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Abstract. The monitoring of project-oriented business processes is dif-
ficult because their state is fragmented and represented by the progress
of different documents and artifacts being worked on. This observation
holds in particular for software development projects in which various
developers work on different parts of the software concurrently. Prior con-
tributions in this area have proposed a plethora of techniques to analyze
and visualize the current state of the software artifact as a product. It is
surprising that these techniques are missing to provide insights into what
types of work are conducted at different stages of the project and how
they are dependent upon another. In this paper, we address this research
gap and present a technique for mining the software process including
dependencies between artifacts. Our evaluation of various open-source
projects demonstrates the applicability of our technique.

Keywords: Artifact co-evolution · Work history dependencies ·
Project-oriented business processes · Software project mining

1 Introduction

Project-oriented business processes play an important role in various industries
like engineering, health care or software development [2]. Such processes are char-
acterized by the fact that work towards a predefined outcome involves complex
tasks executed by different parties. Typically, these processes are not supported
by a process engine, but their status is fragmented over different documents
and artifacts. This is especially the case for software development processes:
the expected outcome is the release of a new software version, but the different
project members collaborate with tools like version control systems that are only
partially aware of the work process.
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A key challenge for project-oriented business processes like software develop-
ment is gaining transparency of the overall project status and work history. Lit-
erature has recognized that analyzing the evolution of business process artifacts
in projects can help obtaining important clues about the project performance in
terms of time [5], cost [22] and quality [13]. This is addressed by functionality
of version control systems (VCS) to track versions and changes of informational
artifacts like source code and configuration files. While prior research has pre-
sented various perspectives for analyzing software artifacts, e.g. [3,14,19,23],
there is a notable gap on the discovery of dependencies in the work history. For
these reasons, project managers often lack insights into side effects of changes in
large software processes.

In this paper, we address this research gap by building on partial solutions
from the separate fields of mining software repositories and process mining. More
specifically, we develop a technique that uncovers non-hierarchical work depen-
dencies which we call hidden co-evolution. This technique extracts the labeled
work history from VCS repositories and identifies dependencies beyond sim-
ple hierarchical containment. In this way, we help the project manager to spot
dependencies in the co-evolution of work histories of different information arti-
facts. Our technique has been implemented and evaluated using data from a
diverse set of open source projects.

The paper is structured as follows. Section 2 describes the research prob-
lem along with its requirements and summarizes insights from prior research.
Section 3 presents our approach in detail. Section 4 shows a prototypical imple-
mentation and evaluates its applicability both in a use case scenario and on real
world projects from GitHub. Section 5 concludes the paper.

2 Background

This paper follows the Design Science Research (DSR) paradigm [16]. In this
section, we describe the research problem in more detail and define requirements
for a solution. Against these requirements, we analyze related work.

2.1 Problem Description

In this paper, we focus on a specific class of project-oriented business processes,
namely software development processes. These processes share some common
characteristics. First, they involve various resources with different roles. In the
simplest case, we can distinguish project managers and project participants.
Project managers are responsible for managing the development process and
supervising the work of the project participants, who in turn are responsible for
specific work tasks. Second, such processes are usually subject to constraints in
terms of cost, time and quality, which is mostly associated with the performance
of each of the work tasks. Third, the project participants work on a plethora of
artifacts, which are logically organized in a hierarchical structure, with complex
interdependencies among them. Given these characteristics, it is the goal of the
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project manager to organize the software development process in such a way
that the work on different files and tasks reflects the complex interdependencies,
the constraints and the available participants. Therefore, it is important for the
manager to understand the work history of the process in order to monitor the
progress systematically.

Table 1. An excerpt of a VCS log data

Id
Project
Participant

Date Comment Diff

1 John
2017-01-31
12:16:30

Create readme file
diff –git a/README.md b/README.md
@@ -0,0 +1 @@
+# StoryMiningSoftwareRepositories

2 Mary
2017-02-01
10:13:51

Add a license

diff –git a/README b/README
@@ -1,0 +2,3 @@
+The MIT License (MIT)
+
+Copyright (c) 2015 Mary+

3 Paul
2017-02-02
16:10:22

Updated the requirements.

diff –git a/README.md b/README.md
@@ -1,4 +1,5 @@
+ # string 1, string 2, string 3

diff –git a/requirements.txt b/requirements.txt
@@ -0,0 +1 @@
+The software must solve the problems

4 Paul
2017-02-02
15:00:02

Implement new requirements

diff –git a/model.java b/model.java
@@ -1,9 +1,10 @@
+public static methodA(){int newVal=0;
@@ -21,10 +23,11 @@
+ ”1/0”,,”0/0”,

diff –git a/test.java b/test.java
@@ -0,0 +1,2 @@
+//test method A
+testMethodA()

Software tools like Version Control Systems (VCS) do not provide direct
support for monitoring work histories, but they provide a good starting point
by continuously collecting event data on successive versions of artifacts. Table 1
shows an excerpt of log data, where the columns, from left to right, indicate the
commit identifier, the project participant who committed the changes, the com-
mit date, the comment written by the project participant and the files affected
and the change performed1. In order to understand the work history and depen-
dencies based upon such data, we identify three major requirements:

R1 (Extract the work history): Discover the process of how artifacts evolve
in the project as a labeled set of steps. This requirement is difficult because
the version changes of a commit in relation to a single file do not directly
reveal which type of work has been done. Both commit messages and edit
characteristics might inform the labeling.

1 cf. unified diff format https://git-scm.com/docs/git-diff.

https://git-scm.com/docs/git-diff
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R2 (Uncover Work-Related Dependencies): Identify that certain work in
one part of the project is connected with work in another part. This require-
ment is difficult because such dependencies might not only exist between files
that reside in the same directory. For example, a change in a source code file
might have the side effect of triggering work on a configuration file. We refer
to this as co-evolution of these files.

R3 (Measure Dependencies): Determine how strong the co-evolution of dif-
ferent artifacts is. This requirement is difficult because measures of strength
of dependencies and on the distance of dependent artifacts have to be devised.

2.2 Related Work

A solution addressing these requirements can partially build upon research in
three main areas: (i) work on Mining Software Repositories (MSR); (ii) Process
Mining (PM); (iii) and software visualization.

Table 2 shows that these streams of research have mutual strengths, but no
contribution covers the full spectrum. In general, methods from MSR have a
strength in analyzing dependencies in the structure of the software artifact, but
an explicit consideration of the type of work is missing. Contributions in this
area focus on the users and the artifacts, mining co-evolution or co-change of
project parts [8,24] and network analysis of file dependency graph based on
commit distance [1,23,25]. Hidden work dependencies are mentioned as logical
dependencies [15]. Also techniques for trend analysis [20] and inter-dependencies

Table 2. Requirements addressed by literature and topics covered. Fulfills requirement
(�); Only addresses requirement (�)

Main area Papers R1 R2 R3 Description

Zaidman et al. [24] � � � Only two labels for processes

Zimmermann and Nagappan [25] � � Only functional dependencies

Abate et al. [1] � � Only functional dependencies

D’Ambros et al. [8] � �
MSR Oliva et al. [15] � �

Weicheng et al. [23] � �
Ruohonen et al. [20] � �
Lindberg et al. [13] � Activity variations

Kindler et al. [12] �
Goncalves et al. [9] �

PM Poncin et al. [17] �
Beheshti et at. [4] � �
Mittal and Sureka [14] � Only bug resolution process

Bala et al. [2] � � Unlabelled Gantt chart

Voinea and Telea. [21] � � Unlabelled processes

Visualization Ripley et al. [18] � � Unlabelled processes

Greene and Fischer [10] �
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between developers [13] are proposed. However, none of these works considers
the type of work being done in the process.

In the area of PM, research gives more emphasis to the different tasks of
the process. Some works focus on applying process mining for software reposi-
tories [2,14,17]. In this context, approaches have been defined that use various
queries to extract artifact evolution and resources [4,5]. There is research on
identifying the tasks of the process by elicitation from unstructured data of user
comments [9]. There are also process mining applications that focus on repeti-
tive steps in software engineering, but not on singular project-oriented processes,
such as [12]. All these works only consider the dependencies between work tasks
to a limited extend.

There is also work in the area of software visualization. Visualization tools
have been proposed in order to allow project managers to have a detailed
overview of the software artifact being developed. These tools help to visually
inspect artifacts similarities on different levels of granularity [21], observe arti-
facts evolution or project members contribution [10,18]. In general, they can be
characterized as artifact-centric, and largely agnostic to the type of work being
done.

In the following, we develop a technique that addresses the three requirements
and informs prior research on how to extract work histories and to identify the
co-evolution of certain parts of a project-oriented software process.

3 Conceptual Approach

We propose a technique to extract and represent the work history and the depen-
dencies among artifacts of a project-oriented business process. The technique
takes as input a VCS log and produces analysis data that describe the evolution
of the artifacts, along with metrics about their distance and their similarity in
terms of work. The process is depicted in Fig. 1 and consists of three successive
steps towards extracting hidden work dependencies from VCS event data. The
method works under three main assumptions. First, we assume a meaningful tree
structure, i.e. the project participants organize the files in a representative hierar-
chy (e.g., spatially separating documentation from testing into different folders).
Second, project participants perform regular commits in the VCS. Third, project
participants write descriptive comments that allow other members to understand
the changes.

The first step of the technique is the preprocessing of the VCS log received
as input. The main goal of this phase is to generate a set of events and store
them into a database. Second, we obtain different views on the stored events.
In particular, we are interested in observing (i) all the commits that affected
the files over time; (ii) the amount of change brought by the commits to the
files; and (iii) the users who issued such commits. The third phase is responsible
for considering the different perspectives defined by the project manager and
through the generated views extract the necessary knowledge. In the following,
we detail the formal concepts and the algorithm of our technique.
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Fig. 1. Approach for generating analysis data from VCS logs

3.1 Preliminaries

As the objective of our technique is to uncover hidden work dependencies, we
define the fundamental concepts required to capture them. Work is reflected
by artifacts, e.g., word documents, spreadsheets, code, etc. Artifacts are leaves
in the file tree hierarchy (with directories being special type of non-leaf files).
Artifacts evolve over time, while project participants contribute their changes.
Each change is an event that happens to an artifact in a single point in time.
Events can be abstracted into aggregated events that allow a coarser grained view
on the history. The history of the changes of an artifact over a time interval at
a given level of abstraction is referred to as artifact evolution. Similar artifact
co-evolution establishes a dependency between two artifacts.

A software product is subdivided into files and directories. In this work,
we consider directories as special type of files which are parents of other files.
Formally, let F be the universe of files in a software development project. Files
are organized in a file tree. Therefore, each file f ∈ F has one parent file. The
only file without a parent file is the root file. We capture this information in the
parent relation Parent : F × F . For example, let fp ∈ F be the parent of file
fc ∈ F , then (fp, fc) ∈ Parent. An artifact is a file that is not a parent file, i.e.
a file fa is an artifact if ∀f∈F (fa, f) /∈ Parent.

When project participants do a certain amount of work and want to save
their current progress, they commit the changes to the VCS. We define changes
on artifacts as the events of interest on the lowest granularity.

Definition 1 (Event). Let E be the set of events. An event e ∈ E is a five-
tuple (f, ac, ts, k, u), where

– f ∈ F is the affected artifact of the event.
– ac ∈ AC = N is the amount of change done in the artifact.
– ts ∈ TS = N represents a unix time stamp marking the time of the event

occurrence.
– k ∈ Σ∗ is a comment in natural language text.
– u ∈ U is the project participant responsible for the change.

For event e = (f, ac, ts, k, u) we overload f , ac, ts, k and u to be used as
accessor functions. For example, f is the function f : E → F mapping an event
to its affected artifact.
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In some situations, it can be interesting to have a higher level overview of
the changes done to a particular artifact. In this case, an aggregation of events
related to this artifact in an interval of time can be performed. The time window
for the aggregation, henceforth denoted as twagg, must be defined, i.e. the size
of the time interval. For instance, a time window for aggregation can be a day.
Thus, all events occurring for an artifact in the same day will be aggregated. An
aggregated event is defined as follows:

Definition 2 (AggregatedEvent). An Aggregated Event for twagg (AEtwagg
)

is a five-tuple (f, aac, ats, ak, au), where

– f ∈ F is the affected artifact in the set of events being aggregated.
– aac ∈ AAC = N is the aggregate amount of change done in the artifact for

twagg. It is calculated by summing the amount of changes done in each of the
time aggregated.

– ats ∈ ATS = N represents an aggregate time of the unix time stamp of the
events being aggregated.

– ak ∈ Σ∗ is the concatenation of the comments presented in the events being
aggregated.

– au ⊆ U are the project participants responsible for the changes in twagg being
aggregated.

The set of aggregated events for a particular artifact defines how this artifact
evolves over time. Considering an interval of analysis, henceforth denoted as ia,
we define artifact evolution as follows.

Definition 3 (Artifact Evolution). Artifact evolution is the process describ-
ing how the file f changed over an interval of time ia, i.e., a set of labeled
tuples Aevo(f) = {(t, a, l)|e ∈ AEia, f = f(e), t = ats(e), a = aac, l = ak(e)}
chronologically ordered.

Note that artifact evolution represents the changes that happened to a file
over time. Thus, we can build the time series of a file f as the vectors of changes
Xf = (a1, ..., an) in the time window twagg = [t1, tn], with ai being the sum of
the changes of f in of the aggregated intervals ti of the time window twagg.

We measure the dependency between two files fa and fb in terms of their
degree of co-evolution as follows.

Definition 4 (Degree of Co-Evolution). Given two files fa and fb, the
degree of co-evolution χ : F ×F → [0, 1] is a similarity function of the respective
time series.

In this paper, we fix χ(fa, fb) = |σ(Xfa
,Xfb

)|, where σ is the correlation func-
tion of the two vectors Xfa

and Xfb
.

The way files are kept in the directory structure establishes an inherent
relationship among files being stored close to each other in the hierarchy. For
instance, files serving the same purpose are stored close to each other in the
file system. Hidden work dependencies are expected to happen between arti-
facts that are distant in the file structure. We measure this distance as the
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length of the shortest route connecting two files in the file tree. We adapt the
notion of path from [11] to our file tree. Given a file f , the path to the root
node can be obtained by navigating the Parent relationship up to the root
file. The path p from fa to the root fr is the set of parent files encountered
along such route. i.e. p(f1, fr) = {(f1, ..., fk, fk+1, ..., fr)} such that for any k,
(fk+1, fk) ∈ Parent. The length of the path is the cardinality |p| of the set.
The shortest path between two files fa, fb in a tree passes through the Least
Common Ancestor (LCA) [6]. This is equivalent to considering the paths from
the single files to the root node pa = p(fa, fr) and pb = p(fb, fr) minus their
intersection Ipa,pb

= {p(fa, fr) ∩ p(fb, fr)}. Thus, we define the file distance as
the length of the shortest path between two files fa and fb as follows.

Definition 5 (File Distance). The distance d : F × F → N between two files
belonging to the same directory structure is defined as the number of nodes in
the minimum path connecting the two files in the project file tree: d(fa, fb) =
|pa| + |pb| − 2 ∗ (|Ipa,pb

|).

3.2 Hidden Dependencies Discovery Algorithm

We are focused on finding interesting hidden work dependencies. These depen-
dencies are typically reflected by changes that happen to couples of allegedly
unrelated files during their evolution. This section details the procedure that
implements the technique outlined in Fig. 1.

Algorithm 1 presents the steps required to explicate such hidden dependen-
cies. The procedure PreprocessLog(L) in line 2 takes as input a VCS log L
structured as in Table 1 and parses out work events at the granularity of line
changes. These events are then stored into an event data storage. Events parsed
from VCS logs contain rich information about multiple aspects of the work they
reflect. In order to represent all these different aspects, we devised the entity-
relationship data model. Hence, we are able to store all the information that is
possible to obtain after parsing the VCS log. Furthermore, this step allows the
user to obtain simple information, such as statistics on the project, already at an
early stage of the procedure. The output of the PreprocessLog(L) step results
in the storage of all the events E into a database.

Next, the iterative call of the procedure RetrieveView(E , query) in line 3
performs several querying the data storage containing the set E. For example, a
possible query can obtain all the comments associated to each change of a specific
file. To obtain information on the evolution of files, we query the database for
the changes of all the files within a user defined time interval twagg. In general
several time frames can be chosen, each of them producing a view V on the
data, i.e., a set of aggregated events chronologically sorted within twagg. For
example, users may be interested in artifact-views aggregated by day, by month,
etc. Multiple views are possible by defining them in the queries parameter. We
collect these views into a set V =

⋃
queries V .
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Algorithm 1. Generate project analysis data
Input : A VCS log L
Output: A set of triples {(Dist, Stories, Dco−evo)}, artifact evolutions, and

dependencies
Data : E event set, V views set, AnalysisData = {(Dist, Stories, Dco−evo)},

degree of co-evolution threshold γ, file distance threshold δ, user
defined queries queries

1 Files ← ∅, Stories ← ∅, TimeSeries ← ∅, AnalysisData ← ∅, V ← ∅,
Aevo(f) ← ∅;

/* Preprocess VCS log */

2 E ← PreprocessLog(L);
/* Retrieve views on the project */

3 for i from 1 to |queries| do V ← V ∪ RetrieveView(E, queries[i ]);
/* Analyze project data */

4 foreach view V ∈ V do
5 foreach aggreagated event ae ∈ V do
6 foreach f = f(ae), t = ats(ae), a = aac(ae), l = aak(ae) ∈ ae do

/* Construct the artifact evolution set for the file */

7 Aevo(f) ← Aevo(f) ∪ {(t, a, l)};
/* Construct the process using story mining */

8 Stories ← Stories ∪ (f, StoryMining(l)));
/* Collect files and time series */

9 Files ← Files ∪ {f};
10 TimeSeries(f) ← construct time series from Aevo(f);

11 end

12 end
13 foreach pair of files i, j ∈ Files do

/* Compute degree of co-evolution */

14 coEvoDegree ← χ(TimesSeries(i), T imeSeries(j));
/* Compute file distances */

15 distance ← d(i, j);
/* Select based on user defined thresholds */

16 if coEvoDegree > γ then Dco−evo ← Dco−evo ∪ {coEvoDegree};
17 if distance > δ then Dist ← Dist ∪ {distance};

18 end
19 AnalysisData ← AnalysisData ∪ {Dist, Stories, Dco−evo};

20 end
21 return AnalysisData;

The step in line 4 starts an iteration over the views set V. Here is where
we collect the analysis data that are returned by the algorithm. For each of the
aggregated artifacts contained in a view V , we retrieve the information necessary
to compute the degree of co-evolution between pairs of files and their file distance.
First, we construct the artifact evolution of all the artifacts present in ae ∈ V .
Note that an aggregated event ae ∈ V is a record obtained from a view on the
project which is composed, among other attributes (e.g., file, time, amount of
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change), by the comment associated to the specific change. Comments describe
multiple changes executed on the file, i.e. they describe a story of the artifact.
Stories associated to each file are collected and the corresponding labels are
chronologically ordered. These file stories are then input to the StoryMining
technique [9]. Story Mining was designed to receive as input a story freely written
by the participants, describing their work in a particular business process. As
an output, the actors and the process activities executed by them are extracted.
Our technique is concerned with the stories of the files. Therefore, they are the
actors of the story mining, and the resulting business process consists of the
steps describing their evolution process. We collect the resulting processes in the
step in line 8. The step in line 10 is concerned with the construction of a time
series from the set of artifact evolutions Aevo computed in line 7. Specifically,
this step gathers the values of the changes of each of the artifact f in Aevo and
records them in TimeSeries(f).

After all the aggregated events ae have been explored, the algorithm moves
on to computing the metrics (lines 13–18). In this loop, the algorithm iterates
through all the pairs of files. For each pair, the degree of co-evolution and artifact-
distance metrics are computed according the Definitions 4 and 5, respectively.
These two measures are collected only if their values are above the user defined
thresholds γ and δ. After the loop is over, the two measurements and the stories
mined with the StoryMiner are stored in AnalysisData.

Finally, after iterating over all the user defined views, the algorithm returns
the AnalysisData collection which can now be further inspected and analyzed
in more detail, as we show next with an example.

3.3 Example

Let us consider the following example of a software development process. It
contains 10 files arranged hierarchically as depicted by the file tree in Fig. 2.
At the first level of the file tree there is the README.md file which describes
the project. The software product in our case is called running example and
is contained under the f3 directory. The product consists of an example for
software developers who want to organize their projects according to a predefined
structure. The project has 21 commits over 10 days.

An excerpt of the VCS log for this project was illustrated in Table 1 above.
The project managers are interested in understanding the work process done by
project participants in each of the files and whether there is some hidden work
dependency. We show how our technique meets the requirements by applying
each step to this project and discussing the outcomes.

Let us suppose we have preprocessed our data and have the events set E
already stored in a database. Then V is obtained by querying the data and aggre-
gating them by day. Then, the parent relation is Parent = {(f1, f2), (f1, f3),
(f3, f4), (f3, f6), (f3, f12), (f4, f5), (f6, f7), (f6, f8), (f6, f9), (f9, f10), (f10, f11)}.
Next, we compute the artifact evolution of for each artifact. For example, the
artifact evolution of file REAMDE.md (f2) limited on the information from
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StoryMiningSoftwareRepositories (f1)

README.md (f2) running example (f3)

Requirements (f4)

requirements.txt (f5)

Software (f6)

model.java (f7) test.java (f8) packages (f9)

p1 (f10)

visualization.txt (f11)

specification.txt (f12)

Fig. 2. File tree describing the file structure in our scenario of use.

Create readme
file

Add
licence

Update
requirements

Fig. 3. Example of business process showing the artifact evolution

Table 1 is Aevo = { (2017-01-31, 1, Create readme file), (2017-02-01, 3, Add a
license), (2017-02-02, 1, Updated the requirements)}. The resulting process from
the story mining algorithm is shown in Fig. 3.

Next, we calculate the metrics. The dependencies are computed in the
steps enclosed in lines 13–18 of Algorithm 1. E.g., the artifacts README.md
(f2) and test.java (f7) appear in the TimeSeries collection as the vectors
Xf2 = (1, 3, 1, 0) and Xf7 = (0, 0, 0, 2). We use the Pearson correlation between
the to vectors σ(Xf2 ,Xf7 = −0.66) and take its absolute value as degree of co-
evolution χ = |σ|. Therefore, the degree of co-evolution between the considered
artifacts is χ = 0.66. The file distance is the length of the route from f2 to f7,
i.e. d(f2, f7) = {(f2, f1), (f1, f3), (f3, f6), (f6, f7)}. Therefore, the file distance
between README.md and test.java is d(f2, f7) = 4.

4 Evaluation

In this section, we show the applicability of our technique to project-oriented
business processes and its effectiveness in uncovering work dependencies. With
respect to the requirements formulated in Sect. 2, we evaluate against require-
ments R2 and R3 in Sect. 4.1 and against requirement R1 in Sect. 4.2.

We implemented our techniques as a prototype2 and used it on 10 real world
software projects with different sizes. The input of our program is a VCS log and
the output is a set of analysis data with information about the evolution of the
artifacts and their dependencies. We report the results in Table 3. The results are
listed in increasing order of project size. The parameters χ and d are the metrics

2 The source code is available at https://github.com/s41m1r/MiningVCS.

https://github.com/s41m1r/MiningVCS
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Table 3. Evaluation of real world projects. Respectively the thresholds are: χL if
χ < 0.3, χH if χ > 0.7 low and high degree of co-evolution; dL if d ≤ 2, dH if d > 2
respectively low and high distance.

Project C
o
m

m
it

s

F
il
es

χH χL (dL, χL) (dL, χH) (dH , χL, ) (dH , χH) |p f
|

m
a
x
(|p

f
|)

|A
e
v
o
|

d m
a
x
(d

)

mwaligner 21 9 37 7 6 30 1 7 1.11 2 2.40 0.94 3
Biglist 202 15 22 90 31 18 59 4 1.47 3 2.76 1.20 5

camundaRD 11 15 74 26 0 25 26 49 2.18 4 2.05 2.03 7
graphql 256 30 89 357 121 89 236 0 1.40 2 3.18 1.11 4

jgitcookbook 135 89 773 2866 505 289 2361 484 6.93 8 1.33 2.68 14
mysqlpython 749 168 2288 11571 742 591 10829 1697 2.59 7 1.65 2.52 11

gantt 23 228 7006 14343 386 3480 13957 3526 3.30 4 1.71 2.16 7
facebookjavasdk 38 293 16478 26092 2017 16311 24075 167 6.21 8 4.78 5.58 13

caret 864 432 15366 60874 9538 14785 51336 581 3.01 4 3.15 1.60 7
operationcode 1114 1053 84024 444605 2291 5537 442314 78487 4.27 8 2.01 4.85 15

of degree of co-evolution and distance, respectively. In this example, χ > 0.7
signifies that the co-evolution is high (χH) and χ < 0.3 that the co-evolution is
low (χL). As previously mentioned, this is a user customizable threshold that
can be set by the domain expert. Likewise, the distance is considered low (dL)
when d <= 2 and high (dH) when d > 2. The parameter |pf | and max(|pf |) are
respectively the average and the maximum lengths of the path to the root (i.e.
average tree depth of the files). The column |Aevo| shows the average number of
activities in the process representing the artifact evolution. Lastly, the columns
d and max(d) report the average and maximum file distance, respectively. Next,
we use these data for a quantitative evaluation of the projects.

4.1 Quantitative Evaluation

Here we address requirements R2 and R3. First, we compute project profiles.
These profiles show the distribution of work-related dependencies in a project.
Second, we evaluate whether the work on files can be predicted.

Before assessing project profiles, we make the following consideration. Our
metrics define four classes: (i) low distance low co-evolution; (ii) high distance
low co-evolution; (iii) low distance high co-evolution; (vi) high distance high co-
evolution. Figure 4b helps clarifying these four classes. In fact, except for values
of distance equal to 0, it is possible to see how the density of file pairs is higher
when the distance is low. This is a normal situation in project where highly
related files are stored closely to each other in the file system. Conversely, the
dots on the top right of the plot mark files which are very distant to each other
but still highly correlated. These can be, for instance, logical dependencies that
can happen because of bad modularization of the project.

Hidden work dependencies belong to the last mentioned case, i.e. files are
distant in the file tree but they have similar time series. According to this con-
sideration we computed the project profiles in Fig. 4a. We observe three types of
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Fig. 4. Characterization of the evaluated software projects

processes. First, several projects have hardly any hidden work dependencies. Sec-
ond, several have a moderate degree between 10% and 20%. Third, the project
Biglist has a high share of hidden dependencies. This hints at the possibility for
better organizing the project according to good modularization best practices.
That means, the project can be restructured in a way to reduce the unwanted
side-effect the work on one file produces on other files.

Next, we evaluate whether the work on files can be predicted. Zipf’s law is
typically used in corpus analysis and states that the frequency of usage of any
word is inversely proportional to its rank in the frequency table. This approach
has already been applied to software projects for understanding whether the
assignment of developers to tasks in a software project could be predicted [7].
Here, we focus on understanding whether the Zipf’s law holds true also for work
dependencies within a project.

To this end, we selected one big and one small project from Table 3, namely
Biglist and Caret. Biglist is a small project on a list of strings which are known to
cause issues when used as user-input data. Caret is a big project consisting in the
development of a sublime text editor for Chrome OS. We collected how frequently
were the artifacts worked on to generate a ranking. Figure 5 depicts the corre-
sponding charts and the fitted Zipf distribution. We notice that both projects
present a similar distribution of values. This holds also for the other projects
analyzed. In particular, Zipf’s law is valid for the most frequently changed files.
Afterwards, the distribution drops because of files not being worked anymore
but still being part of the project.

4.2 Qualitative Evaluation

In this section, we address requirement R1 by showing insights on the work
history of files that are related. To this end we focused on the project smsr,
which has 21 commits over a time span of ten days.

Let us consider an example where our technique proves helpful. Our tech-
nique finds 6 highly related pairs, as shown in Table 3. We excluded files that have
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Fig. 5. Zipf distribution of the worked files

Update
requirements.txt

Specify solve time
for problem

Add requirements
file

Modify
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Update
requirements

(a) Evolution of file requirements.txt

Modify
method A

Fix bug Create model Add solver
methods

Implement
method B

Update
model.java

(b) Evolution of file model.java

Fig. 6. Processes of two work-dependent files

a functional dependencies, e.g. interface-class relations, where a change in the
interface trivially brings change in the class. Thus, we were able to select the files
smsr/running example/Requirements/requirements.txt and smsr/running
example/Software/model.java, having χ = 0.7 and d = 4. Moreover, by
observing the content we verified that they do not have functional dependen-
cies. Therefore, these two files are work dependent. Figure 6 shows the extracted
processes after mining their stories. Interestingly, the two processes do not share
any activity because they were never changed together in the same commit.

Our technique can fail under some circumstances. Consider the example
above. We know that the files requirements.txt and model.java are work
dependent. Let us now assume that the assumption of regular commits in the
VCS does not hold. Nevertheless, we know that there is the following work pat-
tern: at irregular times, one change in the requirements produces 2 changes of
work that must be implemented in model in the next day. In a short time window
of 4 days, the time series would be Xreq = (1, 0, 1, 0), Xmodel = (0, 2, 0, 2) and
their correlation is σ(freq, fmodel) = −1. Hence, they would score a high degree
of co-evolution χ = 1. However, if we double the time window and observe only
another pattern the correlation would change. We get Xreq = (1, 0, 1, 0, 0, 1, 0, 0),
Xmodel = (0, 2, 0, 2, 0, 0, 2, 0) which score a σ(freq, fmodel) = −0.66, χ = 0.66 and
therefore not a high value of correlation.
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These results show that our technique helps uncovering work dependencies
that are not captured by existing approaches in literature which leverage on
social network analysis [23,25]. On the other hand, our technique is currently not
yet able to retrieve dependencies with delay. We plan to address this challenge
by using moving-average time series models.

5 Conclusion

In this paper, we addressed the problem of uncovering hidden work dependencies
from VCS logs. The main goal was to provide project managers with knowledge
about the artifacts co-evolution in the project. Three perspectives of analysis
were considered, evolution of the artifacts over time, dependencies among them
and structural organization of the project.

Our approach works under the assumptions that repositories reflect the hier-
archical structure of the project, project participants commit their work regu-
larly during active working times and they provide informative comments for
the changes done. The approach was implemented as a prototype. A scenario of
use was provided showing how the approach can be applied and providing some
discussions. We also evaluated our approach in real-world data from open source
projects showing the potential of the approach.

In future work, we will improve our evaluation varying for instance the time
window, the dependency threshold and consider a study case with project man-
agers. We plan to investigate other types of dependencies between artifacts.
Specifically, we are interested in a semantic analysis of the work performed in
both artifacts, considering for instance some similarity measures. We also aim
to improve the visualization to consider other knowledge extracted, for instance
the type of change performed in the aggregate events could be shown associated
to the activities in the artifact process.
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