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Abstract. Analysing performance of business processes is an impor-
tant vehicle to improve their operation. Specifically, an accurate assess-
ment of sojourn times and remaining times enables bottleneck analysis
and resource planning. Recently, methods to create respective perfor-
mance models from event logs have been proposed. These works are
severely limited, though: They either consider control-flow and perfor-
mance information separately, or rely on an ad-hoc selection of temporal
relations between events. In this paper, we introduce the Temporal Net-
work Representation (TNR) of a log, based on Allen’s interval algebra,
as a complete temporal representation of a log, which enables simultane-
ous discovery of control-flow and performance information. We demon-
strate the usefulness of the TNR for detecting (unrecorded) delays and
for probabilistic mining of variants when modelling the performance of
a process. In order to compare different models from the performance
perspective, we develop a framework for measuring performance fitness.
Under this framework, we provide guarantees that TNR-based process
discovery dominates existing techniques in measuring performance char-
acteristics of a process. To illustrate the practical value of the TNR, we
evaluate the approach against three real-life datasets. Our experiments
show that the TNR yields an improvement in performance fitness over
state-of-the-art algorithms.

1 Introduction

Modern process-aware information systems (PAIS) support the design, enact-
ment, and analysis of business processes in various domains [1]. Based on a for-
malisation of the supported business process in terms of a process model, they
control how the execution of a set of activities is coordinated to reach a certain
outcome for an instance of the process. The operation of business processes can
be improved by modelling their performance. Specifically, an accurate assess-
ment of key performance measures, such as sojourn times and remaining times,
enables bottleneck analysis and optimised resource planning [2].

Recently, to enable performance analysis of business processes, methods that
construct process models from event logs that contain transactional data have
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been proposed [3,4]. Yet, these methods consider control-flow and performance
information separately [5–7]. They first create a process model that captures
causal dependencies between activities (commonly referred to as discovery),
which is later annotated with performance details (referred to as enhancement).
Hence, any bias introduced in control-flow discovery carries over to the perfor-
mance analysis.

To illustrate the problem implied by this 2-step approach, we consider a
claim handling example, where discovery may yield the BPMN model in Fig. 1a.
Annotating the model with activity durations, however, does not capture delays
between actual activity executions. This potentially yields inaccuracies when
conducting performance analysis. That is, once a claim is received (A), a system
may automatically fetch previous claims (C). Yet, the plausibility check (B),
supposed to be done in parallel, involves a knowledge worker, who is not available
immediately. Hence, the start of the activity is delayed (see Fig. 1b). Similarly,
after the automatic status update (D), another staff member needs to enter the
decision (E), which also introduces a delay.
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Fig. 1. Claim handling process (a); common actual execution of activities (b).

In transactional event logs that record the start and end of activity exe-
cution, delays are directly visible for individual process instances, as shown in
Fig. 1b. However, such an instance may represent noise in the event log, which
raises the question of how to consider delays on the model-level. When construct-
ing a process model for performance analysis, the observed delays of individual
instances need to be generalised.

The challenge of incorporating delays in the construction of performance
models has been recognised in the literature. Specifically, Tsinghua-α [8] and
variants of the Inductive Miner [4] incorporate performance details by consid-
ering temporal relations between the start and end of activity executions. Yet,
these approaches are limited in two ways: (i) They take an ad-hoc decision on
the type of temporal relation to consider in model discovery (e.g., to distinguish
interleaved and concurrent execution of activities [4]); and (ii) they require a
model to represent a single temporal relation per pair of activities (e.g., two
activities are always interleaved or concurrent [4]).

In this paper, to overcome the above limitations, we introduce the Temporal
Network Representation (TNR) of an event log as a formalism that is grounded in
Allen’s interval algebra [9]. The TNR is a compact representation of all (pairwise)
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temporal relations between activity executions as observed in the event log. As
such, it generalises different notions of dependency graphs commonly used in
process model discovery and enables us to incorporate performance information
in terms of processing delays in model discovery. Our contributions and the
structure of the paper are summarised as follows:

– The Temporal Network Representation (TNR) of an event log: Following an
introduction of preliminaries (Sect. 2), in Sect. 3, we present the TNR of
transactional event logs. The TNR generalises common representations of
event logs.

– Inductive Mining with the TNR: In Sect. 4, we propose an algorithm to inte-
grate delay unfolding in inductive mining, exploiting the TNR to include
processing delays explicitly. We then show how the TNR enables probabilistic
variant mining, which handles noisy event logs, but preserves performance
details in the discovered model.

– Measuring Performance Fitness: Sect. 5 introduces a framework for measur-
ing performance fitness between an event log and a model. We also show that
under this framework, TNR-based inductive mining is guaranteed to discover
unbiased models.

To demonstrate the practicality of the TNR, we evaluated our approach
with three real-world healthcare datasets. As detailed in Sect. 6, TNR based
reasoning yields up-to 40% improvement in performance fitness with respect to
existing approaches. Finally, we discuss related work in Sect. 7, before concluding
in Sect. 8.

2 Preliminaries

This section reviews preliminaries for our work in terms of event logs, process
trees as a formalism for process modelling, and Allen’s algebra to reason on
temporal intervals.

Event Logs. We adopt a notion of a transactional event log that relates events
to their activity labels (activities, for short), start times, and completion times.
Let E be the universe of events produced by an information system and let A
be the set of supported activities. Then, by e.a ∈ A, e.s ∈ R

+
0 , and e.c ∈ R

+
0 , we

denote the activity that corresponds to the event, its start time, and completion
time, respectively.

A case ξ ∈ 2E \ ∅ is a finite set of events, assuming that no event may occur
in more than one case and that a case comprises at least one event. An event
log L ⊆ 2E is a set of cases. Table 1 presents an example event log for the claim
handling process in Fig. 1. Note that some of the events are instantaneous (i.e.,
have a duration of 0). We denote by Aξ ⊆ A×N

+ the multi-set of activities that
appear in ξ, namely Aξ = {(e.a, k)|e ∈ ξ} with k being the frequency of e.a in ξ.

Process Trees. To represent the process executed by an information system, we
adopt the notion of a process tree [10] that is enriched with time information.
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Table 1. Example event log for the claim handling process.

Case Activity Start Complete

1 A: Receive Claim 9:05 9:05
1 C: Fetch Previous Claim 9:05 9:10
1 B: Plausibility Check 9:08 9:20
1 D: Update Claim Status 9:20 9:22
1 E: Enter Decision 9:40 12:05
2 A: Receive Claim 10:23 10:23
2 C: Fetch Previous Claim 10:23 10:34
3 A: Receive Claim 10:25 10:25

Case Activity Start Complete

3 B: Plausibility Check 10:25 10:28
3 C: Fetch Previous Claim 10:25 10:30
2 B: Plausibility Check 10:30 10:55
3 D: Update Claim Status 10:30 10:30
2 D: Update Claim Status 10:55 10:55
2 E: Enter Decision 11:10 11:28
2 F: Send Notification 11:28 11:28
1 F: Send Notification 12:05 12:05

Traditionally, a process tree encodes the control-flow of a process in terms of
its possible traces, i.e., sequences of activity executions. We recall the intuition
behind process trees and refer the reader to [10] for a complete formalisation of
their syntax and semantics.

An untimed process tree is a rooted tree, in which the leaf nodes are activities
in Aτ = A∪{τ1, . . . , τn} with τi, 1 ≤ i ≤ n, denoting silent activities that cannot
be observed during the execution of the process (but which may have different
durations, so that they need to be distinguished from one another). All non-leaf
nodes are control-flow operators, denoted by O. Common control-flow operators
are sequence (→), exclusive choice (×), concurrency (∧), interleaving (||) and
structured loops (�). Figure 2 shows the process tree for the BPMN model in
Fig. 1a. Semantics of a process tree is defined by recursively constructing a set
of traces: For a leaf node labelled with a ∈ A, the set of traces contains a
single trace, {〈a〉}, whereas it contains the empty trace {〈〉} for a silent activity.
Semantics of a non-leaf node is formalised by a language function that joins the
traces of the subtrees of the node. For instance, the set of traces of the exclusive
choice operator is given by the union of the trace sets of its children.

→

FED∧
CB

A

Fig. 2. Process tree of the
claim handling process.

We extend process tress by adding durations to
leaf nodes. Each activity a ∈ Aτ is assigned a duration
of the (potentially silent) execution of a, which comes
from a cumulative distribution function (CDF) Da.
This induces a timed semantics of the process tree
in terms of sequences of events. From a trace of the
untimed process tree, a set of events is constructed
by drawing a duration from Da for each activity a ∈
Aτ of the trace and constructing the start time and
completion time as follows: the start time is the completion time of the event
for the previous activity in the trace (or 0, if the activity is the first one) and
the completion time is the start time plus the duration. This way we model
instantaneous activities (with a constant duration of 0) and processing delays
(silent activities of a certain duration).

As another extension to the common model of process trees, we consider its
enrichment with branching probabilities. For our purposes, it suffices to assign
a probability distribution Po to each n-ary exclusive choice operator o ∈ O, so
that Po models the occurrence probabilities of the n children of the operator.
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Allen’s Interval Algebra. To reason about temporal relations of events, Allen
presented an interval algebra [9] that defines 13 relations between two intervals.
Each of them formalises a different partial order of the start and completion times
of interval events, see Fig. 3. Instantiating these relations for the above notion
of events, for instance, a pair of events x, y ∈ E is in the overlaps relation, if and
only if, x.s < y.s < x.c < y.c.

X
Y precedes

meets
overlaps

is finished by

contains

starts

is preceded by

is met by

is overlapped by

finishes

during

is started by

Relation Converse

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

equals

x.s x.c
y.s y.c

Fig. 3. Allen’s interval relations, see [11].

The interval relations are mutu-
ally exclusive and partition the Carte-
sian product of events. As shown
in Fig. 3, each relation between two
events, except equals, has a counter-
part that holds for the reversed pair
of events. To avoid this kind of redun-
dancy, in the remainder, we consider
the following 7 out of the 13 relations:
precedes, meets, overlaps, is finished
by, contains, starts, and equals. The set
of these relations is denoted by R.

3 The Temporal Network Representation
of an Event Log

This section introduces our notion of the temporal network representation (TNR)
of an event log. It is based on Allen’s interval relations to capture the temporal
information in the log. We further discuss how the TNR can be collapsed to
obtain commonly used models of event logs, namely the directly-follows graph
and the concurrency graph.

3.1 Definition

The TNR is grounded in the notion of temporal evidence, which is needed when
lifting the interval relations from events to activities. Since in an event log, there
may be many pairs of events related to the same pair of activities, the temporal
evidence captures the frequency of a particular interval relation being observed
among the respective events.

Definition 1 (Temporal Evidence). Temporal evidence is a tuple (R, f) ∈
R × N

+ with R being an interval relation and f being its frequency.

Given an event log, its TNR is a directed graph where nodes are activities
and edge labels assign temporal evidence to the respective pairs of activities.

Definition 2 (Temporal Network Representation (TNR)). Let L be an
event log. Its Temporal Network Representation is a directed, edge-labelled graph
G = (V,E, λ), such that
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– V =
⋃

ξ∈L

⋃
e∈ξ e.a, the nodes are all activities of events of cases in the log;

– E = {(v1, v2) ∈ V × V | ∃ ξ ∈ L : ∃ e1, e2 ∈ ξ : e1.a = v1 ∧ e2.a = v2}, edges
are defined between all pairs of activities that occur jointly in cases;

– λ : E → 2R×N
+
, with λ(d) �→ (R, f), R ∈ R, and f = |{(e1, e2) ∈ E × E |

∃ ξ ∈ L : e1, e2 ∈ ξ : (e1.a, e2.a) = d ∧ (e1, e2) ∈ R}|, the edge labelling maps
temporal evidence as observed in the log to edges.

The TNR of an event log can be constructed incrementally upon the addition of
a new case to an event log. Considering the new information from the log may
introduce additional vertices, additional edges, or increase the frequency of some
temporal evidence.

For the log in Table 1, the TNR is shown in Table 2. Here, the time of an
instantaneous event is considered as a completion time when deriving the interval
relations.

Table 2. Matrix representation of the TNR of the event log in Table 1.

A B C D E F

A {(precedes, 2),
(meets, 1)}

{(meets, 3)} {(precedes, 3)} {(precedes, 2)} {(precedes, 2)}

B {(starts, 1)} {(precedes, 1),
(meets, 2)}

{(precedes, 2)} {(precedes, 2)}

C {(overlaps, 2)} {(precedes, 2),
(meets, 1)}

{(precedes, 2)} {(precedes, 2)}

D {(precedes, 2)} {(precedes, 2)}
E {(is finished by, 2)}
F

3.2 Projections on the TNR

Since the TNR captures all pairwise temporal relations between activities, it
generalises existing models of event logs. These models are typically defined
as dependency graphs, in which the edges encode a particular temporal rela-
tion. Prominent examples used in discovery algorithms such as the Inductive
Miner [10], α-Miner [12], or the Heuristic Miner [13] include the direct-follows
graph and the concurrency graph. In the direct-follows graph, assuming that it
is grounded in completion times of transactional events, a directed edge between
activities x and y encodes that there exists a case ξ ∈ L with two events
e1, e2 ∈ ξ, such that e1.a = x, e2.a = y, e1.c < e2.c, and there is no event
e3 ∈ ξ with e1.c < e3.c < e2.c. The concurrency graph, in turn, contains an
undirected edge for each pair of activities x and y, for which there exists a case
ξ ∈ L and events e1, e2 ∈ ξ with e1.a = x, e2.a = y, and e1.s ≤ e2.s ≤ e1.c ≤ e2.c.

These graphs may be derived from the TNR by projections. A TNR pro-
jection is a function that maps a TNR G = (V,E, λ) to another TNR G′ =
(V ′, E′, λ′), such that V = V ′, E ⊆ E′, whereas the labelling λ′ of G′ is not
constrained.
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We first illustrate the derivation of the directly-follows graph [10], assum-
ing that it is grounded in the completion times of activities. This requires two
projections:

(1) For each edge, the temporal evidence for the relations precedes, meets, over-
laps, and contains is aggregated and considered as part of the precedes rela-
tion. That is, the frequencies of all these relations are summed up and yield
the new frequency of the precedes relation. We then remove all edges having
a frequency of 0 for precedes.

(2) On the TNR that contains only edges with temporal evidence related to
precedes, we conduct a transitive reduction. We are left with the directly-
follows graph.

In the same manner, we can also derive the concurrency graph as used by the
life-cycle variant of the Inductive Miner [4]. To this end, the overlaps, is finished
by, contains, starts, and equals relations are aggregated, yielding a new overlaps
relation. Then, all edges not having temporal evidence related to overlaps are
removed.

4 Inductive Mining with the TNR

In this section, we show how the TNR can be used to enhance discovery of
process models via inductive mining. We first introduce how the TNR is used to
make processing delays explicit, before elaborating on the actual construction of
a process tree (Sect. 4.1). Then, we propose probabilistic variant mining based
on the TNR to handle noisy event logs, while preserving performance details
(Sect. 4.2).

4.1 Delay-Aware Inductive Mining

Delay Unfoldings on the TNR. The TNR indicates processing delays by
means of the precedes interval relation. If the TNR contains an edge between
activities x and y with temporal evidence for precedes, it means that there is
a case in the log in which the start and completion times of two transactional
events that represent the occurrence of x and y are ordered, but the occurrence
of y does not start immediately after the occurrence of x completes—there is a
processing delay between x and y.

To make such processing delays explicit, we define a transformation of the
TNR, referred to as delay unfolding. In essence, it inserts a delay activity between
any two activities for which there is an edge with temporal evidence for the
precedes interval relation. This delay activity is then linked to the respective
activities in terms of temporal evidence for the meets relation, with the intuition
being that this activity represents the gap between the occurrences of the original
activities.

However, an activity x will be in the precedes relation with any other activity
that starts after x completes. Therefore, we insert a delay activity between two
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activities x and y solely if there does not exist an activity z, whose occurrence
can be seen as the reason for the time gap between the completion of x and
the start of y. The situation when a delay-driven gap does not exist between
activities x and y would be characterised by one of the following cases:

– There is an activity z that starts after or with the completion of x, while
y starts after or with the completion of z, both are manifested as relations
Rafter = {precedes, meets}; or

– there is an activity z that starts before the completion of x (temporal evidence
is given as Rover = {overlaps, is finished by, contains, starts, equals}),
while y starts after or with the start of z (all relations in R).

Using the above sets of temporal relations, we formally define the transformation
of delay unfolding as follows:

Definition 3 (Delay Unfolding). Given a TNR G = (V,E, λ), the delay
unfolding yields a new TNR G′ = (V ′, E′, λ′), such that:

– V ′ = V ∪ Vδ, where Vδ contains a node δ(x,y) for each edge d = (x, y) ∈ E
with temporal evidence (precedes, f) ∈ λ(d), f > 0, if there do not exist
edges dx = (x, z), dy = (z, y) ∈ E with temporal evidences (Rx, fx) ∈ λ(dx),
(Ry, fy) ∈ λ(dy), fx, fy > 0, and either Rx, Ry ∈ Rafter , or Rx ∈ Rover and
Ry ∈ R;

– E′ = E ∪ Eδ, where Eδ = {(x, δ(x,y)), (δ(x,y), y) | δ(x,y) ∈ Vδ} connects the
new nodes from Vδ with the source and target of the respective edges; and

– λ′(d) = {(R, f) ∈ λ(d) | R = precedes} for d ∈ E, is the original temporal
evidence other than precedes for all edges in the original TNR; and λ′(d) =
{(meets, f)} for (x, δ(x,y)), (δ(x,y), y) ∈ Eδ, d = (x, y) ∈ E and (precedes, f) ∈
λ(d), with f being the temporal evidence of the new edges.

Figure 4 illustrates the delay unfolding for a part of the example in Table 1.
Here, a delay activity δ is introduced between A and B, representing the time gap
indicated by the temporal evidence for the precedes relation. For all other edges
with evidence for precedes, there are other possible reasons for the respective
time gaps. Considering the edge between B and D as an example: while there is
temporal evidence for a delayed start of D after B (the precedes relation), the
temporal evidence of edges between B and C, and C and D, indicates that this
delay may stem from the execution of C.

Model Construction. Once the delay unfolding on the TNR has made process-
ing delays explicit, a timed process tree is derived. Here, we exploit the idea
of inductive mining (IM), which is a constructive approach to process discov-
ery [4,10,14]. In essence, inductive mining proceeds as follows: given a directly-
follows graph, it recursively identifies cuts in the graph that separate its com-
ponents, induce a partition of the log, and yield the control-flow operators of
the process tree. For each identified component, this procedure is repeated until
trivial components (single activities) are obtained.
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Fig. 4. Delay unfolding for a part of the TNR for the log in Table 1.

We adopt this general approach for the TNR after delay unfolding and rely on
the existing algorithms to detect cuts, while integrating the handling of process-
ing delays:

(1) By means of TNR projections, a directly-follows graph and concurrency
graph is derived from the TNR as outlined in Sect. 3.2. Then, a process tree
is built using the IM for transactional event logs [4], which relies on the
concurrency graph to distinguish interleaved from concurrent execution of
activities. The resulting process tree contains the delay activities introduced
as part of the delay unfolding.

(2) For all activities a ∈ A of the obtained process tree, we fit a cumulative
distribution function CDF Da to model the duration. For activities that are
observed in the log, we fit the distribution based on all observed durations
of events, {e.c − e.s | e ∈ ⋃

ξ∈L ξ ∧ e.a = a}. For a delay activity δ(x,y),
the samples to which the distribution is fitted are given as {e2.s − e1.c |
e1, e2 ∈ ξ ∧ ξ ∈ L ∧ e1.a = x ∧ e2.a = y}, i.e., the durations between
the completion of the preceding activity and the start of the succeeding
activity. Every exclusive choice operator is enriched with the corresponding
occurrence probabilities.

(3) Any delay activity δ(x,y) is labelled as a distinguished silent activity,
δ(x,y).a = τi for a unique i ∈ N, to capture that it does not carry any
application semantics.

→

FEτ2D∧
C→

Bτ1

A

Fig. 5. Process tree with delay
activities.

For the above example, the structure of the
timed process trees that results from this proce-
dure is shown in Fig. 5. The model features two
silent activities τ1 and τ2 that represent common
processing delays in handling claims, as outlined
already for a single case in Fig. 1b. The CDFs
assigned to these silent activities model the dura-
tions of these delays.

4.2 Probabilistic Variant Mining

In this part, we consider another angle to utilise the TNR in model discovery:
it can guide the handling of noise in the event log. We observe that common
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approaches to process model discovery strive for understandable models. As a
consequence, when filtering noise in the event log, they tend to represent solely
the most commonly observed behavioural relations between activities in the log.
From the viewpoint of performance modelling, this self-imposed restriction is not
needed. We therefore argue that, in order to improve the representational bias, a
model discovered for performance analysis may incorporate different behavioural
relations explicitly, if there is enough evidence for them. These different relations
may then be weighted following a probabilistic model.

Below, we introduce probabilistic variant mining (PVM), which uses the TNR
to handle noise in inductive mining of process trees. PVM comprises two steps:
(1) a preprocessing step, where a discrete-valued cumulative distribution func-
tion is computed for behavioural relations based on the TNR; (2) a variant
construction step, where this distribution function is used to introduce choices
between subtrees in the resulting model.

Preprocessing. Consider a TNR G = (V,E, λ) that represents an event log L.
The PVF relies on the frequencies defined by the temporal evidence to compute
a discrete-valued cumulative distribution function (dv-CDF) over the interval
relations, F (d) : R → [0, 1], d ∈ E. Let λ(d) = {(R1, f1), . . . , (Rk, fk)} be the
temporal evidence of edge d ∈ E. Without loss of generality, we order the ele-
ments (Ri, fi), 1 ≤ i ≤ k, such that f1 ≤ f2 ≤ . . . fk. The dv-CDF of edge e for
the i-th relation is then defined as:

F (d)(Ri) = F (d)(Ri−1) +
fi

∑k
j=1 fj

, with F (d)(f0) defined as 0.

W
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Fig. 6. Example TNR (a);
trees obtained with traditional
inductive mining (b) and with
PVM (b).

Variant Construction. Following the gen-
eral approach of inductive mining of process
trees (as recalled in Sect. 4.1, yet potentially
without handling of processing delays), the
control-flow operators of a process tree are
identified by iteratively detecting cuts in a
dependency graph. If such cuts cannot be
detected immediately, edges of the graph may
be considered as noise and filtered according
to a user-defined noise threshold [14]. In any
case, cuts are detected based on a determinis-
tic projection of the dependency graph.

In contrast, PVM defines a probabilistic
means to identify cuts based on different TNR
projections to obtain a direct-follows graph.
In addition to the construction of a direct fol-
lows graph outlined in Sect. 3.2, we also con-
sider a construction solely from relations that
define an empty intersection of intervals (i.e.,
the set of relations Rafter as defined above).
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If the resulting graphs give rise to different cuts, PVM constructs an exclusive
choice operator in the process tree, which embeds all subtrees obtained from the
different cuts. Hence, no information is lost in the process. The branching prob-
abilities of this exclusive choice are assigned based on the dv-CDF function F
as determined in the preprocessing step: each choice is assigned the aggregated
probability of the respective pairwise relations between activities.

For illustration, consider the TNR given in Fig. 6a, which defines temporal
evidence for U and V for both, overlaps and precedes. For this setting, the Induc-
tive Miner for transactional event logs [4] would construct the model given in
Fig. 6b, meaning that the relations between B and C are interpreted as con-
current execution. With PVM, it will be noticed that the graph created from
relations that define an empty intersection of intervals also yields a sequence cut.
Thus, the result would be the model in Fig. 6c; with the branching probabilities
of the × operator set to 3

5 for the concurrent (∧) case, and 2
5 for the sequence

case (→). Clearly, this model is less understandable for users. Yet, focusing on
performance modelling, it more accurately captures the behaviour encoded in
the TNR and, thus, shall improve the model from the performance perspective.

5 Performance Fitness and Theoretical Guarantees

To evaluate algorithms for performance-driven process discovery, such as the one
introduced earlier, this section presents a framework for measuring performance
fitness. First, we define performance measures, loss functions, and the notion of
performance replay, which enable us to quantify the distance between an event
log and a process tree (Sect. 5.1). We then prove that TNR-based inductive
mining comes with guarantees on the performance fitness with respect to the
discovered model (Sect. 5.2).

5.1 Framework for Measuring Performance Fitness

We consider performance fitness with respect to a performance measure (e.g.,
the sojourn time of a case) and a loss function (e.g., the bias). This pair is defined
as follows.

Definition 4 (Performance Measure, Loss Function). A performance
measure ψ : 2E \ ∅ → R

+
0 is a function that maps a set of events to a real-

value. A loss function l : R+
0 × R

+
0 → R

+
0 maps a pair of performance measures

to a real-value.

Having defined ψ and l, we aim at a distance measure between an event log and
a model. To this end, we introduce the procedure of performance replay between
a case ξ = {e1, . . . , en} ∈ L and a process tree T . It is based on the assumption
that T contains all activities referenced in events of cases ξ ∈ L. In other words,
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we do not consider replay for noise-filtered process trees. Performance replay
involves the following steps:

(1) We first match the events of ξ to the process tree T . While there may be mul-
tiple leaf nodes to which an event could be matched, we note that matching
needs to ensure consistency of the temporal relation between events and the
semantics of the process tree operators. That is, this matching can be seen
as the reverse operation of constructing a process tree from the TNR, see
Sect. 4.1. As a result, we obtain a subtree Tξ that contains a set of operators
(without exclusive choice) and leaf nodes, so that each event in ξ is matched
to one of the leaf nodes.

(2) The subtree Tξ is then played-out into a replayed case ξT = {eT
1 , . . . , eT

n |
eT
i .a = ei.a}. It contains the same number of events as ξ and every replayed

event eT
i refers to the same activity as the corresponding event ei in ξ.

Activities that appear in the subtree Tξ, but are without matching events
in ξ, are omitted from ξT via a projection of Tξ on these activities.

(3) For the replayed case, we then construct durations. That is, for event eT
i , the

duration xT
i is sampled from the CDF Da of the respective activity a = eT

i .a.
(4) Based on the durations, the start and completion times of the replayed case

are set. To this end, we follow the partial order induced by the operators
in Tξ. The first events have a start time of eT

i .s = 0 and a completion time
of the sampled duration eT

i .c = eT
i .s + xT

i . Subsequent events start at the
maximal completion time of preceding events (in terms of the partial order
induced by Tξ), while their completion time is again determined based on
their start time and sampled duration.

As an example, we consider the replay of a case ξ = {U10
0 , V 7

0 ,W 15
10 } (sub-

scripts and superscripts correspond to start and end times, respectively) on
the process tree in Fig. 6b. The replay procedure will match the events to the
subtree representing concurrent execution of U and V , which yields a replayed
case ξT = {U, V,W}. The durations for U, V,W are then sampled, e.g., as
xU = 7, xV = 1, xW = 4. Respecting the partial order induced by the sub-
tree, the start and completion times of U, V are set first, before the start time
of W is set to be the maximum of completion times of U and V . As a result, the
following replayed case is created ξT = {U7

0 , V 1
0 ,W 11

7 }.
Performance replay is based on a stochastic model. As such, the replayed event

log, defined as LT = {ξT | ∀ ξ ∈ L}, is different for every enactment of the replay
procedure for L over T . To make the event log and the model comparable, we thus
use the following statistical approach. We conduct performance replay K times,
independently, and consider every replayed log LT to be a sample from T . This
results in a sequence of K replayed logs indexed L

(1)
T , . . . , L

(K)
T . Then, we define

performance fitness between an event log L and a process tree T , as a statistical
comparison between L and the sequence of K replayed logs L

(1)
T , . . . , L

(K)
T .

To simplify notation, we assume that the event log L contains N cases with
each case denoted by ξi, i = 1, . . . , N ; the corresponding replayed cases in the
k-th event log are denoted by ξ

(i,k)
T . We are now ready to define the perfor-

mance fitness score, which quantifies the distance between an event log and a
process tree.
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Definition 5 (Performance Fitness Score (PFS)). Given an event log L, a
sequence of replayed logs {L

(k)
T }, k = 1, . . . , K, a performance measure ψ, and a

loss function l, the performance fitness score (PFS) between L and T is given by,

SK,N (L, T, ψ, l) =
1
N

N∑

i=1

1
K

K∑

k=1

l(ψ(ξi), ψ(ξ(i,k)T )). (1)

5.2 Guarantees on Performance Fitness for TNR-based Inductive
Mining

It turns out that inductive mining with TNR-based delay unfolding and proba-
bilistic variant mining comes with guarantees on the performance fitness of the
discovered model. To capture these guarantees, we first need the notion of the
expected performance fitness score, defined as follows:

Definition 6 (Expected Performance Fitness Score (E-PFS)). Let ξ be a
case of an event log L and let ξT be the corresponding replayed case. The expected
performance fitness score (E-PFS) is

S(L, T, ψ, l) = E[l(ψ(ξ), ψ(ξT ))]. (2)

The randomness in l(ψ(ξ), ψ(ξT )) stems from the fact that we observe an arbi-
trary case from the event log. Assuming that ψ(ξi) are independent and iden-
tically distributed (i.id.) samples from ψ(ξ) and that ψ(ξ(i,k)T ) are i.id. samples
from ψ(ξT ), the PFS, SK,N (L, T, ψ, l), is an unbiased estimator of S(L, T, ψ, l),
since it estimates an expected value by using the sampled mean [15].

Below, we instantiate the performance fitness framework with the sojourn
time of a case ξ = {e1, . . . , en} ∈ L, i.e., ψ′(ξ) = maxe∈ξ e.c − mine∈ξ e.s, as a
performance measure; and the bias, l′(x, y) = x − y, as the loss function. Then,
we show that a process tree discovered by inductive mining using TNR-based
techniques results in an unbiased process tree (in terms of the E-PFS) with
respect to the originating event log.

Theorem 1. Let L be an event log and let T be a process tree discovered from L
using TNR-based delay unfolding and PVM. For performance fitness in terms of
sojourn times of a case and the bias loss, the corresponding E-PFS is unbiased:
S(L, T, ψ′, l′) = 0.

Theorem 1 implies that SK,N (L, T, ψ′, l′) → 0 as the two sample sizes, N
(number of cases in the event log) and K (number of replays), increase. Below,
we provide a proof sketch, while the full proof can be found in an extended
version of this paper.1

Proof Sketch 1. We wish to prove that for an arbitrary ξ,

E[ψ′(ξ) − ψ′(ξT )] = E[ψ′(ξ)] − E[ψ′(ξT )] = 0. (3)
1 https://hu.berlin/TNR-extended.

https://hu.berlin/TNR-extended
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To this end, we write the expression for the difference between the two sojourn
times ψ′(ξ) − ψ′(ξT ) and show that both can be written as the sum of three
components: sequential activity durations, sequential delays, and concurrent set
durations. Since the replayed case and the log case respect the operators in T
and their durations come from the same probability distributions, we show that
the expectation of these three components are equal for both ξ and ξT , which
proves Eq. 3, and the Theorem.

Furthermore, by using similar arguments, we can show that any process tree
T that does not explicitly consider delays or is derived by threshold-based noise
filtering will have a positive bias in terms of sojourn times, when delays have a
positive expected value.

6 Evaluation

The above theoretical guarantees are based on several assumptions that may not
hold in practice. For example, Theorem 1 holds if the execution times of activities
are independent and identically distributed (i.id.), which must not be the case
in real-life business processes. Hence, this section evaluates the usefulness of
the TNR from a practical point of view. Our experiments show, based on three
real-world datasets, that detecting processing delays and probabilistic variant
mining improve performance analysis based on the discovered models. In the
experiments, we compare the presented approach against models discovered by
state-of-the-art inductive miners [4]. Below, we provide details on the datasets
(Sect. 6.1), outline the experimental setting and procedure (Sect. 6.2), before
presenting the main results (Sect. 6.3).

6.1 Datasets

We utilise three data sources: two event logs that stem from two different
processes of DayHospital, a large cancer outpatient hospital in the United States,
and an event log that comes from the Rambam hospital, a general hospital in
Haifa, Israel.2

The first dataset, named ‘Consult’, corresponds to a patient consultation
process in DayHospital. This process involves several procedures including blood
draw, physical examination, vital signs, and consulting with a health provider.
The process is typically very sequential. The second dataset, named ‘Chemo’,
comes from a chemotherapy treatment process in DayHospital. It is a hybrid
manufacturing-service process. Specifically, in order for a patient to receive
chemotherapy, they must go through activities such as blood draw, examination,
and chemotherapy infusion. During this process the relevant chemotherapeutic
drugs is manufactured. The chemotherapy process exhibits concurrency due to
the need to serve the patient and produce their medications. For the DayHospital
experiments, we used six months of data (03/2014–09/2014).

2 Data is available at http://seeserver.iem.technion.ac.il/databases/HomeHospital/.

http://seeserver.iem.technion.ac.il/databases/HomeHospital/
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The third dataset, named ‘Rambam’, originates from a general hospital com-
prising multiple departments, such as emergency and internal ward. The avail-
able data includes process data in terms of department names, start times, and
completion times, thereby providing a high-level description of a patient’s jour-
ney through the hospital as reflected in the information system. For a thorough
description of the process and its corresponding data see [16]. For the Rambam
hospital, we used a month’s worth of data (04/2014).

6.2 Experimental Setting and Procedure

Below, we instantiate the performance fitness framework by setting its building
blocks (performance measure ψ and loss function l), and describe the experi-
mental procedure.

Setting. As our performance measure ψ, we chose the sojourn time, which is
the total time a case spends in the process. As the loss function, we considered
the squared loss, i.e., l(x, y) = (x − y)2. We mine the baseline models via the
Inductive Miner–life cycle (IMlc) [4]. Our evaluation scenarios comprise three
controlled variables: (1) the dataset, (2) whether to detect delays (TNR approach
vs. IMlc), and (3) whether to use probabilistic variant mining (PVM vs. noise
filtering).

Procedure. The experimental procedure involved the quantification of the per-
formance fitness score (PFS), namely SK,N (L, T, ψ, l), per scenario. In our case,
the PFS corresponds to the average loss in sojourn times. To this end, we discov-
ered and enriched models in correspondence to the 12 aforementioned scenarios.
For example, to assess the scenario of the ‘Consult’ dataset, with delay detection,
and probabilistic variant mining, we construct a process tree based on the TNR
by applying both delay unfolding and PVM. Next, the model was simulated,
case-by-case, with 30 runs per scenario, and the sojourn time of each case was
recorded. Lastly, we quantified the empirical root-mean squared error (RMSE)
to asses the loss.

6.3 Results

Table 3 summarises our experimental results in terms of the RMSE measure for
sojourn time estimation over the 12 scenarios. The ‘Delays’ column gets values of
‘Detected’ (if delay unfolding was used), or ‘NDetected’, otherwise. The ‘PVM’
value of the ‘Noise Handling’ column corresponds to probabilistic variant mining
(Sect. 4.2), while ‘Happy-Path’ corresponds to a 20% noise filtering of variants
based on the IMlc. We show the average RMSE across 30 runs and the average
sojourn times of cases (in minutes for DayHospital, in hours for Rambam). To
scale the accuracy of estimation, we also provide the percentage of error out of
the average sojourn time.

For DayHospital, we observe that PVM dominates the deterministic app-
roach by IMlc (40%–60% improvement in estimation error). This points toward
the ability of the TNR-based approach to improve performance measurement.



18 A. Senderovich et al.

Table 3. Experimental results: scenarios and estimated performance fitness score

Dataset Noise handling Delays Avg sojourn time PFS (RMSE) Prop. to AVG

Consult PVM Detected 73 65 89%

PVM NDetected 73 69 95%

Happy-Path Detected 66 86 130%

Happy-Path NDetected 66 85 129%

Chemo PVM Detected 240 172 72%

PVM NDetected 240 178 74%

Happy-Path Detected 222 233 105%

Happy-Path NDetected 222 229 103%

Rambam PVM Detected 113 233 206%

PVM NDetected 113 234 207%

Happy-Path Detected 96 249 259%

Happy-Path NDetected 96 250 260%

Further, delay detection improves performance fitness only when combined with
probabilistic mining (up to 6% improvement in accuracy); it does not signifi-
cantly improve estimation when a ‘Happy-Path’ model is discovered, as the data
is filtered first and the TNR receives a biased version of the event log. This result
is explained by the fact that deterministic noise filtering removes unlikely paths,
which are typically longer and involve more delays. Thus, the TNR is less likely
to contain delays. Rambam hospital scenarios suffer from low estimation accu-
racy across all scenarios due to large variance in patient sojourn times. Yet, the
results described for DayHospital are repeated across the Rambam scenarios.

7 Related Work

Our work falls under the field of process mining [3], as it provides a temporal
representation for extracting process models from event data. Closest to our
work are discovery algorithms that rely on transactional data to extract control-
flow relations, such as Tsinghua-α [8], Inductive Miner–life cycle [4], and the
Heuristic Miner++ [17].

In this paper, we focus on discovery of timed models for performance analysis
of business processes. This topic was the subject of numerous works in process
mining [5,6,18]. Commonly, the proposed techniques treat control-flow discovery,
and temporal aspects of the event log separately, which results in sub-optimal
results when computing performance measures. To overcome this limitation, we
propose a new formalism, namely the Temporal Network Representation (TNR),
which is based on Allen’s interval algebra [9]. Additional formalisms to represent
temporal aspects of information systems have been proposed in the literature.
These include: generalised interval algebra, temporal networks, fuzzy temporal
knowledge, and time ontology methods, see [19] for an extensive survey. In this
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work, we selected Allen’s algebra as it provides a complete representation of all
pairwise relations between time intervals that is simple and transparent [20].

Another line of work, namely predictive process monitoring, aims at online
forecasts of key performance indicators (KPIs), e.g., the remaining time, and the
next event [21]. Our work is mainly concerned with the ability to reconstruct
performance measures as they were observed in the event log, and thus focuses
on post-mortem analysis.

This paper proposes two techniques that enhance performance-driven dis-
covery based on the TNR, namely delay unfolding and probabilistic variant
mining. Related to the former, a method for detecting (unrecorded) queueing
delays from event logs with missing temporal information is presented in [22]; it
models resource availability via an activity-life cycle representation. The TNR
provides a more general approach to delay detection, as it does not require a
priory knowledge of resource behaviour.

Probabilistic variant mining relates to recent attempts to handle noise in
process discovery, based either on event log filtering [10,13,23], or model abstrac-
tion [24,25]. While these works rely on deterministic reasoning, requiring a user
to decide on over or under representation of process variants in the model, the
TNR enables for a probabilistic framework, which better reflects process hetero-
geneity in the discovered model.

To assess performance-oriented fitness, we proposed the performance fitness
score (PFS) that is derived using a stochastic replay of events logs over process
trees. The idea to calculate fitness based on a replay procedure was first intro-
duced in [26], and later extended based on the notion of alignments [27]. However,
these two approaches do not address the situations when the discovered models
are stochastic, i.e., comprising time distributions and branching probabilities.
The second-pass approach presented in [5] involves simulating a (discovered)
stochastic model to obtain a sample of event logs. These simulated logs are
then compared to the originating event log that was used for discovery, to check
whether the discovered model is a good representation of the event log. However,
the comparison is performed without a formal notion of model-log distance (or
similarity). In our approach, we propose the PFS as a statistic that measures
the distance between event logs and process trees. Further, we show that under
probabilistic assumptions, the TNR produces unbiased model with respect to
the PFS.

8 Conclusion

Targeting the improvement of business processes based on performance analysis,
we introduced a novel model of event logs, namely the temporal network repre-
sentation (TNR). It captures the temporal relations between activities, which is
an essential aspect of performance-oriented process model discovery. To demon-
strate the effectiveness of the TNR, we introduced two applications. First, we
proposed delay unfolding as a means to detect unrecorded processing delays.
Second, we presented probabilistic variant mining (PVM) to preserve perfor-
mance information, while handling noise in event logs. Further, we developed
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a framework for assessing performance fitness of discovered models. We have
shown that under this framework, TNR-based inductive mining is guaranteed
to result in unbiased models with respect to the original event log. We evalu-
ated the approach with three real-world datasets from the healthcare domain.
We have been able to show an up-to 40% percent improvement in sojourn time
estimation, when combining delay detection and PVM.

In future work, we aim at enriching the TNR with workload information to
separate delays stemming from resource queueing and those originating from
synchronisation.
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