and Correctness of Conformance Checking

For each trace, we recorded the gas required for initialization of a new process
instance (deploying an instance contract or creating a new bitvector, depending
on the architecture), the sum of the gas required to perform all the required
contract function invocations, the number of rejected transactions due to non-
conformance and the successful completion of the process instance.

Table 2. Gas cost experiment results

Process Tested traces Variant Avg. Cost Savings (%)

Instant. Exec.

Invoicing 5316 Default 1,089,000 33,619 –

Opt-CF 807,123 26,093 –24.97

Opt-Full 54,639 26,904 –75.46

Supply

chain

62 Default 304,084 25,564 –

Opt-CF 298,564 24,744 –2.48

Opt-Full 54,248 25,409 –42.98

Incident

mgmt.

124 Default 365,207 26,961 –

Opt-CF 345,743 24,153 –7.04

Opt-Full 54,499 25,711 –57.96

Insurance

claim

279 Default 439,143 27,310 –

Opt-CF 391,510 25,453 –8.59

Opt-Full 54,395 26,169 –41.14

The results of this exp-
eriment are shown in Table 2.
The base requirement was
to maintain 100% confor-
mance checking correctness
with the new translator,
which we achieved. Our
hypothesis was that the
optimized translator leads
to strictly monotonic im-
provements in cost on the
process instance level. We
tested this hypothesis by
pairwise comparison of the
gas consumption per trace,
and confirmed it: all traces
for all models incurred less
cost in Opt-CF. In addition to these statistics, we report the absolute costs as
averages.

As can be seen from the table, the savings for Opt-CF over default are small
for the simple supply chain process with only two gateways – cf. Table 1 – whereas
they are considerably larger for the complex invoicing process with 18 gateways.
Considering the reduction rules we applied, this can be expected. The other

5 https://github.com/ethereum/go-ethereum/wiki/geth – last accessed 20/3/2017.

https://github.com/ethereum/go-ethereum/wiki/geth
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major observation is that Opt-Full yields massive savings over Opt-CF. When
considering the absolute cost of deploying a contract vs. the average cost for
executing a single transaction and the resulting relative savings, it is clear that
the improved initialization is preferable whenever the respective architecture is
applicable. As discussed in Sect. 4, this cost reduction also results in a loss of
flexibility, and thus the choice requires a careful, case-specific tradeoff.

5.4 Throughput Experiment

To comparatively test scalability of the approach, we analyze the throughput
using the three variants of contracts, default, Opt-CF, and Opt-Full. To this
end, we used the largest of the four datasets, invoicing, where we ordered all the
events in this log chronologically and replayed all 5,316 traces at a high frequency.
The three variants were tested in separate campaigns. To ensure conformance,
the events within a single trace were replayed sequentially. Ethereum’s miners
keeps a transaction pool, where pending transactions wait to be processed.

One major limiting factor for throughput is the gas limit per block: the sum
of consumed gas by all transactions in a block cannot exceed this limit, which is
set through a voting mechanism by the miners in the network. To be consistent
with the rest of the experimental setup, we used the block gas limit from March
2016 at approx. 4.7M gas, although the miner in its default setting has the
option to increase that limit slowly by small increments. Given the absolute gas
cost in Table 2, it becomes clear that this is fairly limiting: for Opt-CF, instance
contract creation for the invoicing dataset costs approx. 807K gas, and thus no
more than 5 instances can be created within a single block; for default, this
number drops to 4. Regular message calls cost on average 26.1 K/33.6 K gas,
respectively for optimized/default, and thus a single block can contain around
180/140 such transactions at most. These numbers would decrease further when
using a public blockchain where we are not the only user of the network.

Block limit is a major consideration. However, block frequency can vary: on
the public Ethereum blockchain, mining difficulty is controlled by a formula that
aims at a median inter-block time of 13–14 s. As we have demonstrated in [3],
for a private blockchain we can increase block frequency to as little as a second.
Therefore, when reporting results below we use blocks as a unit of relative time.

Figure 7 shows the process instance backlog and transactions per block. Note
that each datapoint in the right figure is averaged over 20 blocks for smoothing.
The main observation is that Opt-Full completed all 5,316 instances after 403
blocks, Opt-CF needed 1,053 blocks, and for default it took 1,362 blocks. This
underlines the cost results above: due to the network-controlled gas limit per
block, the reduced cost results in significant increases in throughput.
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Fig. 7. Throughput results. Left: # of active instances. Right: # of transactions per
block, smoothed over a 20-block time window.

6 Conclusion

This paper presented a method to compile a BPMN process model into a Solidity
smart contract, which can be deployed on the Ethereum platform and used to
enforce the correct execution of process instances. The method minimizes gas
consumption by encoding the current state of the process model as a space-
optimized data structure (i.e. a bit array with a minimized number of bits),
reducing the number of operations required to execute a process step, and reduc-
ing initialization cost where possible. The experimental evaluation showed that
the method significantly reduces gas consumption and achieves considerably
higher throughput relative to a previous baseline.

The presented method is a building block towards a blockchain-based collab-
orative business process execution engine. However, it has several limitations,
including: (i) it focuses on encoding control-flow relations and data condition
evaluation, leaving aside issues such as how parties in a collaboration are bound
to a process instance and access control issues; (ii) it focuses on a “core sub-
set” of the BPMN notation, excluding timer events, subprocesses and boundary
events for example. Addressing these limitations is a direction for future work.
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