
An Eye into the Future: Leveraging A-priori
Knowledge in Predictive Business Process

Monitoring

Chiara Di Francescomarino1(B), Chiara Ghidini1, Fabrizio Maria Maggi2,
Giulio Petrucci1,3, and Anton Yeshchenko2

1 FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
{dfmchiara,ghidini,petrucci}@fbk.eu

2 University of Tartu, Ulikooli 18, 50090 Tartu, Estonia
{f.m.maggi,anton.yeshchenko}@ut.ee

3 University of Trento, Via Sommarive 14, 38050 Trento, Italy

Abstract. Predictive business process monitoring aims at leveraging
past process execution data to predict how ongoing (uncompleted)
process executions will unfold up to their completion. Nevertheless, cases
exist in which, together with past execution data, some additional knowl-
edge (a-priori knowledge) about how a process execution will develop in
the future is available. This knowledge about the future can be leveraged
for improving the quality of the predictions of events that are currently
unknown. In this paper, we present two techniques - based on Recurrent
Neural Networks with Long Short-Term Memory (LSTM) cells - able to
leverage knowledge about the structure of the process execution traces
as well as a-priori knowledge about how they will unfold in the future
for predicting the sequence of future activities of ongoing process execu-
tions. The results obtained by applying these techniques on six real-life
logs show an improvement in terms of accuracy over a plain LSTM-based
baseline.

Keywords: Predictive Process Monitoring · Recurrent Neural
Networks · Linear Temporal Logic · A-priori Knowledge

1 Introduction

Predictive business process monitoring [19] is a research topic aiming at develop-
ing techniques that use event logs extracted from information systems in order to
predict how ongoing (uncompleted) process executions (a.k.a. cases) will unfold
up to their completion. A recent stream of work [12,13,23,28] has been focused
on the provision of techniques able to predict the future path (continuation) of
an ongoing case, a type of predictions that can be used to provide valuable input
for planning and resource allocation. These predictions are generally based on:
(i) the sequence of activities already executed in the case; (ii) the timestamp
indicating when each activity in the case was executed; and (iii) the values of
data attributes after each execution of an activity in the case.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 252–268, 2017.
DOI: 10.1007/978-3-319-65000-5 15

An Eye into the Future: Leveraging A-priori Knowledge 253

What motivates this paper is the surmise that past event logs, or more in
general knowledge about the past, is not the only important source of knowl-
edge that can be leveraged to make predictions. In many real life situations,
cases exist in which, together with past execution data, some case-specific addi-
tional knowledge (a-priori knowledge) about the future is available and can be
leveraged for improving the predictive power of a predictive process monitoring
technique. Indeed, this additional a-priori knowledge is what characterizes the
future context of execution of the process that will affect the development of the
currently running cases. Think for instance to the temporary unavailability of a
surgery room which may delay or even rule out the possibility of executing cer-
tain activities in a patient treatment process. While it is impractical to retrain
the predictive algorithms to take into consideration this additional knowledge
every time it becomes available, it is also reasonable to assume that considering
it in some way would improve the accuracy of the predictions on an ongoing
case.

In light of this motivation, in Sect. 5, we provide two techniques based on
Recurrent Neural Networks with Long Short-Term Memory (LSTM) cells [16]
able to leverage a-priori knowledge about process executions for predicting the
sequence of future activities of an ongoing case. The proposed algorithms are
opportunely tailored in a way that the a-priori knowledge is not taken into
account for training the predictor. In this way, the a-priori knowledge can be
changed on-the-fly at prediction time without the need to retrain the predictive
algorithms. In particular, we introduce:

– a Nocycle technique which is able to leverage knowledge about the struc-
ture of the process execution traces, and in particular about the presence of
repetitions of sequences (i.e., cycles), to improve a plain LSTM-based baseline
so that it does not fall into a local minimum, a phenomenon already hinted
in [28] but not yet solved;

– an A-priori technique which takes into account a-priori knowledge together
with the knowledge that comes from historical data.

In Sect. 6, we present a wide experimentation carried out using six real-life logs
and aimed at investigating whether the proposed algorithms increase the accu-
racy of the predictions. The outcome of our experiments is that the application
of these techniques provides an improvement up to 50% in terms of prediction
accuracy over the baseline. In addition to the core part (Sects. 5 and 6), the paper
contains an introduction to some background notions (Sect. 2), a detailed illus-
tration of the research problem (Sect. 4), related work (Sect. 3) and concluding
remarks (Sect. 7).

2 Background

In this section, we report the background concepts useful for understanding the
remainder of the paper.

254 C. Di Francescomarino et al.

x〈1〉 x〈2〉 x〈3〉 . . . x〈K〉

h〈1〉 h〈2〉 h〈3〉
. . .

h〈K〉

y〈1〉 y〈2〉 y〈3〉 . . . y〈K〉

Fig. 1. Recurrent Neural Network

2.1 Event Logs and Traces

An event log is a set of traces, each representing the execution of a process (case
instance). Each trace consists of a sequence of activities, each referring to the
execution of an activity in a finite activity set A.

Definition 1 (Trace, Event Log). A trace σ = 〈a1, a2, ...an〉 ∈ A∗ over A is
a sequence of activities. An event log L ∈ B(A) is a multi-set of traces over the
activity set A.

A prefix of length k of a trace σ = 〈a1, a2, ...an〉 ∈ A∗, is a trace pk(σ) =
〈a1, a2, ...ak〉 ∈ A∗ where k ≤ n; the suffix of the prefix of length k is defined
as the remaining part of σ, that is, sk(σ) = 〈ak + 1, ak + 2, ...an〉 ∈ A∗. For
example, the prefix of length 3 of 〈a, c, r, f, s, p〉 is 〈a, c, r〉, while the suffix of
this prefix is 〈f, s, p〉.

A cycle in a trace σ ∈ A∗ is a sequence of activities repeated
at least twice in σ (with adjacent repetitions). For example, trace
〈a, b, a, b, a, b, c, d, e, f, g, e, f, g, c, d〉 contains two cycles: 〈a, b〉 (3 repetitions) and
〈e, f, g〉 (2 repetitions).

2.2 RNNs and LSTM

Artificial Neural Networks (or just Neural Networks, NNs) are a well known
class of discriminative models. In classification tasks, they are used to model the
probability of a given input to belong to a certain class, given some features of
the input. We can describe them in mathematical terms as follows:

p(y|x) = fNN (x; θ). (1)

In (1), x is the feature vector that represents the input, y is a random variable
representing the output class labels, fNN is the function modeled by the neural
network, and θ is the set of parameters of such a function to be learnt during
the training phase.

Recurrent Neural Networks (RNNs, see Fig. 1) are a subclass of Neural Net-
works. We illustrate them with the help of an example in which the classification
task concerns in assigning the correct part of speech – noun, verb, adjective, etc. –
to words. If we take the word “file” in isolation, it can be both a noun and a
verb. Nonetheless, this ambiguity disappears when we consider it in an actual

An Eye into the Future: Leveraging A-priori Knowledge 255

sentence. Therefore, in the sentence “I have to file a complain” it acts as a verb,
while in the sentence “I need you to share that file with me” it acts as a noun.

This simple example shows that for some tasks the classification at a certain
time-step t depends not only on the current input (i.e., “file”) but also on the
input (i.e., the part of the sequence) seen so far. The tasks that share this
characteristic are said to be recurrent. Natural Language tasks are a typical
example of recurrent phenomena.

In mathematical terms, let us write x〈1〉, ...,x〈K〉 to indicate an input
sequence of K time-steps, represented by the superscript between angle brackets.
In this way, at each time-step t, the conditional probability of a given input to
belong to a certain class is described by

p(y〈y〉|x〈t〉, ...,x〈1〉) = fRNN (x〈1〉, ...,x〈t〉; θ). (2)

RNNs have been proven to be extremely appropriate for modeling sequential
data (see [15]). As shown in Fig. 1, they typically leverage recurrent functions
in their hidden layers, which are, in turn, composed of hidden states. Let h〈t〉,
with

h〈t〉 = h(x〈t〉,h〈t−1〉; θh); (3)

be the activation of the hidden state at the t-th time-step. h is a so-called cell
function, parameterized over a set of parameters θh to be learnt during the
training, and accepting as inputs the current input x〈t〉 and its value at the
previous time-step h〈t−1〉. The activation of the hidden state is then mapped
(using a linear map) into a continuous vector of the same size as the number
of output classes. All the elements in such a vector are greater than zero and
their sum is equal to one. Therefore, this vector can be seen as a probability
distribution over the output space. All these constraints can be easily achieved
specifying the generic Eq. (2) by means of a softmax function:

p(y〈y〉|x〈t〉, ...,x〈1〉) = softmax(Wh〈t〉 + b); (4)

where the weight matrix W and the bias vector b are parameters to be learnt
during the training phase.

Among the different cell functions h (see Eq. (3)) explored in literature, Long
Short-Term Memory (LSTM) [16] shows a significant ability to maintain the
memory of its input across long time spans. This property makes them extremely
suitable to be used in RNNs that have to deal with input sequences with complex
long-term dependencies such as the ones we consider in this paper.

2.3 RNNs with LSTM for Predictive Process Monitoring

In order to provide predictions on the suffix of a given prefix (of a running
case), state-of-the-art approaches for predictive process monitoring use RNNs
with LSTM cells. The most recent and performing approach in this field [28]
relies on an encoding of activity sequences that combines features related to the
activities in the sequence (the so called one-hot encoding) and features related
to the time characterizing these activities. Given the set A = {a1A , . . . amA

}
of all possible activities, an ordering function idx : A → {1, . . . , |A|} ⊆ N is

256 C. Di Francescomarino et al.

defined on it, such that aiA <> ajA if and only if iA <> jA, i.e., two activities
have the same A-index if and only if they are the same activity. For instance,
if A = {a, b, c}, we have idx : A → {1, 2, 3} and idx(a) = 1, idx(b) = 2 and
idx(c) = 3. Each activity ai ∈ σ is encoded as a vector (Ai) of length |A| + 3
such that the first |A| features are all set to 0, except the one occurring at the
index of the current activity idx(ai), which is set to 1. The last three features
of the vector pertain to time: the first one relates to the time increase with
respect to the previous activity, the second reports the time since midnight (to
distinguish between working and night time), and the last one refers to the time
since the beginning of the week.

A trace is encoded by composing the vectors obtained from all activities in the
trace into a matrix. During the training phase, the encoded traces are used for
building the LSTM model. During the testing phase, a (one-hot encoded) prefix
of a running case is used to query the learned model, which returns the predicted
suffix by running an inference algorithm. Algorithm 1 reports the inference algo-
rithm introduced in [28] and based on RNN with LSTM cells for predicting the
suffix of a given prefix pk(σ) of length k. The algorithm takes as input the prefix
pk(σ), the LSTM model lstm and a maximum number of iterations max and
returns as output the complete trace (the prefix and the predicted suffix). First,
the prefix pk(σ) is encoded by using the one-hot encoding (line 5). The resulting
matrix is then used for feeding the LSTM model and getting the probability
distribution over different possible symbols that can occur in the next position
of the trace (line 6). The symbol with the highest probability is hence selected
from the ranked probabilities (line 7). Then, a new trace is obtained by concate-
nating the current prefix with the new predicted symbol (line 8). In order to
predict the second activity, the one-hot encoding of the new prefix is computed
and used to recursively feed the network. The procedure is iterated until the
predicted symbol is the end symbol or a maximum number of iterations max is
reached (line 10).

Algorithm 1. Inference algorithm for predicting the suffix of pk(σ)
1: function PredictSuffix(pk(σ), lstm, max)
2: h = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol probs = predictNextSymbols(lstm, traceencoded)
7: next symbol = getSymbol(next symbol prob, traceencoded)
8: trace = trace · next symbol
9: h = h + 1

10: while (next symbol <> end symbol) and (h < max)
11: return trace
12: end function

An Eye into the Future: Leveraging A-priori Knowledge 257

2.4 Linear Temporal Logic

In our approach, the a-priori knowledge that describes how a running case will
develop in the future is formulated in terms of Linear Temporal Logic (LTL)
rules [22]. LTL is a modal logic with modalities devoted to describe time aspects.
Classically, LTL is defined for infinite traces. However, to describe the charac-
teristics of a business process, we use a variant of LTL defined for finite traces
(since business processes are supposed to complete eventually). We assume that
activities occurring during the process execution fall into the set of atomic propo-
sitions. LTL rules are constructed from these atoms by applying the temporal
operators © (next), ♦ (future), � (globally), and 	 (until) in addition to the
usual boolean connectives. Given a formula ϕ, ©ϕ means that the next time
instant exists and ϕ is true in the next time instant (strong next). ♦ϕ indicates
that ϕ is true sometimes in the future. �ϕ means that ϕ is true always in the
future. ϕ	ψ indicates that ϕ has to hold at least until ψ holds and ψ must hold
in the current or in a future time instant.

3 Related Work

The literature related to predictive business process monitoring can be roughly
classified according to the type of predictions that is provided. A first group
of works focuses on the time perspective. In [2], the authors present a set of
approaches in which annotated transition systems, containing time information
extracted from event logs, are used to: (i) check time conformance; (ii) predict
the remaining processing time of incomplete cases; (iii) recommend appropriate
activities to end users working on these cases. In [14], an approach for pre-
dicting business process performances is presented. The approach is based on
context-related execution scenarios discovered and modeled through state-aware
performance predictors. In [24], the authors use stochastic Petri nets to predict
the remaining execution time of a process execution. In [20], the authors present
a technique for predicting the delay between the expected and the actual arrival
time of cases pertaining to a transport and logistics process. In [25], queue theory
is used to predict possible delays in process executions.

Another set of works in the literature focuses on approaches that generate
predictions and recommendations to reduce risks. For example, in [6], the authors
present a technique to support process participants in making risk-informed deci-
sions with the aim of reducing the process risks. Risks are predicted by traversing
decision trees generated from logs of past process executions. In [21], the authors
make predictions about time-related process risks by identifying and leveraging
statistical indicators observable in event logs that highlight the possibility of
transgressing deadlines. In [27], an approach for Root Cause Analysis through
classification algorithms is presented.

A third group of prediction approaches predicts the outcome (e.g., the sat-
isfaction of a business objective) of a case. In [19] a framework is introduced,
which is able to predict the fulfillment (or the violation) of a boolean predicate
in a running case, by looking at: (i) the sequence of activities already performed
in the case; and (ii) the data payload of the last activity of the running case.
The framework, which provides accurate results at the expense of a high runtime

258 C. Di Francescomarino et al.

overhead, has been enhanced in [9] by introducing a clustering preprocessing step
in which cases sharing a similar activity history are clustered together. A classi-
fier for each cluster is trained with the data payload of the traces in the cluster.
In [17], the authors compare different feature encoding approaches where traces
are treated as complex symbolic sequences, that is, sequences of activities each
carrying a data payload consisting of attribute-value pairs. In [29], unstructured
information contained in text messages exchanged during process executions has
been leveraged for improving the prediction accuracy.

The problem investigated in this paper falls into a fourth and last set of
works, i.e., into the set of very recent efforts aiming at predicting the sequence of
future activities given the activities observed so far. In [23], Polato et al. propose
several techniques for predicting the remaining time and the sequence of future
activities in an ongoing case using simple regression, regression with contextual
information, and data-aware transition systems. Other approaches [12,13,28]
make use of RNNs with LSTM cells. In particular, Evermann et al. [12,13] pro-
pose an RNN with two hidden layers trained with back propagation, while Niek
et al. [28] leverage LSTM and an encoding based on activities and timestamps
(illustrated in detail in Sect. 2.3) to provide predictions on the next activities and
their timestamps. Differently from all these works, this paper investigates how
to take advantage of possibly existing a-priori knowledge for making predictions
on the sequence of future activities.

4 The Problem

Predictive business process monitoring methods use past process executions,
stored in event logs, in order to build predictive systems that work at runtime to
make predictions about the future. Among the different interesting and appealing
types of predictions about the future of an ongoing case, such as the remaining
time or the fulfilment of a predicate, we can find the prediction of the sequence
of future activities. This type of predictions can be useful in the scenario where
some planning and resource allocation are needed for the running case. For
instance, the hospital management can be highly interested in predicting the
future activities of patients to be able to best organize machines and resources
of a hospital.

Nonetheless, predicting sequences of activities is a quite complex and chal-
lenging task, as the longer the sequence is, the more difficult is to predict the most
far-away activities. While predicting the sequence of future activities entirely
from past execution data may be difficult, in real world scenarios, we often
observe that some a-priori knowledge about the future of the running process
executions exists and could hence be leveraged to support the predictive methods
and improve their accuracy. For instance, in the hospital example, new medical
guidelines may provide new knowledge on the fact that two treatments are not
useful if used together in order to cure a certain disease, or that a certain screen-
ing is required in order to perform a specific surgery, or also that if a patient is
allergic to a specific treatment she will never go to take it.

An Eye into the Future: Leveraging A-priori Knowledge 259

This a-priori knowledge can be expressed in terms of LTL rules. For instance,
in the hospital example, LTL can be used for defining the following rules:

1. treatmentA and treatmentB cannot be both used within the same course
of cure of a patient:

¬(♦treatmentA ∧ ♦treatmentB) (5)

2. screeningC is a pre-requisite to perform surgeryD:

(¬surgeryD 	 screeningC) ∨ �(¬surgeryD) (6)

3. treatmentB cannot be performed on this course of cure (e.g., because the
patient is allergic to it):

¬♦treatmentB (7)

In this paper, we aim at understanding whether and how a-priori knowl-
edge can be leveraged in order to improve the accuracy of the prediction of the
(sequence of the) next activity(ies) of an ongoing case in a reasonable amount
of time. For instance, in the example of the hospital, being aware of the fact
that treatmentA and treatmentB can never be executed together could help
in ruling out a prediction of treatmentB whenever we have already observed
treatmentA and vice versa.

Formally, given a prefix pk(σ) = 〈a1, ..., ak〉 of length k of a trace σ =
〈a1, ..., an〉 and some knowledge K(σ) on σ, the problem we want to face is
to identify the function f such that f(pk(σ),K(σ)) = sk(σ).

5 The Solution

Predicting the suffix of a given prefix is a problem that is tackled by state-of-the-
art approaches that make use of LSTM-based RNNs [12,13,28]. We hence start
from these approaches and build on top of them to take into account a-priori
knowledge.

Before presenting our approach, we need to observe that a basic solution
that can be used to leverage a-priori knowledge for making predictions is the
one provided by the inclusion of the a-priori knowledge in the data used for
training the prediction model. However, this solution would raise a main practical
problem: since the a-priori knowledge can in principle change from case to case,
this would require to retrain the model for each prediction, thus hampering the
scalability of the predictive system. A smarter approach is hence required for
taking into account a-priori knowledge when predicting the future path of an
ongoing case.

In the next sections, we first introduce an enhancement, called Nocycle,
of state-of-the-art approaches for overcoming the issues encountered with traces
characterized by a high number of cycles (Sect. 5.1). We then describe A-priori,
an algorithm that allows us to take into account a-priori knowledge expressed
in terms of LTL rules (Sect. 5.2). In both cases, we use the RNN architecture
with LSTM cells and training system proposed in [28], while we extend and
enhance the prediction phase. The A-priori algorithm for accounting for a-
priori knowledge and the enhancement for dealing with cycles are then combined
into the A-priori∗ technique.

260 C. Di Francescomarino et al.

5.1 Learning from Trace Structures

By experimenting the LSTM approach on different event logs, we found that
event logs with traces containing a high number of repetitions of cycles perform
worse than others, as also observed in [28]. This is mainly due to the fact that
frequent repetitions of a cycle cause an increase in the probability distribution
of the back-loop, i.e., the connection between the last and the first element of
the cycle. To overcome this problem, we propose to equip Algorithm 1 with an
additional function in charge of weakening such a back-loop probability. This
function is composed of two parts: in the first part, the current trace is analyzed
in order to discover possible cycles; in the second part, the cycle discovery is
used for preventing the prediction of further repetitions of the cycle. More in
detail:

1. For each prefix pk(σ) = 〈a1a2 . . . ak〉 of size k, the algorithm checks if there
are j (j >= 2) consecutive occurrences of a cycle c = 〈ac1 . . . acs〉, such that
the last activity of the prefix corresponds to the last activity of the cycle
idx(ak) = idx(acs);

2. j is then used to correct the distribution over different possible activities that
can occur in the next position by decreasing the probability of the first activity
of the cycle ac1 to occur again. To decrease this probability, the algorithm
uses a coefficient, function of the number of cycle repetitions j, as a weight
to adjust the probability distribution. Examples of formulas that can be used
for this purpose are j2 or ej .

Algorithm 2 reports the pseudo-code of the Nocycle technique. Similarly to
Algorithm 1 presented in Sect. 2.3, it takes as input a prefix pk(σ), the trained
LSTM model lstm, and the maximum number max of iterations allowed. Then,
it returns as output the complete trace (the prefix and the predicted suffix). In
particular, the algorithm adds to the state-of-the-art Algorithm 1 the weak-
enProb procedure described above to find cycles in the trace and decrease the
probability of the first activity of the cycle to occur again at the end of a rep-
etition. The resulting vector of weakened probabilities is hence used for getting
the next symbol as in the basic procedure.

5.2 Learning from A-priori Knowledge

The overall idea for leveraging a-priori knowledge for predictive monitoring is
simple: (i) we use the LSTM approach to get the possible predictions for an
ongoing trace; (ii) we rank them according to the likelihood of the prediction;
and (iii) we select the first prediction that is compliant with the LTL rules
describing the a-priori knowledge. However, although RNN inference algorithms
are not computationally expensive per se, building all the possible predicted
suffixes could be costly and inefficient.

Therefore, the alternative investigated in this paper leverages, on top of state-
of-the-art LSTM techniques, the approach classically used in statistical sequence-
to-sequence predictions in translation tasks [30], i.e., the beamSearch algorithm.
The beamSearch is a heuristic algorithm based on graphs that explores the search
space by expanding only the most promising branches. Then, in the testing

An Eye into the Future: Leveraging A-priori Knowledge 261

Algorithm 2. Nocycle extension for predicting the suffix of pk(σ)
1: function PredictSuffixNoCycle(pk(σ), lstm, max)
2: h = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol prob = predictNextSymbols(lstm, traceencoded)
7: weak next symbol prob = weakenProb (trace, next symbol prob)
8: next symbol = getSymbol(weak next symbol prob, traceencoded)
9: trace = trace · next symbol

10: h = h + 1
11: while (next symbol <> end symbol) and (h < max)
12: return trace
13: end function

phase, to predict a certain suffix, we use a new inference algorithm (A-priori),
which explores the probability space using beamSearch to cut the branches of
the LSTM model which bring to predictions that are not compliant with the
a-priori knowledge.

Algorithm 3 reports the pseudo-code describing the A-priori algorithm. It
takes as input the prefix pk(σ), the available a-priori knowledge K(σ), and the
trained LSTM model lstm, together with three parameters: (i) bSize, which is
the maximum number of next symbols predicted by the LSTM model and used
to construct the possible predicted suffixes at each iteration; (ii) maxSize, which
is the maximum number of branches that can be explored by A-priori at the
same time; and (iii) max, which is the maximum number of allowed iterations.

Algorithm 3. A-priori algorithm for predicting the suffix of pk(σ)
1: function A-priori (pk(σ), K(σ), lstm, bSize, maxSize, max)
2: h = 0
3: prefixes = {pk(σ)}
4: while (h ≤ max) and (not isEmpty(prefixes)) do
5: candidates next = predictPrefNextSymbols(lstm, prefixes, bSize)
6: top candidates = topRank(candidates next, maxSize)
7: empty(prefixes)
8: for all candidate in top candidates do
9: if last symbol(candidate) <> end symbol then

10: push(candidate, prefixes)
11: else
12: if check(candidate, K) then
13: return candidate
14: end if
15: end if
16: end for
17: h = h + 1
18: end while
19: end function

262 C. Di Francescomarino et al.

Intuitively, the algorithm iterates over a priority queue of prefixes, which is
initialized with the input prefix pk(σ) (line 3) and is used for regulating the
number of branches to be explored. For each prefix in prefixes, bSize possible
next activities are predicted using the model lstm and, for each prefix, bSize
new traces are obtained by concatenating the prefix with the corresponding bSize
predicted next activities (line 5). In this way, the algorithm generates |prefixes|∗
bSize traces. In order to limit the search space, the algorithm ranks the predicted
traces based on their estimated probability1 and takes only the top maxSize ones
(line 6). For each of these traces (line 8), if the last symbol predicted is not the
end symbol, the trace is added to prefixes (line 10). Otherwise, if the trace
is complete, the algorithm checks if it is compliant to the LTL rules in K(σ)
(line 12). In this case, the trace is returned (line 13). The algorithm is then
iterated until the queue of prefixes is empty or the maximum number of iterations
max is reached (line 4).

5.3 Implementation

Algorithms 2 and 3 (and their combination) have been implemented in Python
2.6. In particular, the Keras [5] and TensorFlow [3] libraries have been used for
neural networks. The LTL checker for checking the compliance of traces with
respect to LTL rules is instead based on automata and written in Java. The
Py4J library has been used as a gateway to access Java code from Python.
The full source code is available on github at https://github.com/yesanton/
ProcessSequencePrediction.

6 Evaluation

In this section, we provide an evaluation of our predictive business process
monitoring techniques based on a-priori knowledge. In detail, we check: (i)
whether the Nocycle algorithm leveraging knowledge about the structure of
the process execution traces (and in particular about the presence of cycles)
actually improves the accuracy of the predictions; and (ii) whether the combina-
tion of Nocycle with A-priori, the A-priori∗ algorithm, is able to leverage
a-priori knowledge to improve the performance of the LSTM model.

6.1 Event Logs

For the evaluation of the techniques, we used six real-life event logs. Four of them
were provided for the BPI Challenge (BPIC) 2011 [1], 2012 [10], 2013 [26], and
2017 [11], respectively. We also used two additional event logs, one pertaining
to an environmental permit application process (“WABO”), used in the context
of the CoSeLoG project [4] (EnvLog for short in this paper), and another con-
taining cases from a ticketing management process of the help desk of an Italian
1 Note that, in order to prevent overflow in the computation, the estimated probability

for sequences of activities is computed as the sum of the logarithm of the probabilities
of the next activities rather than as the product of the probabilities of the next
activities.

https://github.com/yesanton/ProcessSequencePrediction
https://github.com/yesanton/ProcessSequencePrediction

An Eye into the Future: Leveraging A-priori Knowledge 263

Table 1. The event logs

Log #Tr. #Act. avg-TL avg-CR Spars.

EnvLog 937 381 41.562 0.14 0.3191
HelpDesk 3804 9 3.6 0.22 0.0024
BPIC11 911 424 54.168 5.05 0.4654
BPIC12 9 658 6 7.5 1.35 0.0006
BPIC13 7 554 13 8.675 1.45 0.0017
BPIC17 31 508 26 17.826 0.46 0.0008

software company (Helpdesk2 for short). Note that all the logs have been filtered.
In particular, BPIC12, BPIC13, EnvLog and HelpDesk are the ones used in [28],
in order to ease the comparison of our techniques with the state-of-the-art. Sim-
ilarly, BPIC11 and BPIC17 have been filtered by removing outlier traces with
respect to the average trace length.

The characteristics of these logs are summarized in Table 1. For each log, we
report the total number of traces, the number of activity labels (i.e., the size
of the activity set of the log), the average trace length (avg-TL), the average
number of repetitions of all cycles in the log (avg-CR), and the ratio between
the number of activity labels and the number of traces, indicating the sparsity
of the activity labels over the log.

6.2 Experimental Procedure

In order to evaluate the techniques presented in this paper, we adopted the
following procedure. For each event log:

1. We divided the event log in two parts: a training set composed of 67%
of traces of the whole event log used for building the LSTM models and a
testing set composed of the remaining 33% used for testing the predictions
of suffixes.

2. We derived the a-priori knowledge on the traces of the testing set as fol-
lows. We randomly selected 10% of traces of the testing set. We used the
DeclareMiner ProM plug-in [18] to discover LTL rules satisfied in all these
traces. Then, we defined 2 conjunctive rules describing a strong a-priori
knowledge and a weak a-priori knowledge, which respectively strongly and
weakly constrain the traces. In particular, we discovered rules of type ♦A
(which imposes the occurrence of A) for defining the weak a-priori knowledge
and rules of type �(A → ♦B)∧♦A (which imposes the occurrence of both A
and B and that every occurrence of A is followed by an occurrence of B) for
defining the strong a-priori knowledge. For the weak a-priori knowledge, we
randomly selected from the discovered rules one, two or three3 rules of type
♦A and we composed them into a single conjunctive formula. Similarly, for
the strong a-priori knowledge, we randomly selected one, two or three rules
from the discovered rules of type �(A → ♦B) ∧ ♦A and we composed them

2 https://data.mendeley.com/datasets/39bp3vv62t/1.
3 The number of rules selected has been determined empirically to allow them to be

satisfied in around 50% of the traces of the testing set.

https://data.mendeley.com/datasets/39bp3vv62t/1

264 C. Di Francescomarino et al.

into a single conjunctive formula. We followed this systematic procedure for
defining the a-priori knowledge, to limit the bias of the selected rules while
guaranteeing that they are satisfied in a reasonable number of traces in the
testing set. The schematic form of the rules used in the evaluation is reported
in Table 2, where - for the sake of readability - we replace the original activity
names with single characters. Starting from strong and weak a-priori knowl-
edge, we built a strong a-priori testing set and a weak a-priori testing set,
respectively composed of the subsets of traces of the testing set satisfying
strong and weak a-priori knowledge.

3. From each trace in the testing sets, we extracted 4 prefixes of lengths cor-
responding to the 4 integers in the interval [mid − 2,mid + 2], where mid
is half of the median of the trace lengths. Then, we compared Nocycle
and A-priori∗ against a baseline provided by the technique presented in
[28], when predicting the suffixes of these prefixes.4 For each technique, we
computed: (i) the length of the predicted suffixes; and (ii) their similarity
with the prediction ground truth measured using the Damerau-Levenshtein
similarity [7].

Table 2. The a-priori knowledge

Log A-priori Strong A-priori Weak

EnvLog �(a → ♦b) ∧ ♦a ∧ �(c → ♦d) ∧ ♦c ♦a ∧ ♦c
HelpDesk �(e → ♦f) ∧ ♦e ♦e
BPIC11 �(g → ♦h) ∧ ♦g ∧ �(i → ♦l) ∧ ♦i ∧ �(m → ♦n) ∧ ♦m ♦i ∧ ♦h ∧ ♦o
BPIC12 �(p → ♦q) ∧ ♦p ♦p
BPIC13 �(r → ♦s) ∧ ♦r ∧ �(t → ♦r) ∧ ♦t ♦s ∧ ♦r
BPIC17 �(u → ♦v) ∧ ♦u ♦u

The experiments have been performed both on a GPU Tesla K40c and on a
conventional laptop CPU on Code i5. As for the LSTM training settings we
used the ones identified by Tax et al. [28] as the most performing ones for facing
the problem of predicting sequences of future activities.5 The time required for
training the LSTM models is about 2 min per epoch using the GPU and 15 min
using the CPU. The inference time for Nocycle is about 0.1–2 seconds per
trace (depending on the log), whereas the inference time for A-priori∗ is 4
times higher on average.

6.3 Results and Discussion

Tables 3 and 4 report, for each event log, the performances of the two techniques
we propose on the strong a-priori and weak a-priori testing sets. The results for

4 We set bSize to 3 and, for the coefficient in charge of weakening the probabilities of
activities in a cycle, we used the exponential formula (ej , where j is the number of
cycle repetitions).

5 We used an architecture characterized by two LSTM layers. The algorithm used is
the Adam learning algorithm with categorical cross entropy loss and the dropout
coefficient has been set to 0.2.

An Eye into the Future: Leveraging A-priori Knowledge 265

both testing sets are compared with the baseline presented in [28]. For each log,
we provide the average Damerau-Levenshtein similarity between the predicted
sequence (in square brackets, its average length) and the ground truth (in column
5 its average length). The best average Damerau-Levenshtein similarity for each
log is emphasized in gray. Column 6 reports the number of traces tested while
column 7 specifies the range of the prefix lengths used for the specific event log.

Table 3. Prediction results on the strong a-priori testing set

Table 4. Prediction results on the weak a-priori testing set

The tables show that the proposed algorithms outperform the baseline in
most of the logs. The presence of cycles in the logs has a strong impact on the
performance of the Nocycle algorithm. In particular, if the logs have an average
number of cycle repetitions smaller than 0.5, as in the case of EnvLog, HelpDesk
and BPIC17, then Nocycle does not show any improvement over the baseline.
Therefore, we can conclude that Nocycle correctly deals with the presence of
cycles in the logs to improve the predictions.

A-priori∗ performs worse on logs EnvLog and BPIC11. The reason for this
can be explained by the fact that, in these two logs, activity labels are sparse
with an unusually high number of labels with respect to the number of traces.
Indeed, Table 1 shows that the ratio between the number of activity labels and
the number of traces (column 6) for these logs is higher with respect to the other
logs. We can also notice that the availability of highly constraining rules in the
a-priori knowledge improves the performance of A-priori∗. Therefore, we can
conclude that A-priori∗ is able to correctly leverage a-priori knowledge in a way
that it performs better when the activity set of the log is not particularly large
(and the log does not contain sparse behaviors) and when the a-priori knowledge
constrains more the process behavior.

7 Conclusions

In this paper, we have presented two techniques based on RNNs with LSTM cells
able to leverage knowledge about the structure of the process execution traces

266 C. Di Francescomarino et al.

as well as a-priori knowledge about their future development for predicting the
sequence of future activities of an ongoing case. In particular, we show that, by
opportunely tailoring LSTM-based algorithms, it is possible to take into account
a-priori knowledge at prediction time without the need to retrain the predictive
algorithms in case new knowledge becomes available. The results of our experi-
ments show that Nocycle correctly deals with the presence of cycles in the logs
and A-priori∗ is able to correctly leverage a-priori knowledge in a way that it
performs better with logs characterized by a low degree of sparsity of activity
labels and when the a-priori knowledge constrains the behavior of the process
more.

Future work will include: (i) dealing with more complex forms of a-priori
knowledge. In particular, we aim at leveraging a-priori knowledge on activities
and on their data payload, as well as dynamic knowledge that can evolve in the
future of an ongoing case; (ii) extending the proposed algorithms to leverage
a-priori knowledge also for other types of predictions; (iii) extending the experi-
mental evaluation especially focusing on the investigation of metrics for evaluat-
ing the influence on the predictions of the different degrees of freedom/strength
of the a-priori knowledge; and (iv) inserting the presented techniques in predic-
tive business process monitoring frameworks such as the ones discussed in [8,9].

Acknowledgments. This research has been partially carried out within the
Euregio IPN12 KAOS, which is funded by the “European Region Tyrol-South
Tyrol-Trentino”(EGTC) under the first call for basic research projects.

References

1. 3TU Data Center: BPI Challenge 2011 Event Log (2011). doi:10.4121/uuid:
d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015).
software available from tensorflow.org. http://tensorflow.org/

4. Buijs, J.: Environmental permit application process (“wabo”), coselog project -
municipality 4 (2014). doi:10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32

5. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-

informed decisions during business process execution. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38709-8 8

7. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3), 171–176 (1964)

8. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi,
W.: Predictive business process monitoring framework with hyperparameter opti-
mization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS,
vol. 9694, pp. 361–376. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 22

http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://tensorflow.org/
http://dx.doi.org/10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
https://github.com/fchollet/keras
http://dx.doi.org/10.1007/978-3-642-38709-8_8
http://dx.doi.org/10.1007/978-3-319-39696-5_22

An Eye into the Future: Leveraging A-priori Knowledge 267

9. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)

10. van Dongen, B.: Bpi challenge 2012 (2012). doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

11. van Dongen, B.: Bpi challenge 2017 (2017). doi:10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

12. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for pre-
dicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.)
BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). doi:10.1007/
978-3-319-58457-7 24

13. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems (2017)

14. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., Panetto, H., Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33606-5 18

15. Goodfellow, I., Bengio, Y., Courville, A.: Sequence Modeling: Recurrent and Recur-
sive Nets. In: Deep Learning, pp. 373–420. MIT Press, Cambridge (2016)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM
2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 21

18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9 18

19. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 31

20. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous
service-oriented business networks: the transport and logistics case. In: Proceed-
ings of the 2012 Annual SRII Global Conference, SRII 2012, pp. 313–322. IEEE
Computer Society, Washington, DC (2012)

21. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.:
Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.)
BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36285-9 22

22. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977)

23. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence
prediction of business process instances. CoRR abs/1602.07566 (2016)

24. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-45005-1 27

25. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-642-33606-5_18
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-642-31095-9_18
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-642-36285-9_22
http://dx.doi.org/10.1007/978-3-642-36285-9_22
http://dx.doi.org/10.1007/978-3-642-45005-1_27

268 C. Di Francescomarino et al.

26. Steeman, W.: Bpi challenge 2013 (2013). doi:10.4121/uuid:
a7ce5c55-03a7-4583-b855-98b86e1a2b07

27. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root
cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM
2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36285-9 18

28. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitor-
ing with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 477–492. Springer, Cham (2017). doi:10.1007/978-3-319-59536-8 30

29. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business
process monitoring with structured and unstructured data. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham
(2016). doi:10.1007/978-3-319-45348-4 23

30. Tillmann, C., Ney, H.: Word reordering and a dynamic programming beam search
algorithm for statistical machine translation. Comput. Linguist. 29(1), 97–133
(2003)

http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.1007/978-3-642-36285-9_18
http://dx.doi.org/10.1007/978-3-642-36285-9_18
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-45348-4_23

	An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring
	1 Introduction
	2 Background
	2.1 Event Logs and Traces
	2.2 RNNs and LSTM
	2.3 RNNs with LSTM for Predictive Process Monitoring
	2.4 Linear Temporal Logic

	3 Related Work
	4 The Problem
	5 The Solution
	5.1 Learning from Trace Structures
	5.2 Learning from A-priori Knowledge
	5.3 Implementation

	6 Evaluation
	6.1 Event Logs
	6.2 Experimental Procedure
	6.3 Results and Discussion

	7 Conclusions
	References

