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Abstract. A fundamental assumption of Business Process Management
(BPM) is that redesign delivers new and improved versions of busi-
ness processes. This assumption, however, does not necessarily hold, and
required compensatory action may be delayed until a new round in the
BPM life-cycle completes. Current approaches to process redesign face
this problem in one way or another, which makes rapid process improve-
ment a central research problem of BPM today. In this paper, we address
this problem by integrating concepts from process execution with ideas
from DevOps. More specifically, we develop a technique called AB-BPM
that offers AB testing for process versions with immediate feedback at
runtime. We implemented this technique in such a way that two versions
(A and B) are operational in parallel and any new process instance is
routed to one of them. The routing decision is made at runtime on the
basis of the achieved results for the registered performance metrics of
each version. AB-BPM provides for ultimate convergence towards the
best performing version, no matter if it is the old or the new version. We
demonstrate the efficacy of our technique by conducting an extensive
evaluation based on both synthetic and real-life data.

Keywords: Business Process Management · DevOps · AB testing ·
Process performance indicators

1 Introduction

Various lifecycle approaches to Business Process Management (BPM) have a
common assumption that a process is incrementally improved in the redesign
phase [9, Chap. 1]. While this assumption is hardly questioned in BPM research,
there is evidence from the field of AB testing that improvement concepts often
do not lead to actual improvements. For instance, work on business improvement
ideas found that 75% did not lead to improvement: half of them had no impact
while approximately a quarter turned out to be even harmful [12]. The results
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are comparable to a study of the Microsoft website, in which only one third
of the ideas observed had a positive impact, while the remaining had no or
negative impact [15]. The same study also observed that customer preferences
were difficult to anticipate before deployment, and that customer research did
not predict customer behaviour accurately.

If incremental process improvement can only be achieved in a fraction of
the cases, there is a need to rapidly validate the assumed benefits. Unfortu-
nately, there are currently two major challenges for such an immediate valida-
tion. The first one is methodological. Classical BPM lifecycle approaches build
on a labour-intensive analysis of the current process, which leads to the deploy-
ment of a redesigned version. This new version is monitored in operation, and
if it does not meet performance objectives, it is made subject to analysis again.
All this takes time. The second challenge is architectural. Contemporary Busi-
ness Process Management Systems (BPMSs) enable quick deployment of process
improvements, but they do not offer support for validating improvement assump-
tions. A performance comparison between the old and the new version may be
biased since contextual factors might have changed at the same time. How a
rapid validation of improvement assumptions can be integrated in the BPM
lifecycle and in BPMSs is an open research question.

In this paper, we address this question by integrating business process execu-
tion concepts with ideas from DevOps. More specifically, we develop a technique
called AB-BPM that offers AB testing for redesigned processes with immediate
feedback at runtime. AB testing in DevOps compares two versions of a deployed
product (e.g., a Web page) by observing users’ responses to versions A/B, and
determines which one performs better [8]. We implemented this technique in
such a way that two versions (A and B) of a process are operational in par-
allel and any new process instance is routed to one of them. Through a series
of experiments and observations, we have developed an instance routing algo-
rithm, LTAvgR, which is adapted to the context of executing business processes.
The routing decision is guided by the observed results for registered performance
metrics of each version at runtime. The technique has been evaluated extensively
on both synthetic and real-life data. The results showed that AB-BPM provides
for ultimate convergence towards the best performing version.

The remainder of this paper starts with a discussion of the background and
related work in Sect. 2. Section 3 describes the framework and algorithms for
performing AB tests. In Sect. 4, we evaluate our approach on two use cases. In
Sect. 5, we discuss the results, limitations, and validity of our approach, and
finally draw conclusions in Sect. 6.

2 Background and Related Work

Business Process Management Systems (BPMSs) allow for a rapid deployment
of process improvements into operation. However, there is currently no support
to test the often implicit assumption that a modification of a process actually
represents an improvement. One anecdote of a leading European bank (EB)
illustrates this problem. The EB improved their loan approval process by cut-
ting its turnaround time down from one week to a few hours. What happened
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though was a steep decline in customer satisfaction: customers with a negative
notice would complain that their application might have been declined unjusti-
fiably; customers with a positive notice would inquire whether their application
had been checked with due diligence. This anecdote emphasizes the need to
carefully test improvement hypotheses in practice since customers and process
participants might not act in a way that can be predicted deterministically.

Given the current architecture of BPMSs, it is not possible to conduct a
fair comparison between the old and the new version of a process since they
are not operational at the same point of time. That means, doing a post-hoc
analysis of data generated from the old process being operational in time interval
[t(n−1), t(n)] and the new process running from [t(n), t(n+1)] is biased towards
the respective conditions of each time interval.

The need for continuous improvement is rarely disputed, but it should be
complemented with the motto “test fairly” and “fail fast”. This motto entails
reducing the time between inception and deployment of new versions, and man-
aging business risks brought forth by deployment of the new process versions.

From the above analysis, we derive the following three requirements:

R1 Rapidly validate the improvement assumption: a proposed improvement
should be tested within a short time frame after its introduction.

R2 Ensure a fair comparison: the environment in which a comparison is con-
ducted should minimize bias, and avoid the time bias discussed above.

R3 Enable rapid adjustments on process model level: the benefits of a solution
should be suited to process models and their specific characteristics.

Concepts from DevOps [3], which aim to bring software development (Dev)
and operations (Ops) closer together, may help to address this problem. One
DevOps practice is live testing, where new versions of the software are tested
in production with actual users of the system. The most popular form of live
testing is AB testing, where two versions (A and B) are deployed side by side and
both receive a share of the production workload while being monitored closely.
The monitoring data is then used to draw conclusions about the effectiveness of
one version over the other, for instance in the form of increased revenue from
higher click-through rates.

So far, AB testing has been used for micro changes of websites, like changing
the color of a button [8,15]. The effectiveness of this technique is surveyed by
Kohavi et al. for the user interfaces of web applications [15,16]. In this paper, we
adopt the idea of AB testing on the process level in order to address R1–R3. Our
technique is called AB-BPM. In the following, we discuss in how far previous
BPM research is related to R1–R3. We distinguish methodological and technical
approaches to process improvement.

Methodological approaches include business process re-engineering and the
BPM lifecycle. Business Process Re-Engineering (BPR) offers a methodology for
selecting and redesigning a process to improve efficiency, often exploiting IT to
support the changes [11]. BPR promotes radical changes to the processes. An
explicit perspective for testing re-engineered processes is missing.
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Kettinger et al. summarize methods for process improvement project [14].
Lifecycle models like the one described by Dumas et al. [9] propose a more
incremental improvement of processes with periodic controlling and revisions.
Our research complements this stream of research by providing techniques to
experiment with process improvement hypotheses and perform statistical eval-
uation on them. We assume that a redesigned process is made available, so that
such experimentation and analysis can be done. We envision that our approach
can be used in conjunction with works that automatically generate process ver-
sions just as [4]. Other techniques include root-cause analysis [9,19], e.g. by
the help of cause-effect diagrams [9,10], and the consideration of best-practises
[2,20]. However, evaluation of effectiveness requires the involvement of process
analysts.

Technical approaches focus on monitoring processes at runtime with a focus
on specific performance metrics. Concepts based on Statistical Process Control
(SPC) [13], Complex Event Processing (CEP) [24,25], and predictive analytics
[6] have been proposed and adapted for monitoring business processes. How-
ever, these monitoring techniques have not been used to carry out controlled
experiments. In our work, the monitoring is performed by the instance router
by observing a Process Performance Indicator (PPI) like satisfaction ratings
obtained from end users. Based on the chosen PPI, the instance router dynam-
ically adjusts the request distribution rates (Table 1).

Table 1. Mapping existing works to the requirements

Approach R1 R2 R3

Process re-engineering (Hammer/Champy) [11] − − −
Process improvement [14] − − −
Process lifecycle [9] +/− − −
Statistical Process Control (SPC) [13] + − −
Complex Event Processing (CEP) [24,25] − − +

AB testing, see e.g., [3,15] + + −
AB-BPM (this work) + + +

Our research addresses the gap of an explicit testing of improvement hypothe-
ses in BPM-related research and the lack of an explicit consideration of business
processes in the works on AB testing. In the following, we devise our AB-BPM
approach so that it meets requirements R1–R3.

3 Approach and Architecture

In this section, we present our approach, starting with mapping the instance
routing problem to algorithms from the literature. Based on a small experiment,
we choose one algorithm and adapt it to the context of business processes. Then
we present our high-level framework, architecture, and implementation.
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3.1 Instance Routing – A Multi-armed Bandit Problem

In order to integrate concepts of process execution with AB testing, we have to
discuss how new instances are assigned to a specific version of the process.

Therefore, we need an instance router that distributes requests to versions in
such a way that any relevant Process Performance Indicator (PPI) is maximized.
The instance router also needs to deal effectively with the issue that processes
can be long-running, and that PPI measurements can be delayed.

The PPI maximization can be mapped to the so-called multi-armed bandit
problem [1,5]. The multi-armed bandit problem models a hypothetical experi-
ment where, given some slot machines with different payoff probability distrib-
utions, a gambler has to decide on which machines to play. The objective of the
gambler is to maximize the total payoff during a sequence of plays. Since the
gamblers are unaware of the payoff distribution, they can approach the plays with
two strategies: exploring the payoffs by pulling different arms on the machines
or exploiting the current knowledge by pulling arms that are known to give good
payoffs. The exploration strategy builds knowledge about the payoffs, and the
exploitation strategy accumulates the payoffs. Multi-armed bandit algorithms
aim to find a balance between these strategies. If the performance is affected
by some context, this can be seen as the so-called contextual multi-armed ban-
dit problem, where the gambler sees context (typically represented as a multi-
dimensional feature vector) associated with the current iteration before making
the choice.

We model the routing algorithm as a multi-armed bandit problem by repre-
senting the process versions as the “arms”, and the PPI as “payoffs/rewards”.
The objective of the instance router is to find a good tradeoff between explo-
ration and exploitation, possibly based on the context. To learn the performance
of a version in exploration, it sends some of the process instantiation requests
to either version. Based on the instance router’s experience, it can exploit its
knowledge to send more or even all request to the better-performing version. The
reward for routing algorithm can be designed to use a PPI like user satisfaction.

3.2 Instance Routing Algorithms and Selection

The multi-armed bandit problem has been explored in related literature. LinUCB
[17] is a contextual multi-armed bandit algorithm that has been employed to
serve news articles to users with the objective to maximize the total number
of clicks. Tompson sampling [23] is one of the simplest approaches to address
multi-armed bandits. It is based on a Bayesian approach where arms are chosen
according to their probability of producing optimal rewards [7,23]. Thompson
sampling can be used to solve the contextual multi-armed bandit problem with
linear rewards [1]. In this paper, we chose these three algorithms as candidates
for process instance routing and investigate their effectiveness. We have selected
these algorithms based on their demonstrated benefits and simplicity. Other
algorithms, such as ε-greedy, ε-first, UCB, and EXP4 also address multi-armed
bandit problems [5].
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Since the goal for the routing algorithms is to maximize the cumulative value
of the PPI, as preparatory work, we have experimented with different rout-
ing algorithms with different configurations to find the best performing algo-
rithm. We have compared variations of Thompson sampling techniques [1,7,23],
LinUCB [17] and a baseline algorithm which uniformly distributes requests to
process versions regardless of context and rewards. We have found that LinUCB
produced the highest cumulative satisfaction score throughout the experiments.
Therefore we use this algorithm in the following. Our architecture is flexible
enough that it can be easily replaced by other algorithms.

3.3 Adapting the Routing Algorithm to Business Processes

As discussed above, we chose LinUCB as our routing algorithm. However, we
observed that the algorithm can be derailed by process-specific circumstances,
such as the long delays before rewards. Long delays are inherent to long-running
processes, and not considered in AB testing solutions for Web applications, where
delays are measured in seconds or minutes. In contrast, the real-world data which
we use in the evaluation has one process instance with an overall duration of more
than 3 years.

This results in the following issue. Oftentimes overly long process completion
times correlate with problematic process instances, leading to negative rewards.
Thus, instances with short completion times can give a positive impression of
a process version early on. If the algorithm receives too many positive rewards
from one version during the early stages of the AB test, the algorithm is more
likely to see that version as preferable. Such an early determination can introduce
a bias in the evaluation. Thus, we need to ensure that the algorithm gets enough
samples from both versions.

We solve this issue by adopting the idea of a “warm-up” phase from Rein-
forcement Learning [21], during which we emphasize exploration over exploita-
tion. We sample the probability of exploration by using an exponential decay
function, acting as an injected perturbation that diminishes as the experiment
proceeds – the sample determines whether the algorithm follows LinUCB’s deci-
sion or picks a version at random. We consider the “warm-up” as the experi-
mentation phase: after all instances started during the experimentation phase
are completed, no more rewards are collected and the instance router stabilizes.

Finally, the original LinUCB algorithm makes its decision based on the sum-
mation of past rewards. We found out during the experiments that this can also
deceive the algorithm. Therefore, we have modified the LinUCB algorithm to
make its reward estimates on the basis of the average of past rewards rather
than their sum. We term our adapted instance routing algorithm Long-term
average router (LTAvgR).

3.4 AB-BPM Framework, Architecture, and Implementation

Figure 1 shows the architecture of our AB testing framework. We designed the
architecture such that the two versions of the process model are deployed side by
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side in the same execution engine. The instance router distributes the instance
creation requests as per its internal logic. An alternative design would be to run
two full copies of the entire application stack, one for each version, and using
the instance router to distribute the requests across the two stacks. However,
the multi-armed bandit algorithms can identify the superior version during the
experimentation and alter the allocation of requests to different versions. When
a version is clearly superior to the other, most of the requests are sent to the
superior version. In such scenarios, the application stack that hosts the inferior
version is underutilized. If we run both versions on the same stack, we can keep
utilization of the system high, no matter which version is superior.

Fig. 1. Application architecture

Given this design choice, the process definitions, implementation, PPI collec-
tion, and the shared process execution engine are wrapped by a web application.
Process execution data are stored in a shared database. Process instantiation,
metrics, and other operations are exposed using RESTful APIs. Upon receiv-
ing a request, the instance router instantiates a particular version and receives
an identifier. Identifiers of process instances for which rewards have not been
observed are stored in a queue. The instance router uses a polling mechanism in
parallel to retrieve PPI metrics from the server and update the rewards.

We implemented the architecture prototypically in Java and Python, in part
based on the Activiti BPMS. As outlined earlier, our framework is flexible in
the choice of the instance routing algorithm: we implemented and tested all
five variants discussed above, i.e., LTAvgR, LinUCB, Thompson-sampling with
and without linear rewards, and random uniform distribution. The experiments
reported in the following section are run with the presented implementation with
LTAvgR. We simulate the requests from users by replaying process logs.

4 Evaluation

In this section, we present the methodology and outcomes of our evaluation of
the proposed approach. We assess the AB-BPM framework and LTAvgR algo-
rithm first on synthetic data, where we have full control over the environment
and parameters. Then we test the approach on real-world data, taken from the
building permit process logs from five Dutch municipalities.
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4.1 Evaluation on Synthetic Data

In this section, we demonstrate our approach using two example process versions
stemming from the domain of helicopter pilot licensing. Version A of the process
sequentially schedules the activities based on the cost of performing them. Based
on the result (pass/fail), the process either schedules the next activity or termi-
nates the process. In this version, we expect that successful candidates will pay
more because of multiple scheduling costs. In contrast, version B of the process
schedules all such activities at the beginning, thus reducing the scheduling costs.
The processes are illustrated in Fig. 2. These processes have as a result the final
status of the license: either approved or rejected.

Fig. 2. Process versions for the AB testing experiment

As PPI we simulate the user satisfaction, here calculated as a combination
of cost, completion time, and result of the process execution. Costs and process-
ing times of each task were derived from the Australian Civil Aviation Safety
Authority (CASA)1 and helicopter hiring rates from an Australian flight school.

Table 2. Cost model of the activities

Activity Cost Min. processing
time

Max. processing time

Schedule 25 1 day 1 day

Eligibility test 190 1 day 3 days

Medical exam 75 1 day 3 days

Theory test 455 2 weeks 5 weeks

Practical test 1145 1 week 2 weeks

License processing 0 if rejected,
100 if approved

Immediate Immediate

1 https://www.legislation.gov.au/Details/F2016C00882, Accessed: 03-01-2017.

https://www.legislation.gov.au/Details/F2016C00882
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Table 3. User satisfaction model

Outcome Cost Duration Satisfaction

Approved [0, 1990] ≤5 weeks 5

(1990,∞] ≤5 weeks 4

[0,∞) >5 weeks 3

Rejected [0, 1890] ≤5 weeks 3

[0, 1890] >5 weeks 2

(1890,∞] ≤5 weeks 2

(1890,∞) >5 weeks 1
Fig. 3. Requests routing in AB
tests

Table 2 shows the costs and processing times for both process versions. Table 3
shows how user satisfaction scores from 1 (lowest) to 5 (highest) are derived. The
basic rationale is, the shorter and cheaper, the better. The score ranges from 1
to 3 if the outcome is negative, and from 3 to 5 if the outcome is positive.

Experiment design. We have designed the AB testing experiments such that the
instance router receives requests with embedded contexts at the rate of 1 request
per second. For the execution, we scale each day to 1 s. In this experiment, we
introduce non-determinism in two ways: (i) adjusting success rates of an activity
based on contextual information, and (ii) sampling processing times for each
activity using a probability distribution function.

Results. Figure 3 shows the request distribution throughout the AB Tests. When
the experimentation or “warm-up” phase ends at approximately 1000 requests,
the router stops updating the reward estimates and chooses version B decisively.

A post-hoc analysis shows that the median user satisfaction was similar for
both versions. The distributions of user satisfaction scores differed significantly
(a Mann-Whitney test [18] resulted in U = 54072, p-value <10−6 two-tailed,
nA = 222, nB = 778). The median delay of the reward was 22.3 s. Table 4 shows
the differences between the two versions. Version B produces a better user sat-
isfaction in those cases where an application is approved. It is also faster in all
cases. However, the median cost of version A is lower than that of version B
when the applications are rejected.

We used an evaluation based on synthetic log data in order to investigate
the convergence behaviour of the implementation. We observe that our app-
roach leads to a rapid identification of the more rewarding process version,
which receives an increasing share of traffic. This observation is instrumental
with respect to the requirements R1–R3, which demand rapid validation, fair
comparison and rapid adjustment on the process level.
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Table 4. Analysis of versions A and B by cases

Metric Outcome Version A Version B Overall

Samples (N) All 222 778 1000

Approved 72 275 347

Rejected 150 503 653

Median user satisfaction All 3 3 3

Approved 3 5 5

Rejected 3 3 3

Median cost All 795 1890 1890

Approved 2065 1990 1990

Rejected 795 1435 1435

Median duration All 28.6 s 17.4 s 19.6 s

Approved 35.5 s 21.8 s 22.4 s

Rejected 24.5 s 8.7 s 8.9 s

4.2 Evaluation on Real-World Data

To assess the applicability of our approach over real-world data, we have analysed
the data stemming from the five logs in the BPI Challenge 2015 2, herein identi-
fied as L1, . . . , L5. Those logs contain the execution data of the building permit
issuing processes in five Dutch municipalities. The processes behind each log
reportedly contain variations, which allow us to consider them as different ver-
sions of the same main process. In this experiment, we simulate the situation
where one version is in use, when a new version is suggested and AB-tested
in competition with the previous one. Better performance here is equated to
shorter time to complete a process instance. Subsequently, the version that won
the first round competes against the next version, and so on, until all versions
have competed.

Based on the insights from [22], we filtered the events to retain only those
activity instances that belong to a so-called “phase”, namely constituting the
core part of the process. Using the Inductive Miner, we discovered five process
models P 1, . . . , P 5 from L1, . . . , L5, respectively. We mimicked the execution
of the processes by replaying the logs on the process versions. The instance
router decided to which alternative version to route each request to create a new
instance. In the following, we describe how the execution times were derived,
define the reward function, clarify how the competition was organized, and finally
report on the achieved results.

Execution Time Simulation. For fairness, in this experiment we replay only
the logs that did not stem from the original processes. Say, we are AB-testing
2 BPI Challenge 2015, including logs, reports, and process models: https://www.win.

tue.nl/bpi/doku.php?id=2015:challenge, Accessed 20-03-2017.

https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
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P i vs. P j ; then we use the logs from Ltest = {L1, . . . , L5} \ {Li, Lj} with
1 � i, j � 5. However, we want to test how the event traces from Ltest behave
on P i and P j in terms of timing. To this end, we assign an activity duration to
the execution of every replayed activity from the process version the activity was
routed to. Say this is P i, and the current activity is a; then, we randomly sample
a duration value from the durations of a among all the traces of Li sharing the
same execution history (prefix) as the replayed trace.

For instance, consider the execution of activity phase concept draft decision
ready for process P 1 after the sub-trace [phase application received, phase appli-
cation receptive, phase advice known]. This activity has been assigned with a
random sample among the registered execution times of phase concept draft deci-
sion ready-events following [phase application received, phase application recep-
tive,phase advice known] in the 593 traces of log L1 sharing that prefix.

To that extent, we have folded the traces of every log into a dedicated poly-
tree auxiliary data structure, collapsing the traces that share the same prefix on
common paths. Every node keeps the activity name and the list of registered
execution times of the related events. In addition, event transitions in the log
are stored in a table structure along with the list of transition times. When the
traces cannot be followed in the poly-tree structure, we perform a lookup on the
table structure and derive execution times. If the current transition has not been
observed in Li, we discard the trace as non-conforming and disregard it in the
reward calculation.

The events in the logs signal the completion of an activity, and bear eight
timestamp fields. However, most of those attributes were missing or unreliable.
Therefore, we followed the approach of [22], and used solely the completion
time:timestamp attribute for each event. We computed the duration of every
activity as the difference between the timestamp of its completion and the pre-
ceding completion timestamp. We thus included in the activities’ duration esti-
mation both the execution time and the waiting time before starting.

Fig. 4. Reward strategy

Reward Strategy. The filtered BPIC 2015
dataset contains numerous outliers: while the
median duration for processes are 39–46 days,
outliers can take up to 1158 days, i.e., 3
years and 63 days. To establish a reward
function that penalizes very long process
completion times, we adopted the following
strategy. Given the initial version P i of a
process, we collected all instance execution
times reported in its log Li and computed
K � 1 quantiles q1, . . . , qK . We used these quantiles to partition the space of
possible execution times into a set of K + 2 intervals I = {ι0, ι1, . . . , ιK , ιK+1}
where ι0 = [0, q0), ιK+1 = [qK ,+∞), and ιk = [qk−1, qk) for 1 � k � K. Those
intervals split the range of possible execution times for P j as follows: ι0 contains
the values below the minimum registered in Li, ιK+1 accounts for any duration
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Algorithm 1. Strategy for the selection of the best performing version
among

{
P 1, P 2, P 3, P 4, P 5

}
.

1 Ptest ← {
P 1, P 2, P 3, P 4, P 5}

2 P i ← original process version from Ptest

3 Ptest ← Ptest \ {P i
}

4 repeat
5 P j ← alternative process version from Ptest

6 Ptest ← Ptest \ {P j
}

7 Ltest ← {L1, . . . , L5} \ {Li, Lj}
8 P i ← best version between P i and P j as per the AB test over Ltest

9 until Ptest �= ∅

10 return P i

beyond the maximum recorded in Li, and the K intervals in-between are meant
to classify the performance of P j with respect to their quantile as per Li. This
strategy is illustrated as a step chart in Fig. 4 – every step in the chart represents
a quantile.

The idea is to assign a reward of 1 when the duration P j achieves is lower
than any registered execution time of P i, and decrease it by a step of 2/K as
long as the measured performance falls into the following intervals. In order to
counterbalance the disruptive effect of outliers which take extremely long, we
established a penalty value ρ (with ρ = 4 in Fig. 4) and defined that the reward
linearly decreases from −1 to (−1 − ρ) along ιK . Finally, any execution time
beyond the last quantile is assigned a reward of (−1 − ρ).

Formally, let κI(t) : R+ → [0, . . . , K +1] be a mapping function associating a
process instance execution time t to the respective interval ιK ∈ I by the index k,
e.g. κI(t) = 3 if t is in the range of ι3. The reward function rI : R+ → [−1 −ρ, 1]
is defined over the set of intervals I as follows:

rI(t) =

⎧
⎪⎨

⎪⎩

1 − κI(t)
K · 2 if κI(t) < K

−1 − ρ · t−qK−1
qK−qK−1

if κI(t) = K

−1 − ρ if κI(t) > K

with κI(t) =
K+1∑

k=0

k · χιk(t)

where χιk is the characteristic function of interval ιk. The underlying idea was
to prefer the process demonstrating a shorter completion time to the slower ones
while accounting for the outliers. For our experiment, we set K = 20 and ρ = 4.

Competition: Selecting the Best Version. To simulate the situation where
an organization gradually designs new versions of a process model, we run a
competition between the five provided process models. This competition is con-
ducted as a set of pair-wise comparisons between versions, following the schema
outlined in Algorithm 1. The idea is to initially consider an original version of
the process, P i, and a new version, P j . To determine if P j achieves an actual
improvement over P i while limiting bias as discussed above, the execution of
the processes is simulated by replaying the traces in the logs from which P i and
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Table 5. Number of traces

Log Traces

L1 1199

L2 830

L3 1409

L4 1051

L5 1155

Table 6. Ratio of conforming traces

Version L1 L2 L3 L4 L5

P 1 1 0.928 0.949 0.974 0.928

P 2 0.913 1 0.928 0.982 0.938

P 3 0.901 0.812 1 0.975 0.886

P 4 0.873 0.731 0.913 1 0.829

P 5 0.897 0.929 0.944 0.979 1

Fig. 5. Request distribution over time

P j were not derived. For instance, P 1 and P 2 are evaluated on the basis of the
traces in L3, L4, and L5. If, at the end of a competition round, P j demonstrated
an improvement over P i, then P i is replaced with P j . Otherwise, P i is main-
tained. At that stage, another process version is compared to P i. The selection
procedure continues until all process versions have competed. We remark here
that the traces which could not be replayed on the process picked by the instance
router were discarded. The number of compliant traces still represents the vast
majority, because the ratio of conforming traces of all logs over models remained
around 0.9, and always above 0.7 as shown in Table 6. Also, the total number of
traces per log is shown in Table 5.

Analysis. Without loss of generality, we began the selection considering P 1

as the process currently running on the production system, and progressively
entering P 2, P 3, P 4, and P 5 into the competition as described above. We sped
up the execution time such that one day in the trace was equated to one second
in the experiments.
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The sequence of tests was: (1) P 1 vs. P 2, P 2 wins. (2) P 2 vs. P 3, P 3 wins.
(3) P 3 vs. P 4, P 3 wins. (4) P 3 vs. P 5, P 3 wins. We can observe that P 3 was the
best-performing version. In all tests, the instance router chose the version with
lower mean and median execution time.

Figure 5 shows the request distribution throughout the pair-wise tests. The
experimentation phase ends roughly after 1000 requests in all cases. We can
observe that occasionally the instance router decided to pick another version
some time during the post-experimentation phase. In some cases, the decision
made during the post-experimentation phase contradicted the decision during
the experimentation phase. In these scenarios, the instance router was able to
make the better decision only after all the delayed rewards were received.

In Table 7, we show the request distribution during the experimentation
phase, and the performance metrics calculated using execution times of processes
instantiated during this phase. Considering the median and mean times in this
table confirms that the instance router using the LTAvgR algorithm made the
right decision in all cases.

Table 7. Pair-wise performance comparison of versions after the AB tests

Metric Round 1 Round 2 Round 3 Round 4

P 1 P 2 P 2 P 3 P 3 P 4 P 3 P 5

No. of requests 559 440 423 575 263 729 735 261

Median duration 33.8 29.8 28.8 27 21 21.85 22.9 27.9

Mean duration 55.3 52.1 51.8 35.8 29.3 49.9 36.6 38.3

Fig. 6. Estimated rewards during the
experiment P 1 vs. P 2

Fig. 7. PPI (duration) during the
warm-up phase, smoothed.

For an in-depth view of the reward estimates (the average reward observed
by LTAvgR) and execution times, we depict in Figs. 6 and 7 how their values
changed during the experiment P 1 vs. P 2. The effect that fast completion leads
to positive rewards is clearly visible in Fig. 6: shortly after the start of the exper-
iment, the reward estimates for both versions jump to more than 0.6. After some
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fluctuation, P 1 is preferred approximately from request 280 to request 811. This
is also visible in Fig. 5, where we can observe that the change in maximum of
the two reward estimates leads to change in the request distribution strategy.

Figure 7 shows the PPIs observed by the instance router in order. Better
PPIs, which lead to better rewards, are received early. However, worse PPIs
tend to accumulate near the end of the warm-up phase. At request 811, the two
estimated rewards are very close to each other – see Fig. 6. At this point, P 2

collects actual rewards from longer durations than P 1 – see Fig. 7. These longer
durations result in negative rewards, which cause the reward estimate of P 2 to
fall below that of P 1. This development leads to the change in the decision of
LTAvgR.

5 Discussion

The design of our routing algorithm, LTAvgR, was informed by practical observa-
tions of the limitations when applying existing algorithms in the process execu-
tion context. As we have demonstrated, our approach addresses the key require-
ments R1-R3. Our evaluation focused on the practical use of AB-BPM and
LTAvgR; theoretical analyses of the routing algorithm were out of the scope. The
in-depth analysis above showed how business-relevant PPI observations have a
direct influence on the routing decisions taken by LTAvgR.

We have used a multi-armed bandit algorithm with rewards derived from
a single PPI. In practice, however, multiple PPIs may need to be considered.
Furthermore, optimizing routing for one PPI can negatively affect other PPIs.
One key challenge in using multiple PPIs is that the reward delay for each PPI
can be different. Dealing with such scenarios may require improved collection
and reward update mechanisms, which we plan to explore in future work.

One limitation of our evaluation of AB-BPM so far is that they are based on
isolated environments with no real user interactions. Factors like effects from the
novelty of a process version were not considered. For example, in changing the
user interfaces and forms, we may observe that users behave differently when
exposed to a new version. As with the case study using real-world logs, we
expect to find some patterns unique to business processes when these factors are
accounted for. We believe that observations from real-world systems can guide
us towards designing a better instance routing algorithm, and identifying best
practices for performing AB tests on process versions.

6 Conclusion

Business process improvement ideas do not necessarily manifest in actual
improvements. In this paper we proposed the AB-BPM approach which can
rapidly validate process improvement efforts, ensure fair comparison, and make
process level adjustments in production environments. Our approach uses an
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instance router that dynamically selects process versions based on their his-
torical performance in terms of the chosen PPI. To this end, we proposed the
LTAvgR algorithm that can cater for the specifics of business process execution.

We evaluated our approach through synthetic and real-world data. We chose
the most effective routing algorithm based on a set of experiments, and evalu-
ated business process versions with synthetic data. Further, we evaluated real-
world process versions by performing pair-wise AB tests on them. The evaluation
results showed that our instance router dynamically adjusted request distribu-
tion to favour the better performing version.

In future work, we aim to integrate our framework with approaches to bal-
ance multiple PPIs. In addition, we plan to consider user interaction, and run
industrial case studies where we apply our instance router to actual production
systems.
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