
Chapter 9
Research Advancements in Laser Metal
Deposition Process

Abstract Laser metal deposition process is an additive manufacturing technologies
that utilize laser as its source of energy to fuse and melt materials together layer
after layer to produce three dimensional solid part. Laser metal deposition process
has gain a lot of popularities in the research community since its inception because
of the exciting properties of the power source ‘laser’ and because of the great
potential of the process. Laser delivers heat energy in a coherent manner and with
low divergence thereby making the intensity of the laser beam to be very high and
can be controlled as required thereby concentrating all the intensity at a point of
interest. Laser metal deposition process the capability to produce novel product that
maybe difficult if not impossible to fabricate using the conventional subtractive
manufacturing processes. Laser metal deposition process can help to extend the
service life of parts through the innovative repair process. A number of industries
have benefited from these exciting technologies which include: aerospace, auto-
mobile, medicine and jewelry. This technology is fairly new and it is a promising
technology that may change the way machines are produced. The focus of this
chapter is to analyze the progress in this important additive manufacturing tech-
nology in term of research efforts in this area and the current state of these
technology.

Keywords Additive manufacturing � Direct metal deposition � Laser cladding �
Laser engineered net shaping � Laser metal deposition � Laser powder deposition

9.1 Introduction

The laser metal deposition process is an important additive manufacturing tech-
nology that offers a number of solutions to the manufacturing industries such as the
fabrication of functional parts as shown in Fig. 1 as well as in repair of worn-out
parts. Additive manufacturing process has a lot of promise to revolutionized the
manufacturing world [1–3] and has the potential to change the world we live in.
With the advent of additive manufacturing technologies, a number of possibilities
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has been brought to the manufacturing world. This manufacturing process has made
it possible to fabricate parts on a micro and nano levels. Machines can now be
produced as smaller and lighter as we want them to be and not being limited with
how the machine will be fabricated. Laser metal deposition process comes with
additional capabilities that other additive manufacturing do not possess. Laser metal
deposition process can be use to add a new part on an existing part with good
metallurgical integrity. This additional capability is one of the reasons why LMD
process in an important manufacturing process. An obsolete equipment can be
made new again with improved functionality by redesigning the equipment,
removing the unneeded parts and adding the new designed part using the laser
metal deposition process. Additive manufacturing technologies in general are very
important due to the ability of the manufacturing process to reduce the energy
intensive manufacturing processes and help to reduce global warming problem.

In this chapter, additive manufacturing is briefly described in order to bring to
context the laser metal deposition process. The research efforts on the laser metal
deposition process is then presented.

Fig. 9.1 SEM micrograph of deposited samples showing dendritic samples a upper deposited
zone b lower deposited zone c between deposited layers d (c) at lower magnification [11]
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9.2 Additive Manufacturing

Additive manufacturing (AM) process also known as three-dimensional (3-D)
printing [1] is an advanced manufacturing process that produces part directly from
the computer aided design (CAD) model or image of the part to be made by adding
materials layer by layer. According to the ASTM F-42 committee on additive
manufacturing, Additive Manufacturing is defined as: “The process of joining
materials to make objects from 3D model data, usually layer upon layer, as opposed
to subtractive manufacturing technologies” [1]. The principle of operation of
additive manufacturing is such that the CAD model of the part to be made is
converted to Additive-Manufacturing File (AMF) format [1]. The old file format is
the standard triangulation language (STL) file. This old file format is not capable of
defining some characteristics that are now present in the new file format. The AMF
format is based on an open standard Extension Mark-up Language (XML).
The AMF format is capable of describing in detail, the texture of the part, the
colour, the curve triangles, the lattice structure, as well as the functionally graded
materials. All these capabilities are absent in the old STL file format. The AMF
format represents the 3-D surface assembly of planar and curved triangles that
contains the co-ordinates of the vertices of all these triangles. After the conversion
process, the AMF is sliced into two dimensional (2-D) triangular profile sections as
defined by the geometry of the CAD model and the chosen build orientation. After
the slicing is completed, the building of the part is commenced. The part is pro-
duced by adding the materials layer after layer until the building process is com-
pleted and the part is removed from the building platform. The finishing operations
such as removal of support structures is then performed. Also, heat treatment can be
performed on the part depending on the service requirement of the part. Any part
that can be modelled digitally can be built using additive manufacturing process [1].
This provides a lot of flexibility for the design engineer, which enable the engineer
to design part based on the functionality of the part as against based on the man-
ufacturability of the part which was the practice when using the traditional man-
ufacturing process. Also, the engineer can modify any existing design without
having to start from the scratch, thereby saving the overall cost of production.

In AM processes, the machine uses the descriptions of the component to be
created to build the component by adding material layer after layer until a 3D object
is created. A number of raw materials are used in AM processes, they include:
liquid, powder, wire, and sheet made from plastics, polymers, metals, alloys or
ceramics. There are a number of advantages of additive manufacturing technologies
when compared with the traditional or conventional manufacturing processes. In the
traditional manufacturing processes, products are made by removing materials,
especially in machining processes, in order to achieve the desired shape, this is
referred to as subtractive manufacturing. Parts can also be created in traditional
manufacturing methods by injecting molten material into a mold or by applying
forces on heated or cold materials in order to achieve the desired shape. These
traditional manufacturing processes are labour as well as energy intensive. Also,
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when a complex part is needed to be produced, the product designer has to break
down the parts into smaller units in order for the part to be produced. The designers
design the parts based on the ease of manufacturing such parts. These smaller parts
are later assembled using extra materials from both, nuts rivet or filler materials in
welding. All these processes are time consuming, laborious, and expensive. It also
makes the component produced to be heavy because of all the extra materials used
in joining the various parts together. However, additive manufacturing process is
having an edge in this type of manufacturing demand by simply producing part
through addition of materials directly from the CAD image of the required part and
produce the part as a single unit, which is as against what is achievable in the
traditional manufacturing route. Additive manufacturing technologies are used to
produce models, patterns, tooling, prototypes, and functional parts using a variety
of materials. Additive manufacturing technologies are used by a number of
industries which includes: motor vehicles, aerospace, machinery, electronics, and
medical products. Additive manufacturing process is grouped into two main cate-
gories depending on the energy source used in the system, namely: laser additive
manufacturing and non-laser additive manufacturing. A number of additive man-
ufacturing processes have appeared many of which are the same process but with
different names. To ensure that standardization is achieved in additive manufac-
turing industry and because of how the same process is given several names which
is not only confusing for a lay person but also cumbersome, additive manufacturing
technologies was recently classified into seven classes by the international standard
organization committee on additive manufacturing (committee F42) [1]. These
seven classes of AM technologies are presented in Table 9.1.

Table 9.1 Classification of additive manufacturing

S/N Class Example of technologies Process description

1 Vat photo
polymerization

Stereolithography, digital
light processing

Uses light source to cure layers of
liquid material (photopolymer) in a
vat as defined by the CAD model
data

2 Material
jetting

Poly jet, ink-jet thermo jet Droplets of materials are cured by
exposing them to the light
according to the path dictated by
the CAD data using a moving
inkjet-print head to deposit material
across a build area

3 Binder jetting 3D Printing, Ink-Jet
Printing, S-Print, M-Print

Binding agents are used to
consolidate powder material and
traced according to CAD data using
an inkjet-print head

4 Powder bed
fusion

Selective laser sintering,
selective laser melting,
electron beam melting

Thermal energy is used to
selectively fuse or melt powder
preplaced on the build platform

(continued)
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Laser metal deposition process that belongs the directed energy deposition class
of additive manufacturing technology is the focus of the next section.

9.3 Laser Metal Deposition Process

Laser metal deposition (LMD) process belongs to the directed energy deposition
class of additive manufacturing and it is an AM technology that is more favoured
because of the good properties delivered by the laser that enables the laser energy to
be directed as required. Laser metal deposition process, like any other additive
manufacturing can produce low-volume, customized, and complex part at no extra
cost for complexity thereby allowing the production of any design of prototypes
and parts comparatively cheaper than the traditional manufacturing processes. It
reduces time to market of new product and also allows the satisfaction of customers
whose demand is now moving from general product to more customized product.
An important capability of LMD process that cannot be achieved by other classes of
AM technology is that it can be use to repair high valued components that could not
be repaired by any other manufacturing process [4, 5]. Laser metal deposition
process allows the manufacturing of highly customized and complex parts; it also
offers different industries a large number of opportunities in terms of verities of
products they can achieve. The technology makes it possible to produce objects of
any shape and any complex geometry at no extra cost. This technology will actually
shift the way we design from the conventional product design which is manufac-
turing technique based design to part functionality based design. However, laser
metal deposition process is yet to reach its full potential because of the stumbling
blocks which are yet to be conquered because the technology is relatively new and
the physics of the system is yet to be fully understood. The research efforts in this
field are in the next section.

Table 9.1 (continued)

S/N Class Example of technologies Process description

5 Material
extrusion

Fused deposition modeling Heated material is extruded
following the path dictated by the
CAD data

6 Sheet
lamination

Ultrasonic consolidation,
laminated object
manufacturing

Sheets are bonded layer after layer
and traced according to the path
described by the CAD data

7 Directed
energy
deposition

Laser metal deposition,
electron beam melting, laser
powder deposition etc

Thermal energy is used to create a
melt pool on the substrate,
materials are introduced in the melt
pool to fuse materials by melting
them as they are deposited
following the path dictated by the
CAD data
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9.4 Research Progress in Laser Metal Deposition Process

A number of research work has appeared in the literature since the technology was
invented. Laser metal deposition process has been found to be sensitive to the
processing parameters and the process could be highly unstable. A number of this
studies showed that the laser metal deposition process can be controlled by con-
trolling the processing parameters. Some of these parameters and their influence on
the properties of laser metal deposited materials have been investigated widely and
some of this research works are presented in this section.

Laser power is an important processing parameters in laser metal deposition
process. Shuklar et al. [6] studied the influence of laser power and powder flow rate
on properties of laser metal deposited titanium alloy. The physical properties (de-
position height and deposition width), metallurgical property and microhardness
properties of the laser deposited titanium alloy-Ti6Al4V. The laser power was
varied between 1.8 and 3.0 kW while the powder flow rate was varied between 2.88
and 5.67 g/min, while the gas flow rate and scanning speed are maintained at
constant values of 2 l/min and 0.005 m/s respectively. The results showed that the
deposition width was found to increase with increase in laser power. This could be
attributed to increased dilution at higher laser power which is not desirable in the
laser metal deposition process. Dilution needs to be kept low and it should also be
enough to achieve the needed bonding between the substrate and the deposited
layer or the previous layer. Proper control of laser power will help to achieve the
required good metallurgical integrity and also minimize dilution that results in
wastage of material and increase in weight of the component which is not required.
A similar study was conducted by Mok et al. [7] and Brandl et al. [8]. Mok et al. [7]
also studied the effect of laser power, scanning speed and wire feed rate on laser
metal deposition of Ti6Al4V wire. The results showed that the processing
parameters has great influence on the microstructure and hardness. Yu et al. [9]
studied the influence of laser power on properties of laser metal deposited Ti6Al4V.
The influence of laser power on the microstructure, the yield and ultimate tensile
strengths of the fabricated parts are studied and compared with those of the cast and
wrought materials. The results showed that the properties varied with the laser
power. The laser deposited materials are also found to be superior to those of cast
and annealed wrought material. Mahamood et al. [10] also studied the influence of
laser power on the properties of laser metal deposited titanium alloy and also found
a similar result.

Influence of process parameter on the properties on laser metal deposited tool
steel was investigated by Choi and Chang [11]. The process parameters studied are
the laser power, traverse speed and scanning speed while the properties that were
studied are the hardness, porosity, microstructure, and chemical composition. The
microstructure in the upper and lower of the deposited zone are shown in Fig. 9.1a
and b respectively. The microstructure consists of dendritic structures that grows
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along the deposition direction and at perpendicular direction to the clad boundary
with the substrate. Microstructure between two deposited layer is characterized by
fine dendritic structure as shown in Fig. 9.1c, d which could be attributed to
reheating of the previous layer by the new layer.

The EDX analysis of point 1 to 3 on the micrograph in Fig. 9.1c showed that
point 1 is the composition of the as received powder. the Point 2 with fine dendritic
structure and point 3 with inter-dendritic structure show a little difference in
composition as compared to point 1 [11]. The results showed that the laser power,
layer thickness and porosity are strongly affected by powder flow rate. The higher
the powder feed rate, the higher the pore formation. This could be attributed to the
fact that the available laser power was unable to properly melt the deposited powder
thereby resulting in some powders that are not melted and hence creating porosity
when the powder comes off. Also, the overlap percentage was also found to have a
great influence on the porosity. The higher the overlap percentage, the lower the
porosity. The microhardness was found to increase with increase in the scanning
speed. A number of research has been conducted by the author and other
researchers on the laser metal deposition process on titanium alloy, titanium alloy
composite and functionally graded material of Titanium alloy composite and the
readers can consult for further reading [6, 10, 12–36]. A number of research work
on repair and remanufacturing using laser metal deposition process can also be
consulted through these references [4, 37–57].

A large number of research work on the modelling of the laser metal deposition
process has also been conducted towards the proper controller design for the sys-
tem. There has been a considerable challenge in the accurate numerical modelling
of the process because the process is a highly nonlinear one and with any nun linear
system accurate system modelling is always very challenging. The nonlinearity of
the process parameter on the evolving properties [30], the evolution of phase
changes and the mass and heat flows in the system make it a very complex one. In
order to further understand the process physics of the laser metal deposition pro-
cess, there is need for proper modelling and simulation of the different stages of the
process. Progress in the field of modelling the laser metal deposition process from
the physical to the residual stress as well as repair in the laser metal deposition
process has been presented by a number of researchers and the readers can consult
the bibliography for further reading [58–125].

9.5 Summary

Laser metal deposition process, an important additive manufacturing process, has
received an impressive attention from the research community because of great
potential of this manufacturing process. A number of research work has appeared in
the literature both from experimentally and analytical modelling of the process. The
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importance of modeling and simulation of the process cannot be overemphasized
because of the benefit it has on the development of effective controller design for
the system. The better the process is understood and adequately modelled, the
simpler the controller design for the system becomes. Some of the research works
on the laser metal deposition process are presented in this chapter and extensive
bibliography are presented for the benefit of the readers.
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