
Josep Carmona · Gregor Engels
Akhil Kumar (Eds.)

 123

LN
CS

 1
04

45

15th International Conference, BPM 2017
Barcelona, Spain, September 10–15, 2017
Proceedings

Business Process
Management

Lecture Notes in Computer Science 10445

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7410

Josep Carmona • Gregor Engels
Akhil Kumar (Eds.)

Business Process
Management
15th International Conference, BPM 2017
Barcelona, Spain, September 10–15, 2017
Proceedings

123

Editors
Josep Carmona
Department of Computer Science
Universitat Politècnica de Catalunya
Barcelona
Spain

Gregor Engels
Department of Computer Science
University of Paderborn
Paderborn
Germany

Akhil Kumar
Department of Supply Chain
and Information Systems

Pennsylvania State University
University Park, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-64999-3 ISBN 978-3-319-65000-5 (eBook)
DOI 10.1007/978-3-319-65000-5

Library of Congress Control Number: 2017948188

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9656-254X
http://orcid.org/0000-0003-3572-3789

Preface

We are pleased to present to you the proceedings of the 15th edition of BPM, which
was held in Barcelona during September 10–15, 2017. That this conference is in its
15th year is a clear sign of the maturity of the business process management
(BPM) area. During this time the conference has clearly established itself as the most
important academic event in BPM. It is the premium forum for researchers, practi-
tioners, and developers in this area.

The Program Committee (PC) comprised 21 senior PC members and 103 regular PC
members. We received 116 full paper submissions. Out of all submissions, 19 papers
were accepted or conditionally accepted, with an acceptance rate of 16%. This con-
ference has very rigorous reviewing criteria. Each paper is reviewed by a team com-
prising a senior PC and four regular PC members who engage in a discussion phase
after the initial reviews are prepared. The authors receive four review reports, and a
meta-review that summarizes the reviews and the discussion. In the end, a conference
program is only as good as the PC members. The program chairs are, for the most part,
coordinators of the review process and messengers who relay the recommendations
of the review team to the authors. We were very fortunate to have an excellent set of PC
members who were very diligent and conscientious. We cannot thank them enough for
their support and cooperation. The review process was conducted entirely on the
EasyChair conference management system that was an invaluable resource for us.

There were six main sessions into which the papers were organized, spanning
process modeling, process mining or discovery, process knowledge, and decisions and
understanding. There were also papers that relate to the novel Blockchain paradigm and
business process as a service. The conference program was enriched by talks from three
distinguished keynote speakers: Alan Brown (University of Surrey), Miguel Valdés
(Bonitasoft) and Mathias Weske (HPI Potsdam); along with panel and tutorial sessions.
In conjunction with the main program of BPM, there was an industry track and a BPM
Forum, a sub-track of the conference to host innovative research which has potential to
stimulate discussions. The papers included in the industry track and the forum for
presentation at the BPM Conference will be published in a separate volume.

We are grateful for the generous support of our sponsors: Signavio, Celonis, IBM,
Diputacio de Tarragona, MyInvenio, DCR, Bizagi, CA Technologies, Mysphera and
Springer. We very much hope you will enjoy reading the research papers in this
volume.

September 2017 Josep Carmona
Gregor Engels
Akhil Kumar

Organization

BPM 2017 was organized by the Universitat Politècnica de Catalunya, and took place
in Barcelona, Spain.

Steering Committee

Wil van der Aalst (Chair) Eindhoven University of Technology, The Netherlands
Boualem Benatallah University of New South Wales, Australia
Jörg Desel University of Hagen, Germany
Schahram Dustdar Vienna University of Technology, Austria
Marlon Dumas University of Tartu, Estonia
Manfred Reichert University of Ulm, Germany
Stefanie Rinderle-Ma University of Vienna, Austria
Barbara Weber Technical University of Denmark, Denmark
Mathias Weske HPI, University of Potsdam, Germany
Michael zur Muehlen Stevens Institute of Technology, USA

Executive Committee

Conference Chair

Josep Carmona Universitat Politècnica de Catalunya, Spain

Program Chairs

Josep Carmona Universitat Politècnica de Catalunya, Spain
Gregor Engels Paderborn University, Germany
Akhil Kumar Penn State University, USA

Industry Chairs

Marco Brambilla Politecnico Milano, Italy
Thomas Hildebrandt IT University of Copenhagen, Denmark
Victor Muntès CA Technologies, Spain
Darius Silingas No Magic Europe and ISM UME, Lithuania

Workshops

Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Ernest Teniente Universitat Politècnica de Catalunya, Spain

Tutorial and Panel Chairs

Joaquin Ezpeleta University of Zaragoza, Spain
Dirk Fahland Eindhoven University of Technology, The Netherlands
Barbara Weber Technical University of Denmark, Denmark

Demo Chairs

Robert Clarisó Universitat Oberta de Catalunya, Spain
Henrik Leopold VU University Amsterdam, The Netherlands

Doctoral Consortium Chairs

Antonio Ruiz Cortés University of Seville, Spain
Mathias Weske HPI, University of Potsdam, Germany

Publicity Chairs

Jordi Cabot Open University of Catalonia, Spain
Marcos Sepúlveda Pontificia Universidad Católica de Chile, Chile
Marco Montali Free University of Bozen-Bolzano, Italy

Sponsorship Chairs

Carlos Fernandez-Llatas Universidad Politecnica de Valencia, Spain
Pedro Álvarez University of Zaragoza, Zaragoza
Rubén Mondéjar Universitat Rovira i Virgili, Spain

Co-located Events Chairs

Manuel Lama University of Santiago de Compostela, Spain
Alberto Manuel Microsoft, Lisbon
Antonio Valle G2, Spain

Web and Social Media Chairs

Jorge Munoz-Gama Pontificia Universidad Católica de Chile, Chile
Andrea Burattin University of Innsbruck, Austria

Proceedings Chair

Alexander Teetz Paderborn University, Germany

Senior Program Committee

Marlon Dumas University of Tartu, Estonia
Schahram Dustdar TU Wien, Austria
Avigdor Gal Technion, Israel
Richard Hull IBM T.J. Watson Research Center, USA
Fabrizio Maria Maggi University of Tartu, Estonia
Massimo Mecella Sapienza Università di Roma, Italy

VIII Organization

Jan Mendling Wirtschaftsuniversität Wien, Austria
Marco Montali Free University of Bozen-Bolzano, Italy
Artem Polyvyanyy Queensland University of Technology, Australia
Manfred Reichert University of Ulm, Germany
Hajo A. Reijers Vrije Universiteit Amsterdam, The Netherlands
Stefanie Rinderle-Ma University of Vienna, Austria
Michael Rosemann Queensland University of Technology, Australia
Antonio Ruiz-Cortés University of Seville, Spain
Pnina Soffer University of Haifa, Israel
Jianwen Su University of California at Santa Barbara, USA
Boudewijn Van Dongen Eindhoven University of Technology, The Netherlands
Irene Vanderfeesten Eindhoven University of Technology, The Netherlands
Barbara Weber Technical University of Denmark, Denmark
Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Mathias Weske HPI, University of Potsdam, Germany

Program Committee

Mari Abe IBM Research, Japan
Shivali Agarwal IBM, India Research Lab, India
Ahmed Awad Cairo University, Egypt
Hyerim Bae Pusan National University, South Korea
Bart Baesens KU Leuven, Belgium
Seyed-Mehdi-Reza Beheshti University of New South Wales, Australia
Boualem Benatallah University of New South Wales, Australia
Giorgio Bruno Politecnico di Torino, Italy
Joos Buijs Eindhoven University of Technology, The Netherlands
Andrea Burattin University of Innsbruck, Austria
Jorge Cardoso University of Coimbra, Portugal
Fabio Casati University of Trento, Italy
Jan Claes Ghent University, Belgium
Florian Daniel Politecnico di Milano, Italy
Massimiliano de Leoni Eindhoven University of Technology, The Netherlands
Jochen De Weerdt KU Leuven, Belgium
Patrick Delfmann European Research Center for Information Systems

(ERCIS), Germany
Jörg Desel University of Hagen, Germany
Alin Deutsch University of California San Diego, USA
Chiara Di Francescomarino Fondazione Bruno Kessler-IRST, Italy
Remco Dijkman Eindhoven University of Technology, The Netherlands
Dirk Draheim Tallinn University of Technology, Estonia
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Rik Eshuis Eindhoven University of Technology, The Netherlands
Joerg Evermann Memorial University of Newfoundland, Canada
Dirk Fahland Technische Universiteit Eindhoven, The Netherlands
Marcelo Fantinato University of São Paulo, Brazil

Organization IX

Peter Fettke DFKI/Saarland University, Germany
Hans-Georg Fill University of Vienna, Austria
Walid Gaaloul Télécom SudParis, France
Luciano García-Bañuelos University of Tartu, Estonia
Christian Gerth Osnabrück University of Applied Sciences, Germany
Chiara Ghidini FBK-irst, Italy
María Teresa Gómez-López University of Seville, Spain
Guido Governatori Data61, Australia
Sven Graupner Hewlett-Packard Laboratories, USA
Paul Grefen Eindhoven University of Technology, The Netherlands
Daniela Grigori University of Paris-Dauphine, France
Thomas Hildebrandt IT University of Copenhagen, Denmark
Mieke Jans Hasselt University, Belgium
Anup Kalia IBM T.J. Watson Research Center, USA
Dimka Karastoyanova Kühne Logistics University, Germany
Ekkart Kindler Technical University of Denmark, Denmark
Agnes Koschmider Karlsruhe Institute of Technology, Germany
John Krogstie Norwegian University of Science and Technology,

Norway
Jochen Kuester Bielefeld University of Applied Sciences, Bielefeld
Marcello La Rosa Queensland University of Technology, Australia
Geetika Lakshmanan IBM T.J. Watson Research Center, USA
Manuel Lama Penin University of Santiago de Compostela, Spain
Alexei Lapouchnian University of Toronto, Canada
Ralf Laue University of Applied Sciences Zwickau, Germany
Henrik Leopold VU University Amsterdam, The Netherlands
Rong Liu IBM Research, USA
Irina Lomazova National Research University Higher School

of Economics, Russia
Peter Loos DFKI/Saarland University, Germany
Heiko Ludwig IBM Research, USA
Hamid Motahari IBM Research, USA
Juergen Muench Reutlingen University, Germany
John Mylopoulos University of Toronto, Canada
Nanjangud Narendra Ericsson Research Bangalore, India
Selmin Nurcan Université Paris 1 Panthéon-Sorbonne, France
Hye-Young Paik University of New South Wales, Australia
Oscar Pastor Lopez Universitat Politecnica de Valencia, Spain
Dietmar Pfahl University of Tartu, Estonia
Geert Poels Ghent University, Belgium
Frank Puhlmann Bosch Software Innovations, Germany
Mu Qiao IBM Almaden Research Center, USA
Jan Recker Queensland University of Technology, Australia
Manuel Resinas University of Seville, Spain
Maximilian Roeglinger FIM Research Center, Germany
Shazia Sadiq The University of Queensland, Australia

X Organization

Flavia Santoro Federal University of the State of Rio de Janeiro, Brazil
Rainer Schmidt Munich University of Applied Sciences, Germany
Heiko Schuldt University of Basel, Switzerland
Marcos Sepúlveda Pontificia Universidad Católica de Chile, Chile
Quan Z. Sheng Macquarie University, Australia
Renuka Sindhgatta IBM Research, India
Sergey Smirnov SAP Research, Germany
Marc Sole CA Strategic Research Labs, CA Technologies, Spain
Minseok Song Pohang University of Science and Technology,

South Korea
Harald Störrle Danmarks Tekniske Universitet, Denmark
Heiner Stuckenschmidt University of Mannheim, Germany
Keith Swenson Fujitsu, USA
Samir Tata IBM Research, USA
Pankaj Telang SAS Institute Inc., USA
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Arthur Ter Hofstede Queensland University of Technology, Australia
Lucinéia Heloisa Thom Federal University of Rio Grande do Sul, Brazil
Farouk Toumani LIMOS/Blaise Pascal University, France
Peter Trkman University of Ljubljana, Slovenia
Roman Vaculín IBM T.J. Watson Research Center, USA
Wil van der Aalst Eindhoven University of Technology, The Netherlands
Amy Van Looy Ghent University, Belgium
Jan Vanthienen KU Leuven, Belgium
Hagen Voelzer IBM Research Zurich, Switzerland
Jianmin Wang Tsinghua University, China
Ingo Weber Data61 CSIRO, Australia
Lijie Wen Tsinghua University, China
Karsten Wolf Universität Rostock, Germany
Moe Wynn Queensland University of Technology, Australia
Liang Zhang Fudan University, China

Additional Reviewers

Alexander Norta
Bernardo Nugroho Yahya
Carlos Rodriguez
Chun Ouyang
David Sanchez-Charles
Erik Proper
Gert Janssenswillen
Jaehun Park

Javier de San Pedro
Johannes De Smedt
Julius Köpke
Marigianna Skouradaki
Mauro Dragoni
Mirela Madalina Botezatu
Montserrat Estañol
Pavlos Delias

Riccardo De Masellis
Rick Gilsing
Seyed-Mehdi-Reza

Beheshti
Toon Jouck
Sander Peters
Wasana Bandara

Organization XI

Sponsors

XII Organization

Keynotes

A Leaders Guide to Understanding New
Business Models in the Digital Economy

Alan W. Brown

Surrey Centre for the Digital Economy, University of Surrey, Guildford, UK
alan.w.brown@surrey.ac.uk

Many organizations have been preoccupied in recent years with their repeated efforts to
upgrade to digital technologies, digital media, and digital delivery channels. However,
digital transformation has also opened the opportunity for organizations to question
major assumptions about their business model – the users being served, the experiences
offered to them, and the most efficient ways to deliver those experiences in a coordi-
nated, consistent and cost-effective way. Consequently, real world thinking and
experiences in business model innovation have changed significantly over the past few
years. How can business model innovation can keep pace with changing business
needs? This session explores business model innovation in digital transformation and
presents a range of simple frameworks and models that can be used to help explain core
concepts of business model innovation, and techniques that help accelerate business
model experimentation

Intelligent Continuous Improvement,
When BPM Meets AI

Miguel Valdés

Bonitasoft
miguel.valdes@bonitasoft.com

Artificial Intelligence (AI) technologies are evolving faster than ever thanks to the
maturity of cloud computing, BigData and the accessibility of predictive and machine
learning algorithms and frameworks. But, is BPM software ready to embrace AI?
Through continued modernisation BPM platforms goes beyond traditional process
automation and optimisation use cases to play a key role in digital transformation in
organisations of all sizes. Modern BPM applications requirements include advanced
end user interfaces (UIs), access to big volumes of business data and real time updates
of those processes, UIs and data. AI will be the next major wave of innovation in BPM.
In this session we will discuss the challenges and opportunities involved in the shift
towards the use of AI technologies in BPM. We will particularly cover uses cases in
which AI enables intelligent continuous improvement of business processes and BPM
applications. We will also discuss about pros and cons of different AI technologies
when it relates to BPM.

BPM: Reflections on a Broad Discipline

Mathias Weske

University of Potsdam, Germany
weske@hpi.de

BPM is a broad discipline. Topics addressed in business process management range
from formal methods in computer science to behavioral science methods in manage-
ment. These distant points in the spectrum are linked by information systems engi-
neering methods. Computer science, information systems engineering, and
management share business processes as a common interest, as a joint research area.
There are few disciplines that share this breadth. Under a BPM umbrella, not only
different research topics are addressed, but also different research methods are
employed that ask for different evaluation criteria.

In this talk, the breadth of the BPM discipline is illustrated by highlighting research
results from its sub-fields and discussing their respective research objectives. In the
second part of the talk, the implications of these observations on the BPM conference
are discussed. The goal of our conference series has always been to provide a forum for
all aspects of BPM research. Despite this claim the center of gravity has been initially
in formal aspects of business process models and, more recently, in business process
intelligence. While these research areas will continue to be cornerstones of our con-
ference, an important area of business process management is not well represented:
management aspects that focus on the interplay between process technology, persons,
and organizations. These topics clearly deserve more attention in a conference on
business process – management.

To further develop the conference and to match in the conference structure the
breadth of the field, the Steering Committee proposes a novel structure of BPM con-
ferences. This structure is based on different tracks, each of which has a track chair, a
dedicated program committee, and specific evaluation criteria.

By this new structure we hope to broaden the BPM community and, ultimately, to
be a forum for all aspects of the broad business process management discipline.

Contents

Process Modeling

Temporal Network Representation of Event Logs for Improved
Performance Modelling in Business Processes . 3

Arik Senderovich, Matthias Weidlich, and Avigdor Gal

Synthesizing Petri Nets from Hasse Diagrams. 22
Robin Bergenthum

PE-BPMN: Privacy-Enhanced Business Process Model and Notation. 40
Pille Pullonen, Raimundas Matulevičius, and Dan Bogdanov

Process Mining 1

Learning Hybrid Process Models from Events: Process Discovery
Without Faking Confidence . 59

Wil M.P. van der Aalst, Riccardo De Masellis,
Chiara Di Francescomarino, and Chiara Ghidini

Multi Instance Anomaly Detection in Business Process Executions 77
Kristof Böhmer and Stefanie Rinderle-Ma

Path-Colored Flow Diagrams: Increasing Business Process Insights
by Visualizing Event Logs . 94

Koen Daenen

Assorted BPM Topics

AB-BPM: Performance-Driven Instance Routing for Business
Process Improvement. 113

Suhrid Satyal, Ingo Weber, Hye-young Paik, Claudio Di Ciccio,
and Jan Mendling

Optimized Execution of Business Processes on Blockchain 130
Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas,
and Ingo Weber

Efficient Migration-Aware Algorithms for Elastic BPMaaS. 147
Guillaume Rosinosky, Samir Youcef, and François Charoy

http://dx.doi.org/10.1007/978-3-319-65000-5_1
http://dx.doi.org/10.1007/978-3-319-65000-5_1
http://dx.doi.org/10.1007/978-3-319-65000-5_2
http://dx.doi.org/10.1007/978-3-319-65000-5_3
http://dx.doi.org/10.1007/978-3-319-65000-5_4
http://dx.doi.org/10.1007/978-3-319-65000-5_4
http://dx.doi.org/10.1007/978-3-319-65000-5_5
http://dx.doi.org/10.1007/978-3-319-65000-5_6
http://dx.doi.org/10.1007/978-3-319-65000-5_6
http://dx.doi.org/10.1007/978-3-319-65000-5_7
http://dx.doi.org/10.1007/978-3-319-65000-5_7
http://dx.doi.org/10.1007/978-3-319-65000-5_8
http://dx.doi.org/10.1007/978-3-319-65000-5_9

Uncovering the Hidden Co-evolution in the Work History
of Software Projects . 164

Saimir Bala, Kate Revoredo, João Carlos de A.R. Gonçalves,
Fernanda Baião, Jan Mendling, and Flavia Santoro

Decisions and Understanding

Towards a Holistic Discovery of Decisions in Process-Aware
Information Systems . 183

Johannes De Smedt, Faruk Hasić, Seppe K.L.M. vanden Broucke,
and Jan Vanthienen

Effect of Linked Rules on Business Process Model Understanding 200
Wei Wang, Marta Indulska, Shazia Sadiq, and Barbara Weber

On the Performance Overhead of BPMN Modeling Practices 216
Ana Ivanchikj, Vincenzo Ferme, and Cesare Pautasso

Process Knowledge

Weak, Strong and Dynamic Controllability of Access-Controlled
Workflows Under Conditional Uncertainty . 235

Matteo Zavatteri, Carlo Combi, Roberto Posenato, and Luca Viganò

An Eye into the Future: Leveraging A-priori Knowledge in Predictive
Business Process Monitoring . 252

Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi,
Giulio Petrucci, and Anton Yeshchenko

Analysis of Knowledge-Intensive Processes Focused
on the Communication Perspective . 269

Pedro Henrique Piccoli Richetti, João Carlos de A.R. Gonçalves,
Fernanda Araujo Baião, and Flávia Maria Santoro

Process Mining 2

TESSERACT: Time-Drifts in Event Streams Using Series
of Evolving Rolling Averages of Completion Times 289

Florian Richter and Thomas Seidl

XX Contents

http://dx.doi.org/10.1007/978-3-319-65000-5_10
http://dx.doi.org/10.1007/978-3-319-65000-5_10
http://dx.doi.org/10.1007/978-3-319-65000-5_11
http://dx.doi.org/10.1007/978-3-319-65000-5_11
http://dx.doi.org/10.1007/978-3-319-65000-5_12
http://dx.doi.org/10.1007/978-3-319-65000-5_13
http://dx.doi.org/10.1007/978-3-319-65000-5_14
http://dx.doi.org/10.1007/978-3-319-65000-5_14
http://dx.doi.org/10.1007/978-3-319-65000-5_15
http://dx.doi.org/10.1007/978-3-319-65000-5_15
http://dx.doi.org/10.1007/978-3-319-65000-5_16
http://dx.doi.org/10.1007/978-3-319-65000-5_16
http://dx.doi.org/10.1007/978-3-319-65000-5_17
http://dx.doi.org/10.1007/978-3-319-65000-5_17

Intra and Inter-case Features in Predictive Process Monitoring:
A Tale of Two Dimensions . 306

Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini,
Kerwin Jorbina, and Fabrizio Maria Maggi

Discovering Infrequent Behavioral Patterns in Process Models 324
David Chapela-Campa, Manuel Mucientes, and Manuel Lama

Author Index . 341

Contents XXI

http://dx.doi.org/10.1007/978-3-319-65000-5_18
http://dx.doi.org/10.1007/978-3-319-65000-5_18
http://dx.doi.org/10.1007/978-3-319-65000-5_19

Process Modeling

Temporal Network Representation of Event Logs
for Improved Performance Modelling

in Business Processes

Arik Senderovich1(B), Matthias Weidlich2, and Avigdor Gal1

1 Technion – Israel Institute of Technology, Haifa, Israel
sariks@technion.ac.il, avigal@ie.technion.ac.il
2 Humboldt-Universität zu Berlin, Berlin, Germany

matthias.weidlich@hu-berlin.de

Abstract. Analysing performance of business processes is an impor-
tant vehicle to improve their operation. Specifically, an accurate assess-
ment of sojourn times and remaining times enables bottleneck analysis
and resource planning. Recently, methods to create respective perfor-
mance models from event logs have been proposed. These works are
severely limited, though: They either consider control-flow and perfor-
mance information separately, or rely on an ad-hoc selection of temporal
relations between events. In this paper, we introduce the Temporal Net-
work Representation (TNR) of a log, based on Allen’s interval algebra,
as a complete temporal representation of a log, which enables simultane-
ous discovery of control-flow and performance information. We demon-
strate the usefulness of the TNR for detecting (unrecorded) delays and
for probabilistic mining of variants when modelling the performance of
a process. In order to compare different models from the performance
perspective, we develop a framework for measuring performance fitness.
Under this framework, we provide guarantees that TNR-based process
discovery dominates existing techniques in measuring performance char-
acteristics of a process. To illustrate the practical value of the TNR, we
evaluate the approach against three real-life datasets. Our experiments
show that the TNR yields an improvement in performance fitness over
state-of-the-art algorithms.

1 Introduction

Modern process-aware information systems (PAIS) support the design, enact-
ment, and analysis of business processes in various domains [1]. Based on a for-
malisation of the supported business process in terms of a process model, they
control how the execution of a set of activities is coordinated to reach a certain
outcome for an instance of the process. The operation of business processes can
be improved by modelling their performance. Specifically, an accurate assess-
ment of key performance measures, such as sojourn times and remaining times,
enables bottleneck analysis and optimised resource planning [2].

Recently, to enable performance analysis of business processes, methods that
construct process models from event logs that contain transactional data have
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-65000-5 1

4 A. Senderovich et al.

been proposed [3,4]. Yet, these methods consider control-flow and performance
information separately [5–7]. They first create a process model that captures
causal dependencies between activities (commonly referred to as discovery),
which is later annotated with performance details (referred to as enhancement).
Hence, any bias introduced in control-flow discovery carries over to the perfor-
mance analysis.

To illustrate the problem implied by this 2-step approach, we consider a
claim handling example, where discovery may yield the BPMN model in Fig. 1a.
Annotating the model with activity durations, however, does not capture delays
between actual activity executions. This potentially yields inaccuracies when
conducting performance analysis. That is, once a claim is received (A), a system
may automatically fetch previous claims (C). Yet, the plausibility check (B),
supposed to be done in parallel, involves a knowledge worker, who is not available
immediately. Hence, the start of the activity is delayed (see Fig. 1b). Similarly,
after the automatic status update (D), another staff member needs to enter the
decision (E), which also introduces a delay.

C: Fetch
Previous
Claims

B: Plausibility
Check

D: Update
Claim Status

E: Enter
Decision

A: Receive
Claim

F: Send
Notification

(a)

t

B
C

A

D E

F

Instantaneous
event

Transactional event
(duration of activity)

Processing
delay

(b)

Fig. 1. Claim handling process (a); common actual execution of activities (b).

In transactional event logs that record the start and end of activity exe-
cution, delays are directly visible for individual process instances, as shown in
Fig. 1b. However, such an instance may represent noise in the event log, which
raises the question of how to consider delays on the model-level. When construct-
ing a process model for performance analysis, the observed delays of individual
instances need to be generalised.

The challenge of incorporating delays in the construction of performance
models has been recognised in the literature. Specifically, Tsinghua-α [8] and
variants of the Inductive Miner [4] incorporate performance details by consid-
ering temporal relations between the start and end of activity executions. Yet,
these approaches are limited in two ways: (i) They take an ad-hoc decision on
the type of temporal relation to consider in model discovery (e.g., to distinguish
interleaved and concurrent execution of activities [4]); and (ii) they require a
model to represent a single temporal relation per pair of activities (e.g., two
activities are always interleaved or concurrent [4]).

In this paper, to overcome the above limitations, we introduce the Temporal
Network Representation (TNR) of an event log as a formalism that is grounded in
Allen’s interval algebra [9]. The TNR is a compact representation of all (pairwise)

Temporal Network Representation of Event Logs 5

temporal relations between activity executions as observed in the event log. As
such, it generalises different notions of dependency graphs commonly used in
process model discovery and enables us to incorporate performance information
in terms of processing delays in model discovery. Our contributions and the
structure of the paper are summarised as follows:

– The Temporal Network Representation (TNR) of an event log: Following an
introduction of preliminaries (Sect. 2), in Sect. 3, we present the TNR of
transactional event logs. The TNR generalises common representations of
event logs.

– Inductive Mining with the TNR: In Sect. 4, we propose an algorithm to inte-
grate delay unfolding in inductive mining, exploiting the TNR to include
processing delays explicitly. We then show how the TNR enables probabilistic
variant mining, which handles noisy event logs, but preserves performance
details in the discovered model.

– Measuring Performance Fitness: Sect. 5 introduces a framework for measur-
ing performance fitness between an event log and a model. We also show that
under this framework, TNR-based inductive mining is guaranteed to discover
unbiased models.

To demonstrate the practicality of the TNR, we evaluated our approach
with three real-world healthcare datasets. As detailed in Sect. 6, TNR based
reasoning yields up-to 40% improvement in performance fitness with respect to
existing approaches. Finally, we discuss related work in Sect. 7, before concluding
in Sect. 8.

2 Preliminaries

This section reviews preliminaries for our work in terms of event logs, process
trees as a formalism for process modelling, and Allen’s algebra to reason on
temporal intervals.

Event Logs. We adopt a notion of a transactional event log that relates events
to their activity labels (activities, for short), start times, and completion times.
Let E be the universe of events produced by an information system and let A
be the set of supported activities. Then, by e.a ∈ A, e.s ∈ R

+
0 , and e.c ∈ R

+
0 , we

denote the activity that corresponds to the event, its start time, and completion
time, respectively.

A case ξ ∈ 2E \ ∅ is a finite set of events, assuming that no event may occur
in more than one case and that a case comprises at least one event. An event
log L ⊆ 2E is a set of cases. Table 1 presents an example event log for the claim
handling process in Fig. 1. Note that some of the events are instantaneous (i.e.,
have a duration of 0). We denote by Aξ ⊆ A×N

+ the multi-set of activities that
appear in ξ, namely Aξ = {(e.a, k)|e ∈ ξ} with k being the frequency of e.a in ξ.

Process Trees. To represent the process executed by an information system, we
adopt the notion of a process tree [10] that is enriched with time information.

6 A. Senderovich et al.

Table 1. Example event log for the claim handling process.

Case Activity Start Complete

1 A: Receive Claim 9:05 9:05
1 C: Fetch Previous Claim 9:05 9:10
1 B: Plausibility Check 9:08 9:20
1 D: Update Claim Status 9:20 9:22
1 E: Enter Decision 9:40 12:05
2 A: Receive Claim 10:23 10:23
2 C: Fetch Previous Claim 10:23 10:34
3 A: Receive Claim 10:25 10:25

Case Activity Start Complete

3 B: Plausibility Check 10:25 10:28
3 C: Fetch Previous Claim 10:25 10:30
2 B: Plausibility Check 10:30 10:55
3 D: Update Claim Status 10:30 10:30
2 D: Update Claim Status 10:55 10:55
2 E: Enter Decision 11:10 11:28
2 F: Send Notification 11:28 11:28
1 F: Send Notification 12:05 12:05

Traditionally, a process tree encodes the control-flow of a process in terms of
its possible traces, i.e., sequences of activity executions. We recall the intuition
behind process trees and refer the reader to [10] for a complete formalisation of
their syntax and semantics.

An untimed process tree is a rooted tree, in which the leaf nodes are activities
in Aτ = A∪{τ1, . . . , τn} with τi, 1 ≤ i ≤ n, denoting silent activities that cannot
be observed during the execution of the process (but which may have different
durations, so that they need to be distinguished from one another). All non-leaf
nodes are control-flow operators, denoted by O. Common control-flow operators
are sequence (→), exclusive choice (×), concurrency (∧), interleaving (||) and
structured loops (�). Figure 2 shows the process tree for the BPMN model in
Fig. 1a. Semantics of a process tree is defined by recursively constructing a set
of traces: For a leaf node labelled with a ∈ A, the set of traces contains a
single trace, {〈a〉}, whereas it contains the empty trace {〈〉} for a silent activity.
Semantics of a non-leaf node is formalised by a language function that joins the
traces of the subtrees of the node. For instance, the set of traces of the exclusive
choice operator is given by the union of the trace sets of its children.

→

FED∧
CB

A

Fig. 2. Process tree of the
claim handling process.

We extend process tress by adding durations to
leaf nodes. Each activity a ∈ Aτ is assigned a duration
of the (potentially silent) execution of a, which comes
from a cumulative distribution function (CDF) Da.
This induces a timed semantics of the process tree
in terms of sequences of events. From a trace of the
untimed process tree, a set of events is constructed
by drawing a duration from Da for each activity a ∈
Aτ of the trace and constructing the start time and
completion time as follows: the start time is the completion time of the event
for the previous activity in the trace (or 0, if the activity is the first one) and
the completion time is the start time plus the duration. This way we model
instantaneous activities (with a constant duration of 0) and processing delays
(silent activities of a certain duration).

As another extension to the common model of process trees, we consider its
enrichment with branching probabilities. For our purposes, it suffices to assign
a probability distribution Po to each n-ary exclusive choice operator o ∈ O, so
that Po models the occurrence probabilities of the n children of the operator.

Temporal Network Representation of Event Logs 7

Allen’s Interval Algebra. To reason about temporal relations of events, Allen
presented an interval algebra [9] that defines 13 relations between two intervals.
Each of them formalises a different partial order of the start and completion times
of interval events, see Fig. 3. Instantiating these relations for the above notion
of events, for instance, a pair of events x, y ∈ E is in the overlaps relation, if and
only if, x.s < y.s < x.c < y.c.

X
Y precedes

meets
overlaps

is finished by

contains

starts

is preceded by

is met by

is overlapped by

finishes

during

is started by

Relation Converse

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

equals

x.s x.c
y.s y.c

Fig. 3. Allen’s interval relations, see [11].

The interval relations are mutu-
ally exclusive and partition the Carte-
sian product of events. As shown
in Fig. 3, each relation between two
events, except equals, has a counter-
part that holds for the reversed pair
of events. To avoid this kind of redun-
dancy, in the remainder, we consider
the following 7 out of the 13 relations:
precedes, meets, overlaps, is finished
by, contains, starts, and equals. The set
of these relations is denoted by R.

3 The Temporal Network Representation
of an Event Log

This section introduces our notion of the temporal network representation (TNR)
of an event log. It is based on Allen’s interval relations to capture the temporal
information in the log. We further discuss how the TNR can be collapsed to
obtain commonly used models of event logs, namely the directly-follows graph
and the concurrency graph.

3.1 Definition

The TNR is grounded in the notion of temporal evidence, which is needed when
lifting the interval relations from events to activities. Since in an event log, there
may be many pairs of events related to the same pair of activities, the temporal
evidence captures the frequency of a particular interval relation being observed
among the respective events.

Definition 1 (Temporal Evidence). Temporal evidence is a tuple (R, f) ∈
R × N

+ with R being an interval relation and f being its frequency.

Given an event log, its TNR is a directed graph where nodes are activities
and edge labels assign temporal evidence to the respective pairs of activities.

Definition 2 (Temporal Network Representation (TNR)). Let L be an
event log. Its Temporal Network Representation is a directed, edge-labelled graph
G = (V,E, λ), such that

8 A. Senderovich et al.

– V =
⋃

ξ∈L

⋃
e∈ξ e.a, the nodes are all activities of events of cases in the log;

– E = {(v1, v2) ∈ V × V | ∃ ξ ∈ L : ∃ e1, e2 ∈ ξ : e1.a = v1 ∧ e2.a = v2}, edges
are defined between all pairs of activities that occur jointly in cases;

– λ : E → 2R×N
+
, with λ(d) �→ (R, f), R ∈ R, and f = |{(e1, e2) ∈ E × E |

∃ ξ ∈ L : e1, e2 ∈ ξ : (e1.a, e2.a) = d ∧ (e1, e2) ∈ R}|, the edge labelling maps
temporal evidence as observed in the log to edges.

The TNR of an event log can be constructed incrementally upon the addition of
a new case to an event log. Considering the new information from the log may
introduce additional vertices, additional edges, or increase the frequency of some
temporal evidence.

For the log in Table 1, the TNR is shown in Table 2. Here, the time of an
instantaneous event is considered as a completion time when deriving the interval
relations.

Table 2. Matrix representation of the TNR of the event log in Table 1.

A B C D E F

A {(precedes, 2),
(meets, 1)}

{(meets, 3)} {(precedes, 3)} {(precedes, 2)} {(precedes, 2)}

B {(starts, 1)} {(precedes, 1),
(meets, 2)}

{(precedes, 2)} {(precedes, 2)}

C {(overlaps, 2)} {(precedes, 2),
(meets, 1)}

{(precedes, 2)} {(precedes, 2)}

D {(precedes, 2)} {(precedes, 2)}
E {(is finished by, 2)}
F

3.2 Projections on the TNR

Since the TNR captures all pairwise temporal relations between activities, it
generalises existing models of event logs. These models are typically defined
as dependency graphs, in which the edges encode a particular temporal rela-
tion. Prominent examples used in discovery algorithms such as the Inductive
Miner [10], α-Miner [12], or the Heuristic Miner [13] include the direct-follows
graph and the concurrency graph. In the direct-follows graph, assuming that it
is grounded in completion times of transactional events, a directed edge between
activities x and y encodes that there exists a case ξ ∈ L with two events
e1, e2 ∈ ξ, such that e1.a = x, e2.a = y, e1.c < e2.c, and there is no event
e3 ∈ ξ with e1.c < e3.c < e2.c. The concurrency graph, in turn, contains an
undirected edge for each pair of activities x and y, for which there exists a case
ξ ∈ L and events e1, e2 ∈ ξ with e1.a = x, e2.a = y, and e1.s ≤ e2.s ≤ e1.c ≤ e2.c.

These graphs may be derived from the TNR by projections. A TNR pro-
jection is a function that maps a TNR G = (V,E, λ) to another TNR G′ =
(V ′, E′, λ′), such that V = V ′, E ⊆ E′, whereas the labelling λ′ of G′ is not
constrained.

Temporal Network Representation of Event Logs 9

We first illustrate the derivation of the directly-follows graph [10], assum-
ing that it is grounded in the completion times of activities. This requires two
projections:

(1) For each edge, the temporal evidence for the relations precedes, meets, over-
laps, and contains is aggregated and considered as part of the precedes rela-
tion. That is, the frequencies of all these relations are summed up and yield
the new frequency of the precedes relation. We then remove all edges having
a frequency of 0 for precedes.

(2) On the TNR that contains only edges with temporal evidence related to
precedes, we conduct a transitive reduction. We are left with the directly-
follows graph.

In the same manner, we can also derive the concurrency graph as used by the
life-cycle variant of the Inductive Miner [4]. To this end, the overlaps, is finished
by, contains, starts, and equals relations are aggregated, yielding a new overlaps
relation. Then, all edges not having temporal evidence related to overlaps are
removed.

4 Inductive Mining with the TNR

In this section, we show how the TNR can be used to enhance discovery of
process models via inductive mining. We first introduce how the TNR is used to
make processing delays explicit, before elaborating on the actual construction of
a process tree (Sect. 4.1). Then, we propose probabilistic variant mining based
on the TNR to handle noisy event logs, while preserving performance details
(Sect. 4.2).

4.1 Delay-Aware Inductive Mining

Delay Unfoldings on the TNR. The TNR indicates processing delays by
means of the precedes interval relation. If the TNR contains an edge between
activities x and y with temporal evidence for precedes, it means that there is
a case in the log in which the start and completion times of two transactional
events that represent the occurrence of x and y are ordered, but the occurrence
of y does not start immediately after the occurrence of x completes—there is a
processing delay between x and y.

To make such processing delays explicit, we define a transformation of the
TNR, referred to as delay unfolding. In essence, it inserts a delay activity between
any two activities for which there is an edge with temporal evidence for the
precedes interval relation. This delay activity is then linked to the respective
activities in terms of temporal evidence for the meets relation, with the intuition
being that this activity represents the gap between the occurrences of the original
activities.

However, an activity x will be in the precedes relation with any other activity
that starts after x completes. Therefore, we insert a delay activity between two

10 A. Senderovich et al.

activities x and y solely if there does not exist an activity z, whose occurrence
can be seen as the reason for the time gap between the completion of x and
the start of y. The situation when a delay-driven gap does not exist between
activities x and y would be characterised by one of the following cases:

– There is an activity z that starts after or with the completion of x, while
y starts after or with the completion of z, both are manifested as relations
Rafter = {precedes, meets}; or

– there is an activity z that starts before the completion of x (temporal evidence
is given as Rover = {overlaps, is finished by, contains, starts, equals}),
while y starts after or with the start of z (all relations in R).

Using the above sets of temporal relations, we formally define the transformation
of delay unfolding as follows:

Definition 3 (Delay Unfolding). Given a TNR G = (V,E, λ), the delay
unfolding yields a new TNR G′ = (V ′, E′, λ′), such that:

– V ′ = V ∪ Vδ, where Vδ contains a node δ(x,y) for each edge d = (x, y) ∈ E
with temporal evidence (precedes, f) ∈ λ(d), f > 0, if there do not exist
edges dx = (x, z), dy = (z, y) ∈ E with temporal evidences (Rx, fx) ∈ λ(dx),
(Ry, fy) ∈ λ(dy), fx, fy > 0, and either Rx, Ry ∈ Rafter , or Rx ∈ Rover and
Ry ∈ R;

– E′ = E ∪ Eδ, where Eδ = {(x, δ(x,y)), (δ(x,y), y) | δ(x,y) ∈ Vδ} connects the
new nodes from Vδ with the source and target of the respective edges; and

– λ′(d) = {(R, f) ∈ λ(d) | R
= precedes} for d ∈ E, is the original temporal
evidence other than precedes for all edges in the original TNR; and λ′(d) =
{(meets, f)} for (x, δ(x,y)), (δ(x,y), y) ∈ Eδ, d = (x, y) ∈ E and (precedes, f) ∈
λ(d), with f being the temporal evidence of the new edges.

Figure 4 illustrates the delay unfolding for a part of the example in Table 1.
Here, a delay activity δ is introduced between A and B, representing the time gap
indicated by the temporal evidence for the precedes relation. For all other edges
with evidence for precedes, there are other possible reasons for the respective
time gaps. Considering the edge between B and D as an example: while there is
temporal evidence for a delayed start of D after B (the precedes relation), the
temporal evidence of edges between B and C, and C and D, indicates that this
delay may stem from the execution of C.

Model Construction. Once the delay unfolding on the TNR has made process-
ing delays explicit, a timed process tree is derived. Here, we exploit the idea
of inductive mining (IM), which is a constructive approach to process discov-
ery [4,10,14]. In essence, inductive mining proceeds as follows: given a directly-
follows graph, it recursively identifies cuts in the graph that separate its com-
ponents, induce a partition of the log, and yield the control-flow operators of
the process tree. For each identified component, this procedure is repeated until
trivial components (single activities) are obtained.

Temporal Network Representation of Event Logs 11

A

B

C

D

{(precedes,2), (meets,1)}

{(meets,3)}

{(precedes,1), (meets,2)}

{(precedes,2), (meets,1)}

{(precedes,3)}

{(o
ve

rla
ps

,2
)}

{(s
ta

rts
,1

)}

A

B

C

D

{(meets,1)}

{(meets,3)}

{(precedes,1), (meets,2)}

{(precedes,2), (meets,1)}

{(precedes,3)}{(o
ve

rla
ps

,2
)}

{(s
ta

rts
,1

)}

δ
{(meets,2)}

{(meets,2)}

Delay
Unfolding

Fig. 4. Delay unfolding for a part of the TNR for the log in Table 1.

We adopt this general approach for the TNR after delay unfolding and rely on
the existing algorithms to detect cuts, while integrating the handling of process-
ing delays:

(1) By means of TNR projections, a directly-follows graph and concurrency
graph is derived from the TNR as outlined in Sect. 3.2. Then, a process tree
is built using the IM for transactional event logs [4], which relies on the
concurrency graph to distinguish interleaved from concurrent execution of
activities. The resulting process tree contains the delay activities introduced
as part of the delay unfolding.

(2) For all activities a ∈ A of the obtained process tree, we fit a cumulative
distribution function CDF Da to model the duration. For activities that are
observed in the log, we fit the distribution based on all observed durations
of events, {e.c − e.s | e ∈ ⋃

ξ∈L ξ ∧ e.a = a}. For a delay activity δ(x,y),
the samples to which the distribution is fitted are given as {e2.s − e1.c |
e1, e2 ∈ ξ ∧ ξ ∈ L ∧ e1.a = x ∧ e2.a = y}, i.e., the durations between
the completion of the preceding activity and the start of the succeeding
activity. Every exclusive choice operator is enriched with the corresponding
occurrence probabilities.

(3) Any delay activity δ(x,y) is labelled as a distinguished silent activity,
δ(x,y).a = τi for a unique i ∈ N, to capture that it does not carry any
application semantics.

→

FEτ2D∧
C→

Bτ1

A

Fig. 5. Process tree with delay
activities.

For the above example, the structure of the
timed process trees that results from this proce-
dure is shown in Fig. 5. The model features two
silent activities τ1 and τ2 that represent common
processing delays in handling claims, as outlined
already for a single case in Fig. 1b. The CDFs
assigned to these silent activities model the dura-
tions of these delays.

4.2 Probabilistic Variant Mining

In this part, we consider another angle to utilise the TNR in model discovery:
it can guide the handling of noise in the event log. We observe that common

12 A. Senderovich et al.

approaches to process model discovery strive for understandable models. As a
consequence, when filtering noise in the event log, they tend to represent solely
the most commonly observed behavioural relations between activities in the log.
From the viewpoint of performance modelling, this self-imposed restriction is not
needed. We therefore argue that, in order to improve the representational bias, a
model discovered for performance analysis may incorporate different behavioural
relations explicitly, if there is enough evidence for them. These different relations
may then be weighted following a probabilistic model.

Below, we introduce probabilistic variant mining (PVM), which uses the TNR
to handle noise in inductive mining of process trees. PVM comprises two steps:
(1) a preprocessing step, where a discrete-valued cumulative distribution func-
tion is computed for behavioural relations based on the TNR; (2) a variant
construction step, where this distribution function is used to introduce choices
between subtrees in the resulting model.

Preprocessing. Consider a TNR G = (V,E, λ) that represents an event log L.
The PVF relies on the frequencies defined by the temporal evidence to compute
a discrete-valued cumulative distribution function (dv-CDF) over the interval
relations, F (d) : R → [0, 1], d ∈ E. Let λ(d) = {(R1, f1), . . . , (Rk, fk)} be the
temporal evidence of edge d ∈ E. Without loss of generality, we order the ele-
ments (Ri, fi), 1 ≤ i ≤ k, such that f1 ≤ f2 ≤ . . . fk. The dv-CDF of edge e for
the i-th relation is then defined as:

F (d)(Ri) = F (d)(Ri−1) +
fi

∑k
j=1 fj

, with F (d)(f0) defined as 0.

W

U

V

{(meets ,5)}

{(meets ,5)}

{(
ov

er
la

ps
,3

),

(m
ee

ts
, 2

)}

(a)

→

W∧
VU

(b)

→

W×
→

VU

∧
VU

(c)

Fig. 6. Example TNR (a);
trees obtained with traditional
inductive mining (b) and with
PVM (b).

Variant Construction. Following the gen-
eral approach of inductive mining of process
trees (as recalled in Sect. 4.1, yet potentially
without handling of processing delays), the
control-flow operators of a process tree are
identified by iteratively detecting cuts in a
dependency graph. If such cuts cannot be
detected immediately, edges of the graph may
be considered as noise and filtered according
to a user-defined noise threshold [14]. In any
case, cuts are detected based on a determinis-
tic projection of the dependency graph.

In contrast, PVM defines a probabilistic
means to identify cuts based on different TNR
projections to obtain a direct-follows graph.
In addition to the construction of a direct fol-
lows graph outlined in Sect. 3.2, we also con-
sider a construction solely from relations that
define an empty intersection of intervals (i.e.,
the set of relations Rafter as defined above).

Temporal Network Representation of Event Logs 13

If the resulting graphs give rise to different cuts, PVM constructs an exclusive
choice operator in the process tree, which embeds all subtrees obtained from the
different cuts. Hence, no information is lost in the process. The branching prob-
abilities of this exclusive choice are assigned based on the dv-CDF function F
as determined in the preprocessing step: each choice is assigned the aggregated
probability of the respective pairwise relations between activities.

For illustration, consider the TNR given in Fig. 6a, which defines temporal
evidence for U and V for both, overlaps and precedes. For this setting, the Induc-
tive Miner for transactional event logs [4] would construct the model given in
Fig. 6b, meaning that the relations between B and C are interpreted as con-
current execution. With PVM, it will be noticed that the graph created from
relations that define an empty intersection of intervals also yields a sequence cut.
Thus, the result would be the model in Fig. 6c; with the branching probabilities
of the × operator set to 3

5 for the concurrent (∧) case, and 2
5 for the sequence

case (→). Clearly, this model is less understandable for users. Yet, focusing on
performance modelling, it more accurately captures the behaviour encoded in
the TNR and, thus, shall improve the model from the performance perspective.

5 Performance Fitness and Theoretical Guarantees

To evaluate algorithms for performance-driven process discovery, such as the one
introduced earlier, this section presents a framework for measuring performance
fitness. First, we define performance measures, loss functions, and the notion of
performance replay, which enable us to quantify the distance between an event
log and a process tree (Sect. 5.1). We then prove that TNR-based inductive
mining comes with guarantees on the performance fitness with respect to the
discovered model (Sect. 5.2).

5.1 Framework for Measuring Performance Fitness

We consider performance fitness with respect to a performance measure (e.g.,
the sojourn time of a case) and a loss function (e.g., the bias). This pair is defined
as follows.

Definition 4 (Performance Measure, Loss Function). A performance
measure ψ : 2E \ ∅ → R

+
0 is a function that maps a set of events to a real-

value. A loss function l : R+
0 × R

+
0 → R

+
0 maps a pair of performance measures

to a real-value.

Having defined ψ and l, we aim at a distance measure between an event log and
a model. To this end, we introduce the procedure of performance replay between
a case ξ = {e1, . . . , en} ∈ L and a process tree T . It is based on the assumption
that T contains all activities referenced in events of cases ξ ∈ L. In other words,

14 A. Senderovich et al.

we do not consider replay for noise-filtered process trees. Performance replay
involves the following steps:

(1) We first match the events of ξ to the process tree T . While there may be mul-
tiple leaf nodes to which an event could be matched, we note that matching
needs to ensure consistency of the temporal relation between events and the
semantics of the process tree operators. That is, this matching can be seen
as the reverse operation of constructing a process tree from the TNR, see
Sect. 4.1. As a result, we obtain a subtree Tξ that contains a set of operators
(without exclusive choice) and leaf nodes, so that each event in ξ is matched
to one of the leaf nodes.

(2) The subtree Tξ is then played-out into a replayed case ξT = {eT
1 , . . . , eT

n |
eT
i .a = ei.a}. It contains the same number of events as ξ and every replayed

event eT
i refers to the same activity as the corresponding event ei in ξ.

Activities that appear in the subtree Tξ, but are without matching events
in ξ, are omitted from ξT via a projection of Tξ on these activities.

(3) For the replayed case, we then construct durations. That is, for event eT
i , the

duration xT
i is sampled from the CDF Da of the respective activity a = eT

i .a.
(4) Based on the durations, the start and completion times of the replayed case

are set. To this end, we follow the partial order induced by the operators
in Tξ. The first events have a start time of eT

i .s = 0 and a completion time
of the sampled duration eT

i .c = eT
i .s + xT

i . Subsequent events start at the
maximal completion time of preceding events (in terms of the partial order
induced by Tξ), while their completion time is again determined based on
their start time and sampled duration.

As an example, we consider the replay of a case ξ = {U10
0 , V 7

0 ,W 15
10 } (sub-

scripts and superscripts correspond to start and end times, respectively) on
the process tree in Fig. 6b. The replay procedure will match the events to the
subtree representing concurrent execution of U and V , which yields a replayed
case ξT = {U, V,W}. The durations for U, V,W are then sampled, e.g., as
xU = 7, xV = 1, xW = 4. Respecting the partial order induced by the sub-
tree, the start and completion times of U, V are set first, before the start time
of W is set to be the maximum of completion times of U and V . As a result, the
following replayed case is created ξT = {U7

0 , V 1
0 ,W 11

7 }.
Performance replay is based on a stochastic model. As such, the replayed event

log, defined as LT = {ξT | ∀ ξ ∈ L}, is different for every enactment of the replay
procedure for L over T . To make the event log and the model comparable, we thus
use the following statistical approach. We conduct performance replay K times,
independently, and consider every replayed log LT to be a sample from T . This
results in a sequence of K replayed logs indexed L

(1)
T , . . . , L

(K)
T . Then, we define

performance fitness between an event log L and a process tree T , as a statistical
comparison between L and the sequence of K replayed logs L

(1)
T , . . . , L

(K)
T .

To simplify notation, we assume that the event log L contains N cases with
each case denoted by ξi, i = 1, . . . , N ; the corresponding replayed cases in the
k-th event log are denoted by ξ

(i,k)
T . We are now ready to define the perfor-

mance fitness score, which quantifies the distance between an event log and a
process tree.

Temporal Network Representation of Event Logs 15

Definition 5 (Performance Fitness Score (PFS)). Given an event log L, a
sequence of replayed logs {L

(k)
T }, k = 1, . . . , K, a performance measure ψ, and a

loss function l, the performance fitness score (PFS) between L and T is given by,

SK,N (L, T, ψ, l) =
1
N

N∑

i=1

1
K

K∑

k=1

l(ψ(ξi), ψ(ξ(i,k)T)). (1)

5.2 Guarantees on Performance Fitness for TNR-based Inductive
Mining

It turns out that inductive mining with TNR-based delay unfolding and proba-
bilistic variant mining comes with guarantees on the performance fitness of the
discovered model. To capture these guarantees, we first need the notion of the
expected performance fitness score, defined as follows:

Definition 6 (Expected Performance Fitness Score (E-PFS)). Let ξ be a
case of an event log L and let ξT be the corresponding replayed case. The expected
performance fitness score (E-PFS) is

S(L, T, ψ, l) = E[l(ψ(ξ), ψ(ξT))]. (2)

The randomness in l(ψ(ξ), ψ(ξT)) stems from the fact that we observe an arbi-
trary case from the event log. Assuming that ψ(ξi) are independent and iden-
tically distributed (i.id.) samples from ψ(ξ) and that ψ(ξ(i,k)T) are i.id. samples
from ψ(ξT), the PFS, SK,N (L, T, ψ, l), is an unbiased estimator of S(L, T, ψ, l),
since it estimates an expected value by using the sampled mean [15].

Below, we instantiate the performance fitness framework with the sojourn
time of a case ξ = {e1, . . . , en} ∈ L, i.e., ψ′(ξ) = maxe∈ξ e.c − mine∈ξ e.s, as a
performance measure; and the bias, l′(x, y) = x − y, as the loss function. Then,
we show that a process tree discovered by inductive mining using TNR-based
techniques results in an unbiased process tree (in terms of the E-PFS) with
respect to the originating event log.

Theorem 1. Let L be an event log and let T be a process tree discovered from L
using TNR-based delay unfolding and PVM. For performance fitness in terms of
sojourn times of a case and the bias loss, the corresponding E-PFS is unbiased:
S(L, T, ψ′, l′) = 0.

Theorem 1 implies that SK,N (L, T, ψ′, l′) → 0 as the two sample sizes, N
(number of cases in the event log) and K (number of replays), increase. Below,
we provide a proof sketch, while the full proof can be found in an extended
version of this paper.1

Proof Sketch 1. We wish to prove that for an arbitrary ξ,

E[ψ′(ξ) − ψ′(ξT)] = E[ψ′(ξ)] − E[ψ′(ξT)] = 0. (3)
1 https://hu.berlin/TNR-extended.

https://hu.berlin/TNR-extended

16 A. Senderovich et al.

To this end, we write the expression for the difference between the two sojourn
times ψ′(ξ) − ψ′(ξT) and show that both can be written as the sum of three
components: sequential activity durations, sequential delays, and concurrent set
durations. Since the replayed case and the log case respect the operators in T
and their durations come from the same probability distributions, we show that
the expectation of these three components are equal for both ξ and ξT , which
proves Eq. 3, and the Theorem.

Furthermore, by using similar arguments, we can show that any process tree
T that does not explicitly consider delays or is derived by threshold-based noise
filtering will have a positive bias in terms of sojourn times, when delays have a
positive expected value.

6 Evaluation

The above theoretical guarantees are based on several assumptions that may not
hold in practice. For example, Theorem 1 holds if the execution times of activities
are independent and identically distributed (i.id.), which must not be the case
in real-life business processes. Hence, this section evaluates the usefulness of
the TNR from a practical point of view. Our experiments show, based on three
real-world datasets, that detecting processing delays and probabilistic variant
mining improve performance analysis based on the discovered models. In the
experiments, we compare the presented approach against models discovered by
state-of-the-art inductive miners [4]. Below, we provide details on the datasets
(Sect. 6.1), outline the experimental setting and procedure (Sect. 6.2), before
presenting the main results (Sect. 6.3).

6.1 Datasets

We utilise three data sources: two event logs that stem from two different
processes of DayHospital, a large cancer outpatient hospital in the United States,
and an event log that comes from the Rambam hospital, a general hospital in
Haifa, Israel.2

The first dataset, named ‘Consult’, corresponds to a patient consultation
process in DayHospital. This process involves several procedures including blood
draw, physical examination, vital signs, and consulting with a health provider.
The process is typically very sequential. The second dataset, named ‘Chemo’,
comes from a chemotherapy treatment process in DayHospital. It is a hybrid
manufacturing-service process. Specifically, in order for a patient to receive
chemotherapy, they must go through activities such as blood draw, examination,
and chemotherapy infusion. During this process the relevant chemotherapeutic
drugs is manufactured. The chemotherapy process exhibits concurrency due to
the need to serve the patient and produce their medications. For the DayHospital
experiments, we used six months of data (03/2014–09/2014).

2 Data is available at http://seeserver.iem.technion.ac.il/databases/HomeHospital/.

http://seeserver.iem.technion.ac.il/databases/HomeHospital/

Temporal Network Representation of Event Logs 17

The third dataset, named ‘Rambam’, originates from a general hospital com-
prising multiple departments, such as emergency and internal ward. The avail-
able data includes process data in terms of department names, start times, and
completion times, thereby providing a high-level description of a patient’s jour-
ney through the hospital as reflected in the information system. For a thorough
description of the process and its corresponding data see [16]. For the Rambam
hospital, we used a month’s worth of data (04/2014).

6.2 Experimental Setting and Procedure

Below, we instantiate the performance fitness framework by setting its building
blocks (performance measure ψ and loss function l), and describe the experi-
mental procedure.

Setting. As our performance measure ψ, we chose the sojourn time, which is
the total time a case spends in the process. As the loss function, we considered
the squared loss, i.e., l(x, y) = (x − y)2. We mine the baseline models via the
Inductive Miner–life cycle (IMlc) [4]. Our evaluation scenarios comprise three
controlled variables: (1) the dataset, (2) whether to detect delays (TNR approach
vs. IMlc), and (3) whether to use probabilistic variant mining (PVM vs. noise
filtering).

Procedure. The experimental procedure involved the quantification of the per-
formance fitness score (PFS), namely SK,N (L, T, ψ, l), per scenario. In our case,
the PFS corresponds to the average loss in sojourn times. To this end, we discov-
ered and enriched models in correspondence to the 12 aforementioned scenarios.
For example, to assess the scenario of the ‘Consult’ dataset, with delay detection,
and probabilistic variant mining, we construct a process tree based on the TNR
by applying both delay unfolding and PVM. Next, the model was simulated,
case-by-case, with 30 runs per scenario, and the sojourn time of each case was
recorded. Lastly, we quantified the empirical root-mean squared error (RMSE)
to asses the loss.

6.3 Results

Table 3 summarises our experimental results in terms of the RMSE measure for
sojourn time estimation over the 12 scenarios. The ‘Delays’ column gets values of
‘Detected’ (if delay unfolding was used), or ‘NDetected’, otherwise. The ‘PVM’
value of the ‘Noise Handling’ column corresponds to probabilistic variant mining
(Sect. 4.2), while ‘Happy-Path’ corresponds to a 20% noise filtering of variants
based on the IMlc. We show the average RMSE across 30 runs and the average
sojourn times of cases (in minutes for DayHospital, in hours for Rambam). To
scale the accuracy of estimation, we also provide the percentage of error out of
the average sojourn time.

For DayHospital, we observe that PVM dominates the deterministic app-
roach by IMlc (40%–60% improvement in estimation error). This points toward
the ability of the TNR-based approach to improve performance measurement.

18 A. Senderovich et al.

Table 3. Experimental results: scenarios and estimated performance fitness score

Dataset Noise handling Delays Avg sojourn time PFS (RMSE) Prop. to AVG

Consult PVM Detected 73 65 89%

PVM NDetected 73 69 95%

Happy-Path Detected 66 86 130%

Happy-Path NDetected 66 85 129%

Chemo PVM Detected 240 172 72%

PVM NDetected 240 178 74%

Happy-Path Detected 222 233 105%

Happy-Path NDetected 222 229 103%

Rambam PVM Detected 113 233 206%

PVM NDetected 113 234 207%

Happy-Path Detected 96 249 259%

Happy-Path NDetected 96 250 260%

Further, delay detection improves performance fitness only when combined with
probabilistic mining (up to 6% improvement in accuracy); it does not signifi-
cantly improve estimation when a ‘Happy-Path’ model is discovered, as the data
is filtered first and the TNR receives a biased version of the event log. This result
is explained by the fact that deterministic noise filtering removes unlikely paths,
which are typically longer and involve more delays. Thus, the TNR is less likely
to contain delays. Rambam hospital scenarios suffer from low estimation accu-
racy across all scenarios due to large variance in patient sojourn times. Yet, the
results described for DayHospital are repeated across the Rambam scenarios.

7 Related Work

Our work falls under the field of process mining [3], as it provides a temporal
representation for extracting process models from event data. Closest to our
work are discovery algorithms that rely on transactional data to extract control-
flow relations, such as Tsinghua-α [8], Inductive Miner–life cycle [4], and the
Heuristic Miner++ [17].

In this paper, we focus on discovery of timed models for performance analysis
of business processes. This topic was the subject of numerous works in process
mining [5,6,18]. Commonly, the proposed techniques treat control-flow discovery,
and temporal aspects of the event log separately, which results in sub-optimal
results when computing performance measures. To overcome this limitation, we
propose a new formalism, namely the Temporal Network Representation (TNR),
which is based on Allen’s interval algebra [9]. Additional formalisms to represent
temporal aspects of information systems have been proposed in the literature.
These include: generalised interval algebra, temporal networks, fuzzy temporal
knowledge, and time ontology methods, see [19] for an extensive survey. In this

Temporal Network Representation of Event Logs 19

work, we selected Allen’s algebra as it provides a complete representation of all
pairwise relations between time intervals that is simple and transparent [20].

Another line of work, namely predictive process monitoring, aims at online
forecasts of key performance indicators (KPIs), e.g., the remaining time, and the
next event [21]. Our work is mainly concerned with the ability to reconstruct
performance measures as they were observed in the event log, and thus focuses
on post-mortem analysis.

This paper proposes two techniques that enhance performance-driven dis-
covery based on the TNR, namely delay unfolding and probabilistic variant
mining. Related to the former, a method for detecting (unrecorded) queueing
delays from event logs with missing temporal information is presented in [22]; it
models resource availability via an activity-life cycle representation. The TNR
provides a more general approach to delay detection, as it does not require a
priory knowledge of resource behaviour.

Probabilistic variant mining relates to recent attempts to handle noise in
process discovery, based either on event log filtering [10,13,23], or model abstrac-
tion [24,25]. While these works rely on deterministic reasoning, requiring a user
to decide on over or under representation of process variants in the model, the
TNR enables for a probabilistic framework, which better reflects process hetero-
geneity in the discovered model.

To assess performance-oriented fitness, we proposed the performance fitness
score (PFS) that is derived using a stochastic replay of events logs over process
trees. The idea to calculate fitness based on a replay procedure was first intro-
duced in [26], and later extended based on the notion of alignments [27]. However,
these two approaches do not address the situations when the discovered models
are stochastic, i.e., comprising time distributions and branching probabilities.
The second-pass approach presented in [5] involves simulating a (discovered)
stochastic model to obtain a sample of event logs. These simulated logs are
then compared to the originating event log that was used for discovery, to check
whether the discovered model is a good representation of the event log. However,
the comparison is performed without a formal notion of model-log distance (or
similarity). In our approach, we propose the PFS as a statistic that measures
the distance between event logs and process trees. Further, we show that under
probabilistic assumptions, the TNR produces unbiased model with respect to
the PFS.

8 Conclusion

Targeting the improvement of business processes based on performance analysis,
we introduced a novel model of event logs, namely the temporal network repre-
sentation (TNR). It captures the temporal relations between activities, which is
an essential aspect of performance-oriented process model discovery. To demon-
strate the effectiveness of the TNR, we introduced two applications. First, we
proposed delay unfolding as a means to detect unrecorded processing delays.
Second, we presented probabilistic variant mining (PVM) to preserve perfor-
mance information, while handling noise in event logs. Further, we developed

20 A. Senderovich et al.

a framework for assessing performance fitness of discovered models. We have
shown that under this framework, TNR-based inductive mining is guaranteed
to result in unbiased models with respect to the original event log. We evalu-
ated the approach with three real-world datasets from the healthcare domain.
We have been able to show an up-to 40% percent improvement in sojourn time
estimation, when combining delay detection and PVM.

In future work, we aim at enriching the TNR with workload information to
separate delays stemming from resource queueing and those originating from
synchronisation.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

2. Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S.,
Bunnell, C.A.: Conformance checking and performance improvement in scheduled
processes: a queueing-network perspective. Inf. Syst. 62, 185–206 (2016)

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

4. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information
in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol.
256, pp. 204–217. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1 17

5. Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

6. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-45005-1 27

7. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predict-
ing delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 42–57. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 4

8. Wen, L., Wang, J., van der Aalst, W.M., Huang, B., Sun, J.: A novel approach for
process mining based on event types. J. Intell. Inf. Syst. 32(2), 163–190 (2009)

9. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–
843 (1983)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38697-8 17

11. Alspaugh, T.A.: Software support for calculations in Allen’s interval algebra (2005)
12. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process

models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
13. Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the

heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report
WP 166, pp. 1–34 (2006)

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). doi:10.1007/978-3-319-06257-0 6

http://dx.doi.org/10.1007/978-3-319-42887-1_17
http://dx.doi.org/10.1007/978-3-642-45005-1_27
http://dx.doi.org/10.1007/978-3-319-07881-6_4
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-319-06257-0_6

Temporal Network Representation of Event Logs 21

15. Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Top-
ics, vol. 2. CRC Press, Boca Raton (2015)

16. Armony, M., et al.: On patient flow in hospitals: a data-based queueing-science
perspective. Stoch. Syst. 5(1), 146–194 (2015)

17. Burattin, A.: Heuristics miner for time interval. In: Process Mining Techniques in
Business Environments: Theoretical Aspects, Algorithms, Techniques and Open
Challenges in Process Mining. LNBIP, vol. 207, pp. 85–95. Springer, Cham (2015).
doi:10.1007/978-3-319-17482-2 11

18. van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

19. Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Commun.
7(1), 4–28 (1994)

20. Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54(1–2), 199–
227 (1992)

21. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 31

22. Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A., van der
Aalst, W.M.P.: Discovering queues from event logs with varying levels of infor-
mation. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp.
154–166. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1 13

23. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75183-0 24

24. Fahland, D., Van Der Aalst, W.M.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

25. Senderovich, A., Shleyfman, A., Weidlich, M., Gal, A., Mandelbaum, A.: P3-Folder:
optimal model simplification for improving accuracy in process performance pre-
diction. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850,
pp. 418–436. Springer, Cham (2016). doi:10.1007/978-3-319-45348-4 24

26. Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

27. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: Rosa, M., Soffer, P. (eds.) BPM
2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36285-9 15

http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-319-42887-1_13
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-319-45348-4_24
http://dx.doi.org/10.1007/978-3-642-36285-9_15
http://dx.doi.org/10.1007/978-3-642-36285-9_15

Synthesizing Petri Nets from Hasse Diagrams

Robin Bergenthum(B)

FernUniversität in Hagen, Hagen, Germany
robin.bergenthum@fernuni-hagen.de

Abstract. Synthesis aims at producing a process model from specified
sample executions. A user can specify a set of executions of a system in
a specification language that is much simpler than a process modeling
language. The intended process model is then constructed automatically.

Synthesis algorithms have been extensively explored for cases where
the specification language is a reachability graph or a sequential lan-
guage. Concerning synthesis from partial languages, however, there is a
significant gap between theory and practical application. In the litera-
ture, we find two different synthesis methods for partial languages, but
both have poor runtime even in reasonably sized practical examples. In
this paper, we introduce a new and more efficient synthesis algorithm for
partial languages based on Hasse diagrams.

1 Introduction

Complex business processes are often modeled by means of Petri nets [1,3,17,29,
30]. Petri nets have formal semantics, an intuitive graphical representation, and
are able to express concurrency among the occurrence of actions. Petri nets are
the formal basis for many workflow modeling languages. However, constructing a
Petri net model for a real world process is a costly and error-prone task [1,3,28].

Fortunately, whenever we model a system, there are often some associated
descriptions or even specifications of the desired processes. There may be log-
files of recorded behavior, example runs, or product specifications describing use
cases. Such specifications can be formalized by a set of words, a reachability
graph, or a partial language. Yet, only partial languages are able to explicitly
express concurrency between events. Thus, partial languages have drawn much
attention recently [5,20].

If a specification is incomplete or contains so-called noise, there are algorithms
developed in the area of process mining [1,2] to still automatically generate a
suitable business process model. If a specification is complete (i.e. is the desired
behavior), we can synthesize a model. The synthesis problem is to compute a
process model so that: (A) the specification is a subset of the language of the
generated model and (B) the generated model has minimal additional behavior.

To showcase a typical use case of synthesis-based model generation, we
assume a coffee brewing process together with a domain expert on this process
called Robin. Robin has been brewing coffee for years, but just recently received
a training in process modeling to document standard processes in his depart-
ment. Robin observes a sample execution of his process and records the following
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 22–39, 2017.
DOI: 10.1007/978-3-319-65000-5 2

Synthesizing Petri Nets from Hasse Diagrams 23

sequence of events: grind beans, unlock machine, empty strainer, clean coffee pot,
get water with coffee pot, fill kettle, fill strainer, assemble and turn on. In a sec-
ond sample, he uses a glass pot (instead of the coffee pot) to fetch water from the
kitchen. With this in mind, Robin builds a naive Petri net-like process model of
his process depicted in Fig. 1. All actions of the process are ordered in a sequence
and there is an XOR-split modeling the choice between the two transitions get
water with coffee pot and get water with glass pot.

s
grind
beans

unlock
machine

empty
strainer

clean
coffee pot

p1 getwater
with

coffee pot

getwater
with

glass pot

p2
fill

kettle
fill

strainer

assemble
and

turn on

Fig. 1. Petri net-like process model of the coffee brewing process.

We (modeling experts) try to rate the validity of Robin’s model. We realize
that most of the modeled dependencies may be superfluous. For example, unlock-
ing the coffee machine usually does not depend on grinding beans. Cleaning the
coffee pot only depends on unlocking the machine. What is worse, some of these
dependencies may change if we consider different executions of the process. In
a scenario where we use the coffee pot to get water from the kitchen, the event
fill kettle depends on the sequence of actions unlock coffee machine, clean coffee
pot, and get water with coffee pot. In another scenario where we use the addi-
tional glass pot to fetch water, the event fill kettle only depends on unlocking
the machine and getting water. Thus, the relation between the occurrences of
fill kettle and clean coffee pot has changed.

There are many possible pitfalls in this small example. Even if Robin under-
stands the concepts that may cause trouble here, he most likely will not be able to
adapt his model accordingly. To tackle this problem, we apply a synthesis-based
model generation approach. We revisit both initially observed sample executions
and depicted them in Fig. 2. In a next step, we ask Robin to delete unnecessary
dependencies between observed events. With his expert knowledge on the process
at hand, he for example starts to delete the dependency between grind beans and
unlock machine in the first sequence, thus creating a partial order step by step.

grind
beans

unlock
machine

empty
strainer

clean
coffee pot

get water
coffee pot

fill
kettle

fill
strainer

assemble
and turn on

grind
beans

unlock
machine

empty
strainer

clean
coffee pot

get water
glass pot

fill
kettle

fill
strainer

assemble
and turn on

Fig. 2. Observed events of the coffee brewing process.

24 R. Bergenthum

Robin continues to delete all superfluous dependencies from both observed
sequences and finally comes up with the two labeled Hasse diagrams depicted in
Fig. 3. Every labeled Hasse diagram specifies a different run of the coffee brewing
process. In the first run, we grind beans and unlock the coffee machine. Once
the machine is unlocked, we empty the strainer and clean the coffee pot. After
it is cleaned, we fetch water from the kitchen using the coffee pot. When the
strainer and the kettle are filled, we assemble and turn on the coffee machine.
Every arc models a dependency between the occurrence of the related actions
and unordered events occur concurrently. In the second run, we use a glass pot
(instead of the coffee pot) to fetch water from the kitchen. This activity does not
depend on unlocking or cleaning the coffee pot. We can get water right at the
beginning of this sample run. Altogether, Fig. 3 depicts a complete and intuitive
specification of our coffee brewing process.

grind
beans

unlock
machine

empty
strainer

fill
strainer

clean
coffee pot

get water
coffee pot

fill
kettle

assemble
and turn on

grind
beans

unlock
machine

empty
strainer

fill
strainer

clean
coffee pot

get water
glass pot

fill
kettle

assemble
and turn on

Fig. 3. Two labeled Hasse diagrams, i.e. a specification of the coffee brewing process.

The last step in a synthesis-based model generation approach is to construct
a model matching Robin’s specification, thus solving the synthesis problem. Such
a model offers an integrated view of the process at hand, is more compact, can
be analyzed by well-known Petri net algorithms, and can serve as an input for
workflow engines.

In this paper, we present a new synthesis technique to automatically trans-
form a specification into a valid process model. The main benefit is that single
executions are much easier to model than the complex system itself. To confirm
this claim, we take a look at the model depicted in Fig. 4 modeling the coffee
brewing process specified in Fig. 3. This model is generated using the algorithm
presented in the remainder of this paper. We will recall Petri nets and their par-
tial language in the preliminaries; here, it is sufficient to state that this model
has exactly the specified behavior of the coffee brewing process.

Taking a look at the literature, scenario-based modeling approaches are an
acknowledged research topic. There is a vast variety of specialized approaches

Synthesizing Petri Nets from Hasse Diagrams 25

p2
unlock

machine
p6

clean
coffee pot

p9
assemble

and turn on3

p5
empty
strainer

p4
grind
beans

p1
fill

strainer2

p7

get water
coffee pot

p8

fill
kettle

p3

get water
glass pot

p10

p11

Fig. 4. A marked p/t-net modeling a coffee brewing process.

using different specification languages and process models (see for example
[15,16,22,23]). All these approaches have in common that they assume the spec-
ification to be valid and rather complete. This is the main requirement for apply-
ing precise generation algorithms like synthesis or folding methods. The theory
of the related synthesis algorithms is called region theory [4,21]. Region theory
has been extensively explored for reachability graphs and sequential languages.
There are many non-trivial theoretical results, notions, case studies, as well as
tools like ProM [19], Genet [14], or Viptool [10] (see for example [11–13,31,32] for
some recent publications). Concerning region theory for partial languages, how-
ever, there is a significant gap between theory and practical application. There
are two different notions of regions for partial languages: tokenflow regions [9]
and transition regions [8,9]. Yet, both related algorithms perform poorly even
in reasonably sized practical examples [8]. In Sect. 3, we introduce a synthesis
algorithm based on a new concept called compact regions. The name stems from
the fact that while tokenflow regions relate to occurrence nets and transition
regions relate to step sequences, the new notion relates to compact tokenflows
[6,7] and Hasse Diagrams, i.e. a much more compact representation of a partial
language. We show that the concept of compact regions introduced here leads
to a much faster synthesis algorithm.

The paper is organized as follows: Sect. 2 introduces Petri nets, their partial
language, and the synthesis problem. In Sect. 3, we recall the concept of compact
tokenflows and introduce compact regions. We prove that compact regions solve
the synthesis problem for Petri nets and partial languages. At the end of Sect. 3,
we deduce our synthesis algorithm from the new definition of compact regions. In
Sect. 4, we discuss the runtime of the new algorithm. We compare the algorithm
to its predecessors i.e. algorithms based on transition regions and (ordinary)
tokenflow regions. We implement all synthesis techniques in a tool called MoPeBs
Eagle Owl and present runtime tests.

26 R. Bergenthum

2 Preliminaries

Let f be a function and B be a subset of the domain of f . We write f |B to
denote the restriction of f to B. We call a function m : A → N a multiset
and write m =

∑
a∈A m(a) · a to denote multiplicities of elements in m. Let

m′ : A → N be another multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a)
holds. We denote the transitive closure of an acyclic and finite relation < by <∗.
We denote the skeleton of < by <�. The skeleton of < is the smallest relation �
such that �∗ =<∗ holds. Let (V,<) be some acyclic and finite graph, (V,<�) is
called its Hasse diagram. We model business processes by p/t-nets [3,18,29,30].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W) where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅ holds,
and W : (P × T) ∪ (T × P) → N is a multiset of arcs. A marking of (P, T,W) is
a multiset m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0)
a marked p/t-net and m0 the initial marking of N .

Figure 4 depicts a p/t-net modeling a coffee brewing process. Transitions are
rectangles, places are circles, the multiset of arcs is represented by weighted
arcs, and the initial marking is represented by black dots called tokens. There is
a simple firing rule for transitions of a p/t-net: let t be a transition of a marked
p/t-net (P, T,W,m0). We denote ◦t =

∑
p∈P W (p, t) · p the weighted preset of t.

We denote t◦ =
∑

p∈P W (t, p) · p the weighted postset of t. A transition t is
enabled (can fire) at marking m if m ≥ ◦t holds. Once transition t fires, the
marking changes from m to m′ = m − ◦t + t◦. In our example p/t-net, the
transitions grind beans, unlock machine, and get water with glass pot can fire at
the initial marking. If unlock coffee machine fires, this removes the token from
the place in its preset and produces two new tokens: one token in the preset
of empty strainer and another token in the preset of clean coffee pot. As soon
as get water glass pot fires, the token from the lower left place is removed and
one token is produced in the preset of fill kettle. Note: firing get water glass pot
disables transition get water coffee pot for the rest of this process. Concerning
arc weights, the transition assemble and turn on is enabled if there are at least
three tokens in the rightmost place p9. Repeatedly processing the firing rule
produces firing sequences. These firing sequences are the most basic behavioral
model of Petri nets. Let N be a marked p/t-net, the set of all initially enabled
firing sequences of N is the sequential language of N .

Petri nets and most business process modeling languages are able to express
concurrency of the occurrences of transitions. For example, transitions grind
beans and unlock machine can fire independently from one another. Roughly
speaking, they can fire without any order while not sharing resources. However,
firing sequences are not able to capture or describe such behavior. The common
behavioral model for partially ordered behavior of Petri nets is a so-called process
nets [25]. A process net is a Petri net modeling only one single partially ordered
run of a marked p/t-net. For a formal definition of process nets we refer to
[25,30]. Here, as an example, we depict a process net of our coffee brewing Petri
net of Fig. 4.

Synthesizing Petri Nets from Hasse Diagrams 27

Every place of a process net relates to a token of the related p/t-net. For
example in Fig. 5, there are three places labeled p9 in the preset of the transition
assemble and turn on. The set of process nets of a p/t-net is called its unfolding.
Events, loops, tokens, and conflicts are unfolded to present single executions of
the related net.

p2
unlock

machine

p6

p11

clean
coffee pot

p7

get water
coffee pot

p8
fill

kettle
p9

assemble
and turn on

p5
empty
strainer

p4

fill
strainer

p4

grind
beans

p1 p9

p9

p3

p10

Fig. 5. One process net of the coffee brewing process.

If we abstract from the places of a process net related to a p/t-net N , we have
a set of events arranged in a partial order. Just like some valid firing sequence,
this partially ordered set of events is enabled in the p/t-net. In other words,
we can replay such a partial order by firing transitions of N where unordered
parts of the partial order can fire concurrently. The set of labeled partial orders
induced by all processes of N is the partial language of N . For example, the left
half of Fig. 3 depicts the labeled Hasse diagram representing the partial order
underlying Fig. 5. Thus, this labeled partial order is in the partial language of
the p/t-net depicted in Fig. 4.

Definition 2. Let T be a set of labels. A labeled partial order (lpo) is a triple
lpo = (V,<, l) where V is a finite set of events, < ⊆ V × V is a transitive and
irreflexive relation, and the labeling function l : V → T assigns a label to every
event.

Definition 3. Let K = (C,E, F, ρ) be a process net of a marked p/t-net
(P, T,W,m0) where C is a set of conditions, E is a set of events, F is a set of
arcs, and ρ : (C ∪E) → (P ∪T) is a labeling function. The lpo (E,F ∗|E×E , ρ|E)
is the process lpo of K.

Let N be a marked p/t-net and LΠ(N) be the set of all process lpos of N .
L(N) = {(E,<, l)|(E,<, l) an lpo, (E,<′, l) ∈ LΠ(N), <′⊆<} is the partial lan-
guage of N .

As we already pointed out in the introduction, our goal is to synthesize a p/t-
net from a specification describing partially ordered behavior. The most suitable
manner to represent a partial language is by means of labeled Hasse diagrams
(see Fig. 2). A labeled Hasse diagram is a finite set of events ordered by the

28 R. Bergenthum

skeleton of a partial order. Clearly, the transitive closure of a Hasse diagram is
an lpo. Thus, the prefix- and sequentialisation-closure of a set of labeled Hasse
diagrams is a partial language.

Definition 4. A triple run = (V,<, l) is a labeled Hasse diagram if (V,<∗, l) is
an lpo and <�=< holds. A finite set of labeled Hasse diagrams is a specification.
Let run = (V,<, l) be a labeled Hasse diagram, we define run∗ = (V,<∗, l).

Definition 5. Let N be a marked p/t-net and S = {run1, . . . , runn} be a spec-
ification. We write S ⊆ L(N) iff {run∗

1, . . . , run∗
n} ⊆ L(N) holds.

Finally, we are able to define the synthesis problem. The synthesis problem
is to construct a p/t-net such that its behavior matches a specification. If there
is no such p/t-net, we construct a p/t-net such that its behavior includes the
specification and has minimal additional behavior.

Definition 6. Let S be a specification, the synthesis problem is to compute a
marked p/t-net N such that the following conditions hold: S ⊆ L(N) and for all
marked p/t-nets N ′ : L(N)\L(N ′) �= ∅ =⇒ S �⊆ L(N ′).

3 Compact Regions and Synthesis Algorithm

The algorithm presented in this paper is based on the theory of regions [21].
For an introduction to region theory, we refer the reader to [4]. As stated in
the introduction, the input to our algorithm is a set of labeled Hasse diagrams
(see Fig. 3). The first step is to construct a transition for every label to get
an initial p/t-net without places. The language of this net includes arbitrary
behavior because all the transitions have an empty preset and can fire in any
order. Obviously, we need to add places and arcs to restrict the behavior of this
initial net. To solve the synthesis problem, we are only allowed to add places
and connected arcs that do not inhibit our specification.

Definition 7. Let S be a specification and N = (P, T,W,m0) be a marked p/t-net.
A place p ∈ P is called feasible for S iff S ⊆ L(({p}, T,W |({p}×T)∪(T×{p}),m0(p)))
holds. Let S be a specification and N = ({p}, T,W,m0) be a marked one-place
p/t-net. We call N feasible for S iff p is feasible for S.

If we are able to identify feasible places, we can add these to our initially
placeless p/t-net. These places restrict the behavior, yet such a net will still be
able to execute all the labeled Hasse diagrams of the specification.

Remark 1. Let S be a specification and let a set of p/t-nets {({p1},
T,W1,m1), . . . , ({pn}, T,Wn,mn)} be feasible for S. Let N = (

⋃
i{pi}, T,

∑
i Wi,∑

i mi) be the union of all feasible nets, every place of N is feasible and S ⊆ L(N)
holds.

Synthesizing Petri Nets from Hasse Diagrams 29

Theoretically, we could restrict the behavior of the initial p/t-net by adding
the set of all feasible places. This would guarantee that the behavior of the net
cannot be restricted further without excluding some executions of the specifica-
tion. This is a fundamental theorem of region theory (see for example [4]).

Theorem 1. Let S be a specification and T be its set of labels. The p/t-net
which is the union of all p/t-nets feasible for S is a solution of the synthesis
problem.

Practically, we need to construct a finite p/t-net with the same behavior
as the union-of-all-feasible-places p/t-net. For partial languages, there are two
strategies to tackle this problem: We can either calculate a basis of all feasible
places and add them to the initial set of transitions. This is always possible and
the basis is always finite. According to the firing rules of Petri nets, this net
behaves like the infinite p/t-net. In other words, the finite basis p/t-net also
solves the synthesis problem. Or we can use the technique of so-called wrong
continuations. Roughly speaking, the set of wrong continuations is the border
between the specified and all other behaviors. The set of wrong continuations is
finite as long as the specification is finite as well. For each wrong continuation, we
add one feasible place, thus excluding the wrong continuation from the language
of the constructed net. The resulting finite p/t-net solves the synthesis problem
as well.

The next step of our algorithm is to characterize the set of all feasible places.
To develop an efficient synthesis algorithm, we rely on the behavioral model of
compact tokenflows [6,7]. A compact tokenflow is a distribution of tokens along
the Hasse diagram of a labeled partial order. A labeled Hasse diagram is in
the partial language of a p/t-net if there is a compact tokenflow distributing
tokens such that three conditions hold: first, every event receives enough tokens,
second, no event has to pass too many tokens, and third, the initial marking is not
exceeded. Tokens must be received from the particular presets of events. Thus,
we ensure that consumed tokens are available before the actual event occurs. If a
transition produces tokens, the related events are allowed to produce tokenflow
in the Hasse diagram and pass these tokens to their particular postsets. If an
event receives tokens, it consumes the tokenflow needed and passes the redundant
tokenflow to later events. Tokens of the initial marking are free for all, i.e. any
event can consume tokens from the initial marking.

Definition 8. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l)
be a labeled Hasse diagram such that l(V) ⊆ T holds. A compact tokenflow is
a function x : (V ∪ <) → N. x is compact valid for p ∈ P iff the following
conditions hold:

(i) ∀ v ∈ V : x(v) +
∑

v′<v x(v′, v) ≥ W (p, l(v)),
(ii) ∀ v ∈ V :

∑
v<v′ x(v, v′) ≤ x(v) +

∑
v′<v x(v′, v) − W (p, l(v)) + W (l(v), p),

(iii)
∑

v∈V x(v) ≤ m0(p).

run is compact valid for N iff there is a compact valid tokenflow for every p ∈ P .

30 R. Bergenthum

grind
beans

unlock
machine

empty
strainer

fill
strainer

clean
coffee pot

get water
coffee pot

1
fill

kettle

1

assemble
and turn on

1

2

grind
beans

unlock
machine

empty
strainer

fill
strainer

clean
coffee pot

get water
glass pot

fill
kettle

assemble
and turn on

1

1

1

Fig. 6. Two valid compact tokenflows for place p9 of the marked p/t-net of Fig. 4.

For an example of a compact tokenflow, we consider place p9 of Fig. 4 and
depict two related compact valid tokenflows for the two labeled Hasse diagrams
introduced earlier in Fig. 6. We take a look at Fig. 4 and only consider p9 and
its related arcs. We see that all events labeled assemble and turn on need to
receive three tokens, whereas all events labeled fill strainer, clean coffee pot, or
fill kettle can produce one token. In the Hasse diagrams of Fig. 5, tokenflow is
depicted as integers on the related arcs and events (the integer 0 is not shown).
According to the depicted tokenflow, in the first diagram fill strainer and clean
coffee pot create one token each. The event get water coffee pot cannot create
tokens for p9, but receives a token from clean coffee pot and passes this token
to fill kettle. The event fill kettle receives one token and produces another one.
Thus, fill kettle passes two tokens to assemble and turn on. Altogether, assemble
and turn on receives three tokens and all the conditions for a valid compact
tokenflow hold for p9. All in all, we need to construct eleven compact tokenflows
related to the eleven places of the p/t-net of Fig. 4 to deduce that this labeled
Hasse diagram is in the language of the p/t-net. In the second Hasse diagram
of Fig. 6, three tokens directly reach the event labeled assemble and turn on.
Again, all conditions for a valid compact tokenflow hold for p9. Compared to the
notion of process nets [25] and to the notion of (ordinary) tokenflows [26,27],
the main advantage of compact tokenflows is that they only consider the Hasse
diagrams of the specification. Process nets as well as ordinary tokenflows need to
consider the complete (i.e. transitive) relation. Previous work [6,7] proves that
these three notions are equivalent, i.e. they all define the same partial language.
For the proof, we refer to [6] but state the following theorem.

Theorem 2. The language of a marked p/t-net is well-defined by the set of
compact valid labeled Hasse diagrams.

In our algorithm we take advantage of compact tokenflows and define a new
notion of regions, i.e. compact regions, for partial languages.

Definition 9. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification, T be its
set of labels, and p be a place. We denote V ′

i the set of events with an empty prefix

Synthesizing Petri Nets from Hasse Diagrams 31

in (Vi, <i, li). A function r : (
⋃

i(V
′
i ∪ <i) ∪ (T × {p}) ∪ ({p} × T) ∪ {p}) → N

is a compact region for S iff ∀i ∈ N : r|{V ′
i ∪<i} is compact valid for p in

({p}, T, r|(T×{p})∪({p}×T), r(p)).

We reconsider our sample brewing process depicted in Fig. 5. We assume,
both Hasse diagrams are the input to our synthesis algorithm. The main idea
of the algorithm is to construct compact regions. In this example, we imple-
ment the domain of a compact region by 41 non-negative integer unknowns.
The first 19 unknowns represent a place. A place may have one weighted arc
leading to each of the nine transitions related to the labels of our example,
one weighted arc coming from each of the nine transitions, and an additional
unknown for its initial marking. The next ten unknowns represent a compact
tokenflow of the first Hasse diagram. One unknown for each of the eight arcs and
two additional unknowns for each of the two minimal events. The last twelve
unknowns represent a compact tokenflow of the second Hasse diagram. Again,
one unknown for each of the nine arcs and three additional unknowns for each
of the three minimal events. Only if all 41 values of these unknowns relate to
two compact tokenflows valid for the defined place, this vector is a compact
region. For example, assume a fixed ordering of all 41 unknowns, the vector
(0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0) may be a compact region. Assuming a correct ordering of all unknowns,
the first third of this vector defines the arc weights of p9 depicted in Fig. 3. The
second third defines the compact tokenflow on the left side of Fig. 5. The last
third defines the compact tokenflow on the right side of Fig. 5.

To state the correctness of our synthesis algorithm we have to prove that if the
compact tokenflows are valid for the defined place, a region defines a feasible place.

Theorem 3. Let S be a specification and T be its set of labels. Every compact
region r for S defines a feasible p/t-net Nr = ({p}, T,W,m0) and vice versa.

Proof. Let r be a compact region. For every labeled Hasse diagram in S, there is a
valid compact tokenflow r|{V ′

i ∪<i} of p in Nr = ({p}, T, r|(T×{p})∪({p}×T), r(p)).
S ⊆ L(Nr) holds and so Nr is feasible for S.

Let N = ({p}, T,W,m0) be a feasible p/t-net such that S ⊆ L(N) holds.
There is a valid compact tokenflow ri for every labeled Hasse diagram of S.
Without loss of generality, every ri is zero on events with a non-empty prefix.
This holds because as long as some valid compact tokenflow is positive for some
event e with a non-empty prefix, move this tokenflow to an event e′ in its direct
prefix and adopt the compact tokenflow on the arc (e′, e) accordingly. The union
r =

⋃
i ri ∪ W ∪ m0 is a compact region. �

Every region is a vector of numbers respecting the conditions (i), (ii), and
(iii) of Definition 9. With this in mind, we are able to express all feasible p/t-
nets by a single inequality system. Again, in this system, there is an unknown
for every element in the domain of a compact region, i.e. one unknown for every
minimal event, another unknown for every arc, two unknowns for every label,
and a single unknown for the initial marking. The inequality system is built from

32 R. Bergenthum

the inequalities defined in Definition 8. According to (i) and (ii), there are two
inequalities for every event of the specification. According to (iii), there is another
inequality for every labeled Hasse diagram. The set of positive integer solutions of
this inequality system is the set of all feasible nets. We call this inequality system
the compact region inequality system. Every solution of this system defines one
feasible place. Altogether, the compact region inequality system has 41 unknowns
as well as 34 inequalities in our coffee brewing example.

Finally, we depict the complete synthesis algorithm using compact regions in
Algorithm 1. Input is a set of Hasse diagrams H. We construct a Petri net with an
empty set of places and a transition for every label, calculate the compact region
inequality system, and the set of wrong continuations of H. For every wrong con-
tinuation c we check if it is still executable in the net constructed so far. If it is
executable, we need to exclude the wrong continuation from the behavior of the
net. This must be done with a feasible place, i.e. a compact region. We encode the
non-executability of c in an additional inequality for the compact region inequal-
ity system. Every solution of this extended system is a region and excludes c. If
this system has a solution, we add the related one-place net to our initially con-
structed set of transitions. If the extended compact region inequality system has
no solution, the wrong continuation c cannot be excluded. We assure that the con-
structed net is a best approximation to H by adding the set of wrong continuations
of c to C. Algorithm 1 will terminate because H is finite.

Algorithm 1.
1: Input: A set of labeled Hasse diagrams H
2: (P, T,W,m0) ← (∅, T ← ⋃(V,<,l)∈H l(V), ∅, ∅)

3: M ← compactRegionInequalitySystem(H)
4: C ← wrongContinuations(H)
5: while C �= ∅ do
6: c ← C.remove()
7: if c.isExecutable(P, T,W,m0) then
8: M ′ ← M.addInequality(c)
9: s ← M ′.solve()

10: if s.isSolution() then
11: (P, T,W,m0).add(s.getOnePlaceNet())
12: else
13: C.addAll(wrongContinuations(c))
14: return (P, T,W,m0)

4 Comparison and Experimental Results

In this section, we first compare compact regions to the already existing concepts
of transition regions [4,8] and ordinary tokenflow regions [9]. Secondly, we present
a runtime experiment comparing all three related synthesis algorithms.

Synthesizing Petri Nets from Hasse Diagrams 33

A transition region of a partial language L is based on the set of step
sequences Lstep of L (see [24]). As an example, we depict three of the numerous
step sequences of the first labeled Hasse diagram of our coffee brewing process
using two operators: composition of steps + and sequential composition of steps ·:
[(grind beans) + (unlock machine)] · [(empty strainer) + (clean coffee pot)]·
[(fill strainer)+ (get water coffeepot)] · (fill kettle) · (assemble and turn on)

[(grind beans) + (unlock machine)] · [(empty strainer) + (clean coffee pot)]·
(get water coffee pot) · [(fill strainer)+(fill kettle)] ·(assemble and turn on)

(unlock machine) · [(grind beans) + (empty strainer) + (clean coffee pot)]·
(get water coffee pot) · [(fill strainer)+(fill kettle)] ·(assemble and turn on)

The two events grind beans and unlock coffee machine are the first step of
the first sequence. The second step is empty strainer and clean coffee pot. The
number of maximal step sequences may grow exponentially with the number of
events of a labeled Hasse diagram. Even in our small coffee brewing specification,
the size of this language is huge. A transition region defines a place and requires
that this place can fire every maximal step sequence of the specified partial
language.

Definition 10. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification, T be
the set of labels of S, and p be a place. Let Lstep(S) be the language of step
sequences of S. A function r : ((T × {p}) ∪ ({p} × T) ∪ {p}) → N is a transition
region for S iff for all maximal step sequences (τ1 . . . τn) ∈ L(S)step and all
j ∈ {1, . . . , n} : r(p)+

∑
t∈T ((τ1+. . .+τj−1)(t)·r(t, p)−(τ1+. . .+τj)(t)·r(p, t)) ≥

0 holds.

We follow Definition 10 to define the transition region inequality system. The
number of unknowns is 2 · |T | + 1, i.e. a place. The inequalities of the inequality
system are a subset of the set of conditions of Definition 10. In the transition
region inequality system, we discard all constraints that are equal to or less strict
than other constraints. Let τ and τ ′ be two steps such that τ ′ ≤ τ holds and let τ1
. . . τj−1 and τ ′

1 . . . τ ′
k−1 be two step sequences such that

⋃
i<j τi and

⋃
i<k τ ′

i share
the same multiset of labels. If τ can fire after the occurrence of τ1 . . . τj−1, the
step τ ′ can fire after the occurrence of τ ′

1 . . . τ ′
k−1. Thus, we build the transition

region inequality system by merging matching presteps to so-called prefix steps.
The number of inequalities of the transition region inequality system is equal to
the number of prefix step continuations. A prefix step continuation is a prefix
step Γ together with a step τ if there is a matching maximal step sequence
π1 . . . πn of S such that Γ =

⋃
i<n πi and τ = πn holds. Altogether, the number

of inequalities is approximately the number of cuts of S. In a worst-case scenario,
the number of cuts is exponential in the size of our input. However, if we specify
little concurrency, the number of cuts is small. The number of inequalities is,
for example, equal to the number of all events if every labeled Hasse diagram is
totally ordered. We refer the reader to [8] for a more detailed description of the
transition region inequality system.

34 R. Bergenthum

An ordinary tokenflow region of a partial language is based on the set of labeled
partial orders of a specification. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a spec-
ification of L, obviously, S∗ = {(V1, <

∗
1, l1), . . . , (Vn, <∗

n, ln)} specifies L using
labeled partial orders. If we input a set of labeled Hasse diagrams we have to cal-
culate the transitive closure in a first step of this algorithm. Figure 3 depicts two
Hasse diagrams with a total of 17 arcs. The respective partial orders have 31. In
the exceptional case where a Hasse diagram is transitive, both characterizations
have the same number of arcs; in most cases, the number of arcs of a partial order
may increase quadratic with the number of arcs of a Hasse diagram.

The concept of tokenflows is similar to the concept of compact tokenflows.
Yet, ordinary tokenflows directly relate to process nets of Petri nets, whereas
compact tokenflows are able to abstract from the history of tokens. In some
sense, compact tokenflows rather relate to distributed transition systems than
to process nets.

The domain of a tokenflow region r is the partial order of the specification,
every event, and a place. Thus, the domain of a tokenflow region includes the
domain of a compact region. If we specify little concurrency, the number of arcs
of the labeled partial order is quadratic in the number of arcs of the Hasse
diagram. The number of conditions of a tokenflow region is equal to the number
of conditions of a compact region. Just like for compact regions, we define the
tokenflow region inequality system. This system has

∑
(V,<,l)∈S(|V | + |>∗|) + 2 ·

|T | + 1 unknowns and
∑

(V,<,l)∈S(2 · |V | + 1) inequalities.
Summing up, compared to transition regions and tokenflow regions, the new

compact regions define by far the smallest region inequality system for partial
languages. Since algorithms have to solve these systems multiple times during the
synthesis procedure, compact tokenflows lead to the fastest synthesis algorithms
for partial languages.

To support the scenario-based modeling approaches with Hasse diagrams we
developed our tool called MoPeBs eagle owl. In MoPeBs we implement three
synthesis algorithms, each using a different concept of regions. MoPeBs is a
lightweight editor embedding Viptool [10] plug-ins. MoPeBs uses the Simplex
algorithm of LpSolve to handle the occurring region inequality systems (http://
lpsolve.sourceforge.net).

Figure 7 depicts a screenshot of MoPeBs eagle owl. The main application
window can handle, save, and load synthesis projects. We see a list of speci-
fied tasks, two files specifying two different Hasse diagrams, CoffeePot.lpo and
GlassPot.lpo, and three files relating to different p/t-net models. The list of all
.lpo-files is the specification, i.e. the input of the synthesis algorithms. Every file
in the list of p/t-net models was synthesized using a different concept of regions.
In the bottom left-hand corner of the main application window, there are three
buttons: transition regions, tokenflow regions, and compact regions. Every button
starts the related synthesis algorithm. The second window of Fig. 7 depicts the
MoPeBs editor showing the Hasse diagram of CoffeePot.lpo. Of course, MoPeBs
can edit, save, and load Hasse diagrams.

http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net

Synthesizing Petri Nets from Hasse Diagrams 35

Fig. 7. A screenshot of MoPeBs eagle owl.

We perform the following experiments to measure how well the differ-
ent synthesis approaches scale with respect to the size of the input and to
compare the overall runtime. We use MoPeBs and an Intel Core i5 3.30
GHz (4 CPUs) machine with 8 GB RAM running a Windows 10 operat-
ing system. MoPeBs eagle owl is available on the MoPeBs homepage at
www.fernuni-hagen.de/sttp/forschung/mopebs.shtml.

Experiment 1. We consider five specifications S1, S2, S3, S4, and S5. Specifi-
cation S1 is the sample specification depicted in Fig. 3. Every other specification
is a sequential composition of copies of these two labeled Hasse diagrams. S2 is
the sequential composition of twice the first labeled Hasse diagram and twice the
second labeled Hasse diagram. S3, S4, and S5 are three, four, and five copies. We
solve the synthesis problem using compact regions, tokenflow regions, and tran-
sition regions. We depict the mean of the runtimes of 20 runs of each algorithm
in seconds if the algorithm terminates within 15min in Fig. 8.

In Experiment 1, the Hasse diagrams grow in length. Specification S1 has
24 events and 17 arcs, Specification S5 has 80 events and 105 arcs. Algorithm 1,
which uses compact tokenflows, outperforms Algorithm 2 and Algorithm 3 in
every test. This is not surprising because only compact regions are tailored
to relate to small region inequality systems. As pointed out in the first part
of this section, the compact region inequality system is much easier to solve
than the tokenflow and the transition region inequality systems. If we com-
pare Algorithm 2 and Algorithm 3, the specifications are rather short at first,

http://www.fernuni-hagen.de/sttp/forschung/mopebs.shtml

36 R. Bergenthum

0 1 2 3 4 5
0

5

10

15

20

25

Si

ru
nt

im
e

in
se

co
nd

s
compact regions

tokenflow regions

transition regions

Fig. 8. Runtime results of Experiment 1.

so that the number of cuts is bigger than the number of all (transitive) arcs.
The number of inequalities of the transition region inequality system is bigger
than the number of unknowns of the tokenflow region inequality system. Thus,
ordinary tokenflow regions are faster than transition regions in this example.
Specifications S4 and S5 have rather little concurrency so that transition regions
outperform ordinary tokenflow regions as soon as the number of (transitive) arcs
exceeds the number of cuts. Compact regions are fast, independent of the level
of concurrency. Considering S5, only Algorithm1 is able to solve the synthesis
problem within 15 min.

Experiment 2. We consider four specifications X1,X2,X3, and X4. Specifica-
tion X1 is three Hasse diagrams of the partial language of the so-called repair
example from www.processmining.org. Every other specification is a parallel com-
position of copies of these diagrams, i.e. the specifications grow in width. The
maximal size of a cut in X1 is two, four in X2, six in X3, and eight in X4. We
solve the synthesis problem using compact regions, tokenflow regions, and tran-

0 1 2 3 4
0

5

10

15

20

25

Xi

ru
nt

im
e

in
se

co
nd

s

compact regions

tokenflow regions

transition regions

Fig. 9. Runtime results of Experiment 2.

www.processmining.org

Synthesizing Petri Nets from Hasse Diagrams 37

sition regions. We depict the mean of the runtimes of 20 runs of each algorithm
in seconds if the algorithm terminates within 15min in Fig. 9.

In Experiment 2, the Hasse diagrams of the specifications grow in width.
Specification X1 has 30 events, X2 has 45 events, X3 has 72 events, and X4 has
90 events. The length of the longest path in every specifications is 8 (at most one
loop of the repair example). Just like in Experiment 1, Algorithm 1 outperforms
Algorithm 2 and Algorithm 3 in every test. Again, the compact region inequal-
ity system is much easier to solve than the tokenflow and the transition region
inequality systems. If we compare Algorithm 2 and Algorithm 3, the number of
cuts is big and the number of transitive arcs is small. Thus, ordinary tokenflow
regions are faster than transition regions in this example. In both experiments
compact regions outperform both older algorithms independent from the struc-
ture of the specification.

5 Conclusion and Future Work

We presented an approach to generate a process model from a set of Hasse
diagrams specifying a set of sample executions. Using our approach, a user can
specify a set of executions in a very intuitive and simple specification language
and get the complex Petri net model for free.

We presented a new concept of regions for partial languages. The definition is
based on the semantics of compact tokenflows. The domain of a compact token-
flow is the number of arcs and the set of initial events of a labeled Hasse diagram.
Both numbers grow neither like the number of events nor like the number of arcs
of a labeled partial order. We compared compact regions to tokenflow and tran-
sition regions referring to the size of the related region inequality systems.

Furthermore, we presented a synthesis algorithm and experimental results
of its implementation in the tool called MoPeBs eagle owl. MoPeBs supports
the sample based modelling approach for Hasse Diagramms. We compared the
runtime of the new algorithm to the runtime of both existing synthesis algorithms
for partial languages.

An important topic for future research will be to develop a concept of wrong
continuations using a concept of tokenflows. Right now, the definition of wrong
continuations is based on the step language of a partial language. Even though
the size of the compact region inequality system is reasonable, the huge number
of wrong continuations corrupts the synthesis algorithm if a specification has
many concurrent events.

References

1. van der Aalst, W.M.P., Dongen, B.F.: Discovering petri nets from event logs. In:
Jensen, K., Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 372–422.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38143-0 10

http://dx.doi.org/10.1007/978-3-642-38143-0_10

38 R. Bergenthum

2. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

3. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

4. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. Springer, Heidelberg (2015)

5. van Beest, N., Dumas, M., Garca-Bauelos, L., La Rosa, M.: Log delta analy-
sis: interpretable differencing of business process event logs. Eprint no. 83018.
Queensland University of Technology (2015)

6. Bergenthum, R., Lorenz, R.: Verification of scenarios in petri nets using compact
tokenflows. Fundam. Informaticae 137, 117–142 (2015). IOS Press

7. Bergenthum, R.: Faster verification of partially ordered runs in petri nets
using compact tokenflows. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS
2013. LNCS, vol. 7927, pp. 330–348. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38697-8 18

8. Bergenthum, R., Desel, J., Mauser, S.: Comparison of different algorithms to syn-
thesize a petri net from a partial language. In: Jensen, K., Billington, J., Koutny, M.
(eds.) Transactions on Petri Nets and Other Models of Concurrency III. LNCS, vol.
5800, pp. 216–243. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04856-2 9

9. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from
finite partial languages. Fundam. Informaticae 88, 437–468 (2008). IOS Press

10. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from sce-
narios with viptool. In: Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol.
5062, pp. 388–398. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68746-7 25

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on
regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75183-0 27

12. Carmona, J.: Projection approaches to process mining using region-based tech-
niques. Data Min. Knowl. Discov. 24(1), 218–246 (2012)

13. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded petri nets. IEEE Trans. Comput. 59(3), 371–384 (2010)

14. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: a tool for the synthesis and
mining of petri nets. Appl. Concurrency Syst. Des. 2009, 181–185 (2009)

15. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and validation with vip-
tool. In: Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 380–389.
Springer, Heidelberg (2003). doi:10.1007/3-540-44895-0 26

16. Desel, J., Erwin, T.: Quantitative engineering of business processes with VIPbusi-
ness. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technol-
ogy for Communication-Based Systems. LNCS, vol. 2472, pp. 219–242. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-40022-6 11

17. Desel, J., Juhás, G.: “What is a petri net?” Informal answers for the informed
reader. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying
Petri Nets. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001). doi:10.1007/
3-540-45541-8 1

18. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
doi:10.1007/3-540-65306-6 15

http://dx.doi.org/10.1007/978-3-642-38697-8_18
http://dx.doi.org/10.1007/978-3-642-38697-8_18
http://dx.doi.org/10.1007/978-3-642-04856-2_9
http://dx.doi.org/10.1007/978-3-540-68746-7_25
http://dx.doi.org/10.1007/978-3-540-75183-0_27
http://dx.doi.org/10.1007/978-3-540-75183-0_27
http://dx.doi.org/10.1007/3-540-44895-0_26
http://dx.doi.org/10.1007/978-3-540-40022-6_11
http://dx.doi.org/10.1007/3-540-45541-8_1
http://dx.doi.org/10.1007/3-540-45541-8_1
http://dx.doi.org/10.1007/3-540-65306-6_15

Synthesizing Petri Nets from Hasse Diagrams 39

19. van Dongen, B.F., Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., Aalst,
W.M.P.: The ProM framework: a new era in process mining tool support. In:
Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454.
Springer, Heidelberg (2005). doi:10.1007/11494744 25

20. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: event structures as a
unified representation of process models and event logs. In: Devillers, R., Valmari,
A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015).
doi:10.1007/978-3-319-19488-2 2

21. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part i: basic notions and
the representation problem, part ii: state spaces of concurrent systems. Acta Inf.
27(4), 315–368 (1990)

22. Fahland, D.: Scenario-based process modeling with Greta. In: BPM Demonstration
Track 2010, vol. 615. CEUR (2010)

23. Fahland, D.: Oclets – scenario-based modeling with Petri nets. In: Franceschinis,
G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 223–242. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02424-5 14

24. Grabowski, J.: On partial languages. Fundam. Informaticae 4, 427–498 (1981). IOS
Press

25. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Diaz, J. (ed.) ICALP
1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983). doi:10.1007/
BFb0036914

26. Juhás, G., Lorenz, R., Desel, J.: Can I execute my scenario in your net? In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer,
Heidelberg (2005). doi:10.1007/11494744 17

27. Lorenz, R., Juhás, G., Bergenthum, R., Desel, J., Mauser, S.: Executability of sce-
narios in Petri nets. Theoret. Comput. Sci. 410(12–13), 1190–1216 (2009). Elsevier

28. Mayr, H.C., Kop, C., Esberger, D.: Business process modeling and requirements
modeling. In: ICDS 2007, pp. 8–14. IEEE Computer Society (2007)

29. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

30. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,
Case Studies. Springer, Heidelberg (2013)

31. Solé, M., Carmona, J.: Region-based foldings in process discovery. IEEE Trans.
Knowl. Data Eng. 25(1), 192–205 (2013)

32. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process dis-
covery using hybrid regions. In: ATAED 2015, vol. 1371, pp. 47–61. CEUR (2015)

http://dx.doi.org/10.1007/11494744_25
http://dx.doi.org/10.1007/978-3-319-19488-2_2
http://dx.doi.org/10.1007/978-3-642-02424-5_14
http://dx.doi.org/10.1007/BFb0036914
http://dx.doi.org/10.1007/BFb0036914
http://dx.doi.org/10.1007/11494744_17

PE-BPMN: Privacy-Enhanced Business Process
Model and Notation

Pille Pullonen1(B), Raimundas Matulevičius2, and Dan Bogdanov1

1 Cybernetica AS, Tartu, Estonia
{pille.pullonen,dan}@cyber.ee

2 University of Tartu, Tartu, Estonia
rma@ut.ee

Abstract. Privacy Enhancing Technologies (PETs) play an impor-
tant role in preventing privacy leakage of data along information flows.
Although business process modelling is well-suited for expressing stake-
holder collaboration and process support by technical solutions, little is
done to visualise and analyse privacy leakages in the processes. We pro-
pose PE-BPMN – privacy-enhanced extensions to the BPMN language
for capturing data leakages. We demonstrate its feasibility in the mobile
app scenario where private data leakages are determined. Our approach
helps system builders make decisions on the privacy solutions at the early
stages of development and lets auditors analyse existing systems.

Keywords: Privacy · Business process model and notation (BPMN) ·
Privacy enhancing technology · Data leakage

1 Introduction

The importance of privacy is continuously growing. A new General Data Pro-
tection Regulation is entering into force in EU [13] and the new Privacy Shield
agreement will be affecting businesses in US with restrictions compared to the
Safe Harbour agreement [28]. Furthermore, companies are starting to use privacy
as a sales argument, e.g., adding differential privacy to their services [16].

Organisations wishing to cope with new restrictions or to deploy new privacy
enhancing technologies (PETs), need to understand the privacy properties and
assumptions of their current and newly developed systems. There exist regula-
tory standards (e.g., [1,18]) and approaches (e.g., [22]) for risk-oriented privacy
management. However, little is done [20] to assess privacy properties within busi-
ness processes, or to address unintentional privacy leakages when some input
data objects or derived data objects are sent to other parties.

In this paper, we primarily focus on privacy analysis in the honest-but-curious
adversary cases. For example, if a bank officer generates a report about the pay-
ment transactions, data about the payer, recipient, etc. should not leak to the
officer or any other unintended party. The PETs are applied to enforce privacy
requirements. We consider how business process model and notation (BPMN)
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 40–56, 2017.
DOI: 10.1007/978-3-319-65000-5 3

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 41

[12,23] could support analysis of private data leakage. Based on the PET classi-
fication [9], we propose PE-BPMN – a BPMN extension with privacy enhancing
technologies and characterize the goals of using PETs. Feasibility of PE-BPMN
is illustrated using the mobile application scenario where emergency data are
gathered using a mobile phone app.

The rest of the paper is structured as follows: in Sect. 2 we discuss some
related studies; Sect. 3 overviews the PET classification, which is used to describe
PE-BPMN in Sect. 4. Section 5 illustrates PE-BPMN application and develop-
ment. Finally, Sect. 6 concludes the paper and provides directions for future work.

2 Related Work

Literature suggests several studies where BPMN is extended towards secu-
rity and privacy modelling. Extensions to modelling secure business processes
through understanding the security requirements are proposed in [24]. Menzel
et al. have presented enhancements towards trust modelling [21]. In [8], BPMN is
enriched with information assurance and security modelling capabilities. In [3],
BPMN is aligned to the domain model of security risk management. Schleicher
et al. have defined the concept of compliance scope used to restrict certain areas
of a business process [25]. The above studies introduce security extensions to
BPMN, which do not necessarily model all privacy risks. Our proposal focuses
on the private data leakages and protecting against them within the organisation.

In [2] authors are using the principle of the Petri-nets reachability to detect
places where information leaks occur in the business processes. In the current
study we focus on the BPMN modelling language and extend it with the abilities
to introduce PETs in order to mitigate information leakage.

In [4], the BPMN collaboration and choreography models are used to detail
message exchange and identity contract negotiation. In [7], BPMN is extended
with access control, separation of duty, binding of duty and need to know princi-
ples. Privacy-aware BPMN is presented in [20]. Similarly to [7], privacy concerns
are captured by annotating the BPMN model with access control, separation of
tasks, binding of tasks, user consent and necessity to know icons. Although these
studies focus on the privacy requirements and their potential implementation,
they (i) basically consider only business process entailment constraints, and (ii)
do not analyse privacy leakage cases nor take PETs into account.

In [11] a quantification of private data leakage is discussed using differential
privacy. In this paper we expand this principle and illustrate how privacy leakage
in the business processes could be determined using other PETs.

3 Classification of Privacy Enhancing Technologies

We adapt the results of the recent survey [9] on existing PETs to introduce a PET
classification (see Table 1). In this classification, PETs are grouped according to
their application goals to aid choosing PETs and expanded with targets, which
should be met within different privacy areas. It should be noted that the same

42 P. Pullonen et al.

PET could appear at different categories; for example, encryption is used for data
protection and secure communication. This classification could be extended with
more sub-categories for other PETs. For example, the computation on protected
inputs can be divided to distributed and single party techniques. Added details
can help choose the right PET in a decision tree manner.

Table 1. Classification of privacy enhancing technologies

Goal Target Examples of technology

Communication
protection

Secure Client-Server encryption, TLS, IPSec, End-to-
End encryption, PGP, OTR

Anonymous Proxies and VPN, onion routing, mix-networks,
broadcast

Data protection Integrity Message authentication codes, signatures

Confidentiality Encryption, secret sharing

Entity
authentication

Identity based Username and password, single-sign-on

Attribute
based

Credential used only once, zero-knowledge proofs

Privacy-Aware
computation

Confidential
inputs

Homomorphic encryption, secure multiparty com-
putation, private information retrieval

Privacy adding Differential privacy, k-anonymity, cell suppres-
sion, noise addition, aggregation, anonymisation

Human-Data
interaction

Transparency
of data usage

Information flow detection, logging, declarations
about information usage

Intervenability Information granularity adjustment, access con-
trol

Communication protection protects the content and the parties. Security
means that the protected contents (e.g., using client-server encryption, TLS,
etc.) can travel without external parties seeing or modifying them. Anonymity
ensures that the interacting parties can not be deduced by an observer.

Data protection ensures integrity and confidentiality of the data. For exam-
ple, signatures or message authentication codes can not be modified by external
parties who do not have access to respective keys. Encrypted data remains con-
fidential unless a party has the decryption key. Data protected by secret sharing
raises an additional constraint that it must be stored in a distributed manner.

Entity Authentication is a procedure for proving that user corresponds to
the claimed attributes. Identity authentication requires some identity provider
to verify all accesses (e.g., based on a fixed account). Attribute based methods
deal with proving one’s membership to some group, without identifying herself.

Privacy-Aware Computations focus on the utility of private data. Compu-
tations on confidential inputs allow one to securely process various operations

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 43

without removing the protection mechanisms. For example, these computations
use homomorphic properties of encryption or secret sharing. Privacy adding com-
putations can add a layer of privacy to their outputs instead of fully protecting
the inputs. For example, differential privacy adds some noise to the query reply
so that it is hard to infer something about single entries in the database.

Human-data interaction is a field that combines technical means and policies
with user experience. In essence, the users allowing some processing of their data
should be knowledgeable about how and why their data is used. In addition, they
may be able to regulate the data processing.

The taxonomy in [9] thoroughly describes commonly used PETs. Another
recent systematic comparison of properties of PETs is given in [17] that could
be used to enhance the decision tree for PETs. Our taxonomy combines the aim,
data and aspect ideas of [17]. Our focus is on privacy goals, but it is nicely comp-
lemented with a legal viewpoint of activities that are harmful for privacy [27].
We cover data collection and processing parts of [27] and discuss how leakage
analysis can help to quantify problems in information dissemination. There are
also attempts at creating guidelines for choosing PETs, for example [9,14,19].

4 Extending BPMN with Privacy Enhancing
Technologies

4.1 Abstract Syntax and Semantics

Figure 1 presents extensions of BPMN abstract syntax [23] with the PET con-
cepts.

The BPMN Data Flow is extended with Communication Protection. In com-
mon secure channels, the message is hidden and can not be modified during
transit. Thus, secure channels are straightforward to model in the sense that the
communication and privacy risks occur between different pools. We introduce
SecureChannel privacy class as a specialisation of Communication Protection.

Most privacy related technologies result in specific tasks, thus BPMN Task
is extended with abstract PET-Task. Figure 1 illustrates four specialisations of
PET-Task based on Table 1: Data Protection, Entity Authentication, Privacy-Aware
Computation and Human-Data Interaction. We focus on Data Protection and
Privacy-aware computation technologies that are used in the scenario discussed
in Sect. 5.

Secret sharing is a specialisation of Confidentiality. It splits private values
among participants so that some predefined groups of parties can collaboratively
restore the secret [5,26]. Secret sharing consists of two major tasks: producing
the shares (i.e., SSsharing) from a secret and restoring the secret from the shares
(i.e., SSreconstruction). Secret sharing is most useful if it is homomorphic and
allows Secure Multiparty Computation (i.e., SScomputation).

Encryption is another specialisation of Confidentiality. For example, public key
cryptosystems [10] protect data using encryption (i.e. PKencryption) and allow
to open it using decryption (i.e. PKdecryption). More specifically, encryption

44 P. Pullonen et al.

Fig. 1. Extension of the BPMN abstract syntax

requires the input data and a public key to produce a ciphertext and decryp-
tion needs a ciphertext and the respective secret key to restore the encrypted
data. Some cryptosystems also have homomorphic properties, for example fully
homomorphic encryption (FHE) [15] allows to compute any functionality on
encrypted data to provide an encrypted output. Hence, FHEcomputation is an
extension of Privacy-Aware Computation on confidential input, where the confi-
dentiality is ensured by encryption. We assume that the encrypted values reveal
nothing about the inputs that they protect except to parties that also hold the
secret key.

Figure 1 is not complete as other privacy technologies can be added from
Table 1. However, it gives an example to both single task and multi-task tech-
nologies as well as secure communication, making extensions straightforward.

4.2 Concrete Syntax

Extension of the BPMN concrete syntax to add PETs is done using stereotypes
with the general stereotypes given in Table 2. The stereotype characterises the
changed type of the BPMN construct. Parameter (it has similarity to the tag
in UML) is the variable, that gives additional details about the execution of the
action. Some goals result in a series of tasks, for example data protection allows
adding protection with Protect and removing it with Open.

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 45

Table 2. Stereotypes for PET goals

Group Stereotype Parameter

Communication SecureChannel Privacy requirements

Data protection Protect Access specification,
privacy requirements

Open

Entity authentication AuthenticationProof

AuthenticationVerification

Privacy aware computation PETcomputation Computation script

Human-Data interaction CheckingPermissions

For concrete stereotypes (see Table 3), the input describes the types of data
needed to perform the task, and the output is the result. The input and output
types can be used to typecheck the models and help the user. Note that, based on
the PET classification, we also obtain a hierarchy of the stereotypes. We discuss
the concrete syntax of PE-BPMN needed in the example scenario in Sect. 5.

Table 3. Example stereotypes

Stereotype General stereotype Input Output

SecureChannel SecureChannel Data Data

SSsharing Protect Data Shares

AddSSsharing SSsharing Data Additive shares

FunSSsharing SSsharing Data Function shares

PKencryption Protect Data, public key Encrypted data

SSreconstruction Open Shares Data

AddSSreconstruction SSreconstruction Additive shares Data

FunSSreconstruction SSreconstruction Function shares Data

PKdecryption Open Encrypted data, secret key Data

SScomputation PETComputation Shares Shares

AddSScomputation SScomputation Additive shares Additive shares

FunSScomputation SScomputation Function shares Additive shares

FHEcomputation PETComputation Encrypted data Encrypted data

Secret Sharing needs specializations of Protect and Open, Fig. 2. SSsharing
splits the input data to the number of shares, determined by the access specifica-
tion. SSreconstruction inverts SSsharing: it restores input shares to public data.
SScomputation tasks define the computations on shares specified by the script.

We need two secret sharing specialisations in Sect. 5 – additive secret sharing
(AddSS) and function secret sharing (FunSS). In AddSS each participant Pi gets
a share xi of secret x so that it can be reconstructed as x =

∑
xi. FunSS [6]

46 P. Pullonen et al.

<<SSsharing>>

data

<<SScompu-
tation>>

shares shares

<<SSrecon-
struction>>

shares datashares

Fig. 2. Secret sharing concrete syntax

can be thought of as an additive secret sharing scheme for functions. In FunSS,
the secret is a function f and the shares are also functions fi. Moreover, if all
participants evaluate their functions fi on a common input x then fi(x) are the
additive shares of f(x) =

∑
fi(x). In both schemes, the secret is revealed only

when all parties join their shares.
Encryption specifies data protection tasks in Fig. 3. Specifically, PKencryp-

tion encrypts data with a public key (PK) that is paired with a secret key used
to open the secret with PKdecryption. Fully homomorphic encryption (FHE)
defines FHEcomputation to process encrypted values according to script.

<<PKencryptio
n>>

data

publicKey

encryptedData

<<FHEcomputa
tion>>

encryptedData

<<PKdecryptio
n>>

encryptedData

secretKey

dataencryptedData

Fig. 3. Encryption and FHE concrete syntax

Secure Channel is an extension of the BPMN DataFlow construct with
stereotype SecureChannel, Fig. 4. It means that data are sent by activity A
and received by activity B without interference. Additional privacy require-
ments (e.g., anonymity requirement) can be used to change the properties of
the channel.

St
ak

eh
ol

de
rB

B

dataSt
ak

eh
ol

de
r A

data

A

<<Secure
Channel>> data

Fig. 4. Secure channel concrete syntax

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 47

4.3 Use-Cases for PE-BPMN

The purpose of general stereotypes is twofold: they can be used to specify the
basis for privacy analysis or used to iteratively move to concrete technolo-
gies. The general stereotypes specify the overall goals and the concrete PET
stereotypes also contribute the limitations of the technology. We discuss how
PE-BPMN supports choosing PETs, validating the models and characterising
leakages.

Choosing PETs. Concrete technologies introduce different trade-offs or limi-
tations even if they belong to the same groups in Table 1. Therefore, considering
privacy in business process starts with fixing the general goal and stereotype
and then iteratively making specific decisions to fix the PETs. Choosing PETs
from the general stereotypes can be done with the help of decision trees or other
specifications of the PET properties. For example, the decision should take into
account the necessary efficiency or computation capabilities. It is useful to model
the PETs in BPMN and not leave the choice to later stages of development as
they may introduce new stakeholders. For example, secure multiparty computa-
tion techniques are often applicable in theory but, in many processes, it is hard
to find stakeholders that are willing to participate in the computation.

Leakage Analysis. We foresee the use of PE-BPMN for the analysis in the
honest-but-curious security model where we are only interested in what leaks in
the process when followed as designed. For each stakeholder (i.e., swimlane) and
each data object, we can determine, to which extent does the stakeholder learn
the data. The stakeholders learn all data sent to them and protected contents
of objects they can open. In addition, everything sent over an insecure network
is considered to leak to the external telecommunication service provider.

Data privacy analysis focuses more on the PETs that provide confidential-
ity and less on integrity and authenticity. Some cryptographic means can be
abstracted as providing perfect privacy (data confidentiality protection, com-
putation on confidential inputs, secure communication) and others as limiting
data leakage but not removing it fully (privacy adding computation, human-data
interaction). The latter group requires careful treatment to find ways to quan-
tify the leakage. The first group enables a black-or-white leakage analysis where
we consider the protected contents of a data object not to leak to parties only
holding the protected object and not meeting the access specification.

In the most direct analysis, we identify the data protection mechanism
applied for each data object and stakeholder. For example, [2] provides a tool
to find leaking data flows in business processes without PETs that could be
used as a basis for further development. The next step is to quantify how much
the derived public data objects leak about the private inputs. The basis for any
quantitative analysis is the data dependency and the computation scripts or
metadata. For example, [11] provides a version of quantitative analysis for dif-
ferentially private tasks. Analysing other technologies that require quantification

48 P. Pullonen et al.

involves detailed study of the properties of these technologies and specific PET
stereotypes. Our PE-BPMN notation enables to denote both privacy-adding and
full protection mechanisms in BPMN and enables to combine the analysis.

Protection mechanisms can only be considered secure, if their underlying
assumptions are satisfied. A version of the analysis lists all underlying assump-
tions based on the PETs information. For example, that cryptographic keys are
generated by correct parties and some participants do not collude. Such analysis
can also benefit from the integrity and authenticity providing PETs that can be
used to lift some assumptions (e.g. authenticity of the key). Furthermore, models
using PE-BPMN could be a good input documents for auditing the systems.

5 Applying PE-BPMN

To illustrate feasibility of the PE-BPMN to various processes, we describe an
extract of the mobile app RapidGather and summarise other experiments. This
app is developed by the Privacy-Enhanced Android Research and Legacy Sys-
tems (PEARLS) team in DARPA Brandeis program1. It enables a rapid response
to an imminent threat. In case of an event, emergency officers would use the
RapidGather infrastructure to collect data from RapidGather app and to analyse
them at the command center. RapidGather has many scenarios deploying dif-
ferent privacy enhancing technologies. These include location analysis, private
machine learning using photos from the mobile device and computing a reputa-
tion for each device using secure hardware. We also model procedures such as
uploading the application to the app store or installing it to the phone. In addi-
tion to RapidGather, we are exploring other scenarios in the Brandeis program,
for example, Internet of things setting with data streams, that need a different
level of detail on the inner workings of the computation. Use-cases for PE-BPMN
are all characterized as processes with multiple stakeholders and private data.

5.1 Lessons Learned

The idea of using various levels of generalisation of stereotypes arose from the
different requirements of the teams in Brandeis, whereas our initial approach
was focused on concrete technologies. The abstract syntax and classification are
expressive enough to allow a wide selection of technologies. Elsewhere the app-
roach was applied in a commercial project to assess the suitability of a secure
querying system in a healthcare service. Adjusting the querying system to the
stakeholders’ business processes highlighted unforeseen (and unacceptable) data
leakages due to the setup invalidating the underlying assumptions of the query-
ing system. This helped to shape the idea of the stereotypes and to explore the
balance between the approaches of the systems analyst and security engineer. We
have observed that using PE-BPMN requires a different focus from the analyst:
(i) analysis requires more details of the data objects that need to be explicit, and

1 DARPA Brandeis—http://www.darpa.mil/program/brandeis.

http://www.darpa.mil/program/brandeis

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 49

(ii) fine-grained separation of stakeholders yields better analysis. More specif-
ically the suggested approach helps to identify and fix data leakages during
system design, supports communication and documentation of PETs usage, and
stresses on limitations of PETs usage (e.g. separation of duty).

We have also noticed some limitations to the current validation and ideas of
PE-BPMN. For example, there may be better means of recording PETs infor-
mation on the model. Additionally our proposal is based on the assumption that
cryptographic techniques have standardised usage (i.e., fixed tasks).

5.2 RapidGather Location Analysis

We show details of a location analysis process in RapidGather scenario. The goal
is twofold: (i) to demonstrate the PE-BPMN modelling applicability, and (ii)
to illustrate privacy analysis means in business processes with PETs.

Scenario Description: Modelling Without PETs. As illustrated in Fig. 5,
the RapidGather app initiates the collection of location data (see A1). The
Android OS is responsible for preprocessing (see A2 and A3) and submitting
data to the Compute server. The Compute server processes (see A5) and stores
(see A6) the data as a heatmap which characterizes the emergency. Next, data
are analysed by the Command center employees (see Fig. 6). Once the request for
the movement heatmap is submitted to the Compute server (see A8), the heatmap
is extracted and provided to the Command center for inspection (see A11).

The main privacy concern in this case is the danger of leaking mobile device
location through communication or computation. We need to ensure that the

M
ob

ile
 d

ev
ic

e

R
ap

pi
dG

at
he

r a
pp

An
dr

oi
d

A1: Request
location data

every 1 minute

A2: Collect
location

information

A3: Combine
location with
userID and
timestamp

A4: Send
location to

Compute server

locationcurrentLocation userID,
timestamp

location, userID,
timestamp

C
om

pu
te

 s
er

ve
r

location received

A5: Obtain
heatmap update

A6: Update
heatmap

location, userID,
timesamp

heatmapUpdate,
timestamp

heatmap,
timestamp

location, userID,
timestamp

Fig. 5. Data collection

50 P. Pullonen et al.

C
om

m
an

d
C

en
te

r
A8: Send
request to

Compute server

result received
A11: Inspect
heatmap for

events

A7: Request
movement
heatmap

timePeriod, area

C
om

pu
te

 s
er

ve
r

A9: Gather
heatmap

according to
request

A10: Send
heatmap to
Command

Centerquery received

timePeriod, area heatmap,
timestamp

relevantHeatmap

timePeriod, area relevantHeatmap

Fig. 6. Data analysis

compute server does not learn the location of any specific device and command
center is only able to see the aggregated heatmap. We apply PE-BPMN to
address the privacy concerns and illustrate the model changes as we add PETs.

M
ob

ile
 d

ev
ic

e

Pr
iv

ac
y

En
ha

nc
ed

 A
nd

ro
id

PA
L

m
od

ul
e

A2: Collect
location

information

A3: Add user ID
and timestamp

currentLocation userID,
timestamp

location, userID,
timestamp

<<Protect>> T1:
Protect location

data

A4: Send
location data
to Compute

server

protectedLocation
, userID,

timestamp

location

location request
received

Fig. 7. Data collection with protected location

C
om

m
an

d
C

en
te

r

Q
ue

ry
 m

an
ag

er
Pr

iv
ac

y
pl

ug
in

timePeriod, area

A7: Request
movement
heatmap

A11: Inspect
heatmap for

events

A8: Send
requests to

compute
servers

<<Open> T2:
Open

protectedHeat
map into
heatmapresult received

protectedHeatma
p

heatmap

Fig. 8. Data analysis results from protected location

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 51

Choosing the PETs. Tracking which data object is seen by which party identi-
fies that the location data might be revealed to the telecommunication party and
computing server as it is sent in clear. The former can be solved with SecureChan-
nel. For the latter, there are two initial choices, either to ensure full confidentiality
or loose the precision to reduce the leakage. Note that many of the privacy adding
computations can not be easily used as they work on databases but we have a
single location. The remaining choice is to add a task T1 with Protect stereotype
and confidentiality parameter before sending the location to the compute server
as on Fig. 7. This introduces the requirement that the following computations
are PETcomputation and the output must be opened as task T2 on Fig. 8 to
comply with the input and output types.

It is possible to leave the choice of PETs at this level to show the desired
properties. It is also possible to narrow the general stereotypes to concrete tech-
nologies with the help of the PET classification. This choice depends on the stage
of the system development and the capabilities of the analyst. There are many
considerations besides the goal of the PET to choose the exact technology. In this
scenario, the process on the mobile phone should be efficient to save the battery
and limit data usage. Also, the overall heatmap updates in the compute server
should be fast to allow timely updates. Applicable confidentiality mechanisms
include encryption and secret sharing with respective computation technologies.

Encryption allows using one compute server to perform computations pri-
vately (see data collection in Fig. 9 and analysis in Fig. 10). However, the required
computations are broad, meaning that it would require FHE as no special pur-
pose encryption supports these operations. The main trouble is that FHE com-

M
ob

ile
 d

ev
ic

e

PU
LS

AR
 P

AL
 m

od
ul

e A4: Send
ciphertext to

Compute server

location received
<<PKencryptio
n>> T1: Apply

FHE encryption

location, userID,
timestamp

encryptedLocatio
n, userID,
timestampFHEpublicKey

FH
E

C
om

pu
te

 s
er

ve
r

encrypted
location received

<<FHEcomputa
tion>> A6:

Update
heatmap

encryptedLocatio,
userID,

timestamp

<<FHEcomputa
tion>> A5:

Obtain heatmap
update

encryptedHeatma
pUpdate,
timestamp

encryptedHeatma
p, timestamp

<<Secure
Channel>>

encryptedLocatio
n

Fig. 9. Data collection with FHE protected location

52 P. Pullonen et al.

C
om

m
an

d
C

en
te

r

FH
E

pl
ug

in heatmap

query
result received

A8: Send
requests to
compute
servers

<<PKdecryption
>> T2: decrypt

encrypted
heatmap into

heatmap

FHEsecretKeytimePeriod, area

relevantEncrypt
edHeatmap

FH
E

C
om

pu
te

 s
er

ve
r

query received

encryptedHeatma
p, timestamp

relevantEncrypt
edHeatmap

timePeriod, area
A10: Send
encrypted

heatmap to
Command

Center

<<FHEcomputa
tion>> A9:

Gather
heatmaps

according to
request

<<Secure
Channel>>

timePeriod, area

<<Secure
Channel>>

relevantEncrypte
dHeatmap

Fig. 10. Data analysis results from FHE protected location

M
ob

ile
 d

ev
ic

e

PU
LS

AR
 P

AL
 m

od
ul

e <<FunSS
sharing>> T1:
Apply function
secret sharing

sharedLocation1 ,
userID,

timestamp

A4.1: Send
share

to Compute
server 1

sharedLocation2 ,
userID,

timestamp

A4.2: Send
share to

Compute server
2location received

location, userID,
timestamp

PU
LS

AR
 C

om
pu

te
 s

er
ve

r 1 <<FunSScom-
putation>> A5.1:
Obtain heatmap

update

additiveUpdate
HeatmapShare1,

timestamp

<<AddSScompu
tation>> A6.1:

Update
heatmap

sharedLocation1,
userID,

timestamp

additiveHeatmap
Share1,

timestamp

share received

PU
LS

AR
 C

om
pu

te
 s

er
ve

r 2

share received

<<FunSScompu
tation>> A5.2:

Obtain heatmap
update

additiveUpdate
HeatmapShare2,

timestamp

<<AddSScompu
tation>> A6.2:

Update
heatmap

additiveHeatmap
Share2,

timestamp

sharedLocation2,
userID,

timestamp

<<Secure
Channel>>

sharedLocation2

<<Secure
Channel>>

sharedLocation1

Fig. 11. Data collection with location data protected by secret sharing

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 53

putation is not efficient yet and especially, it requires significant computations
in the phone to encrypt the data. In addition, FHE requires key distribution.

Secret sharing with SScomputation is an alternative approach finding the
heatmap. In this case, the protection mechanism produces shares that are dis-
tributed to the computing parties. A new stakeholder is required to deploy the
second computing server. The compute servers collaboratively use computation
protocols to obtain the final heatmap that is reconstructed at the command
center. To stress details that can be documented in PE-BPMN, Figs. 11 and 12
combine AddSS and FunSS sharing schemes as used in RapidGather. In com-
parison to the FHE, the secret sharing solution requires more communication.

PU
LS

AR
 C

om
pu

te
 s

er
ve

r 1

relevantAdditive
HeatmapShares1

<<AddSScom-
putation>> A9.1:
Gather shares
according to

request

A10.1: Send
heatmap share
to Command

Center

additive
HeatmapShares1

, timestamp

query received

timePeriod, area

PU
LS

AR
 C

om
pu

te
 s

er
ve

r 2

timePeriod, area

query received

relevantAdditive
HeatmapShares2

additive
HeatmapShares2

, timestamp

A10.2: Send
heatmap share
to Command

Center

<<AddSScom-
putation>> A9.2:
Gather shares
according to

request

C
om

m
an

d
C

en
te

r

PU
LS

AR
 p

lu
gi

n

A8: Send
requests to
compute
servers

<<AddSSrecon
struction>> T2:

Combine shares
into heatmap

timePeriod, area share received

share received

heatmaprelevantAdditive
HeatmapShares1

relevantAdditive
HeatmapShares2

<<Secure
Channel>>

timePeriod, area

<<Secure
Channel>>

relevantAdditive
HeatmapShares1

<<Secure
Channel>>

timePeriod, area

<<Secure
Channel>>

relevantAdditive
HeatmapShares2

Fig. 12. Data analysis results from location data protected by secret sharing

Privacy Analysis. The first layer of leakage analysis is simplified by data
object names (e.g. shared or encrypted vs unprotected) in the examples, e.g.
encrypted location does not leak the location. In both scenarios with PETs,
the location data is protected before it is given to the compute servers and the
compute servers only process it without revealing the data. Therefore, nothing
about the location leaks to the compute servers. All communication is secured

54 P. Pullonen et al.

and, therefore, the telecommunications companies can not learn the contents.
However, the heatmap of the private location is revealed to the command center.
It is a further question to quantify how much it leaks about the locations. Such
quantification can be approached by finding the sensitivity of the computation
and applying differential privacy to reduce the leakage, as in [11].

The assumptions specify that, for secret sharing, the two computing parties
must be non-colluding. For FHE, the encryption key must be generated correctly
and location privacy is only preserved if encryption uses the command center’s
public key and the secret key is kept securely by the command center.

6 Conclusion and Future Work

In this paper, we propose PE-BPMN, an extension to the BPMN language with
privacy enhancing technologies. We illustrate the language’s application in a
mobile application scenario and demonstrate how the approach could be used
to find and to analyse privacy leakages throughout the business processes. Our
solution helps stakeholders become aware of the potential privacy risks and intro-
duces the privacy aware system design at a relatively early stage of development.
The study and expert feedback show that the proposed extension helps to visu-
alise and to reason for the process changes required to include PETs, and aids
to choose the suitable privacy technologies in the targeted setting.

We have demonstrated BPMN extension using a limited set of PETs. We
are continuously expanding the concrete syntax of PE-BPMN with new PETs,
especially ones that increase different process modelling and privacy analysis
opportunities. Finally, note that PE-BPMN supports specifying inputs for quan-
titative leakage analysis of privacy adding computations, but it is separate work
to specify the analysis methods.

Acknowledgment. The authors would like to thank Prof. Marlon Dumas, Peeter
Laud and other members of the NAPLES project for discussions, comments and feed-
back concerning this study. This research was, in part, funded by the Air Force Research
laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA) under
contract FA8750-16-C-0011. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Gov-
ernment. This work was also supported by the European Regional Development Fund
through the Excellence in IT in Estonia (EXCITE) and by the Estonian Research
Council under Institutional Research Grant IUT27-1.

References

1. Privacy management reference model and methodology (PMRM) version 1.0.
OASIS Committee Specification 02 (2016). http://docs.oasis-open.org/pmrm/
PMRM/v1.0/cs02/PMRM-v1.0-cs02.html

2. Accorsi, R., Lehmann, A., Lohmann, N.: Information leak detection in business
process models. Inf. Syst. 47(C), 244–257 (2015)

http://docs.oasis-open.org/pmrm/PMRM/v1.0/cs02/PMRM-v1.0-cs02.html
http://docs.oasis-open.org/pmrm/PMRM/v1.0/cs02/PMRM-v1.0-cs02.html

PE-BPMN: Privacy-Enhanced Business Process Model and Notation 55

3. Altuhhova, O., Matulevičius, R., Ahmed, N.: An extension of business process
model and notification for security risk management. IJISMD 4(4), 93–113 (2013)

4. Ayed, G.B., Ghernaouti-Helie, S.: Processes view modeling of identity-related
privacy business interoperability: considering user-supremacy federated identity
technical model and identity contract negotiation. In: 2012 Proceedings of the
ASONAM (2012)

5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, pp. 313–317. AFIPS Press (1979)

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 12

7. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: modeling and
enforcing access control requirements in business processes. In: Proceedings of the
SACMAT 2012, pp. 123–126. ACM (2012)

8. Cherdantseva, Y., Hilton, J., Rana, O.: Towards SecureBPMN - aligning BPMN
with the information assurance and security domain. In: Mendling, J., Weidlich,
M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 107–115. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33155-8 9

9. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.-H., Metayer, D.L.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design-from policy to engi-
neering. Technical report, European Union Agency for Network and Information
Security (2015)

10. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

11. Dumas, M., Garćıa-Bañuelos, L., Laud, P.: Differential privacy analysis of
data processing workflows. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.)
GraMSec 2016. LNCS, vol. 9987, pp. 62–79. Springer, Cham (2016). doi:10.1007/
978-3-319-46263-9 4

12. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

13. Regulation on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (2016). http://data.europa.eu/
eli/reg/2016/679/oj

14. Joint Task Force and Transformation Initiative: Security and privacy controls for
federal information systems and organizations. NIST Special Publication, 800:53
(2013)

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178. ACM, New York (2009)

16. Greenberg, A.: Apple’s ‘Differential Privacy’ is about collecting your data-but not
your data. Wired (2016)

17. Heurix, J., Zimmermann, P., Neubauer, T., Fenz, S.: A taxonomy for privacy
enhancing technologies. Comput. Secur. 53, 1–17 (2015)

18. ISO/IEC DIS 29134: Information technology - security techniques - privacy impact
assessment - guidelines. Technical report, International Organization for Standard-
ization (2016)

19. Koorn, R., van Gils, H., ter Hart, J., Overbeek, P., Tellegen, R., Borking, J.:
Privacy Enhancing Technologies, White Paper for Decision Makers. Ministry of
the Interior and Kingdom Relations, The Netherlands (2004)

http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-642-33155-8_9
http://dx.doi.org/10.1007/978-3-319-46263-9_4
http://dx.doi.org/10.1007/978-3-319-46263-9_4
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj

56 P. Pullonen et al.

20. Ladha, W., Mehandjiev, N., Sampaio, P.: Modelling of privacy-aware business
processes in BPMN to protect personal data. In: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pp. 1399–1405 (2014)

21. Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-
oriented business process management. In: ARES 2009, pp. 41–49 (2009)

22. Mouratidis, H., Kalloniatis, C., Islam, S., Hudic, A., Zechner, L.: Model based
process to support security and privacy requirements engineering. Int. J. Secur.
Softw. Eng. 3(3), 1–22 (2012)

23. OMG: Business Process Model and Notation (BPMN). http://www.omg.org/spec/
BPMN/2.0/

24. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE Trans. Inf. Syst.
90(4), 745–752 (2007)

25. Schleicher, D., Leymann, F., Schumm, D., Weidmann, M.: Compliance scopes:
extending the BPMN 2.0 meta model to specify compliance requirements. In:
SOCA 2010, pp. 1–8 (2010)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Solove, D.J.: A taxonomy of privacy. Univ. Pa. Law Rev. 154, 477–564 (2006)
28. Weiss, M.A., Archick, K.: US-EU Data Privacy: From Safe Harbor to Privacy

Shield. Congressional Research Service (2016)

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Process Mining 1

Learning Hybrid Process Models from Events

Process Discovery Without Faking Confidence

Wil M.P. van der Aalst1,2(B), Riccardo De Masellis2,
Chiara Di Francescomarino2, and Chiara Ghidini2

1 Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

2 FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
{r.demasellis,dfmchiara,ghidini}@fbk.eu

Abstract. Process discovery techniques return process models that are
either formal (precisely describing the possible behaviors) or informal
(merely a “picture” not allowing for any form of formal reasoning). For-
mal models are able to classify traces (i.e., sequences of events) as fitting
or non-fitting. Most process mining approaches described in the liter-
ature produce such models. This is in stark contrast with the over 25
available commercial process mining tools that only discover informal
process models that remain deliberately vague on the precise set of possi-
ble traces. There are two main reasons why vendors resort to such models:
scalability and simplicity. In this paper, we propose to combine the best
of both worlds: discovering hybrid process models that have formal and
informal elements. As a proof of concept we present a discovery technique
based on hybrid Petri nets. These models allow for formal reasoning, but
also reveal information that cannot be captured in mainstream formal
models. A novel discovery algorithm returning hybrid Petri nets has been
implemented in ProM and has been applied to several real-life event logs.
The results clearly demonstrate the advantages of remaining “vague”
when there is not enough “evidence” in the data or standard modeling
constructs do not “fit”. Moreover, the approach is scalable enough to be
incorporated in industrial-strength process mining tools.

Keywords: Process mining · Process discovery · Petri nets · BPM

1 Introduction

The increased interest in process mining illustrates that Business Process Man-
agement (BPM) is rapidly becoming more data-driven [1]. Evidence-based BPM
based on process mining helps to create a common ground for business process
improvement and information systems development. The uptake of process min-
ing is reflected by the growing number of commercial process mining tools avail-
able today. There are over 25 commercial products supporting process mining
(Celonis, Disco, Minit, myInvenio, ProcessGold, QPR, etc.). All support process
discovery and can be used to improve compliance and performance problems.
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 59–76, 2017.
DOI: 10.1007/978-3-319-65000-5 4

60 W.M.P. van der Aalst et al.

For example, without any modeling, it is possible to learn process models clearly
showing the main bottlenecks and deviating behaviors.

These commercial tools are based on variants of techniques like the heuristic
miner [17] and the fuzzy miner [8] developed over a decade ago [1]. All return
process models that lack formal semantics and thus cannot be used as a clas-
sifier for traces. Classifying traces into fitting (behavior allowed by the model)
and non-fitting (not possible according to the model) is however important for
more advanced types of process mining. Informal models (“boxes and arcs”) pro-
vide valuable insights, but cannot be used to draw reliable conclusions. There-
fore, most discovery algorithms described in the literature (e.g., the α-algorithm
[3], the region-based approaches [6,15,18], and the inductive mining approaches
[11–13]) produce formal models (Petri nets, transition systems, automata,
process trees, etc.) having clear semantics.

So why did vendors of commercial process mining tools opt for informal
models? Some of the main drivers for this choice include:

– Simplicity : Formal models may be hard to understand. End-users need to be
able to interpret process mining results: Petri nets with smartly constructed
places and BPMN with many gateways are quickly perceived as too complex.

– Vagueness: Formal models act as binary classifiers: traces are fitting or non-
fitting. For real-life processes this is often not so clear cut. The model captur-
ing 80 percent of all traces may be simple and more valuable than the model
that allows for all outliers and deviations seen in the event log. Hence, “vague-
ness” may be desirable to show relationships that cannot be interpreted in a
precise manner.

– Scalability : Commercial process mining tools need to be able to handle logs
with millions of events and still be used in an interactive manner. Many of
the more sophisticated discovery algorithms producing formal models (e.g.,
region-based approaches [6,15,18]) do not scale well.

The state-of-the-art commercial products show that simplicity, vagueness and
scalability can be combined effectively. Obviously, vagueness and simplicity may
also pose problems. People may not trust process mining results when a precise
interpretation of the generated model is impossible. When an activity has mul-
tiple outgoing arcs, i.e., multiple preceding activities, one would like to know
whether these are concurrent or in a choice relation. Which combinations of out-
put arcs can be combined? Showing frequencies on nodes (activities) and arcs
may further add to the confusion when “numbers do not add up”.

We propose hybrid process models as a way to combine the best of both
worlds. Such models show informal dependencies (like in commercial tools) that
are deliberately vague and at the same time provide formal semantics for the
parts that are clear-cut. Whenever there is enough structure and evidence in
the data, explicit routing constructs are used. If dependencies are weak or too
complex, then they are not left out, but depicted in an informal manner.

We use hybrid Petri nets, a new class for Petri nets with informal annota-
tions, as a concrete representation of hybrid process models. However, the ideas,
concepts, and algorithms are generic and could also be used in the context of

Learning Hybrid Process Models from Events 61

BPMN, UML activity diagrams, etc. Our proposed discovery technique has two
phases. First we discover a causal graph based on the event log. Based on dif-
ferent (threshold) parameters we scan the event log for possible causalities. In
the second phase we try to learn places based on explicit quality criteria. Places
added can be interpreted in a precise manner and have a guaranteed quality.
Causal relations that cannot or should not be expressed in terms of places are
added as sure or unsure arcs. The resulting hybrid Petri net can be used as a
starting point for other types of process mining.

The approach has been implemented in ProM and has been tested on various
event logs and processes. These applications of our approach show that hybrid
process models are useful and combine the best of both worlds: simplicity, vague-
ness, and scalability can be combined with partly formal models that allow for
reasoning and provide formal guarantees.

The remainder is organized as follows. We first present a running example
(Sect. 2) and some preliminaries (Sect. 3). Section 4 defines hybrid Petri nets. The
actual two-phase discovery approach is presented in Sect. 5. Section 6 describes
the ProM plug-ins developed to support the discovery of hybrid process models.
Section 7 evaluates the approach. Section 8 discusses related work and Sect. 9
concludes the paper.

2 Motivating Example

Figure 1 illustrates the trade-offs using example data from an order handling
process. All five models have been produced for the same event log containing
12,666 cases, 80,609 events, and eight unique activities. Each case has a corre-
sponding trace, i.e., a sequence of events. Models (a), (b), and (c) are expressed
in terms of a Petri net and have formal semantics. Model (a) was created using
the ILP miner with default settings; it is precise and each of the 12,666 cases
perfectly fits the model. However, model (a) is difficult to read. For larger event
logs, having more activities and infrequent paths, the ILP miner is not able to

Fig. 1. Five process models discovered for an event log recorded for 12,666 orders
(labels are not intended to be readable).

62 W.M.P. van der Aalst et al.

produce meaningful models (the approach becomes intractable and/or produces
incomprehensible models). Models (b) and (c) were created using the inductive
miner (IMf [12]) with different settings for the noise threshold (0.0 respectively
0.2). Model (b) is underfitting, but able to replay all cases. Model (c) focuses on
the mainstream behavior only, but only 9,440 of the 12,666 cases fit perfectly.
In 3,189 cases there are multiple reminders and in 37 cases the payment is done
before sending the invoice. All other cases conform to model (c). Models (d)
and (e) were created using the commercial process mining tool Disco (Fluxicon)
using different settings. These models are informal. Model (d) shows only the
most frequent paths and model (e) shows all possible paths. For such informal
models it is impossible to determine the exact nature of splits and joins. Com-
mercial tools have problems dealing with loops and concurrency. For example,
for each of the 12,666 cases, activities make delivery and confirm payment hap-
pened at most once, but not in a fixed order. However, these concurrent activities
are put into a loop in models (d) and (e). This problem is not specific for Disco
or this event log: all commercial tools suffer from this problem.

We would like to combine the left-hand side and the right-hand side of Fig. 1
by using formal semantics when the behavior is clear and easy to express and
resorting to informal annotations when things are blurry or inexact.

3 Preliminaries

In this section we introduce basic concepts, including multisets, operations on
sequences, event logs and Petri nets.

B(A) is the set of all multisets over some set A. For some multiset X ∈ B(A),
X(a) denotes the number of times element a ∈ A appears in X. Some examples:
X = [], Y = [x, x, y], and Z = [x3, y2, z] are multisets over A = {x, y, z}. X is
the empty multiset, Y has three elements (Y (x) = 2, Y (y) = 1, and Y (z) = 0),
and Z has six elements. Note that the ordering of elements is irrelevant.

σ = 〈a1, a2, . . . , an〉 ∈ A∗ denotes a sequence over A. σ(i) = ai denotes the
i-th element of the sequence. |σ| = n is the length of σ and dom(σ) = {1, . . . , |σ|}
is the domain of σ. 〈 〉 is the empty sequence, i.e., |〈 〉| = 0 and dom(〈 〉) = ∅.
σ1 · σ2 is the concatenation of two sequences.

Let A be a set and X ⊆ A one of its subsets.�X∈ A∗ → X∗ is a projection
function and is defined recursively: 〈 〉 �X = 〈 〉 and for σ ∈ A∗ and a ∈ A:
(〈a〉 · σ)�X = σ�X if a �∈ X and (〈a〉 · σ)�X = 〈a〉 · σ�X if a ∈ X. For example,
〈a, b, a〉�{a,c} = 〈a, a〉. Projection can also be applied to multisets of sequences,
e.g., [〈a, b, a〉5, 〈a, d, a〉5, 〈a, c, e〉3]�{a,c} = [〈a, a〉10, 〈a, c〉3].

Starting point for process discovery is an event log where events are grouped
into cases. Each case is represented by a trace, e.g., 〈�, a, b, c, d, �〉.
Definition 1 (Event Log). An event log L ∈ B(A∗) is a non-empty multiset
of traces over some activity set A. A trace σ ∈ L is a sequence of activities.
There is a special start activity � and a special end activity �. We require that
{�, �} ⊆ A and each trace σ ∈ L has the structure σ = 〈�, a1, a2, . . . , an, �〉

Learning Hybrid Process Models from Events 63

and {�, �} ∩ {a1, a2, . . . , an} = ∅. UL is the set of all event logs satisfying these
requirements.

An event log captures the observed behavior that is used to learn a process
model. An example log is L1 = [〈�, a, b, c, d, �〉45, 〈�, a, c, b, d, �〉35, 〈�, a, e, d, �〉20]
containing 100 traces (|L1| = 100) and 580 events (

∑
σ∈L1

|σ| = 580). In reality,
each event has a timestamp and may have any number of additional attributes.
For example, an event may refer to a customer, a product, the person executing
the event, associated costs, etc. Here we abstract from these notions and simply
represent an event by its activity name.

A Petri net is a bipartite graph composed of places (represented by circles)
and transitions (represented by squares).
Definition 2 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the set
of places, T the set of transitions, P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) the
flow relation.

Transitions represent activities and places are added to model causal rela-
tions. •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} define input and output
sets of places and transitions. Places can be used to causally connect transitions
as is reflected by relation F̂ : (t1, t2) ∈ F̂ if t1 and t2 are connected through a
place p, i.e., p ∈ t1• and p ∈ •t2.
Definition 3 (F̂). Let N = (P, T, F) be a Petri net. F̂ = {(t1, t2) ∈ T × T |
∃p∈P {(t1, p), (p, t2)} ⊆ F} are all pairs of transitions connected through places.

The state of a Petri net, called marking, is a multiset of places indicating how
many tokens each place contains. Tokens are shown as block dots inside places.

Definition 4 (Marking). Let N = (P, T, F) be a Petri net. A marking M is
a multiset of places, i.e., M ∈ B(P).

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉,
if each of its input places (p ∈ •t) contains at least one token. An enabled
transition t may fire, i.e., one token is removed from each of the input places
(p ∈ •t) and one token is produced for each of the output places (p ∈ t•).

(N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in mark-
ing M ′. Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions, sometimes
referred to as a trace. (N,M)[σ〉(N,M ′) denotes that there is a set of markings
M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for
0 ≤ i < n.

A system net has an initial and a final marking. The behavior of a system net
corresponds to the set of traces starting in the initial marking Minit and ending
in the final marking Mfinal .

Definition 5 (System Net Behavior). A system net is a triplet SN =
(N,Minit ,Mfinal) where N = (P, T, F) is a Petri net, Minit ∈ B(P) is the
initial marking, and Mfinal ∈ B(P) is the final marking. behav(SN) = {σ |
(N,Minit)[σ〉(N,Mfinal)} is the set of traces possible according to the model.

Note that a system net classifies traces σ into fitting (σ ∈ behav(SN)) and
non-fitting (σ �∈ behav(SN)).

64 W.M.P. van der Aalst et al.

4 Hybrid Petri Nets

A formal process model is able to make firm statements about the inclusion
or exclusion of traces, e.g., trace 〈�, a, b, c, d, �〉 fits the model or not. Informal
process models are unable to make such precise statements about traces. Events
logs only show example behavior: (1) logs are typically incomplete (e.g., the
data only shows a fraction of all possible interleavings, combinations of choices,
or unfoldings) and (2) logs may contain infrequent exceptional behavior where
the model should abstract from. Therefore, it is impossible to make conclusive
decisions based on event logs. More observations may lead to a higher certainty
and the desire to make a formal statement (e.g., “after a there is a choice between
b and c”). However, fewer observations and complex dependencies create the
desire to remain “vague”. Models (a), (b) and (c) in Fig. 1 have formal semantics
as described in Definition 5. (The initial and final markings are defined but not
indicated explicitly: the source places are initially marked and the sink places
are the only places marked in the final markings.) Models (d) and (e) in Fig. 1
are informal and therefore unable to classify traces into fitting and non-fitting.

In essence process models describe causalities between activities. Depending
on the evidence in the data these causalities can be seen as stronger (“sure”)
or weaker (“unsure”). The strength of a causal relation expresses the level of
confidence. A strong causality between two activities a and b suggests that one
is quite sure that activity a causes activity b to happen later in time. This does
not mean that a is always followed by b. The occurrence of b may depend on
other factors, e.g., b requires c to happen concurrently or a only increases the
likelihood of b.

The strength of a causality and the formality of a modeling construct are
orthogonal as shown in Fig. 2. Even when one is not sure, one can still use
a formally specified modeling construct. Moreover, both notions may be local,
e.g., parts of the process model are more certain or modeled precisely whereas
other parts are less clear and therefore kept vague.

Fig. 2. The strength of a causality and the formality of a modeling construct are
orthogonal. However, it makes less sense to express a weak causality in a formal manner.

As Fig. 2 suggests it seems undesirable to express a weak causality using
a formal construct. Moreover, depending on the representational bias of the

Learning Hybrid Process Models from Events 65

modeling notation, strong causalities may not be expressed easily. The mod-
eling notation may not support concurrency, duplicate activities, unstructured
models, long-term dependencies, OR-joins, etc. Attempts to express behavior
incompatible with representational bias of the modeling notation in a formal
model are doomed to fail. Hence, things that cannot be expressed easily in an
exact manner can only be captured using annotations that are deliberately vague
and non-executable. Instead, we aim to combine the best of both worlds, i.e.,
marrying the left-hand side and the right-hand side of Fig. 1 by combining both
formal and informal notations.

start send
invoice

confirm
payment

pay

make
delivery

send
reminder

cancel
order

place
order

prepare
delivery

?

end

?

p1 p2 p3

p4

p5

p6

p7

p8

p9

Fig. 3. A hybrid system net with Minit = [p1] and Mfinal = [p9]. This hybrid model
was discovered using the approach presented in Sect. 5.

Although the ideas are generic and also apply to other notations (BPMN,
UML activity diagrams, etc.), we operationalize the notion of hybrid process
models by defining and using so-called hybrid Petri nets. Unlike conventional
Petri nets, we use different types of arcs to indicate the level of certainty.

Figure 3 shows an example of a hybrid Petri net discovered based on the event
log also used to create the models in Fig. 1. Strong causalities are expressed
through conventional places and arcs and sure arcs (arcs directly connecting
transitions). Weak causalities are expressed using unsure arcs (dashed arcs with
a question mark). Figure 2 shows the three types of arcs.

Definition 6 (Hybrid Petri Net). A hybrid Petri net is a tuple HPN =
(P, T, F1, F2, F3) where (P, T, F1) is a Petri net, F2 ⊆ T × T , and F3 ⊆ T × T

such that F̂1, F2, and F3 are pairwise disjoint. Arcs of Type I ((p, t) ∈ F1 or
(t, p) ∈ F1) are the normal arcs connecting a place to a transition or vice versa.
Arcs of Type II ((t1, t2) ∈ F2) are arcs indicating a strong causality between two
transitions (sure arcs). Arcs of Type III ((t1, t2) ∈ F3) are arcs indicating a weak
causality between two transitions (unsure arcs).

Transitions, places, and normal (Type I) arcs have formal semantics as
defined in Sect. 3. Again we define an initial and final marking to reason about
the set of traces possible. Therefore, we define the notion of a hybrid system net.

66 W.M.P. van der Aalst et al.

Definition 7 (Hybrid System Net). A hybrid system net is a triplet HSN =
(HPN ,Minit ,Mfinal) where HPN = (P, T, F1, F2, F3) is a hybrid Petri net,
Minit ∈ B(P) is the initial marking, and Mfinal ∈ B(P) is the final marking.
UHSN is the set of all possible hybrid system nets. behav(HSN) is defined as in
Definition 5 while ignoring the sure and unsure arcs (i.e., remove F2 and F3).

Only normal (Type I) arcs have formal semantics; the other two types of arcs
are informal and do not include or exclude traces. Recall that Petri net without
any places allows for any behavior and adding a place can only restrict behavior.
A sure arc (t1, t2) ∈ F2 should be interpreted as a strong causal relationship that
cannot be expressed (easily) in terms of a place connecting t1 and t2. An unsure
arc (t1, t2) ∈ F3 is a suspected causal relationship that is too weak to justify a
place connecting t1 and t2.

The role of sure and unsure arcs will become clearer when presenting the
discovery technique in the next section. Figure 3 also uses special symbols for
the start and end activities (� and �) as introduced in Definition 1, but the
semantics of HSN do not depend on this.

We would like to stress that only the places in a hybrid system net HSN
provide formal semantics. Behavioral quality measures such as fitness and pre-
cision will be based solely on the places in HSN (see definition behav(HSN)).
Sure arcs (F2) and unsure arcs (F3) carry important information but cannot be
used for such quality measures.

5 Discovering Hybrid Process Models

We aim to discover hybrid process models. As a target format we have chosen
hybrid system nets that have three types of arcs. We use a two-step approach.
First, we discover a causal graph (Sect. 5.1). Based on the causalities identified,
we generate candidate places. These places are subsequently evaluated using
replay techniques (Sect. 5.2). Strong causalities that cannot be expressed in terms
of places are added to the hybrid system net as sure arcs. Moreover, the resulting
hybrid model may also express weak causal relations as unsure arcs.

5.1 Discovering Causal Graphs

A causal graph is a directed graph with activities as nodes. There is always a
unique start activity (�) and end activity (�). There are two kinds of causal
relations: strong and weak. These correspond to the two columns in Fig. 2.

Definition 8 (Causal Graph). A causal graph is a triplet G = (A,RS , RW)
where A is the set of activities including start and end activities (i.e., {�, �} ⊆
A), RS ⊆ A × A is the set of strong causal relations, RW ⊆ A × A is the set of
weak causal relations, and RS ∩ RW = ∅ (relations are disjoint). UG is the set
of all causal graphs.

Learning Hybrid Process Models from Events 67

start send
invoice

confirm
payment

pay

make
delivery

send
reminder

cancel
order

place
order

prepare
delivery

?

end

?

Fig. 4. A causal graph: nodes correspond to activities and arcs correspond to causal
relations.

Figure 4 shows a causal graph derived from the event log also used to discover
the models in Fig. 1. The dashed arcs with question marks correspond to weak
causal relations. The other arcs correspond to strong causal relations.

Definition 9 (Causal Graph Discovery). A causal graph discovery function
disccg ∈ UL → UG is a function that constructs a causal graph disccg(L) =
(A,RS , RW) for any event log L ∈ UL over A.

There are many algorithms possible to construct a causal graph from a log.
As an example, we use a variant of the approach used by the heuristic miner
[1,17]. We tailored the approach to hybrid discovery (i.e., different types of arcs)
while aiming for parameters that are intuitive and can be used interactively
(e.g., thresholds can be changed seamlessly while instantly showing the resulting
graph). Note that we clearly separate the identification of causalities from the
discovery of process logic (see Sect. 5.2).

Definition 10 (Log-Based Properties). Let L ∈ UL be an event log over A
and {a, b} ⊆ A.

– #(a, L) =
∑

σ∈L |{i ∈ dom(σ) | σ(i) = a}| counts the number of a’s in log L.
– #(X,L) =

∑
x∈X #(x,L) counts the number of X ⊆ A activities in L.

– #(a, b, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a ∧ σ(i + 1) = b}| counts
the number of times a is directly followed by b in event log L.

– #(∗, b, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i + 1) = b}| counts the number of
times b is preceded by some activity.

– #(a, ∗, L) =
∑

σ∈L |{i ∈ dom(σ) \ {|σ|} | σ(i) = a}| counts the number of
times a is succeeded by some activity.

– Rel1 (a, b, L) =
#(a, b, L) + #(a, b, L)
#(a, ∗, L) + #(∗, b, L)

counts the strength of relation (a, b)

relative to the split and join behavior of activities a and b.

68 W.M.P. van der Aalst et al.

– Rel2 c(a, b, L) =

⎧
⎪⎨

⎪⎩

#(a,b,L)−#(b,a,L)
#(a,b,L)+#(b,a,L)+c if #(a, b, L) − #(b, a, L) > 0
#(a,b,L)

#(a,b,L)+c if a = b

0 otherwise

counts

the strength of relation (a, b) taking into account concurrency and loops using
parameter c ∈ R

+ (default c = 1).
– Causc,w(a, b, L) = w ·Rel1 (a, b, L)+ (1−w) ·Rel2 c(a, b, L) takes the weighted

average of both relations where w ∈ [0, 1] is a parameter indicating the relative
importance of the first relation. If w = 1, we only use Rel1 (a, b, L). If w = 0,
we only use Rel2 c(a, b, L). If w = 0.5, then both have an equal weight.

Rel1 (a, b, L), Rel2 c(a, b, L), and Causc,w(a, b, L) all produce values between 0
(weak) and 1 (strong). Using the properties in Definition 10, we define a concrete
function disccg to create causal graphs. All activities that occur at least tfreq
times in the event log are included as nodes. The strength of relations between
remaining activities (based on Causc,w) are used to infer causal relations. tRS

and tRW
are thresholds for strong respectively weak causal relations. Parameter

w determines the relative importance of Rel1 and Rel2 c. Parameter c is typically
set to 1.

Definition 11 (Concrete Causal Graph Discovery Technique). Let L ∈
UL be an event log over A and let tfreq ∈ IN+, c ∈ R

+, w ∈ [0, 1], tRS
∈ [0, 1],

tRW
∈ [0, 1] be parameters such that tRS

≥ tRW
. The corresponding causal graph

is G = disccg(L) = (A′, RS , RW) where

– A′ = {a ∈ A | #(a, L) ≥ tfreq} ∪ {�, �} is the set of activities that meet the
threshold (the start and end activities are always included).

– RS = {(a, b) ∈ A′ × A′ | Causc,w(a, b, L�A′) ≥ tRS
} is the set of strong causal

relations.
– RW = {(a, b) ∈ A′ × A′ | tRS

> Causc,w(a, b, L�A′) ≥ tRW
} is the set of weak

causal relations.

Figure 4 shows a causal graph constructed using parameters tfreq = 1000,
c = 1, w = 0.2, tRS

= 0.8, and tRW
= 0.75.

5.2 Discovering Hybrid System Nets

In the second step of the approach we use the causal graph to create a hybrid
system net (that turns strong causalities into formal constraints if possible).

Definition 12 (Hybrid System Net Discovery). A hybrid system net dis-
covery function dischsn ∈ (UL × UG) → UHSN is a function that for any event
log L and causal graph G discovers a hybrid system net dischsn(L,G) ∈ UHSN .

Just like there are many algorithms possible to create a causal graph, there
are also multiple ways to construct a hybrid system net from an event log and
causal graph. The minimal consistency requirements can be defined as follows.

Learning Hybrid Process Models from Events 69

Definition 13 (Consistent). LetL ∈ UL be an event log, letG = (A,RS , RW) ∈
UG be a causal graph, and let HSN = (HPN ,Minit ,Mfinal) ∈ UHSN with HPN =
(P, T, F1, F2, F3) be a hybrid system net. L,G, and SN are consistent if and only if:
T = A ⊆ ⋃

σ∈L{a ∈ σ}, {p�, p�} ⊆ P , F1 ∩ (({p�, p�} × T) ∪ (T × {p�, p�})) =
{(p�, �), (�, p�)}, Minit = [p�] and Mfinal = [p�], for all p ∈ P \ {p�, p�}: •p �= ∅
and p• �= ∅, RS = F̂1 ∪ F2, F̂1 ∩ F2 = ∅, and RW = F3.

An event log L, causal graph G, and hybrid system net HSN are consistent if
(1) L and G refer to the same set of activities all appearing in the event log, (2)
there is a source place p� marked in the initial place and enabling start activity
�, (3) there is a sink place p� marked in the final marking and connected to end
activity �, (4) all other places connect activities, (5) there is a one-to-one corre-
spondence between strong causal relations (RS) and connections through places
(F̂1) or sure arcs (F2), and (6) there is a one-to-one correspondence between
weak causal relations (RW) and unsure arcs (F3).

Consider two activities a1, a2 ∈ A that are frequent enough to be included
in the model. These can be related in three different ways: (a1, a2) ∈ F̂1 if there
is a place connecting a1 and a2, (a1, a2) ∈ F2 if there is no place connecting a1

and a2 but there is a strong causal relation between a1 and a2 (represented by
a sure arc), (a1, a2) ∈ F3 if there is a weak causal relation between a1 and a2

(represented by an unsure arc).
Any discovery function dischsn ∈ (UL × UG) → UHSN should ensure consis-

tency. In fact, Definition 13 provides hints on how to discover a hybrid system net.
Assume a place p = (I,O) with input transitions •p = I and output transi-

tions p• = O is added. RS = F̂1 ∪F2 implies that F̂1 ⊆ RS . Hence, I ×O ⊆ RS ,
i.e., place p = (I,O) can only connect transitions having strong causal rela-
tions. Moreover, I and O should not be empty. These observations based on
Definition 13 lead to the following definition of candidate places.

Definition 14 (Candidate Places). Let G = (A,RS , RW) ∈ UG be a causal
graph. The candidate places based on G are: candidates(G) = {(I,O) | I �=
∅ ∧ O �= ∅ ∧ I × O ⊆ RS}.

Given a candidate place p = (I,O) we can check whether it allows for a
particular trace.

Definition 15 (Replayable trace). Let p = (I,O) be a place with input set
•p = I and output set p• = O. A trace σ = 〈a1, a2, . . . , an〉 ∈ A∗ is perfectly
replayable with respect to place p if and only if

– for all k ∈ {1, 2, . . . , n}: |{1 ≤ i < k | ai ∈ I}| ≥ |{1 ≤ i ≤ k | ai ∈ O}| (place
p cannot “go negative” while replaying the trace) and

– |{1 ≤ i ≤ n | ai ∈ I}| = |{1 ≤ i ≤ n | ai ∈ O}| (place p is empty at end).

We write �(p, σ) if σ is perfectly replayable with respect to place p = (I,O).
act(p, σ) = ∃a∈σ a ∈ (I ∪O) denotes whether place p = (I,O) has been activated,
i.e., a token was consumed or produced for it in σ.

70 W.M.P. van der Aalst et al.

Note that �(p, σ) if σ is a trace of the system net having only one place p.
To evaluate candidate places one can define different scores.

Definition 16 (Candidate Place Scores). Let L ∈ UL be an event log. For
any candidate place p = (I,O) with input set •p = I and output set p• = O, we
define the following scores:

– scorefreq(p, L) = | [σ∈L|�(p,σ)] |
|L| is the fraction of fitting traces,

– scorerel(p, L) = | [σ∈L|�(p,σ) ∧ act(p,σ)] |
| [σ∈L|act(p,σ)] | is the fraction of fitting traces that

have been activated, and
– scoreglob(p, L) = 1 − |#(I,L)−#(O,L) |

max(#(I,L),#(O,L)) is a global score only looking at the
aggregate frequencies of activities.

To explain the three scoring functions consider again L1 = [〈�, a, b, c, d, �〉45,
〈�, a, c, b, d, �〉35, 〈�, a, e, d, �〉20]. Let us consider place p1 = (I1, O1) with I1 = {a}
and O2 = {b}. scorefreq(p1, L1) = scorerel(p1, L1) = 80/100 = 0.8 and scoreglob(p1,
L1) = 1 − |100−80|/max(100,80) = 0.8. For place p2 = (I2, O2) with I2 = {a} and
O2 = {b, e}: scorefreq(p2, L1) = scorerel(p2, L1) = scoreglob(p2, L1) = 1. Hence,
all three scoring functions agree and show that the second place is a better candi-
date. Note that if the candidate place p does not inhibit any of the traces in the log,
then all scores are 1 by definition.

Let us now consider event log L2 = [〈c, d〉1000, 〈a, b〉100, 〈b, a〉10, 〈a, a, a,
a, . . . , a〉] (with the last trace containing 1000 a’s) and candidate place p1 =
(I1, O1) with I1 = {a} and O2 = {b}. scorefreq(p1, L2) = 1100/1111 = 0.99,
scorerel(p1, L2) = 100/111 = 0.90, scoreglob(p1, L2) = 1− |1110−110|/max(1110,110) =
0.099. Now the values are very different. Interpreting the scores reveals that
scorefreq is too optimistic. Basically one can add any place connected to low fre-
quent activities, without substantially lowering the scorefreq score. Hence, scorerel
is preferable over scorefreq . scoreglob can be computed very efficiently because
traces do not need to be replayed. It can be used to quickly prune the set of candi-
date places, but the last example shows that one needs to be careful when traces
are unbalanced (i.e., I or O activities occur many times in a few traces).

Based on the above discussion we use scoring function scorerel in conjunction
with a threshold treplay . The causal graph, a set of candidate places, and this
threshold can be used to discover a hybrid system net.

Definition 17 (Concrete Discovery Technique). Let L ∈ UL be an event
log and let G = (A,RS , RW) ∈ UG be a causal graph. treplay is the threshold
for the fraction of fitting traces that have been activated. The discovered hybrid
system net dischsn(L,G) = (HPN ,Minit ,Mfinal) with HPN = (P, T, F1, F2, F3)
is constructed as follows

– Q = {p ∈ candidates(G) | scorerel(p, L�A) ≥ treplay} is the set of internal
places (all candidate places meeting the threshold),

– P = {p�, p�} ∪ Q is the set of places ({p�, p�} ∩ Q = ∅),
– T = A is the set of transitions,

Learning Hybrid Process Models from Events 71

– F1 = {(p�, �), (�, p�)} ∪ {(t, (I,O)) ∈ T × Q | t ∈ I} ∪ {((I,O), t) ∈ Q × T |
t ∈ O} is the set of normal arcs,

– F2 = RS \ F̂1 is the set of sure arcs, and
– F3 = RW is the set of unsure arcs.

It is easy to check that this concrete dischsn function indeed ensures con-
sistency. The construction of the discovered hybrid system net is guided by the
causal graph. We can construct hybrid system net dischsn(L, disccg(L)) for any
event log L using parameters tfreq , c, w, tRS

, tRW
, and treplay . For example, the

hybrid model shown in Fig. 3 was discovered using tfreq = 1000, c = 1, w = 0.2,
tRS

= 0.8, tRW
= 0.75, and treplay = 0.9. Our discovery approach is highly con-

figurable and also provides formal guarantees (e.g., treplay = 1 ensures perfect
fitness). When there is not enough structure or evidence in the data, the app-
roach is not coerced to return a model that suggests a level of confidence that
is not justified.

6 Implementation

Two novel ProM plug-ins have been created to support the approach described
in this paper.1 The Causal Graph Miner plug-in is used to create a causal graph
using the approach described in Definition 11. The user can control the para-
meters w, tfreq , tRS

, and tRW
through sliders and directly see the effects in the

resulting graph. The Hybrid Petri Net Miner plug-in implements Definition 17
and takes as input an event log and a causal graph. The plug-in returns a discov-
ered hybrid system net. Only places that meet the treplay threshold are added.
The replay approach has been optimized to stop replaying a trace when it does
not fit.

Fig. 5. Screenshots of the Causal Graph Miner (left) and the Hybrid Petri Net Miner
(right) analyzing the running example with parameter settings tfreq = 1000, c = 1,
w = 0.2, tRS = 0.8, tRW = 0.75, and treplay = 0.9.

1 Install ProM and the package HybridMiner from http://www.promtools.org.

http://www.promtools.org

72 W.M.P. van der Aalst et al.

Figure 5 shows the two plug-ins in action for the event log containing 12,666
cases and 80,609 events. The results returned correspond to the causal graph
depicted in Fig. 4 and the hybrid system net depicted in Fig. 3. Both were com-
puted in less than a second on a standard laptop. Activity send reminder may
occur repeatedly (or not) after sending the invoice but before payment or can-
cellation. However, payments may also occur before sending the invoice. The
hybrid system net in Fig. 5 (also see Fig. 3 which is better readable) clearly dif-
ferentiates between (1) the behavior which is dominant and clear and (2) the
more vague behavior that cannot be captured formally or is not supported by
enough “evidence”. The example illustrates the scalability of the approach while
supporting simplicity and deliberate vagueness.

7 Evaluation

Process discovery techniques can be evaluated using a range of indicators refer-
ring to fitness (ability to replay the observed behavior), precision (avoiding
underfitting), generalization (avoiding overfitting), and simplicity (is the model
easy to understand) [1]. Existing indicators are less suitable for the evaluation
of hybrid models explicitly capturing vagueness. Criteria involving fitness, pre-
cision, and generalization can also not be measured for the informal models
produced by existing commercial process mining tools. When computing tradi-
tional quality measures for hybrid system nets we basically ignore the sure and
unsure arcs.

Table 1. Six data sets used.

Log Cases Events Activities

BPI-2011 1143 150291 624

BPI-2012 13087 164506 23

BPI-2014 46616 466737 39

BPI-2015 1199 52217 398

BPI-2016 557 286075 312

BPI-2017 31509 475306 24

We applied our approach to a large
number of real-life events logs and ana-
lyzed the effects of the different parame-
ters (tfreq , c, w, tRS

, tRW
, and treplay)

on the resulting models. In this section,
we report on our findings using six data
sets taken from the well-known BPI Chal-
lenges [16].2

Table 1 shows the basic characteris-
tics of the six event logs used: BPI-20XX
refers to the year of the corresponding BPI challenge [16] and the number of
cases, events, and unique activities (event classes) are shown. For BPI-2011,
BPI-2012, and BPI-2017 we used the full data set. For BPI-2014 we used the
event log for incidents, for BPI-2015 we used the data of the first municipality,
and for BPI-2016 we used the event log with click data. These selections were
made to focus on a particular process or organization.

We first selected initial parameters for each of the six event logs in Table 1 to
create six “reasonable” base models. To create the base models we interactively
set the thresholds in such a way that the underlying graph is connected. treplay

2 The reader is invited to redo the experiments using the latest version of ProM, the
HybridMiner package (promtools.org), and the publicly available data sets used here
[16].

http://promtools.org

Learning Hybrid Process Models from Events 73

Table 2. Parameters used to create the base models and their characteristics.

Log tfreq tRS
tRW

w treplay |T | |P | |̂F1| |F2| |F3| Fitness Precision Time (ms)

BPI-2011 343 0.81 0.80 0.10 0.80 38 6 4 200 6 0.84 0.04 11772

BPI-2012 3926 0.90 0.89 0.10 0.80 14 8 7 20 1 0.90 0.26 12414

BPI-2014 13985 0.90 0.90 0.10 0.80 10 5 3 13 0 0.93 0.54 21233

BPI-2015 360 0.45 0.40 0.50 0.80 59 26 24 145 75 0.74 0.05 7055

BPI-2016 445 0.50 0.50 0.10 0.80 12 2 0 31 0 0.83 0.10 31428

BPI-2017 9453 0.51 0.50 0.50 0.80 22 8 7 36 12 0.95 0.12 24772

was set in such way that a reasonable number of places remained. Table 2 shows
the settings used and some of the characteristics of the resulting hybrid process
models.

Obviously different parameter settings lead to different models. For example,
if treplay is set to 1, then (by definition) the fitness will be 1. Similarly, the num-
ber of unsure arcs is directly affected by tRW

. If tRW
= tRS

, then (by definition)
there will be no unsure arcs. Column |T | shows the number of retained activities.
Columns |P | and |F̂1| provide insights in the dominant and clear behavior cap-
tured in terms of normal arcs. Columns |F2| and |F3| indicate the number of sure
and unsure arcs. These numbers give insights in the complexity of the models
(simplicity dimension). Fitness and precision are computed using the techniques
from [4,5] while ignoring the sure and unsure arcs (i.e., only considering the
normal places and arcs).

The fitness values in Table 2 are as expected. It is possible to improve fitness
at the cost of having fewer places. The precision values in Table 2 vary widely.
Precision is very low for BPI-2011 and BPI-2015. However, for these models
there are many sure arcs showing the added value of our hybrid approach. Things
that cannot be expressed in terms of reasonable places (treplay = 0.8) can still
be expressed. Traditional approaches would be forced to accept places that have
a lower quality or ignore the causalities observed. For example, the inductive
miner would generate underfitting models or models focusing on the mainstream
behavior only.

The computation times (last column in Table 2) are in milliseconds. Clearly,
the size of the event log and computation time positively correlate. Moreover,
the fewer candidate places the faster the second step is performed. These num-
bers show that the approach is already quite fast compared to other approaches
returning a formal model (all models are computed in less than 25 seconds).
Implementation-wise there is ample room for improvement, showing that the
approach itself is highly scalable.

For each of the six event logs, we used the baseline values for w, tRS
, tRW

,
treplay , and tfreq (Table 2) as a starting point. (We fixed the value of c to its
default value: c = 1.) Next, we varied some of the key parameters one-by-
one while keeping the baseline values for the other parameters fixed: treplay ∈
{0.7, 0.8, 0.9, 1.0}, w ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, tRS

∈ {0.5, 0.6, 0.7, 0.8, 0.9}, and
tRW

∈ {0.5, 0.6, 0.7, 0.8, 0.9} (such that tRS
≥ tRW

). These results are discussed

74 W.M.P. van der Aalst et al.

in detail in a technical report [2]. Given the limited space, we only summarize
the main findings here.

– Increasing the value of treplay improves fitness of the model because places
that are not perfectly fitting are removed. The precision of the model typically
decreases when treplay goes up. Moreover, the removal of places leads to an
increase in sure arcs.

– Increasing the value of w has a marginal effect on fitness and precision. For
some of the event logs, precision is better for lower values of w (i.e., more
weight is given to Rel2 c(a, b, L)).

– Increasing the value of tRS
leads to fewer connections through places and

sure arcs. This can only improve fitness. However, the effect is moderate and
heavily depends on treplay . Precision tends to go down when tRS

goes up.
– Increasing the value of tRW

, by definition, has no effect on precision and
fitness and only affects the number of unsure arcs.

In summary, the discovery approach works in a predictable manner. Using the
parameters the analyst can influence the characteristics of the discovered model
in a fast and reliable manner. It is possible to express “vagueness” in terms
of sure and unsure arcs. If there is not enough evidence in the data to justify
the addition of many “good” places, then the resulting model will have a low
precision. Fitness can be controlled directly by treplay . We refer to the technical
report for detailed experimental results [2], but acknowledge that additional
evaluations are needed (involving new metrics and groups of users).

8 Related Work

The work reported in this paper was inspired by the work of Herrmann et al.
[9,10] who argue that modeling “requires the representation of those parts of
knowledge which cannot be stated definitely and have to be modeled vaguely”.
They propose annotations to make vagueness explicit. In [9,10] the goal is to
model vagueness, but we aim to automatically discover hybrid models supporting
both vagueness and formal semantics.

Hybrid process models are related to the partial models considered in soft-
ware engineering [7,14]. These partial models can be completed into formal mod-
els and do not consider data-driven uncertainty. In fact, these partial models are
closer to configurable process models representing sets of concrete models

In literature one can find a range of process discovery approaches that pro-
duce formal models [1]. The α-algorithm [3] and its variants produce a Petri
net. Approaches based on state-based regions [15] and language-based regions
[6,18] also discover Petri nets. The more recently developed inductive mining
approaches produce process trees that can be easily converted to Petri nets or
similar [11–13].

Commercial process mining tools typically produce informal models. These
are often based on the first phases of the heuristic miner [17] (dependency graph)
or the fuzzy miner [8] (not allowing for any form of formal reasoning).

Learning Hybrid Process Models from Events 75

It is impossible to give a complete overview of all discovery approaches here.
However, as far as we know there exist on other discovery approaches that return
hybrid models having both formal and informal elements.

9 Conclusion

In this paper we advocated the use of hybrid models to combine the best of two
worlds: commercial tools producing informal models and discovery approaches
providing formal guarantees. We provided a concrete realization of our hybrid
discovery approach using hybrid Petri nets. The ideas are not limited to Petri
nets and could be applied to other types of process models (e.g., BPMN mod-
els with explicit gateways for the clear and dominant behavior and additional
arcs to capture complex or less dominant behavior). Unlike existing approaches
there is no need to straightjacket behavior into a formal model that suggests a
level of confidence that is not justified. The explicit representation of vagueness
and uncertainty in hybrid process models is analogous to the use of confidence
intervals and box-and-whisker diagrams in descriptive statistics.

The approach has been fully implemented and tested on numerous real-life
event logs. The results are very promising, but there are still many open ques-
tions. In fact, the paper should be seen as the starting point for a new branch
of research in BPM and process mining. To evaluate differences between infor-
mal, formal, and hybrid models from a user perspective, we need new evaluation
criteria taking understandability and perceived complexity into account. Future
work will also include “hybrid BPMN and UML activity diagrams” focusing on
different model constructs (gateways, swimlanes, artifacts, etc.). Existing tech-
niques (also supported by ProM) can already be used to map compliance and
performance indicators onto causalities expressed in terms of explicit places.
We would like to also provide approximative compliance and performance indi-
cators for sure and unsure arcs. Note that commercial tools show delays and
frequencies on arcs, but these indicators may be very misleading as demon-
strated in Sect. 11.4.2 of [1]. Finally, we would like to improve performance. The
approach has already a good performance. Moreover, there are several ways to
further speed-up analysis (e.g., pruning using scoreglob or user-defined prefer-
ences). Moreover, computation can be distributed in a straightforward manner
(e.g., using MapReduce).

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016)

2. van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini,
C.: Learning Hybrid Process Models From Events: Process Discovery Without
Faking Confidence (Experimental Results). ArXiv e-prints 1703.06125 (2017).
arXiv.org/abs/1703.06125

http://arxiv.org/abs/org/abs/1703.06125

76 W.M.P. van der Aalst et al.

3. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128–1142 (2004)

4. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D thesis, Eindhoven
University of Technology, April 2014

5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. ISeB 13(1), 37–67 (2015)

6. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on
regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75183-0 27

7. Famelis, M., Salay, R., Chechik, M., Models, P.: Towards modeling and reason-
ing with uncertainty. In: International Conference on Software Engineering (ICSE
2012), pp. 573–583. IEEE Computer Society (2012)

8. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75183-0 24

9. Herrmann, T., Hoffmann, M., Loser, K.U., Moysich, K.: Semistructured models
are surprisingly useful for user-centered design. In: De Michelis, G., Giboin, A.,
Karsenty, L., Dieng, R. (eds.) Designing Cooperative Systems (Coop 2000), pp.
159–174. IOS Press, Amsterdam (2000)

10. Herrmann, T., Loser, K.U.: Vagueness in models of socio-technical systems. Behav.
Inf. Technol. 18(5), 313–323 (1999)

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38697-8 17

12. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). doi:10.1007/978-3-319-06257-0 6

13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discov-
ery and conformance checking. Softw. Syst. Model., pp. 1–33 (2016). doi:10.1007/
s10270-016-0545-x

14. Salay, R., Chechik, M., Horkoff, J., Di Sandro, A.: Managing requirements uncer-
tainty with partial models. Requirements Eng. 18(2), 107–128 (2013)

15. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13675-7 14

16. van Dongen, B.F.: BPI Challenges (2011–2017), Real life Event Logs Collection
(2017). data.4tu.nl/repository/collection:event logs

17. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162
(2003)

18. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process discovery using integer linear programming. Fundam. Inf. 94, 387–412
(2010)

http://dx.doi.org/10.1007/978-3-540-75183-0_27
http://dx.doi.org/10.1007/978-3-540-75183-0_27
http://dx.doi.org/10.1007/978-3-540-75183-0_24
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-319-06257-0_6
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1007/s10270-016-0545-x
http://dx.doi.org/10.1007/978-3-642-13675-7_14
http://data.4tu.nl/repository/collection:event_logs

Multi Instance Anomaly Detection
in Business Process Executions

Kristof Böhmer(B) and Stefanie Rinderle-Ma

Faculty of Computer Science, University of Vienna, Vienna, Austria
{kristof.boehmer,stefanie.rinderle-ma}@univie.ac.at

Abstract. Processes control critical IT systems and business cases
in dynamic environments. Hence, ensuring secure model executions is
crucial to prevent misuse and attacks. In general, anomaly detection
approaches can be employed to tackle this challenge. Existing ones
analyze each process instance individually. Doing so does not con-
sider attacks that combine multiple instances, e.g., by splitting fraud-
ulent fund transactions into multiple instances with smaller “unsuspi-
cious” amounts. The proposed approach aims at detecting such attacks.
For this, anomalies between the temporal behavior of a set of historic
instances (ex post) and the temporal behavior of running instances are
identified. Here, temporal behavior refers to the temporal order between
the instances and their events. The proposed approach is implemented
and evaluated based on real life process logs from different domains and
artificial anomalies.

Keywords: Runtime anomaly detection · Secure business processes ·
Multiple instances · Temporal anomalies

1 Introduction

Business process anomaly detection identifies anomalous behavior in recorded
(ex post) or ongoing (real time) process executions in order to expose and pre-
vent fraud, misuse, unknown attacks, and errors. Hence it constitutes a critical
IT security defense line in today’s interconnected business driven organizations
[3,5]. Existing process anomaly detection work analyzes single process instances
in order to distinguish if their behavior is anomalous (i.e., unlikely) or not. Doing
so does not provide protection against all possible attack vectors. For example,
assume an attack scenario where the attacker (Trudy) strives to quickly transfer
funds from an organization’s bank account. Therefore, Trudy could instantiate
a single transaction process and transfer all the money at once. Alternatively,
Trudy could start multiple transaction processes in parallel and split up the
transactions into smaller chunks. The first approach would likely be detected by
existing anomaly detection approaches while the second would not.

This is, because in the first case the transferred funds are exceptionally high,
i.e., they exceed previously transferred funds and are, therefore, unlikely. In this
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 77–93, 2017.
DOI: 10.1007/978-3-319-65000-5 5

78 K. Böhmer and S. Rinderle-Ma

case, analyzing each process instance execution individually is sufficient to iden-
tify Trudy’s attack. In the second case each individual process instance only
transfers a small amount of money. Through this, the transferred funds are,
likely, comparable to transactions represented in the known historic behavior.
Accordingly the executions would not be identified as anomalous.

Hence, an anomaly detection approach is required that is able to consider
multiple instances – from the same or different process models. In the example
scenario these are instances which take place before, during, or after one of the
fraudulent transaction process executions. Through this the parallel executions
are noticed as unusual and the second attack scenario is identified. The assump-
tion behind this is that the massive parallel execution of multiple transaction
processes – which was never observed before – is unlikely (i.e., anomalous).

This paper proposes a configurable and unsupervised anomaly detection
heuristic for business processes that exploits the temporal dependencies between
multiple instances. In detail, for each instance of interest, all temporal relations
of preceding, succeeding, and simultaneous process executions are taken into
account. The business process instances and executions which are taken into
consideration can stem from various models, i.e., not all instances need to be
spawned from the same process model but, e.g., from multiple models.

This work applies design science research, cf. [14]. Doing so multi instance
process executions were identified as a problem (i.e., an unprotected attack vec-
tor). To tackle this problem artifacts are created and evaluated, here this is a
prototypical implementation of the proposed multi instance anomaly detection
approach. Stakeholders for the approach are organizations and security experts.

More precisely, we assume a set of process models R, and a set of execution
log files L. Hereby, R could be a process repository and L holds all executions of
the processes in R. The key idea is to generate an anomaly detection signature
G for a process P ∈ R so that it represents for P the behavior of P ’s instances
and temporally related instances from multiple other models. This is achieved
by mining and combining temporal relations from multiple instances, stored in
L, that take place during or close to executions of P into a signature G.

Finally, behavior that should be analyzed for anomalies, from P ’s instances
and other temporally related instances, is assumed as given. For example, such
behavior can be extracted from logs, for ex post analysis, or be collected directly
during model executions – from process execution engines – for real time analysis.
To analyze if behavior is anomalous or not it is mapped to G, which enables to
calculate its behavior likelihood. If the behavior to analyze for anomalies is found
to be unlikely, when comparing it to the logged historic behavior in L, then the
behavior is identified as anomalous. The artifacts generated in this work comprise
multi instance process behavior mining and signature generation and matching
algorithms. The presented approach is evaluated using real life process execution
logs from multiple domains along with artificially generated anomalies.

This paper is organized as follows: Related work is discussed in Sect. 2. Pre-
requisites and the proposed approach are introduced in Sect. 3. The proposed
anomaly detection approach (i.e., signature generation and matching) is, in

Multi Instance Anomaly Detection in Business Process Executions 79

detail, described in Sect. 4. Section 5 holds the evaluation. Finally, conclusions,
discussions, and future work is given in Sect. 6.

2 Related Work

Related anomaly detection work was searched for in the process domain and
in the security domain. The results found for the process domain were limited
as related work focuses only on single individual process models and instances.
Hence, the anomalies which this work is capable of identifying are not supported
by existing process anomaly detection work. Our systematic literature review in
[6] provides a more detailed analysis. The most comparable work [12] analyzes
temporal behavior of individual activities to identify unlikely anomalous execu-
tion behavior. However, this work also concentrates only on single instances.

In a broader context, i.e., the security domain in general, several temporal
anomaly detection approaches are suggested, cf. [10]. However, according to [10]
and our own findings, those approaches are typically domain or data specific (i.e.,
focus on specific protocols, such as, SIP or network packages) and can, because of
this, hardly be generalized, e.g., to analyze process behavior data for anomalies.
It can be concluded that an anomaly detection approach specifically tailored for
process behavior is a necessity to identify related attacks and anomalies.

Moreover, it was found that existing approaches show, likely, an underwhelm-
ing anomaly detection performance when dealing with unexpected behavior.
Existing anomaly detection work frequently classifies unexpected behavior, even
if it only slightly deviates from, e.g., a signature, as anomalous. This could
potentially result in a large amount of false positives [5] in flexible and dynamic
execution scenarios. Hence, this work proposes a novel approach to deal with
unexpected behavior by assigning it with an artificially calculated likelihood.

Existing approaches which are comparable to the presented artificial likeli-
hood calculation are so called soft matching techniques. Soft matching general-
izes expected behavior patterns by constructing multiple slightly deviating, but
still presumably “correct” patterns (e.g., based on expert knowledge) [2]. Hereby
the area of data or behavior which is identified as non-anomalous is widened.
Unfortunately, it frequently requires expert knowledge to soften the patterns
and through this soft matching lacks in flexibility, compared to the presented
automatic approach. Moreover, the presented approach enables to “aggregate”
multiple occurrences of slightly unlikely behavior to identify collective anom-
alies [5] which could be missed by less sensitive detection approaches. This is
because this work does not flag each observed process execution behavior solely
as anomalous or non-anomalous. Instead a more flexible likelihood is calculated
and aggregated over multiple successive process execution events and instances.

3 Prerequisites and General Approach

This paper proposes a multi instance anomaly detection approach that enables
to distinguish process execution behavior as anomalous (i.e., unlikely) or not.

80 K. Böhmer and S. Rinderle-Ma

For this the behavior is compared with a signature generated from given process
execution logs L which represent historic process executions. Generating signa-
tures from logs is beneficiary as logs are frequently generated automatically
by today’s process execution engines, contain real behavior and executions,
and include manual adaptations. Moreover, exploiting execution logs enables to
become independent from abstracted and potentially outdated documentation
[11].

Let each execution log l ∈ L hold the associated process model name and
a bag of execution Events, i.e., l := (n,E). Each execution event e ∈ l.E, i.e.,
e := (s, c) represents an activity execution by its start and completion timestamp
s and c respectively, with s, c ∈ N>0. An exemplary log for model A with two
activity executions could be defined as lA := (A, {(s1, c1), (s2, c2)}). We assume
that each individual model execution (i.e., each instance) is held by an individual
execution log l ∈ L and that timestamps are defined in a range of N>0.

Such a brief definition is sufficient because the presented approach mainly
analyzes temporal relations between models and their instances. For this the
following auxiliary functions, inspired by a subset of Allen’s interval algebra [1],
are defined. The start timestamp of an instance execution is found by min(E) :=
{e.s|e ∈ E;∀e′ ∈ E, e.s ≤ e′.s}0. Here, {· · · }0 returns the only element held
by a set or bag if it is a singleton or a random set/bag element if it is not.
A similar definition is applied for max(E) to determined the end timestamp of
an instance execution. Through this the duration of an instance is dur(E) :=
max(E) − min(E). Moreover, execP(t, L) extracts a bag of process model names
that are executed at point t (i.e., a timestamp) based on the logs in L, i.e.,
execP(t, L) := {l.n|∃l ∈ L,∃e ∈ l.E; e.s ≤ t ∧ e.c ≥ t}. Similarly, act(t1, t2, L)
counts the activities that are executed in a specific interval given by t1, t2, i.e.,
act(t1, t2, L) := |{e|l ∈ L, e ∈ l.E; e.s ≥ t1 ∧ e.c ≤ t2}| where t1 ≤ t2. Function
next(t, L) determines the process instance start or end timestamp that occurs as
close after t as possible, i.e., next(t, L) := {t1|t1, t2 ∈ T ; �t2 < t1; t1 > t∧t2 > t}0
where T := {e.s|l ∈ L, e ∈ l.E} ∪ {e.c|l ∈ L, e ∈ l.E}. Further, mid(t1, t2) :=
t1 + ((t2 − t1)/2) calculates the average of two timestamps where t1 < t2.

Fig. 1. Proposed multi instance anomaly detection approach – overview

Figure 1 provides an overview on the proposed anomaly detection heuristic.
The related algorithms are presented in Sect. 4. Firstly, a signature is generated
for a process P ∈ R based on a set L of historic instance executions – both are
assumed as given input. The first idea is to extract process execution events in

Multi Instance Anomaly Detection in Business Process Executions 81

Fig. 2. Running example for window & behavior extraction and noise reduction

L that precede, succeed, or occur simultaneously to executions of P ’s instances,
cf. Fig. 2. The figure depicts three processes – A, B, and C – along with a
number of instances (i.e., the rectangles, e.g., AI1 to AI4) and activity execution
events (i.e., the vertical bars in the instance rectangles, e.g., AI3 holds 4 activity
executions). For the sake of brevity Fig. 2 depicts only a snapshot of all instance
executions, i.e., additional instances are stored in L but not depicted.

Assume a signature is generated for process B in Fig. 2. Then the signature
generation starts by identifying relevant execution events in L (i.e., historic
behavior) 1©. Relevant events are events which most likely affect B’s instances
(i.e., events which precede B’s instances) or which are affected by B’s instances
(i.e., events which are succeeding and simultaneous to B’s instances). Extraction
windows are applied to identify such events in the following.

An individual extraction window w := [wt1;wt2] is created for each of B’s
instances 1©. Extraction windows enable to determine which of the behavior
held by L is relevant (i.e., preceding, succeeding, and simultaneous events) for a
specific instance and model and should, therefore, be contained in the generated
signature. The beginning and end of the window (i.e., wt1 and wt2) is calculated
by multiplying the duration of the respective instance (this example uses BI3
and lBI3 ∈ L) with a user chosen window size modifier ws ∈ R>0. So wt1 :=
min(l.E) − (ws · dur(l.E)) and wt2 := max(l.E) + (ws · dur(l.E)). Hence, when
assuming ws = 2 and min(lBI3.E) = ts9, max(lBI3.E) = ts13 then wBI3 = [ts1; t

s
21].

The size of an extraction window is defined in a direct relation to the duration
of the corresponding instance. Moreover, the parameter ws enables to adapt the
extraction window size to the density of the analyzed event logs. For example,
if a log is very dense (i.e., it holds a large amount of events in a short timespan)
then applying extraction windows with a fixed size could result in an overly
detailed signature (i.e., overfitting occurs) which could, subsequently, lead to
flawed anomaly detection results, cf. [7]. In comparison a sparse log combined
with a fixed size window could result in a signature that contains insufficient
historic behavior to identify anomalies (i.e., underfitting occurs).

Subsequently step 2© is applied to mine all the behavior that occurs in a
chosen window in a time sequence. Therefore, the window is split into multiple
slots based on the start and end of the process instances covered by the window

82 K. Böhmer and S. Rinderle-Ma

(i.e., the dotted lines and slot timestamps in Fig. 2). Each slot is defined as
o := (N, tss, t

s
e) where tss and tse represent the start and end timestamps of the

slot and the bag N := execP(mid(tss, t
s
e), L) holds the names of models whose

instances occur between tss and tse. For example, slot 5 in Fig. 2 would be defined
as o5 = ({A,B,C}, ts5, t

s
6). If multiple instances from the same process model

are executed in parallel then the related model’s name occurs in o.N multiple
times (e.g., two parallel executions of model A would result in o.N = {A,A}).
Subsequently, all slots are combined into a time sequence, i.e., an ordered list
of slots ts := 〈o1, o2, · · · , on〉, e.g., tsBI3 = 〈o1, o2, · · · , o20〉 for instance BI3, cf.
Fig. 2. Finally, noise in the mined time sequences is addressed, for example, by
removing slots which do not cover any instance execution (e.g., slot 8 in Fig. 2).

The signature generation ends by merging the resulting time sequences from
all windows (one window for each instance is generated) into one signature 3©.
The signatures are represented as likelihood graphs, which were also already
successfully applied in [5] for this purpose. Here, likelihood graphs enable to cal-
culate the likelihood of instance behavior to determine unlikely (i.e., anomalous)
ones. For this a likelihood graph encodes which and how instances and models
are typically temporally related to each other during their execution (e.g., how
instances succeed or precede each other). Moreover, it encodes the likelihood
and order of such relations based on the mined time sequences, cf. Fig. 4.

Secondly, the signature is utilized to assess if a given process instance exe-
cution behavior, for P ’s instances, is anomalous or not. Hence, given behavior
is filtered 4©, and mapped 5© to the signatures (i.e., for each process model an
individual signature is generated) to determine the likelihood of given instance
execution behavior. Of course, some of the instance behavior could be unex-
pected because it never occurred before and is, accordingly, also not represented
by the signatures (i.e., it cannot be mapped to a signature), cf. [5]. In such cases
a configurable artificial behavior likelihood is calculated to flexibly deal with
noise and slight – likely harmless – deviations from the historic behavior.

Thirdly, the likelihood of the given instance execution behavior is compared
to a reference likelihood generated from P ’s historic instance executions stored
in the historic execution log files L, 6©. If a deviation between both likelihoods
(reference likelihood and likelihood of the given instance execution to analyze) is
observed then the analyzed given instance execution is identified as anomalous.

4 Multi Instance Anomaly Detection

This section presents the algorithms for the approach set out in Fig. 1.

4.1 Temporal Behavior Mining from Execution Logs

The proposed anomaly detection approach starts with a process model P ∈ R
(i.e., a signature is generated for P) and logs containing historic process exe-
cution behavior L. Subsequently, extraction windows are constructed for P ’s
instances, as described before. This enables to mine historic execution behavior
that takes place before, during, and after P ’s executions as time sequences.

Multi Instance Anomaly Detection in Business Process Executions 83

Mining Time Sequences. Each time sequence is a sequence of slots o :=
(N, tss, t

s
e) which are ordered based on their end timestamp, i.e., tse. In the follow-

ing a signature is generated by merging multiple time sequences. The presented
mining approach generates a time sequence (i.e., a sequence of slots) for each
extraction window – and through this for each instance. Therefore, the start and
end timestamps of each process instance covered by the window are exploited,
i.e., the dotted vertical lines in Fig. 2. Algorithm 1 formalizes the mining of a
single time sequence for a given window w and the historic execution logs in L.
In the following the symbol ⊕ denotes the appending of a slot to the end of a
sequence.

Algorithm mineTS(extraction window w := [wt1;wt2], execution logs L)
Result: mined time sequence ts
ts := 〈〉; first := w.wt1 // initially ts is empty
// extract the interval between instance start and end timestamps as slots
while second := next(first, L) ∧ second < w.wt2 do

ts := ts ⊕ (execP(mid(first, second), L), first, second)
first := second // preserve for next iteration

// interval from the last instance start or end till the end of the window
ts := ts ⊕ (execP(mid(first, w.wt2), L), first, w.wt2))
return ts // the mined time sequence for the window w and a given log L

Algorithm 1. Mines a time sequence for a given window w and logs L

The time sequence generated for the execution scenario depicted in Fig. 2 is
shown at the left side of Fig. 3. For the sake of brevity Fig. 3 only depicts the
number of the respective slot and the covered process model names while start
and end timestamps are omitted. Only the first eight slots are depicted.

Fig. 3. Time sequence before and after addressing noise, window size is ws = 2

Addressing Noise in Time Sequences. The mined time sequences likely
contain slots which are not relevant for or even interfering with the following
signature generation. Such noise in the time sequences could result in an over-
fitting of the generated signatures, i.e., the signatures would be “too” specific
and detailed, cf. [7]. This could result in false positives, i.e., non-anomalous exe-
cutions which are incorrectly identified as anomalous. So, the proposed noise
reduction heuristic will deal, for a given time sequence ts, with all slots which
are empty or volatile. A slot o := (N, tss, t

s
e) is empty if o.N = ∅, i.e., if no

instance is executed at the timespan (tss to tse) covered by the slot, e.g., slot 8 in
Fig. 2 is empty.

84 K. Böhmer and S. Rinderle-Ma

Moreover, a slot is volatile if it covers only a low amount of activity execu-
tions. Typically volatile slots are placed at the beginning or end of instances and
cover only a short time span. Hence even a minor shift in an instance’s start
or end timestamp can have a large impact on the slot. For example, if instance
BI2’s duration, cf. Fig. 2, would only be a bit shorter (e.g., when it would end at
ts7 instead of ts8) then slot 7 would no longer be present or be part of the mined
time sequence. Formally, a slot o is identified as volatile if act(o.tss, o.t

s
e, L) < c,

i.e., c controls the minimum number of activities covered by the slot, cf.
Algorithm 2.

Empty slots are removed from a time sequence ts, using list comprehension
notation, i.e., ts := 〈o ∈ ts|o.N
= ∅〉. For volatile slots, in comparison, it is
checked if they could be aggregated with one or more directly successive slots,
which are also volatile, to become non-volatile. If this is not possible then they are
also removed, cf. Fig. 3 (right side). For this Algorithm 2 must identify directly
connected volatile slots. Hence, the algorithm stores the start of the first volatile
slot volS and the end of the most recent successive volatile slot in volE. Based on
this information act(volS, volE, L) > c enables to determine if an aggregation
of the found successive volatile slots results in a non-volatile slot. Imagine that
slot 18 ({C}, ts18, t

s
19) and 19 ({B,C}, ts19, t

s
20) in the running example Fig. 2 were

found as volatile. This is because c was assumed as 3 and each of both slots covers
less than three complete activity executions, i.e., act(ts18, t

s
19, L) = 2 for slot 18

and act(ts19, t
s
20, L) = 2 for slot 19. However, by aggregating both slots a new slot

is created that is not volatile. Thus the aggregated slot becomes ({B,C}, ts18, t
s
20)

(i.e., act(ts18, t
s
20, L) = 4) and replaces the old slots 18 and 19. Alternative slot

merging approaches, e.g., to identify and merge slot combinations which cover
the longest timespan are conceivable and were evaluated. However, as these are
computational intense the described greedy heuristic was applied.

Algorithm addressVolatileSlotsInTS(time sequence ts = 〈o1, o2, · · · , on〉, execution logs
L, slot volatile threshold c ∈ N>0)

Result: noise free time sequence tsnv (volatile slots were aggregated or removed)
tsnv := 〈〉;volN := ∅; volS := 0; volE := 0 // store intermediate results for the
following steps, volS and volE are timestamps while volN holds model names

foreach o ∈ ts do
if act(o.tss, o.tse, L) < c // check if o is a volatile slot then

volE := o.tse; volN := volN ∪ o.N// aggregate slots
if volS = 0 // i.e., first volatile slot found then

volS := o.tss // preserve start time of the first volatile slot found
else if act(volS, volE, L) > c // aggregated slot is not volatile then

tsnv := tsnv ⊕ (volN, volS, volE) // append aggregated slot on tsnv

volN := ∅; volS := 0; volE := 0 // purge preserved data

else
// a non-volatile slot was found, purge preserved data because only
directly successive volatile slots are aggregated
tsnv := tsnv ⊕ o; volN := ∅; volS := 0; volE := 0

return tsnv// similar to input time sequence ts but without volatile slots

Algorithm 2. Addressing volatile slots in mined time sequences

Consider the right side of Fig. 3. The original time sequence (left side,
cf. the running example in Fig. 2) was adapted to remove or address noise

Multi Instance Anomaly Detection in Business Process Executions 85

(right side). Note, slots which are crossed out were removed because they are
empty (slot 8) or volatile slots which could not be aggregated with other volatile
slots (slot 1 and 3). Two volatile slots (slot 6 and 7) were replaced by an aggre-
gated non-volatile slot, i.e., “6&7”. The slot volatile threshold c was assumed as
three.

4.2 Signature Generation from Time Sequences

Subsequently, signatures are generated for each individual process model P based
on time sequences TS which were generated for P ’s historic instances in L. For
this the noise free time sequences are merged and transition likelihoods are
calculated. Transition likelihoods represent the likelihood that slots which cover
specific instances of processes follow each other (based on all time sequences ts ∈
TS). For example, the likelihood that a slot which holds an execution of process
model A, B, and C is followed by a slot with execution A and C, cf. slots 16 and
17 in Fig. 2. In the following this likelihood information is utilized to differentiate
between likely and unlikely (i.e., anomalous) model instance executions.

This work proposes to represent the mined temporal behavior in three inde-
pendent signatures (i.e., one for behavior that happens before, during, or after a
process model’s execution). For this the mined time sequences are split accord-
ingly into three parts – based on P ’s associated instance starts and ends, cf.
Fig. 2. This decreases the size of each signature. Also this was found to increase
the anomaly detection performance of the presented approach. The latter is
because during each point in time a signature can be applied that specializes on
the specific kind of behavior that is currently observed (e.g., behavior that was
historically observed after or during an instance execution). Hereby, the applied
signature can be more specific than one large generic signature that needs to
cover all the historic instance behavior (i.e., before, during, and after) at once.

Each signature is represented as a likelihood graph G = (V,D), cf. [5]. A
likelihood graph is a directed cyclic graph that consists of a set of vertexes
v ∈ V and a set of edges d ∈ D with D ⊆ V × V × [0; 1]. Each vertex v
represents processes covered by a specific o.N for a given slot o. In comparison
each edge d = (vs, ve, tl) represents the transition likelihood tl ∈ [0; 1] from one
“slot” vs (i.e., a vertex holding the process model names covered by a slot) to
another vertex ve based on the mined time sequences ts ∈ TS.

Algorithm 3 creates a likelihood graph (i.e., a signature) by merging multiple
time sequences. For this, the algorithm extracts from each slot, covered by the
merged time sequences, the processes covered by that slot and stores them in
the set V . Moreover, the set V C is populated with triplets vc = (v1, v2, tc) that
indicate, based on the analyzed time sequences, that a slot v2 is preceded by
a slot v1, tc ∈ N>0 times (i.e., tc denotes the transition count). Subsequently
these absolute numbers (i.e., tc) are converted into relative transition likelihoods
tl and stored into D as edges. V is initialized with a dummy entry vd that is used
as a general entry point for the signature and the following mapping of behavior
to it.

86 K. Böhmer and S. Rinderle-Ma

Algorithm mergeTimeSequencesIntoSignature(time sequences TS, dummy vertex, i.e., the
entry point for the signature vd)

Result: likelihood graph (i.e., a signature) G = (V, D) from the behavior in TS
V := {vd}; D := ∅; V C := ∅

foreach ts ∈ TS where |ts| > 0 do
V C := V C ∪ {(vd, ts0, 1)} // add dummy vertex, ts0 identifies the first slot in

ts, i.e., tsi with 0 ≥ i < |ts| identifies the slot with the index i
for i := 0;i < (|ts| − 1);i := i + 1 do

v1 := tsi.N ; v2 := tsi+1.N// tsi and its successor tsi+1 in ts
V := V ∪ {v1, v2};// add slots to signature graph vertex set V
tcount := 1// holds how frequently v1 is followed by v2 in all sequences
if (v1, v2, ·) ∈ V C // previous ts contained the same transition then

tcount := tcount + {vc.tc|vc ∈ V C, vc.v1 = v1 ∧ vc.v2 = v2}0

// purge old information for v1/v2, then add updated or new information
V C := {vc ∈ V C|vc.v1 �= v1 ∧ vc.v2 �= v2} ∪ {(v1, v2, tcount)}

foreach vc ∈ V C // convert absolute numbers into likelihoods do
s := vc.tc;TC := {vc′.tc|vc′ ∈ V C ∧ vc′.v1 = vc.v1}
// create and add edges to D that connect the signature vertexes in V
D := D ∪ {(vc.v1, vc.v2, s∑

tcs∈TC tcs
)}// fraction �→ transaction likelihood

return G = (V, D)// return signature, it was created for sequences in TS

Algorithm 3. Merge time sequences TS for P into a signature G

Fig. 4. Merging two mined time sequences into a signature

Figure 4 depicts an example for the proposed signature generation. Two time
sequences (XI1 and XI2, mined for the process “X” – left side) are merged
into a likelihood graph signature representation (right side). The depicted time
sequences and represented behavior occurred after X’s instances (i.e., succeeding
behavior). So process X is placed at the start of the time sequences and signature.

4.3 Signature Matching for Execution Event Streams and Logs

The signatures are applied to calculate the likelihood of process execution behav-
ior based on given execution events. Today’s execution engines store (ex post
analysis) or stream (real time analysis) various events. This work is mainly inter-
ested in process instance and activity start and end events. Hence, all perceived
events are filtered accordingly and mined into time sequences by applying the
presented approach. Finally the resulting time sequences are mapped to signa-
tures which were generated for the executed processes based on historic behavior.

To determine if a given process instance execution is unlikely (i.e., anomalous)
or not its likelihood is calculated (i.e., execution likelihood le ∈ R>0) by mapping
it to the signatures. Moreover, comparable executions (i.e., that show a similar
temporal execution behavior to the given execution) are identified in the historic

Multi Instance Anomaly Detection in Business Process Executions 87

logs L and mapped to the same signature as the given execution to generate a
reference likelihood lr ∈ R>0. Finally, both likelihoods are compared. If the
execution likelihood is below the smallest found reference likelihood then the
analyzed execution is identified as unlikely and, because of this, as anomalous.

The execution likelihood is calculated by Algorithm 4. Therefore, a signature
(i.e., a likelihood graph G = (V,D)) is utilized along with a time sequence ts that
is mapped to the signature (i.e., the sequence ts, here, represents given instance
execution behavior that should be analyzed for anomalies). To calculate the
likelihood, the slots held by the time sequence are mapped to the signature one
after another while aggregating the transition likelihoods encoded in the edges
d ∈ D that connect all signature vertexes. Finally, when all recorded behavior
(i.e., the time sequence ts) was mapped the likelihood is returned.

Algorithm matchSig(signature G = (V, D), dummy vertex vd representing the process
which G was generated for, time sequence ts holding behavior to map, punishment factors
pNDC, pDP, pOS ∈ (0; 1])

Result: calculated likelihood lh ∈ R>0 for ts
lh := 1; vl := vd // behavior likelihood lh and most recent signature vertex vl

foreach o ∈ ts // individually for each slot do
lh′ := {d.tl ∈ D|d.v1 = vl ∧ d.v2 = o.N}
P := {(v′, sim)|v′ ∈ V ; sim :=

|v′�o.N|
|v′|+|o.N| , ∀a ∈ o.N, ∃b ∈ v′; a = b}

MS := {(v′, sim)|v′ ∈ V ; sim :=
|v′�o.N|

|v′|+|o.N| }// � notates a symmetric difference

if lh′ = ∅ // unexpected behavior was found then
if o.N ∈ V // stage one: exact behavior is present in the signature then

vl := o.N ; lh := lh · pNDC
else if P �= ∅ // stage two: present but different parallelism then

min := {p1|p1 ∈ P ; ∀p2 ∈ P, p1.sim ≤ p2.sim}0

vl := min.v; lh := lh · (1 − min.sim) · pDP

else
// stage three: fallback if one and two are not applicable

min := {ms1|ms1 ∈ MS; ∀ms2 ∈ MS, ms1.sim ≤ ms2.sim}0

vl := min.v; lh := lh · (1 − min.sim) · pOS

else
vl := o.N ; lh := lh · lh′0 // if the behavior is expected

return lh// return likelihood lh of the behavior in ts

Algorithm 4. Likelihood for a time sequence ts based on a signature G

Of course, it is possible that some behavior cannot be mapped successfully.
For example, this is the case if behavior occurs in unexpected orders, e.g.,
instance A is succeed by B but it was expected (i.e., specified in the signa-
ture) the other way around. Another reason could be that the parallelism of
observed and the expected behavior deviates, e.g., it was expected that a single
instance of A is executed, but two concurrent executions of A were observed.

Existing process anomaly detection work typically classifies any unexpected
behavior, such as the preceding examples, as anomalous. However, as argued in
[5] this is not always beneficial. Process models and model executions are known
to occur in flexible dynamic environments, struggling with ad-hoc changes, and
the need to cope with multiple frequently changing requirements [9]. Hence, we
assume that existing anomaly detection approaches are too strict to be success-
fully applied in today’s flexible and dynamic process execution environments. So,

88 K. Böhmer and S. Rinderle-Ma

the proposed anomaly detection approach provides the flexibility to deal with
unexpected behavior by calculating an artificial likelihood for it.

The flexibility that should be granted by the proposed anomaly detection
approach varies between different organizations, processes, and use cases. Hence,
the flexibility can be configured in Algorithm 4 based on three punishment fac-
tor variables, i.e., pNDC, pDP , and pOS. Those enable to punish unexpected
behavior by reducing its calculated artificial likelihood. Hence, while the sce-
nario in the initial motivating example is identified as anomalous – because
significantly more parallelism is observed than expected based on historic exe-
cutions – minor, probably harmless, deviations from the historic behavior are
“granted” until, e.g., a combination of multiple minor deviations becomes too
unlikely.

So when calculating the execution likelihood it is checked if the current slot
o ∈ ts (i.e., the behavior to map next) is a direct successor of the last mapped
slot vl. If it is, then the likelihood is extracted from the related transition like-
lihood hold by the signature in D. Hence, when mapping the short example
timesequence ts := {({X}), ({A,C}), ({A,B,C})} (timestamps are omitted) on
the signature depicted in Fig. 4 then a likelihood of 1 · 0.5 = 0.5 is calculated.
However, if o is not a successor of the last mapped slot then unexpected behavior
was found. For this, it becomes necessary to calculate an artificial likelihood by
applying a three staged approach which is discussed in the following.

Stage one: It is checked if the unexpected behavior (i.e., slots) is represented
in the signature but occurred in an unexpected order. If this is the case then
the punishment factor pNDC it utilized as the artificial likelihood. Stage two
and three calculate the artificial likelihood based on the similarity of the given
instance behavior and the behavior represented in the signature. Stage two is
applied if the expected processes are executed but with an unexpected par-
allelism. For example, A,A,B was observed but expected was A,B, i.e., two
parallel executions of process A were found but only one was expected. This
stage utilizes the punishment factor pDP . Stage three, which utilizes the pun-
ishment factor pOS, can always be applied and is, because of this, used as a
fallback. It is similar to stage two but more relaxed, i.e., it does not enforce that
the behavior to map and the related signature behavior must only consist of the
same processes.

Imagine that the slot o with o.N := {A,A} should be mapped to a signature
which only consist of A as the expected behavior. Because, the observed {A,A}
and the expected {A} behavior is different the slot cannot be found in the
signature. Hence the proposed approach falls back to stage two of the artificial
likelihood calculation. So the likelihood is calculated as |{A}�{A,A}|

|{A}|+|{A,A}| �→ 1
3 =

0.3̄ so that the final artificial likelihood becomes (1 − 0.3̄) · 0.8 = 0.53̄ when a
punishment factor pDP of 0.8 is used.

The reference likelihood lr is calculated based on logged historic executions in
L that show comparable behavior to the given behavior (i.e., given instance exe-
cution behavior to analyze for anomalies). In this case comparable means that the
time sequence describing the given behavior and the time sequences describing

Multi Instance Anomaly Detection in Business Process Executions 89

the historic behavior hold similar slots. For this the presented approach to mea-
sure the similarity between two slots (i.e., for artificial likelihood calculation, cf.
Algorithm 4) is generalized and applied on the historic time sequences which
were mined from L during the signature generation. The k ∈ (0, 1] percent most
similar historic time sequences are subsequently compared with the signature G
using Algorithm 4. Finally the lowest likelihood found during that comparisons
is utilized as the reference likelihood lr. If le < lr then the given behavior (i.e.,
the behavior that is analyzed for anomalies) is identified as anomalous. This
bears two advantages: Executions in L are never identified as anomalous and
the flexibility which was historically observed for the process under analysis,
and which is because of this stored in L, is taken into account during anomaly
detection.

5 Evaluation

The evaluation utilizes real life process execution logs from multiple domains
and artificially generated anomalies in order to assess the anomaly detection
performance and feasibility of the proposed approach. It was necessary to gen-
erate artificial anomalies as information about real anomalies are not provided
by the log sources. The utilized logs were taken from the BPI Challenge 20151

and 20172 (BPIC5 and BPIC7), and Higher Eduction Processes (HEP), cf. [13].
The BPIC5 logs hold 262,628 execution events which origin from 5,649

instances and 398 activities. The logs cover the processing of building permit
applications at five (BIPC5 1 to BPIC5 5) Dutch building authorities between
2010 and 2015. In comparison the BPIC7 logs hold 1,202,267 events from 31,509
instances, recorded in 2016 and 2017, which focused on loan application manage-
ment. The HEP logs contain 28,129 events, 354 execution traces (i.e., instances),
and 147 activities – recorded from 2008 to 2011. Each trace holds the interactions
of a student with an e-learning platform (e.g., exercise uploads). The interactions
are recorded individually for each academic year �→ HEP 1 to HEP 3. All logs
(i.e., BPIC and HEP) contain sufficient details to apply the proposed approach
(e.g., instance execution events and relevant timestamps).

The logs were evenly and randomly separated into training (for signature
generation) and test data (for the anomaly detection performance evaluation).
A tenth of the test data was mutated by one (out of four) randomly chosen muta-
tors (we regard this amount as being sufficient, cf. [4]). This enables to generate
labeled non-anomalous (i.e., non-mutated) and anomalous (i.e., mutated) test
data entries, i.e., to determine if both behavior “types” are correctly differ-
entiated by the proposed approach. The applied four mutators generate multi
instance anomalies that cannot be detected by existing single business process
instance focused anomaly detection work, hence, a comparison with such existing
1 http://www.win.tue.nl/bpi/2015/challenge—DOI:10.4121/uuid:

31a308ef-c844-48da-948c-305d167a0ec1.
2 http://www.win.tue.nl/bpi/doku.php?id=2017—DOI:10.4121/uuid:

5f3067df-f10b-45da-b98b-86ae4c7a310b.

http://www.win.tue.nl/bpi/2015/challenge
http://dx.doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
http://dx.doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
http://www.win.tue.nl/bpi/doku.php?id=2017
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

90 K. Böhmer and S. Rinderle-Ma

work is not possible: (a) Parallel Executions – a process execution is duplicated
so that it occurs in parallel; and (b) Sequential Executions – a process execution
is duplicated so that occurs in a sequential order; and (c) Execution Order – the
process execution order is randomly changed; and (d) New or Missing Process –
new process executions are artificially added or recorded executions are removed.

The mutators were adapted and extended from our work in [4] – which was
assessed by security experts as being realistic. It was chosen to combine multiple
mutators to represent that real life anomalies are diverse and affect different
aspects of process executions. In addition, the applied strategy also evaluates
the proposed handling of unexpected execution behavior. This is, because the
test data (in its mutated but also non-mutated form) contains behavior that is
not represented in the training data (e.g., manual ad-hoc changes). The following
results consist of the average of 100 evaluation runs – individually for each log
file – to even out the randomness in the data separation and mutation.

Metrics and Evaluation. The feasibility of the presented anomaly detection
approach is analyzed. For this, the training data is utilized to construct signa-
tures which are applied on the test data to differentiate between known ran-
domly mutated (i.e., anomalous) the known non-mutated (i.e., non-anomalous)
test data entries. This enables to collect four key performance indicators: True
Positive (TP) and True Negative (TN) represent data entries that were cor-
rectly identified as anomalous (TP) or non-anomalous (TN). In comparison,
False Positive (FP) and False Negative (FN) represent data entries which were
incorrectly identified as anomalous (FP) or non-anomalous (FN). For example,
FP counts non-anomalous test data entries which were incorrectly identified as
being anomalous. Based on this performance indicators three standard metrics
are calculated for each log file (i.e., BPIC5 1-5, BPIC7, and HEP 1-3):

(a) Precision P = TP/(TP + FP) – indicates if the identified anomalous
test data entries were in fact anomalies; and (b) Recall R = TP/(TP + FN)
– indicates if anomalies were “missed”, i.e., not identified; and (c) Accuracy
A = (TP +TN)/(TP +TN +FP +FN) – provides a general anomaly detection
performance overview; TP, TN,FP, FN ∈ N>0; P,R,A ∈ [0; 1].

For this paper we assume that the number of False Positives (FP) or Nega-
tives (FN) should be low while the number of True Positives (TP) or Negatives
(TN) should be high, i.e., the accuracy becomes close to one. In addition the
Fβ-measure, Eq. 1, is applied because it provides a configurable harmonic mean
between Precision (P) and Recall (R), cf. [8]. Hereby, β controls the balance
between P and R. So, if β = 1 then a harmonic mean between P and R is calcu-
lated. In comparison a β < 1 results in a precision and a β > 1 in a recall-oriented
result. F0.5,F1,F1.5-measures were used to present the evaluation results.

Fβ =
(β2 + 1) · P · R

β2 · P + R
(1)

Results. The results were generated based on BPIC 2015/2017 and HEP
process execution logs and a publicly available proof-of-concept implementation of
the presented approach: https://github.com/KristofGit/MultiInstanceAnomaly.

https://github.com/KristofGit/MultiInstanceAnomaly

Multi Instance Anomaly Detection in Business Process Executions 91

The implementation calculated a signature in minutes (i.e., about 2 min on
average) and required only seconds (i.e., below 3 s on average) to identify a test
data entry as anomalous or non-anomalous on a standard 2.6 Ghz IntelQ6300CPU
with 8 GB of RAM. Of course, the signatures can be reused, i.e., calculated once
and subsequently applied in order to analyzemultiple following process executions.
Moreover, the presented approach can be concurrently applied to analyze multiple
instances in parallel. This suggests an applicability even on larger process reposi-
tories and execution logs.

Primary tests were applied to identify appropriate configuration values for
the presented approach. The punishment factors for unexpected behavior were
set to pNDC = 0.60 (known behavior but unexpected order), pDP = 0.40
(known behavior but unexpected parallelism), pOS = 0.30 (unknown behavior).
A lower punishment factor results in a stronger punishment. So for example,
pDP is higher than pOS because the latter is only utilized if completely unknown
execution behavior is observed. In comparisons the former is applied if “only”
an unexpected parallel execution occurred. This is the case, for example, if three
parallel executions of process A were observed but only two were expected. As a
rule of thumb it can be assumed that a higher punishment improves on the TP/
FN side while having a negative impact on the TN/FP performance indicators.
A similar conclusion can be drawn for k = 0.3, i.e., the percentage of similar time
sequences for reference likelihood generation purposes. When k is increased then
the proposed approach becomes more relaxed because the reference likelihood
typically decreases, i.e., anomalous instances are more likely “overlooked”.

A window size ws of 4 (BPIC) and 20 (HEP) was utilized. Hereby, the differ-
ent ws values compensate that the log sources (e.g., BPIC or HEP) store events
with a different density (i.e., the BPIC logs cover more events at the same times-
pan than the HEP logs). The log dependent ws-value ensures that the generated
signatures represent a roughly comparable amount of process execution events
for all log sources. Finally, a noise prevention value of c = 8 was utilized, i.e., a
slot – either original or aggregated – has to cover at least 8 activity executions
to not be recognized as volatile or noise and being removed. The chosen values
were successfully applied on different processes and domains. Hence, we assume
that they can be applied as a valid starting point for future optimizations in
scenarios and domains which were not covered by the presented evaluation.

The average evaluation results are shown in Tab. 1. The accuracy metric
reached an average result of 78% but also the other metrics show promising
results (83% for recall and 77% for precision). Hence, it was found that the pro-
posed approach could successfully identify the constructed anomalies in the ana-
lyzed complex multi instance execution evaluation data. It was observed that the
proposed approach could more easily identify anomalous behavior for the HEP
log based evaluation than during the BPIC based evaluation. This most likely
origins from the different complexity of the logs (i.e., the BPIC logs hold substan-
tially more and more complex behavior than the HEP logs). So, it was concluded
that the more complex and diverse the signature generation behavior becomes,
the harder it is to distinguish correct from anomalous behavior. Nevertheless,

92 K. Böhmer and S. Rinderle-Ma

even for the challenging BPIC log based evaluation the performance of the pre-
sented work achieved an average of 70% anomaly detection accuracy.

Table 1. Anomaly detection performance of the presented approach

BPIC5 1 BPIC5 2 BPIC5 3 BPIC5 4 BPIC5 5 HEP 1 HEP 2 HEP 3 BPIC7

Accuracy 0.70 0.71 0.73 0.71 0.71 0.94 0.92 0.92 0.66

Precision 0.69 0.68 0.70 0.67 0.67 0.96 0.97 0.96 0.63

Recall 0.78 0.83 0.84 0.84 0.82 0.92 0.88 0.89 0.70

F0.5-measure 0.71 0.70 0.72 0.70 0.72 0.95 0.95 0.94 0.64

F1-measure 0.73 0.75 0.76 0.75 0.75 0.94 0.93 0.92 0.66

F1.5-measure 0.75 0.78 0.79 0.78 0.77 0.93 0.91 0.91 0.68

6 Discussion and Outlook

This work applies the common assumption that an anomaly is some kind of
unlikely behavior that never or hardly occurs during a business process execu-
tion, cf. [4,5]. Accordingly the proposed approach compares given multi instance
executions with given recorded historic executions in L to calculate their like-
lihood in relation to the behavior in L, such that, unlikely process instance
executions are identified as anomalous. Hence, this work applies an unsuper-
vised approach as it neither assumes the historic behavior as anomalous or not.
It is hard to propose a rule of thumb for predicting the required training data
size (i.e., the amount of historic behavior in L). This is because the size of
the required training data heavily depends on the amount of execution vari-
ety that can be observed for the analyzed instances – which is unique for each
organization.

The evaluation showed an average anomaly detection accuracy of 78%, which
suggests an applicability in additional scenarios. In addition a detailed analysis
of the evaluation results revealed that the proposed behavior likelihood assess-
ment based anomaly detection approach substantially improved the detection
results for the analyzed complex real life execution behavior. This is, because
the utilized real life evaluation data showed a substantial amount of behavior
drift in the analyzed multi instance behavior data, caused, e.g., by fluctuating
instance durations or varying parallel instance execution behavior. Hence, not
taking these dynamics, by design, into account would have resulted in substan-
tially worse evaluation results, e.g., by causing a high number of false positives.
Note, a large amount of false positives could harm an organization’s performance,
e.g., through process executions which are unnecessarily halted or terminated.

The presented approach determines process executions as anomalous based
on their relations to other preceding, succeeding, or simultaneous instances. In
comparison to existing work this is a rather big picture focused approach which,

Multi Instance Anomaly Detection in Business Process Executions 93

by purpose, ignores more fine granular details (e.g., which resource has exe-
cuted an activity or what data was exchanged between two activities). Hence, in
future work we will strive to combine both worlds. Hereby, multiple views on the
instance behavior can be taken into consideration to identify diverse and complex
anomalous behavior. We assume this as necessary to identify inside threats that
actively hide their malicious intentions. Moreover, we will assess the applica-
bility of the proposed approach to analyze complex dynamic parallel activity
executions. Finally, we will strive to integrate correlation features to respect
contextual aspects, e.g., by adding support for filters to analyze only process
instances that meet specific conditions (e.g., based on the involved resources).

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. ACM 26(11), 832–
843 (1983)

2. Atallah, M., Szpankowski, W., Gwadera, R.: Detection of significant sets of episodes
in event sequences. In: Data Mining, pp. 3–10. IEEE (2004)

3. Bezerra, F., Wainer, J., Aalst, W.M.P.: Anomaly detection using process mining.
In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R.
(eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 149–161. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-01862-6 13

4. Böhmer, K., Rinderle-Ma, S.: Automatic signature generation for anomaly detec-
tion in business process instance data. In: Schmidt, R., Guédria, W., Bider, I.,
Guerreiro, S. (eds.) BPMDS/EMMSAD -2016. LNBIP, vol. 248, pp. 196–211.
Springer, Cham (2016). doi:10.1007/978-3-319-39429-9 13

5. Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business
process execution events. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol.
10033, pp. 80–98. Springer, Cham (2016). doi:10.1007/978-3-319-48472-3 5

6. Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime
behavior - challenges and limitations. arXiv (2017)

7. Chaoji, V., Rastogi, R., Roy, G.: Machine learning in the real world. VLDB Endow-
ment 9(13), 1597–1600 (2016)

8. Chinchor, N., Sundheim, B.: Muc-5 evaluation metrics. In: Message Understanding,
pp. 69–78. Computational Linguistics (1993)

9. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance
in collaborative processes. In: Services Computing, pp. 162–169. IEEE (2015)

10. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data:
a survey. Knowl. Data Eng. 26(9), 2250–2267 (2014)

11. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016)

12. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes.
In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249.
Springer, Cham (2014). doi:10.1007/978-3-319-10172-9 15

13. Vogelgesang, T., et al.: Multidimensional process mining: questions, requirements,
and limitations. In: España, S., Ivanović, M., Savić, M. (eds.) CAISE Forum, pp.
169–176. Springer, New York (2016)

14. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-642-01862-6_13
http://dx.doi.org/10.1007/978-3-319-39429-9_13
http://dx.doi.org/10.1007/978-3-319-48472-3_5
http://dx.doi.org/10.1007/978-3-319-10172-9_15

Path-Colored Flow Diagrams:
Increasing Business Process Insights

by Visualizing Event Logs

Koen Daenen(B)

Nokia Bell Labs, Antwerp, Belgium
koen.daenen@nokia-bell-labs.com

Abstract. Event logs of a self-care troubleshooting portal indicate that
most customers do not follow the directions up to a conclusive end.
Consequently, customers risk losing confidence in the support channel,
which undermines the competitive strength of the business. We present a
method for visual analysis of the event logs that employs graph reduction,
and the use of path classification to create a novel type of flow diagram.
These diagrams help to discover and communicate new insights, such
as important trends about the way the customer traverses through the
underlying business process.

Keywords: Workflow analysis · Graph visualization · Business process
insights · Troubleshooting process

1 Introduction

Visual analysis is a good communicator of insights to the person or team you
need to inform or convince [9]. We introduce the Path-Colored Flow (PCF) dia-
gram to visualize event logs of a business process. The diagram aims to derive
new insights, and to communicate these to the process design team. The paper
describes three techniques to create this novel diagram. We illustrate the effec-
tiveness based on event logs of a real-life workflow implementation.

A mobile service operator introduced a self-care portal that assists consumers
with troubleshooting. The aim of the new care channel was to reduce the number
of calls for technical help. The portal asks multiple choice questions, and proposes
remediation actions. A workflow specification drives the order of interactions
(Fig. 1). When the problem remains, the portal invites the consumer to call
an assistant. The event logs revealed that most consumers did not follow the
directions up to a conclusive end. This indicated a risk of customers losing their
confidence in the support channel, leading to churn, and negatively effecting the
operator’s business.

The Customer Care team could not pinpoint a clarification for the issue. The
design team of the workflow got the mandate to improve the workflow model. But
how? Could a re-ordering of the questions or proposed actions reduce the aban-
don rate? Is there a critical point where most customers get lost? A histogram
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 94–109, 2017.
DOI: 10.1007/978-3-319-65000-5 6

Path-Colored Flow Diagrams 95

Fig. 1. Snippet of the self-care workflow

of abandons per question or a heat-map confirmed the size of the problem, and
indicated that it was widely spread throughout the process. Abandons occurred
both on popular as well as rarely consulted pages. The design team still had no
grounds to start modifying the workflow design.

We applied the PCF diagram to gain more insights and to communicate
these to the design team of the workflow. The goal is to create new insights on
where and why the consumers abandoned. The diagram should visually reflect
the workflow specification. This drove our choice to use a diagram in which the
original flowchart is recognizable.

The self-care workflow is complex and consists of many nodes (e.g. 2324) and
edges (e.g. 3185). The possibility to step-back during a process makes the flow
even more complex. To mitigate this complexity, we created diagrams based on
three contributions:

1. Section 2 defines a graph reduction algorithm that preserves the labels of the
outgoing edges of a selected set of nodes. We use it to reduce the workflow
graph to the pages presented to the consumer.

2. Section 3 discusses why a customized Sankey diagram is appealing for our
analysis. We introduce the Leaky Sankey diagram by extending the diagram
with half-edges. We define a formal graph to model the step-back transitions
and abandons in our diagram.

3. We enrich the visualization with context data, and introduce Path-Colored
Flows. Section 4 first describes the technique in its generic form on a graph.
Then, we define the Path-Colored Flow (PCF) diagram.

Section 5 combines the three techniques and applies them to generate PCF
diagrams for the self-care event logs.

2 Reducing the Graph

The original workflow is manually designed to specify the process execution of
the self-care portal. It determines the control flow through the questions, but also
contains many computational actions. We reduce the workflow graph to create
a clear overview of the paths followed. We remove all the nodes and edges that
represent automated data-driven logic. The reduction preserves all questions
to the user, and all possible answers. This reduces the complexity, the model

96 K. Daenen

remaining recognizable for the design team. This section formally describes our
graph reduction definition.

2.1 Workflow Graph

The workflow is a directed graph G = (V,E) consisting of a set of nodes V ,
representing an activity or flow control event, and a set of edges E, representing
transitions between nodes. Each node has an type attribute, representing the
specific type of activity or control event. An activity can be a multiple-choice
question (Q1, Q2, etc. in Fig. 1), an information message to be presented to the
customer, or a pure computational activity called a script. Each activity that
requires input from the consumer corresponds with a web page from the self-care
portal. We call this a display node. Control events are start-event, end-event or
a data-driven decision point (depicted as an X in diamond shape). The latter
is an exclusive OR-split. The outcome is determined by the user’s profile or a
process control variable. A node representing a multiple-choice question, is also
an exclusive OR-split. Its outgoing edges represent the possible answers to the
question. All joins are OR-joins. The workflows describe a sequential process in
which no parallel or inclusive gateways occur.

The edges have a label a ∈ L , which represents the choice or outcome of
the source node; L is the set of all labels. An edge is defined as the triple
(source-node u, label a, target-node v), which we denote in this paper as u

a
�v.

2.2 Reduction Rules

In this section, we present three reduction rules for sequential workflows. The
individual rules are based on the existing reduction rules for process models [14].
Sadiq et al. introduced these rules to analyze the control structure of a process
model. A DAG with two types of nodes represents both or -split/join and and -
split/join. The reduction rules are defined to preserve the properties of the graph
in terms of concurrency behavior: deadlocks and correct synchronization. The
reduction rules presented in this paper reduce a sequential workflow, with only
or -join/split, represented by a labeled directed (cyclic) graph. Such a workflow
graph can be seen as a control program graph. The reduction rule to remove
subgraphs with a unique entry and exit node, as described by McCabe [11], does
not meet our goal, as this can remove display nodes.

Our contribution lies in the definition of criteria to preserve a set of selected
nodes and their transitions, and using this to reduce a labeled directed (cyclic)
graph to a partially labeled graph. The reduction rules are based on a node
selection criterion, e.g. all display-nodes. We denote the set of selected nodes
as VS . The reduced graph is represented by GR = (VR, ER) and must meet
following criteria:

1. VR must at least contain all selected nodes. VR ⊃ VS

2. GR must hold the same transitions for all selected nodes. We say that two
edges represent the same transition when they have the same source node
and edge label: ∀u

a
�v ∈ E(u ∈ VS =⇒ ∃!w ∈ VR : u

a
�w ∈ ER)

Path-Colored Flow Diagrams 97

3. For each path through G that starts and ends in a selected node, a path
through GR must exist that traverses through the same transitions of selected
nodes in the same order.

We introduce two variants of the Adjacent Reduction Rule [14] (ARR). The
main differences are (1) that the condition on the node type is expressed in terms
of the set of selected nodes VS , and (2) that our rules target graphs with labeled
edges. The Transition-safe ARR preserves the edge labels while the Unlabeling
ARR removes the labels. Note that the latter rule has no conditions on the
control structure. The third reduction rule that we apply, is an exact re-use of
the Closed Reduction Rule [14]. Figure 2 shows an example of each rule.

(a) Transition-safe ARR. A node v �∈ VS with a single direct successor w is
removed, and its connected edges. Each incoming edge u

a
�v is replaced by an

edge u
a
�w with a the label of the original incoming edge.

(b) Unlabeling ARR. A node v �∈ VS that is not a direct successor of a selected
node, is removed. When v is removed, all the connected edges (with or without
label) are removed, and replaced by unlabeled edges connecting each of v’s direct
predecessors with each of v’s direct successors. A direct loop v

a
�v is removed

entirely.

(c) Closed Reduction Rule. The application of the adjacent reduction rule gener-
ally introduces closed components in the workflow graph. Two or more unlabeled
edges with the same source and target node are reduced to a single edge.

Fig. 2. Examples of reduction rules: v �∈ VS , (b) u1, u2 �∈ VS

To construct GR, we first apply reduction rules (b) and (c). We visit all nodes
of the graph Gi (with G0 = G) and check if we can apply the Unlabeling ARR.
Then we apply the Closed Reduction Rule to remove all double edges and create
Gi+1. We repeat this recursively until Gn can’t be reduced any further. Finally
we visit all nodes of the graph Gn and check if we can apply the Transition-safe
ARR to create GR.

Since no rules remove a node of VS , the first criterion is met. Only the
Transition-safe ARR removes outgoing edges of selected nodes, but preserves
the label, and as such meets the second criterion. Each reduction rule preserves

98 K. Daenen

all possible flows between the remaining nodes, and does not introduce additional
flows. This ensures that GR meets the third criterion.

Figure 3 shows an example of a graph reduction with VS = {v0, ..., v5}. We
call the set of nodes that are not selected but not removed, the set of supporting
nodes VT = VR \ VS . VT , consists of nodes that are direct successors of selected
nodes and have an outgoing degree greater than 1.

Fig. 3. Reduction of example graph G with VS = {v0, ..., v5}; VT = {w0, w1}

3 Leaky Sankey Diagram

The self-care portal allows a consumer to step-back to an earlier question. Via
the back button of the browser, or the use of breadcrumbs, he or she can rewind
the process. These transitions are not modeled by the workflow graph. Nor is
the abandon event modeled. As such, the original (or reduced) graph model is
not suited to represent the event logs. The transitions step-back and abandon
deserve most attention in the analysis of the self-care process. At the other hand,
visualizing all executed step-back transitions as arrows would be confusing for
the design team. It would not represent the workflow diagram anymore. This
section discusses why and how we introduce the Leaky Sankey diagram as an
extension of the Sankey diagram, and proposes a graph to model it.

3.1 The Event Logs

The event logs consist of an ordered set of step records, one record per transition
taken during a process execution. Each process instance has a unique report
identifier, logged in each step record. A step report r is the sequence of all
step records containing a given report identifier. Each record consist further out
of a time stamp, an account name, a process identifier, a node identifier, the
transition name, and a transition type flag. The normal transition type refers
to the edge v

a
�w with v the node with the identifier of the given record, a the

transition name, and w the node identified in the next step record of the same
step report. The other transition types are step-back, abandon and end.

Before a consumer consults the actual process, he must register and provide
some information such as his name, telephone number, and mobile device type.
This information is stored in an account profile and can be correlated with a step

Path-Colored Flow Diagrams 99

report based on the account name. In the remainder of this section, and next
section, we use a simple workflow with an example data set. Section 5 describes
the results based on real customer data.

3.2 Diagram

Schmidt describes Sankey diagrams as “the visual language of industrial
ecology” — “they are ideal for interpreting complicated sets of resource
flows” [16]. For a service provider, the customers are its source of income. It
is important to follow their journey during a troubleshooting session and visu-
alize where they disconnect.

Our diagram represents the flow of process executions (see example in Fig. 4).
We represent the display nodes as boxes, interconnected with pipes correspond-
ing to the edges of the workflow graph. We represent the event logs as a flow
through the machinery of nodes and pipes. We draw the width of the flow pro-
portional to the number of sessions that ran through an edge or node. The start
node and end nodes act respectively as the source and sinks of the flow. At the
display nodes, we preserve the conservation of flow by drawing the flow of the
abandoned sessions literally through the node. To visualize the step-back tran-
sitions without interconnecting the nodes with additional arrows, we also use
the metaphor of leaking out and in. The flow leaks out at the node where the
back button is pressed, and leaks in at the node to which the process returns.
To mark this transition visually, we adopt the use of reference labels (A, B, ...)
from engineering drawing practice.

Fig. 4. A leaky Sankey diagram clearly shows step-back transitions and abandons.

To describe this as a formal graph model, we first define the set of step-
back edges. A step-back transition is possible in any display node returning to a
previous display node depending on the path traversed so far. In the event logs,
these transitions are marked with a step-back flag. We define

EB := {x
back
�y|(x, y ∈ VS) ∧ (∃x

p� y ∈ PGR
)} (1)

100 K. Daenen

in which VS is the set of display-nodes, and PGR
is the set of all paths through

GR. We don’t add EB to the graph definition as it would not represent the
workflow diagram anymore: all the step-back edges are conditional in the sense
that these transitions can only be taken depending on the flow followed so far.
Instead, we add abandon and step-back half-edges to the workflow graph to
construct accurate flow diagrams.

To model the step-back transitions in our visual analysis, we define LVS
as

a set of unique reference labels for each display node, and ρ : LVS
→ VS a

bijection that maps each reference label to the corresponding display node. We
define the label abandon to explicitly model the abandon transitions. Then we
define GRH := (VR, ERH), the reduced graph extended with three sets of labeled
half-edges ERH := ER ∪ EA ∪ EB′ ∪ EB′′ , and GRHW := (GRH , λ), the graph
extended with a weight function; in which

– EA := VS ×{abandon}, the set of outgoing abandon half-edges in each display
node;

– EB′ := {(v, a) ∈ VS × LVS
|vback

�ρ(a) ∈ EB}, the set of outgoing step-back
half-edges in each display node;

– EB′′ := {(a, v) ∈ LVS
× VS |ρ(a)

back
�v ∈ EB}, the set of incoming step-back

half-edges in each display node;
– λ : ERH → N, mapping each (half-)edge onto the number of times the tran-

sition appears in the event logs.

Column Ne of Table 1, lists the values of Ne = λ(e) for each (half-)edge of
the example data set. Figure 4 depicts the Sankey diagram with half-edges. Each
arrow is proportional to the flow Ne. On the diagram, the abandoned sessions
end with the abandon half-edge, clearly showing how the flow leaks out of the
graph. Similar for the step-back edges: the flow diagram shows how the flow
jumps out and in the graph preserving the flow width. The abandon half-edges
are represented with a cross pictogram as label; see e.g. the nodes Q1 and Q2
in the example. The back half-edges are represented with an arrow, respectively
starting or ending on a circle with the reference label. On the example diagram,
we can read that parts of the flow at node Q3 return to Q0 (reference A) and
parts to Q1 (reference B). Transition names (e.g. yes, no) appear as labels on
the edges close to the source node.

4 Path-Colored Flows

A flow diagram that reflects the path frequencies, or Sankey diagram, is well
suited to highlight the trend of which transitions are dominant in a set of paths.
Still, because the abandon behavior was spread all over the workflow, this rep-
resentation falls short to analyze it.

Colors are often used to add information to a visualization. In graphs and
flow diagrams, I distinguish three basic techniques:

Path-Colored Flow Diagrams 101

1. The diagram is composed of distinct traces, each drawn with a different
color [4,17]. The colors don’t add information, but increase the readability,
especially when the traces converge. In case the color of one trace is clearly
different from the others, e.g. by saturation, hue, or brightness, it adds one
element of global information: the author of the diagram has deliberately
chosen to highlight the given trace.

2. A single color is assigned to each edge and node. The colors correspond to a
value or item on a color-scale [1,3,6]. This technique adds one dimension of
information to the diagram. It requires to limit or reduce the information to
a single value per edge and node, e.g. by taking the average [8,20].

3. Riehmann et al. introduced flow tracing in an interactive tool for Sankey dia-
grams [13]. Users may select a node or edge in the diagram and the contribu-
tions of all flows are highlighted. This increases the amount of information in
the diagram. In the first place, by indicating the selected element, but mainly
by revealing the contribution in a partitioning of the width of the edges. The
partial width of each edge marked in the highlight color, contributes to the
flow that passes the selected item.

We generalize the latter approach. We use a discrete color-scale to add an
extra dimension of information as in the second approach. But in stead of flat-
tening per node and edge, we partition the contribution of each edge and each
node to each of the color classes. This allows to visually compare to what extent
the added dimension has an impact on the flow. This technique allows to gen-
erate a single flow diagram of thousands of paths, while highlighting the differ-
ent classes. This section first describes the classification function. Secondly, we
define the formal Path-Colored graph. Finally, we introduce the Path-Colored
Flow diagram.

4.1 Classification

As a tool to specify different classifications for process execution logs, we propose
a framework of four types classifiers:

– The duration classifier is based on the duration of the process execution, mea-
sured as the time difference between the last and first node on the execution
path. Each class corresponds with a duration range.

– The result classifier is based on a field of a step report that describes the
outcome of the process execution. This field may be the name of the last
executed node, or a dedicated result flag. Each class corresponds with a set
of possible outcomes (one or more).

– The path classifier is based on the structure of the execution path. The struc-
ture of a path is described with the following attributes: length (the number
of nodes in the path), is-cyclic and deviates (from the process model). Each
class corresponds with a proposition based on these attributes.

– The context classifier is based on any contextual information field that may
be stored in the step report. Each class corresponds with a set of possible
values.

102 K. Daenen

More specialized classifiers can be specified by combining several of the above
classifiers, or by using derived fields, i.e. fields that are computed from the orig-
inal event logs before actually applying the classification. For our example data
set, we derive the field mobile device type based on the account name and a
lookup in the profile data. We define a context classifier to differentiate the
mobile device based on the OS: Android, iOS, and Windows.

4.2 Path-Colored Graph

To generalize the different classifiers, we define the classification function fC :
PG → C, with

– PG ⊂ PG, a set of paths through G, in our example case the set that corre-
sponds with the set of step reports.

– C, a set of classes, each represented in a diagram with a distinct color.

We define the Path-Colored graph as GC = (G,C, λC) a triple of a graph G,
a set of classes C, and a weight function λC : E → C → N that maps each edge
on a count per class. The count represents how many times the edge appears in
a set of paths of the related class. Given a classification function fC , the weight
function can be written as:

λC := e �→ c �→
∑

p∈PG

(
μ(fC(p) = c)

∑

ei∈p

μ(ei = e)

)
with μ(X) :=

{
1 X

0 ¬X

4.3 The PCF Diagram

Based on the definition in the previous section, we define a customized Sankey
diagram:

A PCF (Path-Colored Flow) diagram is a Sankey diagram, augmented with
colors. Each color marks the contribution of all edges and nodes to a class of
paths. An arbitrary classification function determines the partitioning of edges.
Inside a node, the contributions to each class of all incoming flows are grouped.
At the outgoing side, the contributions split again into the outgoing edges.
Throughout the whole diagram a fixed color order is applied.

Table 1 lists the weight factors for the context classifier applied on the exam-
ple data set. The total count for an edge Ne =

∑
c∈C

λC(e)(c) corresponds to the

total flow of all paths through a given edge. The columns Android, iOS, and Win
list the flow count per edge and per device type; and the last three columns list
the flow percentage per class.

Figure 5 depicts the corresponding PCF diagram. Each edge is represented
by a multi-colored arrow. The total width of an arrow corresponds to Ne, and
is divided in a section for each class, each proportional to λC(e)(c)

Ne
.

We discuss the value of the PCF diagram based on the same example data
set used in Sect. 3. We define a context classifier to differentiate the mobile

Path-Colored Flow Diagrams 103

Table 1. Weight function λC

(half-)edge Ne Andr iOS Win Andr% iOS% Win% (half-)edge Ne Andr iOS Win Andr% iOS% Win%

start
next
� Q0 163 50 53 60 31% 33% 37% Q1

abandon
� 24 0 0 24 0% 0% 100%

start
abandon

� 0 0 0 0 0% 0% 0% Q2
NOK
� Failure 26 8 10 8 31% 38% 31%

A
�Q0 28 6 0 22 21% 0% 79% Q2

OK
�Success 38 11 15 12 29% 39% 32%

Q0
yes
�Q1 109 31 28 50 28% 26% 46% Q2

A
� 2 2 0 0 100% 0% 0%

Q0
no
�Q2 76 25 25 26 33% 33% 34% Q2

abandon
� 10 4 0 6 40% 0% 60%

Q0
abandon

� 6 0 0 6 0% 0% 100% Q3
NOK
� Failure 21 8 9 4 38% 43% 19%

B
�Q1 4 0 0 4 0% 0% 100% Q3

OK
�Success 10 5 5 0 50% 50% 0%

Q1
OK
�Success 26 12 14 0 46% 54% 0% Q3

A
� 4 0 0 4 0% 0% 100%

Q1
NOK
� Q3 41 15 14 12 37% 34% 29% Q3

B
� 4 0 0 4 0% 0% 100%

Q1
A

� 22 4 0 18 18% 0% 82% Q3
abandon

� 2 2 0 0 100% 0% 0%

device type based on the OS: iOS (A), Android (B), and Windows (C). Figure 5
represents the resulting PCF diagram. Both Figs. 4 and 5, give a good overview
of the flow, the abandons and the step-back transitions. What Fig. 5 depicts
extra are the abandons for device type C. In addition, at nodes Q1 and Q2, none
of the flows of type C take the OK branch, while a significant number perform a
step back.

This as such does not lead us to the root cause of this behavior, but we get a
strong hint that the first point to investigate is: “What exactly is happening in
node Q1, and why is the behavior different for type C?” Based on domain knowl-
edge, the conclusion may be that the question asked at node Q1 is not applicable
for devices of type C. Users of such devices get confused by the question. They
either abandon immediately, select NOK or step back, because they think they
gave a wrong answer in the previous step. For these devices, question Q1 should
be either rephrased or skipped. The process definition could be improved with
a data-driven check of the device type, to skip this question in case of type C.

The example in this section was based on example data. The next section
applies the PCF diagrams on the event logs of a real process execution.

4.4 Implementation

Existing tools to render graphs such as graphviz1 and the Javascript library
Sankey2 are not able to draw the multi-color curved arrows. Hence, we wrote our
own Javascript library to draw the PCF diagrams in SVG. Each color partition
of an edge is a separate SVG path composed out of lines and arcs. We avoided
Bézier curves because they are complex to draw parallel curves. A Cubic Bézier
curve can be specified with four control points, but the offset path can not. The
offset path of a Bézier curve must be calculated based on an approximation
method [5].

1 For information and download we refer to http://graphviz.org.
2 For information and download we refer to https://bost.ocks.org/mike/sankey/.

http://graphviz.org
https://bost.ocks.org/mike/sankey/

104 K. Daenen

Fig. 5. Context classifier: � type A, � type B, � type C (Color figure online)

We draw the nodes in the PCF diagrams with fixed height, and scale the
widths of the edges such that the maximum flow matches with the node height.
We use a minimum stroke width to preserve the readability. When the flow
through an edge is lower than this threshold, we use a dashed stroke. When no
flow passes through a workflow edge, we use a grey dotted stroke.

5 PCF Diagrams for Self-care Event Logs

This section applies the three techniques introduced in this paper to generate PCF
diagrams for the self-care event logs. We describe several classifications applied
on the same event log, representing 4475 sessions. The full process specification
of the self-care portal encompasses more than 30 interconnected workflows, each
handling a certain type of problem. This paper limits the scope to a single work-
flow handling startup issues. We first reduced the graph by selecting the display
nodes, as described in Sect. 2. This reduced the set of nodes with 83%, due to the
elimination of a lot of script and data-driven decision nodes. Then, we created a
Leaky Sankey diagram (see Sect. 3), as basis for the PCF diagrams.

We first discuss the general observations based on the Sankey diagram in
Fig. 6, independent from the classification. The diagram is split in two cropped
views. At the left (a), we show the start of the workflow with the question
“Select issue”. At the right (b), the workflow ends in the node Failure or
Success. Note that the supporting nodes (VT in Sect. 2.2) are depicted as small
rectangles. The incoming edge of the node “Charge and turn... Resolved?”
that by-pass the first node of this workflow, may look unexpected. This edge
originates from one of the other 29 workflows. Only a fraction of the sessions are
successful, and less than half of the sessions arrive at the node Failure. The
remaining sessions are abandoned along the way. About 20% of the flows return
to the start node at some point.

Path-Colored Flow Diagrams 105

F
ig
.
6
.
D

u
ra

ti
o
n

b
a
se

d
cl

a
ss

ifi
ca

ti
o
n
:
�

<
1
0

s,
�

<
5

m
in

,
�

<
1
0

m
in

,
�

<
1
5

m
in

,
�

≥1
5

m
in

(C
o
lo

r
fi
g
u
re

o
n
li
n
e)

106 K. Daenen

5.1 Classifiers

We applied different classifiers of each type:

Context classifier. A classification based on device type, such as OS (as in the
example of Sect. 4.3), with or without keyboard, or tablet versus phone, did not
provide useful insights.

Duration classifier. Initially, we didn’t expected any special observation from
this classifier until we highlighted very short durations with five discrete intervals
from <10 s to ≥15 min (Fig. 6). We see that there is no correlation between
the total duration of a session and the followed path. This is remarkable given
the big difference in duration: <10 s to ≥15 min. A duration of less than 10 s
indicates that these consumers don’t effectively follow the instructions, but just
scan through the question and information pages. They stop reading when they
got enough information or can’t absorb any more. For those users, the order in
which the remediation actions are presented, is less relevant.

Result classifier. Figure 7(a) shows a snippet of the PCF diagram with the classi-
fication based on the last step in the step report: Success, Failure, or abandon.
This classification has the interesting property that any cropped view reveals
the result. Only by looking at the first node of the workflow, we see that the
result ratio failure/abandon is fairly balanced over the different issues; except for
the edge “battery loose”, which is only taken by a small number of sessions.
Looking at the incoming half-edge A, we see that most of the returning flows
eventually abandon. None of the users that returned to the question “Select
issue”, eventually reached “Success”.

Path classifier. We spend extra attention to the possibility of returning to a
previous page with a path classifier: no returns, return to the first node, or
return to another node. Figure 7(b) shows the first and the last nodes in the
PCF diagram. The number of abandons at the first node is high: 80% of these
stopped here immediately, the other 20% abandoned after returning. At the node
“Success”, the incoming flows have no returns on their path. This generalizes
the observation made with the result classifier. Also at the node “Failure”, the
dominant incoming flows have no returns on their path. We conclude that the
possibility to return to a previous page is not increasing the effectiveness of the
workflow. The step back events already indicate that the consumer does not find
the guidance of the self-care portal useful or well-structured, before he concludes
to abandon the process.

5.2 Discussion

So, what makes our Path-Colored Flow (PCF) diagrams effective? The graph
reduction decreases the size of the diagram and allows focus. By selecting the dis-
play nodes, the diagram visualizes the perceived order of the questions shown to

Path-Colored Flow Diagrams 107

Fig. 7. Result (a) and path (b) classifier

the customer, while preserving all possible paths through the original workflow
definition. By using a Sankey diagram, the visualization becomes very trans-
parent on what happens at which point in the flow. The place and proportion
of the abandons is immediately visible, as well as the step-back transitions. It
is hard to compare large diagrams of different sets of event logs. Path-coloring
makes it possible to compare different sets of event logs in a single diagram. The
classifications we used, can be used in other statistical methods or graphics. The
benefit of the PCF diagram is that it presents the message in the structure of
the original workflow design, and is thus very suited to communicate with the
design team.

6 Related Work

Reduction rules for process models are presented in several publications [7,14,
15,18]. The work differs in the targeted analysis and semantics of the graphs.
Each approach preserves different properties of the process. The Proviado frame-
work [2,12] can generate a personalized view of a large business process model.
Elimination and aggregation of process elements can deliver a comprehensive
abstraction. Disco3 and ProM4, the most popular tools to process and visualize
event logs, support features to aggregate and abstract a process model, and use
edge width and color codes to reflect path frequencies.

Sankey diagrams are well suited to visualize the patient flow through activi-
ties [1,3]. The color of the activity indicates the type of activity. The CareFlow’s
visual interface assigns colors to elements according to the average outcome of
the process [8]. Fill et al. discusses the visual dimensions such as size, color and
shape to draw actions in an enterprise model [6]. Outflow [20] visualizes aggregate
event progression pathways, using color scales to show the associated statistics.
Riehmann et al. introduced flow tracing in an interactive tool for Sankey dia-
grams [13]. Kriglstein et al. presented a tool for process model redesign [10].

3 For information and download we refer to http://www.fluxicon.com/disco/.
4 For information and download we refer to http://www.promtools.org.

http://www.fluxicon.com/disco/
http://www.promtools.org

108 K. Daenen

It uses color codes to visualize which edges and nodes are added and removed.
Vogelgesang et al. uses a similar visualization for process mining [19].

7 Conclusion

This paper introduced a graph reduction algorithm that preserves the labels of
the outgoing edges of a selected set of nodes. We reduced the size of the workflow
graph of the self-care portal of a mobile operator significantly. The reduction did
not remove the information that was needed for the analysis: i.e. understand the
influence of the display nodes and their outgoing labeled edges on the execution
flows. Secondly, we introduced a new Path-Colored Flow diagram to visualize
event logs of a business process. The addition of half-edges to the Sankey diagram
made it possible to intuitively differentiate the flows via the explicitly modeled
edges, from other transitions allowed during the process execution. A session-
based classification was used to visually partition the flow per node and per
edge, and as such add an extra dimension of information to the diagram. We
gave a framework to specify four types of classifiers and applied them on our use
case. We demonstrated how the PCF diagram increased the insights on the event
logs of the self-care portal. Most importantly, the visualization was based on the
original workflow diagram. The PCF diagrams made the business insights visible
and suitable for communication to all stake holders. The diagrams indicated that
the customer behavior was not due to an isolated place of bad logic. It raised
the need for a general rethinking of the formulation of questions and answers.
Our analysis pointed out, that customers that return to a previous page, will
not reach success and most probably abandon. Improving the usability of the
portal was key to keep the customer’s confidence in operator’s support channel.

References

1. Basole, R.C., Park, H., Gupta, M., Braunstein, M.L., Chau, D.H., Thompson, M.:
A visual analytics approach to understanding care process variation and confor-
mance. In: Proceedings of the 2015 Workshop on Visual Analytics in Healthcare,
VAHC 2015, NY, USA, New York, pp. 6:1–6:8. ACM (2015). doi:10.1145/2836034.
2836040

2. Bobrik, R., Bauer, T., Reichert, M.: Proviado – personalized and configurable
visualizations of business processes. In: Bauknecht, K., Pröll, B., Werthner, H.
(eds.) EC-Web 2006. LNCS, vol. 4082, pp. 61–71. Springer, Heidelberg (2006).
doi:10.1007/11823865 7

3. Bos, K., Hasper, W.: Enabling measuring of the patient flow in an orthopaedic
clinic. B.S. thesis, University of Twente (2016). http://essay.utwente.nl/70229/

4. Burkhard, R., Meier, M.: Tube map: evaluation of a visual metaphor for interfunc-
tional communication of complex projects. In: Proceedings of I-Know 2004, vol. 4,
pp. 449–456 (2004)

5. Elber, G., Lee, I.K., Kim, M.S.: Comparing offset curve approximation methods.
IEEE Comput. Graph. Appl. 17(3), 62–71 (1997). doi:10.1109/38.586019

http://dx.doi.org/10.1145/2836034.2836040
http://dx.doi.org/10.1145/2836034.2836040
http://dx.doi.org/10.1007/11823865_7
http://essay.utwente.nl/70229/
http://dx.doi.org/10.1109/38.586019

Path-Colored Flow Diagrams 109

6. Fill, H.G., Höfferer, P.: Visual enhancements of enterprise models. In: Multikon-
ferenz Wirtschaftsinformatik, pp. 541–550 (2006)

7. Hu, F.H., Jiang, J., Wu, X.N., Ru, F.: Reduction rules of graphical representation
in a workflow process model. Adv. Sci. Eng. II Appl. Mech. Mater. 135, 709–
714 (2012). doi:10.4028/www.scientific.net/AMM.135-136.709. Trans Tech Publi-
cations

8. Hu, J., Perer, A., Wang, F.: Data driven analytics for personalized healthcare.
In: Weaver, C.A., Ball, M.J., Kim, G.R., Kiel, J.M. (eds.) Healthcare Informa-
tion Management Systems. HI, pp. 529–554. Springer, Cham (2016). doi:10.1007/
978-3-319-20765-0 31

9. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.:
Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp.
154–175. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70956-5 7

10. Kriglstein, S., Wallner, G., Rinderle-Ma, S.: A visualization approach for difference
analysis of process models and instance traffic. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 219–226. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40176-3 18

11. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE 2(4), 308–320
(1976). doi:10.1109/TSE.1976.233837

12. Reichert, M.: Visualizing large business process models: challenges, techniques,
applications. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 725–
736. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36285-9 73

13. Riehmann, P., Hanfler, M., Froehlich, B.: Interactive sankey diagrams. In: IEEE
Symposium on Information Visualization, INFOVIS 2005, pp. 233–240 (2005).
doi:10.1109/INFVIS.2005.1532152

14. Sadiq, W., Orlowska, M.E.: Applying graph reduction techniques for identifying
structural conflicts in process models. In: Jarke, M., Oberweis, A. (eds.) CAiSE
1999. LNCS, vol. 1626, pp. 195–209. Springer, Heidelberg (1999). doi:10.1007/
3-540-48738-7 15

15. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction
techniques. Inf. Syst. 25(2), 117–134 (2000). doi:10.1016/S0306-4379(00)00012-0.
http://www.sciencedirect.com/science/article/pii/S0306437900000120

16. Schmidt, M.: The sankey diagram in energy and material flow management. J. Ind.
Ecol. 12(1), 82–94 (2008). doi:10.1111/j.1530-9290.2008.00004.x

17. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012). doi:10.1109/
TVCG.2012.212

18. Verbeek, H., Wynn, M., van der Aalst, W., ter Hofstede, A.: Reduction rules for
reset/inhibitor nets. J. Comput. Syst. Sci. 76(2), 125–143 (2010). doi:10.1016/j.
jcss.2009.06.003

19. Vogelgesang, T., Appelrath, H.-J.: PMCube: a data-warehouse-based approach
for multidimensional process mining. In: Reichert, M., Reijers, H.A. (eds.)
BPM 2015. LNBIP, vol. 256, pp. 167–178. Springer, Cham (2016). doi:10.1007/
978-3-319-42887-1 14

20. Wongsuphasawat, K., Gotz, D.: Exploring flow, factors, and outcomes of temporal
event sequences with the outflow visualization. IEEE Trans. Vis. Comput. Graph.
18(12), 2659–2668 (2012). doi:10.1109/TVCG.2012.225

http://dx.doi.org/10.4028/www.scientific.net/AMM.135-136.709
http://dx.doi.org/10.1007/978-3-319-20765-0_31
http://dx.doi.org/10.1007/978-3-319-20765-0_31
http://dx.doi.org/10.1007/978-3-540-70956-5_7
http://dx.doi.org/10.1007/978-3-642-40176-3_18
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1007/978-3-642-36285-9_73
http://dx.doi.org/10.1109/INFVIS.2005.1532152
http://dx.doi.org/10.1007/3-540-48738-7_15
http://dx.doi.org/10.1007/3-540-48738-7_15
http://dx.doi.org/10.1016/S0306-4379(00)00012-0
http://www.sciencedirect.com/science/article/pii/S0306437900000120
http://dx.doi.org/10.1111/j.1530-9290.2008.00004.x
http://dx.doi.org/10.1109/TVCG.2012.212
http://dx.doi.org/10.1109/TVCG.2012.212
http://dx.doi.org/10.1016/j.jcss.2009.06.003
http://dx.doi.org/10.1016/j.jcss.2009.06.003
http://dx.doi.org/10.1007/978-3-319-42887-1_14
http://dx.doi.org/10.1007/978-3-319-42887-1_14
http://dx.doi.org/10.1109/TVCG.2012.225

Assorted BPM Topics

AB-BPM: Performance-Driven Instance Routing
for Business Process Improvement

Suhrid Satyal1,2(B), Ingo Weber1,2, Hye-young Paik2, Claudio Di Ciccio3,
and Jan Mendling3

1 Data61, CSIRO, Sydney, Australia
{suhrid.satyal,ingo.weber}@data61.csiro.au

2 University of New South Wales, Sydney, Australia
hpaik@cse.unsw.edu.au

3 Vienna University of Economics and Business, Vienna, Austria
{claudio.di.ciccio,jan.mendling}@wu.ac.at

Abstract. A fundamental assumption of Business Process Management
(BPM) is that redesign delivers new and improved versions of busi-
ness processes. This assumption, however, does not necessarily hold, and
required compensatory action may be delayed until a new round in the
BPM life-cycle completes. Current approaches to process redesign face
this problem in one way or another, which makes rapid process improve-
ment a central research problem of BPM today. In this paper, we address
this problem by integrating concepts from process execution with ideas
from DevOps. More specifically, we develop a technique called AB-BPM
that offers AB testing for process versions with immediate feedback at
runtime. We implemented this technique in such a way that two versions
(A and B) are operational in parallel and any new process instance is
routed to one of them. The routing decision is made at runtime on the
basis of the achieved results for the registered performance metrics of
each version. AB-BPM provides for ultimate convergence towards the
best performing version, no matter if it is the old or the new version. We
demonstrate the efficacy of our technique by conducting an extensive
evaluation based on both synthetic and real-life data.

Keywords: Business Process Management · DevOps · AB testing ·
Process performance indicators

1 Introduction

Various lifecycle approaches to Business Process Management (BPM) have a
common assumption that a process is incrementally improved in the redesign
phase [9, Chap. 1]. While this assumption is hardly questioned in BPM research,
there is evidence from the field of AB testing that improvement concepts often
do not lead to actual improvements. For instance, work on business improvement
ideas found that 75% did not lead to improvement: half of them had no impact
while approximately a quarter turned out to be even harmful [12]. The results
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 113–129, 2017.
DOI: 10.1007/978-3-319-65000-5 7

114 S. Satyal et al.

are comparable to a study of the Microsoft website, in which only one third
of the ideas observed had a positive impact, while the remaining had no or
negative impact [15]. The same study also observed that customer preferences
were difficult to anticipate before deployment, and that customer research did
not predict customer behaviour accurately.

If incremental process improvement can only be achieved in a fraction of
the cases, there is a need to rapidly validate the assumed benefits. Unfortu-
nately, there are currently two major challenges for such an immediate valida-
tion. The first one is methodological. Classical BPM lifecycle approaches build
on a labour-intensive analysis of the current process, which leads to the deploy-
ment of a redesigned version. This new version is monitored in operation, and
if it does not meet performance objectives, it is made subject to analysis again.
All this takes time. The second challenge is architectural. Contemporary Busi-
ness Process Management Systems (BPMSs) enable quick deployment of process
improvements, but they do not offer support for validating improvement assump-
tions. A performance comparison between the old and the new version may be
biased since contextual factors might have changed at the same time. How a
rapid validation of improvement assumptions can be integrated in the BPM
lifecycle and in BPMSs is an open research question.

In this paper, we address this question by integrating business process execu-
tion concepts with ideas from DevOps. More specifically, we develop a technique
called AB-BPM that offers AB testing for redesigned processes with immediate
feedback at runtime. AB testing in DevOps compares two versions of a deployed
product (e.g., a Web page) by observing users’ responses to versions A/B, and
determines which one performs better [8]. We implemented this technique in
such a way that two versions (A and B) of a process are operational in par-
allel and any new process instance is routed to one of them. Through a series
of experiments and observations, we have developed an instance routing algo-
rithm, LTAvgR, which is adapted to the context of executing business processes.
The routing decision is guided by the observed results for registered performance
metrics of each version at runtime. The technique has been evaluated extensively
on both synthetic and real-life data. The results showed that AB-BPM provides
for ultimate convergence towards the best performing version.

The remainder of this paper starts with a discussion of the background and
related work in Sect. 2. Section 3 describes the framework and algorithms for
performing AB tests. In Sect. 4, we evaluate our approach on two use cases. In
Sect. 5, we discuss the results, limitations, and validity of our approach, and
finally draw conclusions in Sect. 6.

2 Background and Related Work

Business Process Management Systems (BPMSs) allow for a rapid deployment
of process improvements into operation. However, there is currently no support
to test the often implicit assumption that a modification of a process actually
represents an improvement. One anecdote of a leading European bank (EB)
illustrates this problem. The EB improved their loan approval process by cut-
ting its turnaround time down from one week to a few hours. What happened

AB-BPM: Performance-Driven Instance Routing 115

though was a steep decline in customer satisfaction: customers with a negative
notice would complain that their application might have been declined unjusti-
fiably; customers with a positive notice would inquire whether their application
had been checked with due diligence. This anecdote emphasizes the need to
carefully test improvement hypotheses in practice since customers and process
participants might not act in a way that can be predicted deterministically.

Given the current architecture of BPMSs, it is not possible to conduct a
fair comparison between the old and the new version of a process since they
are not operational at the same point of time. That means, doing a post-hoc
analysis of data generated from the old process being operational in time interval
[t(n−1), t(n)] and the new process running from [t(n), t(n+1)] is biased towards
the respective conditions of each time interval.

The need for continuous improvement is rarely disputed, but it should be
complemented with the motto “test fairly” and “fail fast”. This motto entails
reducing the time between inception and deployment of new versions, and man-
aging business risks brought forth by deployment of the new process versions.

From the above analysis, we derive the following three requirements:

R1 Rapidly validate the improvement assumption: a proposed improvement
should be tested within a short time frame after its introduction.

R2 Ensure a fair comparison: the environment in which a comparison is con-
ducted should minimize bias, and avoid the time bias discussed above.

R3 Enable rapid adjustments on process model level: the benefits of a solution
should be suited to process models and their specific characteristics.

Concepts from DevOps [3], which aim to bring software development (Dev)
and operations (Ops) closer together, may help to address this problem. One
DevOps practice is live testing, where new versions of the software are tested
in production with actual users of the system. The most popular form of live
testing is AB testing, where two versions (A and B) are deployed side by side and
both receive a share of the production workload while being monitored closely.
The monitoring data is then used to draw conclusions about the effectiveness of
one version over the other, for instance in the form of increased revenue from
higher click-through rates.

So far, AB testing has been used for micro changes of websites, like changing
the color of a button [8,15]. The effectiveness of this technique is surveyed by
Kohavi et al. for the user interfaces of web applications [15,16]. In this paper, we
adopt the idea of AB testing on the process level in order to address R1–R3. Our
technique is called AB-BPM. In the following, we discuss in how far previous
BPM research is related to R1–R3. We distinguish methodological and technical
approaches to process improvement.

Methodological approaches include business process re-engineering and the
BPM lifecycle. Business Process Re-Engineering (BPR) offers a methodology for
selecting and redesigning a process to improve efficiency, often exploiting IT to
support the changes [11]. BPR promotes radical changes to the processes. An
explicit perspective for testing re-engineered processes is missing.

116 S. Satyal et al.

Kettinger et al. summarize methods for process improvement project [14].
Lifecycle models like the one described by Dumas et al. [9] propose a more
incremental improvement of processes with periodic controlling and revisions.
Our research complements this stream of research by providing techniques to
experiment with process improvement hypotheses and perform statistical eval-
uation on them. We assume that a redesigned process is made available, so that
such experimentation and analysis can be done. We envision that our approach
can be used in conjunction with works that automatically generate process ver-
sions just as [4]. Other techniques include root-cause analysis [9,19], e.g. by
the help of cause-effect diagrams [9,10], and the consideration of best-practises
[2,20]. However, evaluation of effectiveness requires the involvement of process
analysts.

Technical approaches focus on monitoring processes at runtime with a focus
on specific performance metrics. Concepts based on Statistical Process Control
(SPC) [13], Complex Event Processing (CEP) [24,25], and predictive analytics
[6] have been proposed and adapted for monitoring business processes. How-
ever, these monitoring techniques have not been used to carry out controlled
experiments. In our work, the monitoring is performed by the instance router
by observing a Process Performance Indicator (PPI) like satisfaction ratings
obtained from end users. Based on the chosen PPI, the instance router dynam-
ically adjusts the request distribution rates (Table 1).

Table 1. Mapping existing works to the requirements

Approach R1 R2 R3

Process re-engineering (Hammer/Champy) [11] − − −
Process improvement [14] − − −
Process lifecycle [9] +/− − −
Statistical Process Control (SPC) [13] + − −
Complex Event Processing (CEP) [24,25] − − +

AB testing, see e.g., [3,15] + + −
AB-BPM (this work) + + +

Our research addresses the gap of an explicit testing of improvement hypothe-
ses in BPM-related research and the lack of an explicit consideration of business
processes in the works on AB testing. In the following, we devise our AB-BPM
approach so that it meets requirements R1–R3.

3 Approach and Architecture

In this section, we present our approach, starting with mapping the instance
routing problem to algorithms from the literature. Based on a small experiment,
we choose one algorithm and adapt it to the context of business processes. Then
we present our high-level framework, architecture, and implementation.

AB-BPM: Performance-Driven Instance Routing 117

3.1 Instance Routing – A Multi-armed Bandit Problem

In order to integrate concepts of process execution with AB testing, we have to
discuss how new instances are assigned to a specific version of the process.

Therefore, we need an instance router that distributes requests to versions in
such a way that any relevant Process Performance Indicator (PPI) is maximized.
The instance router also needs to deal effectively with the issue that processes
can be long-running, and that PPI measurements can be delayed.

The PPI maximization can be mapped to the so-called multi-armed bandit
problem [1,5]. The multi-armed bandit problem models a hypothetical experi-
ment where, given some slot machines with different payoff probability distrib-
utions, a gambler has to decide on which machines to play. The objective of the
gambler is to maximize the total payoff during a sequence of plays. Since the
gamblers are unaware of the payoff distribution, they can approach the plays with
two strategies: exploring the payoffs by pulling different arms on the machines
or exploiting the current knowledge by pulling arms that are known to give good
payoffs. The exploration strategy builds knowledge about the payoffs, and the
exploitation strategy accumulates the payoffs. Multi-armed bandit algorithms
aim to find a balance between these strategies. If the performance is affected
by some context, this can be seen as the so-called contextual multi-armed ban-
dit problem, where the gambler sees context (typically represented as a multi-
dimensional feature vector) associated with the current iteration before making
the choice.

We model the routing algorithm as a multi-armed bandit problem by repre-
senting the process versions as the “arms”, and the PPI as “payoffs/rewards”.
The objective of the instance router is to find a good tradeoff between explo-
ration and exploitation, possibly based on the context. To learn the performance
of a version in exploration, it sends some of the process instantiation requests
to either version. Based on the instance router’s experience, it can exploit its
knowledge to send more or even all request to the better-performing version. The
reward for routing algorithm can be designed to use a PPI like user satisfaction.

3.2 Instance Routing Algorithms and Selection

The multi-armed bandit problem has been explored in related literature. LinUCB
[17] is a contextual multi-armed bandit algorithm that has been employed to
serve news articles to users with the objective to maximize the total number
of clicks. Tompson sampling [23] is one of the simplest approaches to address
multi-armed bandits. It is based on a Bayesian approach where arms are chosen
according to their probability of producing optimal rewards [7,23]. Thompson
sampling can be used to solve the contextual multi-armed bandit problem with
linear rewards [1]. In this paper, we chose these three algorithms as candidates
for process instance routing and investigate their effectiveness. We have selected
these algorithms based on their demonstrated benefits and simplicity. Other
algorithms, such as ε-greedy, ε-first, UCB, and EXP4 also address multi-armed
bandit problems [5].

118 S. Satyal et al.

Since the goal for the routing algorithms is to maximize the cumulative value
of the PPI, as preparatory work, we have experimented with different rout-
ing algorithms with different configurations to find the best performing algo-
rithm. We have compared variations of Thompson sampling techniques [1,7,23],
LinUCB [17] and a baseline algorithm which uniformly distributes requests to
process versions regardless of context and rewards. We have found that LinUCB
produced the highest cumulative satisfaction score throughout the experiments.
Therefore we use this algorithm in the following. Our architecture is flexible
enough that it can be easily replaced by other algorithms.

3.3 Adapting the Routing Algorithm to Business Processes

As discussed above, we chose LinUCB as our routing algorithm. However, we
observed that the algorithm can be derailed by process-specific circumstances,
such as the long delays before rewards. Long delays are inherent to long-running
processes, and not considered in AB testing solutions for Web applications, where
delays are measured in seconds or minutes. In contrast, the real-world data which
we use in the evaluation has one process instance with an overall duration of more
than 3 years.

This results in the following issue. Oftentimes overly long process completion
times correlate with problematic process instances, leading to negative rewards.
Thus, instances with short completion times can give a positive impression of
a process version early on. If the algorithm receives too many positive rewards
from one version during the early stages of the AB test, the algorithm is more
likely to see that version as preferable. Such an early determination can introduce
a bias in the evaluation. Thus, we need to ensure that the algorithm gets enough
samples from both versions.

We solve this issue by adopting the idea of a “warm-up” phase from Rein-
forcement Learning [21], during which we emphasize exploration over exploita-
tion. We sample the probability of exploration by using an exponential decay
function, acting as an injected perturbation that diminishes as the experiment
proceeds – the sample determines whether the algorithm follows LinUCB’s deci-
sion or picks a version at random. We consider the “warm-up” as the experi-
mentation phase: after all instances started during the experimentation phase
are completed, no more rewards are collected and the instance router stabilizes.

Finally, the original LinUCB algorithm makes its decision based on the sum-
mation of past rewards. We found out during the experiments that this can also
deceive the algorithm. Therefore, we have modified the LinUCB algorithm to
make its reward estimates on the basis of the average of past rewards rather
than their sum. We term our adapted instance routing algorithm Long-term
average router (LTAvgR).

3.4 AB-BPM Framework, Architecture, and Implementation

Figure 1 shows the architecture of our AB testing framework. We designed the
architecture such that the two versions of the process model are deployed side by

AB-BPM: Performance-Driven Instance Routing 119

side in the same execution engine. The instance router distributes the instance
creation requests as per its internal logic. An alternative design would be to run
two full copies of the entire application stack, one for each version, and using
the instance router to distribute the requests across the two stacks. However,
the multi-armed bandit algorithms can identify the superior version during the
experimentation and alter the allocation of requests to different versions. When
a version is clearly superior to the other, most of the requests are sent to the
superior version. In such scenarios, the application stack that hosts the inferior
version is underutilized. If we run both versions on the same stack, we can keep
utilization of the system high, no matter which version is superior.

Fig. 1. Application architecture

Given this design choice, the process definitions, implementation, PPI collec-
tion, and the shared process execution engine are wrapped by a web application.
Process execution data are stored in a shared database. Process instantiation,
metrics, and other operations are exposed using RESTful APIs. Upon receiv-
ing a request, the instance router instantiates a particular version and receives
an identifier. Identifiers of process instances for which rewards have not been
observed are stored in a queue. The instance router uses a polling mechanism in
parallel to retrieve PPI metrics from the server and update the rewards.

We implemented the architecture prototypically in Java and Python, in part
based on the Activiti BPMS. As outlined earlier, our framework is flexible in
the choice of the instance routing algorithm: we implemented and tested all
five variants discussed above, i.e., LTAvgR, LinUCB, Thompson-sampling with
and without linear rewards, and random uniform distribution. The experiments
reported in the following section are run with the presented implementation with
LTAvgR. We simulate the requests from users by replaying process logs.

4 Evaluation

In this section, we present the methodology and outcomes of our evaluation of
the proposed approach. We assess the AB-BPM framework and LTAvgR algo-
rithm first on synthetic data, where we have full control over the environment
and parameters. Then we test the approach on real-world data, taken from the
building permit process logs from five Dutch municipalities.

120 S. Satyal et al.

4.1 Evaluation on Synthetic Data

In this section, we demonstrate our approach using two example process versions
stemming from the domain of helicopter pilot licensing. Version A of the process
sequentially schedules the activities based on the cost of performing them. Based
on the result (pass/fail), the process either schedules the next activity or termi-
nates the process. In this version, we expect that successful candidates will pay
more because of multiple scheduling costs. In contrast, version B of the process
schedules all such activities at the beginning, thus reducing the scheduling costs.
The processes are illustrated in Fig. 2. These processes have as a result the final
status of the license: either approved or rejected.

Fig. 2. Process versions for the AB testing experiment

As PPI we simulate the user satisfaction, here calculated as a combination
of cost, completion time, and result of the process execution. Costs and process-
ing times of each task were derived from the Australian Civil Aviation Safety
Authority (CASA)1 and helicopter hiring rates from an Australian flight school.

Table 2. Cost model of the activities

Activity Cost Min. processing
time

Max. processing time

Schedule 25 1 day 1 day

Eligibility test 190 1 day 3 days

Medical exam 75 1 day 3 days

Theory test 455 2 weeks 5 weeks

Practical test 1145 1 week 2 weeks

License processing 0 if rejected,
100 if approved

Immediate Immediate

1 https://www.legislation.gov.au/Details/F2016C00882, Accessed: 03-01-2017.

https://www.legislation.gov.au/Details/F2016C00882

AB-BPM: Performance-Driven Instance Routing 121

Table 3. User satisfaction model

Outcome Cost Duration Satisfaction

Approved [0, 1990] ≤5 weeks 5

(1990,∞] ≤5 weeks 4

[0,∞) >5 weeks 3

Rejected [0, 1890] ≤5 weeks 3

[0, 1890] >5 weeks 2

(1890,∞] ≤5 weeks 2

(1890,∞) >5 weeks 1
Fig. 3. Requests routing in AB
tests

Table 2 shows the costs and processing times for both process versions. Table 3
shows how user satisfaction scores from 1 (lowest) to 5 (highest) are derived. The
basic rationale is, the shorter and cheaper, the better. The score ranges from 1
to 3 if the outcome is negative, and from 3 to 5 if the outcome is positive.

Experiment design. We have designed the AB testing experiments such that the
instance router receives requests with embedded contexts at the rate of 1 request
per second. For the execution, we scale each day to 1 s. In this experiment, we
introduce non-determinism in two ways: (i) adjusting success rates of an activity
based on contextual information, and (ii) sampling processing times for each
activity using a probability distribution function.

Results. Figure 3 shows the request distribution throughout the AB Tests. When
the experimentation or “warm-up” phase ends at approximately 1000 requests,
the router stops updating the reward estimates and chooses version B decisively.

A post-hoc analysis shows that the median user satisfaction was similar for
both versions. The distributions of user satisfaction scores differed significantly
(a Mann-Whitney test [18] resulted in U = 54072, p-value <10−6 two-tailed,
nA = 222, nB = 778). The median delay of the reward was 22.3 s. Table 4 shows
the differences between the two versions. Version B produces a better user sat-
isfaction in those cases where an application is approved. It is also faster in all
cases. However, the median cost of version A is lower than that of version B
when the applications are rejected.

We used an evaluation based on synthetic log data in order to investigate
the convergence behaviour of the implementation. We observe that our app-
roach leads to a rapid identification of the more rewarding process version,
which receives an increasing share of traffic. This observation is instrumental
with respect to the requirements R1–R3, which demand rapid validation, fair
comparison and rapid adjustment on the process level.

122 S. Satyal et al.

Table 4. Analysis of versions A and B by cases

Metric Outcome Version A Version B Overall

Samples (N) All 222 778 1000

Approved 72 275 347

Rejected 150 503 653

Median user satisfaction All 3 3 3

Approved 3 5 5

Rejected 3 3 3

Median cost All 795 1890 1890

Approved 2065 1990 1990

Rejected 795 1435 1435

Median duration All 28.6 s 17.4 s 19.6 s

Approved 35.5 s 21.8 s 22.4 s

Rejected 24.5 s 8.7 s 8.9 s

4.2 Evaluation on Real-World Data

To assess the applicability of our approach over real-world data, we have analysed
the data stemming from the five logs in the BPI Challenge 2015 2, herein identi-
fied as L1, . . . , L5. Those logs contain the execution data of the building permit
issuing processes in five Dutch municipalities. The processes behind each log
reportedly contain variations, which allow us to consider them as different ver-
sions of the same main process. In this experiment, we simulate the situation
where one version is in use, when a new version is suggested and AB-tested
in competition with the previous one. Better performance here is equated to
shorter time to complete a process instance. Subsequently, the version that won
the first round competes against the next version, and so on, until all versions
have competed.

Based on the insights from [22], we filtered the events to retain only those
activity instances that belong to a so-called “phase”, namely constituting the
core part of the process. Using the Inductive Miner, we discovered five process
models P 1, . . . , P 5 from L1, . . . , L5, respectively. We mimicked the execution
of the processes by replaying the logs on the process versions. The instance
router decided to which alternative version to route each request to create a new
instance. In the following, we describe how the execution times were derived,
define the reward function, clarify how the competition was organized, and finally
report on the achieved results.

Execution Time Simulation. For fairness, in this experiment we replay only
the logs that did not stem from the original processes. Say, we are AB-testing
2 BPI Challenge 2015, including logs, reports, and process models: https://www.win.

tue.nl/bpi/doku.php?id=2015:challenge, Accessed 20-03-2017.

https://www.win.tue.nl/bpi/doku.php?id=2015:challenge
https://www.win.tue.nl/bpi/doku.php?id=2015:challenge

AB-BPM: Performance-Driven Instance Routing 123

P i vs. P j ; then we use the logs from Ltest = {L1, . . . , L5} \ {Li, Lj} with
1 � i, j � 5. However, we want to test how the event traces from Ltest behave
on P i and P j in terms of timing. To this end, we assign an activity duration to
the execution of every replayed activity from the process version the activity was
routed to. Say this is P i, and the current activity is a; then, we randomly sample
a duration value from the durations of a among all the traces of Li sharing the
same execution history (prefix) as the replayed trace.

For instance, consider the execution of activity phase concept draft decision
ready for process P 1 after the sub-trace [phase application received, phase appli-
cation receptive, phase advice known]. This activity has been assigned with a
random sample among the registered execution times of phase concept draft deci-
sion ready-events following [phase application received, phase application recep-
tive,phase advice known] in the 593 traces of log L1 sharing that prefix.

To that extent, we have folded the traces of every log into a dedicated poly-
tree auxiliary data structure, collapsing the traces that share the same prefix on
common paths. Every node keeps the activity name and the list of registered
execution times of the related events. In addition, event transitions in the log
are stored in a table structure along with the list of transition times. When the
traces cannot be followed in the poly-tree structure, we perform a lookup on the
table structure and derive execution times. If the current transition has not been
observed in Li, we discard the trace as non-conforming and disregard it in the
reward calculation.

The events in the logs signal the completion of an activity, and bear eight
timestamp fields. However, most of those attributes were missing or unreliable.
Therefore, we followed the approach of [22], and used solely the completion
time:timestamp attribute for each event. We computed the duration of every
activity as the difference between the timestamp of its completion and the pre-
ceding completion timestamp. We thus included in the activities’ duration esti-
mation both the execution time and the waiting time before starting.

Fig. 4. Reward strategy

Reward Strategy. The filtered BPIC 2015
dataset contains numerous outliers: while the
median duration for processes are 39–46 days,
outliers can take up to 1158 days, i.e., 3
years and 63 days. To establish a reward
function that penalizes very long process
completion times, we adopted the following
strategy. Given the initial version P i of a
process, we collected all instance execution
times reported in its log Li and computed
K � 1 quantiles q1, . . . , qK . We used these quantiles to partition the space of
possible execution times into a set of K + 2 intervals I = {ι0, ι1, . . . , ιK , ιK+1}
where ι0 = [0, q0), ιK+1 = [qK ,+∞), and ιk = [qk−1, qk) for 1 � k � K. Those
intervals split the range of possible execution times for P j as follows: ι0 contains
the values below the minimum registered in Li, ιK+1 accounts for any duration

124 S. Satyal et al.

Algorithm 1. Strategy for the selection of the best performing version
among

{
P 1, P 2, P 3, P 4, P 5

}
.

1 Ptest ← {
P 1, P 2, P 3, P 4, P 5}

2 P i ← original process version from Ptest

3 Ptest ← Ptest \ {P i
}

4 repeat
5 P j ← alternative process version from Ptest

6 Ptest ← Ptest \ {P j
}

7 Ltest ← {L1, . . . , L5} \ {Li, Lj}
8 P i ← best version between P i and P j as per the AB test over Ltest

9 until Ptest �= ∅

10 return P i

beyond the maximum recorded in Li, and the K intervals in-between are meant
to classify the performance of P j with respect to their quantile as per Li. This
strategy is illustrated as a step chart in Fig. 4 – every step in the chart represents
a quantile.

The idea is to assign a reward of 1 when the duration P j achieves is lower
than any registered execution time of P i, and decrease it by a step of 2/K as
long as the measured performance falls into the following intervals. In order to
counterbalance the disruptive effect of outliers which take extremely long, we
established a penalty value ρ (with ρ = 4 in Fig. 4) and defined that the reward
linearly decreases from −1 to (−1 − ρ) along ιK . Finally, any execution time
beyond the last quantile is assigned a reward of (−1 − ρ).

Formally, let κI(t) : R+ → [0, . . . , K +1] be a mapping function associating a
process instance execution time t to the respective interval ιK ∈ I by the index k,
e.g. κI(t) = 3 if t is in the range of ι3. The reward function rI : R+ → [−1 −ρ, 1]
is defined over the set of intervals I as follows:

rI(t) =

⎧
⎪⎨

⎪⎩

1 − κI(t)
K · 2 if κI(t) < K

−1 − ρ · t−qK−1
qK−qK−1

if κI(t) = K

−1 − ρ if κI(t) > K

with κI(t) =
K+1∑

k=0

k · χιk(t)

where χιk is the characteristic function of interval ιk. The underlying idea was
to prefer the process demonstrating a shorter completion time to the slower ones
while accounting for the outliers. For our experiment, we set K = 20 and ρ = 4.

Competition: Selecting the Best Version. To simulate the situation where
an organization gradually designs new versions of a process model, we run a
competition between the five provided process models. This competition is con-
ducted as a set of pair-wise comparisons between versions, following the schema
outlined in Algorithm 1. The idea is to initially consider an original version of
the process, P i, and a new version, P j . To determine if P j achieves an actual
improvement over P i while limiting bias as discussed above, the execution of
the processes is simulated by replaying the traces in the logs from which P i and

AB-BPM: Performance-Driven Instance Routing 125

Table 5. Number of traces

Log Traces

L1 1199

L2 830

L3 1409

L4 1051

L5 1155

Table 6. Ratio of conforming traces

Version L1 L2 L3 L4 L5

P 1 1 0.928 0.949 0.974 0.928

P 2 0.913 1 0.928 0.982 0.938

P 3 0.901 0.812 1 0.975 0.886

P 4 0.873 0.731 0.913 1 0.829

P 5 0.897 0.929 0.944 0.979 1

Fig. 5. Request distribution over time

P j were not derived. For instance, P 1 and P 2 are evaluated on the basis of the
traces in L3, L4, and L5. If, at the end of a competition round, P j demonstrated
an improvement over P i, then P i is replaced with P j . Otherwise, P i is main-
tained. At that stage, another process version is compared to P i. The selection
procedure continues until all process versions have competed. We remark here
that the traces which could not be replayed on the process picked by the instance
router were discarded. The number of compliant traces still represents the vast
majority, because the ratio of conforming traces of all logs over models remained
around 0.9, and always above 0.7 as shown in Table 6. Also, the total number of
traces per log is shown in Table 5.

Analysis. Without loss of generality, we began the selection considering P 1

as the process currently running on the production system, and progressively
entering P 2, P 3, P 4, and P 5 into the competition as described above. We sped
up the execution time such that one day in the trace was equated to one second
in the experiments.

126 S. Satyal et al.

The sequence of tests was: (1) P 1 vs. P 2, P 2 wins. (2) P 2 vs. P 3, P 3 wins.
(3) P 3 vs. P 4, P 3 wins. (4) P 3 vs. P 5, P 3 wins. We can observe that P 3 was the
best-performing version. In all tests, the instance router chose the version with
lower mean and median execution time.

Figure 5 shows the request distribution throughout the pair-wise tests. The
experimentation phase ends roughly after 1000 requests in all cases. We can
observe that occasionally the instance router decided to pick another version
some time during the post-experimentation phase. In some cases, the decision
made during the post-experimentation phase contradicted the decision during
the experimentation phase. In these scenarios, the instance router was able to
make the better decision only after all the delayed rewards were received.

In Table 7, we show the request distribution during the experimentation
phase, and the performance metrics calculated using execution times of processes
instantiated during this phase. Considering the median and mean times in this
table confirms that the instance router using the LTAvgR algorithm made the
right decision in all cases.

Table 7. Pair-wise performance comparison of versions after the AB tests

Metric Round 1 Round 2 Round 3 Round 4

P 1 P 2 P 2 P 3 P 3 P 4 P 3 P 5

No. of requests 559 440 423 575 263 729 735 261

Median duration 33.8 29.8 28.8 27 21 21.85 22.9 27.9

Mean duration 55.3 52.1 51.8 35.8 29.3 49.9 36.6 38.3

Fig. 6. Estimated rewards during the
experiment P 1 vs. P 2

Fig. 7. PPI (duration) during the
warm-up phase, smoothed.

For an in-depth view of the reward estimates (the average reward observed
by LTAvgR) and execution times, we depict in Figs. 6 and 7 how their values
changed during the experiment P 1 vs. P 2. The effect that fast completion leads
to positive rewards is clearly visible in Fig. 6: shortly after the start of the exper-
iment, the reward estimates for both versions jump to more than 0.6. After some

AB-BPM: Performance-Driven Instance Routing 127

fluctuation, P 1 is preferred approximately from request 280 to request 811. This
is also visible in Fig. 5, where we can observe that the change in maximum of
the two reward estimates leads to change in the request distribution strategy.

Figure 7 shows the PPIs observed by the instance router in order. Better
PPIs, which lead to better rewards, are received early. However, worse PPIs
tend to accumulate near the end of the warm-up phase. At request 811, the two
estimated rewards are very close to each other – see Fig. 6. At this point, P 2

collects actual rewards from longer durations than P 1 – see Fig. 7. These longer
durations result in negative rewards, which cause the reward estimate of P 2 to
fall below that of P 1. This development leads to the change in the decision of
LTAvgR.

5 Discussion

The design of our routing algorithm, LTAvgR, was informed by practical observa-
tions of the limitations when applying existing algorithms in the process execu-
tion context. As we have demonstrated, our approach addresses the key require-
ments R1-R3. Our evaluation focused on the practical use of AB-BPM and
LTAvgR; theoretical analyses of the routing algorithm were out of the scope. The
in-depth analysis above showed how business-relevant PPI observations have a
direct influence on the routing decisions taken by LTAvgR.

We have used a multi-armed bandit algorithm with rewards derived from
a single PPI. In practice, however, multiple PPIs may need to be considered.
Furthermore, optimizing routing for one PPI can negatively affect other PPIs.
One key challenge in using multiple PPIs is that the reward delay for each PPI
can be different. Dealing with such scenarios may require improved collection
and reward update mechanisms, which we plan to explore in future work.

One limitation of our evaluation of AB-BPM so far is that they are based on
isolated environments with no real user interactions. Factors like effects from the
novelty of a process version were not considered. For example, in changing the
user interfaces and forms, we may observe that users behave differently when
exposed to a new version. As with the case study using real-world logs, we
expect to find some patterns unique to business processes when these factors are
accounted for. We believe that observations from real-world systems can guide
us towards designing a better instance routing algorithm, and identifying best
practices for performing AB tests on process versions.

6 Conclusion

Business process improvement ideas do not necessarily manifest in actual
improvements. In this paper we proposed the AB-BPM approach which can
rapidly validate process improvement efforts, ensure fair comparison, and make
process level adjustments in production environments. Our approach uses an

128 S. Satyal et al.

instance router that dynamically selects process versions based on their his-
torical performance in terms of the chosen PPI. To this end, we proposed the
LTAvgR algorithm that can cater for the specifics of business process execution.

We evaluated our approach through synthetic and real-world data. We chose
the most effective routing algorithm based on a set of experiments, and evalu-
ated business process versions with synthetic data. Further, we evaluated real-
world process versions by performing pair-wise AB tests on them. The evaluation
results showed that our instance router dynamically adjusted request distribu-
tion to favour the better performing version.

In future work, we aim to integrate our framework with approaches to bal-
ance multiple PPIs. In addition, we plan to consider user interaction, and run
industrial case studies where we apply our instance router to actual production
systems.

Acknowledgements. The work of Claudio Di Ciccio has received funding from the
EU H2020 programme under the MSCA-RISE agreement 645751 (RISE BPM).

References

1. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear
payoffs. In: International Conference on Machine Learning, ICML (2013)

2. Alter, S.: Work system theory: overview of core concepts, extensions, and challenges
for the future. J. Assoc. Inf. Syst. 14, 72 (2013)

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, New York (2015)

4. Burattin, A.: PLG2: multiperspective processes randomization and simulation for
online and offline settings. CoRR abs/1506.08415 (2015)

5. Burtini, G., Loeppky, J., Lawrence, R.: A survey of online experiment design with
the stochastic multi-armed bandit. CoRR abs/1510.00757 (2015)

6. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task
monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 31

7. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Neural
Information Processing Systems (NIPS) (2011)

8. Crook, T., Frasca, B., Kohavi, R., Longbotham, R.: Seven pitfalls to avoid when
running controlled experiments on the web. In: ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1105–1114 (2009)

9. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

10. Gregory, F.: Cause, effect, efficiency and soft systems models. J. Oper. Res. Soc.
44, 333–344 (1993)

11. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. HarperCollins, New York (1993)

12. Holland, C.W.: Breakthrough Business Results with MVT: A Fast, Cost-Free
“Secret Weapon” for Boosting Sales, Cutting Expenses, and Improving Any Busi-
ness Process. Wiley, Hoboken (2005)

http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-319-10172-9_31

AB-BPM: Performance-Driven Instance Routing 129

13. Jiang, W., Au, T., Tsui, K.L.: A statistical process control approach to business
activity monitoring. IIE Trans. 39(3), 235–249 (2007)

14. Kettinger, W.J., Teng, J.T.C., Guha, S.: Business process change: a study
of methodologies, techniques, and tools. MIS Q. 21(1), 55–98 (1997).
http://dblp.uni-trier.de/rec/bib/journals/misq/KettingerTG97

15. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-
ments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1),
140–181 (2009)

16. Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J.L.,
Melamed, T.: Online experimentation at Microsoft. In: Workshop on Data Mining
Case Studies (2009)

17. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: International Conference on World
Wide Web (2010)

18. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

19. Ōno, T.: Toyota Production System: Beyond Large-scale Production. Productivity
Press, Portland (1988)

20. Poelmans, S., Reijers, H.A., Recker, J.: Investigating the success of operational
business process management systems. Inf. Tech. Manage. 14(4), 295–314 (2013)

21. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

22. Teinemaa, I., Leontjeva, A., Masing, K.O.: BPIC 2015: diagnostics of building per-
mit application process in Dutch municipalities. BPI Challenge Report 72 (2015)

23. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

24. Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Optimizing event
pattern matching using business process models. IEEE Trans. Knowl. Data Eng.
26(11), 2759–2773 (2014)

25. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-
based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23059-2 16

http://dblp.uni-trier.de/rec/bib/journals/misq/KettingerTG97
http://dx.doi.org/10.1007/978-3-642-23059-2_16

Optimized Execution of Business Processes
on Blockchain

Luciano Garćıa-Bañuelos1(B), Alexander Ponomarev2, Marlon Dumas1,
and Ingo Weber2,3

1 University of Tartu, Tartu, Estonia
{luciano.garcia,marlon.dumas}@ut.ee

2 Data61, CSIRO, Sydney, Australia
{alex.ponomarev,ingo.weber}@data61.csiro.au

3 School of Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. Blockchain technology enables the execution of collaborative
business processes involving untrusted parties without requiring a cen-
tral authority. Specifically, a process model comprising tasks performed
by multiple parties can be coordinated via smart contracts operating
on the blockchain. The consensus mechanism governing the blockchain
thereby guarantees that the process model is followed by each party.
However, the cost required for blockchain use is highly dependent on the
volume of data recorded and the frequency of data updates by smart con-
tracts. This paper proposes an optimized method for executing business
processes on top of commodity blockchain technology. Our optimization
targets three areas specifically: initialization cost for process instances,
task execution cost by means of a space-optimized data structure, and
improved runtime components for maximized throughput. The method
is empirically compared to a previously proposed baseline by replaying
execution logs and measuring resource consumption and throughput.

1 Introduction

Blockchain technology enables an evolving set of parties to maintain a safe, per-
manent, and tamper-proof ledger of transactions without a central authority [1].
In this technology, transactions are not recorded centrally. Instead, each party
maintains a local copy of the ledger. The ledger is a linked list of blocks, each
comprising a set of transactions. Transactions are broadcasted and recorded by
each participant in the blockchain network. When a new block is proposed, the
participants in the network agree upon a single valid copy of this block according
to a consensus mechanism. Once a block is collectively accepted, it is practically
impossible to change it or remove it. Hence, a blockchain can be seen as a
replicated append-only transactional data store, which can replace a centralized
register of transactions maintained by a trusted authority. Blockchain platforms
such as Ethereum1 additionally offer the possibility of executing scripts on top
of a blockchain. These so-called smart contracts allow parties to encode business
rules on the blockchain in a way that inherits from its tamper-proofness.
1 https://www.ethereum.org/ – last accessed 4/3/2017.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 130–146, 2017.
DOI: 10.1007/978-3-319-65000-5 8

https://www.ethereum.org/

Optimized Execution of Business Processes on Blockchain 131

Blockchain technology opens manifold opportunities to redesign collaborative
business processes such as supply chain and logistics processes [2]. Traditionally,
such processes are executed by relying on trusted third-party providers such as
Electronic Data Interchange (EDI) hubs or escrows. This centralized architecture
creates entry barriers and hinders process innovation. Blockchain enables these
processes to be executed in a distributed manner without delegating trust to
central authorities nor requiring mutual trust between each pair of parties.

Previous work [3] demonstrated the feasibility of executing collaborative
processes on a blockchain platform by transforming a collaborative process model
into a smart contract serving as a template. From this template, instance-specific
smart contracts are spawned to monitor or execute each instance of the process.
The evaluation in [3] put into evidence the need to optimize resource usage. Indeed,
the cost of using a blockchain platform is highly sensitive to the volume of data
recorded and the frequency with which these data are updated by smart contracts.
Moreover, the deployment of instance-specific contracts entails a major cost. In
order to make blockchain technology a viable medium for executing collaborative
processes, we need to minimize the number of contract creations, the code size, the
data in the smart contracts, and the frequency of data writes.

This paper proposes an optimized method for executing business processes
defined in the standard Business Process Model and Notation (BPMN) on top of
commodity blockchain technology. Specifically, the paper presents a method for
compiling a BPMN process model into a smart contract defined in the Solidity
language – a language supported by Ethereum and other major blockchain plat-
forms. The first idea of the method is to translate the BPMN process model into
a minimized Petri net and to compile this Petri net into a Solidity smart contract
that encodes the “firing” function of the Petri net using a space-optimized data
structure. The second idea is to restrict the number of contract creations to the
minimum needed to retain isolation properties. Furthermore, we optimized the
runtime components to achieve high throughput rates. The scalability of this
method is evaluated and compared to the method proposed in [3] by replaying
artificial and real-life business process execution logs of varying sizes and mea-
suring the amount of paid resources (called “gas” in Ethereum) spent to deploy
and execute the smart contracts encoding the corresponding process models.

The next section introduces blockchain technology and prior work on
blockchain-based process execution. Section 3 presents the translation of BPMN
to Petri nets and to Solidity code. Section 4 discusses architectural and imple-
mentation optimizations. Section 5 presents the evaluation, and Sect. 6 draws
conclusions.

2 Background and Related Work

2.1 Blockchain Technology

The term blockchain refers both to a network and a data structure. As a data struc-
ture, a blockchain is a linked list of blocks, each containing a set of transactions.
Each block is cryptographically chained to the previous one by including its hash

132 L. Garćıa-Bañuelos et al.

value and a cryptographic signature, in such a way that it is impossible to alter
an earlier block without re-creating the entire chain since that block. The data
structure is replicated across a network of machines. Each machine holding the
entire replica is called a full node. In proof-of-work blockchains, such as Bitcoin and
Ethereum, some full nodes play the role of miners: they listen for announcements
of new transactions, broadcast them, and try to create new blocks that include pre-
viously announced transactions. Block creation requires solving a computationally
hard cryptographic puzzle.Miners race to find ablock that links to the previous one
and solves the puzzle. The winner is rewarded with an amount of new crypto-coins
and the transaction fees of all included transactions.

The first generation of blockchains were limited to the above functionality
with minor extensions. The second generation added the concept of smart con-
tracts: scripts that are executed whenever a certain type of transaction occurs
and which read and write from the blockchain. Smart contracts allow parties to
enforce that whenever a certain transaction takes place, other transactions also
take place. For example, a public registry for land titles can be implemented on
a blockchain that records who owns which property at present. By attaching a
smart contract to sales transactions, it is possible to enforce that when a sale
takes place, the corresponding funds are transferred, the tax is paid, and the
land title is transferred, all in a single action.

The Ethereum [4] blockchain treats smart contracts as first-class elements.
It supports a dedicated language for writing smart contracts, namely Solidity.
Solidity code is translated into bytecode to be executed on the so-called Ethereum
Virtual Machine (EVM). When a contract is deployed through a designated
transaction, the cost depends on the size of the deployed bytecode [5]. A Solidity
smart contract offers methods that can be called via transactions. In the above
example, the land title registry could offer a method to read current ownership of
a title, and another one for transferring a title. When submitting a transaction
that calls a smart contract method, the transaction has to be equipped with
crypto-coins in the currency Ether, in the form of gas. This is done by specifying
a gas limit (e.g. 2M gas) and gas price (e.g., 10−8 Ether/gas), and thus the
transaction may use up to gas limit × price (2M ×10−8 Ether = 0.02 Ether).
Ethereum’s cost model is based on fixed gas consumption per operation [5], e.g.,
reading a variable costs 50 gas, writing a variable 5–20 K gas, and a comparison
statement 3 gas. Data write operations are significantly more expensive than read
ones. Hence, when optimizing Solidity code towards cost, it is crucial to minimize
data write operations on variables stored on the blockchain. Meanwhile, the size
of the bytecode needs to be kept low to minimize deployment costs.

2.2 Related Work

In prior work [3], we proposed a method to translate a BPMN choreography
model into a Solidity smart contract, which serves as a factory to create chore-
ography instances. From this factory contract, instance contracts are created by
providing the participants’ public keys. In the above example, an instance could
be created to coordinate a property sale from a vendor to a buyer. Thereon, only

Optimized Execution of Business Processes on Blockchain 133

they are authorized to execute restricted methods in the instance contract. Upon
creation, the initial activity(ies) in the choreography is/are enabled. When an
authorized party calls the method corresponding to an enabled activity, the call-
ing transaction is verified. If successful, the method is executed and the instance
state is updated, i.e. the executed activity is disabled and subsequent ones are
enabled. The set of enabled activities is determined by analyzing the gateways
between the activity that has just been completed, and subsequent ones.

The state of the process is captured by a set of Boolean variables, specifically
one variable per task and one per incoming edge of each join gateway. In Solidity,
Boolean variables are stored as 8-bit unsigned integers, with 0 meaning false
and 255 meaning true.2 Solidity words are 256 bits long. The Solidity compiler
we use has an in-built optimization mechanism that concatenates up to 32 8-bit
variables into a 256-bit word, and handles redirection and offsets appropriately.
Nevertheless, at most 8 bits in the 256-bit word are actually required to store
the information – the remaining are wasted. This waste increases the cost of
deployment and write operations. In this paper, we seek to minimize the variables
required to capture the process state so as to reduce execution cost (gas).

In a vision paper [6], the authors argue that the data-aware business
process modeling paradigm is well suited to model business collaborations over
blockchains. The paper advocates the use of the Business Artifact paradigm [7]
as the basis for a domain-specific language for business collaborations over
blockchains. This vision however is not underpinned by an implementation
and does not consider optimization issues. Similarly [8] advocates the use of
blockchain to coordinate collaborative business processes based on choreography
models, but without considering optimization issues. Another related work [9]
proposes a mapping from a domain specific language for “institutions” to Solid-
ity. This work also remains on a high level, and does not indicate a working
implementation nor it discusses optimization issues. A Master’s thesis [10] pro-
poses to compile smart contracts from the functional programming language
Idris to EVM bytecode. According to the authors, the implementation has not
been optimized.

3 From Process Models to Smart Contracts

BPMN
process
model

Simplified
net with

data
conditions

Solidity
contract

code

Petri net

Data
conditions

Fig. 1. Chain of transformations

The first and central component of
the proposal is a method for trans-
forming a given BPMN process model
into a smart contract that can coor-
dinate the execution of one process
instance from start to end. Figure 1
shows the main steps of this method.

The method takes as input a BPMN process model. The model is first translated
into a Petri net. An analysis algorithm is applied to determine, where applicable,
the guards that constrain the execution of each task. Next, reduction rules are
2 https://github.com/ethereum/EIPs/issues/93 – last accessed 20/3/2017.

https://github.com/ethereum/EIPs/issues/93

134 L. Garćıa-Bañuelos et al.

applied to the Petri net to eliminate invisible transitions and spurious places.
The transitions in the reduced net are annotated with the guards gathered by
the previous analysis. Finally, the reduced net is compiled into Solidity. Below,
we discuss each step in turn.

3.1 From BPMN to Petri Nets

The proposed method takes as input a BPMN process model consisting of the
following types of nodes: tasks, plain and message events (including start and
end events), exclusive decision gateways (both event-based and data-based ones),
merge gateways (XOR-joins), parallel gateways (AND-splits), and synchroniza-
tion gateways (AND-joins). Figure 2 shows a running example of BPMN model.
Each node is annotated with a short label (e.g. A,B, g1 . . .) for ease of reference.

Fig. 2. Loan assessment process in BPMN notation

To simplify subsequent steps, we pre-process the BPMN model to materialize
every skip flow as a dummy “skip” task. A skip flow is a sequence flow from an
XOR-split to a XOR-join gateway such as the one between g3 and g4 in Fig. 2.
Moreover, if the BPMN model has multiple end events, we transform it into an
equivalent BPMN model with a single end event using the transformation defined
for this purpose in [11]. In the case of the model in Fig. 2, this transformation
adds an XOR-join at the end of the process that merges the incoming flows of
the two end events, and connects them to a single end event. Conversely, if the
process model has multiple start events, we merge them into a single one.

The pre-processed BPMN model is then translated into a Petri net using the
transformation defined in [12]. This transformation can turn any BPMN process
model (without OR-joins) into a Petri net.3 The transformation rules in [12]
corresponding to the subset of BPMN considered in this paper are presented
in Fig. 3. Figure 4 depicts the Petri net derived from the running example. The
tasks and events in the BPMN model are encoded as labeled transitions (A,
B, ...). Additional transitions without labels (herein called τ transitions) are
introduced by the transformation to encode gateways as per the rules in Fig. 3,
and to capture the dummy tasks introduced to materialize skip flows.
3 The transformation cannot handle escalation and signal events and non-interrupting

boundary events, but these constructs are beyond the scope of this paper.

Optimized Execution of Business Processes on Blockchain 135

Fig. 3. Mapping of BPMN elements into petri nets

Fig. 4. Petri net derived from the BPMN model in Fig. 2

The transformation in [12] produces so-called workflow nets. A workflow net
has one source place (start), one sink place (end), and every transition is on a
path from the start to the end. Two well-known behavioral correctness properties
of workflow nets are (i) Soundness: starting from the marking with one token in
the start place and no other token elsewhere (the initial marking), it is always
possible to reach the marking with one token in the end place and no other token
elsewhere; and (ii) Safeness: starting from the initial marking, it is not possible to
reach a marking where a place holds more than one token. These properties can
be checked using existing tools [12]. Herein we restrict ourselves to workflow nets
fulfilling these correctness properties. The latter property allows us to capture
the current marking of the net by associating a boolean to each place (is there a
token in this place or not?), thus enabling us to encode a marking as a bit array.

3.2 Petri Net Reduction

The Petri nets produced by the transformation in [12] contain many τ transi-
tions. If we consider each transition as an execution step (and thus a transaction
on the blockchain), the number of steps required to execute this Petri net is
unnecessarily high. It is well-known that Petri nets with τ transitions can be
reduced into smaller equivalent nets [13] under certain notions of equivalence.
Here, we use the reduction rules presented in Fig. 5. Rules (a), (b), and (e)–(h)

136 L. Garćıa-Bañuelos et al.

Fig. 5. Petri net reduction rules

are fusions of series of transitions, whereas rules (c) and (d) are fusions of series
of places. Rule(i) deals with τ transitions created by combinations of decision
gateways and AND-splits. It can be proved that each of these reduction rules
produces a Petri net that is weak trace equivalence to the original one, i.e. it
generates the same traces (modulo τ transitions) as the original one.

The red-dashed boxes in Fig. 4 show where the reduction rules can be applied.
After these reductions, we get the net shown in Fig. 6a. At this point, we can
still apply rule (i), which leads to the Petri net in Fig. 6b.

Fig. 6. Reduced Petri net corresponding to the BPMN model in Fig. 2

Optimized Execution of Business Processes on Blockchain 137

3.3 Data Conditions Collection

Some of the τ transitions generated by the BPMN-to-Petri net transformation
correspond to conditions attached to decision gateways in the BPMN model.
Since some of these τ transitions are removed by the reduction rules, we need
to collect them back from the original model and re-attach them to transitions
in the reduced net, so that they are later propagated to the generated code.

Algorithm 1 collects the conditions along every path between two consecutive
tasks in a BPMN model, and puts them together into a conjunction. Its output
is one conjunctive condition – herein called a guard – per task in the original
BPMN model. When given the start event as input, the algorithm applies a
classical recursive depth-first traversal. It uses two auxiliary functions: (i) suc-
cessorsOf, which returns the direct successors of a node; and (ii) cond, which
returns the condition attached to a flow. Without loss of generality, we assume
that every outgoing flow of a decision gateway is labeled with a condition (for a
default flow, the condition is the negation of the conjunction of conditions of its
sibling flows). We also assume that any other flow in the BPMN model is labeled
with condition true – these true labels can be inserted via pre-processing.

Algorithm 1. Algorithm for collection of data conditions
1: global guards: Map〈Node �→ Cond〉 = ∅, visited: Set〈Node〉 = ∅
2: procedure collectConditions(curr: Node, predicate: Cond)
3: guards[curr] ← predicate
4: visited ← visited ∪ { current }
5: for each succ ∈ successorsOf(curr) : succ
∈ visited do
6: if curr is a Gateway then
7: collectConditions(succ, predicate ∧ cond(curr, succ))
8: else
9: collectConditions(succ, true)

We illustrate the algorithm assuming it traverses the nodes in the model
of Fig. 2 in the following order: [A,B, g1, g2, g3, E, . . .]. First, procedure col-
lectConditions sets guards = {(A, true)} in line 3 and proceeds until it calls
itself recursively (line 9) with the only successor node of A, namely B. Note
that predicate is reset to true in this recursive call. Something similar happens
in the second step, where guard is updated to {(A, true), (B, true)}. Again, the
procedure is recursively called in line 9, now with node g1. This time guards is
updated to {(A, true), (B, true), (g1, true)} and since g1 is a gateway, the algo-
rithm reaches line 7. There, the procedure is recursively called with succ = g2 and
predicate = (true ∧ P), or simply P , where P represents the condition “Applica-
tion complete?”. Since the traversal follows the sequence [A,B, g1, g2, g3, E, . . .],
it will eventually reach node E. When that happens, guards will have the value
{(A, true), (B, true), (g1, true), (g2, P), (g3, P), (E,P ∧ Q)}, where Q represents
the condition “Pledged property?”. Intuitively, the algorithm propagates and
combines the conditions P and Q while traversing the path between nodes B

138 L. Garćıa-Bañuelos et al.

to E. When the algorithm traverses E, the recursive call is done in line 9, where
predicate is set to true, i.e. the predicate associated with E is not propagated
further.

The guards gathered by the algorithm are attached to the corresponding
transitions in the reduced net. In Fig. 6b the collected guards are shown as
labels above each transition. To avoid cluttering, true guards are not shown.
The τ transition in the net in Fig. 6b corresponds to the skip task that was
inserted in the BPMN model in Fig. 2, hence this τ transition has a guard.

For each transition in the reduced Petri net, we can now determine the con-
ditions that need to be evaluated after it fires. To do so, we first compute the
set of transitions that are reachable after traversing a single place from each
transition, and then analyze the guards associated to such transitions. In our
example, we can reach transitions {C,D,E, τ} by traversing one place starting
from transition B. Hence, conditions P and Q need to be evaluated after task B
is executed. This is represented by attaching a label eval(P,Q) to transition B.

3.4 From Reduced Petri Net to Solidity

In this step, we generate a Solidity smart contract that simulates the token game
of the Petri net. The smart contract uses two integer variables stored on the
blockchain: one to encode the current marking and the other to encode the value
of the predicates attached to transitions in the reduced net. Variable marking is a
bit array with one bit per place. This bit is set to zero when the place does not
have a token, or to one otherwise. To minimize space, the marking is encoded as
a 256-bits unsigned integer, which is the default word size in the EVM.

Consider the reduced Petri net in Fig. 5b. Let us use the order indicated by
the subscripts of the labels associated to the places of the net. The initial mark-
ing (i.e. the one with a token in p0) is encoded as integer 1 (i.e. 20). Hence, we
initialize variable marking with value 1 when an instance smart contract is cre-
ated. This marking enables transition A. The firing of A removes the token from
p0 and puts a token in p1. Token removal is implemented via bitwise operations:
marking = marking & uint(∼1);. Similarly, the addition of a token in p1 (i.e. 21

hence 2) is implemented via bitwise operations: marking = marking | 2;.
Variable predicates stores the current values of the conditions attached to the

Petri net transitions. This variable is also an unsigned integer representing a bit
array. As before, we first fix order the set of conditions in the process model,
and associate one bit in the array per condition. For safety, particularly in the
presence of looping behavior, the evaluation of predicates is reset before storing
the new value associated with the conditions that a given transition computes.
For instance, transition B first clears the bits associated with conditions P and
Q (i.e. 20 and 21, respectively), and then stores the new values accordingly.

When possible, an additional space optimization is achieved by merging vari-
ables marking and predicates into a single unsigned integer variable. The latter
is possible if the number of places plus the number of predicates is at most 256.
Note that this is not a restriction of our approach: If more space is needed to
represent a process model, multiple 256-bit variables can be used.

Optimized Execution of Business Processes on Blockchain 139

Algorithm 2 sketches the functions generated for each transition in the
reduced Petri net. Item 1 sketches the code for transitions associated to user
tasks, while Item 2 does so for transitions associated to script tasks and τ
transitions with predicates. For τ transitions without predicates, no function
is generated, as these transitions only relay tokens (and this is done by the step
function).

In summary, the code generated from the Petri net consists of a contract
with the two variables marking and predicates, the functions generated as per
Algorithm 2 and the step function. This smart contract offers one public function
per user task (i.e. per task that requires external activation). This function calls
the internal step function, which fires all enabled transitions until it gets to a
point where a new set of user tasks are enabled (or the instance has completed).

Algorithm 2. Sketch of code generated for each transition in the reduced net
1. For each transition associated to a user task, generate a public function with the following code:

– If task is enabled (i.e. check marking and predicates), then
(a) Execute the Solidity code associated with the task
(b) If applicable, compute all predicates associated with this task and store the results in

a local bit set, tmpPreds
(c) Call step function with new marking and tmpPreds, to execute all the internal functions

that could become enabled
(d) Return TRUE to indicate the successful execution of the task

– Return FALSE to indicate that the task is not enabled
2. For each transition associated with a script task or τ transition that updates predicates, generate

an internal function with the following code:
(a) Execute the Solidity code associated with the task
(b) If applicable, compute all predicates associated with this task and store the results in a

local bit set, tmpPreds
(c) Return the new marking and tmpPreds (back to the step function)

An excerpt of the smart contract generated for the running example is given
in Listing 1.1. The excerpt includes the code corresponding to transitions B, E
and the τ transition. Transition B corresponds to task CheckApplication. The
corresponding function is shown in lines 4–17 in Listing 1.1. Since this is a user
task, the function is called explicitly by an external actor, potentially with some
data being passed as input parameters of the call (see line 4). In line 5, the
function checks if the marking is such that p2 holds a token, i.e., if the current
call is valid in that it conforms to the current state of the process instance. If so,
the function executes the script task (line 6 is a placeholder for the script). Then
the function evaluates predicates P and Q (lines 8–9). Note that the function
does not immediately updates variable predicates but stores the result in a local
variable tmpPred, which we initialized in line 7. In this way, we defer updating
variable predicates as much as possible (cf. line 39) to save gas (predicates is a
contract variable stored in the blockchain and writing to it costs 5000 gas). For
the same reason, the new marking is computed in line 11 but the actual update
to the respective contract variable marking is deferred (cf. line 39).

140 L. Garćıa-Bañuelos et al.

Listing 1.1. Excerpt of Solidity contract

1 con t r a c t BPMNContract {
2 u i n t marking = 1 ;
3 u i n t p r e d i c a t e s = 0 ;
4 f u n c t i o n CheckApp l i c a t i on (– input params –) r e t u r n s (boo l) {
5 i f (mark ing & 2 == 2) { // is there a token in place p1?
6 // Task B’s script goes here, e.g. copy value of input params to contract variables
7 u i n t tmpPreds = 0 ;
8 i f (– eval P –) tmpPreds |= 1 ; // is loan application complete?
9 i f (– eval Q –) tmpPreds |= 2 ; // is the property pledged?

10 s t ep (
11 marking & u i n t (∼2) | 12 , // New marking
12 p r e d i c a t e s & u i n t (∼3) | tmpPreds // New evaluation for “predicates”
13) ;
14 r e t u rn t rue ;
15 }
16 r e t u rn f a l s e ;
17 }
18 f u n c t i o n App r a i s eP r op e r t y (u i n t tmpMarking) i n t e r n a l r e t u r n s (u i n t) {
19 // Task E’s script goes here
20 r e t u rn tmpMarking & u i n t (∼8) | 32 ;
21 }
22 f u n c t i o n s t ep (u i n t tmpMarking , u i n t tmpPred i ca t e s) i n t e r n a l {
23 i f (tmpMarking == 0) { marking = 0 ; r e t u rn ; } // Reached a process end event!
24 boo l done = f a l s e ;
25 wh i l e (! done) {
26 // does p3 have a token and does P ∧ Q hold?
27 i f (tmpMarking & 8 == 8 && tmpPred i ca t e s & 3 == 3) {
28 tmpMarking = App r a i s eP r op e r t y (tmpMarking) ;
29 cont inue ;
30 }
31 // does p3 have a token and does P ∧ ¬Q hold?
32 i f (tmpMarking & 8 == 8 && tmpPred i ca t e s & 3 == 2) {
33 tmpMarking = tmpMarking & u i n t (∼8) | 32 ;
34 cont inue ;
35 }
36 . . .
37 done = t rue ;
38 }
39 marking = tmpMarking ; p r e d i c a t e s = tmpPred i ca t e s ;
40 } . . . }

After executing B, if condition P holds the execution proceeds with the pos-
sibility of executing E or the τ transition. E is a script task and can be executed
immediately after B, if condition Q holds, without any further interaction with
external actors. For this reason, the Solidity function associated with task E is
declared as internal. In the Solidity contracts that we create, all internal func-
tions are tested for enablement, and if positive, executed. Specifically, the last
instructions in any public function of the smart contract call a generic step func-
tion (cf. lines 22–40 in Listing 1.1). This function iterates over the set of internal
functions, and executes the first activated one it finds, if any. For instance, after
executing B there are tokens in p2 and p3. If P ∧Q holds, then the step function
reaches line 28, where it calls function AppraiseProperty corresponding to transi-
tion E. This function executes the task’s script in line 19 and updates marking in
20. After this, the control returns to line 29 in the step function, which restarts
the while loop. Once all the enabled internal functions are executed, we exit the
while loop. In line 39, the step function finally updates the contract variables.

Optimized Execution of Business Processes on Blockchain 141

4 Architecture and Implementation Optimization

In this section, we describe the improvements we have made in terms of archi-
tecture and implementation, relative to our earlier work on this topic [3].

Architecture Optimization. As introduced in Sect. 2, in [3] we proposed an
architecture wherein a process model is mapped to a “factory” smart contract.
For each instantiation, this factory contract creates an “instance” smart contract
with the code necessary to coordinate the process instance. The instance contract
is bound to a set of participants, determined at instantiation time. While this
ensures isolation between different groups of participants, it is wasteful if the
same group of participants repeatedly executes instances of the same model. In
the latter case, the code encapsulating the coordination logic is redeployed for
each instance, and contract deployment is particularly expensive.

To avoid this cost, we give the option to combine the factory and instance
smart contracts into one, i.e., one smart contract that can handle running mul-
tiple instances in parallel. Instead of creating one bitvector per instance, we
maintain an extensible array of bitvectors, each encoding the state of a process
instance. On deployment, the array is empty. Creating a process instance assigns
an instance ID and creates a new bitvector, which is appended to the array. This
option is applicable when one group of actors repetitively executes instances of
the same process. In situations where the actors differ across process instances,
the option with separate factory and instance contracts should be used.

Implementation Optimization. During initial throughput experiments, we
discovered that our original trigger implementation was a bottleneck on through-
put. Our hypothesis was that we should be able to optimize the performance of
the trigger to the point where it is no longer a bottleneck, i.e., a single trigger can
handle at least as much throughput as the blockchain itself. To test this hypoth-
esis, we improved our trigger by: (1) switching to asynchronous, non-blocking
handling of concurrent requests, to achieve a high degree of parallelism in an
environment that lacks full multi-threading. (2) Using the inter-process com-
munications (IPC) channel to communicate with the blockchain software, geth,
which runs the full blockchain node for a given trigger. During a small experiment
we found that IPC can be 25× faster than the previously used HTTP connec-
tion. IPC requires the trigger and geth to run on the same machine, HTTP
allows more flexible deployment architectures – but the performance advantage
was too significant to ignore it during performance optimization. (3) Switching
to asynchronous interaction with geth, which is a prerequisite for using IPC. The
above changes required an almost complete rewrite of the code. The resulting
throughput performance results are presented in the next section.

5 Evaluation

The goal of the proposed method is to lower the cost, measured in gas, for
executing collaborative business processes when executed as smart contracts

142 L. Garćıa-Bañuelos et al.

on the Ethereum blockchain. Thus, we evaluate costs with our improvements
comparatively against the previous version. The second question we investigate is
that of throughput: is the approach sufficiently scalable to handle real workloads?

5.1 Datasets

We draw on four datasets (i.e., logs and process models) described in Table 1.
Three datasets are taken from our earlier work [3], the supply chain, incident
management, and insurance claim processes, for which we obtained process mod-
els from the literature and generated the set of conforming traces. Through
random manipulation, we generated sets of non-conforming traces from the con-
forming ones. The fourth dataset is stemming from a real-world invoicing process,
which we received in the form of an event log with 65,905 events. This log was
provided to us by the Minit process mining platform4. Given this log, we dis-
covered a business process model using the Structured BPMN Miner [14], which
showed a high level of conformance (> 99%). After filtering out non-conforming
traces, we ended up with dataset that contains 5,316 traces, out of which 49
traces are distinct. The traces are based on 21 distinct event types, including
one for instance creation, and have an average length of 11.6 events.

5.2 Methodology and Setup

Table 1. Datasets used in the evaluation.

Process Tasks Gateways Trace type Traces

Invoicing 40 18 Conforming 5, 316

Supply chain 10 2 Conforming 5

Not conforming 57

Incident mgmt. 9 6 Conforming 4

Not conforming 120

Insurance claim 13 8 Conforming 17

Not conforming 262

We translated the process mod-
els into Solidity code, using the
previous version of the trans-
lator from [3] – referred to as
default – and the newly imple-
mented translator proposed in
this paper – referred to as opti-
mized. For the optimized ver-
sion, we distinguish between
the two architectures, i.e., the
previous architecture that deploys a new contract for each instance, and the
architecture that runs all process instances in a single contract. We refer to these
options at Opt-CF (“CF” for control flow) and Opt-Full, respectively. Then we
compiled the Solidity code for these smart contracts into EVM bytecode and
deployed them on a private Ethereum blockchain.

To assess gas cost and correctness on conformance checking, we replayed the
log traces against all three versions of the contracts and recorded the results.
We hereby relied on the log replayer and trigger components from [3], with
the trigger improvements discussed in Sect. 4. The replayer iterates through the
traces in a log and sends the events, one by one, via a RESTful Web service call
to the trigger. The trigger accepts the service call, packages the content into a
blockchain transaction and submits it. Once it observes a block that includes the

4 http://www.minitlabs.com/ – last accessed 13/3/2017.

http://www.minitlabs.com/

Optimized Execution of Business Processes on Blockchain 143

transaction, it replies to the replayer with meta-data that includes block number,
consumed gas, transaction outcome (accepted or failed, i.e., non-conforming),
and whether the transaction completed this process instance successfully. The
replayer has been modified to cater for concurrent replay of thousands of traces.

Experiments were run using a desktop PC with an Intel i5-4570 quadcore
CPU without hyperthreading. Ethereum mining for our private blockchain was
set to use one core. The log replayer and the trigger ran on the same machine,
interacting via the network interface with one another. For comparability, we
used the same software versions as in the experiments reported in [3], and a
similar blockchain state as when they were run in February–March 2016. For
Ethereum mining we used the open-source software geth5, version v1.5.4-stable.

5.3 Gas Costs and Correctness of Conformance Checking

For each trace, we recorded the gas required for initialization of a new process
instance (deploying an instance contract or creating a new bitvector, depending
on the architecture), the sum of the gas required to perform all the required
contract function invocations, the number of rejected transactions due to non-
conformance and the successful completion of the process instance.

Table 2. Gas cost experiment results

Process Tested traces Variant Avg. Cost Savings (%)

Instant. Exec.

Invoicing 5316 Default 1,089,000 33,619 –

Opt-CF 807,123 26,093 –24.97

Opt-Full 54,639 26,904 –75.46

Supply

chain

62 Default 304,084 25,564 –

Opt-CF 298,564 24,744 –2.48

Opt-Full 54,248 25,409 –42.98

Incident

mgmt.

124 Default 365,207 26,961 –

Opt-CF 345,743 24,153 –7.04

Opt-Full 54,499 25,711 –57.96

Insurance

claim

279 Default 439,143 27,310 –

Opt-CF 391,510 25,453 –8.59

Opt-Full 54,395 26,169 –41.14

The results of this exp-
eriment are shown in Table 2.
The base requirement was
to maintain 100% confor-
mance checking correctness
with the new translator,
which we achieved. Our
hypothesis was that the
optimized translator leads
to strictly monotonic im-
provements in cost on the
process instance level. We
tested this hypothesis by
pairwise comparison of the
gas consumption per trace,
and confirmed it: all traces
for all models incurred less
cost in Opt-CF. In addition to these statistics, we report the absolute costs as
averages.

As can be seen from the table, the savings for Opt-CF over default are small
for the simple supply chain process with only two gateways – cf. Table 1 – whereas
they are considerably larger for the complex invoicing process with 18 gateways.
Considering the reduction rules we applied, this can be expected. The other

5 https://github.com/ethereum/go-ethereum/wiki/geth – last accessed 20/3/2017.

https://github.com/ethereum/go-ethereum/wiki/geth

144 L. Garćıa-Bañuelos et al.

major observation is that Opt-Full yields massive savings over Opt-CF. When
considering the absolute cost of deploying a contract vs. the average cost for
executing a single transaction and the resulting relative savings, it is clear that
the improved initialization is preferable whenever the respective architecture is
applicable. As discussed in Sect. 4, this cost reduction also results in a loss of
flexibility, and thus the choice requires a careful, case-specific tradeoff.

5.4 Throughput Experiment

To comparatively test scalability of the approach, we analyze the throughput
using the three variants of contracts, default, Opt-CF, and Opt-Full. To this
end, we used the largest of the four datasets, invoicing, where we ordered all the
events in this log chronologically and replayed all 5,316 traces at a high frequency.
The three variants were tested in separate campaigns. To ensure conformance,
the events within a single trace were replayed sequentially. Ethereum’s miners
keeps a transaction pool, where pending transactions wait to be processed.

One major limiting factor for throughput is the gas limit per block: the sum
of consumed gas by all transactions in a block cannot exceed this limit, which is
set through a voting mechanism by the miners in the network. To be consistent
with the rest of the experimental setup, we used the block gas limit from March
2016 at approx. 4.7M gas, although the miner in its default setting has the
option to increase that limit slowly by small increments. Given the absolute gas
cost in Table 2, it becomes clear that this is fairly limiting: for Opt-CF, instance
contract creation for the invoicing dataset costs approx. 807K gas, and thus no
more than 5 instances can be created within a single block; for default, this
number drops to 4. Regular message calls cost on average 26.1 K/33.6 K gas,
respectively for optimized/default, and thus a single block can contain around
180/140 such transactions at most. These numbers would decrease further when
using a public blockchain where we are not the only user of the network.

Block limit is a major consideration. However, block frequency can vary: on
the public Ethereum blockchain, mining difficulty is controlled by a formula that
aims at a median inter-block time of 13–14 s. As we have demonstrated in [3],
for a private blockchain we can increase block frequency to as little as a second.
Therefore, when reporting results below we use blocks as a unit of relative time.

Figure 7 shows the process instance backlog and transactions per block. Note
that each datapoint in the right figure is averaged over 20 blocks for smoothing.
The main observation is that Opt-Full completed all 5,316 instances after 403
blocks, Opt-CF needed 1,053 blocks, and for default it took 1,362 blocks. This
underlines the cost results above: due to the network-controlled gas limit per
block, the reduced cost results in significant increases in throughput.

Optimized Execution of Business Processes on Blockchain 145

0

200

400

600

800

1000

1200secnatsni evitca fo reb
mu

N

Blocks since start of experiment

Default

Opt-CF

Opt-Full

0

50

100

150

200

250

snoitcasnart fo reb
mu

N

Blocks since start of experiment
Smooth 20 (avg over 20 blocks)

Default

Opt-CF

Opt-Full

Fig. 7. Throughput results. Left: # of active instances. Right: # of transactions per
block, smoothed over a 20-block time window.

6 Conclusion

This paper presented a method to compile a BPMN process model into a Solidity
smart contract, which can be deployed on the Ethereum platform and used to
enforce the correct execution of process instances. The method minimizes gas
consumption by encoding the current state of the process model as a space-
optimized data structure (i.e. a bit array with a minimized number of bits),
reducing the number of operations required to execute a process step, and reduc-
ing initialization cost where possible. The experimental evaluation showed that
the method significantly reduces gas consumption and achieves considerably
higher throughput relative to a previous baseline.

The presented method is a building block towards a blockchain-based collab-
orative business process execution engine. However, it has several limitations,
including: (i) it focuses on encoding control-flow relations and data condition
evaluation, leaving aside issues such as how parties in a collaboration are bound
to a process instance and access control issues; (ii) it focuses on a “core sub-
set” of the BPMN notation, excluding timer events, subprocesses and boundary
events for example. Addressing these limitations is a direction for future work.

Acknowledgements. This research was started at the Dagstuhl seminar #16191 –
Fresh Approaches to Business Process Modeling. The research is partly supported by
the Estonian Research Council (grant IUT20-55).

References

1. UK Government Chief Scientific Adviser: Distributed ledger technology: Beyond
block chain. Technical report, UK Government Office of Science (2016)

2. Milani, F., Garćıa-Bañuelos, L., Dumas, M.: Blockchain and business process
improvement. BPTrends newsletter, October 2016

3. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). doi:10.1007/978-3-319-45348-4 19

http://dx.doi.org/10.1007/978-3-319-45348-4_19

146 L. Garćıa-Bañuelos et al.

4. Buterin, V.: Ethereum white paper: A next-generation smart contract and decen-
tralized application platform. First version (2014). https://github.com/ethereum/
wiki/wiki/White-Paper. Latest version: last accessed 29 Nov 2016

5. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Home-
stead revision, 23 June 2016. https://github.com/ethereum/yellowpaper

6. Hull, R., Batra, V.S., Chen, Y.-M., Deutsch, A., Heath III, F.F.T., Vianu,
V.: Towards a shared ledger business collaboration language based on data-
aware processes. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 18–36. Springer, Cham (2016). doi:10.1007/
978-3-319-46295-0 2

7. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Syst. J. 42(3), 428–445 (2003)

8. Norta, A.: Creation of smart-contracting collaborations for decentralized
autonomous organizations. In: Matulevičius, R., Dumas, M. (eds.) BIR
2015. LNBIP, vol. 229, pp. 3–17. Springer, Cham (2015). doi:10.1007/
978-3-319-21915-8 1

9. Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated
generation of smart contracts. In: Workshop on Engineering Collective Adaptive
Systems (eCAS), co-located with SASO, Augsburg (2016)

10. Pettersson, J., Edström, R.: Safer smart contracts through type-driven develop-
ment. Master’s thesis, Department of CS&E, Chalmers University of Technology
& University of Gothenburg, Sweden (2015)

11. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
control flow in workflows. Acta Inf. 39(3), 143–209 (2003)

12. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

13. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

14. Augusto, A., Conforti, R., Dumas, M., Rosa, M., Bruno, G.: Automated discov-
ery of structured process models: discover structured vs. discover and structure.
In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.)
ER 2016. LNCS, vol. 9974, pp. 313–329. Springer, Cham (2016). doi:10.1007/
978-3-319-46397-1 25

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/yellowpaper
http://dx.doi.org/10.1007/978-3-319-46295-0_2
http://dx.doi.org/10.1007/978-3-319-46295-0_2
http://dx.doi.org/10.1007/978-3-319-21915-8_1
http://dx.doi.org/10.1007/978-3-319-21915-8_1
http://dx.doi.org/10.1007/978-3-319-46397-1_25
http://dx.doi.org/10.1007/978-3-319-46397-1_25

Efficient Migration-Aware Algorithms
for Elastic BPMaaS

Guillaume Rosinosky1,2(B), Samir Youcef2, and François Charoy2

1 Bonitasoft, Grenoble, France
guillaume.rosinosky@bonitasoft.com

2 Inria Nancy Grand Est - Université de Lorraine - CNRS, Nancy, France

http://www.bonitasoft.com

Abstract. As for all kind of software, customers expect to find business
process execution provided as a service (BPMaaS). They expect it to
be provided at the best cost with guaranteed SLA. From the BPMaaS
provider point of view it can be done thanks to the provision of an elastic
cloud infrastructure. Providers still have to provide the service at the
lowest possible cost while meeting customers expectation. We propose a
customer-centric service model that link the BP execution requirement
to cloud resources, and that optimize the deployment of customer’s (or
tenants) processes in the cloud to adjust constantly the provision to the
needs. However, migrations between cloud configurations can be costly
in terms of quality of service and a provider should reduce the number
of migrations. We propose a model for BPMaaS cost optimization that
take into account a maximum number of migrations for each tenants. We
designed a heuristic algorithm and experimented using various customer
load configurations based on customer data, and on an actual estimation
of the capacity of cloud resources.

Keywords: BPM · Cloud · Elasticity · BPM as a service

1 Introduction

During the last decade, we witnessed a major change in the way companies are
delivering software. It is more often distributed as a service, operated by soft-
ware producers, hosted in public clouds instead of as a package and installed on
premises. BPM systems (BPMS) vendors and operators start to propose this kind
of distribution. It removes the burden for customers to operate the BPMS and
the corresponding infrastructure. They pay for process instances they execute or
on a fixed monthly rate per user [1]. The service provider aims at ensuring the
required service quality at the lowest possible cost. Thanks to the public cloud
and the elasticity it supports, providers can deliver that quality while minimiz-
ing resource consumption, and thus the operational cost. Public cloud providers
allow to add and remove dynamically computing resources. However, it does not
fit well with the deployment stack of a BPMS that include web servers and data-
bases systems to store the process execution data because of its transactional
nature that is costly to scale up horizontally.
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 147–163, 2017.
DOI: 10.1007/978-3-319-65000-5 9

148 G. Rosinosky et al.

We propose a method that allows to distribute process execution on a set
of cloud computing resources, and to adjust the resources based on the load
that the customers require. We call a customer a tenant, and we ensure that
all the processes of a tenant are executed on a BPMS installation. We consider
that a service provider will host hundreds of small to medium size tenants. We
consider that resources are paid by discrete time units. We assume that we know
for each tenant what will be its maximal resource consumption per time unit.
More precisely, we want to take into account the knowledge we can get from the
business dimension, i.e. the number of process task execution per hour. In our
previous work [2], we proposed to optimize resource consumption from a time
slot to the next.

In this paper, we extend the method to optimize resource consumption on an
given number of time slots. We also limit tenant migrations from an installation
to another to avoid unwanted service disruption. Migrations generally become
necessary when the resources on which a tenant is deployed are not sufficient
to support its required load for the coming period of time. For each duration,
based on the knowledge of the resource consumption profile that we can get
from all the tenants, we compute a deployment plan that minimize resource
consumption while maintaining the number of migrations for each tenant at an
acceptable level. This is the contribution of this paper. We propose a linear
optimization model and then a heuristic in two parts. First, we compute the
appropriate migration times for each tenant using a time series segmentation
method. Then we show how this method can be coupled to a restricted version
of the time slot heuristic and provide substantial gain compared to naive ones.
We validate it with an experimentation using realistic values regarding the size
of customers and the size and price of cloud resources.

In the next section, we present the state of art regarding BPM elasticity in
cloud computing. In Sect. 3, we describe the model that we want to optimize. In
the following Sect. 4, we explain the condition of the experimentation. Then in
Sect. 5, we describe and discuss our results. In the last section, we conclude and
present possible extensions to this work.

2 Elasticity in BPM

A lot of work has been done to manage BPM elasticity in the cloud. Schulte
et al. [3] made a review on the current status on BPM elasticity, and on the
different important criteria. We focus here on the scheduling and resource allo-
cation parts (challenges 1 and 2), with an emphasis on the multi-tenancy, and
taking into account data transfer and BPM task throughput as a KPI. Usual
autoscaling approaches such as Amazon Auto Scaling Group are not usable in
our case, as we do not consider clustered BPMS installations.

Hoenisch et al. [4] proposes an interesting approach: the Service Instance
Placement Problem, a cost optimization model concerning the assignment of
process instances to VM, scheduling of service invocations, and the provisioning
of VM. The authors consider the underlying structure of the BPM processes

Efficient Migration-Aware Algorithms for Elastic BPMaaS 149

and propose to optimize the cost while taking into account penalties for violated
deadlines. However, they consider only the BPM engine’s CPU and RAM capac-
ity in their model - and not the database tier- and do not consider multi-tenancy
or migrations. Other previous attempts have the same drawbacks such as [5,6].
Rekik et al. [7] developed a very interesting resource allocation and scheduling
linear model for business process deployment in cloud federations based on con-
figurable business processes. It considers CPU, memory, bandwidth, price, secu-
rity and availability for the cloud resources and corresponding needed capacity
for the BPM activities, but without regarding the database tier, multi-tenancy,
multiple time slots, or migrations.

Hachicha et al. [8] addresses multi-tenant BPMaaS with the concept of config-
urable resource assignment operator. It consists of an enrichment of the process
with meta information on the required resources for the tasks execution. How-
ever, it needs to add informations in the BPM schema, thus requiring to alter
BPM engine and the processes of the customers and do not propose a resource
allocation and scheduling method. Sellami et al. [9] propose a multi tenant app-
roach based on customizable thresholds, however, it does not take into account
migration cost or the database tier.

Our work is an evolution of our previous paper [2] where we proposed an
bi-objective optimization model for cost and migrations quantity for all tenants
scrambled from a time slot to the next, and a corresponding efficient heuristic.
Simply repeating this heuristic on multiple time slots may induce the migration
of the same tenants, thus generating interruption of service. We propose here to
harness the problem of optimization on multiple consecutive time slots, with a
limitation on the number of migrations for each tenant.

3 The BPM Execution Model

In this section we introduce the model for the BPMS execution we want to opti-
mize. Our model relies on a few assumptions regarding the BPM system. First,
it must be multi-tenant, i.e. several customers (or tenants) can share the same
BPMS installation. Thus we can collate several tenants on the same deployment
when their load is small. Second, it is possible to migrate a tenant from one instal-
lation to another with minimal disruption. The main issue here is the migration
of the process execution data from a database to another [10,11]. Another point
is the duration of VM allocation, who can take several minutes: during this time
the BPMS cannot be available. We also only consider that IaaS providers bill the
computing resources per studied time slot (for instance per hour). Main public
cloud providers like AWS, and IBM Bluemix, follow this pattern per hour, while
Google Compute Engine or Azure propose also a per minute billing.

The operation of a BPMS requires a complex software stack. It combines
a BPM engine, load balancers and relational databases to manage process and
business data. They are often deployed on distinct hardware instances or virtual
machines from the BPM engine, mostly for performance reasons. We call “cloud
configuration” the set of resources (e.g. two VM for the engine and for the DBMS)

150 G. Rosinosky et al.

that we use to execute process instances for a group of tenants. Last, we assume
that we know the usage requirement for each tenant time slot by time slot in
term of the completed BPM task maximum throughput per second for a period
of time. This metric is related to process execution. It has the advantage of being
representative of the system usage of both the database tier and the application
server tier. We will also calibrate different cloud configuration in term of BPM
task throughput.

We aim at minimizing the cloud resource cost while ensuring that the
throughput for each tenant is at the required level. Migrations count for each ten-
ant should not exceed a fixed number in order to avoid disruptions. We propose
here a linear model where we wish to optimize the cost of placement.

Let the following variables:

– T , the set of cloud configuration types, with t its cardinality.
– I, the set of tenants with n its cardinality
– J , is T × I the set of all possible cloud configurations associated with each

tenant, its cardinality is m = t × n
– Cj , and Wj , respectively the cost and the capacity for the configuration j,

with j in J
– K defines all the time slots, from 0 to D, where D + 1 is the number of time

slots.
– wi(k), the required capacity for the tenant i during time slot k
– xj

i(k), the assignment of tenant i to configuration instance j during time
slot k

– yj(k), the activation of configuration j during time slot k
– M is the defined maximum number of migrations for each tenant

min
j∈J∑

j

k∈K∑

k

Cjyj(k) (1)

We have the following constraints:

∀i ∈ I,∀k ∈ K
j∈J∑

j

xj
i(k) = 1 (2)

∀j ∈ J ,∀k ∈ K
i∈I∑

i

wi(k)xj
i(k) ≤ Wjyj(k) (3)

∀i ∈ I
j∈J∑

j

k∈K\{D}∑

k

xj
i(k)xj

i(k + 1) ≥ |K| − M (4)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, xi
j(k) ∈ {0, 1}, yj(k) ∈ {0, 1} (5)

Equation 1 is our optimization objective. We want to minimize the total cost
of cloud configurations for all the time slots (a day for instance). The constraint

Efficient Migration-Aware Algorithms for Elastic BPMaaS 151

described in Eq. 2 means that, for each time slot, each tenant must be located on
one and only cloud configuration. The constraint described in Eq. 3 means that,
for each time slot, the sum of required throughput of the tenants co-located on
a cloud resource do not exceed the capacity of this resource.

The constraint described in Eq. 4 means that we want to limit the number
of migrations per tenant to M . If xj

i(k) and xj
i(k + 1) are both equal to 1

for the resource j and the tenant i on two consecutive time slots k and k + 1,
their product will be equal to 1, the tenant did not migrate. In the other cases,
the product will be equal to 0. They occur when tenant i migrated from or to
another resource from time slot k to time slot k + 1 or when tenant i remained
on a different resource on both time slots. We sum these products resource per
resource, on each time slot pair for each tenant. We obtain the number of time
slot where a tenant remained on the same configuration. The difference between
the total number of time slots and this number is the number of migration.
Limiting the number of migrations is then straightforward.

Since we have multiplication between two variables, we obtain a quadratic
optimization problem. As it can become is very slow to compute, we lin-
earized the Eq. 4, following the usual method. The result for this linearization is
described in Eq. 6:

∀i ∈ I
j∈J∑

j

k∈K\{D}∑

k

wj(k + 1) ≥ |K| − M

∀i ∈ I
j∈J∑

j

k∈K\{D}∑

k

xj
i(k) + xj

i(k + 1) − 2wj(k + 1) ≤ 1

∀i ∈ I
j∈J∑

j

k∈K\{D}∑

k

wj(k + 1) ≤ xj
i(k)

∀i ∈ I
j∈J∑

j

k∈K\{D}∑

k

wj(k + 1) ≤ xj
i(k + 1)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, wi
j(k) ∈ {0, 1}

(6)

Even with the linearization, the resolution of this problem can be very time
consuming. The number of variables will be of tn(D + 1) + tn2(D + 1), and the
number of constraints will be of tn(D+1)+tn2(D+1)+4n. For 7 cloud resource
types (t), 100 tenants (n), and 24 time slots (D+1), it makes 1696800 variables,
and 1697200 constraints. It is not reasonable to try to compute the optimal
solution when the number of tenants grows, as we will see in the experiment
part. In the next section, we propose a heuristic that provide solutions to the
problem with reasonable computation time even with large number of tenants.

152 G. Rosinosky et al.

4 Heuristic Optimization Proposition

4.1 Iterative Time Slot Algorithm

This algorithm is based on our previous time slot heuristic [2]. Its principle is to
consider that, regarding an initial distribution, we search the best distribution
for the next time slot, knowing that the required capacity of each tenant can
change. With the time slot algorithm, we search for a Pareto front of the lowest
global number of migrations and resources cost. As the number of migrations is
discrete and limited by the number of tenants, we can compute the lowest cost
for each number. First, we look at overloading and overloaded tenants as shown
in Fig. 1.

Fig. 1. Example of distribution of tenants on cloud resources at T and T+1 (Color
figure online)

It depicts the distribution of tenants on different cloud configurations. The ini-
tial state is at time T . At time T + 1, the requirement for each tenant changes.
Some of them have to migrate (orange and red). The heuristic principle is, that
for each possible number of migrations we consider the combination of resources
containing the corresponding number of tenants, added to the number of tenants
that we must migrate. As we consider the total quantity of tenants, there are sev-
eral possibilities for each number of migrations. This is a classic subset sum prob-
lem, who addresses the following problem: finding a subset of integers in a set who
sums to a given integer other. In our case, the subsets are quantity of tenants for
each resource, and the sum the number of considered migrations. For instance, in
Fig. 1, in order to compute the results for 5 migrations, we could move the tenants
t8, t6, and remove the combinations of resources with 3 remaining tenants (R1 or
R2 and R3). Once we have selected the tenants, we first repack the possible ten-
ants in existing resources, and then use a Variable Cost and Size Bin Packing [12]
algorithm for the remaining ones. The last step consists in trying to replace the
resources with tenants we moved with cheaper resources.

Efficient Migration-Aware Algorithms for Elastic BPMaaS 153

This approach provides good results time slot by time slot but we may have
to move some tenant at each time slot, disrupting their service. Thus we must
adapt it to limit the number of migrations per tenant described by constraint 4
per time window. In the next section we propose an adaptation of this algorithm
to enforce this new constraint.

4.2 A Migration Aware Optimization Strategy

For this new strategy, we add a list of tenants allowed to migrate as an additional
parameter to the previous method. If, for a time slot, we allow to migrate every
tenant but T5 and T2 because they have reached their maximum number of
migration (M), the new time slot algorithm must ignore them and maintain
them on their resources. We cannot delete resources with tenants.

Let a migration strategy the set of hi(k) with 0 ≤ k ≤ D − 1 where each
tenant i is allowed to be migrated. hi(k) is equal to 0 if the tenant is not allowed
to move between time slot k and k+1, and equal to 1, if it is allowed. The Eq. 7
describe the maximum number of migrations.

∀i ∈ I
k∈K\{D}∑

k

hi(k) = M (7)

We want to find the best values for each hi(k) respecting the maximum
number of migrations to obtain the best cost.

Once we have determined the different migrations time slots, we choose the
required capacity level. As our algorithm does not consider multiple time slots
simultaneously, we assign a fixed capacity for each tenant for each period where
it does not migrate. We call Pi(m) the capacity during the period between migra-
tions m1 and m2. In order to avoid overloads, we consider the maximum capacity
required for the corresponding time slots, as in Eq. 8. An example of a maximum
load strategy is presented in Fig. 2. These capacities are used instead of the initial
capacities of the tenants in the time slot algorithm.

∀i ∈ I,∀m1 ≤ k < m2, Pi(m2) = max
m1≤k<m2

(wi(k)) (8)

As testing every migration strategy requires too much time, we need an
efficient way to evaluate which one we should use. It must give better results
than a naive approach, and respect the constraint on the number of migrations
for each tenant.

4.3 Time Series Segmentation

We propose a method to identify good migrations strategies. We consider first
that the variations in load will produce the need for migrations. If for instance
a tenant needs a throughput of 10 tasks per seconds between 12pm and 6am,
and then a throughput of 50 tasks per second between 6am and 12am, the best

154 G. Rosinosky et al.

Fig. 2. Migration strategy of 6 tenants on 24 h

time to migrate is at 6am. Our approach here is, for k migrations, to find a way
to fragment the load time series in k + 1 consecutive fragments, in a way where
they have the minimum load. Time series segmentation techniques address this
kind of problems.

As Lovric [13] explains, we can see time series segmentation as a processing
step and core task for variety of data mining tasks, as a trend analysis tech-
nique, as a discretization problem in function of dimensionality reduction, etc.
The latter point interests us as we want to find a way to discretize the load time
series, with discrete periods of remaining tenants, separated by migrations. The
main common algorithms based on Piecewise Linear Representation are origi-
nally reported by Keogh et al. [14]: top-down, bottom-up and sliding window.
As our approach is offline (we know the future load), we focus only top-down
and bottom-up.

The principle is to iteratively separate (top-down) or merge (bottom-up)
consecutive sets of observations in the time series, so they keep a minimal error
related to real observations. As it can be seen in [13,14], the main version of
the algorithm segments the time series using Piecewise Linear Approximation
(PLA), fitting each segment with an affine function found by linear regression
of the values for each segment. This approach is interesting for our needs, but
we can test others. Indeed, as we explained earlier, we want to segment the time
series considering the maximum load instead of the mean of segment (we consider
for each segment its maximum load as described in Eq. 8). As we will see in the
experiment section, we also tested a mean constant piecewise approximation,
that consider a fixed mean for the segmentation.

Once we obtain the segments, we compute the corresponding migration strat-
egy. We initialize the matrix to zero, except for the time slots where there is a
change of segments, that we initialize to one. We then use this migration strategy
with the restricted iterative time slot algorithm as we can see in the next part.

Efficient Migration-Aware Algorithms for Elastic BPMaaS 155

4.4 The Optimization Algorithm

Here is a synthesis of our time slot algorithm:

– First, compute the desired migration strategy using a time series segmentation
algorithm.

– Second, initialize the initial time slot (zero) with the initial distribution.
– Then, for each time slot from k = 1 to k = D:

• Launch a time slot algorithm, using the distribution of the previous time
slot. Only the tenants able to move in the migration strategy for this time
slot migrate. Thus we ensure constraint 4 of the model.

• Keep the less expensive distribution with the least number of migrations.
This is the distribution we choose for the current time slot.

This algorithm provides a solution that enforces the constraints. In the next
section we describe our experimentation that shows how it provides better results
than a naive solution and with a reasonable computation time even for a hundred
of tenants.

5 Experimentation

To test our solution we made a few assumptions and relied as much as possible
on datasets that gives us realistic foundations for the resolution of the model.
As we can see in the model part, we needed to have a good estimation of the
customer loads, time slot by time slot on one side, and of the price and capability
in BPM task throughput per time slot of a cloud configuration on the other side.
We have then compared several segmentation methods on the same datasets of
customer loads and cloud configurations to find the best ones. In the next part
we describe the datasets.

5.1 Datasets

In order to get meaningful cost and task throughput for our cloud configurations,
we have used the data obtained in our test framework experimentation [15].
In this paper, we have set up an experiment on AWS with a BPMN process
composed of 20 consecutive automated tasks launching a Fibonacci script. We
launched tests on several storage-oriented (r3 family) instance types for the data-
base, and CPU-oriented (c4 family) instance types for the application server.
We used the BPM system BonitaBPM 7.3.21 in its Open Source version. We
compared the resulting BPM task throughput with the price of each cloud con-
figuration. Results are described in Table 1. It provides the number of tasks per
second for one $ for each configuration type. Note that the higher end resources
have better absolute performance but the throughput per $ is lower. This is not
in favor of vertical scalability.

1 http://www.bonitasoft.com/.

http://www.bonitasoft.com/

156 G. Rosinosky et al.

Table 1. Price, mean BPM task throughput, and mean BPM task throughput by
dollar for the given cloud configuration.

DB inst. type AS inst. type Price Task TP Task TP per $

db.m3.medium m3.medium 0.177 16.400 92.656

db.m3.medium c4.large 0.223 23.157 103.845

db.r3.large c4.large 0.399 55.164 138.255

db.r3.large c4.xlarge 0.518 58.067 112.100

db.r3.xlarge c4.large 0.674 65.113 96.607

db.r3.large c4.2xlarge 0.757 61.474 81.208

db.r3.xlarge c4.xlarge 0.793 83.236 104.963

db.r3.xlarge c4.2xlarge 1.032 89.149 86.384

db.r3.2xlarge c4.2xlarge 1.587 105.794 66.663

db.r3.2xlarge c4.4xlarge 2.063 107.585 52.150

db.r3.4xlarge c4.4xlarge 3.173 115.283 36.332

db.r3.4xlarge c4.8xlarge 4.126 129.279 31.332

Table 2. For each customer, the observed interval in days, the minimum and the
maximum task throughput per second for each hour.

Customer Days Minimum Maximum

A 4 1 120

B 1 14 16

C 45 0 120

D 7 1 3

E 45 5 120

F 550 0 4

For the customer load part, we wanted to test multiple tenant quanti-
ties (5, 10, 25, 50 and 100), having different throughputs based on real data
from BonitaBPM customers. More precisely, we used minimum and maximum
throughput per second found in the anonymized execution history tables. The
used thresholds are described in Table 2. We have then generated each tenants
initial time slot load randomly following an uniform distribution between the
two thresholds.

To avoid too much variation between time slots, we also used another para-
meter we name tenant gap, a percentage of the gap between a tenant’s minimum
and maximum throughput. Using a totally random behaviour makes tenants
throughput very chaotic. In general, the required load is relatively stable, as we
have noticed in customers data. For each time slot, we compute randomly the
percentage of the gap, and we add it to the previous time slot’s load. If we obtain
a load lower than the minimum, we cap it to the minimum (respectively capped

Efficient Migration-Aware Algorithms for Elastic BPMaaS 157

to the maximum for loads superior to the maximum). For instance, for customer
E and a gap of 0.25, the change between hours would follow an uniform distri-
bution between −0.25(120 − 5) = −28.75 and 0.25(120 − 5) = 28.75, capped on
the minimum and maximum for the customer, here respectively 5 and 120. We
have experimented with various values for the gap. A gap percentage of 1 will
correspond to a complete random behavior between the minimum and maximum
loads. A gap percentage of 0 will correspond to a load that remains the same all
the time. For each number of tenants, we tested multiple tenant gaps, 0.25, 0.5,
0.75 and 1, as it shows multiple levels of variability.

We varied the number of tenant and the gap. Nonetheless, given the random
nature of the load, we ran the tests multiple times with different random distri-
butions for each pair tenant gap and tenant number. In order to keep repeatable
configurations and to test multiple algorithms, we used twenty different random
seeds for each parameter pairs. Using the same random seed on a same couple
tenant gap/tenant number gives each time the same load distribution.

For each set (the cartesian product between twenty seeds, the 4 tenant gaps,
and the 5 different tenant quantities), we tested several migration plan algo-
rithms that we describe in the next part.

5.2 Software and Methods

Our goal here is to determine between the different methods and for differ-
ent number of migrations, which one gives the better migration strategies i.e.
which one between top-down and bottom-up algorithms, grouped and individual
strategies, and ConstantMaxPieceWise, ConstantPieceWise and Linear Regres-
sion fitters gives the best results.

As our metrics are hourly based on the different configurations and tenant
loads, we used hourly time slots, more precisely 48 time slots. The initial setting
is the following: for each tenant, we select the least expensive resource that is
suited for the maximum required throughput on the study time. We name this
method adapted heuristic.

For the segmentation part we implemented a fixed and updated version of
the Alchemyst library2. This library implements top-down and bottom-up algo-
rithms, with mean constant and linear regression fitters. We added max constant
fitter as described in Sect. 4.3. We also tested the algorithms for several number
of migrations, more precisely 2, 3 and 4 per day, so 4, 6 and 8 for the 48 h studied.
Last, we tested two grouping strategies: considering each tenant in a separated
manner (individual strategy), or executing the segmentation on the sum of the
loads, and moving every tenant simultaneously at the obtained migration time
slots (grouped strategy).

We also enhanced our previous time slot algorithm implementation [2] with
the restriction on the tenant list. For performance reasons we don’t consider here
the subset sum for each number of migrations but only all the tenants.

2 https://github.com/alchemyst/Segmentation developed by Carl Sandrock for his
paper [16].

https://github.com/alchemyst/Segmentation

158 G. Rosinosky et al.

To obtain reference values, we used the adapted heuristic to compute the cost.
This approach gives us a realistic intuitive reference cost that we can obtain
without calculation. We also compared a subset of our test dataset with the
solving of the linear model described in Chap. 3 during a limited time, for the
lowest number of tenants. For this we used the solver Gurobi [17].

Table 3 summarize the different parameters we used in this experiment.
Experiments have been executed on c4.xlarge (CPU optimized) instances on
Amazon Web Services. In the next part, we discuss our results.

Table 3. Synthesis of the experiment dataset and algorithm used values.

Group Variable Size Values

Data Tenant gap % 4 0.25, 0.5, 0.75, 1

Data Seed number 20 -

Data Number of days 1 2

Data Number of tenants 6 5, 10, 25, 50, 100, 200

Data Number of migrations 3 2, 3, 4

Segmentation Algorithm 2 Bottom-up, top-down

Segmentation Fitter 3 Mean constant, max constant,
linear regression

Grouping strategy Tenant load 2 Grouped, individual

Time slot algorithm Subset sum size 1 1

5.3 Results and Discussion

As we explained in the previous part, we compare our results with the adapted
heuristic cost we obtained (in Fig. 3). The mean cost is between 370.15 $ for 5
tenants and a tenant gap of 0.25 and 18853.56 $ for 200 tenants and a tenant gap of
1. We can see here that the higher the gap, the higher the cost. Since the variation
of the load is less restricted, the maximum load can be higher, and the strategy
principle is to consider each tenant’s higher load for each cloud resource.

We see in Fig. 4 the results we obtained for a tenant gap of 0.25 and 4 migra-
tions a day with the heuristic. We compute the gain percentage by observing
for each experiment run (one seed, one tenant gap percent, on tenant quantity,
one number of migrations) the ratio of the difference of the result related to the
corresponding adapted cost. We can see that the different strategies give dif-
ferent level of results. Top-down algorithms give better results than bottom-up,
except for top-down individual with linear regression fitter. Grouped strategies
give almost every time the best results, except for the top-down algorithm on
individual strategy with a constant maximum piecewise fitter, who gives results
near to the two bests, (top-down grouped constant strategies), and is even more
efficient for 200 tenants. For top-down algorithms, constant maximum piecewise
is the best algorithm, followed by constant mean piecewise. It is more difficult
to compare for bottom-up strategies.

Efficient Migration-Aware Algorithms for Elastic BPMaaS 159

Fig. 3. Distribution of experimentation adapted heuristic costs in dollars

Fig. 4. Gain in percentage of the algorithm regarding the naive approach, compared
to the number of tenants, for a tenant gap of 0.25 and 4 migrations per day.

Figure 5 shows a global overview of the results. Most of the time, the top-
down algorithm gives better results than the bottom-up. The best global app-
roach are usually more efficient on small number of tenants or with less variation
(low tenant gap). The best fitters here are top-down grouped constant max piece-
wise, top-down individual constant max piecewise and top-down constant piece-
wise. As expected, we obtain better results when we allow more migrations (from
5 to 10% for 2 migrations to 15 to 25% for 4 migrations). A higher gap percent-
age generates worse results. The top-down individual Constant Max Piecewise
strategy gives the best results for more than 5 tenants almost every time.

Figure 6 show the running time of the iterative time slot algorithm with
different parameters. It stays relatively stable, for a defined strategy and number
of tenants, mainly for grouped strategies. Individual strategies are always longer,
and the duration seems to be multiplied by 3 to 4 each time the number of tenants
doubles.

160 G. Rosinosky et al.

Fig. 5. Gain in percentage of the algorithm regarding the naive approach in y axis,
compared to the number of tenants in the x axis. The legend of Fig. 4 applies here.

Fig. 6. Mean duration in seconds for individual and grouped approaches, for each
studied number of tenants. The standard deviation is represented on each bar, with
the mean number of seconds.

We tried to compare our result with the optimal solution but computing the
results with the exact model using a solver is very time consuming and does not
give very good results for more than 5 tenants and a defined time of 30 min as
we can see in the Table 4. For 10 tenants, 24 h of computing time does not give
the optimal results: we have obtained a MIP gap of 7% at best with the solver,
while with our heuristic we obtained gains of 20% with a mean duration of at
most 0.4 s of running time. For 100 tenants, our heuristic duration is 100 s for a
grouped strategy.

Efficient Migration-Aware Algorithms for Elastic BPMaaS 161

Table 4. Solver results for the 10 first seeds. Mean MIP gap is the gap between the
solution and the inferior bound found.

Tenant qty Tenant gap Mean adapted Nb migr. Solver
duration

Solver
gain

Mean
MIP gap

5 0.25 419.99 2 1800 41.05% 3.57%

5 0.25 421.91 3 1800 48.28% 3.45%

5 0.25 421.91 4 1800 51.64% 3.91%

10 0.25 685.82 2 1800 3.18% 48.33%

10 0.25 685.82 3 1800 1.28% 52.68%

10 0.25 685.82 4 1800 1.28% 55.33%

We see the correlation between the number of migrations and the gain. The
results show us that the top-down algorithm works much better than the bottom-
up, and that constant maximum piecewise fitter give almost every time bet-
ter results than the other fitters. The constant mean piecewise fitter gives also
interesting results. Good results for global strategies can be explained by the
resource-oriented approach of our algorithm (except for overloading and over-
loaded tenants, it considers only resource removal for tenant migration). The
very good performance of individual maximum constant piecewise, especially
for large number of tenants shows the efficiency of this fitter, but it needs a
minimum number of tenants.

We have shown that our heuristic is fast, even when the number of tenants
grows, and permits substantial savings for the BPMaaS providers. A gain of 20%
on the adapted strategy for 100 tenants corresponds to a mean of 1373.48 $ for
two days. Moreover, it is possible to test multiple strategies, as the computing
time stays low (for 200 tenants an individual strategy lasts a mean of 11.75 s, and
5.02 s for a grouped one). The longer duration for the individual strategy can
be explained by the mechanics of the heuristic. Indeed, in this case we segment
every tenant instead of all at once in the grouped strategy. Individual strategies
could be more interesting to use in production environment. Indeed, even if we
have not considered this constraint, migrating all the tenants together could
have some side effects on QoS because all the data of the customers will migrate
simultaneously, having negative effects on the available network bandwidth. Of
course an individual strategy could give the same results if the tenants have
identical workload patterns.

6 Conclusion

In this paper, we have proposed a new linear model for resource allocation and
scheduling of BPM execution in the cloud, and a quick, simple and straightfor-
ward heuristic giving good results compared to naive approaches and solving
of the model. This model relies on assumptions that makes it applicable in an
operational setting. First, we consider customers as a whole (tenants) and not a

162 G. Rosinosky et al.

distribution process instance by process instance. This reduces the scope of the
calculation and avoids security issues regarding access to the business data. Sec-
ond we assume that we can migrate a BPMS deployment from one installation
to another in a reasonable time. This is not available in current systems but it
is possible with very little service interruption.

We have tested it with data from an existing BPMS with a task metric. Of
course, we could also use it with other metrics such as the number of processes
and even for other services than BPMS. For instance, we could consider web
servers and the throughput of HTTP queries as soon as they have a strong data
management component. We can also use the algorithm with different temporal
dimensions, hours as in the experimentation, but also minutes or seconds. We
also plan to use it in an online manner, coupled with a predictive component
that computes dynamically the expected load for the following time slots. This
is our next step. We also think that can still improve our results using meta-
heuristics. Even if they are much better than with a naive approach, there is
room for improvement as shown by our experiments with a solver for 5 tenants.
Last, we want to test this heuristic with customer data on multiple time zones,
where the results should be better considering the load patterns we can identify
(day/night cycle, working hours, lunch time, etc.).

Acknowledgements. The authors would like to thank Gurobi for the usage of their
optimizer, and Amazon Web Services for the EC2 instances credits (this paper is sup-
ported by an AWS in Education Research Grant Award). The data and the results are
available at: http://doi.org/10.5281/zenodo.401374. The source code of the framework
is not free for now, except for the segmentation library, available at https://github.
com/guillaumerosinosky/Segmentation/.

References

1. Le, T.M.H., Alfredo, L.A., Choi, H.R., Cho, M.J., Kim, C.S.: A study on BPaaS
with TCO model, pp. 249–256. IEEE, December 2014

2. Rosinosky, G., Youcef, S., Charoy, F.: An efficient approach for multi-tenant elastic
business processes management in cloud computing environment. In: 2016 IEEE
9th International Conference on Cloud Computing (CLOUD), pp. 311–318. IEEE,
June 2016

3. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: state of the art and open challenges for BPM in the cloud.
Future Gener. Comput. Syst. 46, 36–50 (2014)

4. Hoenisch, P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization
of complex elastic processes. IEEE Trans. Services Comput. 9(5), 700–713 (2016)

5. Janiesch, C., Weber, I., Kuhlenkamp, J., Menzel, M.: Optimizing the performance
of automated business processes executed on virtualized infrastructure. In: 2014
47th Hawaii International Conference on System Sciences (HICSS), pp. 3818–3826.
IEEE, January 2014

6. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable business process
execution in the cloud. In: 2014 IEEE International Conference on Cloud Engi-
neering (IC2E), pp. 175–184, March 2014

http://doi.org/10.5281/zenodo.401374
https://github.com/guillaumerosinosky/Segmentation/
https://github.com/guillaumerosinosky/Segmentation/

Efficient Migration-Aware Algorithms for Elastic BPMaaS 163

7. Rekik, M., Boukadi, K., Assy, N., Gaaloul, W., Ben-Abdallah, H.: A linear program
for optimal configurable business processes deployment into cloud federation. In:
2016 IEEE International Conference on Services Computing (SCC), pp. 34–41.
IEEE, June 2016

8. Hachicha, E., Assy, N., Gaaloul, W., Mendling, J.: A configurable resource alloca-
tion for multi-tenant process development in the cloud. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 558–574. Springer,
Cham (2016). doi:10.1007/978-3-319-39696-5 34

9. Sellami, W., Kacem, H.H., Kacem, A.H.: Elastic multi-tenant business process
based service pattern in cloud computing. In: 2014 IEEE 6th International Con-
ference on Cloud Computing Technology and Science (CloudCom), pp. 154–161.
IEEE, December 2014

10. Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: an elastic, scalable, and self-
managing transactional database for the cloud. ACM Trans. Database Syst. 38(1),
1–45 (2013)

11. Barker, S.K., Chi, Y., Hacigümüs, H., Shenoy, P.J., Cecchet, E.: ShuttleDB:
database-aware elasticity in the cloud. In: 11th International Conference on Auto-
nomic Computing, ICAC 2014, Philadelphia, PA, USA, 18–20 June 2014, pp. 33–43
(2014)

12. Kang, J., Park, S.: Algorithms for the variable sized bin packing problem. Eur. J.
Oper. Res. 147(2), 365–372 (2003)

13. Lovrić, M., Milanović, M., Stamenković, M.: Algoritmic methods for segmentation
of time series: an overview. J. Contemp. Econ. Bus. Issues 1(1), 31–53 (2014)

14. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting
time series. In: 2001, Proceedings IEEE International Conference on Data Mining,
ICDM, pp. 289–296. IEEE (2001)

15. Rosinosky, G., Youcef, S., Charoy, F.: A framework for BPMS performance and
cost evaluation on the cloud. In: 2016 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 653–658. IEEE, December
2016

16. Sandrock, C.: Identification and generation of realistic input sequences for stochas-
tic simulation with Markov processes. In: Cakaj, S. (ed.) Modeling Simulation and
Optimization - Tolerance and Optimal Control. InTech, April 2010. doi:10.5772/
9035

17. Gurobi Optimization, I.: Gurobi optimizer reference manual (2015)

http://dx.doi.org/10.1007/978-3-319-39696-5_34
http://dx.doi.org/10.5772/9035
http://dx.doi.org/10.5772/9035

Uncovering the Hidden Co-evolution
in the Work History of Software Projects

Saimir Bala1(B), Kate Revoredo2, João Carlos de A.R. Gonçalves2,
Fernanda Baião2, Jan Mendling1, and Flavia Santoro2

1 Vienna University of Economics and Business (WU), Vienna, Austria
{saimir.bala,jan.mendling}@wu.ac.at

2 Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
{katerevoredo,joao.goncalves,fernanda.baiao,flavia.santoro}@uniriotec.br

Abstract. The monitoring of project-oriented business processes is dif-
ficult because their state is fragmented and represented by the progress
of different documents and artifacts being worked on. This observation
holds in particular for software development projects in which various
developers work on different parts of the software concurrently. Prior con-
tributions in this area have proposed a plethora of techniques to analyze
and visualize the current state of the software artifact as a product. It is
surprising that these techniques are missing to provide insights into what
types of work are conducted at different stages of the project and how
they are dependent upon another. In this paper, we address this research
gap and present a technique for mining the software process including
dependencies between artifacts. Our evaluation of various open-source
projects demonstrates the applicability of our technique.

Keywords: Artifact co-evolution · Work history dependencies ·
Project-oriented business processes · Software project mining

1 Introduction

Project-oriented business processes play an important role in various industries
like engineering, health care or software development [2]. Such processes are char-
acterized by the fact that work towards a predefined outcome involves complex
tasks executed by different parties. Typically, these processes are not supported
by a process engine, but their status is fragmented over different documents
and artifacts. This is especially the case for software development processes:
the expected outcome is the release of a new software version, but the different
project members collaborate with tools like version control systems that are only
partially aware of the work process.

This work has been partially funded by the Austrian Research Promotion Agency
(FFG) under grant 845638 (SHAPE) and the RISE BPM project (H2020 Marie Curie
Program, grant 645751). The second author was partially supported by PROAP/-
CAPES and fourth and sixth authors by the National Council for Scientific and
Technological Development (CNPq), Brazil.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 164–180, 2017.
DOI: 10.1007/978-3-319-65000-5 10

Uncovering the Hidden Co-evolution in the Work History 165

A key challenge for project-oriented business processes like software develop-
ment is gaining transparency of the overall project status and work history. Lit-
erature has recognized that analyzing the evolution of business process artifacts
in projects can help obtaining important clues about the project performance in
terms of time [5], cost [22] and quality [13]. This is addressed by functionality
of version control systems (VCS) to track versions and changes of informational
artifacts like source code and configuration files. While prior research has pre-
sented various perspectives for analyzing software artifacts, e.g. [3,14,19,23],
there is a notable gap on the discovery of dependencies in the work history. For
these reasons, project managers often lack insights into side effects of changes in
large software processes.

In this paper, we address this research gap by building on partial solutions
from the separate fields of mining software repositories and process mining. More
specifically, we develop a technique that uncovers non-hierarchical work depen-
dencies which we call hidden co-evolution. This technique extracts the labeled
work history from VCS repositories and identifies dependencies beyond sim-
ple hierarchical containment. In this way, we help the project manager to spot
dependencies in the co-evolution of work histories of different information arti-
facts. Our technique has been implemented and evaluated using data from a
diverse set of open source projects.

The paper is structured as follows. Section 2 describes the research prob-
lem along with its requirements and summarizes insights from prior research.
Section 3 presents our approach in detail. Section 4 shows a prototypical imple-
mentation and evaluates its applicability both in a use case scenario and on real
world projects from GitHub. Section 5 concludes the paper.

2 Background

This paper follows the Design Science Research (DSR) paradigm [16]. In this
section, we describe the research problem in more detail and define requirements
for a solution. Against these requirements, we analyze related work.

2.1 Problem Description

In this paper, we focus on a specific class of project-oriented business processes,
namely software development processes. These processes share some common
characteristics. First, they involve various resources with different roles. In the
simplest case, we can distinguish project managers and project participants.
Project managers are responsible for managing the development process and
supervising the work of the project participants, who in turn are responsible for
specific work tasks. Second, such processes are usually subject to constraints in
terms of cost, time and quality, which is mostly associated with the performance
of each of the work tasks. Third, the project participants work on a plethora of
artifacts, which are logically organized in a hierarchical structure, with complex
interdependencies among them. Given these characteristics, it is the goal of the

166 S. Bala et al.

project manager to organize the software development process in such a way
that the work on different files and tasks reflects the complex interdependencies,
the constraints and the available participants. Therefore, it is important for the
manager to understand the work history of the process in order to monitor the
progress systematically.

Table 1. An excerpt of a VCS log data

Id
Project
Participant

Date Comment Diff

1 John
2017-01-31
12:16:30

Create readme file
diff –git a/README.md b/README.md
@@ -0,0 +1 @@
+# StoryMiningSoftwareRepositories

2 Mary
2017-02-01
10:13:51

Add a license

diff –git a/README b/README
@@ -1,0 +2,3 @@
+The MIT License (MIT)
+
+Copyright (c) 2015 Mary+

3 Paul
2017-02-02
16:10:22

Updated the requirements.

diff –git a/README.md b/README.md
@@ -1,4 +1,5 @@
+ # string 1, string 2, string 3

diff –git a/requirements.txt b/requirements.txt
@@ -0,0 +1 @@
+The software must solve the problems

4 Paul
2017-02-02
15:00:02

Implement new requirements

diff –git a/model.java b/model.java
@@ -1,9 +1,10 @@
+public static methodA(){int newVal=0;
@@ -21,10 +23,11 @@
+ ”1/0”,,”0/0”,

diff –git a/test.java b/test.java
@@ -0,0 +1,2 @@
+//test method A
+testMethodA()

Software tools like Version Control Systems (VCS) do not provide direct
support for monitoring work histories, but they provide a good starting point
by continuously collecting event data on successive versions of artifacts. Table 1
shows an excerpt of log data, where the columns, from left to right, indicate the
commit identifier, the project participant who committed the changes, the com-
mit date, the comment written by the project participant and the files affected
and the change performed1. In order to understand the work history and depen-
dencies based upon such data, we identify three major requirements:

R1 (Extract the work history): Discover the process of how artifacts evolve
in the project as a labeled set of steps. This requirement is difficult because
the version changes of a commit in relation to a single file do not directly
reveal which type of work has been done. Both commit messages and edit
characteristics might inform the labeling.

1 cf. unified diff format https://git-scm.com/docs/git-diff.

https://git-scm.com/docs/git-diff

Uncovering the Hidden Co-evolution in the Work History 167

R2 (Uncover Work-Related Dependencies): Identify that certain work in
one part of the project is connected with work in another part. This require-
ment is difficult because such dependencies might not only exist between files
that reside in the same directory. For example, a change in a source code file
might have the side effect of triggering work on a configuration file. We refer
to this as co-evolution of these files.

R3 (Measure Dependencies): Determine how strong the co-evolution of dif-
ferent artifacts is. This requirement is difficult because measures of strength
of dependencies and on the distance of dependent artifacts have to be devised.

2.2 Related Work

A solution addressing these requirements can partially build upon research in
three main areas: (i) work on Mining Software Repositories (MSR); (ii) Process
Mining (PM); (iii) and software visualization.

Table 2 shows that these streams of research have mutual strengths, but no
contribution covers the full spectrum. In general, methods from MSR have a
strength in analyzing dependencies in the structure of the software artifact, but
an explicit consideration of the type of work is missing. Contributions in this
area focus on the users and the artifacts, mining co-evolution or co-change of
project parts [8,24] and network analysis of file dependency graph based on
commit distance [1,23,25]. Hidden work dependencies are mentioned as logical
dependencies [15]. Also techniques for trend analysis [20] and inter-dependencies

Table 2. Requirements addressed by literature and topics covered. Fulfills requirement
(�); Only addresses requirement (�)

Main area Papers R1 R2 R3 Description

Zaidman et al. [24] � � � Only two labels for processes

Zimmermann and Nagappan [25] � � Only functional dependencies

Abate et al. [1] � � Only functional dependencies

D’Ambros et al. [8] � �
MSR Oliva et al. [15] � �

Weicheng et al. [23] � �
Ruohonen et al. [20] � �
Lindberg et al. [13] � Activity variations

Kindler et al. [12] �
Goncalves et al. [9] �

PM Poncin et al. [17] �
Beheshti et at. [4] � �
Mittal and Sureka [14] � Only bug resolution process

Bala et al. [2] � � Unlabelled Gantt chart

Voinea and Telea. [21] � � Unlabelled processes

Visualization Ripley et al. [18] � � Unlabelled processes

Greene and Fischer [10] �

168 S. Bala et al.

between developers [13] are proposed. However, none of these works considers
the type of work being done in the process.

In the area of PM, research gives more emphasis to the different tasks of
the process. Some works focus on applying process mining for software reposi-
tories [2,14,17]. In this context, approaches have been defined that use various
queries to extract artifact evolution and resources [4,5]. There is research on
identifying the tasks of the process by elicitation from unstructured data of user
comments [9]. There are also process mining applications that focus on repeti-
tive steps in software engineering, but not on singular project-oriented processes,
such as [12]. All these works only consider the dependencies between work tasks
to a limited extend.

There is also work in the area of software visualization. Visualization tools
have been proposed in order to allow project managers to have a detailed
overview of the software artifact being developed. These tools help to visually
inspect artifacts similarities on different levels of granularity [21], observe arti-
facts evolution or project members contribution [10,18]. In general, they can be
characterized as artifact-centric, and largely agnostic to the type of work being
done.

In the following, we develop a technique that addresses the three requirements
and informs prior research on how to extract work histories and to identify the
co-evolution of certain parts of a project-oriented software process.

3 Conceptual Approach

We propose a technique to extract and represent the work history and the depen-
dencies among artifacts of a project-oriented business process. The technique
takes as input a VCS log and produces analysis data that describe the evolution
of the artifacts, along with metrics about their distance and their similarity in
terms of work. The process is depicted in Fig. 1 and consists of three successive
steps towards extracting hidden work dependencies from VCS event data. The
method works under three main assumptions. First, we assume a meaningful tree
structure, i.e. the project participants organize the files in a representative hierar-
chy (e.g., spatially separating documentation from testing into different folders).
Second, project participants perform regular commits in the VCS. Third, project
participants write descriptive comments that allow other members to understand
the changes.

The first step of the technique is the preprocessing of the VCS log received
as input. The main goal of this phase is to generate a set of events and store
them into a database. Second, we obtain different views on the stored events.
In particular, we are interested in observing (i) all the commits that affected
the files over time; (ii) the amount of change brought by the commits to the
files; and (iii) the users who issued such commits. The third phase is responsible
for considering the different perspectives defined by the project manager and
through the generated views extract the necessary knowledge. In the following,
we detail the formal concepts and the algorithm of our technique.

Uncovering the Hidden Co-evolution in the Work History 169

Fig. 1. Approach for generating analysis data from VCS logs

3.1 Preliminaries

As the objective of our technique is to uncover hidden work dependencies, we
define the fundamental concepts required to capture them. Work is reflected
by artifacts, e.g., word documents, spreadsheets, code, etc. Artifacts are leaves
in the file tree hierarchy (with directories being special type of non-leaf files).
Artifacts evolve over time, while project participants contribute their changes.
Each change is an event that happens to an artifact in a single point in time.
Events can be abstracted into aggregated events that allow a coarser grained view
on the history. The history of the changes of an artifact over a time interval at
a given level of abstraction is referred to as artifact evolution. Similar artifact
co-evolution establishes a dependency between two artifacts.

A software product is subdivided into files and directories. In this work,
we consider directories as special type of files which are parents of other files.
Formally, let F be the universe of files in a software development project. Files
are organized in a file tree. Therefore, each file f ∈ F has one parent file. The
only file without a parent file is the root file. We capture this information in the
parent relation Parent : F × F . For example, let fp ∈ F be the parent of file
fc ∈ F , then (fp, fc) ∈ Parent. An artifact is a file that is not a parent file, i.e.
a file fa is an artifact if ∀f∈F (fa, f) /∈ Parent.

When project participants do a certain amount of work and want to save
their current progress, they commit the changes to the VCS. We define changes
on artifacts as the events of interest on the lowest granularity.

Definition 1 (Event). Let E be the set of events. An event e ∈ E is a five-
tuple (f, ac, ts, k, u), where

– f ∈ F is the affected artifact of the event.
– ac ∈ AC = N is the amount of change done in the artifact.
– ts ∈ TS = N represents a unix time stamp marking the time of the event

occurrence.
– k ∈ Σ∗ is a comment in natural language text.
– u ∈ U is the project participant responsible for the change.

For event e = (f, ac, ts, k, u) we overload f , ac, ts, k and u to be used as
accessor functions. For example, f is the function f : E → F mapping an event
to its affected artifact.

170 S. Bala et al.

In some situations, it can be interesting to have a higher level overview of
the changes done to a particular artifact. In this case, an aggregation of events
related to this artifact in an interval of time can be performed. The time window
for the aggregation, henceforth denoted as twagg, must be defined, i.e. the size
of the time interval. For instance, a time window for aggregation can be a day.
Thus, all events occurring for an artifact in the same day will be aggregated. An
aggregated event is defined as follows:

Definition 2 (AggregatedEvent). An Aggregated Event for twagg (AEtwagg
)

is a five-tuple (f, aac, ats, ak, au), where

– f ∈ F is the affected artifact in the set of events being aggregated.
– aac ∈ AAC = N is the aggregate amount of change done in the artifact for

twagg. It is calculated by summing the amount of changes done in each of the
time aggregated.

– ats ∈ ATS = N represents an aggregate time of the unix time stamp of the
events being aggregated.

– ak ∈ Σ∗ is the concatenation of the comments presented in the events being
aggregated.

– au ⊆ U are the project participants responsible for the changes in twagg being
aggregated.

The set of aggregated events for a particular artifact defines how this artifact
evolves over time. Considering an interval of analysis, henceforth denoted as ia,
we define artifact evolution as follows.

Definition 3 (Artifact Evolution). Artifact evolution is the process describ-
ing how the file f changed over an interval of time ia, i.e., a set of labeled
tuples Aevo(f) = {(t, a, l)|e ∈ AEia, f = f(e), t = ats(e), a = aac, l = ak(e)}
chronologically ordered.

Note that artifact evolution represents the changes that happened to a file
over time. Thus, we can build the time series of a file f as the vectors of changes
Xf = (a1, ..., an) in the time window twagg = [t1, tn], with ai being the sum of
the changes of f in of the aggregated intervals ti of the time window twagg.

We measure the dependency between two files fa and fb in terms of their
degree of co-evolution as follows.

Definition 4 (Degree of Co-Evolution). Given two files fa and fb, the
degree of co-evolution χ : F ×F → [0, 1] is a similarity function of the respective
time series.

In this paper, we fix χ(fa, fb) = |σ(Xfa
,Xfb

)|, where σ is the correlation func-
tion of the two vectors Xfa

and Xfb
.

The way files are kept in the directory structure establishes an inherent
relationship among files being stored close to each other in the hierarchy. For
instance, files serving the same purpose are stored close to each other in the
file system. Hidden work dependencies are expected to happen between arti-
facts that are distant in the file structure. We measure this distance as the

Uncovering the Hidden Co-evolution in the Work History 171

length of the shortest route connecting two files in the file tree. We adapt the
notion of path from [11] to our file tree. Given a file f , the path to the root
node can be obtained by navigating the Parent relationship up to the root
file. The path p from fa to the root fr is the set of parent files encountered
along such route. i.e. p(f1, fr) = {(f1, ..., fk, fk+1, ..., fr)} such that for any k,
(fk+1, fk) ∈ Parent. The length of the path is the cardinality |p| of the set.
The shortest path between two files fa, fb in a tree passes through the Least
Common Ancestor (LCA) [6]. This is equivalent to considering the paths from
the single files to the root node pa = p(fa, fr) and pb = p(fb, fr) minus their
intersection Ipa,pb

= {p(fa, fr) ∩ p(fb, fr)}. Thus, we define the file distance as
the length of the shortest path between two files fa and fb as follows.

Definition 5 (File Distance). The distance d : F × F → N between two files
belonging to the same directory structure is defined as the number of nodes in
the minimum path connecting the two files in the project file tree: d(fa, fb) =
|pa| + |pb| − 2 ∗ (|Ipa,pb

|).

3.2 Hidden Dependencies Discovery Algorithm

We are focused on finding interesting hidden work dependencies. These depen-
dencies are typically reflected by changes that happen to couples of allegedly
unrelated files during their evolution. This section details the procedure that
implements the technique outlined in Fig. 1.

Algorithm 1 presents the steps required to explicate such hidden dependen-
cies. The procedure PreprocessLog(L) in line 2 takes as input a VCS log L
structured as in Table 1 and parses out work events at the granularity of line
changes. These events are then stored into an event data storage. Events parsed
from VCS logs contain rich information about multiple aspects of the work they
reflect. In order to represent all these different aspects, we devised the entity-
relationship data model. Hence, we are able to store all the information that is
possible to obtain after parsing the VCS log. Furthermore, this step allows the
user to obtain simple information, such as statistics on the project, already at an
early stage of the procedure. The output of the PreprocessLog(L) step results
in the storage of all the events E into a database.

Next, the iterative call of the procedure RetrieveView(E , query) in line 3
performs several querying the data storage containing the set E. For example, a
possible query can obtain all the comments associated to each change of a specific
file. To obtain information on the evolution of files, we query the database for
the changes of all the files within a user defined time interval twagg. In general
several time frames can be chosen, each of them producing a view V on the
data, i.e., a set of aggregated events chronologically sorted within twagg. For
example, users may be interested in artifact-views aggregated by day, by month,
etc. Multiple views are possible by defining them in the queries parameter. We
collect these views into a set V =

⋃
queries V .

172 S. Bala et al.

Algorithm 1. Generate project analysis data
Input : A VCS log L
Output: A set of triples {(Dist, Stories, Dco−evo)}, artifact evolutions, and

dependencies
Data : E event set, V views set, AnalysisData = {(Dist, Stories, Dco−evo)},

degree of co-evolution threshold γ, file distance threshold δ, user
defined queries queries

1 Files ← ∅, Stories ← ∅, TimeSeries ← ∅, AnalysisData ← ∅, V ← ∅,
Aevo(f) ← ∅;

/* Preprocess VCS log */

2 E ← PreprocessLog(L);
/* Retrieve views on the project */

3 for i from 1 to |queries| do V ← V ∪ RetrieveView(E, queries[i]);
/* Analyze project data */

4 foreach view V ∈ V do
5 foreach aggreagated event ae ∈ V do
6 foreach f = f(ae), t = ats(ae), a = aac(ae), l = aak(ae) ∈ ae do

/* Construct the artifact evolution set for the file */

7 Aevo(f) ← Aevo(f) ∪ {(t, a, l)};
/* Construct the process using story mining */

8 Stories ← Stories ∪ (f, StoryMining(l)));
/* Collect files and time series */

9 Files ← Files ∪ {f};
10 TimeSeries(f) ← construct time series from Aevo(f);

11 end

12 end
13 foreach pair of files i, j ∈ Files do

/* Compute degree of co-evolution */

14 coEvoDegree ← χ(TimesSeries(i), T imeSeries(j));
/* Compute file distances */

15 distance ← d(i, j);
/* Select based on user defined thresholds */

16 if coEvoDegree > γ then Dco−evo ← Dco−evo ∪ {coEvoDegree};
17 if distance > δ then Dist ← Dist ∪ {distance};

18 end
19 AnalysisData ← AnalysisData ∪ {Dist, Stories, Dco−evo};

20 end
21 return AnalysisData;

The step in line 4 starts an iteration over the views set V. Here is where
we collect the analysis data that are returned by the algorithm. For each of the
aggregated artifacts contained in a view V , we retrieve the information necessary
to compute the degree of co-evolution between pairs of files and their file distance.
First, we construct the artifact evolution of all the artifacts present in ae ∈ V .
Note that an aggregated event ae ∈ V is a record obtained from a view on the
project which is composed, among other attributes (e.g., file, time, amount of

Uncovering the Hidden Co-evolution in the Work History 173

change), by the comment associated to the specific change. Comments describe
multiple changes executed on the file, i.e. they describe a story of the artifact.
Stories associated to each file are collected and the corresponding labels are
chronologically ordered. These file stories are then input to the StoryMining
technique [9]. Story Mining was designed to receive as input a story freely written
by the participants, describing their work in a particular business process. As
an output, the actors and the process activities executed by them are extracted.
Our technique is concerned with the stories of the files. Therefore, they are the
actors of the story mining, and the resulting business process consists of the
steps describing their evolution process. We collect the resulting processes in the
step in line 8. The step in line 10 is concerned with the construction of a time
series from the set of artifact evolutions Aevo computed in line 7. Specifically,
this step gathers the values of the changes of each of the artifact f in Aevo and
records them in TimeSeries(f).

After all the aggregated events ae have been explored, the algorithm moves
on to computing the metrics (lines 13–18). In this loop, the algorithm iterates
through all the pairs of files. For each pair, the degree of co-evolution and artifact-
distance metrics are computed according the Definitions 4 and 5, respectively.
These two measures are collected only if their values are above the user defined
thresholds γ and δ. After the loop is over, the two measurements and the stories
mined with the StoryMiner are stored in AnalysisData.

Finally, after iterating over all the user defined views, the algorithm returns
the AnalysisData collection which can now be further inspected and analyzed
in more detail, as we show next with an example.

3.3 Example

Let us consider the following example of a software development process. It
contains 10 files arranged hierarchically as depicted by the file tree in Fig. 2.
At the first level of the file tree there is the README.md file which describes
the project. The software product in our case is called running example and
is contained under the f3 directory. The product consists of an example for
software developers who want to organize their projects according to a predefined
structure. The project has 21 commits over 10 days.

An excerpt of the VCS log for this project was illustrated in Table 1 above.
The project managers are interested in understanding the work process done by
project participants in each of the files and whether there is some hidden work
dependency. We show how our technique meets the requirements by applying
each step to this project and discussing the outcomes.

Let us suppose we have preprocessed our data and have the events set E
already stored in a database. Then V is obtained by querying the data and aggre-
gating them by day. Then, the parent relation is Parent = {(f1, f2), (f1, f3),
(f3, f4), (f3, f6), (f3, f12), (f4, f5), (f6, f7), (f6, f8), (f6, f9), (f9, f10), (f10, f11)}.
Next, we compute the artifact evolution of for each artifact. For example, the
artifact evolution of file REAMDE.md (f2) limited on the information from

174 S. Bala et al.

StoryMiningSoftwareRepositories (f1)

README.md (f2) running example (f3)

Requirements (f4)

requirements.txt (f5)

Software (f6)

model.java (f7) test.java (f8) packages (f9)

p1 (f10)

visualization.txt (f11)

specification.txt (f12)

Fig. 2. File tree describing the file structure in our scenario of use.

Create readme
file

Add
licence

Update
requirements

Fig. 3. Example of business process showing the artifact evolution

Table 1 is Aevo = { (2017-01-31, 1, Create readme file), (2017-02-01, 3, Add a
license), (2017-02-02, 1, Updated the requirements)}. The resulting process from
the story mining algorithm is shown in Fig. 3.

Next, we calculate the metrics. The dependencies are computed in the
steps enclosed in lines 13–18 of Algorithm 1. E.g., the artifacts README.md
(f2) and test.java (f7) appear in the TimeSeries collection as the vectors
Xf2 = (1, 3, 1, 0) and Xf7 = (0, 0, 0, 2). We use the Pearson correlation between
the to vectors σ(Xf2 ,Xf7 = −0.66) and take its absolute value as degree of co-
evolution χ = |σ|. Therefore, the degree of co-evolution between the considered
artifacts is χ = 0.66. The file distance is the length of the route from f2 to f7,
i.e. d(f2, f7) = {(f2, f1), (f1, f3), (f3, f6), (f6, f7)}. Therefore, the file distance
between README.md and test.java is d(f2, f7) = 4.

4 Evaluation

In this section, we show the applicability of our technique to project-oriented
business processes and its effectiveness in uncovering work dependencies. With
respect to the requirements formulated in Sect. 2, we evaluate against require-
ments R2 and R3 in Sect. 4.1 and against requirement R1 in Sect. 4.2.

We implemented our techniques as a prototype2 and used it on 10 real world
software projects with different sizes. The input of our program is a VCS log and
the output is a set of analysis data with information about the evolution of the
artifacts and their dependencies. We report the results in Table 3. The results are
listed in increasing order of project size. The parameters χ and d are the metrics

2 The source code is available at https://github.com/s41m1r/MiningVCS.

https://github.com/s41m1r/MiningVCS

Uncovering the Hidden Co-evolution in the Work History 175

Table 3. Evaluation of real world projects. Respectively the thresholds are: χL if
χ < 0.3, χH if χ > 0.7 low and high degree of co-evolution; dL if d ≤ 2, dH if d > 2
respectively low and high distance.

Project C
o
m

m
it

s

F
il
es

χH χL (dL, χL) (dL, χH) (dH , χL,) (dH , χH) |p f
|

m
a
x
(|p

f
|)

|A
e
v
o
|

d m
a
x
(d

)

mwaligner 21 9 37 7 6 30 1 7 1.11 2 2.40 0.94 3
Biglist 202 15 22 90 31 18 59 4 1.47 3 2.76 1.20 5

camundaRD 11 15 74 26 0 25 26 49 2.18 4 2.05 2.03 7
graphql 256 30 89 357 121 89 236 0 1.40 2 3.18 1.11 4

jgitcookbook 135 89 773 2866 505 289 2361 484 6.93 8 1.33 2.68 14
mysqlpython 749 168 2288 11571 742 591 10829 1697 2.59 7 1.65 2.52 11

gantt 23 228 7006 14343 386 3480 13957 3526 3.30 4 1.71 2.16 7
facebookjavasdk 38 293 16478 26092 2017 16311 24075 167 6.21 8 4.78 5.58 13

caret 864 432 15366 60874 9538 14785 51336 581 3.01 4 3.15 1.60 7
operationcode 1114 1053 84024 444605 2291 5537 442314 78487 4.27 8 2.01 4.85 15

of degree of co-evolution and distance, respectively. In this example, χ > 0.7
signifies that the co-evolution is high (χH) and χ < 0.3 that the co-evolution is
low (χL). As previously mentioned, this is a user customizable threshold that
can be set by the domain expert. Likewise, the distance is considered low (dL)
when d <= 2 and high (dH) when d > 2. The parameter |pf | and max(|pf |) are
respectively the average and the maximum lengths of the path to the root (i.e.
average tree depth of the files). The column |Aevo| shows the average number of
activities in the process representing the artifact evolution. Lastly, the columns
d and max(d) report the average and maximum file distance, respectively. Next,
we use these data for a quantitative evaluation of the projects.

4.1 Quantitative Evaluation

Here we address requirements R2 and R3. First, we compute project profiles.
These profiles show the distribution of work-related dependencies in a project.
Second, we evaluate whether the work on files can be predicted.

Before assessing project profiles, we make the following consideration. Our
metrics define four classes: (i) low distance low co-evolution; (ii) high distance
low co-evolution; (iii) low distance high co-evolution; (vi) high distance high co-
evolution. Figure 4b helps clarifying these four classes. In fact, except for values
of distance equal to 0, it is possible to see how the density of file pairs is higher
when the distance is low. This is a normal situation in project where highly
related files are stored closely to each other in the file system. Conversely, the
dots on the top right of the plot mark files which are very distant to each other
but still highly correlated. These can be, for instance, logical dependencies that
can happen because of bad modularization of the project.

Hidden work dependencies belong to the last mentioned case, i.e. files are
distant in the file tree but they have similar time series. According to this con-
sideration we computed the project profiles in Fig. 4a. We observe three types of

176 S. Bala et al.

Fig. 4. Characterization of the evaluated software projects

processes. First, several projects have hardly any hidden work dependencies. Sec-
ond, several have a moderate degree between 10% and 20%. Third, the project
Biglist has a high share of hidden dependencies. This hints at the possibility for
better organizing the project according to good modularization best practices.
That means, the project can be restructured in a way to reduce the unwanted
side-effect the work on one file produces on other files.

Next, we evaluate whether the work on files can be predicted. Zipf’s law is
typically used in corpus analysis and states that the frequency of usage of any
word is inversely proportional to its rank in the frequency table. This approach
has already been applied to software projects for understanding whether the
assignment of developers to tasks in a software project could be predicted [7].
Here, we focus on understanding whether the Zipf’s law holds true also for work
dependencies within a project.

To this end, we selected one big and one small project from Table 3, namely
Biglist and Caret. Biglist is a small project on a list of strings which are known to
cause issues when used as user-input data. Caret is a big project consisting in the
development of a sublime text editor for Chrome OS. We collected how frequently
were the artifacts worked on to generate a ranking. Figure 5 depicts the corre-
sponding charts and the fitted Zipf distribution. We notice that both projects
present a similar distribution of values. This holds also for the other projects
analyzed. In particular, Zipf’s law is valid for the most frequently changed files.
Afterwards, the distribution drops because of files not being worked anymore
but still being part of the project.

4.2 Qualitative Evaluation

In this section, we address requirement R1 by showing insights on the work
history of files that are related. To this end we focused on the project smsr,
which has 21 commits over a time span of ten days.

Let us consider an example where our technique proves helpful. Our tech-
nique finds 6 highly related pairs, as shown in Table 3. We excluded files that have

Uncovering the Hidden Co-evolution in the Work History 177

Fig. 5. Zipf distribution of the worked files

Update
requirements.txt

Specify solve time
for problem

Add requirements
file

Modify
requirements

Update
requirements

(a) Evolution of file requirements.txt

Modify
method A

Fix bug Create model Add solver
methods

Implement
method B

Update
model.java

(b) Evolution of file model.java

Fig. 6. Processes of two work-dependent files

a functional dependencies, e.g. interface-class relations, where a change in the
interface trivially brings change in the class. Thus, we were able to select the files
smsr/running example/Requirements/requirements.txt and smsr/running
example/Software/model.java, having χ = 0.7 and d = 4. Moreover, by
observing the content we verified that they do not have functional dependen-
cies. Therefore, these two files are work dependent. Figure 6 shows the extracted
processes after mining their stories. Interestingly, the two processes do not share
any activity because they were never changed together in the same commit.

Our technique can fail under some circumstances. Consider the example
above. We know that the files requirements.txt and model.java are work
dependent. Let us now assume that the assumption of regular commits in the
VCS does not hold. Nevertheless, we know that there is the following work pat-
tern: at irregular times, one change in the requirements produces 2 changes of
work that must be implemented in model in the next day. In a short time window
of 4 days, the time series would be Xreq = (1, 0, 1, 0), Xmodel = (0, 2, 0, 2) and
their correlation is σ(freq, fmodel) = −1. Hence, they would score a high degree
of co-evolution χ = 1. However, if we double the time window and observe only
another pattern the correlation would change. We get Xreq = (1, 0, 1, 0, 0, 1, 0, 0),
Xmodel = (0, 2, 0, 2, 0, 0, 2, 0) which score a σ(freq, fmodel) = −0.66, χ = 0.66 and
therefore not a high value of correlation.

178 S. Bala et al.

These results show that our technique helps uncovering work dependencies
that are not captured by existing approaches in literature which leverage on
social network analysis [23,25]. On the other hand, our technique is currently not
yet able to retrieve dependencies with delay. We plan to address this challenge
by using moving-average time series models.

5 Conclusion

In this paper, we addressed the problem of uncovering hidden work dependencies
from VCS logs. The main goal was to provide project managers with knowledge
about the artifacts co-evolution in the project. Three perspectives of analysis
were considered, evolution of the artifacts over time, dependencies among them
and structural organization of the project.

Our approach works under the assumptions that repositories reflect the hier-
archical structure of the project, project participants commit their work regu-
larly during active working times and they provide informative comments for
the changes done. The approach was implemented as a prototype. A scenario of
use was provided showing how the approach can be applied and providing some
discussions. We also evaluated our approach in real-world data from open source
projects showing the potential of the approach.

In future work, we will improve our evaluation varying for instance the time
window, the dependency threshold and consider a study case with project man-
agers. We plan to investigate other types of dependencies between artifacts.
Specifically, we are interested in a semantic analysis of the work performed in
both artifacts, considering for instance some similarity measures. We also aim
to improve the visualization to consider other knowledge extracted, for instance
the type of change performed in the aggregate events could be shown associated
to the activities in the artifact process.

References

1. Abate, P., Cosmo, R.D., Boender, J., Zacchiroli, S.: Strong dependencies between
software components. In: 3rd International Symposium on Empirical Software
Engineering and Measurement ESEM, pp. 89–99 (2009)

2. Bala, S., Cabanillas, C., Mendling, J., Rogge-Solti, A., Polleres, A.: Mining project-
oriented business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM 2015. LNCS, vol. 9253, pp. 425–440. Springer, Cham (2015). doi:10.
1007/978-3-319-23063-4 28

3. Bani-Salameh, H., Ahmad, A., Aljammal, A.: Software evolution visualization tech-
niques and methods - a systematic review. In: 2016 7th International Conference
on Computer Science and Information Technology (CSIT), pp. 1–6 (2016)

4. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R.: Enabling the analysis
of cross-cutting aspects in ad-hoc processes. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 51–67. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38709-8 4

http://dx.doi.org/10.1007/978-3-319-23063-4_28
http://dx.doi.org/10.1007/978-3-319-23063-4_28
http://dx.doi.org/10.1007/978-3-642-38709-8_4

Uncovering the Hidden Co-evolution in the Work History 179

5. Beheshti, S.-M.-R., Benatallah, B., Sakr, S., Grigori, D., Motahari-Nezhad, H.R.,
Barukh, M.C., Gater, A., Ryu, S.H.: Process Analytics - Concepts and Techniques
for Querying and Analyzing Process Data. Springer, Cham (2016)

6. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). doi:10.1007/10719839 9

7. Canfora, G., Cerulo, L.: Supporting change request assignment in open source
development. In: Proceedings 2006 ACM Symposium on Applied Computing -
SAC 2006, p. 1767, April 2016

8. D’Ambros, M., Lanza, M., Lungu, M.: Visualizing co-change information with the
evolution radar. IEEE Trans. Softw. Eng. 35(5), 720–735 (2009)

9. Gonçalves, J., Santoro, F.M., Baião, F.A.: Let me tell you a story - on how to build
process models. J. Univers. Comput. Sci. 17(2), 276–295 (2011)

10. Greene, G.J., Fischer, B.: Interactive tag cloud visualization of software ver-
sion control repositories. In: 3rd Working Conference on Software Visualization,
pp. 56–65 (2015)

11. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estima-
tion of shortest paths in large graphs. In: 19th ACM International Conference on
Information and Knowledge Management, p. 499 (2010)

12. Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software
process models. Softw. Eng. 79, 175–180 (2006)

13. Lindberg, A., Berente, N., Gaskin, J., Lyytinen, K.: Coordinating interdependen-
cies in online communities: a study of an open source software project. Inf. Syst.
Res. 27(4), 751–772 (2016)

14. Mittal, M., Sureka, A.: Process mining software repositories from student
projects in an undergraduate software engineering course. In: ISCE Companion,
pp. 344–353 (2014)

15. Oliva, G.A., Santana, F.W., Gerosa, M.A., de Souza, C.R.: Towards a classification
of logical dependencies origins. In: Proceedings 12th International Workshop 7th
Annual ERCIM Workshop on Principles of Software Evolution - IWPSE-EVOL
2011, p. 31 (2011)

16. Peffers, K.E.N., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24,
45–77 (2007)

17. Poncin, W., Serebrenik, A., Brand, M.V.D.: Process mining software repositories.
In: 2011 15th European Conference Software Maintenance Reengineering, pp. 5–14
(2011)

18. Ripley, R.M., Sarma, A., Van Der Hoek, A.: A visualization for software project
awareness and evolution. Visualization 2007 - Proceedings 4th IEEE International
Workshop on Visualizing Software for Understanding Analysis, pp. 137–144 (2007)

19. Robles, G., González-Barahona, J.M., Cervigón, C., Capiluppi, A., Izquierdo-
Cortázar, D.: Estimating development effort in free/open source software projects
by mining software repositories: a case study of openstack. In: 11th Working Con-
ference on Mining Software Repositories, pp. 222–231 (2014)

20. Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: Time series trends in software evolu-
tion. J. Soft. Evol. Process 27(12), 990–1015 (2015)

21. Voinea, L., Telea, A.: CVSgrab: mining the history of large software projects. In:
Eurographics/EuroVisualization, pp. 187–194 (2006)

22. Voinea, L., Telea, A.: Visual data mining and analysis of software repositories.
Comput. Graph. 31, 410–428 (2007)

http://dx.doi.org/10.1007/10719839_9

180 S. Bala et al.

23. Weicheng, Y., Beijun, S., Ben, X.: Mining GitHub: why commit stops - exploring
the relationship between developer’s commit pattern and file version evolution. In:
20th Asia-Pacific Software Engineering Conference, pp. 165–169 (2013)

24. Zaidman, A., Van Rompaey, B., Demeyer, S., Van Deursen, A.: Mining software
repositories to study co-evolution of production & test code. In: 1st International
Conference on Software Testing, Verification and Validation, pp. 220–229 (2008)

25. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on
dependency graphs. In: 13th International Conference on Software Engineering,
p. 531 (2008)

Decisions and Understanding

Towards a Holistic Discovery of Decisions
in Process-Aware Information Systems

Johannes De Smedt1,2(B), Faruk Hasić1, Seppe K.L.M. vanden Broucke1,
and Jan Vanthienen1

1 Department of Decision Sciences and Information Management,
Faculty of Economics and Business, KU Leuven, Leuven, Belgium

{johannes.desmedt,faruk.hasic,seppe.vandenbroucke,
jan.vanthienen}@kuleuven.be

2 Management Science and Business Economics Group,
University of Edinburgh Business School, Edinburgh, UK

johannes.desmedt@ed.ac.uk

Abstract. The interest of integrating decision analysis approaches with
the automated discovery of processes from data has seen a vast surge over
the past few years. Most notably the introduction of the Decision Model
and Notation (DMN) standard by the Object Management Group has
provided a suitable solution for filling the void of decision representation
in business process modeling languages. Process discovery has already
embraced DMN for so-called decision mining, however, the efforts are
still limited to a control flow point of view, i.e., explaining routing (con-
structs) or decision points. This work, however, introduces an integrated
way of capturing the decisions that are embedded in the process, which
is not limited to local characteristics, but provides a decision model in
the form of a decision diagram which encompasses the full process exe-
cution span. Therefore, a typology is proposed for classifying different
activities that contribute to the decision dimension of the process. This
enables the possibility for an in-depth analysis of every activity, deciding
whether it entails a decision, and what its relation is to other activities.
The findings are implemented and illustrated on the 2013 BPI Challenge
log, an exemplary dataset originating from a decision-driven process.

Keywords: Decision mining · Decision Model and Notation · Process
mining

1 Introduction

The prevalence of new works on decision modeling and mining, as witnessed
by the vast amount of new works on Decision Model and Notation [1], shows
an increasing interest in documenting, modeling, and analyzing the decision
dimension of processes. Many research efforts have pursued the discovery of
the decision layer of processes already, including the seminal work on decision
mining [2], and its extensions and improved versions [3–6]. Nevertheless, this
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 183–199, 2017.
DOI: 10.1007/978-3-319-65000-5 11

184 J. De Smedt et al.

form of decision mining is focusing on decision point analysis, i.e., the discovery of
split-operators in the control flow which are dependent on certain data variables
tied to the activities that need to be performed subsequently. Hence, the focus
still lies with the extraction of control flow information, rather than decision
information. Furthermore, issues arise when dealing with loops and non-local
dependencies, i.e., decision variables that are not only affecting its subsequent
routing construct(s), but also other variables processed by activities further down
the process. This work complements the typical decision point analysis by rather
constituting the different types of activities that are present in a process model
and establishing how they contribute to the decision layer of the whole model.
It proposes a framework for connecting decision variables which can be linked
according to any control flow representation and any data mining algorithm by
constructing decision requirement diagrams. It consists of a four step approach
that decides how activities are influencing variables, classifying whether they
form decisions, building a decision requirement diagram, and finally, building
the control flow of the process by taking into account the decisions, rather than
solely the routing of activities.

This paper is structured as follows. In Sect. 2, an overview of decision model-
ing and mining is constituted to frame the problem. In Sect. 3, the necessities for
an integrated technique are introduced and illustrated, followed by Sect. 4, which
introduces the approach for doing so. Section 5 outlines the implementation, as
well as the application of the proposed technique to the 2013 BPI Challenge log.
Finally, Sect. 6 concludes and discusses future work.

2 Decision Modeling and Mining

This section introduces and situates the concepts used for decision modeling and
mining subsequently, i.e., first decision models are elaborated and formalized,
next decision mining is discussed in more detail.

2.1 Decision Models and Related Work

The decision modeling approaches present in process management literature
often breach the separation of concerns between control and data flow, hence
negatively influencing maintenance and reusability. They do this by hard-coding
and fixing the decisions in business processes [7]. Consequently, splits and joins
in business processes are misused to represent typical decision artifacts such
as decision tables. Recently, the separation of processes and decision logic has
become an evident trend. Such an approach is supported by the DMN standard
[1], since it has the clear intention to be used in conjunction with the Business
Process Model and Notation (BPMN) [8]. Decoupling decisions and processes to
stimulate flexibility, maintenance, and reusability, yet integrating decision and
process models is therefore of paramount importance [9]. The DMN standard
allows to model and describe decisions in a declarative way on two levels, the

Towards a Holistic Discovery of Decisions 185

requirements level and decision logic level. For the first level decisions require-
ment diagrams (DRD) are used to represent the information requirements of
the decisions in the model. These diagrams can consist of several types of ele-
ments, decisions, input data, business knowledge models, and knowledge sources.
Information requirements in the DRDs represent the requirements of decisions
in terms of subdecisions and input data, depicted using arrows going from the
requirement to the decision. The second level uses the FEEL expression language
to describe the decision logic behind every decision. The FEEL language allows
to write executable decisions in a declarative language.

Besides DMN, also the Product Data Model (PDM) [10] is a well-known lan-
guage to capture the dependencies that exist between decisions and their input
in workflows. DMN, however, is more driven by the decision and its rationale
compared to PDM, which rather focuses on the data and its impact on the
workflow.

To support our approach we introduce a formal basis for decisions and
requirements in DMN models. We take abstraction from the use of Business
Knowledge Models and Knowledge Sources, as defined in the DMN standard.
However, all definitions and theorems provided can be readily extended to
include the use of these concepts.

2.1.1 Formal Definition
A DMN model can be represented as follows. We adopt the definition of decisions
and decision requirement diagrams from [9].

Definition 1. A decision requirement diagram DRD is a tuple (Ddm, ID, IR)
consisting of a finite non-empty set of decision nodes Ddm, a finite non-empty
set of input data nodes ID, and a finite non-empty set of directed edges IR
representing the information requirements such that IR ⊆ Ddm ∪ ID × Ddm,
and (Ddm ∪ ID, IR) is a directed acyclic graph (DAG).

The DMN specification allows a DRD to be an incomplete or partial repre-
sentation of the decision requirements in a decision model. The complete set of
requirements is derived from the set of all DRDs in the decision model.

Definition 2. The decision requirements level RDM of a decision model DM is
the set of all decisions requirement diagrams in the model.

The information contained in this set can be combined into a single DRD
representing the entire decision requirements level. The DMN standard calls such
a DRD a decision requirement graph (DRG). We extend the notion of a DRG, in
such a way that a DRG is a DRD which is self-contained, i.e. for every decision
in the diagram all its requirements are also represented in the diagram.

Definition 3. A decision requirement diagram DRD ∈ RDM is a decision
requirement graph DRG if and only if for every decision in the diagram all
its modeled requirements, present in at least one diagram in RDM , are also
represented in the diagram.

186 J. De Smedt et al.

According to the DMN standard a decision is the logic used to determine
an output from a given input. In BPMN a decision is an activity, i.e. the act
of using the decision logic. Another common meaning is that a decision is the
actual result, which we call the output of a decision. We define a decision using
its essential elements.

Definition 4. A decision d ∈ Ddm is a tuple (Id, Od, L), where Id ⊆ ID is a
set of input symbols, Od a set of output symbols and L the decision logic defining
the relation between symbols in Id and symbols in Od.

In case of decision tables, a commonly used reasoning construct in decision
models, Id and Od contain the names of the input and output elements, respec-
tively, and L is the table itself, i.e. the set of decision rules present in the table.
Note that, since a DRD is a DAG, Id ∩ Od = ∅.

2.2 Decision Mining and Related Work

In recent business process management literature, decision mining arises as a
frequent term. It was first introduced in process literature in the work of [2].
The work derives and describes the routing in so-called decision points in Petri
nets [11] through a decision tree algorithm. The main idea is to use the control
flow data to determine the overall structure of the process first, and consequently
use the instances’ attributes to define where the data had an impact on the work
flow. Following this seminal work, numerous other studies have been dedicated to
refining decision point analysis and assessing variations of the problem [3,5,6,12].
The most holistic outcomes are provided by [4,13]. The former mines for read
and write operations on the variables and relates them to the guards of the
different activities present in a Petri net, obtaining a data-aware Petri net. The
latter incorporates XOR-splits in the decision model which also consists of data
attributes, which are either considered inputs or decisions themselves. This way,
a combination of attributes and control flow elements is found in the form of a
DMN model. A different approach is to mine for the mental actions performed
by decision makers [14], captured in a Product Data Model [10].

Contrary to focusing on the control flow, other works exist that rather start
from the data perspective while either incorporating control flow for clarification,
or by structuring the results. In [15] a general framework for correlating busi-
ness activity variables and process variables is proposed, and in [12], the resource
perspective is mixed with the control flow for recommendations of future exe-
cutions. In [16], Guard Stage Milestone models [17] are mined by extracting
business objects and enriching them with their lifecycle information. Neverthe-
less, these approaches do not focus on deriving the decision rationale that is
present in the process.

In [18], a framework to position all these works was proposed. This frame-
work, depicted in Fig. 1, consists of two dimensions, i.e., the decision control flow
dimension and the decision model maturity dimension, to classify each approach
into four quadrants. The presence of an elaborate decision control flow dimen-
sion is depicted along the vertical axis. Typical data mining approaches belong

Towards a Holistic Discovery of Decisions 187

in Q1, as they do not incorporate dynamic data aspects. On the other hand,
Q2 represents an approach where the primary objective is to derive the control
flow of activities by fitting process models such as Petri nets [19]. Along the
horizontal axis, the decision model maturity dimension is pictured. This dimen-
sion evaluates the presence of a decision model. In Q1 and Q2, no such model is
available, while a decision model is present in Q3 and Q4. Quadrants Q3 and Q4
differ in prioritisation, as in Q3 the decision model is not orthogonally connected
to the process, but rather parts of the decision model are incorporated in seg-
ments of the control flow. Hence, a holistic decision model is absent in Q3. On
the contrary, Q4 approaches provide a holistic decision model that incorporates
all the decisions made and that can be reused throughout the process.

Clearly, the approaches building on [2] display strong abilities to extract the
control flow and relating data variables to its routing elements. Other approaches
provide a strong decision model output, but do not focus on how the decision
was established throughout the process. Hence, there is a gap between strong
control flow-driven and decision model-driven approaches, as the challenge is to
develop a decision mining approach that is driven by the decision model, rather
than by the control flow containing decision points. In [20] both event labels
and data attributes are considered, as dependency conditions are discovered
using classification and embedded in process discovery. The information on the
discovered rules annote the resulting process models. Hence, this method hovers
between Q3 and Q4. The approach in [16] constructs artifacts by correlating the
data of the events. The control flow over these artifacts is mined as well and the
outcome is presented in a holistic model containing both layers. Consequently,
this is the only approach to the authors’ knowledge that truly belongs in Q4,
as it both handles the complexity of the data and the dynamic behavior of its
activity generators.

In this paper, we will address the research gap in Q4 by introducing the
Process Mining Integrating Decisions (P-MInD) framework by focusing on
constructing DRDs which are compatible with process models that are activity
diagram-based (e.g. Petri nets and BPMN).

2.2.1 Event Logs
Process mining and its related techniques employ the notion of the event log to
define the structure of data suitable for activity- and case-based discovery.

Definition 5. An event log is a tuple (E, A, λ, V, var, V al, L), where:
– E is a set of events.
– A is a set of activities (event types).
– λ : E → A is a labelling function mapping events to activities.
– V is a set of variables.
– var : E → 2V is a function mapping events to the subset of variables used in

this event.
– For each v ∈ V a partial function valv : E → domv mapping events to values

in the domain of v. We denote the set of these partial functions as V al.
– L ⊆ ⋃

n∈N
En the set of event tuples in the log.

188 J. De Smedt et al.

≥

≥

≥

Fig. 1. The decision mining quadrant.

For brevity we use var(a) = {v ∈ var(E)|λ(E) = a}, i.e. var(a) for a ∈ A
denotes the variables for the event label with a.

Typically, special variables include the timestamp (t ∈ V) and resource (res ∈
V). The timestamp is denoted T (e) = valt(e).

Consider for example the set of events E = {e1, e2, e3, e4, e5}, a set of variables
V = {res, time, docid}, and a set of activity labels A = {register, send, receive}.
Then L = {(e1, e2), (e3, e4, e5)}, with λ(e1) = register, λ(e2) = send, λ(e3) =
receive, λ(e4) = send, λ(e5) = receive, var(e1) = {res, time}, var(e2, e3) =
{res, time, docid}, var(receive) = {res, time, docid}, and valres(e1) = john,
valres(e2, e3) = ann, T (e1) = 1, T (e2) = 4, T (e3) = 9.

3 Business Process Activities and Their Relation
to Decisions

In this section, a typology for different activities used for making decisions in
processes is proposed, as well as a running example of a decision model inter-
twined with a process model.

3.1 Business Activities

Decisions do not surface solely as the driver of control flow. Rather, they both
encompass the routing of cases, i.e., because of decision outcomes that steer
toward a certain activity tailored towards supporting its output, and the changes
in the data layer of the process as well. The latter introduces numerous types of
activities that are representatives of the decision model in the process model:

Definition 6. The input and output data variables of business activities are
defined as follows:

Towards a Holistic Discovery of Decisions 189

– I : A → V , function assigning activities which receive input of a certain
variable,

– O : A → V , function assigning activities which deliver output for a certain
variable.

This enables the construction of the following activity types:

1. Operational activities ((no) inputs, no outputs): do not have any influ-
ence on the process’ decision dimension and only act as a performer of a spe-
cific action that is tied to that specific place in the control flow. They might
serve as the end of a decision. They are provided with the decision inputs
needed, which are not used further in the process,
Ao = {a ∈ A | O(a) = ∅}.

2. Administrative activities (no inputs, outputs): have the purpose to
introduce decision inputs into the process,
Aa = {a ∈ A | I(a) = ∅ ∧ O(a) 	= ∅}.

3. Decision activities (inputs, outputs): serve a true autonomous decision
purpose as they transform decision inputs into a decision outcome,
Ad = {a ∈ A | I(a) 	= ∅ ∧ O(a) 	= ∅}.

It holds that Aa ∪ Ao ∪ Ad = A. Typically, the decision points that are used
for decision mining in processes are of the decision activity type, but tailored
towards deciding which activity should be performed next based on the event
labels. Note that these are not included in V .

We can now make the connection with decisions and decision models.

Definition 7. A decision in a business process can be defined as follows:

– A decision in a process model, da ∈ Ddm is a tuple (Ida
, Oda

, Lda
), where

a ⊆ Ad, Ida
⊆ I(a), Oda

⊆ O(a), and Lda
⊆ L.

This last definition connects a decision activity with a decision and it shows
than one decision activity can be tied with multiple decisions. The latter implies
that, within an event log, the same activity can make different decisions, i.e.,
changes in variable values, and can be represented as different decision nodes
within a decision model, as well as different activity types. This interpretation
of how activities are present in process models is the main difference with other
decision mining techniques, who keep the one-to-one mapping of activities and
decisions.

3.2 Running Example

Consider the example BPMN model in Fig. 2 and the corresponding decision
model, which illustrates the different activity types elaborated earlier, in Fig. 3.
The process model contains a simple control flow with an AND-split and -join,
as well as an XOR-split and -join that gets repeated later on. In the first part
of the model, two variables are set, i.e., Retrieve liability (RL) and Retrieve
category (RC) set the liability score and risk category respectively. Since they

190 J. De Smedt et al.

do not contain any inputs, they are administrative activities. Determine risk
(DR) uses those variables to set the risk score, hence it is a decision activity
with ID = {liability score, risk category}, OD = {risk score}. The risk score
serves as an input for Evaluate risk level and case (ERLC), which also uses the
Case characteristics (CC) as an input (they are undefined by default). It does
not have output variables, however, it decides which activity is performed next.
Notice that this is the typical example of a decision point [2]. The label of the
subsequent activities is not part of V , hence ERLC is not a decision activity,
but an operational activity. Subscribe policy B (SPB) uses the CC, but has no
output, hence it is an operational activity. Notice that Subscribe policy A (SPA)
is the most convoluted activity. It serves both as a decision activity, as it sets
the CC based on the liability score, as well as an administrative activity when it
sets CC. Note that this is because there can exist no overlap between the inputs
and outputs of decisions, hence there exist two instantiations of the activity and
the model is capable of revealing how the activity contributes to the decision-
making over the different iterations of the loop. Finally, Print category (PC) and
Archive claim (AC) are two operational activities.

Review
claim

Retrieve
liability

Retrieve
category

Print
category

Determine
risk

Evaluate
risk level
and case

Subscribe
policy A

Subscribe
policy B

Case undefined
or risk score=A

Else

Archive
claim

Liability score

Risk category

Risk score

Case characteristics

Fig. 2. BPMN model representing a liability claim process based on different decisions
throughout.

In Fig. 3 the corresponding DRDs are provided. In DMN, decision activities
are the typical nodes present in the model. Only a conjunction of inputs and a
rationale to make decisions based on them is incorporated. Nevertheless, in this
representation the administrative (indicated with ♦) and operational (indicated
with �) activities are added in gray to illustrate how the input data and all the
activities in the process are related. Only DR and SPA fully process their inputs
into a Risk score (RS). ERLC has inputs, but has the label of the subsequent
activities as an output. This is the typical decision point analysis approach.

Towards a Holistic Discovery of Decisions 191

However, decision point analysis techniques would not be able to discover the
long-distance decision dependencies of Liability score (LS) and Risk category
(RiC) with their respective administrative and decision activities, as they only
resolve calculations in areas of a process model that introduce XOR-gates.

4 Discovering Decision Models

In this section, an approach is introduced to mine DRDs from event logs. The
main driver of the approach is the classification of activities into the different
types that were discussed previously, which are matched afterwards with how
they influence the different data variables in the log.

4.1 P-MInD Approach

In order to obtain a decision model from an event log, the decisions need to be
derived from the activity information in the event log first. The exact steps the
approach follows are outlined in Algorithm1.

4.1.1 Step 1: Evaluate Activity Involvement
Every event is scrutinized and information regarding its variables is stored. In
order to get a grasp on the effect a particular event type, i.e., activity, has on
a certain variable, it is checked whether the value of a particular variable is
changed. Note that the approach assumes that this data is fully and correctly
recorded in the event log. This is done by comparing the previous value of the
variable in the previous event (et−1 = l : T (l) < T (e), T (l) > T (f) ,∀f, T (f) <
T (e)) and the current event (line 6) in case the event in question is not the
start point of the particular execution trace. This is done for every event, and
populates the shift metric for a certain activity. This shift is defined as S :
(V,A) → N, i.e., the number of shifts in value of a variable v ∈ V for an activity
a ∈ A. A shift threshold, st, is offered to the user to adjust the sensitivity of
the algorithm to take a certain variable under scrutiny. The user can also opt to
exclude variables, Vu, in order to avoid the inclusion of, e.g., exogenous variables
such as time stamps of events.

Determine risk

Liability score Risk category

Retrieve liability

Evaluate risk
level and case

Subscribe policy A

Subscribe policy A

Retrieve category

Liability score

Retrieve liability

Fig. 3. The corresponding DMN model based on the process in Fig. 2.

192 J. De Smedt et al.

Algorithm 1. Mining a DMN model from an event log
1: procedure Mine DMN mod(L, st, Vu, minsup) � Input: Log and parameters
2: Ddm, ID ← ∅, S(V, A) ← 0 � Initialize variables
3: for e ∈ L do
4: if et−1 �= ∅ then � Skip first event to avoid non-existing et−1

5: for v ∈ var(e) \ Vu do � Vu excludes user-set variables
6: if valv(et−1) �= valv(e) then
7: S(v, a) + + � Raise the variable’s shift counter

8: for a ∈ A do (Ddm, ID) ∪ buildModels(a, st, minsup)

9: return buildDMNmodel(Ddm, ID)

4.1.2 Step 2: Classify the Activities
Once the influence of activities over variables is extracted, it can be used to
determine whether a rationale between input and output of an activity exists.
The shift metric is used to determine whether an activity actually altered the
value of the variable, as outlined in Algorithm2. If this is the case, i.e., the
variable a is believed to have changed, then a predictive model is built which
takes a as the target variable. Note that any type of predictive model can be
used, e.g., decision trees, neural networks, SVMs, and so on. All other variables,
i.e., var(a)\a, are used as independent variables to determine the value of a. The
downside of doing this, however, is that variables which are set together should
not serve each other’s predictive model as they are completely dependent of each
other. This is somewhat remedied in step 3, however, cannot be fully avoided in
the current approach. The evaluation of the model L is then considered to justify
whether there was a causal link between the newly-set variable (v), and the other
ones (var(a)\v). For this, the Area Under Receiver Operating Curve (AUROC)
value is evaluated. In case the value L.AUROC is high enough, determined
by the adjustable parameter minsup, the value is considered to be determined
by the activity, which gets saved as a decision node da = (vL, v, L) in Ddm

with vL the significant independent variables of the predictive model and L the
decision logic (e.g. a decision table). Note that only a singleton is considered
for output, and the decisions are not multi-objective due to the nature of the
predictive models used. If an activity is considered not to be a decision activity,
but the event witnessed a shift nonetheless, the activity is considered to be an
administrative activity, for it introduces a new value to a variable. It is stored
in ID. If no shifts are made by the activity, it is considered to be an operational
activity and out of scope for the decision model. Note that at any time, the
corresponding decision logic is stored in L.

4.1.3 Step 3: Build the Decision Model(s)
Next, the elements from Ddm and ID need to be connected by IR to obtain a
DMN model. To do so, all the inputs from ID that correspond with the inputs
of the decisions in Ddm are connected, as well as the outputs of decisions in
Ddm that also correspond with the inputs of other decisions. This is shown in

Towards a Holistic Discovery of Decisions 193

Algorithm 2. Constructing relations between variables of an activity
1: procedure buildModels(a, st, minsup) � Input: event log and parameters
2: for v ∈ var(a) do
3: if S(v, a) > st then
4: L ← buildPredictiveModel(a, var(a) \ v)
5: if L.AUROC > minsup then � Check if the model is explanatory
6: Ddm ← da = (vL, v, L) � Save decision as decision node
7: else ID ← (a, v) � Save variable as input node set by a

8: return (Ddm, ID)

Algorithm 3. For every relation between two decisions, it is checked whether the
sequence of the relation is correct, i.e., the decision input is indeed decided before
the decision is used as an input, as shown as a1 < a2 on lines 4 and 6. This can
be done in numerous ways, according to, e.g., the number of times the decision
delivering the input is followed by the decision using the input. This somewhat
counters the effect of correlating variables that are set together, as discussed in
step 2, because although they are related the check identifies whether there has
been a previous value on which the shift might have been based. This can also
indicate that a variable is influencing its own future value, such as is the case
for CC in the running example. The number of DRDs depends on whether all
components are connected, or not. Noteworthy is that multiple decisions can
happen simultaneously, as an activity can set multiple variables at the same
time. Control flow-based approaches do not incorporate this possibility.

Algorithm 3. Constructing the output DMN model
1: procedure buildDMNmodel(Ddm, ID)
2: for da

1 = (I1, o1, L) ∈ Ddm do
3: for da

2(I1, o1, L) ∈ Ddm do
4: if o1 ∈ I2 ∧ a1 < a2 then IR ← (a1, a2)
5: else if o2 ∈ I1 ∧ a1 > a2 then IR ← (a2, a1)

6: add all i ∈ I1 that were not added by other decisions

7: return (Ddm, ID, IR) � The DMN model as DRD

4.1.4 Step 4: Mine the Control Flow of the Decisions
The final step from the P-MInD approach exists in substituting all the occurrences
of the activities, once classified, with the corresponding decision nodes from the
DRD in the event log. I.e., According to which values are set in a certain instantia-
tion of the activity in the event log, the appropriate decision variant of that activity
setting that value replaces the generic activity label. If multiple variables are set
at the same time, they are merged in one label. This way, the control flow over
the decisions can be mined directly as well. It can also be used to verify the rela-
tions between the decisions, i.e., lines 4 and 6 in Algorithm 3. Any process mining

194 J. De Smedt et al.

technique that mines control flow, e.g., Inductive Miner [21] can be used towards
this outcome. Hence, the event log forms the source for both the decision and the
process model, which gets extended with decision information.

The P-MInD approach can be considered a framework for integrated decision
and process mining as numerous placeholders are present in the steps. Both the
inference of connections between the different inputs and outputs of decisions,
as well as the control flow perspective can be adjusted according to the most
appropriate algorithms. However, the 4-step approach provides a fundamental
basis for obtaining an integrated model that contains a decision model that spans
the whole control flow and in which long distance dependencies and loops in the
control flow do not clutter the decision model.

4.2 Application to Running Example

Consider the running example in the case of it being recorded in an event log
L. The algorithm will first evaluate all events (e ∈ L) and classify the activities.
There are shifts (S(v, a) > 0) of variable values for activities RL, RC, DR, and
SPA. In step 2, predictive models are built for all the variables for which the
values shifted (S(v, a) > st). Models with a significant AUROC can be trained,
i.e., Ddm gets dDR = ({LS,RiC}, RS, LDR→RS) and dSPA(LS,CC,LSPA→CC),
in case no noise is present. The other activities with shifts are administrative
activities and are considered as input nodes, i.e., ID gets {(RL,LS), (RC,RiC)}.
In step 3, the models are constructed by connecting the input and output nodes
of the different decision models where RL and RC serve as inputs for DR and
LS serves as input for SPA. This way, the same DRD as in Fig. 3 is obtained,
without the operational activities. Finally in step 4, all the decision activities in
Ddm replace the activity instances of DR and SPA. Note that in this case, there
are no multiple variants of the activities as they only decide on one variable.

Fig. 4. DRDs mined from the 2013 BPI challenge logs with st = 0.1 and minsup = 0.8.

Towards a Holistic Discovery of Decisions 195

5 Implementation and Empirical Evaluation

In this section, an overview of the implementation and empirical evaluation is
given. Additionally, a concise comparison with existing techniques is provided.

5.1 Implementation

The concepts of Sect. 4 are implemented in Java and can be used with any XES
file [22]. A working prototype can be found at http://processmining.be/PMInD.
The current models are built using the decision table plugin of the Weka data
mining toolbench1, however, any inference technique can be used to build the
decision model. The output is displayed as a (set of) DRDs and can be set to
display the decision logic layer in form of a decision table as well.

5.2 Evaluation

The approach was applied to the event logs made available for the 2013 BPI
Challenge2. No extra pre-processing was performed, i.e., the unaltered files were
used to create the output. The contents pertain to an incident management log
at Volvo IT Belgium, in which cases are assigned a certain status according to
their nature and urgency. This type of process is typically very decision-driven
and provides a suitable example to illustrate how the decision model surrounding
the process can be constructed. The log is used to evaluate the first three steps
of the P-MInD framework and the output can be found in Fig. 4. A Petri net
representing the control flow model for the closed problems log, mined with
Inductive Miner (noise threshold 0.2) [21] and annotated with read and write
operations (standard settings) [13] is depicted in Fig. 5.

The results for the incident and closed problems logs are shown. Small, two
node-DRDs are excluded from the results (hence also the DRD for the open
problems variant). In the DRDs, it can be seen how the variables are actually
used to decide on other variables. Furthermore, it creates a picture of how the
loops should be interpreted. Many decisions in the DRDs are re-initiated many
times, and it might be that, e.g., the resource’s country that deals with a certain
case is determined, and later redetermined, as is the case for Queued Awaiting
Assignment and Accepted Assigned. Finally, multiple decisions can occur at the
same time. The downside of relating dependent variables, e.g., resource country
and org resource are frequently set together and therefore should not be included
in each other’s predictive model, is present. However, the DRD still explains
how the re-occurrence of the decision activity Queued awaiting assignment does
influence the decisions regarding the variables’ values over time. This is invisible
to control flow-based approaches.

Other techniques for decision (point) analysis have a hard time to capture
the intrinsics of the relations between the activities as their results are still

1 http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html.
2 http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07.

http://processmining.be/PMInD
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/DecisionTable.html
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

196 J. De Smedt et al.

intertwined with the specific areas of a process model that contain XOR-gates.
Indeed, the control flow needs many invisible activities and extra places (which
constitute decision points) to tailor for the convoluted control flow, while the
data, and hence the decisions, are driving the process. In Fig. 5, it is illustrated
that the technique of [13] has a hard time deriving interesting guards from the
control flow. In Fig. 4, the result of applying the approach from [4] shows that,
as a result of the unclear interplay of control flow constructs, only a single DRD
can be constructed because of the presence of loops and convoluted decision
dependencies, as well as nominal data variables. They prevent the algorithm from
finding relations between data decisions (attributes), and control flow decisions.
In this respect, P-MInD is better capable of giving insights into how the process
actually evolved. By applying step 4 and replacing activities by their decision
variants, no clearer control flow could be retrieved than in Fig. 5, confirming that
the process is decision-driven (Fig. 6).

5.3 Comparison with Existing Techniques and Limitations

Contrary to [2–4], P-MInD considers the activities as the main contributors of
the decision model, i.e., the decisions are made by the activities, rather than
focusing on how the control flow has decided on how and where the decisions
are made. Unlike P-MInD, techniques based on decision point analysis are not
able to discover long-distance decision dependencies (with the exception of [4]),
as they only focus on the XOR-gates of a process model. Besides, P-MInD also
supports the occurrence of multiple decisions at the same time, as activities are

Fig. 5. Petri net mined with Inductive Miner to visualize the control flow and annotated
with read and write operations.

Fig. 6. DRD mined with the approach proposed in [4].

Towards a Holistic Discovery of Decisions 197

able to set multiple variables simultaneously. Furthermore, the interplay between
the minsup and st threshold provides a way to deal with noise, rather than only
incorporating results of a perfectly fitting decision tree inference. The retrieval
of reading and writing operations as in [13] is similar, however, the way in which
they are related to the activities is different. In P-MInD, the variables are incor-
porated into the activities to form decisions. The focus is on the relation between
the attributes through the activities, rather than towards determining the guards
of the activities. While the approach of [4] is also capable of finding long dis-
tance dependencies and mining DRDs, it suffers from incorporating control flow,
which can clutter up DRDs and is incapable of displaying loops. Furthermore,
attributes are considered decisions, while P-MInD considers the activities as the
drivers of decisions. Overall, P-MInD does not heavily rely on control flow infor-
mation, although it is incorporated in steps 3 and 4 (by the < relations). It
adheres to the separation of concerns between decisions and processes. Hence,
P-MInD can be categorised in the fourth decision mining quadrant of Fig. 1.
Nevertheless, decision point analysis is compatible with P-MInD. By mining for
the exact locations where certain decisions are made, the DRDs can be refined,
or augmented with routing information.

The major limitation of the technique, however, stems from its independence
of control flow. As illustrated before, it requires a more profound explanation
of loops to avoid correlating dependent variables that are set at the same time,
and does not use a strong way to incorporate sequence information in the DRD.

6 Conclusion and Future Work

This work revised the way in which a holistic decision model for process-driven
environments can be retrieved. First of all, a classification of process activities
was made to bridge the gap with decision model constructs. Next, an approach
for retrieving DRDs based on the concept of operational, administrative, and
decision activities was proposed. The approach was evaluated on the 2013 BPI
Challenge log to illustrate the empirical usefulness of the framework. The results
show that it is better capable of representing the decision layer of a process than
existing techniques, as it does not solely rely on control flow, hence allowing for
different insights into how data variables and decisions are related to activities,
over long distance dependencies and loops as well.

In future endeavors, it will be investigated in what way the decision model
can aid in refactoring the process model, according to the findings of [9]. This
way, redesign can be suggested automatically. Furthermore, it will be tested
which inference techniques are the most suitable to refine the retrieval of decision
models, as P-MInD was only tested with decision table learning. Finally, while it
is now assumed that the shifts hold over the whole model and can be conjoined
for a global decision model, it will be investigated how an event log can be broken
down according to the shifts, and the models that correspond to the particular
decisions they are tied to.

198 J. De Smedt et al.

References

1. OMG: Decision Model and Notation (2015)
2. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,

Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425.
Springer, Heidelberg (2006). doi:10.1007/11841760 33

3. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision
logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). doi:10.1007/
978-3-319-19069-3 22

4. Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs.
In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp.
237–251. Springer, Cham (2016). doi:10.1007/978-3-319-39426-8 19

5. de Leoni, M., Dumas, M., Garćıa-Bañuelos, L.: Discovering branching conditions
from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE
2013. LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37057-1 9

6. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision min-
ing revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M.,
Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016).
doi:10.1007/978-3-319-39696-5 23

7. Vanthienen, J., Caron, F., De Smedt, J.: Business rules, decisions and processes:
five reflections upon living apart together. In: Proceedings SIGBPS Workshop on
Business Processes and Services (BPS 2013), pp. 76–81 (2013)

8. OMG: Business process model and notation (BPMN) 2.0 (2011)
9. Janssens, L., Bazhenova, E., Smedt, J.D., Vanthienen, J., Denecker, M.: Consistent

integration of decision (DMN) and process (BPMN) models. In: CAiSE Forum.
CEUR Workshop Proceedings. vol. 1612, pp. 121–128. CEUR-WS.org (2016)

10. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow
support: dynamic workflow execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69534-9 42

11. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

12. Kim, A., Obregon, J., Jung, J.-Y.: Constructing decision trees from process logs
for performer recommendation. In: Lohmann, N., Song, M., Wohed, P. (eds.)
BPM 2013. LNBIP, vol. 171, pp. 224–236. Springer, Cham (2014). doi:10.1007/
978-3-319-06257-0 18

13. de Leoni, M., van der Aalst, W.M.: Data-aware process mining: discovering deci-
sions in processes using alignments. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pp. 1454–1461. ACM (2013)

14. Petrusel, R., Vanderfeesten, I., Dolean, C.C., Mican, D.: Making decision process
knowledge explicit using the decision data model. In: Abramowicz, W. (ed.) BIS
2011. LNBIP, vol. 87, pp. 172–184. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21863-7 15

15. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for corre-
lating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 16

http://dx.doi.org/10.1007/11841760_33
http://dx.doi.org/10.1007/978-3-319-19069-3_22
http://dx.doi.org/10.1007/978-3-319-19069-3_22
http://dx.doi.org/10.1007/978-3-319-39426-8_19
http://dx.doi.org/10.1007/978-3-642-37057-1_9
http://dx.doi.org/10.1007/978-3-642-37057-1_9
http://dx.doi.org/10.1007/978-3-319-39696-5_23
http://dx.doi.org/10.1007/978-3-540-69534-9_42
http://dx.doi.org/10.1007/978-3-540-69534-9_42
http://dx.doi.org/10.1007/978-3-319-06257-0_18
http://dx.doi.org/10.1007/978-3-319-06257-0_18
http://dx.doi.org/10.1007/978-3-642-21863-7_15
http://dx.doi.org/10.1007/978-3-642-21863-7_15
http://dx.doi.org/10.1007/978-3-319-10172-9_16
http://dx.doi.org/10.1007/978-3-319-10172-9_16

Towards a Holistic Discovery of Decisions 199

16. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Cooper.
Inf. Syst. 24(01), 1550001 (2015)

17. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol.
6551, pp. 1–24. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19589-1 1

18. De Smedt, J., vanden Broucke, S.K.L.M., Obregon, J., Kim, A., Jung,
J.-Y., Vanthienen, J.: Decision mining in a broader context: an overview of the
current landscape and future directions. In: Dumas, M., Fantinato, M. (eds.)
BPM 2016. LNBIP, vol. 281, pp. 197–207. Springer, Cham (2017). doi:10.1007/
978-3-319-58457-7 15

19. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

20. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer,
Cham (2017). doi:10.1007/978-3-319-59536-8 34

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.)
PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). doi:10.
1007/978-3-319-07734-5 6

22. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 5

http://dx.doi.org/10.1007/978-3-642-19589-1_1
http://dx.doi.org/10.1007/978-3-319-58457-7_15
http://dx.doi.org/10.1007/978-3-319-58457-7_15
http://dx.doi.org/10.1007/978-3-319-59536-8_34
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-319-07734-5_6
http://dx.doi.org/10.1007/978-3-642-17722-4_5

Effect of Linked Rules on Business Process
Model Understanding

Wei Wang1(✉), Marta Indulska2, Shazia Sadiq1, and Barbara Weber3

1 School of Information Technology and Electrical Engineering, The University of Queensland,
Brisbane, Australia

w.wang9@uq.edu.au, shazia@itee.uq.edu.au
2 University of Queensland Business School, The University of Queensland, Brisbane, Australia

m.indulska@business.uq.edu.au
3 Department of Applied Mathematics and Computer Science, Technical University of Denmark,

Kongens Lyngby, Denmark
bweb@dtu.dk

Abstract. Business process models are widely used in organizations by infor‐
mation systems analysts to represent complex business requirements and by busi‐
ness users to understand business operations and constraints. This understanding
is extracted from graphical process models as well as business rules. Prior
research advocated integrating business rules into business process models to
improve the effectiveness of important organizational activities, such as devel‐
oping shared understanding, effective communication, and process improvement.
However, whether such integrated modeling can improve the understanding of
business processes has not been empirically evaluated. In this paper, we report
on an experiment that investigates the effect of linked rules, a specific rule inte‐
gration approach, on business process model understanding. Our results indicate
that linked rules are associated with better time efficiency in interpreting business
operations, less mental effort, and partially associated with improved accuracy of
understanding.

Keywords: Business process modeling · Business rule modeling · Cognitive
research

1 Introduction

In the Business Process Management (BPM) life cycle, the success of business process
(re)design, analysis, and simulation are all underpinned by the assumption that the busi‐
ness activities are well understood. This understanding is extracted from graphical
process models, which mainly focus on the temporal or logical relationships between
business activities, as well as business rules, which are constraints and mandates that
control the behavior of the process and business activities. Lack of good understanding

This work is partially supported by ARC DP140103171 and China Scholarship Council.

© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 200–215, 2017.
DOI: 10.1007/978-3-319-65000-5_12

of a business process and business rules that constrain the process can give rise to many
risks. Users may inadvertently breach required standards of operation or make ill-
informed decisions. Different stakeholders, such as process designers, information
systems developers, and process participants may have inconsistent, or even conflicting,
understanding of the same process. Ultimately, such inconsistencies hinder the effec‐
tiveness of important organizational activities and introduce risks of noncompliant
process execution.

While all graphical process models generally integrate some aspects of rules (e.g.
through control flow of the process), business rules can be represented in an integrated
manner or in a separated manner. When represented in an integrated manner, they are
shown graphically in a process model, either as textual annotations [1], as graphical
links to external rules [2], or diagrammatically using the native notation of the graphical
model [3], e.g. through a combination of sequence flows, activities and gateways. When
modeled in a separated manner, rules are captured in separate documents or rule engines,
and the relationships between the business process models and the rules are not explicitly
represented in the process models. Traditionally, due to limited support for representa‐
tion of business rules in graphical process modeling techniques [4], organizations often
store such representations in separate text documents, spreadsheets, or disconnected
business rule repositories [5]. Over the past two decades, prior work has argued for the
need to model business rules in an integrated manner with business processes [6, 7], and
a variety of integration methods [1–3, 6, 8–11] and initial guidelines on rule integration
[5] have been developed.

Arguments for such integration are typically based on an assumption of process
improvement and shared understanding [5]. However, despite such arguments, and
despite the different integration methods developed, if and to what extent such integra‐
tion improves user understanding of the process models has not been investigated. In
particular, while researchers have argued that integrated modeling can improve the
understanding of business processes [5], this proposition has not been empirically eval‐
uated. In this paper, we first present the theoretical foundation of the effects of rule
integration on the cognitive activities of process model comprehension. With a focus on
linked rules, a type of rule integration with process models, we then hypothesize the
relationships between linked rules and process model understanding and report the
results of our experiment to determine if linked rules can improve the understanding of
process models.

2 Background and Related Work

A business process is a structured collection of activities that accomplishes a specific
goal [12]. Such structures also involve business rules, which specify obligations, permis‐
sions, and restrictions that will limit the choice of approaches toward achieving a given
goal [13].

Business process modeling and business rule modeling both focus on creating a
representation of the organization’s current and future practices. They are complemen‐
tary approaches as they address distinct aspects of organizational practices. The overlap

Effect of Linked Rules on Business Process Model Understanding 201

between business process models and business rules indicates a need to model the two
related aspects together. Researchers argue that the integration of business rules into
business process models can achieve better process model understanding [14–16], and
improved governance, risk management and control [1, 17]. At the same time, however,
researchers have identified a general lack of capability among process modeling
languages to adequately represent business rules [4, 18, 19].

To solve this problem, a variety of integration methods and techniques have been
developed since the publication of the first paper suggesting that business process and rule
modeling approaches should be merged [20]. To name a few, McBrien et al. defined the
structure of rules to couple business process models and rules [21]. Knolmayer et al. refined
process modeling and linked the resulting models to workflow execution through layers
of so-called Reaction Business Rules [22]. Kovacic et al. developed a meta-model to
demonstrate how rules can link process, activity, events, data objects, and software compo‐
nents [13]. To summarize, three forms of integration of business process models and rules
have been developed in literature viz. link integration, text integration, and diagrammatic
integration. These approaches are summarized below and illustrated in Fig. 1.

Link integration. Link integration approaches incorporate information about the loca‐
tion of a related, externally documented, rule in a process model. Links can be static or
automatic. In static link integration, the location information can be the section number
and id, or the page number of the rule in a rulebook, thus allowing process users to locate
the rule. Automatic link integration means the location information can be implemented
as links, which will automatically navigate to the rule in the rule repository when the
link is clicked. Notable contributions on link Integration are [2, 9].

Text integration. Text integration approaches represent the content of a rule textually
in a business process model. For example, BPMN has a text annotation construct which
allows users to put business rules into such an annotation construct in sentential format.
Notable contributions on text integration are [1, 11].

Diagrammatic integration. While rules in link integration and text integration are
represented in a sentential format, diagrammatic integration approaches represent rules in
a diagrammatic format in a process model, using process modeling constructs such as
sequence flows and gateways. A notable contribution on diagrammatic integration is [3].

Link integration Text integration Diagrammatic integration

Fig. 1. Integration methods illustration

202 W. Wang et al.

According to [23], the fundamental purpose of conceptual models is to improve
users’ understanding of the static and dynamic phenomena in a domain, and then to help
developers and users to communicate and to serve as a basis for design. Process models
are a typical type of conceptual model, and the factors affecting the understanding of
process models have been well studied. Factors affecting the understanding of process
models can be classified into two categories: process model factors and individual
factors. Process model factors relate to the metrics of the process models, such as modu‐
larization [24], block structuredness [24], and complexity [25]. Individual factors, or
personal factors, relate to process model users, such as an individual’s domain knowl‐
edge [26], modeling knowledge [27], modeling experience [24], and education level
[24]. Figl et al. [28] provided a comprehensive overview of the literature on process
model comprehension.

The argument that rule integration can improve process model understanding is the
foundation that has motivated the development of different integration methods and
techniques. The evaluation of the argument is critical to progress this research field.
However, despite a considerable number of integration methods have been introduced
using existing process modeling constructs, and despite many factors that can effect
process model understanding have been identified, the question of whether integrating
business rules into process models can improve the understanding of process models
has not been theoretically analyzed nor empirically evaluated.

3 Theoretical Background

The limitations of diagrammatic integration are widely known due to the expressibility
limitations of process modeling languages [1]. Similarly the drawbacks of rule integra‐
tion through text annotations are duplicate and potentially inconsistent rule representa‐
tions [29]. Hence in this paper we focus on a specific form of rule integration, namely
link integration – an approach that points the model to the relevant rule, rather than
duplicating that rule in the process model in either text or graphical form.

Link integration approaches incorporate visual links that connect the relevant rules
to a section of the model – i.e. the links are explicitly represented on the activities or
gateways that the rules constrain. This approach thus makes the connections of rules
and corresponding activities explicit, presumably reducing cognitive load required to
mentally connect rules to the appropriate part of the process model [16]. When rules are
modeled in a separated manner, on the other hand, they have to be semantically inter‐
preted and manually matched by the model user to the relevant parts of the model. This
is an error-prone process that requires the user to interpret the business rule against the
background of the entire model to determine best fit. Accordingly, our first aim is to
investigate the effect of link integration on process understanding accuracy, which
means how well a process model is understood:

Hypothesis 1: Process models with linked rules are associated with better under‐
standing accuracy compared with separated rules.

When rules are separated, all rules are organized as one set of rules, represented in
some textual form (either plain text or in one of the business rule modeling languages).

Effect of Linked Rules on Business Process Model Understanding 203

Finding the relevant rules that constrain a specific activity or gateway requires a compre‐
hensive search and semantic interpretation of the set (e.g. linearly down the entire list
of rules), which takes more time to mentally connect rules and a process model.

Accordingly, our second aim is to investigate the effect of rule linking on process
understanding efficiency, focusing on how much time it takes a participant to review the
process model and related rules to demonstrate understanding accuracy.

Hypothesis 2: Process models with linked rules are associated with better under‐
standing time efficiency compared with separated rules.

As extra cognitive activities such as search and semantic interpretation are needed
with rule linking, our third aim is to investigate the mental effort:

Hypothesis 3: Process models with linked rules are associated with less mental effort
needed for understanding.

Despite the benefits, link integration is not without limitations. First, people using
linked rules may focus on the interactions of specific rules and process components,
without a holistic understanding of the process model and rules as a prerequisite, thus
may have inaccurate understanding. Second, it can cause the attention switching effect
[30], which means that users need to split their attention among multiple sources of
information and mentally integrate them. Given separated rules as a whole list, one can
choose to learn and assimilate more rules before switching attention to a process model,
thus to reduce attention switches and time needed. It is therefore not clear to which
degree the additional cognitive cost in terms of attention switching counter-balances the
improvement in understanding. Thus, a study is needed to investigate this effect of busi‐
ness process and rule integration. To this end, we propose an experimental approach to
test our hypotheses.

4 Research Method

This study applies an experiment research method to explore differences between linked
and separated business process models and rules. In this section, we introduce our
experimental design and describe our instruments, experiment settings and participants.

4.1 Experiment Design

The experiment is a single factor experiment. In our experiment, the use of linked rules
is the considered factor, with factor levels “present” and “absent”. We used two groups,
two factor levels, and two domains in our experiment. Each group was tested with two
domains separately, and for each domain, the two groups had different factor levels.

We have three main considerations in our between-subject design. First, our experi‐
ment environment only allows us to have one participant to do the experiment at a time.
Second, the understanding performance depends on an individual’s cognitive compe‐
tence and experience. Thus, group imbalance is a challenge for between-subject design.
Third, we want to increase the generalization ability of the experiment in terms of
domains, while controlling the learning effect.

204 W. Wang et al.

Under these considerations, we designed our experiment as a balanced single factor
experiment with repeated measurement, based on an experiment design from [24] which
can increase the power of the experiment given the same number of participants [31].
The overall design is illustrated in Fig. 2. In this design, each participant will be tested
for all factor levels and all domains, thus (1) more data will be collected than in a single
run experiment, (2) two domains are tested to increase the generalizability of the results.
The order of factor levels is reversed between groups, so the factor of order of treatment
and learning effect are counterbalanced across groups. Please note that the forms of rule
representation are inversed in the two runs. In the first run, Group 1 are given linked
rules and Group 2 are given separated rules, while, in the second run, Group 1 are given
separated rules and Group 2 are given linked rules.

Fig. 2. Overall experiment approach

As illustrated in Fig. 3, when linked rules are present, link buttons (labeled with “R”)
will be shown on activities and gateways in a process model, when a link button is
clicked, the rules that are connected to the activity/gateway via the link button will be
displayed on the “Relevant Rules” area on the right of the screen. When linked rules are
absent, no link buttons will be shown in a process model, and all rules will be displayed
in the “Relevant Rules” area on the right side of the screen.

4.2 Measurements

To measure the accuracy of understanding we use the percentage of correct answers to
comprehension questions. We use the time from the point that a process model is
displayed on the screen, to the point that the last question for this process model is
answered as the measurement of time efficiency. To measure mental effort we use both
an objective measure and a perception measure. We used the eye-fixation duration for
each model as the objective measure. Eye-fixation is the maintaining of the visual gaze
on a single location. Vision is suppressed during the eye saccade, and new information
is acquired only during the fixation. Eye-fixation duration was proved to surpass pupil
size as a mental effort measure [32]. As measure of perception of required mental effort,
we asked each participant to select the model he or she perceived more difficult.

Effect of Linked Rules on Business Process Model Understanding 205

4.3 Instruments

We briefly describe each part of the experimental instruments below.

Questionnaire. We have a pre-experiment questionnaire and a post-experiment ques‐
tionnaire. Questions for which the answers could be affected by participating in the
experiment, such as the extent of familiarity with business process models and rules,
and the extent of familiarity with the knowledge domains used in the experiment, were
included in the pre-experiment questionnaire. To save a participant’s mental effort
before the experiment, objective questions which could not be affected by the partici‐
pation in the experiment, such as a participant’s major and which year he or she is in,
were put into a post-experiment questionnaire, together with a question asking partici‐
pants which model consumed most of their mental effort in the experiment.

Tutorial and examples. The tutorial covered all BPMN elements and business rule
concepts that participants would need to know to perform the tasks, e.g. activity,
sequence, activity group, parallel gateway, exclusive gateway, and business rules.
Example process models, rules, as well as questions and answers were provided after
the tutorial. The instructions direct participants to study the process models, click the
rule links, read the rules, and answer the questions. The order of treatments in the tutorial
and examples are consistent with the order in the experiment.

(a) Linked rules

(b) Separated rules

Fig. 3. Independent variable illustration

206 W. Wang et al.

Treatment design. To limit the learning effect, only two process models were used,
and only three questions were asked for each model. The information needed from a
process model and rules to answer a question are independent from each other thus the
information learned from a previous question has little contribution to the current ques‐
tion. We designed process model A based on previous experiments [33, 34], and
designed process model B to keep the complexity of the two models as close as possible.
The rules and questions of the two process models are designed with the same cognitive
load level in mind. The rules covered common rule violations such as time constraints,
route selections, and data logic. To assimilate what happens in practice, several rules
can control a single activity, and a violation of any of the rules will lead to a breach. We
kept a variety of metrics of the two sets of models, rules, and questions the same or as
close as possible. A package of the entire experiment is available for download on
Dropbox1.

4.4 Settings

The pre-experiment and post-experiment questionnaires were implemented in Qualtrics2.
The tutorial and experiment were implemented as an Eclipse RCP application3. The texts
and diagrams were proved to be clearly visible from a distance of over 60 cm in the pilot
test. As shown in Fig. 4, the screen was divided into three Areas, viz. Process Model Area,
Relevant Rules Area and Questions Area. The complete process model and all the rules
are displayed without the need of scrolling. No zooming is allowed in the application. All
text and diagrams are in black and white so color blindness will not introduce bias to the
experiment. We used Tobii Pro TX300, an eye tracker with a 23-inch screen of a resolu‐
tion of 1920 × 1080 that captures gaze data at 300 Hz4. The experiment was set in a lab.
The lab has no window and the rooftop lights are the only light source. The materials, eye-
tracker, and lights had the same settings for all participants.

1 The experiment can be downloaded from https://www.dropbox.com/s/g6jpb767m474vv2/
experiment.rar?dl=0.

2 Qualtrics is a web-based survey platform. See: www.qualtrics.com.
3 Eclipse RCP is a platform for building applications. See: https://wiki.eclipse.org/

Rich_Client_Platform.
4 For more specifications, please see http://www.tobiipro.com/product-listing/tobii-pro-tx300.

Effect of Linked Rules on Business Process Model Understanding 207

https://www.dropbox.com/s/g6jpb767m474vv2/experiment.rar?dl=0
https://www.dropbox.com/s/g6jpb767m474vv2/experiment.rar?dl=0
http://www.qualtrics.com
https://wiki.eclipse.org/Rich_Client_Platform
https://wiki.eclipse.org/Rich_Client_Platform
http://www.tobiipro.com/product-listing/tobii-pro-tx300

Fig. 4. Instrument Illustration

4.5 Participants

Students at an Australian university participated in this experiment voluntarily. Eight
PhD students participated in the pilot tests. Fifty coursework students of an information
systems course participated in the main experiment and were randomly assigned to two
groups. Our sample size is considerable compared with other comparable experiments,
which have sample sizes between 20–30 [32, 35]. All participants were required to have
basic knowledge of flowcharts, UML or ER diagrams. We only used the most basic
BPMN symbols and easily understandable daily English in the material, which did not
require substantial experience from our participants. We did not put a time limit for each
student, and all fifty students finished the experiment within an hour. Forty-eight students
finished the experiment successfully, and the eye movements of two students in Group
1 failed to be properly recorded by the eye-tracker. Thus, we discarded the two samples
in the analysis of eye-movement related data. As an incentive, each student was offered
a $30 voucher for participation.

5 Results

For comparing categorical dependent variables between two groups such as answer
correctness and the choice of mental effort, we use Chi-squared test, which can be used
to compare categorical data [36]. For other numerical dependent variables, we first
checked if a dependent variable is normally distributed using Shapiro-Wilk test at a
significance level of 0.05 [36]. If data of both groups were normally distributed, we
checked whether the data met the assumption of equal variance using dependent

208 W. Wang et al.

Levene’s test5 at the significance level of 0.05, and then used the independent-sample t
test. If data in any group were not normally distributed, we used the Mann-Whitney U
test6 across groups. We describe the results for each hypothesis in turn.

For Hypothesis 1, we ran Chi-square tests between the two groups, with the correct‐
ness of answers as the dependent variable, for the two models separately. Table 1 shows
the Chi-square test results, which show that understanding accuracy was significantly
correlated with the form of rule presentation in Model 2 (p = 0.03), but not in Model 1
(p = 0.16), which partially supports Hypothesis 1.

Table 1. Test of Hypotheses 1 – understanding accuracy

Group Correct Incorrect Row total p
Correctness in Model 1 G1 55 20 75 0.16

G2 47 28 75
Column total 102 48 150

Correctness in Model 2 G1 47 28 75 0.03
G2 59 16 75
Column total 106 44 150

Conclusion 1: Linked rules are partially associated with an improved understanding
accuracy.

For Hypothesis 2, the time spent of Group 2 in Model 2 was not normally distributed.
We ran independent-sample Mann-Whitney tests between Group 1 and Group 2, with
the time (from beginning to the end of answering the last question in each run) as the
dependent variable. The test result of Hypothesis 2 is shown in Table 2. Table 2 shows
that time used in each model is related to the form of rule presentation, supporting
Hypothesis 2 at a significance level of 0.05.

Table 2. Test of Hypothesis 2: understanding efficiency

Group N Mean Std. Deviation p (1-tailed)
Time used in Model 1 G1 23 368.76 110.23 0.015

G2 25 481.18 218.10
Time used in Model 2 G1 23 468.57 173.06 0.009

G2 25 370.46 116.88

Conclusion 2: Linked rules are associated with increases in understanding efficiency.
For Hypothesis 3, the eye-fixation durations in the two runs were not normally

distributed. We therefore ran independent-sample Mann-Whitney tests for the two runs
separately. The objective test of Hypothesis 3 is shown in Table 3. From Table 3 we can

5 Levene’s test is an inferential statistic used to assess the equality of variances for a variable
calculated for two or more groups.

6 The Mann-Whitney U test is used to compare differences between two independent groups
when the dependent variable is not normally distributed.

Effect of Linked Rules on Business Process Model Understanding 209

see that the mental effort is associated with the type of rule presentation, supporting
Hypothesis 3 at a significance level of 0.05.

Table 3. Test of Hypothesis 3: objective mental effort

Group N Mean Std. Deviation p (1-tailed)
Fixation duration in Model 1 G1 23 322.98 100.30 0.024

G2 25 411.43 188.22
Fixation duration in Model 2 G1 23 409.68 159.94 0.007

G2 25 318.53 102.31

The results of the perception of mental effort are shown in Table 4. In Group 1, 0
participants selected Model 1 (linked rules), while 23 participants selected Model 2
(separated rules) as the model requiring more mental effort. Two participants selected
‘equal’ as the answer. In Group 2, 11 participants selected Model 1 (separated rules),
while 6 participants selected Model 2 (linked rules) as the model requiring more mental
effort. Eight participants selected ‘equal’ as the answer. From Table 4 we can intuitively
see that participants indicate that models with separated rules require more mental effort,
regardless of model content (model 1 or model 2).

Table 4. Perception of mental effort

Group 1 Group 2
Model 1 requires more mental effort 0 (linked rules) 11 (separated rules)
Model 2 requires more mental effort 23 (separated rules) 6 (linked rules)
Equal 2 8

To statistically compare linked and separated rules, we coded the perception answers
as follows: When a model with linked rules was selected as the model that required more
mental effort, linked rules were assigned 2 points. When the model with separated rules
was selected as the model that required more mental effort, separated rules were assigned
2 points. When a participant selected the two models as equal, both linked rules and
separated rules were assigned 1 point. We used a t test for the difference in average
mental effort perception between linked and separated rules. Table 5 shows that mental
effort in linked rules is significantly smaller than in separated rules.

Table 5. Coded mental effort

N Coded mean Std. Deviation p (1-tailed)
Linked rules 50 0.44 0.70 0.000
Separated rules 50 1.56 0.70

Conclusion 3: Linked rules are associated with reduced mental effort required for
model understanding.

210 W. Wang et al.

6 Discussion

Our results support Hypotheses 2 and 3, indicating that linked rules are associated with
increases in understanding efficiency and reduced mental effort required for model
understanding. While Hypothesis 1 has only partial support. For the results of Hypoth‐
esis 1, the p value for Model 1 was greater than 0.05, indicating a lack of statistical
significance. To explore this result further, first we compared the two models, and the
metrics comparison showed that the two sets of models, rules and questions are the same
or close in all the metrics. Second, we investigated answer correctness and time spent
of each model. The statistics showed that the two sets of models, rules, and questions
had no significant difference (with p = 0.647 and p = 0.822 respectively). Thus, we
concluded that there was no bias between Model 1 and Model 2. Finally, we broke down
the correctness of answers to each question to explore the lack of statistical significance
of the differences between linked and separated rules in Model 1. As shown in Fig. 5,
the result of question 1 shows that the group with linked rules had lower understanding
accuracy than the group with separated rules, which is against Hypothesis 1, while the
correctness of all other 5 questions indicates the support of Hypothesis 1. We assume
that one possible reason is that the participants had not learnt how to use linked rules
well when they met the first question. Recall that we had to balance time with fatigue
and tracking data accuracy and thus had a time constrain in the experiment, so we used
a simple illustration of linked rules (See Fig. 3) in the training material, compared with
the models and rules in the formal experiment what were much more complex and
challenging. Thus, participants may not quickly find how to utilize rule links.

Fig. 5. Answer correctness breakdown to each question

Our study is not without limitations. In terms of internal validity, the different layout
of screen areas could possibly affect the results. It is possible that the experiment results
will be different if we change the location of each area. In terms of construct validity,

Effect of Linked Rules on Business Process Model Understanding 211

we operationalized each construct in our study in limited ways. The questions were
designed to test the understanding of the effect of business rules on business process
models. Following [37], it would have been ideal if we had measured the perceived
quality and efficiency of understanding, and asked questions only about a process model
itself. Thus, our research results are limited to the treatments, measurements, and ques‐
tions that we used. Finally, in terms of external validity, we cannot say that the process
models, rules, and questions we used faithfully reflect those used in organizations in
practice. Organizations may use more complex process models and lager number of
rules and the tasks may be more challenging. The use of students as participants could
also weaken the generalization ability of the results.

7 Conclusions and Outlook

In this paper, we have studied the relationship between rule integration and business
process model understanding. Rules can be integrated into process models in a variety
of ways, and in this paper, we report on our findings based on a specific form of rule
integration, namely linked rules. We focused on 3 aspects of understanding: under‐
standing accuracy, time efficiency, and mental effort. Our study results presented three
conclusions: (1) The association between linked rules and understanding accuracy is
partially supported. (2) Linked rules are significantly associated with improved time
efficiency. (3) Linked rules are significantly associated with reduced mental effort. Our
conclusions are drawn from an experiment design that utilized an eye-tracker. The
design of the experiment provides a methodological contribution towards the study of
process model understanding. Opportunities exist for future research to perform similar
experiments on different rule integration methods such as annotation and diagrammat‐
ical integration [38] and investigate the effects on process model understanding.

Business rules have a broad scope, and business rules can be quite varied in many
aspects such as change frequency, complexity and governance responsibility [38]. Thus,
the best way for each rule to be integrated into a process model can be different. The
characteristics of business rules or different rule categories can influence which inte‐
gration method has the best performance in terms of process model understanding. Quite
a few business rule classification frameworks such as [39, 40] exist in literature. Finding
the connection between type of rule and the best corresponding integration approach to
improve process model understanding will be a valuable topic for future research.

Acknowledgement. We would like to acknowledge the advice from Dr Thomas Taimre
regarding the use of relevant statistical methods.

212 W. Wang et al.

References

1. Cheng, R., Sadiq, S., Indulska, M.: Framework for business process and rule integration: a
case of BPMN and SBVR. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 13–24.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21863-7_2

2. Sapkota, B., van Sinderen, M.: Exploiting rules and processes for increasing flexibility in
service composition. In: 2010 14th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW), pp. 177–185. IEEE (2010)

3. Kappel, G., Rausch-Schott, S., Retschitzegger, W.: Coordination in workflow management
systems — a rule-based approach. In: Conen, W., Neumann, G. (eds.) ASIAN 1996. LNCS,
vol. 1364, pp. 99–119. Springer, Heidelberg (1998). doi:10.1007/BFb0027102

4. Recker, J., Rosemann, M., Green, P.F., Indulska, M.: Do ontological deficiencies in modeling
grammars matter? MIS Q. 35, 57–79 (2011)

5. Zur Muehlen, M., Indulska, M., Kittel, K.: Towards integrated modeling of business processes
and business rules. In: Proceedings of the 19th Australasian Conference on Information
Systems (ACIS)-Creating the Future: Transforming Research into Practice, Christchurch,
New Zealand, pp. 690–697. Citeseer (2008)

6. Habich, D., Richly, S., Demuth, B., Gietl, F., Spilke, J., Lehner, W., Assmann, U.: Joining
business rules and business processes. In: Proceedings of IT (2010)

7. Zur Muehlen, M., Indulska, M.: Modeling languages for business processes and business
rules: a representational analysis. Inf. Syst. 35, 379–390 (2010)

8. Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx
BPMN Editor. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 573–581. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29350-4_68

9. Nalepa, G.J., Kluza, K., Kaczor, K.: Proposal of an inference engine architecture for business
rules and processes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 453–464. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38610-7_42

10. Milanovic, M., Gasevic, D., Rocha, L.: Modeling flexible business processes with business
rule patterns. In: 2011 15th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), pp. 65–74 (2011)

11. Governatori, G., Shek, S.: Rule based business process compliance. In: Proceedings of the
RuleML2012@ ECAI Challenge, article 5 (2012)

12. Hammer, M., Champy, J.: Reengineering the corporation: a manifesto for business revolution.
Bus. Horiz. 36, 90–91 (1993)

13. Kovacic, A., Groznik, A.: The business rule-transformation approach. In: 26th International
Conference on Information Technology Interfaces, vol. 1, pp. 113–117 (2004)

14. Rabova, I.: Methodology of the enterprise architecture creating and the role of the enterprise
architecture in rural development. Agricultural Economics-Zemedelska Ekonomika 56, 334–
340 (2010)

15. Skersys, T., Tutkute, L., Butleris, R., Butkiene, R.: Extending BPMN business process model
with SBVR business vocabulary and rules. Inf. Technol. Control 41, 356–367 (2012)

16. Wang, W., Indulska, M., Sadiq, S.: Cognitive efforts in using integrated models of business
processes and rules - semantic scholar. In: Proceedings of the 28th International Conference
on Advanced Information Systems Engineering (CAiSE Workshop), Ljubljana, Slovenia.
Springer (2016)

Effect of Linked Rules on Business Process Model Understanding 213

http://dx.doi.org/10.1007/978-3-642-21863-7_2
http://dx.doi.org/10.1007/BFb0027102
http://dx.doi.org/10.1007/978-3-642-29350-4_68
http://dx.doi.org/10.1007/978-3-642-38610-7_42

17. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process compliance
with semantic constraints in process management systems. Inf. Syst. Front. 14, 195–219
(2012)

18. Green, P.F., Rosemann, M.: Perceived ontological weaknesses of process modeling
techniques: further evidence. In: Proceedings of the ECIS, pp. 312–321 (2002)

19. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The specification of business rules:
a comparison of selected methodologies. In: Methods and Associated Tools for the
Information Systems Life Cycle, pp. 29–46 (1994)

20. Krogstie, J., McBrien, P., Owens, R., Seltveit, A.H.: Information systems development using
a combination of process and rule based approaches. In: Andersen, R., Bubenko, J.A.,
Sølvberg, A. (eds.) CAiSE 1991. LNCS, vol. 498, pp. 319–335. Springer, Heidelberg (1991).
doi:10.1007/3-540-54059-8_92

21. McBrien, P., Seltveit, A.H.: Coupling process models and business rules. In: Sölvberg, A., Krogstie,
J., Seltveit, A.H. (eds.) Information Systems Development for Decentralized Organizations. ITIFIP,
pp. 201–217. Springer, Boston, MA (1995). doi:10.1007/978-0-387-34871-1_12

22. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by business rules.
In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS,
vol. 1806, pp. 16–29. Springer, Heidelberg (2000). doi:10.1007/3-540-45594-9_2

23. Burton-Jones, A., Meso, P.N.: Conceptualizing systems for understanding: an empirical test
of decomposition principles in object-oriented analysis. Inf. Syst. Res. 17, 38–60 (2006)

24. Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of process
models to enhance their comprehension. Inf. Syst. 36, 881–897 (2011)

25. Mendling, J., Strembeck, M., Recker, J.: Factors of process model comprehension—findings
from a series of experiments. Decis. Support Syst. 53, 195–206 (2012)

26. Bera, P.: Does cognitive overload matter in understanding BPMN models? J. Comput. Inf.
Syst. 52, 59–69 (2012)

27. Recker, J.C., Dreiling, A.: Does it matter which process modelling language we teach or use?
An experimental study on understanding process modelling languages without formal
education. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) Faculty of Science and
Technology, pp. 356–366. University of Southern Queensland, Toowoomba, Australia (2007)

28. Figl, K.: Comprehension of procedural visual business process models–a literature review.
Bus. Inf. Syst. Eng. 59, 41–67 (2017)

29. Loucopoulos, P., Kadir, W.M.N.W.: BROOD: business rules-driven object oriented design.
J. Database Manage. (JDM) 19, 41–73 (2008)

30. Sweller, J., Chandler, P.: Why some material is difficult to learn. Cogn. Instr. 12, 185–233
(1994)

31. Charness, G., Gneezy, U., Kuhn, M.A.: Experimental methods: between-subject and within-
subject design. J. Econ. Behav. Organ. 81, 1–8 (2012)

32. Meghanathan, R.N., van Leeuwen, C., Nikolaev, A.R.: Fixation duration surpasses pupil size
as a measure of memory load in free viewing. Front. Hum. Neurosci. 8, 1063 (2015)

33. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact of hierarchy on
model understandability – a cognitive perspective. In: Kienzle, J. (ed.) MODELS 2011. LNCS, vol.
7167, pp. 123–133. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29645-1_14

34. Zugal, S.: Applying cognitive psychology for improving the creation, understanding and
maintenance of business process models

35. Haji, F.A., Rojas, D., Childs, R., de Ribaupierre, S., Dubrowski, A.: Measuring cognitive load:
performance, mental effort and simulation task complexity. Med. Educ. 49, 815–827 (2015)

36. Box, G.E., Hunter, W.G., Hunter, J.S.: Statistics for experimenters: an introduction to design,
data analysis, and model building. JSTOR (1978)

214 W. Wang et al.

http://dx.doi.org/10.1007/3-540-54059-8_92
http://dx.doi.org/10.1007/978-0-387-34871-1_12
http://dx.doi.org/10.1007/3-540-45594-9_2
http://dx.doi.org/10.1007/978-3-642-29645-1_14

37. Campbell, D.T., Fiske, D.W.: Convergent and discriminant validation by the multitrait-
multimethod matrix. Psychol. Bull. 56, 81–105 (1959)

38. Wang, W., Indulska, M., Sadiq, S.: To integrate or not to integrate – the business rules
question. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 51–66. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_4

39. Zoet, M., Versendaal, J., Ravesteyn, P., Welke, R.J.: Alignment of business process
management and business rules. In: Proceedings of the 19th European Conference on
Information Systems, Helsinki, Finland, p. 34 (2011)

40. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business process
compliance. In: Davis, J.G., Demirkan, H., Motahari-Nezhad, H.R. (eds.) ASSRI 2013.
LNBIP, vol. 177, pp. 100–116. Springer, Cham (2014). doi:10.1007/978-3-319-07950-9_8

Effect of Linked Rules on Business Process Model Understanding 215

http://dx.doi.org/10.1007/978-3-319-39696-5_4
http://dx.doi.org/10.1007/978-3-319-07950-9_8

On the Performance Overhead of BPMN
Modeling Practices

Ana Ivanchikj(B), Vincenzo Ferme, and Cesare Pautasso

Software Institute, Faculty of Informatics, USI, Lugano, Switzerland
ana.ivanchikj@usi.ch

Abstract. Business process models can serve different purposes, from
discussion and analysis among stakeholders, to simulation and execution.
While work has been done on deriving modeling guidelines to improve
understandability, it remains to be determined how different modeling
practices impact the execution of the models. In this paper we observe
how semantically equivalent, but syntactically different, models behave
in order to assess the performance impact of different modeling prac-
tices. To do so, we propose a methodology for systematically deriving
semantically equivalent models by applying a set of model transforma-
tion rules and for precisely measuring their execution performance. We
apply the methodology on three scenarios to systematically explore the
performance variability of 16 different versions of parallel, exclusive, and
inclusive control flows. Our experiments with two open-source business
process management systems measure the execution duration of each
model’s instances. The results reveal statistically different execution per-
formance when applying different modeling practices without total order-
ing of performance ranks.

Keywords: BPMN 2.0 · Execution performance · Semantic equivalence

1 Introduction

As customer retention becomes strongly related to service execution time, veloc-
ity requirements have gone down from days to hours, minutes and seconds. This
is especially true in fully automated Business Processes (BPs), where any addi-
tional millisecond of performance boost brings companies a competitive advan-
tage and potential cost savings on the Cloud [2]. Assuming that model’s exe-
cution semantics has already been optimized, could such boost be achieved by
using what La Rosa et al. [25] call the “Alternative Representation Pattern”,
i.e., modeling the same execution semantics with different static structures? For
instance, parallelism in BPMN 2.0 can be modeled explicitly by using a paral-
lel gateway, or implicitly through multiple outgoing flows from an activity [23].
Although the modeling practices used in two such models are different in terms
of the model’s graph topology (size and used constructs), their execution seman-
tics is the same, i.e., they both depict parallelism. As modelers freely pick which

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 216–232, 2017.
DOI: 10.1007/978-3-319-65000-5 13

On the Performance Overhead of BPMN Modeling Practices 217

modeling practice to use, their choice should result in the same execution per-
formance. Does this expectation hold in practice? Does the answer depend on
the Business Process Management Systems (BPMSs)? These are open questions
which have not received the due attention so far.

The first research question (RQ1) we address in this work is: Does the appli-
cation of different modeling practices have significant impact on the duration of
a BP instance execution? Our null hypothesis (HRQ1) is that there is no statisti-
cally significant difference in the execution duration between instances of models
which are semantically equivalent but structurally different. We use trace equiva-
lence [1] to define semantically equivalent models, i.e., models which produce the
same traces (execution logs), regardless of the differences in their static structure
(the control-flow constructs used). The data flow of the models remains unal-
tered. The second research question (RQ2) we address is: If HRQ1 is rejected,
is there a total order between semantically equivalent but structurally different
models, when ranked according to their performance?

By answering RQ1, BPMS vendors can decide whether there is a potential
for performance improvement of their products based on alternative represen-
tations of deployed BPs. For instance, if an implicit parallel gateway executes
significantly faster than an explicit one, the vendor can use the same imple-
mentation for both. The answer to RQ2, on the other hand, indicates potential
generalization opportunities of any identified optimization rules. For instance, it
can show whether the execution of implicit gateways always ranks better than
the execution of explicit gateways, regardless of the gateway type (e.g., paral-
lel, inclusive, exclusive). Answering both questions is required before investing
in further research towards automatic performance optimization by semantics
preserving model transformations.

To this end, we propose a methodology for transforming an initial model into
semantically equivalent models by using a predefined set of transformation rules.
We also propose a statistical procedure to analyze the results of executing the
equivalent models in order to answer the two research questions. To delimit the
exploration space for this paper we have selected three scenarios which follow
some of the modeling guidelines defined by Mendling et al. [21] and deal with the
frequently used parallel and exclusive gateways [22], as well as with the inclusive
gateway which has been found to hinder BP understandability [21]. We run the
initial models as well as the derived semantically equivalent models on two open
source BPMSs, Camunda and Activiti. The contribution of this paper consists of
the methodology, the experimental results, and the analysis, which indicate that
semantically equivalent models with different structure demonstrate statistically
different execution behaviour, thus justifying further research into automated BP
execution performance improvement.

The rest of this paper is organized as follows. In Sect. 2 we propose a method-
ology for defining the experiments needed for assessing the performance differ-
ences. We apply the methodology on three scenarios and discuss the results in
Sect. 3, followed by a short survey of the related work in Sect. 4. We elaborate
on the threats to the validity of our work in Sect. 5, while concluding the paper
in Sect. 6.

218 A. Ivanchikj et al.

2 Methodology

The methodology (Fig. 1) is divided into two parts: (1) define and perform exper-
iments, which as such can be applied to obtain metrics needed for different
research questions; and (2) statistically analyze the experiment results to test
the HRQ1 hypothesis and rank the performance of the models to answer RQ2.

Fig. 1. Methodology for systematic exploration of the performance of structurally
different but semantically equivalent models

1. Initial Model. The experiment definition process starts with the design
of an initial model (mi) (Fig. 1.1). Such initial model could follow existing best
practices and conventions, or modeler’s personal preferences.

2. Applicable Rules. In addition to the initial model, a set of transfor-
mation rules R =

{
r1, r2, r3, ..., rn

}
are used as input to the second step of the

methodology (Fig. 1.2). A transformation rule is an operation which adds/deletes
elements (nodes, edges) to/from the BP model, provided that certain precondi-
tions are met. In the context of this work, a transformation rule only affects the
structure of the BP graph, leaving the execution semantics and the graph layout
unchanged. The set of transformation rules can reflect different modeling prac-
tices and guidelines. Given R, all feasible combinations of the transformation
rules should be iteratively applied starting from the initial model to generate
semantically equivalent models until a fixed-point is reached. The output of the
second step is RA(mi) ⊆ R, containing only the rules that are applicable to a
given BP model (mi in the first iteration), to produce a correctly deployable and
executable, semantically-equivalent model.

3. Model Transformation. The model transformation function f(rj ,m)
is executed applying the transformation rule rj to model m. Applying all rules
found in RA(mi) results in TM1 =

{
tj |(∀rj ∈ RA(mi))

[
tj = f(rj ,mi)

]}
, the set

of transformed models which are semantically, but not syntactically, equivalent
to the initial model mi and obtained by applying just once all the applicable
transformation rules. The generation process (Fig. 1.2 and 1.3) is repeated for all
elements of TM1, generating a new set of equivalent models TM2 =

{
tjk|(∀tj ∈

TM1)(∀rk ∈ RA(tj))
[
tjk = f(rk, tj)

]}
, by transforming all the models tj ∈ TM1

On the Performance Overhead of BPMN Modeling Practices 219

with the corresponding applicable rules RA(tj). In other words, starting from
the initial model mi, only one rule is applied to generate the models in TM1,
two rules to generate TM2, etc. This iteration stops when no new models are
generated or after a given maximum number z of model generations. The output

of the iterations is EM = {mi} ∪
z⋃

i=1

TMi, the set of semantically equivalent

models to be executed in the experiment.
4. Model Execution. Finally each of the models in EM is deployed and

multiple instances are started always using the same load functions and test data.
During the execution of the BP instances, performance data is collected and
different metrics (M) are calculated (Fig. 1.4). Depending on the optimization
goal, metrics may include time (e.g., duration of the BP instance/constructs, or
throughput), or resource utilization (e.g., CPU/RAM).

5. Statistical Significance. Determining statistical significance (Fig. 1.5)
requires statistical tests, the nature of which depends on different factors [19].
The first factor to consider is the number and the nature of the samples. In
our case, one sample is comprised of the instances of a given executed model
emi ∈ EM . Thus, the number of samples to be analyzed depends on the car-
dinality of EM , and is greater than two. The samples are unpaired, i.e., inde-
pendent, since the executed instances of different emi ∈ EM are not related.
The difference between samples can go in any direction (increase or decrease),
thus a two-tailed test is required. Next we need to consider the nature and the
distribution of the collected data, i.e., in our case the metrics M . We are working
with quantitative continuous performance data, which based on our experience
in previous work [9,10,27], is not normally distributed, and thus requires the
use of non-parametric tests where the original data is recorded in ranks. This
type of tests are almost as powerful as parametric tests when the sample is
large enough [19]. The appropriate sample size can be determined with the
statistical power analysis [5], which uses as input the level of significance, the
power and the expected effect size. The level of significance refers to the accepted
level of probability that the observed result is a false positive, i.e., it is due to
chance. It is usually conventionally set to 5% or 1% [4]. The power refers to
the probability of false negative, i.e., accepting the H0 when there is actually a
difference between the results. The most commonly accepted level of power is
80% or above [4]. The expected effect size refers to the expected difference in
the measured variable between the different groups. It can be determined based
on pilot data, previous research if available, or an educated guess. As pilot data,
we use the results of one test trial.

Considering all of the above factors, the appropriate test to run is the
Kruskal-Wallis which is a non-parametric one-way ANOVA [6]. The H0 of this
test is that the distribution of the variable being tested is the same across the
samples. The alternative hypothesis (H1) is that the distribution of the same
variable is different across the samples. Thus, rejecting the H0 and accepting
H1, when P − value < 0.05 = α, means that at least one sample stochastically
dominates one other sample, i.e., in our work it means that there is statisti-
cally significant difference in the execution performance of at least two of
the tested semantically equivalent models.

220 A. Ivanchikj et al.

Given the non-deterministic nature of BPMSs, and software systems in gen-
eral, using just one trial is not sufficient for obtaining reliable results. Having
multiple trials means that each emi is deployed multiple times in isolation,
and each time multiple instances are executed. Running the Kruskal-Wallis test
on multiple trials is sufficient to answer research question RQ1.

6. Model Ranking. If we want to identify the pairs of models between
which performance differences exist (RQ2), an additional post-hoc test, such as
Dunn’s test [6], is necessary (Fig. 1.6). In this test the H0 is that the probability
of observing a randomly selected value from the first sample that is larger than a
randomly selected value from the second sample equals one half, i.e., no sample
dominates the other. Rejecting the H0, implies that the first sample is dominated
by the second sample. Dunn’s test does not account for the number of samples,
thus it needs to be adjusted by the Bonferroni correction [6]. In our methodology,
we use Dunn’s test to rank the models from the best performing one to the
worst performing one in each trial, assigning the same rank to models where
Dunn’s H0 cannot be rejected. To combine the results of the different trials, we
calculate a base-case rank as a sum of the assigned ranks on the emi in each
performed trial using Dunn’s test.

The sufficient number of trials is determined by the stability of the obtained
ranking, which can be assessed using a sensitivity analysis [14], that investigates
how the uncertainty in the output is related to the uncertainty in the input. In
our case, the output is the order of the performance of the executed models as
per the base-case rank. We test the sensitivity of that order on the input, i.e.,
the ranks from the individual trials. We use a deterministic one-at-a-time, also
known as one-side, sensitivity analysis, where we vary the trials to be included
in the calculation of the base-case rank. Namely, we remove one of the trials at
a time in order to observe whether the aggregated order will change.

3 Use Case Scenarios

In this section we specify how we have applied the methodology to three scenar-
ios, each comprised of sixteen semantically equivalent models generated using
four transformation rules, and executed on two different BPMSs.

3.1 Transformation Rules

Based on literature review and analysis of the BPMN standard we have defined
R to include the following transformation rules which preserve the execution
semantics. These rules can be frequently applied on real-world models given
that gateways are among BPMN’s most frequently used constructs [22].

r1 Coalesce Joins - precondition: existence of multiple nested join gateways
of the same type; rule: collapse the multiple join gateways into a single one;

r2 Coalesce Splits - precondition: existence of multiple nested split gateways
of the same type; rule: collapse the multiple split gateways into a single split

On the Performance Overhead of BPMN Modeling Practices 221

gateway, adjusting the predicates when necessary to maintain the execution
semantics of the model. Rules r1, r2 have been proposed as WFT-JC1 rule
in [8];

r3 Use Inclusive Gateway - precondition: existence of parallel, exclusive
gateway or a combination of parallel and exclusive gateway; rule: replace
the existing gateway(s) with an inclusive gateway adjusting the predicate
logic accordingly. This rule is motivated by [21];

r4 Use Implicit Gateway - precondition: existence of a parallel split, inclu-
sive split or an exclusive join; rule: replace a parallel split with multiple
outgoing flows from the preceding activity, an inclusive split with multiple
conditional outgoing flows from the preceding activity and an exclusive join
with multiple incoming flows to the succeeding activity, as per the BPMN
standard [17, pp. 36–38], [23].

3.2 Executed Models

The three scenarios are aimed at testing the execution performance of semanti-
cally equivalent control flow structures expressing path parallelism (EX1 PCF),
exclusive (EX2 ECF) and inclusive (EX3 ICF) path selection. The correspond-
ing initial models (Fig. 2) are arbitrary and designed so that all four transforma-
tion rules are applicable. By adding the necessary inverse transformation rules
and without loss of generality, any other of the semantically equivalent models
could be used as an initial model.

If we do consider the process modeling guidelines [G] defined by Mendling
et al. [21], we see that the initial models comply with: minimize the routing paths
per element [G2], use one start and one end event [G3], match every split with a
join of the same type [G4] and avoid OR gateways [G5]. [G4] and [G5] are also
recommended by Koehler and Vanhatalo [18]. These initial models however do
not use as few elements as possible [G1]. Still, some of the transformed models
do follow [G1]. Use verb-object activity labels [G6] and decompose a model with
more than 50 elements [G7] are out of the scope of this paper.

Fig. 2. Initial model mi for each use case scenario

Starting from the three initial models, we have generated all the possible
transformed models (Fig. 1.3) by applying combinations of up to four transfor-
mation rules, i.e., z = 4. The set of executed models EM = {mi, t1, t2, ..., t1234}

222 A. Ivanchikj et al.

contains 16 models, since multiple application of a single rule on a given model
did not result with any structurally different models. By convention, the name
of each model (e.g., t123) contains the index(es) of the transformation rule(s)
applied to generate it (e.g., r1, r2, r3). All the 48 transformed models are visual-
ized at: http://benchflow.inf.usi.ch/bpm2017.

Given our goal of testing the performance impact of alternative control flow
structures, all models in our experiments are fully automated, using mainly
empty script tasks, and no manual or user tasks or service calls. This way we
ensure that any identified performance bottleneck is due to the execution of the
control flow, and not the tasks per se. Only the scripts that precede a deci-
sion gateway, inclusive or exclusive, contain code to generate random numbers,
ensuring a uniform probability of executing any of the gateway’s outgoing paths.

3.3 Load Function

The load start function is comprised of the load time, the ramp-up period, the
number of users and the think time. To avoid BPMS’s saturation, based on our
previous experience with running experiments on Camunda [10], we simulate
500 users who gradually become active within 30 s (ramp-up period), sending
BP instantiation requests each second (think time) for a period of 5 min (load
time). With Activiti, we reduced the number of users to 50 and increased the
load time to 15 min to ensure that a sufficiently high number of instances is
started. This choice allows us to obtain performance data with few outliers after
removing the warm up period instances.

We conducted a pilot study for each of the scenarios to determine the effect
size using each model’s mean and standard deviation. The effect size was nec-
essary to calculate the minimal sample size with a level of significance of 5%
(α = 0.05) and power level of 80% (power = 0.80) using GPower1. We have
verified that the number of executed BP instances (from 22’497 to 53’754 in
Camunda and from 41’912 to 44’677 in Activiti), in each trial, was sufficient to
make statistical inference of the results. We run the experiments (Fig. 1.4) on two
widely-used open-source BPMSs, Camunda v.7.5.0 and Activiti v.5.21.0, using
the BenchFlow framework set up in the testbed environment described in [10].
We were prevented from including more BPMSs at this point due to limitations
in their Management APIs [11] making the automation of the large number of
experiment runs unfeasible.

3.4 Results

For each scenario (3), trial (3), executed model (16) and BPMS (2) we collected
the duration of each BP instance in milliseconds (ms) and run the corresponding
statistical tests as described in Sect. 2. To ease the comparison of the different
models’ performance, in Table 1 (Camunda) and Table 2 (Activiti) we show the
95% confidence interval (CI) of the duration of the BP instances of all the exe-
cuted models (ms) in each trial for each experiment.

1 http://www.gpower.hhu.de.

http://benchflow.inf.usi.ch/bpm2017
http://www.gpower.hhu.de

On the Performance Overhead of BPMN Modeling Practices 223

The results from running the experiments on Camunda are presented in
Table 1. The initial model in the EX1 PCF has an average duration between
2.51 and 2.59 ms with CI range of ±0.05. Overlapping CIs with the initial models
are noticed for t3, t4, t13 and t34, while for the rest of the transformed models
the CI goes down to 2.16 ± 0.03 for t124 in trial 1. The average duration of the
initial model in EX2 ECF is between 1.53 and 1.55 ms with CI range of ±0.02.
In this experiment only the model t3 has a significantly overlapping interval with
the initial model, which means that their performance is very similar. The best
performing model with CI of 1.32 ± 0.02 is in trial 3 for t124, as is the case in
EX1 PCF. The average duration of the initial model in EX3 ICF is between
2.55 and 2.76 ms with CI range of ±0.03 to ±0.08. When the inclusive gateway
is not used, i.e., for models not applying r3, the magnitude of the variation
in performance compared to the initial model is similar as in the other two
experiments, with the best performing model remaining t124 with CI of 2.25 ±
0.03 ms in trial 1. However, CI values get much lower when r3 is used, with CI
of 1.78 ± 0.02 ms in trial 1 for the model that applies all rules (t1234).

Table 1. Camunda: 95% confidence intervals of the BP instance duration (ms)

Parallel Exclusive Inclusive

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

mi 2.59±0.05 2.55±0.05 2.51±0.05 1.53±0.02 1.54±0.02 1.55±0.02 2.55±0.03 2.76±0.08 2.73±0.06

t1 2.36±0.06 2.44±0.05 2.42±0.04 1.49±0.02 1.46±0.02 1.42±0.02 2.63±0.06 2.43±0.03 2.44±0.03

t2 2.39±0.05 2.45±0.05 2.39±0.04 1.46±0.02 1.49±0.02 1.46±0.02 2.67±0.08 2.53±0.04 2.64±0.07

t3 2.57±0.05 2.51±0.05 2.58±0.05 1.57±0.02 1.53±0.02 1.53±0.02 2.02±0.03 2.03±0.03 2.09±0.04

t4 2.49±0.06 2.45±0.04 2.42±0.04 1.46±0.02 1.49±0.02 1.47±0.02 2.57±0.04 2.66±0.05 2.68±0.08

t12 2.21±0.04 2.24±0.04 2.25±0.04 1.42±0.02 1.41±0.02 1.40±0.02 2.43±0.04 2.51±0.05 2.45±0.07

t13 2.49±0.06 2.44±0.03 2.45±0.04 1.47±0.02 1.48±0.02 1.42±0.02 1.90±0.03 1.98±0.03 2.03±0.05

t14 2.31±0.05 2.28±0.04 2.28±0.03 1.44±0.02 1.41±0.02 1.36±0.02 2.43±0.03 2.50±0.05 2.68±0.08

t23 2.37±0.04 2.48±0.05 2.41±0.05 1.48±0.02 1.47±0.02 1.46±0.02 1.89±0.03 1.97±0.03 2.05±0.04

t24 2.29±0.04 2.35±0.05 2.30±0.04 1.43±0.02 1.39±0.02 1.40±0.02 2.38±0.03 2.57±0.04 2.44±0.03

t34 2.48±0.06 2.49±0.04 2.58±0.06 1.47±0.02 1.43±0.02 1.46±0.02 1.99±0.03 2.05±0.03 2.03±0.03

t123 2.23±0.04 2.29±0.05 2.28±0.05 1.41±0.02 1.41±0.02 1.39±0.02 1.90±0.03 1.87±0.03 1.83±0.02

t124 2.16±0.03 2.21±0.04 2.23±0.04 1.38±0.02 1.33±0.02 1.32±0.02 2.25±0.03 2.34±0.03 2.48±0.06

t134 2.35±0.04 2.38±0.05 2.34±0.05 1.45±0.02 1.40±0.02 1.41±0.02 1.92±0.03 1.90±0.03 1.91±0.03

t234 2.33±0.03 2.39±0.04 2.34±0.04 1.40±0.02 1.43±0.02 1.42±0.02 1.92±0.03 1.90±0.03 1.98±0.04

t1234 2.20±0.03 2.21±0.04 2.28±0.04 1.36±0.02 1.35±0.02 1.37±0.02 1.78±0.02 1.81±0.02 1.87±0.03

The results from running the experiments on Activiti are presented in
Table 2. The average values of the duration of the initial model in EX1 PCF
are between 25.22 and 26.04 ms with CI range of ±0.21. None of the transformed
models has an overlapping interval with the initial parallel flow model, and the
CI of the duration goes down to 15.83 ± 0.12 ms for t1234 in trial 1. Exclu-
sive control flow executes faster with average duration of the initial model in
EX2 ECF between 2.01 and 2.14 ms with CI range between ±0.06 to ±0.07.
In this experiment, although many of the transformed models have overlapping
intervals with the initial model, still the best performing model t124 in trial
1 has a rather lower duration CI of 1.39 ± 0.02 ms. In EX3 ICF the average

224 A. Ivanchikj et al.

duration of the initial model returns closer to the one in EX1 PCF with values
between 27.93 and 29.87 ms with CI range between ±0.24 and ±0.30. Overlap-
ping intervals are only noticed for t4, and while the CI of the duration for models
without inclusive gateway goes only down to 22.42 ± 0.21 ms in trial 2 for t124,
for model t1234 in trial 2 it goes all the way down to 9.93 ± 0.14 ms.

Table 2. Activiti: 95% confidence intervals of the BP instance duration (ms)

Parallel Exclusive Inclusive

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

mi 26.04±0.21 25.33±0.21 25.22±0.21 2.12±0.07 2.01±0.06 2.14±0.07 29.87±0.30 27.93±0.24 29.57±0.27

t1 21.62±0.18 21.47±0.16 20.90±0.17 2.09±0.07 1.93±0.05 1.91±0.06 24.04±0.21 27.14±0.26 24.75±0.22

t2 21.34±0.17 20.38±0.14 20.55±0.15 2.02±0.06 1.98±0.06 1.95±0.05 25.43±0.24 27.29±0.26 26.75±0.26

t3 19.57±0.18 20.02±0.19 20.00±0.19 2.10±0.06 2.06±0.06 2.02±0.06 11.82±0.16 11.66±0.16 11.74±0.17

t4 25.32±0.21 24.55±0.20 24.66±0.20 2.06±0.06 1.92±0.05 1.99±0.06 28.92±0.26 28.24±0.26 29.64±0.27

t12 18.83±0.14 18.38±0.14 18.79±0.15 1.84±0.05 1.91±0.06 1.89±0.06 23.68±0.22 23.00±0.21 24.53±0.23

t13 18.26±0.15 17.39±0.14 17.42±0.15 1.92±0.06 1.93±0.06 2.02±0.06 11.38±0.18 11.19±0.18 11.11±0.15

t14 21.25±0.16 21.39±0.17 20.88±0.18 1.91±0.06 1.85±0.05 1.77±0.05 24.78±0.23 23.07±0.19 23.61±0.20

t23 16.52±0.14 16.37±0.14 15.62±0.12 2.11±0.06 1.93±0.05 2.12±0.07 10.56±0.14 10.90±0.16 11.06±0.16

t24 21.67±0.17 21.80±0.17 21.72±0.18 1.91±0.05 1.86±0.06 1.86±0.05 23.66±0.21 25.08±0.24 23.45±0.21

t34 19.06±0.17 18.06±0.15 19.13±0.17 2.11±0.07 1.89±0.05 1.93±0.05 11.14±0.15 11.02±0.15 11.06±0.15

t123 17.35±0.16 17.39±0.21 16.47±0.13 1.92±0.06 2.01±0.07 2.05±0.07 10.19±0.14 10.27±0.14 10.01±0.15

t124 19.09±0.14 17.86±0.12 18.64±0.14 1.39±0.02 1.45±0.03 1.59±0.04 22.46±0.21 22.42±0.21 23.31±0.24

t134 18.03±0.16 18.61±0.17 18.53±0.16 1.92±0.06 2.03±0.09 1.92±0.05 10.51±0.14 11.46±0.20 10.83±0.15

t234 18.04±0.16 17.36±0.16 17.08±0.15 1.89±0.05 1.98±0.07 2.01±0.07 10.53±0.15 10.51±0.15 10.71±0.16

t1234 15.83±0.12 15.75±0.13 15.86±0.13 1.72±0.04 1.67±0.04 1.62±0.04 10.03±0.13 9.93±0.14 9.99±0.13

On the raw data for the duration of each BP instance of all of the models
belonging to the same experiment, we have run the Kruskal-Wallis Test (Fig. 1.5)
for the significance of the differences between the models using IBM SPSS Statis-
tics Version 24. Summary of the test’s results is provided in Table 3. The Total #
shows the total number of BP instances compared in the test, where larger test
statistic values indicate larger differences between the compared models. The
HRQ1 gets rejected if the values of the Asymptotic Sig. are smaller than 0.05.

Table 3. Kruskal-Wallis test summary results

EX1 PCF EX2 ECF EX3 ICF

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Camunda Total # 739’845 721’265 775’940 765’393 817’415 850’040 487’213 494’020 544’059

Test Statistic 6’036 5’686 3’989 2’852 3’290 3’695 27’512 29’646 29’530

Asymptotic Sig. 0 0 0 0 0 0 0 0 0

Activiti Total N 697’492 698’976 699’478 708’138 710’987 710’467 687’930 687’011 687’746

Test Statistic 135’513 141’611 139’567 1’268 1’268 1’882 351’816 354’735 354’047

Asymptotic Sig. 0 0 0 0 0 0 0 0 0

The post-hoc Dunn’s test (Fig. 1.6) indicates the pairs of models with statisti-
cally significant differences in the duration of their instances. We used its results
to rank each model, assigning the same rank to models where the performance
differences were not significant (Table 4). The sensitivity analysis confirmed that
running 3 trials in each experiment is sufficient for the desired rank stability.

On the Performance Overhead of BPMN Modeling Practices 225

3.5 Discussion

3.5.1 Statistically Significant Performance Differences (RQ1)
The values of the asymptotic significance very close to 0 in the results of the
statistical tests (Table 3) shows that there are statistically significant differ-
ences in the execution duration between instances of models which are seman-
tically equivalent but structurally different. Thus, we can reject HRQ1. The
extent of performance differences between the models varies between experiments
(EX1 PCF, EX2 ECF and EX3 ICF), as well as between BPMSs (Camunda and
Activiti).

3.5.2 Total Order (RQ2)
Given the cardinality of the executed models set, |EM | = 16, the theoretical
maximal rank is 16 and would imply significantly different performance among
all models. As can be seen in Table 4, execution of the models on Camunda
results with 12 ranks for the parallel, 6 for the exclusive and 12 for the inclusive
control flow experiment. Execution on Activiti results with 14 ranks for the
parallel, 6 for the exclusive and 11 for the inclusive control flow experiment.
Therefore, it is not possible to induce a total ordering (16 ranks) between all
semantically equivalent models in a given experiment based on their execution
duration. The actual number of ranks depends both on the BPMSs and on the
experiment. In our use case the exclusive control flow models seem to have the
most performance similarities, thus resulting with the smallest number of ranks
(6 ranks in both BPMSs).

Table 4. Models ranked over their performance in three trials using Dunns’ test

Camunda Activiti

EX1 PCF EX2 ECF EX3 ICF EX1 PCF EX2 ECF EX3 ICF

Model Rank Model Rank Model Rank Model Rank Model Rank Model Rank

t124 1 t124 1 t1234 1 t1234 1 t124 1 t1234 1

t1234 2 t1234 1 t123 2 t23 2 t1234 2 t123 1

t12 3 t12 2 t134 3 t123 3 t24 2 t234 2

t123 3 t123 2 t234 3 t234 4 t12 3 t23 2

t14 4 t24 2 t13 4 t13 5 t14 3 t13 3

t24 5 t234 2 t23 4 t134 6 t123 4 t134 3

t234 6 t14 3 t34 5 t34 7 t134 4 t34 3

t134 6 t134 3 t3 6 t3 8 t234 4 t3 4

t2 7 t1 4 t124 7 t12 9 t1 5 t124 5

t1 7 t13 4 t12 8 t124 9 t2 5 t12 6

t23 8 t2 5 t1 9 t14 10 t4 5 t14 7

t4 8 t23 5 t24 9 t1 11 t13 5 t24 8

t13 9 t34 5 t14 9 t2 12 t23 5 t1 9

t34 10 t4 6 t2 10 t24 12 t34 5 t2 10

mi 11 t3 7 t4 11 t4 13 mi 6 mi 11

t3 12 mi 7 mi 12 mi 14 t3 6 t4 11

226 A. Ivanchikj et al.

3.5.3 Experiments Performance Variability
To facilitate the visualization (Fig. 3) of the differences between the duration
interval of the initial model and that of the transformed models, we have decided
to use the acceptability index [26]. The acceptability index is calculated as
I(A,B) = m(B)−m(A)

w(B)+w(A) such that A = [al, ar] and B = [bl, br] are interval values,

Fig. 3. Performance differences of transformed models relative to the three initial mod-
els with Activiti and Camunda (ranks and acceptability index of three trials)

On the Performance Overhead of BPMN Modeling Practices 227

where al, bl and ar, br stand for the left and right limits of the interval. m(A) and
m(B), in our case, are the average duration of all the instances of the respective
model, w(A) and w(B) are the half-width of the corresponding confidence inter-
val. In this paper A always refers to the duration interval of the initial model
mi, and B refers to the duration interval of the transformed model t1, ..., t1234.
Thus, negative values of the index show that on average the initial model’s
instances have longer execution than the instances of the respective transformed
model, and vice-versa with positive index values. Index values between −1 and
1 indicate an overlap between the compared intervals A and B.

As visualized in Fig. 3, the differences between BPMSs are particularly evi-
dent in the parallel (EX1 PCF) and the inclusive (EX3 ICF) control flow exper-
iments. In EX1 PCF all transformed models perform better than the initial
model when executed on Activiti (c.f. Table 2). When EX1 PCF is run on
Camunda, the differences are lower in magnitude (c.f. Table 1), but still statis-
tically significant as shown by Dunns’ test (c.f. Table 4). In Camunda, the only
transformed model that performs worse than the initial model is t3 which uses
the inclusive gateway with parallel gateway logic, i.e., with conditional state-
ments which are always true. In Activiti on the other hand, t3 performs better
than half of the models. As evident from Fig. 3, although applying the combina-
tion of all the transformation rules (t1234) seems to work well for both BPMSs,
as mentioned earlier, in Camunda it is better not to use the inclusive gateway
to implement parallelism since t124 ranks as the most performant one. Table 4
shows that, in Camunda all of the top performant models coalesce the split and
join, i.e., contain the combination of r1 and r2, while in Activiti they coalesce
the split while using the inclusive gateway to implement parallelism, i.e., they
result from the combination of r2 and r3.

In EX2 ECF, both the difference between BPMSs and the difference
between the transformation models (c.f. Fig. 3), is much smaller than in the other
two experiments, with the confidence intervals, when applying just one transfor-
mation rule in Activiti, overlapping with initial model’s confidence interval. The
best performance is obtained by combining all rules, using either exclusive (t124)
or inclusive gateway (t1234). These two models rank the same in Camunda, while
in Activiti t124 ranks first, and t1234 second. The noticed trend in the first exper-
iment for Camunda, to combine r1 and r2 in all top performing models, is also
evident in this experiment.

The performance of the initial model in EX3 ICF, in both BPMSs, is similar
to the one in EX1 PCF, with an even greater magnitude of differences between
the initial and the transformed models in EX3 ICF (c.f. Fig. 3). The top two
models (t1234 and t123) are the same in both BPMSs, with no statistically
significant performance differences between them in Activiti as evident by their
equal rank. The trend mentioned in EX1 PCF, i.e., to combine r2 and r3 in
Activiti in the top performing models, reemerges in this experiment as well. In
general, in EX1 PCF and EX3 ICF, the results indicate greater potential for
performance improvement in Activiti than in Camunda.

228 A. Ivanchikj et al.

3.5.4 Impact of Modeling Practices
Dumas et al. [7] show that there is no absolute truth about the impact of struc-
turedness on understandability and that it depends on the number of gateways in
the model. Minimizing the overall model size [G1] and minimizing the number of
routing paths per element [G2] cannot be both fulfilled, as acknowledged by [21].
Another controversial guideline refers to the implicit gateway which according to
Koehler and Vanhatalo [18] simplifies BP model’s visualization, while Recker’s
empirial study [23] shows that explicit gateways improve the interpretational
fidelity, i.e., understandability.

Having this in mind, systematically applying the transformation rules (R)
described in this paper generates a variety of models which give priority to
different modeling practices. The graph layout guidelines and practices are not
taken into consideration.

The initial model in EX3 ICF follows the guidance of avoiding inclusive gate-
ways [G5], by using a combination of parallel and exclusive gateways. However,
the results in both BPMSs, show that using r3, i.e., an inclusive gateway, on
EX3 ICF models significantly improves the performance, as all the transforma-
tions applying r3 outrank the ones that do not. As evident from Table 4, the
performance of the model combining all rules together (t1234) is always ranked
as first or second in all experiments and in both BPMSs. When it is ranked sec-
ond, t124 is ranked as first. While t1234 is indeed the smallest executed model
in size [G1], not all the best performing models are among the smallest ones.
For instance, in Activiti in EX1 PCF model t23 is second ranked, but it has
24 elements, as opposed to the smallest models in this experiment (t1234 and
t124) which have 18 elements. Furthermore, both t1234 and t124 do not comply
with other modeling guidelines, since their maximum number of routing paths
per element is 5, as opposed to 3 in the initial models [G2], they do not use
explicit gateways thus they are not structured [G4], and t1234 also uses inclu-
sive gateways [G5]. Thus, in most of the cases when modeling for deployment,
if performance is important, priority should be given to minimizing the overall
model size [G1] with respect to [G2] or [G4].

However, as previously stated, modeling should be a discretional decision of
the modeler and we do not aim at changing modeling practices (or guidelines)
to improve the execution performance. Our goal is to elicit BPMS performance
improvements by enabling different BPMS vendors to test their products by
using the proposed methodology, with the same or different set of transformation
rules and models. If they notice that the acceptability indexes they calculate are
significantly lower than −1, dedicating time to implementing performance opti-
mization can bring them competitive advantage. For instance, although further
work with greater number of initial models and with different BPMSs is required
to make generalization about the effect of the transformation rules included in
this paper, the initial results already provide some useful hints. Clearly, BPMS
vendors can boost the performance of their products by coalescing multiple splits
and joins of the same type. Activiti could also take inspiration of their implemen-
tation of the inclusive gateway, when implementing parallelism as r3 provides a
non-negligible performance improvements.

On the Performance Overhead of BPMN Modeling Practices 229

4 Related Work

Previous studies have analyzed the impact of BP model structure on its under-
standability [23,24] or error-proneness [20]. For example, Mendling et al. [21]
provide seven modeling guidelines towards more comprehensive and syntacti-
cally correct models, synthesized from empirical work linking model’s structural
characteristics with its understandability, error probability and label ambiguity.

We are not aware of any existing work studying the connection between
the BPMN static control flow structure and its execution performance. On the
other hand, there is extensive work on programming language compiler optimiza-
tion based on transformations that reduce the number of instructions or max-
imise parallelism. Bacon et al. [3] provide a comprehensive overview of compiler
transformations, while Hoste et al. [15] discuss optimization space exploration
strategies to provide for inevitable optimization trade-offs. Furthermore, in Data-
base Management Systems (DBMSs), queries are optimized using transformation
rules which preserve their execution semantics. Jarke and Koch [16] propose a
framework for evaluation of query optimization, comprised of four steps: (1) find
an internal query representation, (2) apply logical transformations, (3) define
alternative sequences of elementary operations, and (4) find the cheapest alter-
native among the ones proposed in step 3 and execute it. Taking inspiration
from this existing work, we focus on transformation optimization strategies in
BPMSs, and our initial goal is to assess whether different representations of the
same BP significantly impact its execution performance. Gournaris [13] already
points to DBs and data-centric flows as automated performance optimization
opportunity in BPMN process models’ execution. BPMN elements are mapped
to annotated directed acyclic graphs used for optimal task ordering and task
assignment based on statistical metadata, such as task duration, gathered from
execution logs. While [13] targets optimal task execution, in this paper we focus
on the control flow.

Work on BP models’ equivalence [1] and modeling best practices [21] is
related to what we do, since we use semantically equivalent models to study
the effect that their structure has on their execution by a given BPMS. Eder
et al. [8] propose a set of basic operations (e.g., moving or confluence of gate-
ways) to transform a given BP model represented as a structured graph to a
semantically equivalent model. Gert et al. [12] propose a language independent
algorithm for determining semantical equivalence of fragments of structured or
unstructured BP models, motivated by the industry need of BP model change
management. They use a non-exhaustive set of rules for rewriting BPs into a nor-
mal form, later used for fragment comparison. While we use the operations and
rules mentioned in existing work [8,12], we also take into consideration BPMN-
specific transformations, such as replacing explicit gateways with implicit ones.
Our approach also differs in the goal of the use case which requires such trans-
formations.

230 A. Ivanchikj et al.

5 Threats to Validity

Construct Validity - We conduct our experiments on a single version of two
BPMSs in a standalone deployment and only in their default configuration, since
it is the configuration usually utilized by potential users when evaluating sys-
tem’s performance. Although each model is executed in isolation from the other
models, all the instances of the same model are executed together.

Internal Validity - The experiments we perform are inherently subject to
variability in the obtained metrics value, due to the many factors impacting
the runtime of a software system. We mitigate this variability by defining load
functions that do not overload the BPMSs [27], performing multiple trials for
each of the models, and verifying the variance among trials in order to provide
reliable measures validated by significance testing.

External Validity - The results we obtained present limited generalizability
since: they depend on the behaviour of different BPMSs, or the same BPMS
under a different load function; the size and the number of the initial models
are rather small; and all models are realized by script tasks. We plan further
experiments to improve and delimit the generalizability of our results w.r.t.
different BPMS, load functions, initial model sizes and used BPMN 2.0 elements.

6 Conclusion and Future Work

In this work we study and compare the execution performance of semantically
equivalent BP models with different control flow structures. To do so, we propose
a methodology for deriving such models based on an initial model and a set of
semantics-preserving transformation rules. The models are executed on different
BPMSs measuring the corresponding process instance duration, which is statis-
tically analyzed to identify and characterize significant performance differences.
By applying the methodology on three scenarios (parallel, exclusive and inclusive
control flows), we identify significantly different performance among the mod-
els in both BPMSs (RQ1). However, in all experiments, it was not possible to
establish a total order among all 16 semantically equivalent models (RQ2).

The observed performance variability is more evident in Activiti (acceptabil-
ity index up to −38.53) than in Camunda (up to −13.07). We discover that fol-
lowing certain modeling guidelines, e.g., avoiding the use of inclusive gateways
when implementing inclusive control flow execution semantics, has a negative
performance impact on the model’s execution duration. These are only initial
but promising results, measured with load functions designed to avoid system
saturation: 500 users for Camunda and 50 for Activiti. Further experiments are
necessary to investigate the impact of the load function on the observed perfor-
mance differences. However, these results are already sufficient to demonstrate
the existence of statistically significant differences in the execution of semanti-
cally equivalent models designed following different modeling practices.

Our research efforts will further explore the execution performance improve-
ment opportunities by using larger initial models, larger sets of transformation

On the Performance Overhead of BPMN Modeling Practices 231

rules and more BPMSs. We are currently comparing each of the transformation
rules individually to draw conclusions on which of them are good candidates
for optimization rules. These initial results pave the way towards automatic BP
model performance optimization by means of semantics-preserving transforma-
tion rules that can be applied when a BP model is deployed on a specific BPMS.

Acknowledgements. This work is partially funded by the “BenchFlow” project
(DACH Grant Nr. 200021E-145062/1).

References

1. Aalst, W.M.P., Medeiros, A.K.A., Weijters, A.J.M.M.: Process equivalence: com-
paring two process models based on observed behavior. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Hei-
delberg (2006). doi:10.1007/11841760 10

2. Abbott, M.L., Fisher, M.T.: The Art of Scalability. Pearson, Upper Saddle River
(2009)

3. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-
performance computing. ACM Comput. Surv. (CSUR) 26(4), 345–420 (1994)

4. Cohen, J.: A power primer. Psychol. Bull. 112(1), 55 (1992)
5. Dattalo, P.: Determining Sample Size: Balancing Power, Precision, and Practical-

ity. Oxford University Press, New York (2008)
6. Dinno, A.: Nonparametric pairwise multiple comparisons in independent groups

using dunns test. Stata J. 15, 292–300 (2015)
7. Dumas, M., Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.:

Understanding business process models: the costs and benefits of structuredness.
In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS,
vol. 7328, pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9 3

8. Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: Konstantas,
D., Bourrières, J.P., Léonard, M., Boudjlida, N. (eds.) Interoperability of Enterprise
Software and Applications, pp. 203–214. Springer, London (2006)

9. Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking BPMN 2.0
workflow management systems. In: Motahari-Nezhad, H.R., Recker, J., Weidlich,
M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 251–259. Springer, Cham (2015). doi:10.
1007/978-3-319-23063-4 18

10. Ferme, V., Ivanchikj, A., Pautasso, C.: Estimating the cost for executing busi-
ness processes in the cloud. In: La Rosa, M., Loos, P., Pastor, O. (eds.)
BPM 2016. LNBIP, vol. 260, pp. 72–88. Springer, Cham (2016). doi:10.1007/
978-3-319-45468-9 5

11. Ferme, V., et al.: Workflow management systems benchmarking: unfulfilled expec-
tations and lessons learned. In: Proceedings of ICSE 2017, May 2017

12. Gerth, C., et al.: Detection of semantically equivalent fragments for business
process model change management. In: Proceedings of SCC, pp. 57–64. IEEE
(2010)

13. Gounaris, A.: Towards automated performance optimization of BPMN business
processes. In: Ivanović, M., et al. (eds.) ADBIS 2016. CCIS, vol. 637, pp. 19–28.
Springer, Cham (2016). doi:10.1007/978-3-319-44066-8 2

14. Hamby, D.: A review of techniques for parameter sensitivity analysis of environ-
mental models. Environ. Monit. Assess. 32(2), 135–154 (1994)

http://dx.doi.org/10.1007/11841760_10
http://dx.doi.org/10.1007/978-3-642-31095-9_3
http://dx.doi.org/10.1007/978-3-319-23063-4_18
http://dx.doi.org/10.1007/978-3-319-23063-4_18
http://dx.doi.org/10.1007/978-3-319-45468-9_5
http://dx.doi.org/10.1007/978-3-319-45468-9_5
http://dx.doi.org/10.1007/978-3-319-44066-8_2

232 A. Ivanchikj et al.

15. Hoste, K., Eeckhout, L.: Cole: compiler optimization level exploration. In: Pro-
ceedings of CGO, pp. 165–174. ACM (2008)

16. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv.
(CsUR) 16(2), 111–152 (1984)

17. Jordan, D., Evdemon, J.: Business Process Model And Notation (BPMN) Version
2.0. OMG. http://www.omg.org/spec/BPMN/2.0/

18. Koehler, J., Vanhatalo, J.: Process anti-patterns: how to avoid the common traps
of business process modeling. IBM WebSph. Dev. Tech. J. 10(2), 4 (2007)

19. Marusteri, M., Bacarea, V.: Comparing groups for statistical differences: how to
choose the right statistical test? Biochemia Medica 20(1), 15–32 (2010)

20. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. LNBIP, vol. 6. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-89224-3

21. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

22. Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-69534-9 35

23. Recker, J.: Empirical investigation of the usefulness of gateway constructs in
process models. Eur. J. Inf. Syst. 22(6), 673–689 (2013)

24. Reijers, H.A., Mendling, J.: A study into the factors that influence the understand-
ability of business process models. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 41(3), 449–462 (2011)

25. Rosa, M.L., et al.: Managing process model complexity via concrete syntax modi-
fications. IEEE Trans. Ind. Inf. 7(2), 255–265 (2011)

26. Sengupta, A., Pal, T.K.: On comparing interval numbers. Eur. J. Oper. Res.
127(1), 28–43 (2000)

27. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., Hoorn, A.: Micro-
Benchmarking BPMN 2.0 workflow management systems with workflow patterns.
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 67–82. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 5

http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-540-89224-3
http://dx.doi.org/10.1007/978-3-540-69534-9_35
http://dx.doi.org/10.1007/978-3-319-39696-5_5

Process Knowledge

Weak, Strong and Dynamic Controllability
of Access-Controlled Workflows Under

Conditional Uncertainty

Matteo Zavatteri1(B), Carlo Combi1, Roberto Posenato1, and Luca Viganò2

1 Dipartimento di Informatica, Università di Verona, Verona, Italy
matteo.zavatteri@univr.it

2 Department of Informatics, King’s College London, London, UK

Abstract. A workflow (WF) is a formal description of a business process
in which single atomic work units (tasks), organized in a partial order, are
assigned to processing entities (agents) in order to achieve some business
goal(s). A workflow management system must coordinate the execution
of tasks and WF instances. Usually, the assignment of tasks to agents
is accomplished by external constraints not represented in a WF. An
access-controlled workflow (ACWF) extends a classical WF by explic-
itly representing agent availability for each task and authorization con-
straint. Authorization constraints model which users are authorized for
which tasks depending on “who did what”. Recent research has addressed
temporal controllability of WFs under conditional and temporal uncer-
tainty. However, controllability analysis for ACWFs under conditional
uncertainty has never been addressed before. In this paper, we define
weak, strong and dynamic controllability of ACWFs under conditional
uncertainty, we present algorithmic approaches to address each of these
types of controllability, and we synthesize execution strategies that spec-
ify which user has been (or will be) assigned to which task.

Keywords: Access-controlled workflow · Uncertainty · Dynamic
controllability · AI-based security

1 Introduction

Context and motivation. A workflow schema (or simply workflow, WF) is a
formal description of a business process in which single atomic work units (tasks),
organized in a partial order, are assigned to processing entities (agents) in order
to achieve some business goal(s). A workflow management system (WfMS) must
coordinate the execution of tasks and WF instances. Usually, the assignment of
agents to tasks considers external constraints not represented in a WF [11].

An access-controlled workflow (ACWF) extends a classical WF by adding
users and authorization constraints. Users are authorized for tasks whereas
authorization constraints say which users remain authorized for which tasks
depending on who did what.
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 235–251, 2017.
DOI: 10.1007/978-3-319-65000-5 14

236 M. Zavatteri et al.

The conceptual modeling of WFs underlying business processes has been
receiving increasing attention over the last years and many technical aspects
have been discussed, including WF flexibility, structured vs. unstructured mod-
eling, change management, authorization models, and temporal features and
constraints (see, e.g., [4,15,17]). Recently, attention has been devoted to the
issue of expressing temporal features of WFs, such as task-duration constraints,
temporal constraints between non-consecutive tasks, deadlines and so on. More-
over, properties of such temporal WF models have been defined and analyzed.
The most interesting property is dynamic controllability, which ensures that a
WF can be executed satisfying all the given temporal constraints without the
WfMS restricting and/or controlling task durations but only assuming that each
such duration is within a designed range (temporal uncertainty) [4]. The authors
of [4] also tackled dynamic controllability under another uncertainty, conditional
uncertainty, represented by the fact that some subsets of tasks have to be exe-
cuted if and only if some conditions (abstracted as Boolean propositions) are
true. Similarly to what happens for uncontrollable task durations, the truth-
value assignments to such propositions are out of control. For instance, when a
patient enters the ER, the severity of his condition is not known a priory but it is
established by a physician, while the WF is being executed. Since such a condi-
tion discriminates what tasks have, or have not, to be executed, the system must
be able to get to the end of the WF satisfying all relevant temporal constraints
regardless of which tasks have to be executed and which task durations have to
be satisfied. However, to the best of our knowledge, controllability analysis of
(non-temporal) ACWFs (e.g., those presented in [17]) remains unexplored.

Contributions. Towards this aim, our contributions are four-fold: (1) We define
ACWFs under conditional uncertainty as a structured extension of a fragment
of BPMN. (2) We define weak, strong and dynamic controllability of an ACWF
under conditional uncertainty. (3) We provide an encoding from WF-paths into
binary constraint networks and exploit directional consistency algorithms to
check the consistency of a single (unconditional) path. (4) We present algorith-
mic approaches for the three kinds of controllability and we synthesize execution
strategies that specify which user has been (or will be) assigned to which task.

Organization. Section 2 introduces a motivating example that we will use
throughout the paper. Section 3 gives essential background on structured WFs
and constraint networks. Section 4 introduces ACWFs under conditional uncer-
tainty, and Sect. 5 discusses weak, strong and dynamic controllability of such
ACWFs. Section 6 gives an encoding from WF-paths into constraint networks.
Section 7 discusses the algorithmic approaches to the three kinds of controllabil-
ity. Section 8 discusses related work. Section 9 draws conclusions and discusses
future work.

2 A Motivating Example

As a running, motivating example coming from the health-care domain, we con-
sider (an excerpt of) a simplified triage WF schema taken from [2]. We slightly

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 237

+

CardioEv

(EV-Resp,
Head)

NeuroEv

(EV-Resp,
Head)

+ × Emergency?

EM-Treat

(ER-Phy)

ICU-Hosp

(Subst,
Head)

STD-Tr

(TH-Resp,
Head)

×
DischLet

(Subst,
Head)

Yes

No

�=

�= ∧¬Rel
=

�= ρ1

ρ2

=

Fig. 1. An excerpt of a simplified triage WF schema. Head = {B}, EV-Resp = {A, C},
ER-Phy = {D, E}, Subst = {C, D}, TH-Resp = {A, E}.

modified it and added some access control to get a few features of interest that
we want to discuss. Figure 1 shows an ACWF under conditional uncertainty hav-
ing 6 tasks, 5 roles (EV-Resp, ER-Phy, Subst, TH-Resp and Head) and 5 users
(Alice, Bob, Charlie, David and Eve). EV-Resp contains Alice and Charlie,
ER-Phy contains David and Eve, Subst contains Charlie and David, TH-Resp
contains Alice and Eve, Head contains only Bob. Head is senior to all roles besides
ER-Phy. Thus, Head is authorized for all tasks except for EM-Treat.

The ACWF starts with a cardiological evaluation (CardioEv) and a neurolog-
ical evaluation (NeuroEv) where an evaluation-responsible (EV-Resp) establishes
whether the patient is in need of immediate medical attention. The order of these
two tasks does not matter. However, this example requires that CardioEv and
NeuroEv are not executed simultaneously. Hereinafter, we will assume, without
loss of generality, that in the considered executions CardioEv happens before
NeuroEv. The physicians executing these two tasks must be different.

After this initial parallel block terminates (and consequently the level
of emergency has been assessed), the flow of execution splits in two
(mutually-exclusive) paths. If the patient needs immediate medical attention
(Emergency? = �), then an ER-physician (ER-Phy) executes an emergency
treatment (EM-Treat), and afterwards a substitute (Subst) takes care of the
ICU-Hospitalization process (ICU-Hosp). This last physician must be the same
who did CardioEv and must be different from the one who has just concluded
EM-Treat. Instead, if Emergency? = ⊥, then a therapy-responsible (TH-Resp)
carries out a standard therapy. This physician must be the same who did
CardioEv.

Regardless of which WF-path (see Sect. 5) has been taken, the process con-
cludes with a discharge letter (DischLet) released by a Subst who must be dif-
ferent from, and not a relative of, the physician who did CardioEv (we shorten
it in Fig. 1 as �= ∧¬Rel). Alice and Bob, who are married, are the only rela-
tives in this example. Furthermore, assume that Emergency? = �; if ICU-Hosp
was executed by Bob (respectively, Charlie), then DischLet will be executed
by Charlie (respectively, Bob); we shorten it in Fig. 1 as ρ1. Conversely, assume

238 M. Zavatteri et al.

that Emergency? = ⊥; if STD-Tr was executed by Bob or Alice, then DischLet
will be executed by David (we shorten it in Fig. 1 as ρ2). In the rest of the paper,
we will shorten Alice, Bob, Charlie, David and Eve as A, B, C, D and E.

3 Background

In this section, we give useful background on structured WFs and constraint
networks (CNs), a formalism to model the constraint satisfaction problem (CSP).

3.1 Structured Workflows

In this paper, we consider an excerpt of BPMN restricting the analysis on loop-
free WFs and following the structured approach of the conceptual model Nest-
Flow [3], where the specification of a WF is given by a WF schema, a directed
graph (also called WF graph) where nodes correspond to activities and arcs rep-
resent the control flow defining dependencies between the order of execution of
such activities. There exist two different types of activity: tasks (rounded boxes)
and connectors (diamonds). Tasks represent elementary work units that cannot
be decomposed further and that will be executed by external agents. Connectors
(or gateways in BPMN) represent internal activities executed by the WfMS to
achieve a correct and coordinated execution of tasks.

Since we focus on access control, connectors are restricted to being of two
types: total (+) and conditional split (×). A connector is conditional when it
splits a single flow of execution in exactly two mutually-exclusive branches or
it joins two mutually-exclusive branches into a single one. A connector is total
when it splits the flow of the execution into n > 1 parallel branches or it joins
n > 1 incoming parallel branches into a single outgoing flow.

Figure 2 depicts the basic components of a business process. Each component
can be thought of as a symbol in a context-free grammar. In particular, PROCESS
(Fig. 2a) can be thought of as the starting symbols of such a grammar embedding
the non-terminal symbol block 〈B〉. A non-terminal block can be a Sequence
(Fig. 2b), a Parallel (Fig. 2e) or a Choice (Fig. 2f), whereas a terminal block
can be a Task (Fig. 2c) or Skip (Fig. 2d).

〈B〉
(a) PROCESS

〈B1〉 〈B2〉
(b) Sequence

task

(c) Task (d) Skip

+

〈B1〉

〈Bn〉

+

(e) Parallel

× cond?

〈B�〉

〈B⊥〉

×

Yes

No

(f) Choice

Fig. 2. A fragment of a structured BPMN.

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 239

3.2 Constraint Networks and the Constraint Satisfaction Problem

Definition 1 (CN, CSP and consistency [7]). A Constraint Network (CN)
R is a triple 〈X,D,C〉, where X = {x1, . . . , xn} is a finite set of variables,
D = {D1, . . . , Dn} is a set of associated domains Di = {v1, . . . , vj} (one for
each variable), and C = {C1, . . . , Ck} is a finite set of constraints. Each Ci is a
relation Ri defined over a scope of variables Si ⊆ X (i.e., if Si = {xi1 , . . . , xir

},
then Ri ⊆ Di1 × · · · × Dir

). A Constraint Satisfaction Problem (CSP) is the
problem of assigning a value vi ∈ Di to each variable xi ∈ X such that all
constraints in C are satisfied. If this is possible, then the CN is consistent.

CSP is NP-hard [7]. A CN is binary if all constraints have scope cardinality
≤ 2 (in general, k-ary if all constraints have scope cardinality ≤ k) [7,13]. Let
Rij be a shortcut to represent a binary relation having scope S = {xi, xj}.
A binary CN is minimal if any tuple (vi, vj) ∈ Rij ∈ C belongs to at least
one global solution for the underlying CSP [13]. Thus, a minimal CN models
an n-ary relation whose scope is X and whose tuples represent the set of all
solutions. Besides for a few restricted classes of CNs, the general process of
computing a minimal network is NP-hard [13]. Furthermore, even considering
a binary minimal network, the problem of generating an arbitrary solution is
NP-hard if there is no total order on the variables [10].

Therefore, a first crude technique is that of searching for a solution by exhaus-
tively enumerating (and testing) all possible solutions and stopping as soon as
one satisfies all constraints in C. This initial idea entailed the employment of
more sophisticated techniques such as backtracking combined to heuristics such
as node, arc and path consistency (pruning techniques) [12].

A variable xi is node-consistent if for each v ∈ Di we have that v ∈ Rxi
.

A CN is node-consistent if each variable is node-consistent. A variable xi is
arc-consistent with respect to a second variable xj if for each v ∈ Di there
exists u ∈ Dj such that (v, u) ∈ Rij . A CSP instance is arc-consistent if every
variable is arc-consistent with respect to any other variable. A pair of variables
(xi, xj) is path-consistent with respect to a third variable xk if for any assignment
xi = v, xj = u, where v ∈ Di and u ∈ Dj , there exists k ∈ Dk such that
(v, k) ∈ Rik and (k, u) ∈ Rkj . A CSP instance is path-consistent if any pair of
variables are path-consistent with any other third variable.

k-consistency guarantees that any (locally consistent) assignment to any sub-
set of (k − 1)-variables can be extended to a kth (still unassigned) variable such
that all constraints between these k-variables are satisfied. Strong k-consistency
is k-consistency for each j such that 1 ≤ j ≤ k [9]. As a result, 1, 2 and 3-
consistency are node, arc and path consistency, respectively.

Directional consistency has been introduced to speed up the process of syn-
thesizing a solution for a constraint network limiting backtracking [8]. In a nut-
shell, given a total order on the variables of a CN, the network is directional-
consistent if it is consistent with respect to the given order that dictates
the assignment order of variables. In [8], an adaptive-consistency (adc) algo-
rithm was provided as a directional consistency algorithm adapting the level of

240 M. Zavatteri et al.

Algorithm 1. adc(R, d)
Input: A constraint network R = 〈X, D, C〉 and an ordering d = {x1, . . . , xn}
Output: A backtrack-free network (along d) if R is consistent, inconsistent otherwise.

1 Partition the constraints as follows:
2 for i ← n downto 1 do
3 Put in Bucket(xi) all unplaced constraints mentioning xi

4 for p ← n downto 1 do
5 Let j ← |Bucket(xp)| and Si be the scope of RSi

∈ Bucket(xp)

6 A ← ⋃j
i=1 Si \ {xp}

7 RA ← πA(��j
i=1 RSi

)

8 if RA is not empty then
9 Bucket(x′) ← Bucket(x′) ∪ {RA}, where x′ ∈ A is the “latest” variable w.r.t. d.

10 else
11 return inconsistent

12 return R′ = 〈X, D,
⋃n

i=1 Bucketi〉

k-consistency needed to guarantee a backtrack-free search once the algorithm
terminates, if the network is not inconsistent (see Algorithm1). The input of
adc is a CN R = 〈X,D,C〉 along with an order d for the set X. At each
step the algorithm adapts the level of consistency to guarantee that if the net-
work passes the test, a backtrack-free solution can be generated. If the network
is inconsistent, the algorithm detects it before the solution generation process
starts. adc initializes a Bucket(xi) for each variable xi and first processes all the
variables top-down (i.e., from last to first in the order d) by filling each bucket
with all (still unplaced) constraints RSi

∈ C whose scope Si contains xi. Then,
it processes again the variables top-down and, for each variable xi, it computes
a new scope A consisting of the union of all scopes of the relations in Bucket(xi)
neglecting xi itself. After that, it computes a new relation RA by joining all
RSi

∈ Bucket(xi) and projecting with respect to A (�� and π are the classical
relational algebra operators). In this way, it enforces the appropriate level of
consistency. If the resulting relation is empty, then R is inconsistent; otherwise,
the algorithm adds RA to the bucket of the latest variable in A (with respect
to the order d), and goes on by processing the next variable. Finally, it returns
a network R′ (possibly tighter than the initial R) whose set of constraints is
equal to the union of all (tighten) relations in the buckets. Note that adc takes
as input a k-ary CN R and returns a k′-ary CN R′, where k′ ≥ k (an example
of a binary CN turned into a ternary one can be found in [7, Chap. 4]).

Time and space complexity of adc are O(n(2z)w�+1) and O(nzw�

), respec-
tively, where n = |X|, z = maxi=1,...,n |Di| and w� is the induced width of the
graph along the order of processing [7, Chap. 4]. Informally, w� represents the
maximum number of variables that can be affected by the value assumed by
another variable.

4 ACWFs Under Conditional Uncertainty

In this section, we extend the fragment of (the structured) BPMN we discussed
in Sect. 3.1 by injecting a role-based access-control model (RBAC, [16]) and

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 241

formalizing authorization constraints at user level into the process specification.
We call this language access-controlled BPMN (ACBPMN). Before we begin, we
point out our assumptions on Choice blocks.

Given a set P of propositional letters, a label � is any (possibly empty) con-
junction of literals, where a literal is either a propositional letter p ∈ P or its
negation ¬p. The empty label is denoted by �. The label universe of P , denoted
by P ∗, is the set of all possible labels representing all possible (finite) conjunc-
tions of literals we can obtain from P . Two labels �1, �2 ∈ P ∗ are consistent if
and only if their conjunction �1 ∧ �2 is satisfiable.

We assume that each conditional split connector of a Choice block is associ-
ated to a unique proposition p ∈ P whose truth value assignment is not decided
by the WfMS but by some run-time condition. We call such property conditional
uncertainty. That is, the WfMS is only able to observe such a truth value assign-
ment once the conditional split connector has been executed. We also assume
that all tasks of the WF are implicitly labeled by labels according to the nest-
ing levels of the Choice blocks. This is implicit since the WF is structured. For
example, in Fig. 2f, the label of each task in B
 contains c, whereas that of
each task in B⊥ contains ¬c, where c is a Boolean proposition modeling cond?.
In case of nested conditional blocks (suppose that B
 is another Choice block
having sub-blocks F
 and F⊥ and split connector associated to f), the labels of
tasks in F
 are c ∧ f , whereas those of F⊥ are c ∧ ¬f , and so on.

We formalize the label of each task as a function L : T → P ∗, where T
is the set of tasks. Getting back to our example, we have that P = {e},
where e abstracts Emergency, the condition associated to the (unique) condi-
tional connector. The labels of the tasks are: L(CardioEv) = L(NeuroEv) = �,
L(EM-Treat) = L(ICU-Hosp) = e, L(STD-Tr) = ¬e and L(DischLet) = �,
meaning that all tasks labeled by � are always executed, and the remaining
ones are conditionally executed depending on the truth value of their labels.

Definition 2 (Role-Based Access-Control Models for Workflows). The
RBAC part of a business process consists of a finite set of roles R = {r1, . . . , rl},
a finite set of users U = {u1, . . . , um} and a finite set of tasks T = {t1, . . . , tn}.
Roles are associated to both users and tasks, acting as an interface between them.
Formally, UA ⊆ U × R is the many-to-many user-to-role assignment relation,
whereas TA ⊆ T × R is the many-to-many task-to-role assignment relation.
Thus, (u, r) ∈ UA means that u belongs to role r, whereas (t, r) means that
task t can be executed by any user (i.e., agent) belonging to role r. We write
users(r) = {u | (u, r) ∈ UA} for the set of users belonging to a role r, and
roles(t) = {r | (t, r) ∈ TA} for the set of roles authorized for a task t. We abuse
notation and write users(t) = {u | (u, r) ∈ UA∧r ∈ roles(t)} for the set of users
authorized for a task.

Figure 3 shows the two main extensions to the language given in Fig. 2. We
label a task t by a finite set of roles {r1, . . . , re} ⊆ R (Fig. 3a) meaning that
(t, r1), . . . , (t, re) ∈ TA. Assigning roles to tasks models “who does what”.

242 M. Zavatteri et al.

task
(r1, . . . , re)

(a) Task

task1

(ri, . . . , rj)
task2

(rk, . . . , rp)

ρ1 ∧ · · · ∧ ρn

(b) AuthorizationConstraint

Fig. 3. Injecting roles (a) and authorization constraints (b).

However, classical RBAC models are unable to specify security policies at
user level such as separation of duties (SoD) and binding of duties (BoD).1 To
address such an issue, we express authorization constraints between pairs of
tasks t1, t2, having consistent labels2 L(t1) and L(t2), as a conjunction of binary
relations ρ1 ∧ · · · ∧ ρn over users (ρi ⊆ U × U) such that if u1 ∈ users(t1) and
u2 ∈ users(t2) and the pair (u1, u2) also belongs to all ρi, then any execution
assigning t1 to u1 and t2 to u2 satisfies the authorization constraint. In Fig. 1
L(CardioEv) = � and L(ICU-Hosp) = e are consistent; thus, in the execution
where the conditional split connector assigns � to e, both of these two tasks
must be executed, and the authorization constraint labeled by = (connecting
them) satisfied.

In ACBPMN, we draw authorization constraints as undirected dashed edges
(Fig. 3b) connecting pairs of tasks and label them by a conjunction of binary
relations as we have just discussed. Figure 1 is an ACWF under conditional
uncertainty expressing which roles are authorized for which tasks, and which
are the authorization constraints. Again, no authorization constraint is specified
between EM-Treat and STD-Tr as L(EM-Treat) = e and L(STD-Tr) = ¬e are
inconsistent with each other.

5 Controllability of ACWFs Under Conditional
Uncertainty

We give the semantics for weak, strong and dynamic controllability of ACWFs
under conditional uncertainty. Our goal is that of synthesizing execution strate-
gies specifying which user to assign to which task so that all relevant autho-
rization constraints will eventually be satisfied no matter which (uncontrollable)
truth values the conditional connectors assign to their associated propositions.
Tasks and constraints are relevant if the WfMS must consider them during exe-
cution.

A scenario (or interpretation function) s : P → {�,⊥} is a complete assign-
ment of truth values to the propositions associated to all conditional split con-
nectors in the Choice blocks. I models the set of all possible scenarios.

In our example, there are two possible (mutually-exclusive) scenarios
s1(e) = � and s2(e) = ⊥, modeling the patient’s urgency level. Once a sce-
nario is selected, the WF-path corresponding to the considered scenario is the
projection of the initial WF with respect to the scenario.
1 SoD is a security policy saying that a subset of tasks must be carried out by different

users, whereas BoD says that a subset of tasks must be carried out by the same user.
2 Two tasks with consistent labels must be considered in at least one WF execution.

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 243

Definition 3 (WF-path). A workflow path (WF-path) is the projection of an
ACWF with respect to a given scenario s; i.e., a new (unconditional) ACWF
obtained as a copy of the considered ACWF, where all tasks and authorization
constraints having label not consistent with s are removed.

The ACWF in Fig. 1 consists of the following two WF-paths

(1) CardioEv → NeuroEv → EM-Treat → ICU-Hosp → DischLet
(2) CardioEv → NeuroEv → STD-Tr → DischLet

where (1) is the result of the projection according to scenario s1, and (2) to s2.
For both WF-paths, the order of CardioEv and NeuroEv does not matter.

Definition 4 (Schedule). A schedule, for a subset of tasks T ′ ⊆ T , is a map-
ping ψ : T ′ → U assigning users to those tasks. The set of all possible schedules is
represented by Ψ . A schedule is consistent if the assignments it makes eventually
satisfy all relevant authorization constraints.

An execution strategy is a mapping σ : I → Ψ from scenarios to schedules
such that the domain of the resulting ψ consists of all tasks belonging to the
WF-path arising from the projection of the ACWF with respect to s. If ψ = σ(s)
is also consistent, then we say that σ is viable. We denote the user u assigned to
the task t by the strategy σ in the scenario s as [σ(s)]t = u.

The first kind of controllability is weak controllability, which ensures that we
can execute the WF satisfying all user and authorization constraints whenever
we have full information on the uncontrollable part before starting the execution.
That is, whenever we know what truth values the Choice blocks will assign to
the associated propositions.

Definition 5 (Weak Controllability). An ACWF under conditional uncer-
tainty is weakly controllable if there exists a viable execution strategy.

Dealing with such a controllability is quite complex as it always requires one
to predict how all uncontrollable parts will behave before starting the execu-
tion (i.e., to predict which the scenario will be). This lead us to considering the
opposite case, the one in which we want to synthesize a strategy returning a
static schedule working for all combinations of truth value assignments (i.e., for
all scenarios) before starting the execution. Thus, the second kind of controlla-
bility is strong controllability, which ensures that we can preassign users to tasks
before starting, being guaranteed that such an assignment will always satisfy all
constraints whatever the truth value assignments.

Definition 6 (Strong Controllability). An ACWF under conditional uncer-
tainty is strongly controllable if there exists a viable execution strategy σ such
that for any pair of scenarios s1, s2 ∈ I and any shared task t belonging to the
WF-paths arising from the projections of s1, s2, we have that [σ(s1)]t = [σ(s2)]t.

244 M. Zavatteri et al.

Strong controllability is, however, “too strong”. If an ACWF is not strongly
controllable, it could be still executable deciding which user to commit to which
task by reacting to the uncontrollable parts as soon as they become known.
To achieve this purpose, we introduce dynamic controllability. An ACWF is
dynamically controllable if it admits a viable execution strategy able to modify
its associated schedule (if needed) whenever a truth value for a still unknown
proposition becomes known due to the execution of the associated conditional
split connector. Since the truth values of propositions are revealed incrementally,
in what follows we introduce the formal definition of history that we then use
to define dynamic controllability.

Definition 7 (History). The history H(t, s) of a task t in the scenario s con-
sists of the set of truth value assignments to the propositions made by the con-
ditional split connectors executed before task t in s.

Take Fig. 1 as an example and consider the scenario s(e) = �. It holds
that H(CardioEv, s) = ∅ before executing the conditional split connector and
H(EM-Treat, s) = {e} after executing the conditional split connector.

Definition 8 (Dynamic Controllability). An ACWF is dynamically con-
trollable if there exists a viable execution strategy σ such that for any pair of
scenarios s1, s2 ∈ I and any task t belonging to the WF-path arising from the
projection s1, it holds that if H(t, s1) = H(t, s2), then t belongs to the WF-path
arising from the projection of s2, and [σ(s1)]t = [σ(s2)]t.

That is, an ACWF is dynamically controllable if there exists an execution
strategy assigning users to incoming tasks consistently (with the previous assign-
ments), knowing only the values of propositions associated to the conditional
split connectors already executed.

6 Encoding WF-Paths into Constraint Networks

As we have discussed previously, a WF-path is the projection of a particular
scenario. Uncontrollable parts no longer exist in this projection.

We focus on tasks only, implicitly considering that the WfMS takes care of
executing the connectors and that no constraints between connectors exist.

To encode a WF-path into a CN suitable for our purposes, we first turn the
current partial order between tasks into a total one d = (t1, . . . , tn), where
t1, . . . , tn ∈ T . In this way, we can guarantee an efficient (dynamic) user
assignment during execution as we exploit directional consistency. Recall that a
dynamic assignment of values (i.e., users) to variables (i.e., tasks) no matter the
order in which the variables are chosen (i.e., tasks executed by users) has already
been proved to be NP-hard in [10]. Instead, following an order when assigning
the variables has been proved to be linear [7,8] after checking the consistency of
the initial CN, which remains NP-hard.

Indeed, the initial checking does not worry about computing a solution, but it
only focuses on proving that at least a solution exists by tightening the network
(this is the hard part).

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 245

CardioEv {A, B, C}

NeuroEv {A, B, C}

EM-Treat {D, E}

ICU-Hosp {B, C, D}

DischLet {B, C, D}

RCN

RCI

RCD

RID

REI

(a) WF-path 1.

CardioEv {A, B, C}

NeuroEv {A, B, C}

STD-Tr {A, B, E}

DischLet {B, C, D}

RCN

RCD RCS

RSD

(b) WF-path 2.

CardioEv {A, B, C}

NeuroEv {A, B, C}

EM-Treat {D, E}

ICU-Hosp {B, C, D}

STD-Tr

{A, B, E}

DischLet {B, C, D}

RCN

RCD RCS

RSD

RID

REI

(c) Super-path.

Fig. 4. (Binary) Constraint networks for WF-path 1 (a), WF-path 2 (b), and the super-
path modeling the whole WF turned unconditional (c). The order of tasks has to be
interpreted bottom-up (↑).

In this paper, we accept that the initial check of consistency on these equiv-
alent CNs is NP-hard in favor of guaranteeing an efficient (dynamic) execution.
Of course, the more users, tasks and Choice blocks a WF specifies, the more
this approach becomes intractable in its preliminary phase.

We start from a single WF-path and we encode it in an equivalent CN
R = 〈X,D,C〉. We fill X with the set of tasks belonging to the WF-path
under analysis. Considering WF-path 1, we have that X = {CardioEv, NeuroEv,
EM-Treat, ICU-Hosp, DischLet}. We now restrict the current partial order so
that it becomes total. In this WF-path, the unordered tasks are CardioEv and
NeuroEv, and, as we previously said in Sect. 2, we assume that CardioEv exe-
cutes first. Thus, the order is d = (CardioEv, NeuroEv, EM-Treat, ICU-Hosp,
DischLet), where CardioEv and DischLet are the first and the last task, respec-
tively. As for classic ordered CNs, we show the graphical representation of the
ordered tasks of WF-path 1 in Fig. 4a. We interpret the figure bottom-up (↑).
For each variable xi modeling the task ti, the corresponding domain of the vari-
able consists of all users authorized for ti, i.e., Dti

= users(ti). For WF-path
1, DCardioEv = DNeuroEv = {A, B, C}, DEM-Treat = {D, E}, DICU-Hosp = DDischLet =
{B, C, D}. We show these domains on the right of the variables in Fig. 4a.

We initialize the set C of constraints as follows. For each pair of tasks t1, t2
connected by an authorization constraint (labeled by ρ1∧· · ·∧ρn) in the original
WF-path, we add to C the relation Rt1 t2 = ρ1 ∩ · · · ∩ ρn as the set of all tuples
(ui, uj) satisfying the resulting relation where ui ∈ Dt1 and uj ∈ Dt2 . Any
tuple (ui, uj) of Rt1t2 means that if task t1 is assigned to user ui and task t2 is
assigned to user uj , then the original authorization constraint between t1 and t2
is satisfied. For instance, we encode �= ∧¬Rel between CardioEv and NeuroEv
as the binary relation RCN (Table 1a). To ease reading, we shorten the subscript
of each relation with the first letters of the two tasks it constrains.

246 M. Zavatteri et al.

Table 1. Relations of the example in Fig. 1. Initial: RCN , RCD (common) RCI , REI ,
RID (WF-path 1), and RCS , RSD (WF-path 2). Generated: RCE , R1

C (WF-path 1) and
R2

C (WF-path 2).

We do the same with the authorization constraints between CardioEv and
ICU-Hosp (RCI , Table 1i), CardioEv and DischLet (RCD , Table 1b), EM-Treat
and ICU-Hosp (REI , Table 1c), and ICU-Hosp and DischLet (RID , Table 1f). We
proceed similarly for WF-path 2 (we show its CN in Fig. 4b).

7 Weak, Strong and Dynamic Controllability Checking

We now address the algorithmic part for weak, strong and dynamic controllabil-
ity defined in Sect. 5.

7.1 Weak Controllability Checking

Weak Controllability Checking (WC-checking) simply checks that each CN
encoding a WF-path is consistent. Once we have encoded each WF-path in a
CN, we can simply employ any algorithm for directional consistency we like and
run it on each one of these networks as input. If these CNs are all consistent,
then the WF is weakly controllable.

In our example, we use adc (discussed in Sect. 3.2). Figure 5a shows the run
of adc for the CN of WF-path 1 (Fig. 4a), whereas Fig. 5b shows the run for
the CN of WF-path 2 (Fig. 4b). More precisely, for WF-path 1 we start from the
equivalent CN R = 〈X,D,C〉 along with the order d we discussed in the second
half of Sect. 6. adc processes the variables (i.e., tasks) top down (↓) by filling
the corresponding buckets with the relations in C (Table 1) as we discussed
at the end of Sect. 3.2. Initial relations appear on the left of ‖, whereas new
ones generated by the algorithm appear on the right. adc starts by processing
Bucket(DischLet) by computing the new scope A = {C,D, I} \ {D} = {C, I}.
It then computes (i.e., infers the implicit possibly missing) relational constraints
RCI = πC ,I (RCD �� RID). Since we will assign ICU-Hosp after CardioEv (as in

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 247

Bucket(DischLet) : RCD , RID‖
Bucket(ICU-Hosp) : RCI , REI ‖
Bucket(EM-Treat) : ‖RCE

Bucket(NeuroEv) : RCN‖
Bucket(CardioEv) : ‖R1

C

(a) WF-path1.

Bucket(DischLet) : RCD , RSD‖
Bucket(STD-Tr) : RCS‖
Bucket(NeuroEv) : RCN ‖
Bucket(CardioEv) : ‖R2

C

(b) WF-path2.

Fig. 5. adc run on WF-path1 and WF-path2.

WF-path 1 ICU-Hosp is the latest variable in the set {ICU-Hosp, CardioEv}),
we add RCI to Bucket(ICU-Hosp). Actually, since Bucket(ICU-Hosp) already
contains RCI , adding the new one is equivalent to tightening the existing one to
the intersection between itself and this new one. But since this intersection results
in the same RCI , adc does nothing. Also, since the generated RCI �= ∅, adc goes
ahead by processing Bucket(ICU-Hosp). This time, the scope of the generated
constraint is A = {C, I,E} \ {I} = {C,E}. Therefore, adc computes RCE =
πC ,E (RCI �� REI) (Table 1d) and adds it to Bucket(EM-Treat) since the bucket
is empty and EM-Treat comes after CardioEv. Since REI �= ∅, adc now takes
into account EM-Treat, by computing the new scope A = {C,E} \ {E} = {C}.
It then computes R1

C = πC(RCE) (Table 1e) and adds to Bucket(CardioEv).
This (node-consistency) constraint rules out A for CardioEv. Again, R1

C �= ∅ so
adc processes Bucket(NeuroEv) resulting in no tightening for Bucket(CardioEv)
(it just generates (again an) R1

C = πC(RCN), which does not imply any new
tightening for R1

C in Bucket(CardioEv)). Since adc did not come across any
empty relation, the CN in Fig. 4a is consistent.

We proceed similarly for WF-path 2. This time adc eventually generates R2
C

(Table 1j) ruling out C for CardioEv.
Our example is weakly controllable. A viable strategy is σ is σ(e) = ψe and

σ(¬e) = ψ¬e, where ψe(CardioEv) = C, ψe(NeuroEv) = A, ψe(EM-Treat) = E,
ψe(ICU-Hosp) = C, ψe(DischLet) = B (WF-path 1), whereas ψ¬e(CardioEv) =
A, ψ¬e(NeuroEv) = C, ψ¬e(STD-Tr) = A, ψ¬e(DischLet) = D (WF-path 2).

The time complexity of WC-checking is O(2mn(2z)w�+1). Indeed, it corre-
sponds to the complexity of adc multiplied for the number of possible different
WF-paths, which in the worst case are 2m when considering a sequence of m
Choice blocks. However, the complexity of the execution is linear in the number
of the tasks (the strategy σ has already been synthesized).

7.2 Strong Controllability Checking

Strong Controllability Checking (SC-checking) does not need to unfold all WF-
paths and test them independently. SC-checking works as follows. We first turn
every conditional split connector × into a total one + (i.e., all Choice blocks
become Parallel ones). Then, we encode this (now unique) super-path into
a CN exactly as we discussed in Sect. 6 for a single WF-path and run again

248 M. Zavatteri et al.

any algorithm for directional consistency in order to synthesize a strategy σ(s)
working no matter s. We show the corresponding CN in Fig. 4c.

Our example is not strongly controllable. Indeed, any viable strategy σ
implies ψ(CardioEv) = B, the only conservative choice for CardioEv not hav-
ing any information on which WF-path we will have to take. This implies in
turn that both ψ(ICU-Hosp) = B and ψ(STD-Tr) = B (recall that the autho-
rization constraints between CardioEv and ICU-Hosp (WF-path 1) and between
CardioEv and STD-Tr (WF-path 2) are both labeled by =). Now, since there
are two authorization constraints connecting ICU-Hosp, STD-Tr to DischLet
labeled by ρ1 and ρ2, we can see that there is no valid user for DischLet as
ψ(ICU-Hosp) = B implies ψ(DischLet) = C, whereas ψ(STD-Tr) = B implies
ψ(DischLet) = D. The time complexity of SC-checking coincides with that of
adc after turning the WF unconditional (linear in the number of tasks and
constraints).

7.3 Dynamic Controllability Checking

Dynamic Controllability Checking (DC-checking) refines the WC-checking by
reasoning on the labels of tasks shared by different WF-paths. In our exam-
ple, WF-path 1 and WF-path 2 share CardioEv, NeuroEv, and DischLet tasks.
These tasks must always be executed since L(CardioEv) = L(NeuroEv) =
L(DischLet) = � (in the initial ACWF under conditional uncertainty).

Approaches such as keeping the intersection of the users authorized for those
tasks with respect to different WF-paths are in general wrong. In our example,
the authorized users for DischLet are {C, B} (WF-path 1), and {D} only (WF-
path 2). Thus, {C, B}∩{D} = ∅ (indeed, the ACWF is not strongly controllable).

The intuition is that given a WF-path along with its total order among tasks,
for each pair of tasks t1 and t2 such that t1 is before t2, we have that L(t2) must
also contain L(t1). Getting back to our example, we have that L(DischLet) = e
because L(ICU-Hosp) = e if we focus on WF-path 1, and L(DischLet) = ¬e
because L(STD-Tr) = ¬e if we focus on WF-path 2. Therefore, our idea is that
of conditionally intersecting the set of authorized users for tasks shared by WF-
paths if and only if the labels of these tasks are consistent.

As a result, a “fixed-point” DC-checking algorithmic approach works in
rounds until no tightening is possible. First, we encode each WF-path into a
CN using the encoding provided in Sect. 6 as we did for weak controllability.
Then, every round is as follows. (1) We run adc on every CN. If one of these
CNs is inconsistent, then the ACWF is not dynamically controllable (this is the
certificate of “no”). (2) For each task t shared by more than one WF-path, we
put in Bucket(t) of each WF-path (containing t) all the relations appearing in
the same bucket of all other WF-paths (containing t) provided that the labels
for t in these different WF-paths are consistent.

In our example, we have that, after running adc on WF-path 1 and WF-
path 2 as input we have generated RCE , and R1

C = {B, C} (WF-path 1), and
R2

C = {A, B} (WF-path 2). Therefore, in the CN encoding WF-path 1 we add
R2

C to Bucket(CardioEv) and in the CN encoding WF-path 2 we add R1
C to

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 249

Bucket(CardioEv). That is, for both CNs we tighten the unary constraint getting
R1,2

C = R1
C ∩ R2

C = {B} (ruling out both A and C since no dynamic strategy
assigning one of these users to CardioEv exists). We do the same with RCN for
both NeuroEv’s buckets resulting in no tightening. We now run again adc on
the two WF-paths since in the previous round we made at least one modification
(we tightened Bucket(CardioEv) in all CNs). In round 2 no tightening occurs, so
the DC-checking terminates. Since no inconsistent WF-path has been detected,
the ACWF under conditional uncertainty is dynamically controllable.

Dynamic controllability ensures that we can synthesize a strategy σ(s) both
offline and online (i.e., during execution) no matter which s is being generated.

We synthesize a strategy offline as we did for WC-controllability. The differ-
ence is that the choices of users for shared tasks have already been restricted.

We (efficiently) synthesize a strategy online by generating a solution as fol-
lows. We start by considering all those WF-paths containing the initial task t
and we assign a user u such that u satisfies all the relations in Bucket(t) (for the
first task Bucket(t) only contains unary relations enforcing node-consistency). If
the ACWF starts with a Choice block, we choose the WF-paths to start from
according to the truth value observed (in case of nested Choice blocks we pro-
ceed recursively). Then, we execute the next tasks moving from the considered
set of WF-paths to others (more specific) according to the scenario being gen-
erated and picking a user satisfying all relations in their corresponding buckets
(that is, a users satisfying all the constraints between that task and all tasks
which have already been executed).

Our example is dynamically controllable. A viable strategy σ(s) must ini-
tially consider both WF-paths, so the only conservative choice is σ(�) = ψ�,
where ψ�(CardioEv) = B. Then, if the conditional connector assigns � to e
the strategy knows it has to go through WF-path 1. Hence, σ(e) = ψe where
ψe(EM-Treat) = D , ψe(ICU-Hosp) = B and ψe(DischLet) = C. Instead, if
e = ⊥, then σ(¬e) = ψ¬e where ψ¬e(STD-Tr) = B and ψ¬e(DischLet) = D.
Since every execution takes into consideration either ICU-Hosp or STD-Tr (as the
tasks belong to WF-paths which are mutually-exclusive) no authorization con-
straint is violated. The time complexity of DC-checking is O(2(m+1)n(2z)w�+1),
where 2m is the number of possible different WF-paths in the worst case and
O(n(2z)w�+1) is the complexity of adc algorithm (see Sect. 3).

8 Related Work

The problem of verifying WF features related to the assignment of agents to
tasks is known in literature as WF satisfiability and resiliency [17]. More specif-
ically, the workflow satisfiability problem (WSP) is the problem of finding an
assignment of users to tasks such that the execution of the WF gets to the
end satisfying all authorization constraints. The workflow resiliency problem is
WSP under the uncertainty that a maximum number of users may become (tem-
porally) absent before or during execution. WSP does not address conditional
uncertainty. In this work, we exploited controllability analysis to deal with a

250 M. Zavatteri et al.

dynamic WSP, where we decide, during execution, which users to assign to
which tasks depending on how the uncontrollable conditional part is behaving.

Other related work lies in the area of temporal networks, where some exten-
sions injecting users and authorization constraints into the specification have
been provided. In [6], simple temporal networks with uncertainty (STNUs, [14])
are extended with security constraints in order to model temporal role-based
ACWFs in which authorization constraints and temporal constraints mutually
influence one another. Controllability checking has not been addressed for such
an extension. Access-Controlled Temporal Networks (ACTNs) [5] address users
and (conditional) temporal authorization constraints. DC-checking is done via
timed game automata. WC-checking and SC-checking have not been addressed
for ACTNs. Moreover, the analysis phase in [5] (i.e., the checking for DC before
starting) stops as soon as one (offline) dynamic execution strategy is synthesized.
In this work, DC-checking does not synthesize a particular dynamic strategy, but
it handles all possible strategies satisfying the initial constraints.

In [1], Cabanillas et al. address the resource allocation for business processes.
They consider an RBAC environment and they do not impose any particular
order on activities. They also address loops. However, the authors clearly state
that their work is unable to address History-Based Allocation of resources.

9 Conclusions and Future Work

We defined ACWFs under conditional uncertainty by injecting access control
into BPMN. We then gave the semantics for weak, strong and dynamic control-
lability of ACWFs under conditional uncertainty and discussed the algorithmic
approaches to both address these decision problems and synthesize execution
strategies. We also discussed the complexity of WC, SC, and DC-checking. For
classic (unconditional) ACWFs if the authorization constraints are monotone
(e.g., =) the checking is done in n3 where n is the number of tasks [13]. The same
holds for non-monotone relations if each task has no more that 2 users autho-
rized. In general, the problem is NP-hard. Adding conditions can only make it
worse. However, adc considerably speeds up the analysis (for the general CSP)
allowing one to compute the necessary level of consistency to guarantee that a
solution can be generated without backtracking. Once this check is done, every
solution (i.e., assignment of users to tasks) can be generated in polynomial time.
This means that the runtime phase is tractable.

As future work, we plan to implement and verify our approach on real-world
ACWFs, where, as in the clinical domain, sophisticated security policies need
to be specified, managed and enforced while executing the WF. We also plan to
benchmark the proposed algorithms once we have carried out a more thorough
analysis on how to compute the most conservative order for tasks. This is because
for some WF instances the answer “dynamic controllable” or “uncontrollable”
depends on how the tasks have been ordered.

Weak, Strong and Dynamic Controllability of Access-Controlled Workflows 251

References

1. Cabanillas, C., Resinas, M., del Ŕıo-Ortega, A., Cortés, A.R.: Specification and
automated design-time analysis of the business process human resource perspec-
tive. Inf. Syst. 52, 55–82 (2015). doi:10.1016/j.is.2015.03.002

2. Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., Roveri, M.: Dynamic con-
trollability via timed game automata. Acta Informatica 53(6–8), 681–722 (2016).
doi:10.1007/s00236-016-0257-2

3. Combi, C., Gambini, M., Migliorini, S.: The NestFlow interpretation of work-
flow control-flow patterns. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS
2011. LNCS, vol. 6909, pp. 316–332. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23737-9 23

4. Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Representing business
processes through a temporal data-centric workflow modeling language: an appli-
cation to the management of clinical pathways. IEEE Trans. Syst. Man Cybern.
Syst. 44(9), 1182–1203 (2014). doi:10.1109/TSMC.2014.2300055

5. Combi, C., Posenato, R., Viganò, L., Zavatteri, M.: Access controlled temporal net-
works. In: Proceedings of the 9th International Conference on Agents and Artificial
Intelligence (ICAART), pp. 118–131 (2017). doi:10.5220/0006185701180131

6. Combi, C., Viganò, L., Zavatteri, M.: Security constraints in temporal role-based
access-controlled workflows. In: CODASPY 2016, pp. 207–218 (2016). doi:10.1145/
2857705.2857716

7. Dechter, R.: Constraint Processing. Kaufmann, San Francisco (2003)
8. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction prob-

lems. Artif. Intell. 34(1), 1–38 (1987). doi:10.1016/0004-3702(87)90002-6
9. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29, 24–32

(1982)
10. Gottlob, G.: On minimal constraint networks. Artif. Intell. 191–192, 42–60 (2012).

doi:10.1016/j.artint.2012.07.006
11. Hollingsworth, D.: The workflow reference model (1995). http://www.wfmc.org/

standards/model.htm
12. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118

(1977). doi:10.1016/0004-3702(77)90007-8
13. Montanari, U.: Networks of constraints: fundamental properties and applications

to picture processing. Inf. Sci. 7, 95–132 (1974). doi:10.1016/0020-0255(74)90008-5
14. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal

uncertainty. In: IJCAI 2001, pp. 494–502 (2001)
15. Reijers, H., Mendling, J.: Modularity in process models: review and effects. In:

Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
20–35. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85758-7 5

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Comput. 29(2), 38–47 (1996). doi:10.1109/2.485845

17. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Trans. Inf. Syst. Secur. 13(4) (2010). doi:10.1145/1880022.1880034

http://dx.doi.org/10.1016/j.is.2015.03.002
http://dx.doi.org/10.1007/s00236-016-0257-2
http://dx.doi.org/10.1007/978-3-642-23737-9_23
http://dx.doi.org/10.1007/978-3-642-23737-9_23
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.5220/0006185701180131
http://dx.doi.org/10.1145/2857705.2857716
http://dx.doi.org/10.1145/2857705.2857716
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1016/j.artint.2012.07.006
http://www.wfmc.org/standards/model.htm
http://www.wfmc.org/standards/model.htm
http://dx.doi.org/10.1016/0004-3702(77)90007-8
http://dx.doi.org/10.1016/0020-0255(74)90008-5
http://dx.doi.org/10.1007/978-3-540-85758-7_5
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1145/1880022.1880034

An Eye into the Future: Leveraging A-priori
Knowledge in Predictive Business Process

Monitoring

Chiara Di Francescomarino1(B), Chiara Ghidini1, Fabrizio Maria Maggi2,
Giulio Petrucci1,3, and Anton Yeshchenko2

1 FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
{dfmchiara,ghidini,petrucci}@fbk.eu

2 University of Tartu, Ulikooli 18, 50090 Tartu, Estonia
{f.m.maggi,anton.yeshchenko}@ut.ee

3 University of Trento, Via Sommarive 14, 38050 Trento, Italy

Abstract. Predictive business process monitoring aims at leveraging
past process execution data to predict how ongoing (uncompleted)
process executions will unfold up to their completion. Nevertheless, cases
exist in which, together with past execution data, some additional knowl-
edge (a-priori knowledge) about how a process execution will develop in
the future is available. This knowledge about the future can be leveraged
for improving the quality of the predictions of events that are currently
unknown. In this paper, we present two techniques - based on Recurrent
Neural Networks with Long Short-Term Memory (LSTM) cells - able to
leverage knowledge about the structure of the process execution traces
as well as a-priori knowledge about how they will unfold in the future
for predicting the sequence of future activities of ongoing process execu-
tions. The results obtained by applying these techniques on six real-life
logs show an improvement in terms of accuracy over a plain LSTM-based
baseline.

Keywords: Predictive Process Monitoring · Recurrent Neural
Networks · Linear Temporal Logic · A-priori Knowledge

1 Introduction

Predictive business process monitoring [19] is a research topic aiming at develop-
ing techniques that use event logs extracted from information systems in order to
predict how ongoing (uncompleted) process executions (a.k.a. cases) will unfold
up to their completion. A recent stream of work [12,13,23,28] has been focused
on the provision of techniques able to predict the future path (continuation) of
an ongoing case, a type of predictions that can be used to provide valuable input
for planning and resource allocation. These predictions are generally based on:
(i) the sequence of activities already executed in the case; (ii) the timestamp
indicating when each activity in the case was executed; and (iii) the values of
data attributes after each execution of an activity in the case.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 252–268, 2017.
DOI: 10.1007/978-3-319-65000-5 15

An Eye into the Future: Leveraging A-priori Knowledge 253

What motivates this paper is the surmise that past event logs, or more in
general knowledge about the past, is not the only important source of knowl-
edge that can be leveraged to make predictions. In many real life situations,
cases exist in which, together with past execution data, some case-specific addi-
tional knowledge (a-priori knowledge) about the future is available and can be
leveraged for improving the predictive power of a predictive process monitoring
technique. Indeed, this additional a-priori knowledge is what characterizes the
future context of execution of the process that will affect the development of the
currently running cases. Think for instance to the temporary unavailability of a
surgery room which may delay or even rule out the possibility of executing cer-
tain activities in a patient treatment process. While it is impractical to retrain
the predictive algorithms to take into consideration this additional knowledge
every time it becomes available, it is also reasonable to assume that considering
it in some way would improve the accuracy of the predictions on an ongoing
case.

In light of this motivation, in Sect. 5, we provide two techniques based on
Recurrent Neural Networks with Long Short-Term Memory (LSTM) cells [16]
able to leverage a-priori knowledge about process executions for predicting the
sequence of future activities of an ongoing case. The proposed algorithms are
opportunely tailored in a way that the a-priori knowledge is not taken into
account for training the predictor. In this way, the a-priori knowledge can be
changed on-the-fly at prediction time without the need to retrain the predictive
algorithms. In particular, we introduce:

– a Nocycle technique which is able to leverage knowledge about the struc-
ture of the process execution traces, and in particular about the presence of
repetitions of sequences (i.e., cycles), to improve a plain LSTM-based baseline
so that it does not fall into a local minimum, a phenomenon already hinted
in [28] but not yet solved;

– an A-priori technique which takes into account a-priori knowledge together
with the knowledge that comes from historical data.

In Sect. 6, we present a wide experimentation carried out using six real-life logs
and aimed at investigating whether the proposed algorithms increase the accu-
racy of the predictions. The outcome of our experiments is that the application
of these techniques provides an improvement up to 50% in terms of prediction
accuracy over the baseline. In addition to the core part (Sects. 5 and 6), the paper
contains an introduction to some background notions (Sect. 2), a detailed illus-
tration of the research problem (Sect. 4), related work (Sect. 3) and concluding
remarks (Sect. 7).

2 Background

In this section, we report the background concepts useful for understanding the
remainder of the paper.

254 C. Di Francescomarino et al.

x〈1〉 x〈2〉 x〈3〉 . . . x〈K〉

h〈1〉 h〈2〉 h〈3〉
. . .

h〈K〉

y〈1〉 y〈2〉 y〈3〉 . . . y〈K〉

Fig. 1. Recurrent Neural Network

2.1 Event Logs and Traces

An event log is a set of traces, each representing the execution of a process (case
instance). Each trace consists of a sequence of activities, each referring to the
execution of an activity in a finite activity set A.

Definition 1 (Trace, Event Log). A trace σ = 〈a1, a2, ...an〉 ∈ A∗ over A is
a sequence of activities. An event log L ∈ B(A) is a multi-set of traces over the
activity set A.

A prefix of length k of a trace σ = 〈a1, a2, ...an〉 ∈ A∗, is a trace pk(σ) =
〈a1, a2, ...ak〉 ∈ A∗ where k ≤ n; the suffix of the prefix of length k is defined
as the remaining part of σ, that is, sk(σ) = 〈ak + 1, ak + 2, ...an〉 ∈ A∗. For
example, the prefix of length 3 of 〈a, c, r, f, s, p〉 is 〈a, c, r〉, while the suffix of
this prefix is 〈f, s, p〉.

A cycle in a trace σ ∈ A∗ is a sequence of activities repeated
at least twice in σ (with adjacent repetitions). For example, trace
〈a, b, a, b, a, b, c, d, e, f, g, e, f, g, c, d〉 contains two cycles: 〈a, b〉 (3 repetitions) and
〈e, f, g〉 (2 repetitions).

2.2 RNNs and LSTM

Artificial Neural Networks (or just Neural Networks, NNs) are a well known
class of discriminative models. In classification tasks, they are used to model the
probability of a given input to belong to a certain class, given some features of
the input. We can describe them in mathematical terms as follows:

p(y|x) = fNN (x; θ). (1)

In (1), x is the feature vector that represents the input, y is a random variable
representing the output class labels, fNN is the function modeled by the neural
network, and θ is the set of parameters of such a function to be learnt during
the training phase.

Recurrent Neural Networks (RNNs, see Fig. 1) are a subclass of Neural Net-
works. We illustrate them with the help of an example in which the classification
task concerns in assigning the correct part of speech – noun, verb, adjective, etc. –
to words. If we take the word “file” in isolation, it can be both a noun and a
verb. Nonetheless, this ambiguity disappears when we consider it in an actual

An Eye into the Future: Leveraging A-priori Knowledge 255

sentence. Therefore, in the sentence “I have to file a complain” it acts as a verb,
while in the sentence “I need you to share that file with me” it acts as a noun.

This simple example shows that for some tasks the classification at a certain
time-step t depends not only on the current input (i.e., “file”) but also on the
input (i.e., the part of the sequence) seen so far. The tasks that share this
characteristic are said to be recurrent. Natural Language tasks are a typical
example of recurrent phenomena.

In mathematical terms, let us write x〈1〉, ...,x〈K〉 to indicate an input
sequence of K time-steps, represented by the superscript between angle brackets.
In this way, at each time-step t, the conditional probability of a given input to
belong to a certain class is described by

p(y〈y〉|x〈t〉, ...,x〈1〉) = fRNN (x〈1〉, ...,x〈t〉; θ). (2)

RNNs have been proven to be extremely appropriate for modeling sequential
data (see [15]). As shown in Fig. 1, they typically leverage recurrent functions
in their hidden layers, which are, in turn, composed of hidden states. Let h〈t〉,
with

h〈t〉 = h(x〈t〉,h〈t−1〉; θh); (3)

be the activation of the hidden state at the t-th time-step. h is a so-called cell
function, parameterized over a set of parameters θh to be learnt during the
training, and accepting as inputs the current input x〈t〉 and its value at the
previous time-step h〈t−1〉. The activation of the hidden state is then mapped
(using a linear map) into a continuous vector of the same size as the number
of output classes. All the elements in such a vector are greater than zero and
their sum is equal to one. Therefore, this vector can be seen as a probability
distribution over the output space. All these constraints can be easily achieved
specifying the generic Eq. (2) by means of a softmax function:

p(y〈y〉|x〈t〉, ...,x〈1〉) = softmax(Wh〈t〉 + b); (4)

where the weight matrix W and the bias vector b are parameters to be learnt
during the training phase.

Among the different cell functions h (see Eq. (3)) explored in literature, Long
Short-Term Memory (LSTM) [16] shows a significant ability to maintain the
memory of its input across long time spans. This property makes them extremely
suitable to be used in RNNs that have to deal with input sequences with complex
long-term dependencies such as the ones we consider in this paper.

2.3 RNNs with LSTM for Predictive Process Monitoring

In order to provide predictions on the suffix of a given prefix (of a running
case), state-of-the-art approaches for predictive process monitoring use RNNs
with LSTM cells. The most recent and performing approach in this field [28]
relies on an encoding of activity sequences that combines features related to the
activities in the sequence (the so called one-hot encoding) and features related
to the time characterizing these activities. Given the set A = {a1A , . . . amA

}
of all possible activities, an ordering function idx : A → {1, . . . , |A|} ⊆ N is

256 C. Di Francescomarino et al.

defined on it, such that aiA <> ajA if and only if iA <> jA, i.e., two activities
have the same A-index if and only if they are the same activity. For instance,
if A = {a, b, c}, we have idx : A → {1, 2, 3} and idx(a) = 1, idx(b) = 2 and
idx(c) = 3. Each activity ai ∈ σ is encoded as a vector (Ai) of length |A| + 3
such that the first |A| features are all set to 0, except the one occurring at the
index of the current activity idx(ai), which is set to 1. The last three features
of the vector pertain to time: the first one relates to the time increase with
respect to the previous activity, the second reports the time since midnight (to
distinguish between working and night time), and the last one refers to the time
since the beginning of the week.

A trace is encoded by composing the vectors obtained from all activities in the
trace into a matrix. During the training phase, the encoded traces are used for
building the LSTM model. During the testing phase, a (one-hot encoded) prefix
of a running case is used to query the learned model, which returns the predicted
suffix by running an inference algorithm. Algorithm 1 reports the inference algo-
rithm introduced in [28] and based on RNN with LSTM cells for predicting the
suffix of a given prefix pk(σ) of length k. The algorithm takes as input the prefix
pk(σ), the LSTM model lstm and a maximum number of iterations max and
returns as output the complete trace (the prefix and the predicted suffix). First,
the prefix pk(σ) is encoded by using the one-hot encoding (line 5). The resulting
matrix is then used for feeding the LSTM model and getting the probability
distribution over different possible symbols that can occur in the next position
of the trace (line 6). The symbol with the highest probability is hence selected
from the ranked probabilities (line 7). Then, a new trace is obtained by concate-
nating the current prefix with the new predicted symbol (line 8). In order to
predict the second activity, the one-hot encoding of the new prefix is computed
and used to recursively feed the network. The procedure is iterated until the
predicted symbol is the end symbol or a maximum number of iterations max is
reached (line 10).

Algorithm 1. Inference algorithm for predicting the suffix of pk(σ)
1: function PredictSuffix(pk(σ), lstm, max)
2: h = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol probs = predictNextSymbols(lstm, traceencoded)
7: next symbol = getSymbol(next symbol prob, traceencoded)
8: trace = trace · next symbol
9: h = h + 1

10: while (next symbol <> end symbol) and (h < max)
11: return trace
12: end function

An Eye into the Future: Leveraging A-priori Knowledge 257

2.4 Linear Temporal Logic

In our approach, the a-priori knowledge that describes how a running case will
develop in the future is formulated in terms of Linear Temporal Logic (LTL)
rules [22]. LTL is a modal logic with modalities devoted to describe time aspects.
Classically, LTL is defined for infinite traces. However, to describe the charac-
teristics of a business process, we use a variant of LTL defined for finite traces
(since business processes are supposed to complete eventually). We assume that
activities occurring during the process execution fall into the set of atomic propo-
sitions. LTL rules are constructed from these atoms by applying the temporal
operators © (next), ♦ (future), � (globally), and 	 (until) in addition to the
usual boolean connectives. Given a formula ϕ, ©ϕ means that the next time
instant exists and ϕ is true in the next time instant (strong next). ♦ϕ indicates
that ϕ is true sometimes in the future. �ϕ means that ϕ is true always in the
future. ϕ	ψ indicates that ϕ has to hold at least until ψ holds and ψ must hold
in the current or in a future time instant.

3 Related Work

The literature related to predictive business process monitoring can be roughly
classified according to the type of predictions that is provided. A first group
of works focuses on the time perspective. In [2], the authors present a set of
approaches in which annotated transition systems, containing time information
extracted from event logs, are used to: (i) check time conformance; (ii) predict
the remaining processing time of incomplete cases; (iii) recommend appropriate
activities to end users working on these cases. In [14], an approach for pre-
dicting business process performances is presented. The approach is based on
context-related execution scenarios discovered and modeled through state-aware
performance predictors. In [24], the authors use stochastic Petri nets to predict
the remaining execution time of a process execution. In [20], the authors present
a technique for predicting the delay between the expected and the actual arrival
time of cases pertaining to a transport and logistics process. In [25], queue theory
is used to predict possible delays in process executions.

Another set of works in the literature focuses on approaches that generate
predictions and recommendations to reduce risks. For example, in [6], the authors
present a technique to support process participants in making risk-informed deci-
sions with the aim of reducing the process risks. Risks are predicted by traversing
decision trees generated from logs of past process executions. In [21], the authors
make predictions about time-related process risks by identifying and leveraging
statistical indicators observable in event logs that highlight the possibility of
transgressing deadlines. In [27], an approach for Root Cause Analysis through
classification algorithms is presented.

A third group of prediction approaches predicts the outcome (e.g., the sat-
isfaction of a business objective) of a case. In [19] a framework is introduced,
which is able to predict the fulfillment (or the violation) of a boolean predicate
in a running case, by looking at: (i) the sequence of activities already performed
in the case; and (ii) the data payload of the last activity of the running case.
The framework, which provides accurate results at the expense of a high runtime

258 C. Di Francescomarino et al.

overhead, has been enhanced in [9] by introducing a clustering preprocessing step
in which cases sharing a similar activity history are clustered together. A classi-
fier for each cluster is trained with the data payload of the traces in the cluster.
In [17], the authors compare different feature encoding approaches where traces
are treated as complex symbolic sequences, that is, sequences of activities each
carrying a data payload consisting of attribute-value pairs. In [29], unstructured
information contained in text messages exchanged during process executions has
been leveraged for improving the prediction accuracy.

The problem investigated in this paper falls into a fourth and last set of
works, i.e., into the set of very recent efforts aiming at predicting the sequence of
future activities given the activities observed so far. In [23], Polato et al. propose
several techniques for predicting the remaining time and the sequence of future
activities in an ongoing case using simple regression, regression with contextual
information, and data-aware transition systems. Other approaches [12,13,28]
make use of RNNs with LSTM cells. In particular, Evermann et al. [12,13] pro-
pose an RNN with two hidden layers trained with back propagation, while Niek
et al. [28] leverage LSTM and an encoding based on activities and timestamps
(illustrated in detail in Sect. 2.3) to provide predictions on the next activities and
their timestamps. Differently from all these works, this paper investigates how
to take advantage of possibly existing a-priori knowledge for making predictions
on the sequence of future activities.

4 The Problem

Predictive business process monitoring methods use past process executions,
stored in event logs, in order to build predictive systems that work at runtime to
make predictions about the future. Among the different interesting and appealing
types of predictions about the future of an ongoing case, such as the remaining
time or the fulfilment of a predicate, we can find the prediction of the sequence
of future activities. This type of predictions can be useful in the scenario where
some planning and resource allocation are needed for the running case. For
instance, the hospital management can be highly interested in predicting the
future activities of patients to be able to best organize machines and resources
of a hospital.

Nonetheless, predicting sequences of activities is a quite complex and chal-
lenging task, as the longer the sequence is, the more difficult is to predict the most
far-away activities. While predicting the sequence of future activities entirely
from past execution data may be difficult, in real world scenarios, we often
observe that some a-priori knowledge about the future of the running process
executions exists and could hence be leveraged to support the predictive methods
and improve their accuracy. For instance, in the hospital example, new medical
guidelines may provide new knowledge on the fact that two treatments are not
useful if used together in order to cure a certain disease, or that a certain screen-
ing is required in order to perform a specific surgery, or also that if a patient is
allergic to a specific treatment she will never go to take it.

An Eye into the Future: Leveraging A-priori Knowledge 259

This a-priori knowledge can be expressed in terms of LTL rules. For instance,
in the hospital example, LTL can be used for defining the following rules:

1. treatmentA and treatmentB cannot be both used within the same course
of cure of a patient:

¬(♦treatmentA ∧ ♦treatmentB) (5)

2. screeningC is a pre-requisite to perform surgeryD:

(¬surgeryD 	 screeningC) ∨ �(¬surgeryD) (6)

3. treatmentB cannot be performed on this course of cure (e.g., because the
patient is allergic to it):

¬♦treatmentB (7)

In this paper, we aim at understanding whether and how a-priori knowl-
edge can be leveraged in order to improve the accuracy of the prediction of the
(sequence of the) next activity(ies) of an ongoing case in a reasonable amount
of time. For instance, in the example of the hospital, being aware of the fact
that treatmentA and treatmentB can never be executed together could help
in ruling out a prediction of treatmentB whenever we have already observed
treatmentA and vice versa.

Formally, given a prefix pk(σ) = 〈a1, ..., ak〉 of length k of a trace σ =
〈a1, ..., an〉 and some knowledge K(σ) on σ, the problem we want to face is
to identify the function f such that f(pk(σ),K(σ)) = sk(σ).

5 The Solution

Predicting the suffix of a given prefix is a problem that is tackled by state-of-the-
art approaches that make use of LSTM-based RNNs [12,13,28]. We hence start
from these approaches and build on top of them to take into account a-priori
knowledge.

Before presenting our approach, we need to observe that a basic solution
that can be used to leverage a-priori knowledge for making predictions is the
one provided by the inclusion of the a-priori knowledge in the data used for
training the prediction model. However, this solution would raise a main practical
problem: since the a-priori knowledge can in principle change from case to case,
this would require to retrain the model for each prediction, thus hampering the
scalability of the predictive system. A smarter approach is hence required for
taking into account a-priori knowledge when predicting the future path of an
ongoing case.

In the next sections, we first introduce an enhancement, called Nocycle,
of state-of-the-art approaches for overcoming the issues encountered with traces
characterized by a high number of cycles (Sect. 5.1). We then describe A-priori,
an algorithm that allows us to take into account a-priori knowledge expressed
in terms of LTL rules (Sect. 5.2). In both cases, we use the RNN architecture
with LSTM cells and training system proposed in [28], while we extend and
enhance the prediction phase. The A-priori algorithm for accounting for a-
priori knowledge and the enhancement for dealing with cycles are then combined
into the A-priori∗ technique.

260 C. Di Francescomarino et al.

5.1 Learning from Trace Structures

By experimenting the LSTM approach on different event logs, we found that
event logs with traces containing a high number of repetitions of cycles perform
worse than others, as also observed in [28]. This is mainly due to the fact that
frequent repetitions of a cycle cause an increase in the probability distribution
of the back-loop, i.e., the connection between the last and the first element of
the cycle. To overcome this problem, we propose to equip Algorithm 1 with an
additional function in charge of weakening such a back-loop probability. This
function is composed of two parts: in the first part, the current trace is analyzed
in order to discover possible cycles; in the second part, the cycle discovery is
used for preventing the prediction of further repetitions of the cycle. More in
detail:

1. For each prefix pk(σ) = 〈a1a2 . . . ak〉 of size k, the algorithm checks if there
are j (j >= 2) consecutive occurrences of a cycle c = 〈ac1 . . . acs〉, such that
the last activity of the prefix corresponds to the last activity of the cycle
idx(ak) = idx(acs);

2. j is then used to correct the distribution over different possible activities that
can occur in the next position by decreasing the probability of the first activity
of the cycle ac1 to occur again. To decrease this probability, the algorithm
uses a coefficient, function of the number of cycle repetitions j, as a weight
to adjust the probability distribution. Examples of formulas that can be used
for this purpose are j2 or ej .

Algorithm 2 reports the pseudo-code of the Nocycle technique. Similarly to
Algorithm 1 presented in Sect. 2.3, it takes as input a prefix pk(σ), the trained
LSTM model lstm, and the maximum number max of iterations allowed. Then,
it returns as output the complete trace (the prefix and the predicted suffix). In
particular, the algorithm adds to the state-of-the-art Algorithm 1 the weak-
enProb procedure described above to find cycles in the trace and decrease the
probability of the first activity of the cycle to occur again at the end of a rep-
etition. The resulting vector of weakened probabilities is hence used for getting
the next symbol as in the basic procedure.

5.2 Learning from A-priori Knowledge

The overall idea for leveraging a-priori knowledge for predictive monitoring is
simple: (i) we use the LSTM approach to get the possible predictions for an
ongoing trace; (ii) we rank them according to the likelihood of the prediction;
and (iii) we select the first prediction that is compliant with the LTL rules
describing the a-priori knowledge. However, although RNN inference algorithms
are not computationally expensive per se, building all the possible predicted
suffixes could be costly and inefficient.

Therefore, the alternative investigated in this paper leverages, on top of state-
of-the-art LSTM techniques, the approach classically used in statistical sequence-
to-sequence predictions in translation tasks [30], i.e., the beamSearch algorithm.
The beamSearch is a heuristic algorithm based on graphs that explores the search
space by expanding only the most promising branches. Then, in the testing

An Eye into the Future: Leveraging A-priori Knowledge 261

Algorithm 2. Nocycle extension for predicting the suffix of pk(σ)
1: function PredictSuffixNoCycle(pk(σ), lstm, max)
2: h = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol prob = predictNextSymbols(lstm, traceencoded)
7: weak next symbol prob = weakenProb (trace, next symbol prob)
8: next symbol = getSymbol(weak next symbol prob, traceencoded)
9: trace = trace · next symbol

10: h = h + 1
11: while (next symbol <> end symbol) and (h < max)
12: return trace
13: end function

phase, to predict a certain suffix, we use a new inference algorithm (A-priori),
which explores the probability space using beamSearch to cut the branches of
the LSTM model which bring to predictions that are not compliant with the
a-priori knowledge.

Algorithm 3 reports the pseudo-code describing the A-priori algorithm. It
takes as input the prefix pk(σ), the available a-priori knowledge K(σ), and the
trained LSTM model lstm, together with three parameters: (i) bSize, which is
the maximum number of next symbols predicted by the LSTM model and used
to construct the possible predicted suffixes at each iteration; (ii) maxSize, which
is the maximum number of branches that can be explored by A-priori at the
same time; and (iii) max, which is the maximum number of allowed iterations.

Algorithm 3. A-priori algorithm for predicting the suffix of pk(σ)
1: function A-priori (pk(σ), K(σ), lstm, bSize, maxSize, max)
2: h = 0
3: prefixes = {pk(σ)}
4: while (h ≤ max) and (not isEmpty(prefixes)) do
5: candidates next = predictPrefNextSymbols(lstm, prefixes, bSize)
6: top candidates = topRank(candidates next, maxSize)
7: empty(prefixes)
8: for all candidate in top candidates do
9: if last symbol(candidate) <> end symbol then

10: push(candidate, prefixes)
11: else
12: if check(candidate, K) then
13: return candidate
14: end if
15: end if
16: end for
17: h = h + 1
18: end while
19: end function

262 C. Di Francescomarino et al.

Intuitively, the algorithm iterates over a priority queue of prefixes, which is
initialized with the input prefix pk(σ) (line 3) and is used for regulating the
number of branches to be explored. For each prefix in prefixes, bSize possible
next activities are predicted using the model lstm and, for each prefix, bSize
new traces are obtained by concatenating the prefix with the corresponding bSize
predicted next activities (line 5). In this way, the algorithm generates |prefixes|∗
bSize traces. In order to limit the search space, the algorithm ranks the predicted
traces based on their estimated probability1 and takes only the top maxSize ones
(line 6). For each of these traces (line 8), if the last symbol predicted is not the
end symbol, the trace is added to prefixes (line 10). Otherwise, if the trace
is complete, the algorithm checks if it is compliant to the LTL rules in K(σ)
(line 12). In this case, the trace is returned (line 13). The algorithm is then
iterated until the queue of prefixes is empty or the maximum number of iterations
max is reached (line 4).

5.3 Implementation

Algorithms 2 and 3 (and their combination) have been implemented in Python
2.6. In particular, the Keras [5] and TensorFlow [3] libraries have been used for
neural networks. The LTL checker for checking the compliance of traces with
respect to LTL rules is instead based on automata and written in Java. The
Py4J library has been used as a gateway to access Java code from Python.
The full source code is available on github at https://github.com/yesanton/
ProcessSequencePrediction.

6 Evaluation

In this section, we provide an evaluation of our predictive business process
monitoring techniques based on a-priori knowledge. In detail, we check: (i)
whether the Nocycle algorithm leveraging knowledge about the structure of
the process execution traces (and in particular about the presence of cycles)
actually improves the accuracy of the predictions; and (ii) whether the combina-
tion of Nocycle with A-priori, the A-priori∗ algorithm, is able to leverage
a-priori knowledge to improve the performance of the LSTM model.

6.1 Event Logs

For the evaluation of the techniques, we used six real-life event logs. Four of them
were provided for the BPI Challenge (BPIC) 2011 [1], 2012 [10], 2013 [26], and
2017 [11], respectively. We also used two additional event logs, one pertaining
to an environmental permit application process (“WABO”), used in the context
of the CoSeLoG project [4] (EnvLog for short in this paper), and another con-
taining cases from a ticketing management process of the help desk of an Italian
1 Note that, in order to prevent overflow in the computation, the estimated probability

for sequences of activities is computed as the sum of the logarithm of the probabilities
of the next activities rather than as the product of the probabilities of the next
activities.

https://github.com/yesanton/ProcessSequencePrediction
https://github.com/yesanton/ProcessSequencePrediction

An Eye into the Future: Leveraging A-priori Knowledge 263

Table 1. The event logs

Log #Tr. #Act. avg-TL avg-CR Spars.

EnvLog 937 381 41.562 0.14 0.3191
HelpDesk 3804 9 3.6 0.22 0.0024
BPIC11 911 424 54.168 5.05 0.4654
BPIC12 9 658 6 7.5 1.35 0.0006
BPIC13 7 554 13 8.675 1.45 0.0017
BPIC17 31 508 26 17.826 0.46 0.0008

software company (Helpdesk2 for short). Note that all the logs have been filtered.
In particular, BPIC12, BPIC13, EnvLog and HelpDesk are the ones used in [28],
in order to ease the comparison of our techniques with the state-of-the-art. Sim-
ilarly, BPIC11 and BPIC17 have been filtered by removing outlier traces with
respect to the average trace length.

The characteristics of these logs are summarized in Table 1. For each log, we
report the total number of traces, the number of activity labels (i.e., the size
of the activity set of the log), the average trace length (avg-TL), the average
number of repetitions of all cycles in the log (avg-CR), and the ratio between
the number of activity labels and the number of traces, indicating the sparsity
of the activity labels over the log.

6.2 Experimental Procedure

In order to evaluate the techniques presented in this paper, we adopted the
following procedure. For each event log:

1. We divided the event log in two parts: a training set composed of 67%
of traces of the whole event log used for building the LSTM models and a
testing set composed of the remaining 33% used for testing the predictions
of suffixes.

2. We derived the a-priori knowledge on the traces of the testing set as fol-
lows. We randomly selected 10% of traces of the testing set. We used the
DeclareMiner ProM plug-in [18] to discover LTL rules satisfied in all these
traces. Then, we defined 2 conjunctive rules describing a strong a-priori
knowledge and a weak a-priori knowledge, which respectively strongly and
weakly constrain the traces. In particular, we discovered rules of type ♦A
(which imposes the occurrence of A) for defining the weak a-priori knowledge
and rules of type �(A → ♦B)∧♦A (which imposes the occurrence of both A
and B and that every occurrence of A is followed by an occurrence of B) for
defining the strong a-priori knowledge. For the weak a-priori knowledge, we
randomly selected from the discovered rules one, two or three3 rules of type
♦A and we composed them into a single conjunctive formula. Similarly, for
the strong a-priori knowledge, we randomly selected one, two or three rules
from the discovered rules of type �(A → ♦B) ∧ ♦A and we composed them

2 https://data.mendeley.com/datasets/39bp3vv62t/1.
3 The number of rules selected has been determined empirically to allow them to be

satisfied in around 50% of the traces of the testing set.

https://data.mendeley.com/datasets/39bp3vv62t/1

264 C. Di Francescomarino et al.

into a single conjunctive formula. We followed this systematic procedure for
defining the a-priori knowledge, to limit the bias of the selected rules while
guaranteeing that they are satisfied in a reasonable number of traces in the
testing set. The schematic form of the rules used in the evaluation is reported
in Table 2, where - for the sake of readability - we replace the original activity
names with single characters. Starting from strong and weak a-priori knowl-
edge, we built a strong a-priori testing set and a weak a-priori testing set,
respectively composed of the subsets of traces of the testing set satisfying
strong and weak a-priori knowledge.

3. From each trace in the testing sets, we extracted 4 prefixes of lengths cor-
responding to the 4 integers in the interval [mid − 2,mid + 2], where mid
is half of the median of the trace lengths. Then, we compared Nocycle
and A-priori∗ against a baseline provided by the technique presented in
[28], when predicting the suffixes of these prefixes.4 For each technique, we
computed: (i) the length of the predicted suffixes; and (ii) their similarity
with the prediction ground truth measured using the Damerau-Levenshtein
similarity [7].

Table 2. The a-priori knowledge

Log A-priori Strong A-priori Weak

EnvLog �(a → ♦b) ∧ ♦a ∧ �(c → ♦d) ∧ ♦c ♦a ∧ ♦c
HelpDesk �(e → ♦f) ∧ ♦e ♦e
BPIC11 �(g → ♦h) ∧ ♦g ∧ �(i → ♦l) ∧ ♦i ∧ �(m → ♦n) ∧ ♦m ♦i ∧ ♦h ∧ ♦o
BPIC12 �(p → ♦q) ∧ ♦p ♦p
BPIC13 �(r → ♦s) ∧ ♦r ∧ �(t → ♦r) ∧ ♦t ♦s ∧ ♦r
BPIC17 �(u → ♦v) ∧ ♦u ♦u

The experiments have been performed both on a GPU Tesla K40c and on a
conventional laptop CPU on Code i5. As for the LSTM training settings we
used the ones identified by Tax et al. [28] as the most performing ones for facing
the problem of predicting sequences of future activities.5 The time required for
training the LSTM models is about 2 min per epoch using the GPU and 15 min
using the CPU. The inference time for Nocycle is about 0.1–2 seconds per
trace (depending on the log), whereas the inference time for A-priori∗ is 4
times higher on average.

6.3 Results and Discussion

Tables 3 and 4 report, for each event log, the performances of the two techniques
we propose on the strong a-priori and weak a-priori testing sets. The results for

4 We set bSize to 3 and, for the coefficient in charge of weakening the probabilities of
activities in a cycle, we used the exponential formula (ej , where j is the number of
cycle repetitions).

5 We used an architecture characterized by two LSTM layers. The algorithm used is
the Adam learning algorithm with categorical cross entropy loss and the dropout
coefficient has been set to 0.2.

An Eye into the Future: Leveraging A-priori Knowledge 265

both testing sets are compared with the baseline presented in [28]. For each log,
we provide the average Damerau-Levenshtein similarity between the predicted
sequence (in square brackets, its average length) and the ground truth (in column
5 its average length). The best average Damerau-Levenshtein similarity for each
log is emphasized in gray. Column 6 reports the number of traces tested while
column 7 specifies the range of the prefix lengths used for the specific event log.

Table 3. Prediction results on the strong a-priori testing set

Table 4. Prediction results on the weak a-priori testing set

The tables show that the proposed algorithms outperform the baseline in
most of the logs. The presence of cycles in the logs has a strong impact on the
performance of the Nocycle algorithm. In particular, if the logs have an average
number of cycle repetitions smaller than 0.5, as in the case of EnvLog, HelpDesk
and BPIC17, then Nocycle does not show any improvement over the baseline.
Therefore, we can conclude that Nocycle correctly deals with the presence of
cycles in the logs to improve the predictions.

A-priori∗ performs worse on logs EnvLog and BPIC11. The reason for this
can be explained by the fact that, in these two logs, activity labels are sparse
with an unusually high number of labels with respect to the number of traces.
Indeed, Table 1 shows that the ratio between the number of activity labels and
the number of traces (column 6) for these logs is higher with respect to the other
logs. We can also notice that the availability of highly constraining rules in the
a-priori knowledge improves the performance of A-priori∗. Therefore, we can
conclude that A-priori∗ is able to correctly leverage a-priori knowledge in a way
that it performs better when the activity set of the log is not particularly large
(and the log does not contain sparse behaviors) and when the a-priori knowledge
constrains more the process behavior.

7 Conclusions

In this paper, we have presented two techniques based on RNNs with LSTM cells
able to leverage knowledge about the structure of the process execution traces

266 C. Di Francescomarino et al.

as well as a-priori knowledge about their future development for predicting the
sequence of future activities of an ongoing case. In particular, we show that, by
opportunely tailoring LSTM-based algorithms, it is possible to take into account
a-priori knowledge at prediction time without the need to retrain the predictive
algorithms in case new knowledge becomes available. The results of our experi-
ments show that Nocycle correctly deals with the presence of cycles in the logs
and A-priori∗ is able to correctly leverage a-priori knowledge in a way that it
performs better with logs characterized by a low degree of sparsity of activity
labels and when the a-priori knowledge constrains the behavior of the process
more.

Future work will include: (i) dealing with more complex forms of a-priori
knowledge. In particular, we aim at leveraging a-priori knowledge on activities
and on their data payload, as well as dynamic knowledge that can evolve in the
future of an ongoing case; (ii) extending the proposed algorithms to leverage
a-priori knowledge also for other types of predictions; (iii) extending the experi-
mental evaluation especially focusing on the investigation of metrics for evaluat-
ing the influence on the predictions of the different degrees of freedom/strength
of the a-priori knowledge; and (iv) inserting the presented techniques in predic-
tive business process monitoring frameworks such as the ones discussed in [8,9].

Acknowledgments. This research has been partially carried out within the
Euregio IPN12 KAOS, which is funded by the “European Region Tyrol-South
Tyrol-Trentino”(EGTC) under the first call for basic research projects.

References

1. 3TU Data Center: BPI Challenge 2011 Event Log (2011). doi:10.4121/uuid:
d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015).
software available from tensorflow.org. http://tensorflow.org/

4. Buijs, J.: Environmental permit application process (“wabo”), coselog project -
municipality 4 (2014). doi:10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32

5. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-

informed decisions during business process execution. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38709-8 8

7. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3), 171–176 (1964)

8. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi,
W.: Predictive business process monitoring framework with hyperparameter opti-
mization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS,
vol. 9694, pp. 361–376. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 22

http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://tensorflow.org/
http://dx.doi.org/10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
https://github.com/fchollet/keras
http://dx.doi.org/10.1007/978-3-642-38709-8_8
http://dx.doi.org/10.1007/978-3-319-39696-5_22

An Eye into the Future: Leveraging A-priori Knowledge 267

9. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)

10. van Dongen, B.: Bpi challenge 2012 (2012). doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f

11. van Dongen, B.: Bpi challenge 2017 (2017). doi:10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b

12. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for pre-
dicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.)
BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). doi:10.1007/
978-3-319-58457-7 24

13. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep
learning. Decision Support Systems (2017)

14. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., Panetto, H., Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33606-5 18

15. Goodfellow, I., Bengio, Y., Courville, A.: Sequence Modeling: Recurrent and Recur-
sive Nets. In: Deep Learning, pp. 373–420. MIT Press, Cambridge (2016)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM
2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 21

18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31095-9 18

19. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 31

20. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous
service-oriented business networks: the transport and logistics case. In: Proceed-
ings of the 2012 Annual SRII Global Conference, SRII 2012, pp. 313–322. IEEE
Computer Society, Washington, DC (2012)

21. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.:
Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.)
BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36285-9 22

22. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977)

23. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence
prediction of business process instances. CoRR abs/1602.07566 (2016)

24. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-45005-1 27

25. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-642-33606-5_18
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-642-31095-9_18
http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-642-36285-9_22
http://dx.doi.org/10.1007/978-3-642-36285-9_22
http://dx.doi.org/10.1007/978-3-642-45005-1_27

268 C. Di Francescomarino et al.

26. Steeman, W.: Bpi challenge 2013 (2013). doi:10.4121/uuid:
a7ce5c55-03a7-4583-b855-98b86e1a2b07

27. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root
cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM
2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36285-9 18

28. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitor-
ing with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 477–492. Springer, Cham (2017). doi:10.1007/978-3-319-59536-8 30

29. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business
process monitoring with structured and unstructured data. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham
(2016). doi:10.1007/978-3-319-45348-4 23

30. Tillmann, C., Ney, H.: Word reordering and a dynamic programming beam search
algorithm for statistical machine translation. Comput. Linguist. 29(1), 97–133
(2003)

http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
http://dx.doi.org/10.1007/978-3-642-36285-9_18
http://dx.doi.org/10.1007/978-3-642-36285-9_18
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-45348-4_23

Analysis of Knowledge-Intensive Processes
Focused on the Communication Perspective

Pedro Henrique Piccoli Richetti, João Carlos de A.R. Gonçalves(B),
Fernanda Araujo Baião, and Flávia Maria Santoro

Department of Applied Informatics, Federal University of the State of Rio de Janeiro,
Pasteur Av. 458, Rio de Janeiro 22290-240, Brazil

{pedro.richetti,joao.goncalves,
fernanda.baiao,flavia.santoro}@uniriotec.br

Abstract. Knowledge-intensive Processes (KiPs) are unstructured
processes that demand an understanding beyond control flow and data.
Being knowledge-centric and varying at each instance, KiPs demand new
perspectives for proper process analysis. Most KiPs have strong collabo-
ration characteristics, where interactions among participants are crucial
to achieve process goals. Process participants perform activities and col-
laborate with each other, driven by their Beliefs, Desires and Intentions;
therefore, the analysis of these elements is vital to the correct under-
standing, modeling and execution of a KiP. This research proposes a
method based on Speech Act Theory and Process Mining to discover the
flow of speech acts related to Beliefs, Desires and Intentions from event
logs, and shows how this relation fosters process performance analysis.
The approach was evaluated through a case study in a real life scenario,
and results showed that relevant insights in forms of speech acts flow
patterns were discovered and related to performance issues of the KiP.

Keywords: Knowledge-intensive Process · Speech act · Process
performance measures

1 Introduction

The research on Knowledge-intensive Processes (KiPs) has gained focus as an
emerging area within Business Process Management, since many modern busi-
ness functions have been acknowledged as knowledge-intensive, mainly due to
collaborative interactions among process participants and flexibility to perform
the work, making the process less predictable than routine structured work [8].
Examples of KiPs include healthcare processes, disaster management, informa-
tion and communication technology troubleshooting and air traffic control.

F.A. Baião–partially funded by the CNPq brazilian research council, project
309069/2013-0.
F.M. Santoro–partially funded by the CNPq brazilian research council, project
307377/2011-3.

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 269–285, 2017.
DOI: 10.1007/978-3-319-65000-5 16

270 P.H.P. Richetti et al.

Human knowledge and involvement are key to KiPs execution [10]. How-
ever, it is not trivial to properly understand and represent these two aspects in
the context of a business process [18]. The involvement of process participants
become evident when they collaborate with each other via interactions, in which
knowledge is exchanged to achieve the process goal. Process participants have
their own beliefs, desires and intentions that motivate them to act to perform
their work. When process participants interact, all three elements are present in
their communications, and in most of the time people communicate using nat-
ural language. In this work, we take this as an opportunity to analyze human
interactions as conversations, supported by the Speech Act Theory [2]. Accord-
ing to this theory, an illocutionary act holds the pragmatics of an utterance and
is characterized by a distinct illocutionary point [19].

We argue that these illocutionary points can be correlated to beliefs, desires
and intentions, which opens a path to analyze speech acts that may represent
part of human knowledge and involvement in KiPs, as previously defined in
the Knowledge-intensive Process Ontology (KiPO) [18]. KiPO comprises well-
founded definitions which enable us to precisely define the notions of agents,
the interactions and knowledge-flow among them, and how the mental moments
that are inherent to them (Beliefs, Desires, Intentions and Feelings) influence
(or even drive) their decisions and the control-flow of the activities executed in
each KiP instance.

The problem to be investigated is the difficulty imposed to analyze how
human knowledge and involvement influence a KiP execution when this infor-
mation is present only in unstructured natural language resources. Existing
approaches on discovery of speech acts deal with email classification to track
intentions of message’s senders [5], discovery of business process choreography
diagrams from message logs [13], discovery of speech act categories in dialogue-
based, multi-party educational games [17], recognition of suggestions and com-
plaints in software development online discussions [16], applications using social
media such as Twitter [26,28] and to understand knowledge-sharing process in
online Question and Answer communities [27]. None of these works advance in
the analysis of the impact of the discovered speech acts on process performance.

The ultimate goal of this work is to verify to what extent beliefs, desires,
intentions and feelings of process participants influence process execution. In this
direction we propose an approach, based on the automatic discovery of speech
acts from message logs and the usage of process mining, to analyze process per-
formance from the illocutionary points perspective. We conducted an empirical
study with a real-life KiP from an Information Technology Outsourcing Com-
pany that performs an incident troubleshooting process, in order to evaluate
the proposal. A pre-requisite to employ this approach is the need to have an
information system supporting the subject process and capable of registering
conversations during process execution.

The paper is organized as follows. Section 2 presents background knowledge,
including an Ontology that describes the elements of KiP, the Speech Act The-
ory and Process Mining. Section 3 describes our methodology and definitions

Analysis of KiPs Focused on the Communication Perspective 271

proposed. Section 4 presents the experimental scenario and results. Section 5 con-
cludes the paper and discusses future work.

2 Background and Related Work

2.1 Speech Act Theory and Automatic Discovery of Speech Acts

Firstly proposed by Austin [2], the Speech Act Theory looks beyond the literal
meaning of utterances within a conversation and considers how context and
intention contribute to their meaning. One of the main focus of the theory is
the analysis of the intended communicative act of an utterance (i.e., what the
utterance was meant to achieve). According to this theory, speech acts may be
analyzed on three levels: a locutionary act (the utterance itself); an illocutionary
act (the social action of utterance, its intended significance: whether it contains
a request, an order, or a promise, etc.); and a perlocutionary act (the actual
effects of the speech act, for example the act of fulfilling the uttered request).

Searle [19] refined the theory, by defining an illocutionary act as an act that
one performs in producing an utterance, such as the act of asserting a proposi-
tion, asking someone a question, or directing someone to do something.

Searle and Vanderveken [20] further defined the illocutionary act as the min-
imal unit of human conversation, such as statements, questions or commands;
thus, whenever a speaker utters a sentence in an appropriate context, with cer-
tain intentions, he/she performs one or more illocutionary acts. An illocutionary
act is formally defined as having an illocutionary force F and a propositional
content P (in the form of “F(P)”), which respectively denotes the speaker’s
intention on making the utterance and the meaning of a clause or sentence that
is constant of the illocutionary act. According to the authors, an illocutionary
act may be decomposed into three different speech acts: an utterance act (simply
uttering an expression), a propositional act (the act of expressing a propositional
content) and, if the illocutionary act is successful, a possible perlocutionary act.

A taxonomy of Speech Acts was proposed by Searle and Vanderveken [20],
composed of five main classes:

– Assertives: commit a speaker to believing the expressed proposition;
– Directives: cause the hearer to take a particular action;
– Commissives: commit a speaker to doing some future action;
– Expressives: express the speaker’s attitudes and emotions towards the propo-

sition;
– Declaratives: change the social sphere in accordance with the proposition of

the declaration.

Bach and Harnish [3] expand this initial classification, taking Austin’s idea of
a division of speech acts between constatives and performatives. Constatives are
speech acts that can be reduced to true/false statements and Performatives are
speech acts that do not conform to true/false statements, being more oriented
towards the performance of an action and the “felicity conditions” of the action

272 P.H.P. Richetti et al.

Fig. 1. Bach and Harnish’s taxonomy of speech acts [3].

itself (i.e. the conditions for its successful performance). For our study, we adopt
Bach and Harnish classification of Constatives and Directives, together with
Searle’s taxonomy of Commissives, Expressives and Declaratives (Fig. 1).

Based on the theory and the taxonomies, applications using computational
methods became feasible on this field. Among the several works at the literature,
Stolcke et al. [21] propose a probabilistic approach to dialogue act modeling for
conversational speech that precludes the modern efforts for automatic extraction
of speech acts. Tenschert and Lenz [22] state that, depending on the domain,
the contents of a case and a representation of speech acts may vary. They also
present definitions of the contents of a case, a representation for instances of
speech acts, and speech act libraries to classify illocutionary speech acts forces.

Mavaddat [14] proposed an approach to facilitate the discovery of busi-
ness process by analyzing emails and generating “Conversation for Action” dia-
grams, which can improve understanding of vague and unclear parts of business
processes. However, the author does not elaborate on how to implement the con-
versation elements tagging. Also, Wang et al. [27] propose a framework to analyze
discussion threads in online “Question and Answer” communities, relying on the
identification of dialogue act patterns. After manually tagging thread messages,
they applied process mining techniques to find frequent patterns (process frag-
ments) that occur in helpful, unhelpful and solved threads.

2.2 Process Mining

Process mining is a discipline that aims to provide fact-based insights and to
support process improvements. This discipline can be situated between compu-
tational intelligence and data mining on one hand, and process modeling and
analysis on the other hand [23]. There are three types of process mining tasks:
discovery, conformance and enhancement. As the interest of this work is on dis-
covery, it is important to consider the following definition [1]: a process discovery

Analysis of KiPs Focused on the Communication Perspective 273

algorithm is a function that maps an event log L onto a process model P such
that model is representative for the behavior seen in the event log.

Real-world business processes may be supported or controlled by software
systems. If these systems are capable of recording the execution history of their
supported processes, it will be possible to apply process mining over their event
logs. Event logs are the history of events over time, with specific attributes.
Typical information stored in an event log is the case ID that groups all events
that occurred in the same process instance. There is a unique identifier for an
event occurred in a given timestamp, and the name of the executed activity
is also presented. In addition, the resource information points to the user (or
user role) who executed the activity, and additional information (e.g. “costs”)
provides more details about the circumstances in which the event was executed.

3 Methodology

This Section describes the methodology applied for the automated discovery of
speech acts from business process message logs. We define concepts related to
the control flow of process executions, as well as to the communication between
process executors during the execution of process.

Our approach relies on some assumptions. First, messages related to a process
instance correspond to the communicative interaction between actors of the
process instance. Second, multiple speech acts may be discovered from each sin-
gle message within a conversation [4]. Finally, a speech act is typically expressed
as the complete sentence (although it may also occur in the form of an one-
word sentence), usually with an “illocutionary force indicating device” such as
a performative verb [19]. Based on these assumptions, concepts concerning the
interactions are mapped to the concepts of the Process Mining field.

3.1 Mapping Control-Flow and Communication Perspectives

Since we assume no a-priori association between communication events and
process execution events (which is the case in practice), this Section presents
formal definitions in the control-flow perspective (event, trace, event log) and in
the communication perspective (sentence, message, extended sentence, conver-
sation message log), which are required for mapping a message log to an event
log. This mapping may be employed on top of any message log with similar
characteristics, such as chat message logs, email conversations and online forum
threads.

Definition 1 (Event). An event e represents the occurrence of an activity
observed during the execution of a process. An event is characterized by the
tuple e = (eid, et, ea, er), where eid is the unique identifier of the occurrence of
event e, et is the timestamp of the event occurrence assumed at its completion,
ea is the identifier of the activity, and er is the identifier of the event executor.

274 P.H.P. Richetti et al.

Definition 2 (Trace). Let T be the set of all logged executions of a single
process P. A trace t (a.k.a. “process instance” or “case”), t ∈ T , is characterized
by the tuple t = (tid, P, σ), where tid is the unique identifier of the trace, P is
the identification of the process and σ = {e1, e2, . . . , en} is a finite sequence of
events ei that occurred during the process instance execution. σ has at least one
event (|σ| >0).

Definition 3 (Event log). An event log LE , characterized by the tuple LE =
(TE , P), contains all events from the set of traces TE , TE ⊆ T , that are related
to the executions of one specific process P.

Definition 4 (Sentence). A sentence s consists of one or more phrases
expressed in natural language speech, characterized by the tuple
s = (sid, sw, sia), where sid is the unique identifier of the sentence, sw is the
sequence of words and punctuation that forms the sentence and sia is a type of
illocutionary act associated with the sentence, sia ∈ {assertive, predictive, retro-
dictive, descriptive, ascriptive, informative, confirmative, concessive, retractive,
assentive, dissentive, disputative, responsive, suggestive, suppositive, requestive,
question, requirement, prohibitive, permissive, advisory, promise, offer, apolo-
gize, condole, congratulate, greet, thank, bid, accept, reject}.

In the context of an ICT troubleshooting process, three example messages
are presented: s1 = (258, “I advise you to restore the system.”, “suggestive”),
s2 = (259, “Could you report me the situation after the system restoration?”,
“question”) and s3 = (260, “I will perform the system restoration and will send
the results to you.”, “comissive”).

Definition 5 (Message). A message m represents one communication from a
sender to one or more receivers, possibly comprising several messages. It is char-
acterized by a tuple m = (mid,ms,mr,mt, S), where mid is the unique identifier
of the message, ms is the single sender of the message, mr is the set of receivers
of the message, mt is the timestamp of the message occurrence and S is the set
of sentences s ∈ S observed in the message.

Given the sentences defined above, the following messages are defined:
m1 = (6241, “Alice”, {“Bob”}, “2016-10-01 14:02:04”, {s1, s2}) and m2 = (6242,
“Bob”, {“Alice”}, “2016-10-01 17:31:03”, {s3}).

Definition 6 (Extended Sentence). Since each sentence s is always com-
prised within exactly one message m, we further define an extended sentence s’
as the sentence s enriched with characteristics of its message m. Formally, an
extended sentence s’ is characterized by the tuple s’ = (sid, sw, sia, mid, ms,
mr, mt), where the first 3 elements correspond to the elements of the original
sentence s, while the remaining 4 respectively represent the unique identifier of
m, the sender of m, the set of receivers of m, and the timestamp of m.

The impact of this definition for process mining algorithms is that it leads
to the assumption that sentences of the same message occurred at the same

Analysis of KiPs Focused on the Communication Perspective 275

timestamp. Examples of extended sentences from the above defined sentences
are: s1’ = (258, “I advise you to restore the system.”, “suggestive”, 6241, “Alice”,
{“Bob”}, “2016-10-01 14:02:04”), s2’ = (259, “Could you report me the situation
after the system restoration?”, “question”, 6241, “Alice”, {“Bob”}, “2016-10-01
14:02:04”), and s3’ = (260, “I will perform the system restoration and will send
the results to you.”, “comissive”, 6242, “Bob”, “Alice”, “2016-10-01 17:31:03”).

Definition 7 (Conversation). A conversation c is characterized by the tuple
c = (cid, S’) where cid is the unique identifier of the conversation, and S’ is the
set of all extended sentences s’ ∈ S’ observed during a conversation. An example
of a conversation is c1 = (987, S 1’), where S 1’ = {s1’, s2’, s3’}.

Definition 8 (Message log). A message log LM is characterized by the tuple
LM = (SM , C), where C is a set of conversations selected for analysis, and SM

is the union of the sets of extended sentences observed during each conversation
ci, ci ∈ C. A message log in the ICT Troubleshooting scenario consists of the set
of all conversations between clients and the technical staff about troubleshooting
issues reported in the second semester of the previous year.

Given a set C of conversations ci= (idi, Si’), ci ∈ C, that occurred during
the execution of traces of a process P to be analyzed. Let S’ be the union of
all sets of extended sentences of each ci. Each extended sentence s’ = (sid, sw,
sia, mid, ms, mr, mt), s’ ∈ S’ is mapped to an event e = (sid, mt, sia, mr).
Consequently, each conversation ci is mapped to a trace t = (id i, P, Si’) and
the message log LM = (S’, C) is mapped to an event log LE = (S’, P).

In the ICT troubleshooting scenario, the mapping will result in the events
e1 = (258, “2016-10-01 14:02:04”, “suggestive”, “Alice”), e2 = (259, “2016-
10-01 14:02:04”, “question”, “Alice”) and e3 = (260, “2016-10-01 17:31:03”,
“comissive”, “Bob”) (respectively from the extended sentences s1’, s2’ and s3’);
trace t1 = (987, “ICT Troubleshooting”, { s1’, s2’, s3’}) from conversation c1.

3.2 Extracting Speech Acts

An Information Extraction pipeline was defined for the extraction of speech acts,
extending the proposal in [16]. The main differences from the original pipeline
include the expansion of the gazetteer of performative verbs to be extracted,
covering more categories (all Constatives and Directives classes from [3]) and
more verbs (Commissives, Expressives and Declaratives categories from [24]).

We extended the rules of the original approach to extract the sentences from
messages containing performative verbs, indicating speech acts of a specific type
in our classification scheme. The classified speech acts are then used to extract
KiP elements. More specifically, we assume that the class of the speech act per-
formed by a process agent expresses one of the Mental Moments of the Agent
taking the role of a “speaker” during a Communicative Interaction: a Constative
speech act expresses a Belief, a Directive speech act expresses a Desire, a Com-
missive speech act expresses an Intention and an Expressive speech act expresses

276 P.H.P. Richetti et al.

a Feeling. Additionally, a Declarative speech act expresses a Contingency event
that triggers a KiA or, more specifically, a Decision. Finally, question speech acts
were also identified in trivial cases where messages contained a question mark
(“?”), which greatly improved the results in the case study.

Another distinct feature from the original approach relates to the overall
objective of our method. We aim not only to classify speech acts from raw text
data and identify the beliefs, desires and intentions of process participants, but
also to be able to analyze the flow of interactions among them. Our proposed
method structures a message flow related to a process instance into a series
of speech acts, in order to express how a conversation between process partic-
ipants happens during the instance execution. Taking it to the level of several
instances present at the dataset, it reveals interesting patterns of speech acts
being performed through interactions, related to the general process model as
a whole (instead of an interaction related to an specific instance) that is able
to be processed by ProM as interaction data related to an activity or process
instance.

The pipeline has six distinct phases: (i) Pre-processing: First, all sentences
are splitted and a word-level tokenizer is applied, transforming each message
into a set of sentences, each containing a set of tokens (words and punctuation
marks); (ii) POS-Tagging: The Hepple Tagger is applied to tag each token with
its morphological classification (e.g. verbs, nouns, etc.); (iii) Lemmatization: All
verbs are lemmatized and reduced to its infinite form; (iv) Feature Selection: A
feature selection algorithm using a gazetteer list containing a list of performative
verbs indicative of Speech Acts of each type is applied to each sentence, tagging
each performative verb found according to the specific type of Speech Act (e.g.
“believe” as a performative verb of an Assertive Act); (v) Speech Act extraction:
Each sentence containing a performative verb is extracted as a Speech Act con-
taining its performative verb and propositional content; (vi) Mı́mir Indexing: All
extracted Speech Acts are loaded into the Mı́mir server, in order to be indexed
and queried.

Thus, speech acts discovered from message logs are mapped to ordinary event
logs following the definitions in Sect. 3.1, enabling the application of process
mining techniques [1] to extract the flow of conversations that occurred during
the execution of process instances.

4 Case Study

The methodology proposed for the case study is based on the concept of lag and
lead measures [15]. Lag measures are the measures of success, the results that
the company wants to achieve, often related to strategic goals of an organization.
Lag measures focus on results achieved, so they tend to be less actionable since
they look to the past. On the other hand, lead measures are predictive, meaning
that if the lead measure changes, it should be possible to predict that a related
lag measure will also change. Furthermore, a lead measure must be directly
influenced by the process participants.

Analysis of KiPs Focused on the Communication Perspective 277

Since conversations mostly depend on process participants, process stake-
holders can benefit from the analysis of speech acts to discover insights from
the behavior of conversations, aiming to extract conversational patterns related
to process performance that are monitored by traditional lag measures. To run
the case study the following steps were planned and then employed: (1) Iden-
tification of existing lag measures that might be potentially influenced by com-
munication aspects of the process; (2) Message log selection, preprocessing and
cleansing; (3) Discovery of speech acts from the message log; (4) Map the message
log to the XES [25] event log according to the definitions presented in Sect. 3;
(5) Enrich the event log with performance data; (6) Run Inductive Visual Miner
[11] and Multi-perspective Process Explorer [12] on ProM1 to discover a Petri
net of the flow of speech acts with data and performance perspectives; and,
finally, (7) Inspect the results for evidences of possible speech acts influence on
process performance.

4.1 Case Study Scenario

The case study was performed in a real life scenario of an Information and Com-
munication Technology (ICT) outsourcing company, which has about a hundred
contracts with diverse clients. One of the main services provided by the company
is customer support, which intends to fulfill technical requests (e.g. e-mail config-
urations, backup and restore) or solve technical problems (e.g. system failures)
that are reported by clients to the company‘s service desk.

The incident troubleshooting process was the object of our case study. When
a client reports a new problem, this triggers the creation of an incident ticket in a
process-aware system called OTRS2 that supports company’s operations. Within
OTRS, incident tickets are registered, alternative solutions are considered, a
solution approach is defined, executed, validated and then deployed. During the
resolution of a ticket, messages are exchanged among process participants (both
technical teams and client) and associated to a ticket in OTRS. These messages
contain natural language texts in chronological order; from them, it is possible
to retrieve speech acts uttered from process participants.

Processes of this nature essentially involve the application of technical skills,
troubleshooting abilities, collaboration and information exchange between stake-
holders, and ad-hoc decisions are frequently discussed and made, since most of
the problems are situational. For all these reasons, this process is characterized
as a KiP and should be managed as so.

4.2 Case Study Execution

In Step 1, we interviewed two company managers directly involved with this
process, and asked them which were the most concerning performance issues
they have to face for this process. They affirmed that the two main measures

1 http://www.processmining.org.
2 https://www.otrs.com/.

http://www.processmining.org
https://www.otrs.com/

278 P.H.P. Richetti et al.

they report monthly to their clients were the volume of opened tickets and the
total duration time of the troubleshooting sessions. Since the volume of opened
tickets depends on the clients, this measure is not directly actionable by the
technical teams (despite company’s efforts to apply proactive monitoring of some
ICT assets). The total duration of troubleshooting sessions, on the other hand,
mostly depends on the complexity of the problems presented and on the solu-
tion strategy applied by the technical teams, which also involves communication
with the clients and among different technical teams. Hence, we chose “total
duration of troubleshooting sessions” as the lag measure to be analyzed from a
communication perspective and the “presence of speech act” and “interplay of
speech acts” as lead measures that might influence the lag measure.

In Step 2, the scope of analysis is the set of all tickets labeled as “incident”
reported in the second semester of 2015, stored in the OTRS repository. A total
of 5,714 tickets were gathered, comprising 25,380 messages exchanged in the
system during the troubleshooting process.

In Step 3, we applied the GATE Developer tool [6] to operationalize our
pipeline for extracting speech acts from messages. GATE is a platform to perform
Text Mining and Natural Language Processing tasks from unstructured text. For
storing, indexing and querying the annotated result data, we used GATE Mı́mir
[9], a multi-paradigm information management index and repository which can
be used to index and search over text, annotations, ontologies, and semantic
meta-data. After the execution of our speech act discovery pipeline through
GATE, the results were stored on the Mı́mir server. We defined and executed
one query for each specific type of speech act according to the taxonomy of
Bach and Harnish’s [3] defined previously, so as to extract the discovered speech
acts of each type as a comma separated text (CSV) file. The results contained
a total of 50,800 extracted speech acts, distributed among 24 different types as
illustrated in Table 1. Each CSV file contained all speech acts of the same type,
as well as information on the corresponding messages from which each speech
act was extracted.

In Step 4, each CSV file was enriched with complementary available informa-
tion about incident tickets. At the case level, the following attributes were added
to each speech act: ticket duration in hours, number of messages exchanged,
ticket final priority (1 to 5, from lower to higher priority), customer anonymous
identification and service id; at the event level, the message sender type (either
“agent” or “customer”) was included. The enriched CSV file was then imported
to ProM and converted to a XES file using the plugin called “Convert CSV to
XES”, following our definitions for mapping message logs to event logs presented
in Sect. 3. Due to the relevance of the speakers during a conversation, we also con-
catenated the sender type to the speech act type to name activities in the log (as
in “AssertiveSpeechAct|agent”, or “InformativeSpeechAct|customer”). This
enabled the distinction between speech acts uttered by customers and by com-
pany agents during a conversation.

In Step 5, considering that the focus of our analysis is to search for possible
associations from the flow of speech acts to the duration of a ticket, we split the

Analysis of KiPs Focused on the Communication Perspective 279

Table 1. Speech acts discovered using GATE pipeline and Mı́mir.

Type #Total % Type #Total %

{DeclarativeSpeechAct} 4017 15.83 {CommissiveSpeechAct} 458 0.90

{AdvisorySpeechAct} 3505 6.91 {AssentiveSpeechAct} 396 0.78

{SuggestiveSpeechAct} 3447 6.79 {ConcessiveSpeechAct} 344 0.68

{InformativeSpeechAct} 3439 6.78 {AssertiveSpeechAct} 240 0.47

{RequestiveSpeechAct} 2521 4.97 {ExpressiveSpeechAct} 216 0.43

{QuestionSpeechAct} 1371 2.70 {SuppositiveSpeechAct} 181 0.36

{DescriptiveSpeechAct} 1168 2.30 {RetractiveSpeechAct} 142 0.28

{ConfirmativeSpeechAct} 1016 2.00 {DisputativeSpeechAct} 17 0.03

{ResponsiveSpeechAct} 910 1.79 {ProhibitiveSpeechAct} 8 0.02

{PermissiveSpeechAct} 809 1.59 {DissentiveSpeechAct} 7 0.01

{RetrodictiveSpeechAct} 664 1.31 {PredictiveSpeechAct} 6 0.01

{RequirementSpeechAct} 494 0.97 {AscriptiveSpeechAct} 4 0.01

event log in subsets of four duration ranges (in hours): 0.0 to 1.5 (very short),
1.5 to 16.0 (short), 16.0 to 72.0 (regular), more than 72.0 (long). These ranges
uniformly distribute the total number of traces, and are according to company’s
interest for process performance analysis, thus enabling the identification of tick-
ets violating the company service level agreement with customers (which states
that incidents should take less than 72 h to be solved) and also mark interest
intermediate durations. Therefore, the search for process improvement opportu-
nities in such cases is very important for company managers.

4.3 Case Study Results and Discussion

In Step 6, the mainstream process (conversation) for each duration range was
discovered, representing how most of the conversations happened for the cases
solved within that duration range. To discover the mainstream conversation we
applied Inductive Visual Miner, with the following parameters: 50% activities
and 80% of paths. The resulting Petri Net represented the speech act behavior
of each duration range. Then we applied Multi-perspective Process Explorer to
replay each subset event log over its associated Petri Net. With Multi-perspective
Process Explorer each of the four subset event logs were analyzed from the fre-
quency of events, average time between events and data discovery perspectives.
Figure 2 present the discovered models for each duration range with information
about the frequency of events occurrence, and Table 2 shows the main charac-
teristics of the discovered process models for each duration range. For the sake
of space, discovered models images in high resolution and with complementary
information are available in the following repository3.

3 https://bitbucket.org/pedrohr/speechactsprocessdiscovery/downloads/.

https://bitbucket.org/pedrohr/speechactsprocessdiscovery/downloads/

280 P.H.P. Richetti et al.

Fig. 2. Petri Nets representing the most frequent conversational behavior within
(a) 0.0 to 1.5h (very short duration tickets), (b) 1.5 to 16h (short duration tickets),
(c) 16 to 72h (regular duration tickets) and (d) more than 72h (long duration tickets).

Analysis of KiPs Focused on the Communication Perspective 281

Table 2. Main characteristics of discovered process models for each duration range.

Duration range (hours) [0.0–1.5[[1.5–16.0[[16.0–72.0[[72.0–Infinity[

% Trace frequency 24.48% 25.62% 26.22% 23.68%

Traces 1,399 1,464 1,498 1,353

Events 4,296 5,672 7,070 8,342

Event classes 42 43 44 47

Avg. precision 47.50% 22.10% 27.90% 31.30%

Avg. fitness 97.10% 84.00% 78.40% 93.50%

In Step 7, we focus on the summary presented in Table 2, it is possible to
note that the number of events grows as the duration ranges do the same; this
is rather intuitive, meaning that with more time spent to solve a problem, more
conversations events happened. Although the average precision of all models is
low, fitness is very high, ranging from 78.40% (regular) to 97.10% (short). This
points to a high variability scenario, where each mainstream model has enough
flexibility to accept unobserved behavior. For each duration range, the following
behavior was worth noting:

– Very short duration: incidents which take less than 1.5 h to be solved
have few possible start events initiated by the customers, and some more
events related to acts of communication among agents. This reflects a typical
behavior when a customer directly calls the agent, the agent proactively starts
the troubleshooting and solves the problem right after the first contact. This
was made explicit by a multi-perspective rule in the bottom part of the model,
indicating that tickets with only one interaction follow directly to the end of
the process, without entering in the loop at the end of the process.

– Short duration: this subset presented the most frequent starting path,
going directly to a XOR split-join where the agent plays all communica-
tion using 12 different speech acts, probably in the same conditions as in the
very short duration range. However, the remaining paths before this XOR
split-join present utterances from the customer, indicating what they mostly
say when asking for technical support. The initial speech act types uttered by
the customer are (in descending order of frequency): requestives, informatives,
declaratives, descriptives and questions.

– Regular duration: in comparison to the previous shorter ranges, tickets
solved in regular duration presented a higher number of initial participation
from the customer, clearly identifiable by a XOR split-join in the middle
portion of the process. Note the loop at the end of this join, maybe implying
on more time spent on the customer asking questions to an agent. Also, the
final actions applied by the agent to close the ticket are remarked by another
XOR split-join with 9 different speech act types at the end of the process.

– Long duration: the conversational behavior during these cases resulted in a
Flower-like model with a XOR split to 21 different speech act types, showing

282 P.H.P. Richetti et al.

the high variability of this range. Another remark on variability is the loop
at the end of the process, where 80.2% of the cases return to another loop
interaction, instead of moving to the end of the process. In practice, this
model represents a set of undesired conversational patterns that could be
further analyzed for improvement opportunities.

The process interaction models can be analyzed according to two dimensions:
knowledge intensity (in the form of the “interaction loops” present in the models)
and the most representative speech act types in the models. Beginning with
the analysis of the interaction loops, they can be found in 3 out of 4 datasets.
The very short duration dataset (0h–1.5h) has an interaction loop that repeats
itself between 1–2 times in average, while the regular duration dataset (16h–
72h) shows a new interaction loop, just before the parallel flow, that involves
an interesting subset of Speech Acts; finally, the long duration dataset (72h-
Infinity) has a more recurrent pattern in the form of an interaction loop that
repeats itself 4–5 times. The only model without an interaction loop was the
short duration model (1.5h–16h), composed of a trace with a final split-join XOR
parallel flow. This dimension points out two important facts: First, that the main
indicator that the incident will take more time than the usual is the “knowledge
intensity” shown by the increase of speech acts exchanged in the form of a loop.
Second, it shows that the incidents that are more “straightforward” to be solved
(in the sense of less discussions between clients and agents occurring) typically
last between 1.5 and 16 h. On the other hand, the high knowledge intensity
present in the long duration model clearly raises the importance of monitoring
conversational patterns during real-time ticket troubleshooting, so as to detect
when a case is instantiating a number of interaction loops and will eventually
violate the service level agreement. An improvement practice to be adopted in
this case could be to raise the urgency of an intervention from an agent with more
expertise, trying to shorten the time to close the incident ticket. The knowledge
intensity (viewed as interaction loops) can act as a lead measure, and depending
on the speech acts involved, they can proactively point to possible long duration
incident cases.

The results also evidence frequent speech acts inside the conversational loops.
We find two predominant patterns across all 4 datasets: (i) Suggestives + Advi-
sories acts, and (ii) Declarative + Informative speech acts. The first pattern
indicates an extended interaction at the end of the ticket, composed of final
remarks from the agent (such as an advice or a suggestion to prevent the inci-
dent to happen again in the future). This suggests that human communication
during incident troubleshooting not only comprises the resolution of problems,
but also preventive advice from agents, which was previously unknown and may
indicate a missing activity of the process that was made possible by analyzing
the process from a communication perspective. The second pattern describes
the interaction between the customer and the agent about the request status
and action being taken to solve the incident; it also represent events such as
increasing of priority of a ticket or informing that a system (or a peripheral) is
back on-line.

Analysis of KiPs Focused on the Communication Perspective 283

5 Conclusions

In the context of Knowledge-intensive Processes, traditional control-flow and
data perspectives may be not sufficient to explain the process behavior. This
work presented an innovative approach, based on text and process mining tools,
to provide an alternative view of the process flow in terms of the interplay of
speech acts, representing the communication dimension of the process. The dif-
ferent types of speech acts and their relationship with process elements also
bring a novel perspective to the KiPs and process mining, since subtle elements
(such as beliefs, desires and intentions of the agents) are found to be somewhat
related to goals, alternate flows of activities and activity instantiations during a
KiP execution. In addition to count, data, time and condition measures used to
evaluate process performance [7], the analysis of speech acts helps to explain how
human communication may influence the process execution. The approach was
assessed in a case study of a real company, resulting in innovative knowledge
about the process that was not possible to be produced with state-of-the-art
techniques available. At its current stage, the approach is limited to scenarios
supported by software systems capable to register the conversations among par-
ticipants during process execution. Although the proposal is general enough to
address any scenario, generalization of the results of the method’s application
is limited to a single case study. Future work includes the usage of improved
detection of speech acts applying logical operators and negations in sentences as
well as a new case study at the scenario of online software development, focusing
on the analysis of the interplay of speech acts during the process.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Heidelberg (2011). http://dx.doi.org/10.
1007/978-3-642-19345-3

2. Austin, J.L.: How to Do Things with Words. Oxford University Press, Oxford
(1975)

3. Bach, K., Harnish, R.: Linguistic Communication and Speech Acts. MIT Press,
Cambridge (1979)

4. de Carvalho, V.R., Cohen, W.W.: On the collective classification of email “speech
acts”. In: SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Salvador,
Brazil, 15–19 August 2005, pp. 345–352 (2005). http://doi.acm.org/10.1145/
1076034.1076094

5. Cohen, W.W., Carvalho, V.R., Mitchell, T.M.: Learning to classify email into
speech acts. In: Proceedings of the 2004 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2004, Barcelona, Spain, pp. 309–316 (2004)

6. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with Gate. Gate-
way Press CA, Murphys (2011)

7. del-Ŕıo-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining process performance
indicators: an ontological approach. In: Meersman, R., Dillon, T., Herrero, P. (eds.)
OTM 2010. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16934-2 41

http://dx.doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/978-3-642-19345-3
http://doi.acm.org/10.1145/1076034.1076094
http://doi.acm.org/10.1145/1076034.1076094
http://dx.doi.org/10.1007/978-3-642-16934-2_41
http://dx.doi.org/10.1007/978-3-642-16934-2_41

284 P.H.P. Richetti et al.

8. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: An overview
of contemporary approaches. In: Proceedings of the 1st International Workshop on
Knowledge-intensive Business Processes, KiBP@KR 2012, Rome, Italy, 15 June
2012, pp. 33–47 (2012)

9. Greenwood, M.A., Tablan, V., Maynard, D.: Gate mımir: Answering questions
google can’t. In: Proceedings of the 10th International Semantic Web Conference
(ISWC2011), pp. 466–471 (2011)

10. Isik, Ö., Mertens, W., den Bergh, J.V.: Practices of knowledge intensive process
management quantitative insights. Bus. Proc. Manag. J. 19(3), 515–534 (2013).
http://dx.doi.org/10.1108/14637151311319932

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Process and deviation explo-
ration with inductive visual miner. In: Proceedings of the BPM Demo Sessions
2014 Co-located with the 12th International Conference on Business Process Man-
agement (BPM 2014), The Netherlands, 10 September 2014, p. 46 (2014)

12. Mannhardt, F., de Leoni, M., Reijers, H.A.: The multi-perspective process explorer.
In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th Inter-
national Conference on Business Process Management (BPM 2015), Innsbruck,
Austria, 2 September 2015, pp. 130–134 (2015)

13. Mavaddat, M.: Business process discovery through conversation log analysis in
pluralist and coercive problem contexts. Ph.D. thesis, University of the West of
England (2013)

14. Mavaddat, M., Beeson, I., Green, S., Sa, J.: Facilitating business process discovery
using email analysis. In: The First International Conference on Business Intelli-
gence and Technology. Citeseer (2011)

15. McChesney, C., Covey, S., Huling, J.: The 4 Disciplines of Execution: Achieving
Your Wildly Important Goals. Simon and Schuster, New York (2012)

16. Morales-Ramirez, I., Perini, A.: Discovering speech acts in online discussions: A
tool-supported method. In: Joint Proceedings of the CAiSE 2014 Forum and CAiSE
2014 Doctoral Consortium co-located, Thessaloniki, Greece, 18–20 June 2014,
pp. 137–144 (2014)

17. Rus, V., Graesser, A.C., Moldovan, C., Niraula, N.B.: Automatic discovery of
speech act categories in educational games. In: Proceedings of the 5th Interna-
tional Conference on Educational Data Mining, Chania, Greece, 19–21 June 2012,
pp. 25–32 (2012)

18. dos Santos França, J.B., Netto, J.M., do E. Santo Carvalho, J., Santoro, F.M.,
Baião, F.A., Pimentel, M.: KIPO: The knowledge-intensive process ontology. Softw.
Syst. Model. 14(3), 1127–1157 (2015)

19. Searle, J.R.: A Taxonomy of Illocutionary Acts. Linguistic Agency University of
Trier (1976)

20. Searle, J.R., Vanderveken, D.: Foundations of Illocutionary Logic. CUP Archive
(1985)

21. Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R.A., Jurafsky, D., Taylor,
P., Martin, R., Ess-Dykema, C.V., Meteer, M.: Dialogue act modeling for automatic
tagging and recognition of conversational speech. CoRR cs.CL/0006023 (2000)

22. Tenschert, J., Lenz, R.: Towards speech-act-based adaptive case management. In:
20th IEEE International Enterprise Distributed Object Computing Workshop,
EDOC Workshops 2016, Vienna, Austria, 5–9 September 2016, pp. 1–8 (2016).
http://dx.doi.org/10.1109/EDOCW.2016.7584393

http://dx.doi.org/10.1108/14637151311319932
http://dx.doi.org/10.1109/EDOCW.2016.7584393

Analysis of KiPs Focused on the Communication Perspective 285

23. Van Der Aalst, W., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier, T.,
Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., et al.: Process
mining manifesto. In: International Conference on Business Process Management,
pp. 169–194. Springer, Heidelberg (2011)

24. Vanderveeken, D.: Meaning and Speech Acts: Principles of Language Use.
Cambridge University Press, Cambridge (1990)

25. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72,
pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 5

26. Vosoughi, S., Roy, D.: Tweet acts: A speech act classifier for twitter. In: Proceed-
ings of the Tenth International Conference on Web and Social Media, Cologne,
Germany, 17–20 May 2016, pp. 711–715 (2016)

27. Wang, G.A., Wang, H.J., Li, J., Abrahams, A.S., Fan, W.: An analytical framework
for understanding knowledge-sharing processes in online Q&A communities. ACM
Trans. Manage. Inf. Syst. 5(4), 18:1–18:31 (2015)

28. Zhang, R., Li, W., Gao, D., You, O.: Automatic twitter topic summarization with
speech acts. IEEE Trans. Audio Speech Lang. Process. 21(3), 649–658 (2013).
http://dx.doi.org/10.1109/TASL.2012.2229984

http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1109/TASL.2012.2229984

Process Mining 2

TESSERACT: Time-Drifts in Event Streams
Using Series of Evolving Rolling Averages

of Completion Times

Florian Richter(B) and Thomas Seidl

Ludwig-Maximilians-Universität München, Munich, Germany
{richter,seidl}@dbs.ifi.lmu.de

Abstract. Business processes are dynamic and change due to diverse
factors. While existing approaches aim to detect drifts in the process
structure, TESSERACT looks for temporal drifts in activity interim
times. This orthogonal view on the process extends the traditional data
cube of events - case id, activities and timestamps - by a fourth dimen-
sion and improves the operational support by a visualization of temporal
drifts in real-time.

Insights about temporal deviations lead to an augmented awareness
of imminent failures or improved service times. The detection of related
structural concept drifts can be improved by early warning, as operation
times of critical parts often increase before they catastrophically fail.

Keywords: Process mining · Event streams · Temporal drift detection ·
Operational support

1 Introduction

Since years, information systems assist in collecting data from daily business
operations and have superseded manual logging. However, mid to large-scale
enterprises produce increasing amounts of data and the need for superior analysis
tools has arisen. Process mining refers to this task by collecting many analysis
techniques for discovery and evaluation of processes. Besides the static event
log files, the online process mining - often referred to as operational support -
is applied to streams of process data. It often supports analysts with the latest
view over the scenario. This allows managers to react to circumstances faster
or to handle larger amounts of data. Process mining emerged as a discipline
between data mining and process analysis, adapting many existing tools to mine
the business data and to return human-readable models. The abstract data logs
are transformed into high value information, which provide better knowledge for
managers to reach more reasonable decisions.

In this work we focus on online mining of event streams. It is rather important
for certain dynamic applications to detect anomalies early. Analyzing logs too
late may result in outdated insights. Factors like stock markets, supply condi-
tions, regulating laws, crisis effects or restructuring attempts within a company
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 289–305, 2017.
DOI: 10.1007/978-3-319-65000-5 17

290 F. Richter and T. Seidl

cause changes in the processes. Thus the need to identify sources of deviations
and find structural dependencies in the process structure is a very timely prob-
lem. Solving this problem in a certain scenario can help to predict further cas-
cading changes.

Fig. 1. Two models of the same production process can share the same structure, but
can differ in their activity durations. These are indicated by the widths of the activity
boxes. Note that the sojourn time of the left process is dominated by the accounting
step. Some weeks later, a new norm simplified and accelerated the accounting. The
resulting process at the right takes less time, but the process execution time is domi-
nated by the upper branch now. Improving the accounting any further will not increase
the process performance anymore.

Some methods for concept drift handling have been developed and discussed
already [4–7,9,13–15]. We do not aim at competing with those methods by
detecting deviations in the process structure itself. Our approach is orthogonal
as our goal is to find temporal deviations, based on given timestamps. A process
structure can remain unchanged while the operation times of process steps can
change and vice versa. Therefore we do not propose a method to replace existing
concept drift methods in this field. Instead we add another drift perspective by
looking for temporal drifts.

As a motivation, we assume a set of local subsidiaries that might have to fol-
low a certain process model as a common guideline. While all subsidiaries follow
the same structural execution guidelines, small temporal deviations can cause a
wide spectrum of the execution time for specific services. In case of an acceler-
ated sub-operation, which still conforms to the guideline, traditional approaches
would not detect the improvement. The company would lose the benefit after a
change of the subsidiary staff without even recognizing the hidden asset. On the
other hand, detecting an increase in delay can indicate a malfunction of certain
hardware and an issue can be fixed before it gets a true problem. As a third
important application, knowledge about service time deviations can improve
existing sojourn time prediction approaches. Figure 1 contains a visual example
showing the influence of changes of interim times.

The given examples lead to the introduction of the problem addressed in this
work, the detection of deviations of activity durations in an event stream. This
should help answer questions like: Can I rely on my process operation times for
prediction? Are there periods when I should expect shorter or longer operation
times? Can structural drifts be anticipated before they actually occur? Are there
some recurring change patterns?

Tesseract 291

In this paper, we present our novel event-stream-based temporal drift detec-
tion method, called TESSERACT. The contributions are as follows:

1. Utilization of event interim times for process analysis
2. Adaptation of a scalable and noise adapting trend detection method from

text mining
3. Anytime drift detection in events streams for operational support
4. Visualization for supervised domain expert interaction

The remainder of this paper is organized as follows: Sect. 2 lists some related
work. In Sect. 3 we give some basic definitions needed the understanding of the
approach. Section 4 describes our novel method called TESSERACT. In Sect. 5
we show our extensive experimental evaluation using synthetic datasets with
known ground truth and two real-world datasets. Section 6 concludes this paper
with some future directions.

2 Related Work

In online process mining or operational support business processes are analyzed
during their runtime. Cases are considered even before they are closed, allowing
a “pre mortem” analysis [20]. Our approach deals with online process mining
to detect concept drifts in the time perspective. We will give a brief overview
about related work in the areas regarding concept drift detection in processes
and temporal process mining.

2.1 Drifts and Deviations

In the field of traditional data mining, concept drift is a very well established
phenomenon. It was first mentioned that way in [17]. Concept Drift refers to
changes in the resulting output, which is caused by a change in the input data.
Over the years many different approaches have been developed to deal with
concept drift in a variety of application fields. In [4,5], Bose et al. transferred the
concept drift phenomenon to the process mining field. They performed statistical
hypothesis testing over feature vectors to deal with change point detection and
localization. The perspective of the drift was the structure of the underlying
process model, which refers to the control-flow perspective. Carmona et al. used
a geometrical approach with membership tests on abstract polyhedrons in [9] to
declare a drift. Burattin et al. [6,7] and Hassani et al. [13] deal with concept drift
in an evolving manner. There are further approaches with hypothesis testing on
the event ordering in cases [14,15]. The mentioned works are dealing with concept
drifts in the process structure. From now on we will refer to this perspective by
structural drifts. To our best knowledge, there has been no work on temporal
drifts in business data. But there has been research on drifts in time series. A
survey on state-of-the-art concept drift methods in time-series is provided by
Aminikhanghahi et al. [1].

292 F. Richter and T. Seidl

2.2 Temporal Process Mining

This other major part of our approach relates to the time-perspective of business
information. As most events in logs contain timestamps, some characteristics
like service times and frequencies during certain seasons can be derived. Backus
et al. considered factory cycle times in [2]. In [21], van der Aalst et al. enhanced a
transition system of activities to enable the prediction of case remaining times.
Polato et al. improved this further in [16] by building and using a regression
model to estimate the following activities in a current uncompleted case. Bolt
et al. [3] used query catalogs to estimate the remaining times. Although concept
drift is mentioned in the literature, the approaches assume a stationary process.
It is obvious that the prediction accuracy would decrease tremendously in case of
a concept drift. Our novel approach aims at recognizing and pointing to changing
activity completion times to update the remaining time predictors.

2.3 Event-Based Monitoring

In operational process mining, a stream of events is monitored to support the
analysts with beneficial statistics and trends. The mining of process delays is
a research focus in this area. Senderovich et al. [19] worked on the prediction
of delays in service processes that are caused by queuing customers. Gal et al.
[12] predict the travel time of buses considering their travel time which should
be scheduled. [8] et al. developed a framework to monitor a business process
and signal deviating behavior. In this context, TESSERACT can support these
methods with information about temporal trends.

3 Preliminaries

Now we will give a more formal introduction to the terms in process mining.
Traditional process mining deals with event logs. These are sets of cases, each
labeled with a unique case identifier c. Every case consists of a sequence of events
c = {e1, e2, . . . , en} ⊆ E, where E is the complete event space. It is assumed that
each event contains at least the corresponding case identifier, an activity label
to identify the related business action and the timestamp of the occurred action
e = (c, a, t) ∈ E. As a simplified notion, we define c(e) = c, a(e) = a and t(e) = t
as the projected attributes of an event. The timestamps define a temporal order
of events within a case. Using the timestamps only for ordering and projecting a
case to its activity labels yields the trace of this case. Considering Fig. 2, which
shows some actions happening in a short period of time, we can derive the stated
process log below the timeline. Real-world datasets typically consists of a small
activity space compared to the mostly large number of distinct cases.

We traverse from stationary processes to dynamic ones. Using the
timestamps, we can define a stream of events to substitute the event log. For-
mally, we define the mapping S : N → E as an event stream with the following
constraint: For any two events e1, e2, it must hold that S−1(e1) < S−1(e2)

Tesseract 293

Fig. 2. Three cases are observed in parallel. They share the same activities a, b, c but
the actions appear in different orders and number.

exactly if t(e1) < t(e2), so the ordering of the timestamps must be conform to
the stream ordering. This is more of theoretical importance, as a real application
would assign timestamps based on the stream arrival time.

Activities usually have an execution time, which starts at some point in time
and finishes at a later point. Sometimes, activities even occur in different life-
cycle states like registered, started, completed, restarted or aborted. In this case,
we can define the activity completion time as the time between the first and the
last occurrence of the activity t(a) = t((c, a : complete, t2)) − t((c, a : start, t1)).
Idle times between activities can also be defined by t(a) = t((c, b : start, t2)) −
t((c, a : complete, t1)).

In many event logs, events are only treated as point-based observations. To
deal with this limitation, we use the time between two events in the same case
instead. If we know the process structure in advance, we can focus on specific
consecutive activity pairs. Otherwise it is useful to observe every interim t(e2)−
t(e1) such that e1 = (c, a, t1), e2 = (c, b, t2) and t2 > t1. We are not able to split
actual activity execution time and the following waiting or idle time, so we just
define the complete interim between both activity timestamps as the completion
time for a.

The process structure is slightly linked to the temporal structure. We will
illustrate this with two examples. First, imagine a book reviewing process with
three consecutive activities getBook, readBook and writeReview. A new book can
be received on the beginning of the month and the review has to be finished at
the end. The reading can happen anytime between both points in time. getBook
and writeReview are not in a directly-follows relation, but they establish a very
consistent time frame for the execution. By observing only the two interims
(getBook, readBook) and (readBook, writeReview) the fluctuation makes it very
difficult to detect slight changes in the global execution time of the process. So
sometimes long-distant-follows relations can be more more relevant than directly-
follows relations in this context.

Second, we consider the process with concurrency in Fig. 1 again. A valid
observed trace could be (manufacture, account, deliver). We remember that the
account-activity is concurrent to the remaining two activities. Due to the parallel
execution of the accounting branch and the production branch, the relations
(manufacture, account) and (account, deliver) are not relevant in the model
and the important relation (manufacture, deliver) is overseen. This means we
could ignore certain relation candidates if we had a good insight into the process
structure. In the remaining paper we will focus on the worse case of not knowing

294 F. Richter and T. Seidl

the process structure. So results and performance can possibly be improved by
using other process discovery methods in parallel.

Theoretically it does not matter which occurrence of an activity is chosen
to determine the completion time. Most activities should always take the same
amount of time. However, many factors cause an activity to take less or more
time in different instances. For human-influenced activities, appointments can
be set up vaguely or they can just be too late or too early. Traffic can cause
deliveries to arrive unpredictably. And even automated production lines happen
to add some noisy factors to the recognized timestamps. In this paper we assume
that an activity has a certain average completion time. Most speedups or delays
are clustered in the proximity of this average while only few outliers can be found
at some distance to the expected time. Therefore, we want to focus on Gaussian
distributed noise only as a reasonable distribution for completion time series.
There are also other distributions, but this is planned for future work.

4 Algorithm

In the following, we will discuss the three parts of TESSERACT in detail. We
have to deal with collecting the completion times in a stream environment, using
the collected statistics to derive an indicator function and visualize the results.

4.1 Managing Cases and Completion Times

Our starting point is a stream of events. First we need to derive the comple-
tion times of activities. Without given activity life-cycles, we mine the interims
between activity pairs within the same case. The used data structure has a high
influence on the performance here. If we store näıvely all pairs of activities, we
will probably overload our memory. We need a structure with fixed capacity to
meet stream requirements, which has a fast performance for look-up, updating
and deleting. In addition, it has to be capable of an aging mechanism, so we do
not block the memory with deprecated cases.

In [11], Fan et al. developed a hashing data structure to maintain items
very efficiently compared to the already efficient Bloom filters. We adapted and
modified the method to deal with the large amount of concurrent active cases.
Cuckoo hashing applies two different hash functions h1, h2 to an element, that
has to be stored. All items are stored in an array of length n. The element
is then kept in one of two positions h1(x), h2(x) ∈ {0 . . . n − 1}, both defined
by the two hash functions. If both positions are already occupied, the current
element is swapped with one of the blocking items and the swap item has to be
inserted elsewhere. As the swap item also has two possible storage positions, it
can be inserted on its second position. This is repeated until an empty slot for
the pending item has been found or until the swap maximum has been reached.
The swap item is discarded then.

Using a traditional Cuckoo hash-table supports us with a good performance.
Two problems arise, caused by properties of business processes. First, cases can

Tesseract 295

be disrupted or canceled without any indication. The data structure needs an
aging mechanism, which does not deteriorate the performance. Second, the pace
of different traces can vary. Some cases are rather quick, others might have a low
activity frequency. As we do not want to give the faster ones a higher influence,
the data structure needs to find a good candidate to discard in a short time
period.

Our modification uses short arrays of size m instead of single item positions.
Then the data structure is a matrix of size n × m. For a new observed event e,
both hash functions determine the two candidate arrays at h1(c(e)), h2(c(e)). In
case of free space and no existing event data for this case, we just store the event
in one of both arrays. If there was already information for this particular case,
we extract the old event data and update the information with e. The resulting
information is a set of relations

R(e) = {(aprevious, a(e), t(e) − tprevious) | aprevious ∈ c(e) ∧ tprevious < t(e)}.

In case of a collision, both arrays are full and the current event case is not
stored. Traversing over the complete table to delete old cases would be too time-
consuming. Our strategy is to replace the new event case with the most obsolete
case data we can find in both rows. Recursively we try to insert the swapped case
data in its alternative position. This is repeated for finitely many times pmax.
(pmax + 1)m items are checked at most. Closing a case is as simple as inserting
new information. Both hash functions define the only two possible locations of
case related information. Two arrays have to be checked and the corresponding
event data has to be removed by visiting at most 2m slots (Fig. 3).

Fig. 3. Processing of a new observation. Two hash functions are applied to the case
identifier. If the case was already opened, it is guaranteed to be found in one of both
rows. The current information is used to update the data in the table and the relation
is built by both the old and the recent event data.

Regarding complexity so far, we have O((pmax +1)m+max |c|) for the max-
imal case length max |c|. The first insertion part is constant because the para-
meters are set in advance. The second part is the update procedure. It can be
assumed to be constant in practice as well. Cases have finite length in practical
scenarios. Often we can assume an upper bound of 20 events per case. Other-
wise we can force the size of the sets to be within a certain margin. Discarding
the oldest events in a case, which are unlikely to be relevant for recent events,
secures the constant complexity again for streaming purposes.

296 F. Richter and T. Seidl

4.2 Rolling Averages

Now we want to assemble an indicator, that determines how far a new obser-
vation derives from the previous observations. Usually one is interested in the
z-score, which states the distance between the observation and the mean value,
measured as standard deviations:

z(x) =
x − mean(x)
stddev(x)

Calculating the z-score for each observation needs knowledge about the mean
and standard deviation of the complete time series. As we do not want to assume
a stationary model, we need a mechanism to update the statistics incrementally.
In the text mining area, Schubert et al. [18] presented the SigniTrend approach,
which uses such an incremental z-score. The statistics are exponentially weighted
moving averages and variances, namely EWMA and EWMVAR as rolling mean
μ̂ and rolling variance σ̂2:

μ̂0 = x0, μ̂n = (1 − λ)μ̂n−1 + λxn

σ̂2
0 = x0, σ̂2

n = (1 − λ)(σ̂2
n−1 + λ(xn − μ̂n)2)

The tradeoff between a smoothed and history-considering or a very up-to-date
but noise function can be adjusted with the decay factor λ ∈ (0, 1). The moving
z-score is then computed as

ẑ(xi) =
xi − μ̂i√

σ̂2
i

The expectation value of ẑ(x) is zero. Its variance is more complex and dominated
by λ while very robust towards noise in x. Figure 4 shows the results of our
experiments regarding the standard deviation when influenced by different decay
factors and degrees of noise. According to our experiment, we calculated a linear
approximation for the functional influence of λ and define c(λ) = 1 − 3

4λ with a
coefficient of determination of 0.95. Dividing the z-score by c(λ) yields a standard

Fig. 4. The standard deviation of the moving z-score, dependent on the decay factor
(left) and a noise level as standard deviation of the input between 0 and 10000 (right).
For the noise experiment, a decay factor of 0.2 is chosen. σ(ẑ(x)) = c(λ) = 1 − (0.2 ∗
0.75) = 0.85, which explaines the offset on the right-hand side.

Tesseract 297

deviation of 1 then. It is interesting to notice that the noise has almost no
influence on the z-score statistical measures. This property is crucial for this
method as we can use the same values on activity relations with different noise
levels without further adjustments. Even time series with changing noise levels
can be handled as the z-score will just adapt to the deviated noise.

Algorithm 1. Tesseract Value
Input: Sr: relation stream, λ, θ: decay parameters
1: Initialize HashMap for relation data R
2: loop
3: r = (a, b, δt) ← Sr.observeStream()
4: data ← R.getData(a → b)
5: if data is empty then
6: data.EWMA ← δt

7: data.EWMVAR ← δt

8: data.out ← δt

9: else
10: diff ← δt − data.EWMA
11: incr ← λ ∗ diff
12: data.EWMA ← data.EWMA + incr
13: data.EWMVAR ← (1 − λ)(data.EWMVAR + diff ∗ incr)

14: ẑ ← x−data.EWMA√
data.EWMVAR∗c(λ)

15: data.out ← (1 − θ) ∗ data.out + θ ∗ ẑ
16: output data.out as Tesseract value
17: end if
18: end loop

Control charts are a common tool in statistical process control. If a process
is “under control”, the significant time series oscillates around the center line
within a certain range. We can use ẑ(x)· 1

c(λ) as an indicator function in a control
chart, which is expected to stay almost equal to zero for stationary values. The
function filters a large ratio of noise, but short peaks are possible and cause
false alerts. Additional smoothing, for example with another EWMA-filter, is
adequate but will slow down detection times.

TESSERACT as presented so far is flexible in its case management and
detection methods. The Cuckoo table is easily interchangeable with another
data structure capable of storing case data. The moving z-score can also be
exchanged with a different approach. For example, an adaptive window approach
is possible, but handling different windows depending on the various relations is
challenging. A second issue is the different pace and frequency of relations, so
a window approach needs more effort for user-defined parameters. This is the
reason we preferred the presented approach.

4.3 Implementation and Visualization

We implemented TESSERACT in the ProM framework. A screenshot is given in
Fig. 5. On the left-hand side, the user can specify the pair of activities to monitor
on the right. In the main frame, we give the observed time intervals between
both activities. Below, the smoothed incremental z-score is plotted. We provide

298 F. Richter and T. Seidl

Fig. 5. A screenshot of TESSERACT while observing the loan application process [22].
A temporal drift in O Create Offer → O Created can be seen, which halved the time
between both activities from about 1477 ms to roughly 670 ms around July 12th. The
drift can be noticed in Fig. 11 as the most intense red block in the diagram.

a zero line (green) and two alert thresholds (red). The two threshold lines are
positioned at 3σ and −3σ. The white Tesseract value triggers a temporal drift,
if a minimum number of events shift the value out of the in-control limits.

The last step is to use the results in a graphical visualization. TESSERACT
produces weighted interval data, so our first choice is to use a Gantt-chart for its
representation. As you can see in Fig. 6, we use a red/blue diverging colormap.
A strong blue marks a decrease in speed, a red indicates acceleration. The inten-
sities are given by the integrals of the Tesseract values, which exceed the thresh-
old lines.

Fig. 6. The generation of the final Gantt-Chart. TESSERACT uses the durations or
activity interim times to derive the Tesseract value. The values exceeding the thresholds
are used to generate horizontal Gantt-bars.

5 Experiments

We performed some experiments on our novel temporal drift detection method.
We tested our adaptation of the Cuckoo Table and the performance regarding

Tesseract 299

collisions and load-factor using a real world dataset. Then we tested the detection
delay of drifts with a large synthetic dataset. Thirdly, we performed complete
runs on real world datasets. The datasets are the Road Traffic Fine Management
Process [10] and the BPI 2017 challenge dataset [22].

5.1 Collision Performance of Cuckoo Hashing

Our variant of a Cuckoo Table is a matrix containing n positions with m buckets
each. Every observed case event causes a look-up at two positions and if it is a
new case, it is swapped with the most obsolete case information, which is then
maybe stored at another position. Having many events in a stream can cause
collisions, which leads to p attempts to reassign oldest items to another position.
Theoretically, this can end in an infinite cycle, especially for almost full tables.
We set a limiter pmax = 10 for our experiments and tested for several table sizes
m × n the average number of reassignment steps, the average load factor, the
total number of collisions and the total number of discards. The results can be
seen in Fig. 7.

Fig. 7. The plots show the detection delay in case of incremental drifts. For several
levels of noise and different drift intensities as gaps, the delay is given as the number
of events between drift start and drift alert. The decay factor is set to 0.05 and the
smoothing factor is 0.005. For each parameter setting, 10k drifts are simulated.

It is not very surprising that collisions are more unlikely for larger storage
capacities. The load factor is high, but it is important to notice, that it only
reaches a factor of 0.8. The usage of short arrays seems to be a good technique
here. Although the load factor is not at maximum capacity, there are still a lot
of discards, which means loosing information. On the other hand, reassigning
elements to other locations takes more time. The m buckets at each position
helps reducing these reassignment steps and discards and saves processing time.

5.2 Detection Delay for Sudden Drifts

TESSERACT is supposed to detect temporal drifts based on data from an event
stream to deliver early results. One wants to react to drifts as soon as possible
to lessen the chance of bad consequences or to prepare for good business oppor-
tunities. Therefore we tested the delay of the detection on synthetic data to
ensure an accurate starting time for a drift as the ground-truth. We estimated

300 F. Richter and T. Seidl

the noise and the degree of deviation as the most important sources of delay. So
we generated several event streams containing about 10k drifts each. The basis
was a constant function for the time between two activities. For every drift, we
increase or decrease the constant function by a uniformly distributed random
value between -1000 and 1000 to simulate a sudden drift. Between drifts we
include a constant phase so that the trigger function can normalize again and
we are able to map each drift alert to a distinct drift. Finally, we add a normally
distributed noise with a mean of 0 and a variable standard deviation as the noise
level to the signal. We assume a normal distribution to be valid for most applica-
tions. Especially business data contains other distributions as we discovered in a
real world dataset, but for this paper we followed the intuition that a particular
action takes mostly a constant amount of time. A meeting can be scheduled to
take one hour for example. In many cases, it will take approximately the sched-
uled amount but in rare cases, this action can require a lot less or more time. To
simulate incremental drifts, we used a similar strategy by adding incrementally
a value between -1000 and 1000 to the time series for a brief interval per drift.

We measured the time between the start point of the drift in the time series
and the point in time when our method triggers a temporal drift. This is the
case when the indicator value reaches and exceeds 1 or -1. To avoid detect-
ing false positives and to differentiate between sudden and incremental drifts,
we use two thresholds here. The first one defines the cut between outliers and
declared sudden drifts. The second greater one defines the minimum threshold
for incremental drifts. It would not be useful to show results in a time scale
like seconds, because the frequency of actions should not influence the detection
method. Therefore we measure the delay in the number of events between the
first deviating event and the alert.

The results can be seen in Fig. 8 for the sudden drift experiments and in Fig. 9
for the incremental drift experiments. The sudden drifts are more influenced by
noise than the incremental drifts. This is not very surprising as the indicator
function starts to normalize again as soon as the drift is over. The noise forces
the method to adapt to be robust, which degrades the ability to detect the

Fig. 8. The plots show the detection delay in case of sudden drifts. For several levels of
noise and different drift intensities as slopes, the delay is given as the number of events
between drift start and drift alert. The decay factor is set to 0.005 and the smoothing
factor is 0.005. For each parameter setting, 10k drifts are simulated.

Tesseract 301

Fig. 9. The plots show the detection delay in case of incremental drifts. For several
levels of noise and different drift intensities as gaps, the delay is given as the number
of events between drift start and drift alert. The decay factor is set to 0.05 and the
smoothing factor is 0.005. For each parameter setting, 10k drifts are simulated.

sudden drifts slightly. The incremental drifts consist of multiple increasing time
values and can be differentiated better from the noise with this method. The
figure shows that our method is capable of detecting incremental drifts in a very
noisy signal.

While the incremental drift detection is rather dependent on the intensity of
the drift, the sudden drifts are almost completely invariant to it. This can be
explained by the fact that incremental drifts are technically a series of sudden
drifts. The incremental aspect of the moving z-score detects longer periods of
growing values more easily. Thus the noise affects sudden drift detection indepen-
dently of the drift intensity. Although noise causes a growing delay for increasing
levels of fluctuation, our method is still able to detect drifts but it might take
more events.

5.3 Real World Application

Finally we want to prove the usefulness of TESSERACT by applying it to a
real-world dataset. To the best of our knowledge, there is no similar approach to
compare our method with regarding performance measures. Thus we try to find
temporal drifts in case of a structural stationary process. The publicly available
Road Traffic Fine Management Process [10] contains about 150k cases regarding
processing of traffic fines. All traces follow the same guidelines. In this data, we
should not find any drifts due to the stationary model and in compliance with
state-of-the-art structural concept drift tools in ProM [4]. The results can be seen
in Fig. 10. There seems to be a significant temporal recurring drift between the
activities Insert Fine Notification and Add penalty. Every spring, the interim
time between both activities is decreased and in the second half of the year
increased again. We took a closer look at the corresponding data and this relation
uses almost exactly 60 days. Only for two nearly 60-day-periods it takes 1 h more
or 1 h less respectively. The explanation is rather trivial: This is an effect of the
daylight saving time, causing artificial drifts in a very constant time series. On
the one hand, it would be a good idea to avoid seasonal time differences in

302 F. Richter and T. Seidl

Fig. 10. The application of TESSERACT to the Traffic Loan Dataset [10]. Although
the process is static, we find a significant recurring drift between in insert fine noti-
fications and add penalty. The time series below shows the extracted interim times,
shifting between 1439 and 1441 h.

event logs and refer to a standardized time. On the other hand, this showed that
TESSERACT successfully detected a drift which is clearly present in the data.

For the second application on a real-world dataset we used the recently pub-
lished loan application process [22] for the BPI 2017 challenge. We used both
datasets, but due to space constraints we will discuss the compact offers-dataset
here only. The resulting Gantt-chart is represented in Fig. 11. A very significant
drift is observed in O Create Offer → O Created around July 10th. According
to the short duration and the bright color, it has to be a sudden and inten-
sive acceleration. In the screenshot in Fig. 5 the response of the TESSERACT
value is noticeable. Looking on the time between both activities before and after
July 10th, there is a major difference between the mean interim time. While
there is almost a constant time period for both intervals, the mean of the first
interval is around 1477 ms, the second one is about 670 ms, which is more or
less half of the former duration. This time series is quite noisy as we can see
in the screenshot, but TESSERACT was able to detect the drift. Besides, by
analyzing the Grantt-chart visually, we can identify recurring drifts before the
O Accepted activity, indicating that there is a monthly delay of some sort. Nev-
ertheless there seems to be some attempts to accelerate the acceptance around
June 2016 and November 2016. More insights are possible using the complete
application dataset.

5.4 Limitations

Our approach is capable of detecting temporal drifts in an event stream. On
the contrary, our approach does not take structural drifts into account. This is

Tesseract 303

Fig. 11. The application of TESSERACT to the loan application process [22] is pre-
sented. There is a delay in the acceptance of offers on the 20th of each month. There are
some improvements for the acceptance speed around June 2016 and November 2016.
The most significant temporal drift is between July 10th-14th. The time to create an
offer has halved, see also Fig. 5.

a limitation as structural and temporal drifts are related sometimes. A careful
analysis should take all perspectives to create results. Including background
knowledge about the ground model and changes in the structure is expected
to increase the confidence of detected drifts and decrease of memory usage.
We monitor many interim times which are less important and can be ignored.
Due to a lack of information we store them to achieve a complete analysis. A
general problem of the exponential weighted averages is a high sensitivity at
the beginning. Few almost constant starting values with low standard deviation
will lead to a high divergence peak for the first slightly different data value. A
näıve approach defines a training period. However, in process mining different
activities have deviating frequencies. While some activity pairs normalize after
minutes, others occur only once per day and need weeks to yield reliable results
about their drift behavior.

6 Conclusion

In this work we presented a novel algorithm TESSERACT, which detects concept
drifts in the temporal dimension of events. It extracts the completion times
of activities or inter-activity times and uses exponentially moving statistics to
derive a drift indicator. Both parts are modular and can be exchanged with
other techniques. Using an intuitive visualization, the results can be delivered
to domain experts for further reasoning. We showed that TESSERACT works
well on streams of real-world event data and is able to enhance the discovery of
drifts by adding insights about temporal behavior. It is able to detect sudden and
incremental drifts, but the results have shown that recurring drifts are detectable
only by visual inspection so far. An automated approach for those higher-order
patterns would be beneficial to enhance the knowledge about a process once
more. We see a promising direction in embedding the drift information into
other discovery algorithms to investigate whether our view on the completion
times can improve the discovery process by analyzing the distribution patterns
of time intervals.

304 F. Richter and T. Seidl

References

1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point
detection. Knowl. Inf. Syst. 51(2), 339–367 (2017)

2. Backus, P., Janakiram, M., Mowzoon, S., Runger, C., Bhargava, A.: Factory cycle-
time prediction with a data-mining approach. IEEE Trans. Semicond. Manuf.
19(2), 252–258 (2006)

3. Bolt, A., Sepúlveda, M.: Process remaining time prediction using query catalogs.
In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp.
54–65. Springer, Cham (2014). doi:10.1007/978-3-319-06257-0 5

4. Bose, R.P., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with
concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1),
154–171 (2014)

5. Bose, R.P.J.C., Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling con-
cept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21640-4 30

6. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Heuristics miners for streaming
event data (2012). arXiv:1212.6383

7. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from
event streams. In: Congress on Evolutionary Computation (IEEE WCCI CEC)
(2014)

8. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task mon-
itoring for business processes. In: International Conference on Business Process
Management, pp. 424–432. Springer (2014)

9. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift
in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA
2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34156-4 10

10. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)
11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Prac-

tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies, pp. 75–88. ACM
(2014)

12. Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M.: On pre-
dicting traveling times in scheduled transportation. In: Proceedings of the 2nd
International Conference on Mining Urban Data, Vol. 1392, pp. 88–89. CEUR-
WS. org (2015)

13. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from event
streams using sequential pattern mining. In: IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), pp. 1366–1373 (2015)

14. Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 27

15. Kuma, M.V.M., Thomas, L., Annappa, B: Capturing the sudden concept drift in
process mining. In: BPM Workshops, pp. 132–143 (2015)

16. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time
prediction of business process instances. In: 2014 International Joint Conference
on Neural Networks (IJCNN), pp. 816–823. IEEE (2014)

http://dx.doi.org/10.1007/978-3-319-06257-0_5
http://dx.doi.org/10.1007/978-3-642-21640-4_30
http://dx.doi.org/10.1007/978-3-642-21640-4_30
http://arxiv.org/abs/1212.6383
http://dx.doi.org/10.1007/978-3-642-34156-4_10
http://dx.doi.org/10.1007/978-3-642-34156-4_10
http://dx.doi.org/10.1007/978-3-319-23063-4_27
http://dx.doi.org/10.1007/978-3-319-23063-4_27

Tesseract 305

17. Schlimmer, J.C., Granger, R.H.: Beyond incremental processing: Tracking concept
drift. In: National Conference AI, pp. 502–507 (1986)

18. Schubert, E., Weiler, M., Kriegel, H.-P.: Signitrend: scalable detection of emerging
topics in textual streams by hashed significance thresholds. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 871–880. ACM (2014)

19. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – Predict-
ing delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 42–57. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 4

20. van der Aalst, W.: Process Mining: Data science in action. Springer, Heidelberg
(2016)

21. Van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

22. van Dongen, B.F.: Bpi challenge 2017 - offer log (2017)

http://dx.doi.org/10.1007/978-3-319-07881-6_4

Intra and Inter-case Features in Predictive
Process Monitoring: A Tale of Two Dimensions

Arik Senderovich1(B), Chiara Di Francescomarino2, Chiara Ghidini2,
Kerwin Jorbina3, and Fabrizio Maria Maggi3

1 Technion - Israel Institute of Technology, Haifa, Israel
sariks@technion.ac.il

2 Fondazione Bruno Kessler, Trento, Italy
{dfmchiara,ghidini}@fbk.eu

3 University of Tartu, Tartu, Estonia
{kerwin.jorbina,f.m.maggi}@ut.ee

Abstract. Predictive process monitoring is concerned with predicting
measures of interest for a running case (e.g., a business outcome or the
remaining time) based on historical event logs. Most of the current pre-
dictive process monitoring approaches only consider intra-case informa-
tion that comes from the case whose measures of interest one wishes
to predict. However, in many systems, the outcome of a running case
depends on the interplay of all cases that are being executed concurrently.
For example, in many situations, running cases compete over scarce
resources. In this paper, following standard predictive process monitor-
ing approaches, we employ supervised machine learning for prediction.
In particular, we present a method for feature encoding of process cases
that relies on a bi-dimensional state space representation: the first dimen-
sion corresponds to intra-case dependencies, while the second dimension
reflects inter-case dependencies to represent shared information among
running cases. The inter-case encoding derives features based on the
notion of case types that can be used to partition the event log into
clusters of cases that share common characteristics. To demonstrate the
usefulness and applicability of the method, we evaluated it against two
real-life datasets coming from an Israeli emergency department process,
and an open dataset of a manufacturing process.

Keywords: Predictive Process Monitoring · Inter-case Features ·
Bi-dimensional Feature Encoding

1 Introduction

Business processes are supported by process-aware information systems (PAIS)
that record execution data into event logs [1]. Predictive process monitoring is
concerned with analyzing these event logs to predict measures of interest (MOI)
at runtime [2,14]. Key measures include the business outcome of a process exe-
cution (a.k.a. case), the remaining time and the remaining activities up to the
c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 306–323, 2017.
DOI: 10.1007/978-3-319-65000-5 18

Intra and Inter-case Features in Predictive Process Monitoring 307

completion of an ongoing case. State-of-the art approaches for solving predic-
tive monitoring problems employ supervised machine learning to make predic-
tions [13,20]. In particular, event logs are encoded into feature-outcome pairs to
build training sets required to run machine learning algorithms [10].

In previous works, predictive process monitoring methods assumed that the
MOIs of an ongoing case only depend on intra-case information, e.g., on the
execution history of that specific case. This assumption results in encodings
that include past events, inter-event durations, and other case attributes [13].
However, the intra-case assumption does not hold in many real-life scenarios. For
example, in situations where cases share limited resources, the remaining time
of a case heavily depends on other cases that are running at the same time [17].

In this paper, we propose a method for feature encoding in predictive moni-
toring that relies on a bi-dimensional state space. The first dimension expresses
intra-case dependencies, while the second dimension represents inter-case depen-
dencies capturing the interplay of all running cases. However, encoding features
into the inter-case dimension is challenging, since (1) there is a large variance
in the levels of dependencies for different business processes, and (2) encoding
multiple features for a large number of simultaneously running cases may lead to
feature space explosion. To overcome these two limitations, we propose an inter-
case encoding general method that is grounded in the partitioning of recorded
(and running) cases into case types. Case types represent a flexible instrument to
cluster together cases being in the same state since the characteristics that define
a case state can be different for different scenarios. In addition, to avoid feature
space explosion, inter-case features are encoded using a derivation function that
enables for their compact representation.

We evaluate the proposed method against two real-life datasets coming from
an Israeli emergency department (ED), and a manufacturing process. The experi-
ments show that our solution yields a 27% improvement when predicting remain-
ing times of ED patients, and a 52% improvement when predicting the remaining
time for the manufacturing process.

The remainder of the paper is structured as follows. We start by motivat-
ing our contribution using scenarios taken from a real-life hospital setting that
describe different levels of inter-case dependencies (Sect. 2). In Sect. 3, we provide
essential background concepts, before stating the main problem that we solve
in this paper (Sect. 4). Section 5 presents the core contribution of the paper by
specifying the details of our method. An empirical evaluation of the method is
presented in Sect. 7, while Sects. 8 and 9 close the paper with related work and
conclusive remarks.

2 Motivating Scenarios

When considering predictive process monitoring problems in real-life settings,
one can identify several scenarios that reflect different levels of inter-case depen-
dencies. Below, we report four realistic scenarios from an ED. The examples are
targeting the remaining time prediction as the main MOI.

308 A. Senderovich et al.

Scenario 1: Urgent Patients. An urgent patient who arrives into the ED requires
first aid, and thus receives high priority. Hence, the patient does not compete
over shared resources, as she gets immediate help. Here, the dependency between
the urgent case and all other cases is negligible, and the remaining time of that
case will depend on the clinical history of the patient. This is a case where
intra-case features are most predictive for the MOI.

Scenario 2: Homogeneous Patients. Consider the distribution of food among
patients in the ED. Here, assuming that no patient type has priority over the
others, service times are independent and identically distributed for all patients,
and the distribution order is random. Hence, we expect that the remaining time
for a specific case would depend only on the total number of patients waiting to
receive food.

Scenario 3: Heterogeneous Patient Types with Priorities. Consider the radiology
unit, where patients compete over several types of machines (e.g., XRAY, CT,
and MRI). Patients are prioritized according to their diagnosis, age, and recent
events. For example, patients who recently went through an Oncology consul-
tation receive the highest priority class. Patients with orthopedic trauma who
were recently triaged (seen by a nurse) will receive the lowest priority class. In
this setting, it is important to discriminate case types, and consider the number
of patients in each priority class [17].

Scenario 4: Heterogeneous Patient Types with History-Dependent Priorities.
Consider the surgery unit, where patients compete over surgeons and operat-
ing rooms. Patients are prioritized according to their diagnosis, age, and their
clinical history. For example, patients with a severe diagnosis and who already
had other similar suspected diagnosis or other severe diseases in the past, receive
the highest priority class. Patients who never had health problems and with a
minor trauma will receive the lowest priority class. In this setting, a more fine-
grained case typing than in Scenario 3 must be considered. In particular, one
needs to take into account the history of the patients when creating priorities.

To summarize, we observe that different processes may require different fea-
ture encodings to capture inter-case dependencies. We shall return to these sce-
narios in Sect. 5, where we present our solution to inter-case feature encoding.

3 Preliminaries

In this section, we provide the required preliminaries for our work, namely the
definition of event logs, the formulation of the predictive process monitoring
problem, and the description of the supervised machine learning framework.

3.1 The Event Log

In what follows, we define an event log, our representation of process execution
recordings. Let E be the universe of all events. An event log L is a K-sized set of
event sequences (or cases), L = {σi : i = 1, . . . ,K} with σi = (e1i , . . . , e

ni
i) ∈ E∗

Intra and Inter-case Features in Predictive Process Monitoring 309

being the ith case of length ni. We denote by L the universe of event logs.
Without loss of generality, we assume that L comprises complete cases only.
However, for running case prediction, we are interested in prefixes of complete
cases. Hence, we define the prefix function, φ : E∗ × N+ → E∗, which returns a
prefix of size n, given a sequence, namely φ(σi, n) = (e1i , . . . , e

n
i) : n ≤ ni. The

function returns σi in case n > ni. We define the extended event log L∗ to be the
event log that contains all prefixes of L, i.e., L∗ = {φ(σi, n) : σi ∈ L, n ≤ ni}.

Further, we assume that every event in a sequence is associated with data in
the form of attribute-value (AV) pairs. Formally, we define the AV function α to
be α : E → A1 × · · · × Ap with Aj , j = 1, . . . , p being p attribute domains. We
assume that ∃j : Aj is the universe of timestamps (e.g., UNIX time recordings).
We denote the domain of timestamps by TS. Moreover, we assume that, for
j = 1, . . . , p, Aj contains the unknown value ⊥. Lastly, each prefix of σi is
associated with a label (e.g., the remaining time for a running case) such that
y(φ(σi, n)) ∈ Y with Y being the domain of labels. Note that the labels can
be dynamic and change as the case progresses (e.g., the remaining time for a
running case changes as the case progresses).

Fig. 1. Example of an event log.

As a running example, consider the event log presented in Fig. 1 per-
taining to a medical treatment process. Each case relates to a different
patient and the corresponding sequence of events indicates the activities exe-
cuted for a medical treatment of that patient. In the example, consulta-
tion is the first event of sequence σ1. Its AV function maps the consultation
event to “{33, radiotherapy, 10:30AM}” corresponding to the data associated to
attributes age, department, and timestamp. The remaining time (in minutes) is
the label that is present for every event (with 50 min being the remaining time
after the first event in the first case, and 25 min being the remaining time after
the second event). Note that the value of age is static, i.e., it does not change for
all the events in a case, while the values of department, timestamp, and remaining
time are dynamic, i.e., different for every event.

3.2 Predictive Process Monitoring

Having defined our data model, we turn to formulate the problem of predictive
process monitoring, following the notation in [13,14].

Definition 1 (PPM). Given a (possibly running) case σx, the predictive
process monitoring problem (PPM) is to find a function f : E∗ → Y that accu-
rately maps σx to the corresponding label y(σx).

310 A. Senderovich et al.

Note that differently from previous works on predictive process monitoring, here
we do not necessarily observe a single outcome per case. In contrast, every prefix
of a running case can have a corresponding label in Y. Since historical observa-
tions of cases (with all their prefixes and dynamic labels) are provided in L∗, it
is natural to employ supervised learning for solving PPM. Hence, we complete
the section by defining the supervised learning framework.

3.3 Supervised Learning

Below, we introduce the basic definition of a supervised learning task based
on [18], which we later utilize to solve the PPM problem.

Let X be some vector-feature space, and let Y be the outcome space (we
abuse notation on purpose as we consider the same domain as for sequence
labels). Further, we denote by r some nonnegative real-valued risk function r :
Y ×Y → R

0+ that given a predicted outcome and the real label, returns the risk
value (here, high risk corresponds to low accuracy and vice versa). For example,
r can be the squared error risk function. The supervised learning task (SLT) is
defined as follows.

Definition 2 (Supervised Learning Task (SLT)). Given the tuple 〈S, F, r〉
with

– S ⊆ X × Y being the training set of independent and identically distributed
samples from the distribution of X × Y,

– F ⊆ YX being the class of learning functions, and,
– r being the risk function that we wish to minimize,

the supervised learning task (SLT) is to find a function f̂ ∈ F s.t. for a test
observation (x0, y0) ∈ X × Y, the excepted risk is minimized:

f̂ = arg min
f∈F

E[r(f̂(x0), y0)]. (1)

Note that, in real-life situations, we may observe only x0, while y0 is unobserved.
Hence, the true risk can be assessed only in hindsight. In practice, to obtain f̂
that solves the SLT, machine learning methods minimize the empirical risk with
respect to the training pairs, i.e., for S = {(xi, yi), i = 1, . . . , K}, we select f̂
such that:

f̂ = arg min
f∈F

1
K

K∑

i=1

r(f̂(xi), yi). (2)

This approach can lead to over-fitting, which can in turn be avoided by proper
selection of F , the class of learners. In this paper, we avoid over-fitting by
selecting well-established supervised learning methods that balance over- and
under-fitting.

Intra and Inter-case Features in Predictive Process Monitoring 311

4 Problem Setup

In this section, we present the problem that we solve in this paper, namely
the Sequence-To-feature Encoding Problem (STEP). The problem arises when
we aim at casting the predictive monitoring problem (PPM) into a supervised
learning task (SLT). The casting appears straightforward. As solution to the
PPM, f , one may consider using f̂ that results from setting: (i) the training set
S to be L∗ (all prefixes of historical cases); (ii) F to be some class of functions
(e.g., the set of linear functions); and (iii) r to be some risk function (e.g., the
squared error).

However, the training data in the SLT setting, S, is assumed to be a set of
independent and identically distributed (i.id.) observations of feature-outcome
pairs, (xi, yi). In contrast, the training data that stems from L∗ contains a
set of highly dependent prefix-outcome pairs, (zi, y(zi)), zi = φ(σi, n) with
i = 1, . . . ,K, n = 1, . . . , ni: any two prefixes of the same case are highly cor-
related as they represent the same process execution (intra-case dependencies),
and every two prefixes that run in the process at the same time potentially
share limited resources (inter-case dependencies). Furthermore, the SLT solu-
tion function f̂ maps a newly observed feature value to a label, while in the
PPM problem, the new value is a (possibly running) case. This leads to the need
for transforming sequences into features.

Problem 1 (Sequence-To-feature Encoding Problem (STEP)). Let L∗

be an extended event log that contains all prefixes of the sequences in L. Solving
the STEP problem is to find a function g : E∗ × Y × 2L → X × Y such that
the result of its operation, {g(σi, y(σi), L∗))} ⊂ X × Y, is an i.id. sample of
feature-outcome from X × Y.

Clearly, a STEP solution includes a joint choice of g and X . The STEP has
been solved in [8,13,14,20] by various intra-case feature encodings. The main
contribution of this paper is a novel solution to STEP that leverages inter-case
information, while bounding the feature space size.

5 Bi-dimensional STEP Solution

In this section, we show our solution to STEP by means of the construction of
a bi-dimensional STEP function gβ that maps every prefix in L∗ and its corre-
sponding label into X ×Y with X being a bi-dimensional feature space X1 ×X2.
The first component of the feature space, X1, captures intra-case dependencies,
while the second component, X2, represents inter-case dependencies. The first
dimension is defined using existing techniques from [7,13], while the contribu-
tion of this paper is in the definition of X2, and in the construction of gβ . In
the remainder, we specify the basic requirements that a STEP solution needs to
satisfy. Then, guided by these requirements, we provide a method to encode the
intra- and inter-case dimensions.

312 A. Senderovich et al.

5.1 STEP Requirements

Denote Sβ the set of feature-outcome pairs such that

Sβ = {(xi, yi) = gβ(σi, y(σi), L∗) | σi ∈ L∗}. (3)

We are looking for a STEP solution such that the following requirements hold:

R1: Sufficiency. Let σi and σj be two different prefixes coming from L∗.
We require that (xi, yi) = gβ(σi, y(σi), L∗) is independent of (xj , yj) =
gβ(σj , y(σj), L∗), i.e., the resulting label yi depends only on xi and not on
any other (xj , yj) in Sβ .

R2: Accuracy. When applying the SLT framework with a class of predefined
functions F to the training set that results from gβ , Sβ ⊂ X ×Y, we require
that gβ provides the minimal empirical risk with respect to any other func-
tion g that solves the STEP, i.e., for (xi, yi) = g(σi, y(σi), L∗) we require:

(f̂ , gβ) = arg min
f,g

1
K

K∑

i=1

r(f(xi), yi). (4)

R3: Compactness. We require that the dimension of the feature space |X | will
not exceed the minimal required representation for R1 and R2 to hold.

Requirement R1 assures that gβ provides sufficient information such that for
(xi, yi) ∈ Sβ , the label yi will depend only on xi. This implies that after the
encoding, both inter-case and intra-case dependencies required to predict the
label yi are captured by the corresponding xi. We use R1 to justify our decisions
when constructing gβ .

Further, requirements R2 and R3 assure that X provides an accurate rep-
resentation of the dependencies, and is compact. In order to demonstrate that
requirements R2 and R3 hold for our solution gβ , we evaluate the method by
using our STEP solution gβ to solve the PPM based on real-world data (Sect. 7).
Below, we briefly outline the solution to the intra-case encoding, i.e., the con-
struction of X1. Then, we focus on the main contribution of our work, namely
the inter-case STEP encoding of sequences into X2.

5.2 Intra-case STEP Encoding

In this part, we present the construction of X1. Solving this aspect of the STEP is
related to machine learning techniques for predicting labels in sequential data [7].
These methods transform training data that comprises correlated sequences into
an independent representation of the same sample by adding relevant information
to the observations. In particular, we select the sliding window method (Sect. 3
in [7]) to encode recent (up-to window size w) history of the prefix. We denote by
g
(1)
β the intra-case component of gβ . Then, for σi = (e1i , . . . , e

n
i), we get that

g
(1)
β (σi, y(σi), L∗) = ((en−w+1

i , . . . , en
i), y(σi)), (5)

assuming without loss of generality that w ≤ n.

Intra and Inter-case Features in Predictive Process Monitoring 313

Note that one may consider the encoding of additional static and dynamic
attribute-values as shown in [13]. For example, we set w = 1 and choose two AV
functions as follows. Let α1 : E → A1 be the elapsed time from the arrival of the
patient until every event (dynamic), and α2 : E → A2 be the age of the patient at
every event (static if the age of the patient is the same at every event). Then, an
encoding of σi that considers both AV functions and the last event (since w = 1) is:

g
(1)
β (σi, y(σi)) = (en

i , α1(en
i), α2(en

i), y(σi)). (6)

Note that the value of static attributes is constant and hence mentioned only once
in encodings involving multiple events. The sliding window approach assumes
that the last w events (and their Attribute-Values) are sufficient to explain the
MOI. Therefore, if this assumption holds, requirement R1 is satisfied.

5.3 Inter-case STEP Encoding

We now turn to introduce the inter-case STEP encoding. To give intuition, we
use Fig. 2, which revisits the four scenarios from Sect. 2.

Fig. 2. A graphical representation of our proposed bi-dimensional encodings.

The vertical axis corresponds to the level of dependencies between the pre-
dicted label and intra-case features (e.g., recent history, elapsed time, and age),
while the horizontal axis captures the level of dependencies for inter-case fea-
tures (e.g., the number of acute patients in the ED). The blue circle corresponds
to the target patient, whose MOI we wish to predict, while the red circles cor-
respond to the patient types on whom the MOI may depend (case types). Each
case type can be described in terms of intra-case features and the more case
types we have, the more fine grained information is required (i.e., the more fea-
tures are required for encoding this information). In this setting, Scenario 1 is
placed on the intra-case axis, as there is no inter-case dimension. In Scenario 2,
the intra-case component does not change with respect to Scenario 1, while the
inter-case dimension increases in order to take into account all the other patients
grouped in the same class (i.e., all of the same case type). Finally, for Scenarios
3 and 4, the inter-case component is further strengthened by means of a more
fine-grained case partitioning into types.

314 A. Senderovich et al.

The assumption that drives our method is that case types (e.g., urgency
priorities) explain the inter-case dependencies between cases. If this assumption
holds and the types are properly selected, requirement R1 is satisfied. We also
assume that all events are timestamped with an AV function τ . The timestamp
of a case σ = (e1, . . . , en) ∈ L∗ is τ(σ) = τ(en) ∈ TS. Considering time when
encoding inter-case dependencies is crucial, since we assume that these exist only
between cases that run in the process at the same time.

Our inter-case STEP encoding relies on four basic concepts, namely case
types, discrimination, partition, and (feature) derivation. Below, we go over these
four concepts:

– Case Types. Denote T the set of m case types. Returning to our ED, a type
of a patient can be set according to her severity grade.

– Discrimination. The discrimination function δ is used to set the features
that distinguish between case types. In particular, the discrimination func-
tion δ(σ) ∈ T , maps a case σ into its type T . Note that AV functions can be
used for discrimination: we may consider, for example, the age of a patient
and the elapsed time from the arrival of the patient until the last event. The
typed event log is

L∗
T = {(σ, T) ⊆ E∗ × T | σ ∈ L∗ ∧ δ(σ) = T}. (7)

– Partitioning. In order to categorize cases into types, we define a function π
that partitions a typed event log L∗

T into m event logs according to their
types, namely π(L∗

T) ∈ Lm.
– Derivation. A derivation function γ maps m event logs for some time t into the

desired feature space X2, i.e., γ : Lm ×TS → X2. For example, γ can produce
the feature number of patients of type i = 1, . . . ,m in the ED at time t.

To demonstrate the specification of the four concepts, consider the encoding
of σi = (e1i , . . . , e

n
i) ∈ L∗ in Scenario 2 (i.e., food distribution in the ED),

where all patients are assumed to be homogeneous. Trivially, the case type set
is T = {Patient}, and the discrimination function results in a typed event log
L∗

T = {(σ, Patient) | σ ∈ L∗} as all patients are of the same type (‘Patient’).
The partitioning function returns L∗

T itself, while the derivation function γ can
be set to the number of cases by type at time τ(σi):

γ(L∗
T , τ(σi)) = |{(σ, T) ∈ L∗

T |τ(σ) ≤ τ(σi) ∧ δ(σ) = T}|. (8)

In essence, once the quadruplet (T , δ, π, γ) is specified, the inter-case component
of gβ , which we denote by g

(2)
β , is constructed as follows:

g
(2)
β (σi, y(σi), L∗) = γ(π({δ(σ) | σ ∈ L∗}), τ(σi)). (9)

Let us consider the encoding of σi = (e1i , . . . , e
n
i) ∈ L∗ in a less trivial scenario,

Scenario 3, where patients are typed according to their last event (where the
event represents the visited unit) into m urgency types, T = {e1, . . . , em | ei ∈ E}

Intra and Inter-case Features in Predictive Process Monitoring 315

with m = |E| and ei being the possible events. The discrimination function sets
δ(σ) = en, with en being the last event of σ. The partitioning is made according
to the typed event log that results from δ, and the derivation function remains
as in Eq. (8). This leads to m features: the number of patients of all possible
urgencies at time τ(σi).

Each of the components δ, π and γ plays a different role in our method.
The partitioning function π classifies cases according to the notion of similarity
imposed by the discrimination function δ. To avoid feature space explosion,
the derivation function allows an aggregation of the resulting typed event logs.
Having fully defined the bi-dimensional STEP solution, we are now ready to test
requirements R2 (accuracy) and R3 (complexity) against real-life event logs.

6 Implementation

In this section, we introduce the four instances of the STEP framework we have
implemented. They take inspiration from the four scenarios presented in Sect. 2.
Each of them aims at predicting the remaining time of an ongoing case. We
believe indeed that the remaining time is among the most relevant MOIs when
dealing with inter-case dependencies.

– Level 0. Only the intra-case dimension is taken into account (as in Scenario
1) and it is instantiated as described in Sect. 5.2 with a window size of the
maximal training trace length.

– Level 1. As in Scenario 2, a coarse-grained level of inter-case dependencies
is identified. There is only one case type, i.e., a unique priority class, and the
derivation function is set to the number of cases running at time t.

– Level 2. As in Scenario 3, a fine-grained level of inter-case dependencies is
identified. There are m case types, each based on the last event carried out, the
discrimination function is set to the last event in the case and the derivation
function is set to the number of cases for each case type, i.e., with the same
last event at time t.

– Level 3. As in Scenario 4, an even more fine-grained level of inter-case depen-
dencies is identified and the inter-case dimension is instantiated so that there
are m case types, each defined according to the last w′ events carried out (in
particular, we set w′ = 3). The discrimination function is set to the last w′

events in the case and the derivation function is set to the number of cases
for each case type, i.e., with the same last w′ events at time t.

All feature encoding algorithms have been implemented in Python and are
publicly available.1 We use the implementations and default parameters of scik-
itlearn [15] for linear regression, cross-validated Lasso, and random forests.
We further use the XGBoost package [5] for cross-validated XGBoost.

Finally, a web interface of our prediction system has been realized in the alpha
version of a Predictive Process Analytics (PPA) tool.2 In particular, the front end

1 https://github.com/kerwinjorbina/predictive-process-webservice.
2 The web application is available at http://obscure-springs-12588.herokuapp.com.

https://github.com/kerwinjorbina/predictive-process-webservice
http://obscure-springs-12588.herokuapp.com

316 A. Senderovich et al.

Fig. 3. Prediction results in the Predictive Process Analytics (PPA) interface.

application uses the template of Angular Material Dashboard3 while the back end
uses the Python Django Framework4 to process the logs and provide predictions.
Figure 3 reports a screenshot of the web interface showing the remaining time of
a trace at specific points in time in a log.

7 Evaluation

In this section, we present the main findings we identified by evaluating our
method against real-world event logs. In the remainder, we present our exper-
imental setup and procedure, and conclude the section by providing a detailed
overview of the results.

7.1 Experimental Setup and Procedure

Below, we describe the experimental setup in terms of the supervised learning
methods and datasets that were used in the experiments. We then outline the
overall experimental procedure and define our evaluation measures.

Machine Learning Methods. In our experiments, we relied on two families of
learning algorithms: (1) linear models, including linear regression and Lasso; and
(2) tree ensemble methods, including random forests and gradient tree boosting.
The linear family was chosen as a weak regression baseline, to show that select-
ing a strong regression method is important for making the method applicable.
Below, we briefly describe ensembles of regression trees.

Ensembles of Regression Trees. We selected ensembles of decision trees as learn-
ing algorithms due to their non-linearity (expressiveness) and their ability to
3 https://angularjs.org/.
4 https://www.djangoproject.com/.

https://angularjs.org/
https://www.djangoproject.com/

Intra and Inter-case Features in Predictive Process Monitoring 317

automatically partition the feature space into interpretable regions. In particu-
lar, given the set of features, such as age, gender, queue lengths, and recent visit
times, the resulting models end up with a clear feature segmentation. Further-
more, using an ensemble rather than a single regression tree typically leads to
an improvement in accuracy [3]. We briefly describe the ensemble methods that
we consider, namely random forests and XGBoost.

Random forest (RF) [4], is an ensemble built by learning each tree on a
different bootstrap replica of the original training set. A bootstrap replica is
obtained by randomly drawing (with replacement) original samples and copying
them into the replica. Each tree is learned by starting with a single node and
greedily extending the tree. Leaves are split using the test (features and values)
that maximizes the reduction in quadratic error. The RF algorithm is known
not to over-fit as the number of trees increases. We present the results for RF
with 50 trees since increasing the number of trees beyond 50 up to 1000 resulted
in an improvement of less than 5% in our accuracy measures.

The second ensemble algorithm, eXtreme Gradient Boosting (XGBoost) [5],
is the most recent version of the gradient tree boosting algorithm first introduced
by Friedman [11]. Unlike RF, instead of weighting the samples, gradient boosting
modifies the target variable value for learning each tree.

Datasets. Our experiments used two real-world datasets, namely DS1 and DS2.

DS1. The data comes from the Electronic Health Record of an Israeli ED that
has a maximal capacity of approximately 100 patients per day. Every patient
that enters the ED receives a bar-code that gets tracked at the start and end
of every medical procedure. Patient treatment events include ‘Reception End’,
‘Triage Start’, ‘Treatment Start’, etc. The events are manually recorded by scan-
ning the patient’s bar-code. The dataset ranges between March 2014 and May
2015, with approximately 42 000 patient visits. The median length-of-stay in
the ED is 290 minutes. Lastly, the data comprises approximately 350 000 events
coming from the 42 000 cases.

DS2. This log published in the IEEE TF on Process Mining site5 contains a comma
separated value dataset in a production process. This provides data on activi-
ties, resources, machines and type of items that are manufactured. The dataset
occurred from January 2012 to March 2012, with 225 cases. Listed in this log are
55 types of activities, 49 human resources and 31 machines. The median case dura-
tion is almost 14 days. The dataset contains approximately 7 200 events.

Experimental Procedure. We exploit the training-validation-test para-
digm [10] to evaluate our method and randomly partition the two datasets into
60% training data, 20% validation data, and 20% test data. Note that we operate
our method to encode inter- and intra-case features prior to dataset partition-
ing. The encoded data is used as an input to the supervised learning algorithms.
While random forests are robust against over-fitting, an increased number of
trees raises the computational complexity. Hence, we evaluated the number of

5 http://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399.

http://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399

318 A. Senderovich et al.

required trees by adding trees and stopping when the improvement is small. The
Lasso model was cross-validated to select the regularization parameter. We used
Lasso only for Level 3 encoding, as in all other cases linear regression dominated
against the validation set. Our experiments were conducted on an 8 core Intel
Xeon CPU E5-2660 v4 @ 2.00 GHz each core with 32 GB memory, running on
Linux Centos 7.3 OS.

We measure the accuracy of predictions with two empirical loss functions:
RMSE and MAE. Root Mean Squared Error (RMSE) is grounded in the squared
difference between the actual time and the predicted value. Let y∗

l be the actual
value of yl, the time of interest for a log entry of the test set l ∈ Ltest. With ŷl

being the predicted value, the RMSE is defined as:

RMSE =
√ ∑

l∈Ltest

[ŷl − y∗
l]2.

The RMSE quantifies the error in the time units of the original measurements (in
our case seconds, which are converted to minutes and hours in the experiment
reporting, for convenience).

The RMSE is sensitive to outliers [10]. Therefore, we also consider the
absolute error, which is known to be more robust [10]. In particular, the Mean
Absolute Error (MAE) is defined as:

MAE =
∑

l∈Ltest

|ŷl − y∗
l |.

In the next section, we present these errors for the two datasets and different
levels of inter-case feature encoding. We compare them with a purely static
baseline, i.e., which takes into account only intra-case features. Furthermore, we
plot the RMSE errors for different predicted remaining times.

7.2 Results

Table 1 summarizes the results of our experiments. The columns of the table
(Linear, RF, and XGB) correspond to the learning methods: linear model (linear
regression or Lasso), random forests, and XGBoost, respectively. The rows cor-
respond to the combination of dataset (DS1 or DS2), accuracy measure (RMSE
or MAE), and feature encoding level (Level0, Level1, Level2 and Level3
introduced at the beginning of Sect. 6). The RMSE and MAE are presented
in minutes for the ED, and in hours for the production process. In the table,
the boldfaced values are the best combination of machine learning method and
feature encoding function.

Observing the results, we notice that for both datasets, for all types of encod-
ings and for both error metrics, the best results are obtained by using XGBoost,
followed by Random Forests and Linear models. This implies that the remain-
ing times in both datasets are better described by the gradient boosting model.
Moreover, by looking at the different levels of encoding, we observe an increase

Intra and Inter-case Features in Predictive Process Monitoring 319

of accuracy for both DS1 and DS2, as more inter-case information is added.
This can be explained by the hypothesis that there are strong inter-case depen-
dencies for both datasets. An interesting phenomenon is that case interplay is
well-captured by non-linear machine learning techniques (i.e., RF and XGBoost),
but not by linear models. This can be explained by a non-linear relation between
the remaining time of a running case, and the features coming from the bi-
dimensional representation. Overall, we can observe that by taking into account
inter-case dependencies, the proposed method increases accuracy of remaining
times prediction by 27% in DS1, and by 52% in DS2 with respect to Level0
(intra-case only).

Next, we set to investigate the influence of the predicted value (the remaining
time) on the error. Specifically, we chose to focus on the best machine learning
method (XGBoost), running on our second dataset (DS2). Figure 4 presents
the RMSE as function of the remaining times in the test set. Note that we
do not provide the same plot with the MAE, as both present similar trends.
Observing the plot, we conclude the following results: (1) as expected, for all
levels, accuracy is worse for longer remaining times (e.g., > 1 000 hours); (2) few
(or none) inter-case features cause that the prediction accuracy increases as we
get more information about the running case, although with some oscillations;
(3) more inter-case features guarantee that the accuracy stabilizes faster and
remains stable also for short remaining times. For instance, Level3 has almost
constantly lower RMSE values compared to the other encodings. This result
confirms and strengthens the aggregated results shown in Table 1. Therefore,
our method meets requirement R2.

Finally, we report that the training phase in our experiments took from
few minutes (for Level0) to about 1 h (for Level3) for DS1 and from few
seconds to 5 min for DS2. From this, we can conclude that our method also
meets requirement R3.

Table 1. Prediction accuracy.

DS Encoding Measure Linear RF XGB

D
S
1

Level0
RMSE 213 206 176
MAE 142 135 113

Level1
RMSE 212 187 151
MAE 142 123 95

Level2
RMSE 212 177 138
MAE 142 116 85

Level3
RMSE 211 169 130
MAE 142 105 80

D
S
2

Level0
RMSE 256 195 189
MAE 136 72 67

Level1
RMSE 253 158 142
MAE 137 58 52

Level2
RMSE 221 121 97
MAE 137 50 90

Level3
RMSE 216 109 91
MAE 135 42 33

320 A. Senderovich et al.

Fig. 4. XGBoost RMSE errors for different predicted remaining times in DS2.

8 Related Work

Predictive process monitoring (PPM) was studied extensively over the past. The
methods for solving PPM can be divided into two categories, namely model-based
and sequence-to-feature encoding (STEP). Below, we go over the related work in
these two categories.

Model-Based Solutions to Predictive Monitoring. In [2], an annotated
transition system is mined from an event log. The model is then used to pre-
dict remaining times based on remaining times of historical prefixes. The two
main limitations of this approach are: (1) the curse of dimensionality since the
transition system ‘explodes’ in size as the number of process variants grows, and
(2) generalization, since the use of historical remaining times without additional
features has a poor predictive power. The curse of dimensionality can be con-
trolled by abstracting the transition system state space representation (e.g., by
considering bag of activities instead of sequences). To overcome the second lim-
itation, Senderovich et al. [17] proposed the use of a featured transition system,
which includes additional contextual attributes such as the queue length, and the
current workload. The featured transition system is then used to transform the
data into a feature-outcome representation, and non-linear regression methods
are applied. In [16], the authors broaden the variety of machine learning tech-
niques that can be applied to the featured transitions system. The model-based
solutions balance the trade-off between dimensionality (too many features) and
accuracy (too few features) by reducing the model size first. In encoding-based
approaches, this trade-off is struck by using the generalization power of machine
learning methods to create a compact number of accurate predictors.

Intra and Inter-case Features in Predictive Process Monitoring 321

STEP solutions to Predictive Monitoring. The seminal work by van Don-
gen et al. [8] employs non-parametric regression to estimate remaining times.
The work lays the ground for all STEP solutions to follow, in that it shows an
encoding of an event log into feature-outcome pairs. However, the work is limited
to control-flow encoding. The work of Folino et al. [9] proposes to add context
features (e.g., resource availability) when predicting processing times. In [14],
these approaches are extended and the problem of predictive process monitor-
ing is formalized and generalized. Additional related work suggested a general
framework for correlating traces in an event log for prediction of MOIs [12].
However, the authors did not propose a feature space reduction mechanism, and
therefore the framework can lead to feature explosion.

Continuing the line of work on encoding sequences into features, Leontjeva
et al. [13] introduce the so-called complex sequence encoding, which utilizes
Hidden-Markov Models to extend control-flow features. Here, separate HMMs
are trained for each possible label. Then, the likelihood of a trace prefix to belong
to each of these two models is measured. The difference in likelihoods is expressed
in terms of odds-ratios, which are then used as features to train the classifier.
Further, in [19], a Deep Learning approach that utilizes feature encoding was
proposed. The main shortcoming of the STEP-based approaches we outlined
above is the assumption that the MOIs depend only on the information payload
that accompanies the case for which the prediction is made. However, inter-case
dependencies that stem from the interplay between running cases (e.g., compe-
tition over scarce resources), may influence the MOIs [21]. In [6], the authors
develop a method that is tailored to risk prediction in business process exe-
cutions, while considering the inter-case dependencies. However, their method
does not accommodate for temporal predictions, such as the remaining time of
a running case. In our work, we propose a general STEP solution that captures
inter-case dependencies for (dynamic) MOIs of an arbitrary type.

9 Conclusion

This paper proposes an adaptive method for feature encoding in predictive
process monitoring. The method provides possible feature encodings within a
bi-dimensional space characterized by both intra- and inter-case features that
can be tailored for specific datasets. The proposed inter-case encodings rely on
the concept of partitioning an event log and the running cases according to
a discrimination function that differentiates between case types. A derivation
function is applied to the resulting partition to limit the feature space size, thus
preventing the curse of dimensionality. The proposed encodings have been eval-
uated against two real-life datasets coming from an emergency department and
a manufacturing process. Our experiments demonstrated a 27% improvement
for the emergency department event log, and up-to 52% improvement for the
production log, when predicting remaining times of running cases.

In the future, we plan to investigate other instances of the proposed method
by exploring additional case types, as well as new discrimination, partitioning

322 A. Senderovich et al.

and derivation functions. Finally, we aim at exploring other dimensions that can
affect the future of a running case and their interplay with the intra- and the
inter-case ones. One of them is the dimension related to contextual variables,
i.e., exogenous variables that are independent of cases but can influence their
future such as weather conditions or strikes.

References

1. van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg
(2016)

2. van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996).
http://dx.doi.org/10.1023/A:1018054314350

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Chen, T., Guestrin, C.: XGboost: A scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A recommendation system for predicting risks across multiple business
process instances. Decis. Support Syst. 69, 1–19 (2015)

7. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.,
Amin, A., Duin, R.P.W., Ridder, D., Kamel, M. (eds.) SSPR /SPR 2002. LNCS,
vol. 2396, pp. 15–30. Springer, Heidelberg (2002). doi:10.1007/3-540-70659-3 2

8. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88871-0 22

9. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., Panetto, H., Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33606-5 18

10. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning.
Springer Series in Statistics, vol. 1. Springer, Berlin (2001)

11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

12. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016)

13. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM
2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 21

14. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 31

http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1007/978-3-540-88871-0_22
http://dx.doi.org/10.1007/978-3-540-88871-0_22
http://dx.doi.org/10.1007/978-3-642-33606-5_18
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-319-23063-4_21
http://dx.doi.org/10.1007/978-3-319-07881-6_31

Intra and Inter-case Features in Predictive Process Monitoring 323

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

16. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence
prediction of business process instances. CoRR abs/1602.07566 (2016)

17. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)

18. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, New York (2014)

19. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitor-
ing with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 477–492. Springer, Cham (2017). doi:10.1007/978-3-319-59536-8 30

20. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business
process monitoring with structured and unstructured data. In: La Rosa, M., Loos,
P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham
(2016). doi:10.1007/978-3-319-45348-4 23

21. Verenich, I.: A general framework for predictive business process monitoring. In:
Proceedings of CAiSE 2016 (2016)

http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-45348-4_23

Discovering Infrequent Behavioral Patterns
in Process Models

David Chapela-Campa(B), Manuel Mucientes, and Manuel Lama

Centro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS),
Universidade de Santiago de Compostela, Santiago de Compostela, Spain

{david.chapela,manuel.mucientes,manuel.lama}@usc.es

Abstract. Process mining has focused, among others, on the discov-
ery of frequent behavior with the aim to understand what is mainly
happening in a process. Little work has been done involving uncommon
behavior, and mostly centered on the detection of anomalies or devia-
tions. But infrequent behavior can be also important for the management
of a process, as it can reveal, for instance, an uncommon wrong real-
ization of a part of the process. In this paper, we present WoMine-i, a
novel algorithm to retrieve infrequent behavioral patterns from a process
model. Our approach searches in a process model extracting structures
with sequences, selections, parallels and loops, which are infrequently
executed in the logs. This proposal has been validated with a set of
synthetic and real process models, and compared with state of the art
techniques. Experiments show that WoMine-i can find all types of pat-
terns, extracting information that cannot be mined with the state of the
art techniques.

Keywords: Infrequent patterns · Process mining · Process discovery

1 Introduction

One of the aims of process mining during the past years has been, among oth-
ers, the study of frequent behavior in order to focus on the more common parts
of a process during the different tasks of process mining —discovery, monitor-
ing, and enhancement. Under this scope, several algorithms have been proposed
to discover process models covering the most common behavior [1–3], and to
search frequent structures either directly in the logs [4,5] or extracting the struc-
tures from the process models [6]. The search of infrequent cases —deviations or
anomalous traces— has been also used during the discovery of a process model,
removing them to reduce the complexity of the model without a high decrease in
the fitness [7,8]. Nevertheless, the discovery of infrequent behavior can be also
interesting in order to monitor and enhance a process, and discarding it might
not be a proper solution.

There are scenarios where an infrequent subprocess in the model can hint a
wrong behavior which must be examined. For instance, in insurance companies,

c© Springer International Publishing AG 2017
J. Carmona et al. (Eds.): BPM 2017, LNCS 10445, pp. 324–340, 2017.
DOI: 10.1007/978-3-319-65000-5 19

Discovering Infrequent Behavioral Patterns in Process Models 325

infrequent behavior can be used to recognize fraudulent claims [9]. It can be also
useful to detect intrusions in networks [10], or failures in software behavior [11].
Additionally, in well-structured processes, the behavior supported by a model is
designed and expected to be executed. A substructure of the model with a low
frequency of execution can hint a path in the process that must be reinforced in
order to increase its frequency or, conversely, where the assigned resources could
be restructured to optimize the process.

There are few approaches related with the search of infrequent behavior, most
of them focused on the detection of uncommon anomalous traces in process
logs [7,8,12,13]. Nevertheless, these techniques focus on the identification of
infrequent traces considering the whole trace as a unit. Further knowledge can
be obtained searching for infrequent patterns, as they allow to focus on infrequent
subprocesses, instead of discovering infrequent full traces —an infrequent trace
can contain frequent behavior, hindering the study of infrequent behavior.

In this paper we present WoMine-i, a novel algorithm to detect infrequent
behavioral patterns from a process model, measuring their frequency with the
instances of the log. The main novelty of our approach is that it can detect infre-
quent substructures of the process model, i.e., behavioral patterns, with all type
of structures —sequences, selections, parallels and loops. The ability to work
with these structures prevents WoMine-i of interpreting the traces as sequences of
events. Furthermore, the extracted information allows to focus on infrequent sub-
processes, and not to analyze infrequent full traces. The algorithm has been qual-
itatively compared using various synthetic process models with all related tech-
niques, showing our algorithm finds the correct infrequent patterns and estimates
precisely its frequency while related techniques do not. Experiments have also been
run with real logs of two Business Process Intelligence Challenges, 2012 and 2013.

2 Related Work

There are no approaches in the literature focused directly on the extraction of
infrequent substructures in a process. There are a few techniques, like Heat Maps,
that can be used to detect infrequent behavior in a process model, although that is
not their main objective. Heat Maps provide a simple way to highlight the frequent
structures of a process model considering the individual frequency of each arc.
If the arcs with a frequency higher than a threshold are removed, the remaining
structures are formed by infrequent arcs. The drawback of this approach is that
the frequency of each arc is measured individually. An infrequent pattern can be
composed by arcs that are individually frequent and, therefore, they will not be
part of the result of this technique. Figure 1 shows an example of a process model
represented by a C-net, and the result of the Heap Maps technique over this model
(Fig. 1a). As can be seen, there are arcs —e.g. (E → G)— executed in all the traces
of the log which are part of an infrequent pattern (Fig. 1b).

In [7], a state automaton with each state representing an activity of the log is
built. A valuated arc between two states is added when one of them is followed
by the other one in the log. Its value increases as this relation appears in the log.

326 D. Chapela-Campa et al.

Fig. 1. An example of a process model with an infrequent pattern that cannot be
discovered through related techniques.

Afterwards, the infrequent arcs are used to filter infrequent traces. The drawback
of this technique is the same as the Heat Maps approach, because the frequency
is measured individually. Furthermore, the automaton interprets the log as a
sequence, without parallels nor other dependencies.

The technique used by Lu et al. in [13] also performs a filtering of traces
using the infrequent parts of a process model. In this case, models are built by
merging the behavior in a subset of traces. The drawback of this approach is
also its inability to measure the frequency of a structure as a whole, analyzing
instead the number of individual executions of an arc.

Bezerra et al. search in [12] for infrequent or anomalous traces in the log ana-
lyzing the whole trace. They present three approaches to filter infrequent traces
depending on their frequency and conformance. The drawback of this technique
is that it takes into account the whole trace, and instead of an infrequent pattern,
this approximation returns a set of traces. This makes impossible, without fur-
ther analysis, to know which parts of the traces are infrequent. Figure 1c shows
an example: this log contains four instances with a frequency under 5% (1, 3,
7, 8). Two of them (1, 7) contain the pattern from Fig. 1b, but they also con-
tain frequent patterns as A-B-D, A-C-D or G-H-J-G-H-I. Trace-clustering tech-
niques [14] could also be used to obtain traces containing infrequent behavior,
but the problem would be the same.

Finally, techniques searching for frequent structures could be adapted to
search infrequent behavior, inverting the main search. The drawback of this
alternative lies in the way these algorithms measure the frequency of the pat-
terns. For instance, the approach of Tax et al. [5] performs an alignment-based
method to detect if the pattern is executed in a trace. When an activity from
the trace does not appear in the pattern, the method performs a move on log
without a penalty because this activity might belong to a parallel branch in the
model. This method gets a frequency of 40% for the pattern in Fig. 1b (traces 0,
1, 6, 7) which is far from the real value (5%). The shortcoming of this method

Discovering Infrequent Behavioral Patterns in Process Models 327

is that it analyses the frequency based in the order of the activities in the log,
not in the real path that is being executed in the model. Similarly, pattern-
based search techniques that only use the log to extract frequent behavior would
present the same drawback. Furthermore, the search space of these approaches
would be extremely large, as they do not use the model to build the patterns.

As far as we know there is not algorithms to retrieve infrequent patterns from
a process model. The algorithm presented in this paper, WoMine-i, is able to
retrieve infrequent subgraphs ensuring the low frequency of the entire structure.
This allows to focus on infrequent subprocesses and to abstract from the traces
containing them, simplifying the analysis of the process.

3 Preliminaries

In this paper, we will represent the examples with place/transition Petri nets [15]
due to its comprehensibility. Nevertheless, our algorithm represents the process
with a Causal net (Definition 1).

Definition 1 (Causal net [16]). A Causal net (C-net) is a tuple C = (A, ai, ao,
D, I,O) where:

– A is a finite set of activities;
– ai ∈ A is the start activity;
– ao ∈ A is the end activity;
– D ⊆ A×A is the dependency relation, item AS = {X ⊆ P(A) | X = {∅}∨∅ �∈

X};1

– I ∈ A → AS defines the set of possible input bindings per activity;
– O ∈ A → AS defines the set of possible output bindings per activity,

such that:

– D = {(a1, a2) ∈ A × A | a1 ∈ ⋃
as∈I(a2)

as};
– D = {(a1, a2) ∈ A × A | a2 ∈ ⋃

as∈I(a1)
as};

– {ai} = {a ∈ A | I(a) = {∅}};
– {ao} = {a ∈ A | O(a) = {∅}};
– all activities in the graph (A,D) are on a path from ai to ao.

Definition 2 (Trace). Let A be the set of activities of a process model, and
ε an event —the execution of an activity α ∈ A. A trace is a list (sequence)
τ = ε1, ..., εn of events εi occurring at a time index i relative to the other
events in τ . Each trace corresponds to an execution of the process, i.e., a process
instance.

Definition 3 (Log). An event log L = [τ1, ..., τm] is a multiset of traces τi. In
this simple definition, events only specify the name of the activity, but usually,
event logs store more information as timestamps, resources, etc.
1 P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets

of activities.

328 D. Chapela-Campa et al.

Definition 4 (Pattern). Let C = (A, ai, ao,D, I,O) be a C-net represent-
ing a process model M . A connected subgraph represented by the C-net
P = (A′, A′

i, A
′
o,D

′, I ′, O′), where A′
i ⊆ A′ and A′

o ⊆ A′ represent respectively
the start and end activities, is a pattern of M if and only if:

– A′ ⊆ A;
– D′ ⊆ D;
– for any α ∈ A′ : I ′(α) ⊆ I(α), O′(α) ⊆ O(α)

A pattern (Definition 4) is a subgraph of the process model that represents
the behavior of a part of the process. For each activity α in the pattern, its
inputs, I ′(α), must be a subset of I(α); and the outputs, O′(α), must be also a
subset of O(α). This ensures that a pattern has not a partial parallel connection.
Figure 2 shows some examples of valid and invalid patterns.

Fig. 2. Examples of a process model, valid and invalid patterns.

Definition 5 (Simple pattern). A pattern P = (A′, A′
i, A

′
o,D

′, I ′, O′) is a
simple pattern if and only if, for all activities α ∈ A′:

– [∃!Φ ∈ I ′(α) : Φ �⊆ R+
α] ∨ [∀Φ ∈ I ′(α) : Φ ⊆ R+(α)];

– [∃!Θ ∈ O′(α) : Θ �⊆ R−
α] ∨ [∀Θ ∈ O′(α) : Θ ⊆ R−(α)]

Being R+
α the set of successors2 of an activity α, and R−

α the set of predeces-
sors3 of an activity α.

The simple patterns (Definition 5) are those patterns whose behavior can be
entirely executed in at least one trace. If the inputs or outputs of an activity have
a selection, it must be able to execute each path in the same trace —at most,
one of the paths is not a loop. For this, the inputs of each activity α must have all
activities reachable from α except, at most, the activities of one path. The outputs
present the same constraint, but in this case they must reach α, not be reachable
from α. Figure 3 shows two valid simple patterns and an invalid one.
2 The successors of an activity α are the activities with a path from α to them, e.g.,

the successors of B in Fig. 2a are F, G, H and J.
3 The predecessors of an activity α are the activities with a path from them to α, e.g.,

the predecessors of C in Fig. 2a are C, I and A.

Discovering Infrequent Behavioral Patterns in Process Models 329

Fig. 3. Examples of valid and invalid simple patterns of the process model shown in
Fig. 2a.

Definition 6 (Minimal pattern, M -pattern). Each activity of the process
model belongs to, at least, one minimal pattern. The M -pattern of an activity
α corresponds to the closure of α, i.e., the structure that is going to be executed
when α is executed. An exception is made with parallel structures: if α has a
parallel in its inputs or outputs, there must be an M -pattern containing each
parallel path.

Given a C-net C = (A, ai, ao,D, I,O) representing a process model M and
an activity α′ ∈ A, a pattern P = (A′, A′

i, A
′
o,D

′, I ′, O′) is a Minimal Pattern
of α′ if and only if is a maximum simple pattern containing α′ and fulfilling the
following rules:

– if |I(α′)| > 1 then [I ′(α′) = ∅] ∨ [|I ′(α′)| = 1, Φ ∈ I ′(α′) : |Φ| > 1];
– if |O(α′)| > 1 then [O′(α′) = ∅] ∨ [|O′(α′)| = 1, Θ ∈ O′(α′) : |Θ| > 1];
– ∀α ∈ R+

α′ : if |O(α)| �= 1 then O′(α) = ∅;
– ∀α ∈ R−

α′ : if |I(α)| �= 1 then I ′(α) = ∅;
– ∀α ∈ A′, α �= α′, α �∈ (R+

α′
⋃

R−
α′) : if |I(α)| �= 1 then I ′(α) = ∅, and if

|O(α)| �= 1 then O′(α) = ∅
In WoMine-i each activity α′ is associated, at least, to an M -pattern. The M -

patterns of an activity α′ are obtained through an expansion process that starts
in α′ and continues through its inputs and outputs fulfilling the following rules:
(i) the process will not expand through the inputs of α′ with size 1 and being part
of a selection; (ii) the same stands for the outputs of α′; (iii) for all the succes-
sors of α′ the expansion stops if the outputs are formed by a selection; (iv) the
same stands for the inputs of the predecessors of α′; (v) finally, the process does
not expand either through the inputs or outputs of the activities not fitting the
previous constraints if those are formed by an XOR structure in the model.

Fig. 4. A process model and three examples of M -patterns.

330 D. Chapela-Campa et al.

Figure 4 shows some M -patterns of a model. Figure 4b shows the M -pattern
of F: the process starts in F and expands the M -pattern through F inputs and
outputs, because both are formed by only one path. The backwards expansion
stops in E because its inputs are part of a selection. Figure 4c depicts the M -
pattern of J. It is formed only by itself, because its inputs are part of a selection
and its outputs are empty. Finally, Fig. 4d presents the two M -patterns of A. As
A is an AND-split with a selection, two M -patterns are created, each one related
to one of the possible paths.

Definition 7 (Candidate arcs). Let C = (A, ai, ao,D, I,O) be a causal net
representing a process model M . An arc 〈αi → αj〉 : αi, αj ∈ A is part of the
A< set, i.e., a candidate arc, if and only if:

– O(αi) = {Θ ∈ AS | Θ = {αj} ∨ αj �∈ Θ}
– I(αj) = {Φ ∈ AS | Φ = {αi} ∨ αi �∈ Φ}

The set of candidate arcs, or A<, is a subset of the arcs in the model which
are not part of an AND structure. For instance, all arcs of Fig. 4a, but those
starting in A or ending in E, are included in the A< set.

Definition 8 (Compliance). Given a trace τ ∈ L and a simple pattern SP
belonging to the process model, the trace is compliant with SP , denoted as
SP � τ , when the replay of the trace in the process model contains the replay of
the pattern, i.e., all the arcs and activities of SP are executed in a correct order,
and each activity fires the execution of its output activities in the pattern.

Definition 9 (Frequency of pattern and simple pattern). Let L be the
set of traces of the process log. The frequency of a simple pattern SP is the
number of traces compliant with SP divided by the size of the log:

freq(SP) =
|{τ ∈ L : SP � τ}|

|L| (1)

And the frequency of a pattern P is the maximum frequency of the simple
patterns it represents:

freq(P) = max
∀SP∈P

freq(SP) (2)

Definition 10 (Infrequent Pattern). Given a frequency threshold σ ∈
R : 0 < σ ≤ 1, a pattern P is an infrequent pattern if and only if freq(P) < σ.

4 Infrequent Pattern Mining Algorithm

Given a process model and a set of instances, i.e., traces, the objective is to
extract the subgraphs of the process model that are executed in a percentage of
the traces under a threshold. A naive approach might be a brute-force algorithm,
checking the frequency of every existent subgraph inside the process model, and
retrieving the infrequent ones. The computational cost of this approach makes

Discovering Infrequent Behavioral Patterns in Process Models 331

it a non-viable option. The algorithm presented in this paper performs an a
priori search4 starting with the minimal patterns (Definition 6) of the model.
In this search, there is an expansion stage done in two ways: (i) adding M -
patterns not contained in the current pattern, and (ii) adding arcs of the A<

set (Definition 7). This expansion is followed by a pruning strategy that verifies
the upward-closure property of support —also known as monotonicity [17]. This
property ensures that if a pattern is infrequent, all patterns containing it will be
infrequent and, thus, it is no necessary to continue expanding it —the minimum
pattern itself expresses all the infrequent behavior containing it.

This pruning presents an exception in order to simplify the results: if a pat-
tern is infrequent and maintains the value of its frequency with the expansion,
it is not removed from the expansion stage —it means the pattern is being
expanded with a selection branch with less frequency (cf. Definition 9). In this
way, WoMine-i returns the largest patterns expressing the minimum infrequent
behavior.

Figure 5 shows an example of a part of the expansion process, assuming a
threshold under 40%. The example starts with the M -pattern of C and shows
three expansions of the first iteration: the M -pattern of A, one of the M -patterns
of I and one of the M -patterns of J. Each of the patterns obtained in the first
iteration is again expanded in the second iteration with the M -patterns of J, an
M -pattern of I, and the arc 〈I → C〉.

The pseudocode in Algorithm 1 shows the main structure of the search made
by the algorithm. First, the candidate arcs and the minimal patterns are initial-
ized (Algorithm 1:2). These M -patterns will be the used to start the iterative
process. Then, using the algorithm described in Sect. 5, the infrequent patterns
are included in the final set (Algorithm 1:5).

Fig. 5. Example of a part of the expansion process starting with the M -pattern of C.
The example shows only three branches of expansion and two iterations. Some of the
expansions have been omitted for the sake of clarity.

4 An a priori search uses the previous —a priori— knowledge. It reduces the search
space by pruning the exploration of the paths that will not finish in a valuable result.

332 D. Chapela-Campa et al.

Algorithm 1. Main structure of WoMine-i.
Input: A process model W , a set T = {T1, T2, . . . , Tn} of traces of W and a threshold tr.
Output: A set of maximum infrequent patterns of W w.r.t. T .

1 Algorithm infrequentSearch(W, T, tr)
2 M ← {m | m ∈ W, m is an M -pattern } // Def. 6

3 A< ← {a | a ∈ W, a is a Candidate Arc } // Def. 7
4 currentPatt ← M
5 infreqPatt ← {m | m ∈ M , m is infrequent w.r.t. T} // using Alg. 2
6 while currentPatt �= ∅ do
7 candPatt ← ∅
8 forall p ∈ currentPatt do
9 candPatt ← candPatt ∪ addArcs(p)

10 complementaryM ← {m | m ∈ M , m �∈ p}
11 forall m ∈ complementaryM do
12 candPatt ← candPatt ∪ addMPattern(p, m)
13 end

14 end
15 currentPatt ← filterCandidatePatterns(candPatt, infreqPatt)

16 end
17 Delete the redundant patterns of infreqPatt
18 return infreqPatt

19 Function filterCandidatePatterns(candPatt, infreqPatt)
20 currentPatt ← ∅
21 forall p ∈ candPatt do
22 measure current frequency of p // using Alg. 2
23 if p has no previous frequency || p’s frequency has not increased then
24 if p is frequent then
25 currentPatt ← currentPatt ∪ p
26 else if p is infrequent then
27 if p has no previous frequency || p was frequent || p’s frequency has

maintained then
28 currentPatt ← currentPatt ∪ p
29 infreqPatt ← infreqPatt ∪ p

30 end

31 end

32 end

33 end
34 return currentPatt

Afterwards, the iterative part starts (Algorithm 1:6). In this stage, an expan-
sion of each of the current patterns is done, followed by a filtering of the patterns.
The expansion by adding arcs from the A< set (Algorithm 1:9) is done with
the function addArcs. The other expansion, the addition of M -patterns that
are not in the current pattern (Algorithm 1:10–13), is done with the function
addMPattern.

Once the expansion is completed, the obtained patterns are filtered
(Algorithm 1:15) to distinguish the promising from the unpromising ones. Firstly,
the frequency of the new pattern is measured, comparing it with the frequency of
the pattern before the expansion (Algorithm 1:22). If this expansion has caused
its frequency to grow, the pattern is discarded, otherwise the analysis continues
(Algorithm 1:23). Then, if the pattern is frequent, it is saved for the next iter-
ation (Algorithm 1:25) —because any frequent pattern can become infrequent
by expanding it. And otherwise, if the pattern is infrequent, it is saved in the
results as infrequent one (Algorithm 1:28). But, this is only done if (i) it is the
first iteration and the pattern has no previous frequency, (ii) the pattern was

Discovering Infrequent Behavioral Patterns in Process Models 333

frequent before the expansion, i.e., it has become infrequent or (iii) the frequency
has maintained, i.e., the pattern was already infrequent and the expansion has
not changed its frequency (Algorithm 1:27).

Finally, once the iterative process finishes, a simplification is made to delete
the patterns which provide redundant information (Algorithm 1:17). This redun-
dancy is because there are patterns in the k-th iteration which are expanded
and thus are subpatterns of those in the k + 1-th iteration. A naive approach
to reduce the redundancy generated by the expansion might be to remove the
patterns from iteration k-th that are expanded in iteration k + 1-th but, with
the existence of loops, there is no assurance that the behavior of a pattern is
contained in all its superpatterns.

The simplification process consists in the deletion of the patterns that are
contained into others, but whose difference is not a loop. For this, each pattern is
compared with its previous patterns in the expansion. If the arcs and activities
of a pattern are contained into the other, and the difference between them does
not contain a complete closed loop, one of the two patterns must be deleted.
The subpattern is deleted if its frequency is higher or equal to the frequency of
the pattern under analysis. Otherwise the pattern under analysis is deleted.

5 Measuring the Frequency of a Pattern

In each step of the iterative process, WoMine-i reduces the search space by prun-
ing the infrequent patterns (Algorithm 1:15). For this, an algorithm to check the
frequency of a pattern is needed (Algorithm 2). Following Definitions 9 and 10,
the algorithm generates the simple patterns of a pattern and checks the fre-
quency of each one (Algorithm 2:2–6). After calculating the frequency of the
simple patterns, the function checks if this is considered infrequent w.r.t. the
threshold (Algorithm 2:12). The frequency of a simple pattern is measured in
function getPatternFrequency by parsing all the traces and checking how many
of them are compliant with it (Algorithm 2:15–19). Finally, to check if a trace
is compliant with a simple pattern, function isTraceCompliant is executed: it
goes over the activities in the trace (Algorithm 2:22), replaying its execution in
the model, and retrieving the activities that have fired the current one (Algo-
rithm 2:23–24). The simulation (simulateExecutionInPattern) consists in a
replay of the trace, checking if the pattern is executed correctly (Algorithm 2:25).

With the current activity —the fired one— and the activities that have fired
it —the firing activities, retrieved by the simulation—, the executed activities
and arcs are saved, in order to analyze and to detect if the execution of the
pattern is being disrupted before it is completed. Figure 6 shows an example of
this process. The algorithm starts (#0) with the empty sets of executed arcs
and last executed activities. The first step (#1) executes A. There are no firing
activities because A is the initial activity of the process model. As A is also one
of the initial activities of the pattern, it is saved correctly in the last executed
activities set.

The following activity (#2) in the trace is B. As there is only one firing
activity (A), a single arc is executed (〈A → B〉). The arc is added to the executed

334 D. Chapela-Campa et al.

Algorithm 2. Check if a pattern is infrequent.
Input: A set T = {T1, T2, . . . , Tn} of traces, a pattern pattern to measure its frequency

w.r.t. T and a threshold to establish the bound of frequency.
Output: A Boolean value indicating if the pattern is infrequent or not.

1 Algorithm isInfrequentPattern(pattern, T, threshold)
2 simplePatterns ← generate the simple patterns of pattern
3 frequencies ← ∅
4 forall simplePattern ∈ simplePatterns do
5 frequencies ← frequencies ∪ getPatternFrequency(simplePattern, T)
6 end
7 maxFreq ← 0
8 if frequencies.length > 0 then
9 maxFreq ← maximum of frequencies

10 end
11 realFreq ← maxFreq/T.length
12 return realFreq < threshold

13 Function getPatternFrequency(pattern, T)
14 executed ← 0
15 forall trace ∈ T do
16 if isTraceCompliant(pattern, trace) then
17 executed ← executed + 1
18 end

19 end
20 return executed

21 Function isTraceCompliant(pattern, trace)
22 forall activity ∈ trace do
23 Replay activity in the process model
24 sources ← get the activities that fired the execution of activity
25 simulateExecutionInPattern(sources, activity, pattern)
26 if pattern has been successfully executed then
27 return true

28 end

29 end
30 return false

arcs set, and the activity B to the last executed activities set. The A activity is not
deleted because the set of outputs is formed by {B, C}, and C is still pending.

The next step, activity E (#3), has the same behavior. There is only one firing
activity, i.e., one executed arc. The arc is in the pattern and its source activity is
in the last executed activities set. Hence, the executed arcs set is updated and B
replaced by E in the last executed activities set. After this process, the following
activity is C (#4). Its execution has the same behavior as the execution of B,
but with the deletion of A from the last executed activities, because the set of
outputs {B, C} has been fired.

Finally (#5), F has two firing activities and, thus, two arcs are executed. In
both cases, the source activity of the arcs —C and E— is in the last executed
activities set, and the arc is in the pattern. Thus, a simple addition of F to the
last executed activities set is done when the last of its branches is executed.

At the end of each step, the algorithm checks if the pattern has been correctly
executed (Algorithm 2:26), i.e., all its arcs have been correctly executed and the
last executed activities set corresponds with the end activities of the pattern (Ao).
Unlike the other steps, this testing has a positive result when F is executed. Thus,
the trace is compliant with the pattern.

Discovering Infrequent Behavioral Patterns in Process Models 335

Fig. 6. An example that shows how the algorithm checks if a trace is compliant with
a pattern of the process model.

The process of saving the executed arcs and activities has to be restarted
when the executed arc is disrupting the execution of the pattern. For instance,
in step #5, if the arc 〈C → D〉 was executed, this would cause this saving process
to go back by removing the arcs and activities of the failed path and to continue
with the trace to check if the execution of the pattern is resumed later. This
analysis is able to detect the correct execution of a pattern in 1-safe Petri nets5.

6 Experimentation

In this section we evaluate the performance of WoMine-i. First (Sect. 6.1), we
qualitatively compare WoMine-i with the related techniques and, then (Sect. 6.2),
we test WoMine-i on four logs from two Business Process Intelligence Challenges.
These experiments have been executed in a laptop with an Intel i7-3612QM
(2.1 GHz) processor and 8 GB of RAM (1600 MHz)6.

6.1 Qualitative Comparison Between WoMine-I and the State
of the Art Approaches

We present a qualitative comparison between WoMine-i and related techniques
through a set of illustrative synthetic models. We have classified the related tech-
niques into three groups: (i) individual frequency-based, (ii) pattern extraction-
based and (iii) trace-based.

5 A Petri net is 1-safe when there can be only one mark in a place at the same time.
6 The algorithm and datasets can be downloaded from http://tec.citius.usc.es/

processmining/womine/.

http://tec.citius.usc.es/processmining/womine/
http://tec.citius.usc.es/processmining/womine/

336 D. Chapela-Campa et al.

The first process model (Fig. 7) presents several selections, an optional task
and a loop. WoMine-i finds the pattern in Fig. 7b appearing in the 6% of the
traces. On the contrary, individual frequency-based techniques —e.g. Heat Maps
(Fig. 7a)— detect parts of the pattern as frequent. Pattern-based techniques —
as Local Process Models— get a frequency of 48% (traces 0, 2, 4, 6, 8 and 10) for
the pattern —the correct value is 6%. Finally, trace-based techniques retrieve
full traces, being necessary a post analysis to extract infrequent patterns —e.g.
traces 0, 2, 5, 7 and 11 have a frequency under 6% but contain both frequent
and infrequent behavior.

Fig. 7. Process model, infrequent pattern and event log of a process.

The second example presents a more complex model with loops, parallels
and selections (Fig. 8). The approach presented in this paper discovers, with a
5% of frequency, an infrequent pattern denoting as uncommon the execution of
the C-E parallel structure after the loop of G-H. As can be seen, based in the
individual frequency of the arcs is impossible to extract this infrequent behavior.
Local Process Models can extract this pattern successfully but the obtained
frequency is not reliable. Also, the search space is larger because they do not
rely on the process model. Trace-based techniques present the same problem as
in the previous example but, as traces are longer, the post analysis becomes
more difficult.

Fig. 8. Results of WoMine-i and Heat Maps for a process model composed by a
sequence with a selection, and two loops.

Discovering Infrequent Behavioral Patterns in Process Models 337

6.2 Infrequent Patterns for the BPI Challenges

The objective of this section is twofold: on the one hand, to test WoMine-i on
complex real logs from the Business Process Intelligence Challenge (BPIC)7,8,9

demonstrating the ability to retrieve all type of structures and, on the other
hand, to analyze the influence of the model in the retrieved patterns. We used
4 BPIC logs, and we mined the process models with two different discovery
algorithms, ProDiGen (PDG) [3] and the Inductive Miner (IM) [2].

A series of experiments have been run for these logs and models with different
thresholds. Table 1 shows the structural characteristics of the mined infrequent
patterns for a threshold of 5%. As explained in Sect. 5, the algorithm needs
to replay the trace in the model to retrieve the executed arcs. This process is
independent of the threshold —it only depends on the traces (log) and on the
model. Thus, the runtime is divided in two parts to distinguish this preprocessing
time and the time spent by the algorithm. As can be seen, WoMine-i is able to
retrieve infrequent patterns with all type of structures. Regarding the runtime,
the preprocessing time is short, being 208 ms the longest time. The time spent
by the algorithm is longer, and depends on the model and patterns extracted.
Log 2012 o shows a difference in the runtime due to the number of patterns
extracted —a model with more uncommon structures will return as infrequent
this behavior, increasing the runtime. Nevertheless, the other runtimes are under
20 s (2012 a), and 7 s (2013).

Besides, we have compared the number of patterns discovered for the PDG
and the IM models. As can be seen, except for one log (2012 a), the algorithm
retrieves more patterns with the PDG model than with the IM one. This is due
to the structure of the models: the higher number of relations in the IM model
allows to embrace more infrequent behavior with few small patterns, while with
the PDG model is necessary to build larger patterns —smaller patterns with
IM. Results with 2012 a show a case where the infrequent patterns represent
behavior not recorded in the log, but allowed by the models —frequency 0.

Figure 9 shows an example of a pattern extracted by WoMine-i from the
PDG model of the BPIC 2012 o log, which corresponds to a Dutch Financial
Institute. The extracted pattern appears in the 2% of the traces, and models
the selection of a procedure, followed by the creation and shipment of it, and
ended by sending it back and canceling the procedure, but with a return to the
selection, instead of a finalization of the instance. This behavior might be from
a illegal execution where the procedure is restarted after a cancellation, while
the normal execution should be the ending of it. Trace-based approaches extract
complete traces —the traces of the log have up to 35 activities—, hindering the
identification of the pattern. On the other hand, pattern-based approaches might

7 BPIC 2012 - 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f. This dataset has
been split into two logs: 2012 a contains the events related with the state of an
application process, while 2012 o has the events related with the state of an offer
belonging to an application process.

8 BPIC 2013 clo - 10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11.
9 BPIC 2013 op - 10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
http://dx.doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da

338 D. Chapela-Campa et al.

T
a
b
le

1
.
B

eh
av

io
ra

l
st

ru
ct

u
re

o
f
th

e
in

fr
eq

u
en

t
p
a
tt

er
n
s

ex
tr

a
ct

ed
fo

r
a

th
re

sh
o
ld

o
f
5
%

fr
o
m

th
e

p
ro

ce
ss

m
o
d
el

s
o
f
th

e
B

P
IC

s.
It

sh
ow

s
th

e
re

su
lt

s
fo

r
tw

o
p
ro

ce
ss

m
o
d
el

s
(P

ro
D

iG
en

a
n
d

In
d
u
ct

iv
e

M
in

er
)

o
n

ea
ch

lo
g
.

T
h
re
sh

o
ld
:
5
%

R
u
n
ti
m
e
(s
ec
s)

#
p
a
tt

fr
eq

u
en

cy
#
a
ct
iv
it
ie
s
#
se
q
u
en

ce
s
#
ch

o
ic
es

#
p
a
ra
ll
el
s
#
lo
o
p
s

p
re

a
lg

P
D
G

*
2
0
1
2
a

0
.2
0
8
1
6
.4
3
9

1
0
±0

1
1
.0
0
±0

.0
0
2
.0
0
±0

.0
0

4
.0
0
±0

.0
0
0
±0

0
±0

o
0
.2
0
2
3
4
3
.1
0
6

2
1

0
.0
2
±0

.0
1
6
.6
7
±0

.9
1

0
.5
2
±0

.5
1

3
.3
3
±1

.6
2
0
±0

0
.3
8
±0

.5
0

2
0
1
3

cl
o
0
.0
5
6
0
.7
0
0

3
0
.0
3
±0

.0
2
2
.0
0
±1

.7
3

0
±0

0
±0

0
.3
3
±0

.5
8

0
.3
3
±0

.5
8

o
p

0
.0
3
6
4
.8
0
6

1
2

0
.0
2
±0

.0
2
6
.0
0
±0

.4
3

0
±0

1
.5
8
±1

.0
8
1
.5
0
±0

.5
2

1
.5
0
±1

.0
9

IM
2
0
1
2

a
0
.2
0
8
1
6
.7
6
6

2
0
±0

1
0
±0

1
.5
0
±0

.7
1

1
.5
0
±2

.1
2
0
±0

0
±0

o
0
.2
0
2
7
9
.0
2
7

4
0
.0
2
±0

.0
2
5
.2
5
±2

.8
7

0
±0

2
.2
5
±3

.3
0
1
.7
5
±1

.2
6

1
.2
5
±1

.8
9

2
0
1
3

cl
o
0
.0
5
6
6
.6
3
0

1
0
.0
1
±0

.0
0
1
.0
0
±0

.0
0

0
±0

0
±0

0
±0

0
±0

o
p

0
.0
3
6
0
.4
7
4

5
0
.0
2
±0

.0
1
3
.0
0
±2

.7
4

0
±0

0
±0

0
.4
0
±0

.5
5

0
.6
0
±0

.5
5

Discovering Infrequent Behavioral Patterns in Process Models 339

consider the infrequent pattern as executed although other activities, that are
not part of the pattern, are executed before the end of the it.

Fig. 9. Infrequent pattern (2%) retrieved from the BPIC 2012 o. All relations are
selections (XOR)

7 Conclusion and Future Work

We have presented WoMine-i, an algorithm designed to search infrequent behav-
ioral patterns in an already discovered process model, being able to discover pat-
terns with the most common control structures, including loops. This structures
allow to discover, for instance, subprocesses executed less than the expected, or
uncommon wrong behavior. We have compared WoMine-i with other proposals,
showing that our approach discovers uncommon behavior that other techniques
are not able to detect. Moreover, we have also tested our algorithm with com-
plex real logs from the BPICs. Results show the importance of the infrequent
patterns to analyze and optimize the process model.

Acknowledgments. This research was supported by the Spanish Ministry of Econ-
omy and Competitiveness (grant TIN2014-56633-C3-1-R) and the Galician Ministry
of Education, Culture and Universities (grants GRC2014/030 and accreditation 2016-
2019, ED431G/08). These grants are co-funded by the European Regional Development
Fund (ERDF/FEDER program).

References

1. Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report
WP 166 1–34 (2006)

2. Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.)
PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38697-8 17

3. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Prodigen: mining complete, pre-
cise and minimal structure process models with a genetic algorithm. Inf. Sci. 294,
315–333 (2015)

4. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.:
Prefixspan: mining sequential patterns efficiently by prefix-projected pattern
growth. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 215–224 (2001)

http://dx.doi.org/10.1007/978-3-642-38697-8_17

340 D. Chapela-Campa et al.

5. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process
models. J. Innov. Digit. Ecosyst. 3, 183–196 (2016)

6. Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained
graphs: the case of workflow systems. In: Boulicaut, J.-F., Raedt, L., Mannila,
H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS, vol. 3848, pp.
155–171. Springer, Heidelberg (2006). doi:10.1007/11615576 8

7. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29, 300–314
(2016)

8. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for
process mining applications. In: An, A., Matwin, S., Raś, Z.W., Śl ↪ezak, D. (eds.)
ISMIS 2008. LNCS, vol. 4994, pp. 150–159. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68123-6 17

9. Yang, W.S., Hwang, S.Y.: A process-mining framework for the detection of health-
care fraud and abuse. Expert Syst. Appl. 31(1), 56–68 (2006)

10. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering.
In: GI/ITG Workshop MMBnet (2007)

11. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors
for failure detection: a discriminative pattern mining approach. In: Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 557–566. ACM (2009)

12. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Inf. Syst. 38(1), 33–44 (2013)

13. Lu, X., Fahland, D., Biggelaar, F.J.H.M., Aalst, W.M.P.: Detecting deviating
behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 126–139. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1 11

14. De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

15. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
doi:10.1007/3-540-65306-6 15

16. Aalst, W., Adriansyah, A., Dongen, B.: Causal nets: a modeling language tai-
lored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23217-6 3

17. Leung, C.K.S.: Monotone Constraints. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia
of Database Systems, pp. 1769–1769. Springer, Boston (2009)

http://dx.doi.org/10.1007/11615576_8
http://dx.doi.org/10.1007/978-3-540-68123-6_17
http://dx.doi.org/10.1007/978-3-540-68123-6_17
http://dx.doi.org/10.1007/978-3-319-42887-1_11
http://dx.doi.org/10.1007/3-540-65306-6_15
http://dx.doi.org/10.1007/978-3-642-23217-6_3
http://dx.doi.org/10.1007/978-3-642-23217-6_3

Author Index

Baião, Fernanda Araujo 269
Baião, Fernanda 164
Bala, Saimir 164
Bergenthum, Robin 22
Bogdanov, Dan 40
Böhmer, Kristof 77

Chapela-Campa, David 324
Charoy, François 147
Combi, Carlo 235

Daenen, Koen 94
de A.R. Gonçalves, João Carlos 164, 269
De Masellis, Riccardo 59
De Smedt, Johannes 183
Di Ciccio, Claudio 113
Di Francescomarino, Chiara 59, 252, 306
Dumas, Marlon 130

Ferme, Vincenzo 216

Gal, Avigdor 3
García-Bañuelos, Luciano 130
Ghidini, Chiara 59, 252, 306

Hasić, Faruk 183

Indulska, Marta 200
Ivanchikj, Ana 216

Jorbina, Kerwin 306

Lama, Manuel 324

Maggi, Fabrizio Maria 252, 306
Matulevičius, Raimundas 40

Mendling, Jan 113, 164
Mucientes, Manuel 324

Paik, Hye-young 113
Pautasso, Cesare 216
Petrucci, Giulio 252
Ponomarev, Alexander 130
Posenato, Roberto 235
Pullonen, Pille 40

Revoredo, Kate 164
Richetti, Pedro Henrique Piccoli 269
Richter, Florian 289
Rinderle-Ma, Stefanie 77
Rosinosky, Guillaume 147

Sadiq, Shazia 200
Santoro, Flávia Maria 269
Santoro, Flavia 164
Satyal, Suhrid 113
Seidl, Thomas 289
Senderovich, Arik 3, 306

van der Aalst, Wil M.P. 59
vanden Broucke, Seppe K.L.M. 183
Vanthienen, Jan 183
Viganò, Luca 235

Wang, Wei 200
Weber, Barbara 200
Weber, Ingo 113, 130
Weidlich, Matthias 3

Yeshchenko, Anton 252
Youcef, Samir 147

Zavatteri, Matteo 235

	Preface
	Organization
	Keynotes
	A Leaders Guide to Understanding New Business Models in the Digital Economy
	Intelligent Continuous Improvement, When BPM Meets AI
	BPM: Reflections on a Broad Discipline
	Contents
	Process Modeling
	Temporal Network Representation of Event Logs for Improved Performance Modelling in Business Processes
	1 Introduction
	2 Preliminaries
	3 The Temporal Network Representation of an Event Log
	3.1 Definition
	3.2 Projections on the TNR

	4 Inductive Mining with the TNR
	4.1 Delay-Aware Inductive Mining
	4.2 Probabilistic Variant Mining

	5 Performance Fitness and Theoretical Guarantees
	5.1 Framework for Measuring Performance Fitness
	5.2 Guarantees on Performance Fitness for TNR-based Inductive Mining

	6 Evaluation
	6.1 Datasets
	6.2 Experimental Setting and Procedure
	6.3 Results

	7 Related Work
	8 Conclusion
	References

	Synthesizing Petri Nets from Hasse Diagrams
	1 Introduction
	2 Preliminaries
	3 Compact Regions and Synthesis Algorithm
	4 Comparison and Experimental Results
	5 Conclusion and Future Work
	References

	PE-BPMN: Privacy-Enhanced Business Process Model and Notation
	1 Introduction
	2 Related Work
	3 Classification of Privacy Enhancing Technologies
	4 Extending BPMN with Privacy Enhancing Technologies
	4.1 Abstract Syntax and Semantics
	4.2 Concrete Syntax
	4.3 Use-Cases for PE-BPMN

	5 Applying PE-BPMN
	5.1 Lessons Learned
	5.2 RapidGather Location Analysis

	6 Conclusion and Future Work
	References

	Process Mining 1
	Learning Hybrid Process Models from Events
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Hybrid Petri Nets
	5 Discovering Hybrid Process Models
	5.1 Discovering Causal Graphs
	5.2 Discovering Hybrid System Nets

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Multi Instance Anomaly Detection in Business Process Executions
	1 Introduction
	2 Related Work
	3 Prerequisites and General Approach
	4 Multi Instance Anomaly Detection
	4.1 Temporal Behavior Mining from Execution Logs
	4.2 Signature Generation from Time Sequences
	4.3 Signature Matching for Execution Event Streams and Logs

	5 Evaluation
	6 Discussion and Outlook
	References

	Path-Colored Flow Diagrams: Increasing Business Process Insights by Visualizing Event Logs
	1 Introduction
	2 Reducing the Graph
	2.1 Workflow Graph
	2.2 Reduction Rules

	3 Leaky Sankey Diagram
	3.1 The Event Logs
	3.2 Diagram

	4 Path-Colored Flows
	4.1 Classification
	4.2 Path-Colored Graph
	4.3 The PCF Diagram
	4.4 Implementation

	5 PCF Diagrams for Self-care Event Logs
	5.1 Classifiers
	5.2 Discussion

	6 Related Work
	7 Conclusion
	References

	Assorted BPM Topics
	AB-BPM: Performance-Driven Instance Routing for Business Process Improvement
	1 Introduction
	2 Background and Related Work
	3 Approach and Architecture
	3.1 Instance Routing -- A Multi-armed Bandit Problem
	3.2 Instance Routing Algorithms and Selection
	3.3 Adapting the Routing Algorithm to Business Processes
	3.4 AB-BPM Framework, Architecture, and Implementation

	4 Evaluation
	4.1 Evaluation on Synthetic Data
	4.2 Evaluation on Real-World Data

	5 Discussion
	6 Conclusion
	References

	Optimized Execution of Business Processes on Blockchain
	1 Introduction
	2 Background and Related Work
	2.1 Blockchain Technology
	2.2 Related Work

	3 From Process Models to Smart Contracts
	3.1 From BPMN to Petri Nets
	3.2 Petri Net Reduction
	3.3 Data Conditions Collection
	3.4 From Reduced Petri Net to Solidity

	4 Architecture and Implementation Optimization
	5 Evaluation
	5.1 Datasets
	5.2 Methodology and Setup
	5.3 Gas Costs and Correctness of Conformance Checking
	5.4 Throughput Experiment

	6 Conclusion
	References

	Efficient Migration-Aware Algorithms for Elastic BPMaaS
	1 Introduction
	2 Elasticity in BPM
	3 The BPM Execution Model
	4 Heuristic Optimization Proposition
	4.1 Iterative Time Slot Algorithm
	4.2 A Migration Aware Optimization Strategy
	4.3 Time Series Segmentation
	4.4 The Optimization Algorithm

	5 Experimentation
	5.1 Datasets
	5.2 Software and Methods
	5.3 Results and Discussion

	6 Conclusion
	References

	Uncovering the Hidden Co-evolution in the Work History of Software Projects
	1 Introduction
	2 Background
	2.1 Problem Description
	2.2 Related Work

	3 Conceptual Approach
	3.1 Preliminaries
	3.2 Hidden Dependencies Discovery Algorithm
	3.3 Example

	4 Evaluation
	4.1 Quantitative Evaluation
	4.2 Qualitative Evaluation

	5 Conclusion
	References

	Decisions and Understanding
	Towards a Holistic Discovery of Decisions in Process-Aware Information Systems
	1 Introduction
	2 Decision Modeling and Mining
	2.1 Decision Models and Related Work
	2.2 Decision Mining and Related Work

	3 Business Process Activities and Their Relation to Decisions
	3.1 Business Activities
	3.2 Running Example

	4 Discovering Decision Models
	4.1 P-MInD Approach
	4.2 Application to Running Example

	5 Implementation and Empirical Evaluation
	5.1 Implementation
	5.2 Evaluation
	5.3 Comparison with Existing Techniques and Limitations

	6 Conclusion and Future Work
	References

	Effect of Linked Rules on Business Process Model Understanding
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Theoretical Background
	4 Research Method
	4.1 Experiment Design
	4.2 Measurements
	4.3 Instruments
	4.4 Settings
	4.5 Participants

	5 Results
	6 Discussion
	7 Conclusions and Outlook
	Acknowledgement
	References

	On the Performance Overhead of BPMN Modeling Practices
	1 Introduction
	2 Methodology
	3 Use Case Scenarios
	3.1 Transformation Rules
	3.2 Executed Models
	3.3 Load Function
	3.4 Results
	3.5 Discussion

	4 Related Work
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Process Knowledge
	Weak, Strong and Dynamic Controllability of Access-Controlled Workflows Under Conditional Uncertainty
	1 Introduction
	2 A Motivating Example
	3 Background
	3.1 Structured Workflows
	3.2 Constraint Networks and the Constraint Satisfaction Problem

	4 ACWFs Under Conditional Uncertainty
	5 Controllability of ACWFs Under Conditional Uncertainty
	6 Encoding WF-Paths into Constraint Networks
	7 Weak, Strong and Dynamic Controllability Checking
	7.1 Weak Controllability Checking
	7.2 Strong Controllability Checking
	7.3 Dynamic Controllability Checking

	8 Related Work
	9 Conclusions and Future Work
	References

	An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring
	1 Introduction
	2 Background
	2.1 Event Logs and Traces
	2.2 RNNs and LSTM
	2.3 RNNs with LSTM for Predictive Process Monitoring
	2.4 Linear Temporal Logic

	3 Related Work
	4 The Problem
	5 The Solution
	5.1 Learning from Trace Structures
	5.2 Learning from A-priori Knowledge
	5.3 Implementation

	6 Evaluation
	6.1 Event Logs
	6.2 Experimental Procedure
	6.3 Results and Discussion

	7 Conclusions
	References

	Analysis of Knowledge-Intensive Processes Focused on the Communication Perspective
	1 Introduction
	2 Background and Related Work
	2.1 Speech Act Theory and Automatic Discovery of Speech Acts
	2.2 Process Mining

	3 Methodology
	3.1 Mapping Control-Flow and Communication Perspectives
	3.2 Extracting Speech Acts

	4 Case Study
	4.1 Case Study Scenario
	4.2 Case Study Execution
	4.3 Case Study Results and Discussion

	5 Conclusions
	References

	Process Mining 2
	TESSERACT: Time-Drifts in Event Streams Using Series of Evolving Rolling Averages of Completion Times
	1 Introduction
	2 Related Work
	2.1 Drifts and Deviations
	2.2 Temporal Process Mining
	2.3 Event-Based Monitoring

	3 Preliminaries
	4 Algorithm
	4.1 Managing Cases and Completion Times
	4.2 Rolling Averages
	4.3 Implementation and Visualization

	5 Experiments
	5.1 Collision Performance of Cuckoo Hashing
	5.2 Detection Delay for Sudden Drifts
	5.3 Real World Application
	5.4 Limitations

	6 Conclusion
	References

	Intra and Inter-case Features in Predictive Process Monitoring: A Tale of Two Dimensions
	1 Introduction
	2 Motivating Scenarios
	3 Preliminaries
	3.1 The Event Log
	3.2 Predictive Process Monitoring
	3.3 Supervised Learning

	4 Problem Setup
	5 Bi-dimensional STEP Solution
	5.1 STEP Requirements
	5.2 Intra-case STEP Encoding
	5.3 Inter-case STEP Encoding

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup and Procedure
	7.2 Results

	8 Related Work
	9 Conclusion
	References

	Discovering Infrequent Behavioral Patterns in Process Models
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Infrequent Pattern Mining Algorithm
	5 Measuring the Frequency of a Pattern
	6 Experimentation
	6.1 Qualitative Comparison Between WoMine-I and the State of the Art Approaches
	6.2 Infrequent Patterns for the BPI Challenges

	7 Conclusion and Future Work
	References

	Author Index

