
Chapter 7

Plant Growth-Promoting Rhizobium:

Mechanisms and Biotechnological Prospective

Anita Patil, Ankit Kale, Gaurav Ajane, Rubina Sheikh, and Surendra Patil

7.1 Introduction

The use of microbial agents for improving agriculture productivity depends on soil

and plant health. Usually, the rhizospheric soil, inhabited and influenced by plant

roots, is rich in nutrients, due to accumulation of amino acids, organic acid, fatty

acids, phenols, plant growth regulators, sterols, sugars, and vitamins released as

exudates, secretion, and deposition (Gopalakrishnan et al. 2015). The accumulation

of simple and complex natural matter results in enrichment of soil (10–100-fold).

Microbial flora includes bacteria, fungus, and algae along with protozoa, among

which rhizospheric bacteria significantly influenced the plant growth. Rhizospheric

bacteria can be further categorized according to their proximity and association

with roots: (1) bacteria, which live near to root surfaces (rhizosphere); (2) group of

bacteria colonizing the root surfaces (rhizoplane); (3) group of bacteria entering

inside and residing in root tissues, inhabiting spaces between cortical cells (endo-

phytes); and (4) group of bacteria living inside cells in specialized root structures

known as root nodules.

The bacterial group belonging to these classes are referred to as plant growth-

promoting rhizobacteria (PGPR). Bacteria belonging to categories 1–3 are further

classified as extracellular plant growth-promoting rhizobacteria (ePGPR) and cat-

egory 4 as intracellular PGPR (iPGPR). The ePGPR includes the genera Bacillus,
Pseudomonas, Erwinia, Caulobacter, Serratia, Arthrobacter, Micrococcus,

A. Patil (*) • A. Kale • G. Ajane • R. Sheikh

Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra

444602, India

e-mail: anitapatil@sgbau.ac.in

S. Patil

College of Horticulture, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra

444104, India

© Springer International Publishing AG 2017

A.P. Hansen et al. (eds.), Rhizobium Biology and Biotechnology, Soil Biology 50,

DOI 10.1007/978-3-319-64982-5_7

105

mailto:anitapatil@sgbau.ac.in


Flavobacterium, Chromobacterium, Agrobacterium, and Hyphomicrobium,
whereas iPGPR includes the genera rhizobium, Bradyrhizobium, Sinorhizobium,
Azorhizobium, Mesorhizobium, and Allorhizobium (Gopalakrishnan et al. 2015).

They are reported as the nonpathogenic soil-borne microorganisms which can

promote plant growth, yield, and increased disease resistance. As the plant growth

promotion considered being the results of improved and balance nutrient mobili-

zation, along with hormone and metabolite production by plant growth-promoting

rhizobia. They are the soil bacteria inhabiting around/on the root surface and are

directly or indirectly involved in plant growth promotion in normal and stressed

conditions.

The increased disease suppression can occur through microbial antagonistic

mechanisms or the induction of systemic resistance (ISR) or systemic acquired

resistance (SAR) in plants. Due to the use of PGPR, the global demand and

dependence on hazardous agricultural chemicals, which disturbs the agro-ecosys-

tem balance, were reduced drastically. The known species of Rhizobium (Rhizo-
bium, MesoRhizobium, BradyRhizobium, AzoRhizobium, AlloRhizobium, and

SinoRhizobium) have been widely used for effective establishment of the

nitrogen-fixing symbiosis with leguminous crop plants (Bottomley and Maggard

1990). Rhizobium spp. are gram-negative soil bacteria that have a profound scien-

tific and agronomic significance due to their ability to establish nitrogen-fixing

symbiosis with leguminous plants, which is of major importance in the maintenance

of soil fertility (Somasegaran and Hoben 1994). Rhizobium promotes growth by

direct and indirect mechanisms (Tables 7.1 and 7.2).

7.2 Direct Promotions

7.2.1 Nitrogen Fixation

The various biochemical reactions of BNF occurred through symbiotic association

of N2-fixing microorganisms with legumes that convert atmospherical elemental

nitrogen (N2) into ammonia (NH3). Rhizobia are soil bacteria that colonize legume

roots and induce nodules in which atmospheric nitrogen is converted into plant-

available compounds. The number and diversity of indigenous rhizobia in the

rhizosphere depend on a number of abiotic and biotic factors and proximity to

other organisms (Karas et al. 2015). Various Rhizobium species, including

Mesorhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium, and

Sinorhizobium), are in intimate symbiotic association with leguminous plants due

to the chemotactic response to flavonoid metabolites released as signals by host

plant. Such behavior results in the induction and expression of nodulation (nod)

genes in Rhizobium species and leads to specific lipo-chitooligosaccharide signals

(LCO), which trigger mitotic cell division and lead to the formation of nodules

(Matiru and Dakora 2004). The nodulation on leguminous plants depends upon
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Table 7.1 Rhizobia as plant growth promoters—direct mechanisms

Rhizobium sp./Growth promoting

traits Activity References

N2 fixation

Bradyrhizobium sp. (vigna)RM8 Enhanced the nodule numbers,

leghemoglobin, yield with high protein

content along with shoot, root, and soil

nitrogen

Wani et al.

(2007a)

Mesorhizobium sp. RC3 Higher dry matter accumulation, more

number of nodules, yield with high pro-

tein content and enhanced shoot, root,

and soil nitrogen

Wani et al.

(2008)

Rhizobium sp. RP5 More dry matter accumulation, more

nodule, with high yield and protein con-

tent (P)

Wani et al.

(2007b)

Rhizobium leguminosarum strain

MRP1

Enhanced growth, nodulation, and

leghemoglobin content, increased N2

and P, high yield and seed protein content

Ahemad and

Khan (2010a)

Mesorhizobium strain MRC4 Significant increase in nodulation and

leghemoglobin content, along with

higher shoot and root nitrogen and phos-

phate content

Ahemad and

Khan (2009a,

2010c)

Siderophore production

B. Japonicum Siderophore production Wittenberg

et al. (1996)

R. ciceri Siderophore production Berraho et al.

(1997)

Rhizobium BICC 651 Produced a catechol siderophore to

acquire iron under iron-poor condition

Datta and

Chakrabartty

(2014)

Rhizobium meliloti Siderophore-producing strains and act as

potential biocontrol agent against

Macrophomina phaseolina that causes

charcoal rot of groundnut

Siderophore production from “Stem

nodule of Aeschynomene indica” (weed
legume)

Ghorpade and

Gupta (2016)

Rhizobium nepotum Siderophore production for plant growth Naik and

Dubey (2011)

Phytohormone production

Mesorhizobium ciceri IAA production Wani et al.

(2007c)

Rhizobium leguminosarum IAA production Dey et al.

(2004)

Rhizobium leguminosarum Cytokinin Noel et al.

(1996)

(continued)
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diverse factors such as plant–bacterial symbiont compatibility, physical and chem-

ical composition of soil, and presence of differing bioactive molecules, viz.,

flavonoids, polysaccharides, and hormones associated with them (Hayat et al.

2010). Rhizobial infection occurs when bacteria enter into the root in a host-

controlled manner and are then trapped inside the cavity of curling roots (Fig. 7.1).

The N2 fixation process is carried out by enzyme, the nitrogenase complex (Kim

and Rees 1994), which is a two-component metalloenzyme consisting of

Table 7.1 (continued)

Rhizobium sp./Growth promoting

traits Activity References

PHB production

B. japonicum nifH, nifDK structural gene responsible

for nitrogenase activity to fix and produce

massive PHB accumulates

Hahn et al.

(1984)

Rhizobium elti, Pseudomonas
stutzeri

Production of poly-β-hydroxybutyric
acid (PHB)

Belal (2013)

Sinorhizobium leguminosarum
bv. viciae, R. leguminosarum
bv. leguminosarum

Produces polyhydroxy butyrate (PHB) in

sludge and in industrial wastewater

Rebah et al.

(2009)

Rhizobium ORS571 Large amounts of PHB are induced under

conditions of oxygen limitation

Stam et al.

(1986)

Mesorhizobium spp. Exopolysaccharide secretion Ahemad and

Khan (2009a)

Phosphate solubilization

Mesorhizobium mediterraneum Enhance growth and phosphate content in

chickpea plant

Peix et al.

(2001)

Rhizobium and Bradyrhizobium P solubilization, produce high level of

acid phosphatases, reduce pH of medium

Abd-Alla

(1994)

R. leguminosarum
R. meliloti

Production of 2-ketogluconic acid with

P-solubilizing ability

Halder and

Chakrabarty

(1993)

Heavy metal mobilization

(Rhizobium RL9) Increase growth, nodulation, nitrogen,
leghemoglobin yield in lentil plant

against Pb and Ni metals

Wani and

Khan (2012,

2013)

R. leguminosarum Enhance plant growth and biomass in

maize against Pb

Hadi and

Bano (2010)

S. meliloti Enhance biomass in black medic against

Cu

ACC deaminase

R. japonicum, B. elkani, M. loti,
R. leguminosarum, Sinorhizobium
spp.

Produce high level of ACC deaminase Subramanium

et al. (2015)

R. leguminosarum bv. trifolii
SN10

Produces indole acetic acid and ACC

deaminase which enhances rice growth

Philippe et al.

(2012)
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Table 7.2 Rhizobia as plant growth promoters—indirect mechanisms

Rhizobium species/Growth

promoting traits Activity References

Biocontrol

R. leguminosarum
bv. trifolii,
R. leguminosarum
bv. viciae, R. meliloti,
R. trifolii

Secretion of antibiotics and cell

wall-degrading enzymes that

inhibit phytopathogens

Chandra et al. (2007), Siddiqui

and Mahmoud (2001), Siddiqui

et al. (1998, 2000)

P. fluorescens and
S. meliloti

Biocontrol agents to suppress

pathogens in Alfalfa

Villacieros et al. (2003)

B. japonicum, R. meliloti,
and R. leguminosarum

Biocontrol against pathogens

such as Macrophomina
phaseolina, Rhizoctonia solani,
Fusarium solani of Okra and
sunflower

Ehteshamul-Haque and

Ghaffar (1993), Ozkoc and

Deliveli (2001), Siddiqui and

Shaukat (2003)

Induce systemic resistance

Rhizobial strain RH 2 Defense-related enzymes, viz.,
L-phenylalanine ammonia lyase

(PAL), peroxidase (POX), and

polyphenol oxidase (PPO) level,

get increased which decreases

the production of 1,3-glucanase

and polymethyl galacturonase

by the pathogen

Dutta et al. (2008)

Rhizobium leguminosarum
bv. viceae FBG05

Induction of systemic resistance

in faba bean (Vicia faba L.)

against bean yellow mosaic

potyvirus (BYMV)

Elbadry et al. (2006)

Rhizobium etli G12 Rhizobium etli G12 reduces

early root infection by the

potato cyst nematode

Globodera pallida

Hasky-Gunther et al. (1998)

Rhizobium strain Systemic resistance (ISR) is

induced in bean (Phaseolus
vulgaris L.) mediated by

rhizobacteria against bean rust

caused by Uromyces
appendiculatus

Osdaghi et al. (2009)

Production of metabolites (volatile and nonvolatile antibiotics)

R. leguminosarum
bv. trifolii,
R. leguminosarum
bv. viciae, R. meliloti,
R. trifolii

Secretion of antibiotics and cell

wall-degrading enzymes that

inhibit phytopathogens

Chandra et al. (2007), Ozkoc

and Deliveli (2001), Siddiqui

and Shaukat (2003), Siddiqui

and Mahmoud (2001), Siddiqui

et al. (1998, 2000)

HCN production

Mesorhizobium sp. HCN production Wani et al. (2008)

Mesorhizobium loti MP6 HCN hydrocyanic acid produc-

tion along with siderophore,

IAA, enhances the seed and

plant growth

Chandra et al. (2007)

(continued)
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Table 7.2 (continued)

Rhizobium species/Growth

promoting traits Activity References

Rhizobium species HCN production Abd-Alla (1994), Tank and

Saraf (2010)

Bradyrhizobium sp. IAA, HCN, ammonia,

siderophores,

exopolysaccharides

Ahemad and Khan (2011c, d, e,

2012b)

Lytic enzymes

Rhizobium stain Produce enzymes including

chitinases, cellulases, ß-1,3

glucanases, proteases, and

lipases that can lyse a portion of

the cell walls of many patho-

genic fungi

Frankowski et al. (2001), Kim

et al. (2008), Singh et al. (1999)

Abiotic stress

R. tropici co-inoculated
with Paenibacillus
polymyxa

Enhancement of plant height,

increase in shoot dry weight and

nodule number (drought stress)

Figueiredo et al. (2008)

Mesorhizobium spp. Overproduction of 60 kDa

unknown protein (temperature

stress)

Rodrigues et al. (2006)

Rhizobium phaseoli Overcome the adverse effect of

salinity in the presence of tryp-

tophan, increase nodulation and

yield

Zahir et al. (2010)

R. loti and Bradyrhizobium R. loti multiplied at pH 4.5, but

Bradyrhizobium strains failed to

multiply at that pH

Cooper et al. (1985)

R. tropici, R. meliloti, and
R. loti

R. tropici and R. loti are mod-

erately acid tolerant and

R. meliloti is very sensitive to

acid stress

Vlassak and Vandurleyden

(1997), Tiwari et al. (1992),

Brockwell et al. (1991)

Rhizobial strain Acid-tolerant alfalfa-nodulating

strains of rhizobia, isolated from

acidic soils, were able to grow at

pH 5.0 and formed nodules in

alfalfa with a low rate of nitro-

gen fixation

Del Papa et al. (1999)

Bradyrhizobium The fast-growing strains of

rhizobia are less tolerant to acid

pH than slow-growing strains of

Bradyrhizobium

Graham et al. (1994)

R. meliloti Mutant strains of R. meliloti are
competitive with naturalized

alfalfa rhizobia and symbioti-

cally effective under drought

stress

Athar and Johnson et al. (1996)

(continued)
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(1) dinitrogenase reductase (iron protein) and (2) dinitrogenase (with metal cofac-

tor). Usually, dinitrogenase reductase provides electrons with high reducing pow-

ers, while dinitrogenase uses these electrons to reduce N2 to NH3. Further based on

metal cofactor, three different N-fixing systems are classified into Mo-nitrogenase,

(b) V-nitrogenase, and (c) Fe-nitrogenase.

The nif genes responsible for N2 fixation are found in both the symbiotic and

free-living systems. The nif gene includes the structural genes, involved in the

activation of Fe protein, Fe–Mo cofactor synthesis, electron donation, and few

Table 7.2 (continued)

Rhizobium species/Growth

promoting traits Activity References

Heavy metal stress

Rhizobium sp. Greater accumulation of HM in

nodules than roots and shoots

Younis (2007)

Bradyrhizobium RM8 Enhance growth performance Wani et al. (2007a, b)

R. leguminosarum Enhance plant growth and

biomass

Hadi and Bano (2010)

Pesticide tolerance

Rhizobium MRP1 Enhanced biomass (Herbicide

Quizalafo-p-ethyl)

Ahemad and Khan (2010a, b)

Rhizobium MRL3 Leghemoglobin content, root

and shoot N, root and shoot P,

seed yield, and seed protein

(Herbicide Clodinafop)

Ahemad and Khan (2010a, b)

Rhizobium MRP1 Concentration-dependent pro-

gressive decline in PGP sub-

stances except

exopolysaccharides Fungicide

Hexaconazole)

Ahemad and Khan (2011a,

2012a)

Rhizobium strain MRL3 Exploited as a bio-inoculant to

augment the efficiency of lentil

exposed to insecticide-stressed

soil insecticidal)

Ahemad and Khan (2011a, b)

Fig. 7.1 (a) Rhizobial infection to root, (b) trapping of bacteria to root curlings, (c) formation of

infection thread by which Rhizobium reaches base of root, and (d) development of nodule

primordium in the cortex of root into a nodule
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regulatory genes essential for functioning of enzymes. In rhizobia, symbiotic

activation of nif genes is dependent on the low oxygen level, which is regulated

by a set of genes called fix-genes (Kim and Rees 1994). The N2 fixation is a high-

energy demanding process, which is supposed to require 16 moles of ATP for each

mole of reduced nitrogen (Glick 2012). Thus, if the bacterial carbon resources can

be directed toward oxidative phosphorylation, it results in the synthesis of ATP

required by legume plants.

7.2.2 Siderophore Formation

The bacteria acquire iron by the secretion of low-molecular mass iron chelators

referred to as siderophores, which have high association constants for complexing

iron. Most of the siderophores are water soluble and can be divided into extracel-

lular and intracellular siderophores. Generally, rhizobacteria differ regarding the

siderophore cross-utilizing ability; some are proficient in using siderophores of the

same genus (homologous siderophores), while others could utilize those produced

by other rhizobacteria of different genera (heterologous siderophores). Plants

assimilate iron from bacterial siderophores by different mechanisms, for instance,

chelate and release of iron, the direct uptake of siderophore–Fe complexes, or a

ligand exchange reaction (Schmidt 1999). Numerous studies of the plant growth

promotion vis-a-vis siderophore-mediated Fe uptake as a result of siderophore

producing rhizobacterial inoculations have been reported (Rajkumar et al. 2010;

Ahemad et al. 2014). Siderophores act as solubilizing agent for iron in limiting

conditions and can also form a stable complex with heavy metals, viz., Al, Cd, Pb,

Zn along with radionuclides U and Np (Neubauer et al. 2000). Thus, the binding of

bacterial siderophores to metal increases its solubility and can make it available to

plants, which can help to alleviate the stress.

7.2.3 Phytohormone Production

Symbiotic and non-symbiotic bacteria can promote plant growth directly by the

production of plant hormones (Dobbelaere et al. 2003). The rhizospheric bacteria

possess the ability to synthesize and release auxins as secondary metabolites, which

are further used by plants for developmental processes and in defense response

(Patten and Glick 1996). Rhizobium leguminosarum were reported to produce

growth hormone indole-3-acetic acid in rice associated with significant growth-

promoting effects as inoculants on rice seedlings (Biswas et al. 2000).

Mesorhizobium loti MP6 associated with Brassica along with IAA was reported

to produce chrome-azurol, siderophore, and hydrocyanic acid, enhance germina-

tion, and increase vegetative growth and yield (Chandra et al. 2007).
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The bacteria belonging to Rhizobium have been shown to produce auxins via

indole-3-acetamide formation, and genes controlling IAA production have been

reported (Ahemad and Khan 2011a, b). However, the synthesis of IAA by Rhizo-
bium spp. in the presence and absence of tryptophan has been demonstrated (Wani

et al. 2007b). The IAA produced by rhizobacteria increases the root surface area

and length, which provides higher access to soil nutrients. In turn, IAA also

loosened root walls to facilitate more root exudates, which support the growth of

rhizosphere bacteria (Glick 2012). IAA affects plant physiology by plant cell

division, extension, rate of xylem development, adventitious root formation, pig-

ment formation, photosynthesis, etc.; thus, rhizobacterial IAA can act as effector

molecules in plant–microbial interaction in pathogenesis and phytostimulation

(Spaepen and Vanderleyden 2011). Rhizobia influence crop growth and develop-

ment by changing the physiological status (Glick and Bashan 1997) and morpho-

logical characteristics of inoculated roots (Yanni et al. 1997).

Rhizobium strains are also reported as the potent producers of cytokinins during

their establishment (Senthilkumar et al. 2008), which stimulate cell division and

root development and root hair formation (Frankenberger and Arshad 1995).

Rhizobium as PGPR is supposed to produce gibberellins (Boiero et al. 2007).

Gibberellins are phytohormones (GA1–GA89) which are responsible for stem

elongation and leaf expansion. It promoted bolting of the plants, parthenocarpy in

fruits, increase in fruit size, breaking of tuber dormancy, and sex expression of

flowers. Rhizobium sp. and B. japonicum were reported to produce abscisic acid

(Boiero et al. 2007), which stimulates the stomatal closure, inhibits shoot growth,

promotes root growth, increases storage proteins, and produces proteinase inhibi-

tors essential to provide pathogen defense and counteract with gibberellins

(Mauseth 1991).

7.2.4 PHB Production

The carbon storage polymer poly-β-hydroxybutyrate (PHB) is a potential biode-

gradable alternative to plastics, which plays a key role in the cellular metabolism of

many bacterial species. Most species of rhizobia synthesize PHB, but not all species

accumulate it during symbiosis with legumes. The ability to accumulate PHB during

symbiosis appears to be dependent on the physiology of the nodule formed by the

host plant. Two major types of root nodules are formed in the rhizobia–legume

symbiosis: (1) determinate nodules, which do not possess a persistent meristem and

instead form a spherical-shaped structure, and (2) indeterminate nodules, which

possess a continuous meristem resulting in a long, cylindrical structure (Hadri et al.

1998).PhbB andPhbC are key enzymes in the anabolic arm of the PHB cycle and are

encoded on the S. meliloti chromosome. Both phbB and phbCmutants of S. meliloti
strain Rm1021 are deficient in the ability to produce succinoglycan, resulting in dry,

non-mucoid colonies when grown under carbon-rich conditions; this phenotype is

not observed in PHB degradation mutants (Aneja et al. 2004).
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7.2.5 Phosphate Solubilization

Phosphorus (P), the second important plant growth-limiting nutrient after nitrogen,

is abundantly available in soils in both organic and inorganic forms. The P is

required for differing metabolic processes, viz., energy transfer, signal transduc-

tion, biosynthesis of biomolecules, and plant physiology. Majority of P is

unavailable due to its fixation with various elements in soil, thus remaining

unavailable to plants. The phosphate-solubilization potential of Rhizobium (e.g.,

Rhizobium/Bradyrhizobium) was associated with the production of 2-ketogluconic

acid and reduction of pH of the medium (Halder and Chakrabarty 1993). The ability

of rhizobia to solubilize both organic and inorganic P has been exploited for

increasing the yield of plants. The plant absorbs P in soluble forms, monobasic

(H2O4) and diabasic (HPO4
2�) ions, which is available by release of mineral

dissolving compounds, e.g., organic acids anions, protons, hydroxyl ions, CO2,

liberation of extracellular enzymes, and then in turn release of P during substrate

degradation (Sharma et al. 2013).

7.2.6 Synthesis of ACC Deaminase Enzyme

Usually, ACC deaminase production is reported in rhizospheric bacteria that can

colonize the plant root (Belimov et al. 2001). Ethylene is a potent growth regulator in

plants, which regulates ripening, promotes adventitious root, and stimulates germi-

nation by breaking seed dormancy (Esashi 1991). As higher ethylene concentration

is toxic to plants (inhibits root elongation), the PGPR reduces its concentration by

the activity of enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase,

which hydrolyzes ACC, the precursor of ethylene in plants (Yang and Hoffman

1984). The end product of this hydrolysis, ammonia and α-ketobutyrate, can be used
by rhizobia/bacterium as sole sources of nitrogen and carbon essential for their

growth (Klee et al. 1991; Gopalakrishnan et al. 2015). The various strains of

rhizobia, such as R. Leguminosarum bv. viciae, R. hedysari, R. japonicum,
R. gallicum, B. japonicum, B. elkani, M. Loti, and S. meliloti, were known to produce
ACC deaminase (Gopalakrishnan et al. 2015). It has been confirmed that IAA

producing bacteria are reported to produce high levels of ACC, which inhibit

ethylene levels reported to promote plant growth, enhanced rhizobial nodulation,

and mineral uptake (Glick 2012).
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7.3 Indirect Promotions

The ability of biocontrol bacteria to indirectly promote plant growth has been the

source of considerable interest, both in terms of (i) types of mechanisms used by the

biocontrol bacteria and (ii) commercial use of such bacteria instead of chemical

pesticides. In fact, these two objectives are largely complementary and are

environment-friendly approach (Lugtenberg and Kamilova 2009). Besides induced

resistance in plants, rhizobacteria are also known to be involved in an indirect

mechanism by acting as biocontrol agents (Glick 2012). During their growth in

rhizosphere, they compete for nutrients and niche exclusion. Induced systemic

resistance (ISR) and antifungal metabolite (antibiotics) production are the predom-

inant methods for controlling pathogenic or nonpathogenic competitors.

Biocontrol is a process through which a living organism limits the growth or

propagation of undesired organisms or pathogens. Several rhizobial strains are

reported to have the biocontrol properties. Hence, usage of these strains against

soil-borne pathogens can lead to potential control. The mechanisms of biocontrol

by rhizobia include competition for nutrients (Arora et al. 2001), production of

antibiotics (Bardin et al. 2004; Chandra et al. 2007; Deshwal et al. 2003a), produc-

tion of enzymes to degrade cell walls (Ozkoc and Deliveli 2001), and production of

siderophores (Carson et al. 2000; Deshwal et al. 2003b).

7.3.1 Competition for Nutrient and Space

The indigenous rhizobia represent the most vigorous competition encountered by

inoculants. Rhizobium is an unusual organism in that no resting stage is known, and

thus, it is inoculated into soil in its vegetative stage. Consequently, after establish-

ment in soil, Rhizobium encounters microbial competition from predators, antago-

nists, inhibitors, and competitors for space, nutrients, and growth substances

produced by host plant or available in soil. Rhizobium is a facultative organism.

It can survive and multiply in soil in the complete absence of vegetation (Brockwell

1963); it can grow in rhizosphere of many plant species (Rovira 1961; and once

inside the nodule, it grows fast and can form population analogous to pure culture

due to enormous growth). Once it colonizes the soil, Rhizobium can be established

as nodulating and permanent strain.

7.3.2 Induced Systemic Resistance

PGPB can trigger a phenomenon in plants known as ISR similar to SAR essential to

activate their defense mechanisms in response to infection by a broad range of

pathogens and insect herbivores (Pieterse et al. 2009a, b). ISR-positive plants react

7 Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective 115



faster and more strongly to pathogenic attack by inducing several defense mecha-

nisms. ISR is not targeted toward any specific pathogens, but it is effective at

controlling diseases caused by pathogens. Present in rhizosphere, ISR involves the

production of jasmonate and ethylene signaling within the plant, which stimulate

the host plant’s defense responses (Verhagen et al. 2004). Besides ethylene- and

jasmonate-induced signals, other bacterial molecules such as the O-antigenic side

chain of the bacterial outer membrane proteins, lipopolysaccharide, flagellar pro-

teins, pyoverdine, chitin, ββ-glucans, cyclic lipopeptide surfactants, and salicylic

acid have all been reported to act as signals for the ISR.

Various rhizobial species are reported to induce systemic resistance in plants by

producing bio-stimulatory agents, including R. etli, R. leguminosarum bv. Phaseoli,
and R. leguminosarum bv. trifolii (Yanni et al. 2001; Peng et al. 2002; Singh et al.

2006; Mishra et al. 2006). Even the individual cellular components of the bacterium

rhizobia are reported to induce ISR, viz., lipopolysaccharides, flagella, cyclic

lipopeptides, homoserine lactones, acetoin, and butanediol (Lugtenberg and

Kamilova 2009). ISR is involved in priming for enhanced defense, rather than

direct activation of resistance by systemic immunity elicited by beneficial microbes

maintained over prolonged periods. ISR is associated with microbial antagonism in

the rhizosphere; altered plant–insect interactions enrich their microbiome that pro-

vides protection against diseases that promote plant health. ISR-inducing beneficial

microbes must also produce elicitors that are dependable for the onset of systemic

immunity. ISR is supposed to be the result of a long-distance signaling mechanism

that in rhizobial and mycorrhizal symbiosis is responsible for autoregulating the

colonization density of the symbionts (Staehelin et al. 2011; Pieterse et al. 2012) as

to balance the costs and benefits of mutualism.

7.3.3 Production of Metabolites (Volatile and Nonvolatile)

Phytopathogenic microorganisms are a major threat to sustainable agriculture

which decrease yield and soil health and have adverse effects on environment

and harmful effects on human health (Gupta et al. 2015). PGPR’s capacity to

colonize and inhibit certain root zone microflora suggests that they have great

potential for altering the environment of rhizosphere beneficial for plant growth

due to secretion of volatile metabolites, viz., antibiotics (Kloepper and Schroth

1981) and diffusible metabolites, i.e., lytic enzymes. The strains including

R. Leguminosarum bv. trifolii, R. leguminosarum bv. viciae, R. meliloti,
R. trifolii, S. meliloti, and B. japonicum have been reported to secrete antibiotics

and cell wall-degrading enzymes that can inhibit the phytopathogens (Bardin et al.

2004; Siddiqui et al. 2000).
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7.3.3.1 Antibiotics

PGPR produces antibiotics inhibiting the growth of “saprophytic pathogens” associ-

ated in root zones (Suslow et al. 1980). PGPR can develop resistance to specific

antibiotics due to increased use of these strains; thus, combination of biocontrol

strains that synthesize one or more antibiotics is recommended (Compant et al. 2005).

Rhizobia produce a narrow-spectrum peptide antibiotic, trifolitoxin (TFX),

which assessed microbial diversity changes in the rhizosphere of bean plants

(Robleto et al. 1998). The secretion of peptide antibiotic trifolitoxin (TFX) by

R. Leguminosarum bv. trifolii T24 was reported to control disease. B. Japonicum
reported to produce rhizobiotoxin directly protect soybean crop against

M. Phaseolina (Chakraborty et al. 1984). Bacteriocin is produced by 13 of 27 strains
of R. japonicum and 4 of 15 cowpea rhizobia; its in vitro production was highly

irregular and depended on culture conditions (Roslycky 1967).

The two types of bacteriocins produced by R. leguminosarum are small and

medium bacteriocins (Hirsch 1979). The small bacteriocin can diffuse through

cellophane and is heat labile and resistant to proteolytic enzymes, whereas the

medium one is unable to diffuse through cellophane. It is heat labile and resistant to

proteolytic enzymes. Bacteriocins are bactericidal substances produced by bacteria

and are active against bacteria of the same or closely related species (Tagg et al.

1976; Salto et al. 1979). Bacteriocins produced by Rhizobium spp. have been

characterized as phagelike (Schwinghaner et al. 1973), protease-sensitive, or

protease-resistant (Schurter et al. 1979) substances. They possess restricted antimi-

crobial activity. The production and primary characterization of an antimicrobial

substance (AMS) with a broad activity spectrum produced by Rhizobium trifolii
IARI and of a bacteriocin-like substance (BLS) produced by R. trifolii Rel-

1 (Joseph et al. 1983). These AMS are equally similar to those produced by

R. japonicum (Gross and Vidaver 1978) and R. trifolii (Schwinghamer 1971).

These bacteriocins are dialyzable and resistant to heat and proteolytic enzymes.

7.3.3.2 Hydrogen Cyanide Production

HCN, a secondary metabolite produced by several PGPR strains, has deleterious

effects on their growth. The rhizospheric microorganisms have been known to

protect their host plants by producing HCN, which protects their host but is

inhibitory to several phytopathogens. Rhizobia are relatively less efficient in

HCH production, as only 12.5 and 3% strains were found to be HCN producers

(Beauchamp et al. 1991; Antoun et al. 1998). The production of metabolites such as

HCN along with phenazines, pyrrolnitrin, viscoinamide, and tensin by rhizobia has

been reported as biocontrol mechanisms (Bhattacharyya and Jha 2012).

As reported, HCN is a powerful inhibitor of metal enzymes, such as copper-

containing cytochrome C oxidases, and is highly toxic to all aerobic microorgan-

isms at picomolar concentrations. HCN first inhibits the electron transport and
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energy supply and leads to death of the organisms. It seems to inhibit functioning of

enzymes and natural receptor’s reversible mechanism of inhibition (Corbett 1974),

and it is also known to inhibit the action of cytochrome oxidase (Gehring et al.

1993). The different bacterial genera have shown to produce HCN, including

species of Alcaligenes, Aeromonas, Bacillus, Pseudomonas, and Rhizobium (Devi

et al. 2007; Ahmad et al. 2008).

7.3.3.3 Lytic Enzyme Production

Many microorganisms produce and release lytic enzymes that can hydrolyze a wide
variety of polymeric compounds, including chitin, proteins, cellulose, hemicellu-

lose, and DNA. Expression and secretion of these enzymes by different microbes

result in the suppression of plant pathogen activities directly. The involvement of

Rhizobium enzymes that degrade plant cell wall polymers is a key step through the

infection process in root nodule symbiosis. The production of lytic enzymes such as

chitinase, β-1,3 glucanase, protease, and lipase which lyse the pathogenic fungal

and bacterial cell walls had been reported in rhizobia (Gopalakrishnan et al. 2015).

R. leguminosarum biovar trifolii during infection of white clover roots leading to
development of the root nodule symbiosis is the passage of the bacteria across the

root hair wall (Sahlman and Fahraeus 1963; Napoli and Hubbell 1975). This rigid

assemblage of plant polysaccharides and glycoproteins constitutes a barrier to host

specificity (Al-Mallah et al. 1987). Various hypotheses have been proposed to

explain how this event occurs: (1) rhizobia redirect growth through the root hair

wall from the tip to the localized site of infection and cause invagination rather than

penetration of the root hair wall, forming the tubular structure of the infection

thread (Nutman 1956); (2) homologous Rhizobium strains induce the host plant to

produce polygalacturonases, which soften the root hair wall at the site of infection

and thus allow the bacteria to penetrate between microfibrils to the cell membrane

and initiate an infection thread (Ljunggren and Fahraeus 1961); (3) wall-degrading

enzymes produce a localized degradation that completely traverses the root hair

wall, allowing direct penetration by the bacteria (Hubbell 1981). The strongest

evidence for the involvement of wall hydrolysis in the R. leguminosarum
bv. trifolii–white clover infection process involves wall hydrolysis (Callaham and

Torrey 1981). Rhizobial infection of legumes is a delicately balanced process, in

which wall-degrading enzymes are involved; their production may be restricted to

account for slow, localized penetration without destruction of the root hair and

subsequent abortion of the infection process (Hubbell 1981). The role of

lytic enzymes in the infection of legumes by Rhizobium species has been confirmed

to be involved pectinolytic (Prasuna and Ali 1987), cellulolytic (Morales et al.

1984), and hemicellulolytic enzymes.
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7.4 Abiotic Stress Resistance of Rhizobia

PGPR as stress relievers has been recommended and is the best option for devel-

oping stress-tolerant crops with minimized costs and environmental hazards. In the

Rhizobium–legume symbiosis, the process of N2 fixation is strongly related to the

physiological state of the host plant. During BNF, competitive and local rhizobial

strain is not expected to express its full capacity due to limiting factors (e.g.,

salinity, soil pH, nutrient deficiency, mineral toxicity, soil nitrate, soil temperature,

heavy metals and biocides temperature extremes, insufficient or excessive soil

moisture, inadequate photosynthesis, plant diseases, and grazing) (Thies et al.

1995; Zahran 1999).

The most problematic environments for rhizobia are marginal lands with low

rainfall, extremes of temperature, acidic soils of low nutrient status, and poor water-

holding capacity. Rhizobium and Bradyrhizobium species vary in their tolerance to

major environmental factors as they possess some key tolerance mechanism/path-

ways against certain stress factor. The best option for developing stress-tolerant

crops with minimized production costs and environmental hazards can be the use of

PGP microbes as stress relievers and might therefore open new applications for a

sustainable agriculture.

7.4.1 Salt and Osmotic Stresses

The legume–Rhizobium symbiosis and nodule formation are sensitive to salt or

osmotic stress as it inhibits the initial step’s symbioses. Soybean root hairs showed

little curling or deformation when inoculated with B. japonicum in the presence of

170 mM NaCl, and nodulation was completely suppressed by 210 mM NaCl

(Tu 1981). The reduction of N2-fixing activity leads to a reduction in respiration

of the nodules, and a reduction in cytosolic protein production, specifically

leghemoglobin, by nodules, leads to the decline of dry weight and N2 content in

the shoot (Cordovilla et al. 1995). The salt-induced distortions in nodule structure

could also be reasons behind the decline of the N2 fixation rate and photosynthetic

activity under salt stress (Georgiev and Atkias 1993).

The genera Rhizobium and Bradyrhizobium are more salt tolerant than their

legume hosts; they show marked variation in salt tolerance. Growth of R. meliloti
was tolerant of 300–700 mM NaCl (Sauvage et al. 1983). Strains of

R. leguminosarum have been reported to be tolerant to NaCl concentrations up to

350 mM NaCl in broth culture (Breedveld et al. 1991). Rhizobium strains from

Vigna unguiculata were tolerant to NaCl up to 5.5%, which is equivalent to about

450 mM NaCl (Mpepereki et al. 1997).

Rhizobia utilized the mechanism of osmotic adaptation in which intracellular

accumulation of low-molecular-weight organic solutes called osmolytes, which

counteract the dehydration effect of low water activity through the medium but
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not to interfere with macromolecular structure or function. In the presence of high

levels of salt (up to 300–400 mM NaCl), the levels of intracellular free glutamate

and/or K1 were greatly increased (sometimes up to sixfold in a few minutes) in cells

of R. Meliloti, R. fredii, Sinorhizobium fredii, and rhizobia from the woody legume

Leucaena leucocephala. K1 strictly controls Mg21 flux during osmotic shock

(Zahran 1999).

An osmolyte, N-acetylglutaminyl-glutamine amide, accumulates in cells of

R. meliloti dependent upon the level of osmotic stress (Smith et al. 1994). The

disaccharide trehalose plays a role in osmoregulation higher levels in cells of

R. leguminosarum (Breedveld et al. 1991) and peanut rhizobia (Ghittoni and

Bueno 1996) under the increasing osmotic pressure of hyper salinity. The disac-

charides sucrose and ectoine act as energy source/chemical mediators and were

used as osmoprotectants for Sinorhizobium meliloti (Gouffi et al. 1999). The

intracellular accumulation glycine betaine increases more in the salt-tolerant strains

of R. meliloti than in sensitive strains (Smith et al. 1988). These osmoprotective

substances may play a significant role for the maintenance of nitrogenase activity in

bacteroids under salt stress. When externally provided, glycine betaine and choline

enhance the growth of Rhizobium tropici, S. meliloti, S. fredii, R. galegae, and
Mesorhizobium loti (Boncompagini et al. 1999). The content of polyamines, e.g.,

homospermidine, increases in salt-tolerant cells and acid-tolerant strains of R. fredii
(Fujihara and Yoneyama 1993) and is supposed to maintain the intracellular pH and

repair the ionic imbalance caused by osmotic stress.

7.4.2 Extremes of Temperature (Hot/Cold)

The rhizobia, for which the optimum temperature range for growth is 28–31 �C, and
many are unable to grow at 37 �C (Zahran 1999). Temperature affects root hair

infection, bacteroid differentiation, nodule structure, and nitrogen fixation. These

processes usually function over a range of ~5 �C, but this differs between legumes

and is obviously dependent on the environment the rhizobia naturally occupy

(Zahran 1999).

Temperature stress is generally divided into two classes: heat shock and cold

shock. The heat-shock response is very similar to the acid stress response. Heat

shock proteins (HSPs), viz., chaperones and proteases formed, contribute to heat

tolerance by conferring heat protection on the bacteria but do not alter the internal

temperature on the cell (Yura et al. 2000). The rhizobia possess so many HSPs in

comparison to other bacteria; it may be, so they can bring about an immediate

response in times of heat stress, minimizing damage caused R. leguminosarum
which contains at least three copies of the HSP gene cpn60 that encode for Cpn60

(or GroEL) (Wallington and Lund 1994). The Cpn60 protein interacts with another

protein called Cpn10 (or GroES) encoded by cpn10, and a copy of a cpn10 gene is

upstream of at least two of the cpn60 genes. A superfamily of at least six small
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HSPs, one of which is essential for symbiosis, has also been located throughout the

Rhizobium, though initially in B. japonicum (Natera et al. 2000).

Cold shock effects with a loss of membrane and cytosol fluidity and with the

stabilization of secondary structures of RNA/DNA lead to a decrease in the

efficiency of central dogma followed by low-temperature adaptation that allows

continued growth at low temperatures (Panoff et al. 1997). Cold shock response

also leads to the production of many cold shock proteins (CSPs) mainly chaperones

and proteases (Phadtare et al. 2000). The CSP chaperones are primarily used to bind

to RNA/DNA to prevent stabilization and allow translation and transcription to

proceed as usual (Phadtare et al. 2000). A CspA homologue is present in S. meliloti
and is induced following a temperature downshift from 30 to 15 �C, along with the

three rRNA (rrn) operons. Both HSPs and CSPs have been shown to be induced by

other stresses, as part of a cross-protection, and by the NolR regulator, which is

more associated with the nodulation process (Chen et al. 2000).

7.4.3 pH Stress

Rhizobium displays varying degrees of pH resistance as measured by its ability to

grow in neutral or slightly acidic soil (Zahran 1999). Some mutants of

R. leguminosarum have been reported to be able to grow at a pH 18 and as low as

4.5. S. meliloti are viable only down to pH 5.5 (Foster 2000); S. fredii can grow well

between pH 4 and 9.5 and able to successfully nodulate in legumes (Richardson and

Simpson 1989).

Rhizobium contributed to acid tolerance by producing acid shock proteins

(ASPs) which do not alter the internal pH of the cell (Foster 1993). There are two

main types of ASPs: chaperones and proteases. Chaperones are proteins that either

bind to other proteins, preventing them from misfolding, or can also repair proteins

that have already misfolded as a result of the acidic conditions (Foster 2000).

Proteases break down any misfolded proteins that the chaperones cannot save

(Foster 2000). About 20 genes have been identified in R. leguminosarum that are

specific to the acid stress response in rhizobia and are termed act genes (acid

tolerance) (Kurchak et al. 2001).

In S. meliloti, genes actR and actS encode for the regulator and sensor in acid

shock response (Tiwari et al. 1996b). ActS is the membrane-bound product of acts

that, on detection of external acidity, activates ActR (product of actR) via phos-

phorylation. ActR then goes on to activate the transcription of other acid response

genes within the bacterium (Tiwari et al. 1996b), and research on S. meliloti has
shown that calcium (Tiwari et al. 1996a) and in R. tropici glutathione (Riccillo et al.
2000) can also play a key role in acid tolerance. The thiol forms a complex with the

reactive protonated species, thus removing their effect over the bacterial cells. Acid

shock has also been shown to induce the pH-regulated repressor (PhrR) protein

(Reeve et al. 1998). Rhizobium that produces greater amounts of

exopolysaccharides (EPS) is able to survive in acidic conditions more successfully
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(Cunningham and Munns 1984). R. leguminosarum bv. trifolii has been reported to
colonize soil and produce nodulation at a higher frequency in alkaline conditions up

to pH 11.5 (Zahran 1999). Homospermidine, a polyamine, accumulates in

B. japonicum in alkaline conditions, although its function is unknown (Fujihara

and Yoneyama 1993).

7.4.4 Oxidative Stress

The stress is caused by increased levels of superoxide anions (O2
–), hydrogen

peroxide (H2O2), or hydroxyl radicals (HO•). These reactive species, which can

be generated by exposure to radiation, metals, and redox-active drugs, can lead to

the damage of all cellular components (Storz and Zheng 2000). Rhizobium over-

comes this stress in order to undergo symbiosis with legumes (Santos et al. 2001).

S. meliloti contains three genes that encode for catalases, katA, katB, and katC

(Sigaud et al. 1999). KatA is involved in protecting free-living cells from oxidative

stress, while KatB and KatC are required for cells to successfully bypass plant

defense systems and undergo the nodulation process (Jamet et al. 2003). Oxidative

shock has also been shown to induce the PhrR repressor protein (Reeve et al. 1998).

Rhizobium cells have been shown to be resistant to oxidative shock as part of a

cross-protection and by the NolR regulator (Chen et al. 2000). Glutathione has also

been shown to contribute to the oxidative stress response in R. tropici, in the same

way as it does in acid tolerance, though it is unknown how (Riccillo et al. 2000).

Perhaps the thiol forms a complex with the reactive oxygen species, thus removing

their effect over the bacterial cells.

7.4.5 Metal Stress

Metal ions usually cause oxidative stress by Fenton’s reaction in bacterial cell and

lead to expression of genes to a specific metal, such as nickel (Singh et al. 2001).

The response in terms of high intercellular carbohydrates and large cell inclusions

increases the resistance of R. leguminosarum to cadmium, copper, nickel, and zinc

(Zahran 1999). The production of thiols counteracts against the heavy metal-

induced oxidation and is supposed to bind to the metal ions, forming a complex,

and prevents cell damage by inactivating the ion’s redox potential in toxicity caused
by cadmium, gold, mercury, and lead (Singh et al. 2001).
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7.5 Rhizobia Association with Non-legumes

Report suggests the beneficial PGPR of rhizobia beneficial for legumes and

non-legumes (Antoun et al. 1998; Yanni et al. 1997). The rhizobial association

with non-leguminous plants such as maize, rice, wheat, lettuce, and radishes may be

strong or weak; these associations may be at rhizosphere, inside plant tissue

(endophytic), and upper plant part (phyllospheric).

These rhizobia are capable of colonizing the roots of non-legumes; this interac-

tion produces phytohormones, siderophores, and HCN. For the better symbiotic

association, both non-legumes exude amino acids, vitamins, organic acids,

enzymes, nucleotides, sugars, and plant metabolites (Rovira 1956), whereas

rhizobia exudate nutrient sources and perform PGPR activity. In cereals–legumes

crop rotation systems, inoculation of the preceding cereal crop with Rhizobia and

Bradyrhizobia increases nodule volume, the dry weight of shoots, number of pods,

and the final yield. B. japonicum, R. leguminosarum, S. meliloti, and Arctic rhizobia
are some of the examples of bacterial species, which participate with legumes and

non-legume plants. A number of reports available suggest that rhizobia can colo-

nize roots of non-leguminous plants and are able to survive in the internal tissue

system.

7.6 Plant Tissue Culture and Rhizobium Symbiosis

Rhizobium is always one of the foremost examples of nitrogen-fixing bacteria in

natural conditions. Nowadays, new approaches are arising looking toward the

Rhizobium applications in tissue culture, including legume symbiosis; these

required best conditions for effective rhizobial infection with callus for organogen-

esis (Holsten et al. 1971). This interaction provides a test system for studying

various facts related to legume symbiosis with minimal inference from plant

influence. Since the last 3–4 decades, different works have done on Rhizobium
role in tissue culture study. The presence of Rhizobium considered for the similar

activity as to supply nitrogen to the growing plants in plant tissue culture. Nitroge-

nase activity has been studied with respect to root, stem, and leaf through culture

using different strains of Rhizobia. The medium free from supplements and hor-

mones like nitrate, 2, 4-D, kinetin, etc., shows the rooting from the Rhizobia-
infected callus, whereas untreated plants remained undifferentiated (Rao 1976).

The morphological changes which accompany the onset of nitrogenase activity in

callus tissue were found to parallel closely the changes observed in intact nodule

systems.
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7.6.1 Establishment of Symbiosis

This symbiotic association can be established in vitro between Rhizobium and

cultured plant cell or tissue. For the successful association plant, cultured cells

are grown on the solid media surface provided with the low level of inorganic

nitrogen and then inoculated with Rhizobium at log phase. The whole system is

cost-effective and provides multiple replicates of the samples. The same medium is

to be used throughout the experiment to avoid disturbances in the growth of cells.

The change in acetylene level confirms the association of plant and bacteria, which

can be done by nitrogenase assay. This assay can be recorded within 3 weeks.

Relatively little is known regarding the factors controlling infection or the

development of nitrogenase in the nitrogen-fixing symbiosis between leguminous

plants and bacteria. The sensitive acetylene reduction assay technique for the

detection of nitrogenase activity (Hardy et al. 1968) and the demonstration that

symbiosis can be established between Rhizobium and plant cell tissue cultures

in vitro (Holsten et al. 1971) allow a novel approach to study these problems.

Various attempts have been shown in plant tissue culture derived from legumes

and non-legumes of successful induction of nitrogenase activity in Rhizobium
(Child and Larue 1974; Child 1975). Some experiments are shown below:

(1) Fusion of legumes and non-legumes protoplast, and the hybrid plants have the

ability to associate with Rhizobium; (2) forced association of N2-fixing bacteria

with non-legume tissue culture, and possible regeneration; (3) induced transfer of

nitrogen-fixing bacteria into protoplast; and (4) transfer of nif gene in non-legumes

and plant regeneration. The infection process took place in a liquid nutrient medium

containing growth promoters. After some days, the cells were transferred to a

similar medium lacking with growth promoters, to allow the establishment of

nitrogenase activity. As it is very difficult to form symbiosis between Rhizobium
and suspension culture cells in conventional vessels, the first established symbiosis

in callus culture on solid medium is reported on Gamborg’s B5 and B5c media

(Gamborg 1970).

7.7 Genetic Engineering of Nif

Nif gene is present in symbiotic Rhizobia species and free-living bacteria like

Klebsiella pneumonia. Cloning of Nif gene has been achieved in various examples.

Nif of K. Pneumonia contains seven operons, including cluster of 15 genes working
together. However, the gene technology can be used to obtain more efficient

Rhizobium–legume symbiosis, which is of agro-industrial use.

Transfer of Nif gene (isolated from K. pneumonia) in non-nitrogen-fixing organ-
ism, including bacteria and cereals and other plants, is also now possible (Hardy

and Havelka 1975; Dixon et al. 1979). In this way, recombinant plasmid containing

Nif gene can be transformed, and these protoplasts containing Nif gene will
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regenerate in new plant which will be able to fix atmospheric nitrogen. Another

interesting method by phage-mediated gene transfer in plants is also explained

(Doy et al. 1973).

Induction of tumor in plants using A. tumefaciens is a well-established method

(Lippincott and Lippincott 1975; Kado 1976); this tumor is resultant of transfer of

T-DNA of A. tumefaciens in the plants (Schell et al. 1976). Ti plasmid can be

manipulated in Rhizobium thus. The bacteria get the ability to induce tumor in

plants without losing their ability to induce tumor (Van Larebeke et al. 1977). One

recent study explains the intergenic transfer of Ti plasmid and nodulating plasmid

between A. tumefaciens and Rhizobium (Brenner et al. 2005).

Rhizobium possesses large plasmids; it is explained that Nif gene might be

present on these plasmids; thus, the possibilities arise of transferring Nif gene
from Rhizobium to A. tumefaciens, which may lead to transfer of Nif gene in Dicots
as well. Agrobacterium and Rhizobium possessed closed relationship that is already

confirmed by 16s rRNA analysis (Fred et al. 2007).

In recent studies, it is found that A. tumefaciens as a natural genetic engineer is
now available for transfer of gene in plants. Rhizobia have an open source, better,

safer, more environmental friendly, and fewer restrictions in plant biotechnology as

compared to A. tumefaciens. Now new transgenic can be generated using binary

vector carried by rhizobia. Several methods have been available for transfer of

plasmid DNA in rhizobia, including conjugation and electroporation; transforma-

tion and transduction are used to transfer DNA into rhizobia species. It has been

suggested that some species of Rhizobium, including SinoRhizobiumm meliloti,
have sufficient transformation efficiency tested on monocots and dicots

(Broothaerts et al. 2005). Now researchers are looking toward interaction between

host plants and Rhizobia for more exploration to these fields, i.e., “Rhizobia-

mediated transformation” (Patel and Sinha 2011).
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