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Analysis of Rhizobia

Jyoti Lakhani, Ajay Khuteta, Anupama Choudhary,

and Dharmesh Harwani

10.1 Introduction

Evolution can be defined as the development of a species by divergence of it from

other pre-existing species. The driving force behind evolution is natural selection in

which “unfit” forms are eliminated through changes of environmental conditions or

sexual selection so that only the fittest are selected (Darwin 1859). Mutation is the

mechanism behind the evolution that occurs spontaneously to provide the biolog-

ical diversity within a population. The development of bioinformatics tools and

various in silico methods has provided very useful and fast methods to perform

phylogenetic analysis. Two types of methods are most commanly used for it:

distance based and character based. The distance-based methods include

unweighted paired group method with arithmetic mean (UPGMA) (Murtagh

1984), minimum evolution method (ME) (Rzhetsky and Nei 1993), neighbour

joining (NJ) (Saitou and Nei 1987), and Fitch–Margoliash method (FM) (Fitch

and Margoliash 1967). The character-based method derives trees that optimize the

distribution of the actual data pattern for each character. The most commonly used

character-based methods include Maximum Parsimony (MP) method (Sober 1983)

and Maximum Likelihood (ML) method (Felsenstein 1981). The criteria to
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compare different tree-building methods are computational speed, consistency of

estimated topology, statistical consistency of phylogenetic trees, probability of

obtaining the correct topology, and reliability of estimated branch length (Roy

et al. 2014). According to the computational speed, the NJ method is the superior

one from other tree-building methods which are currently in use. This method can

handle a large number of sequences with bootstrap tests with ease. If no bias is

applied during the estimation of distance through substitution NJ, ME methods are

found consistent for estimating trees but MP is often inconsistent. ML methods, on

the other hand, have the additional advantage of being more flexible in choosing the

evolutionary model. But this method is lengthy and time consuming (Roy et al.

2014). This chapter is a compressive survey on phylogenetic analysis of rhizobia at

molecular level. The contributions of few authors who have used hierarchical

clustering to assess rhizobial phylogeny have been summarized. The chapter is

divided into three sections which include the introduction to the basics and process

of molecular phylogenetic analysis, a brief discussion on various hierarchical algo-

rithms and finally, a detailed discussion on different in silico phylogenetic analysis

tools to study evolution and phylogeny in rhizobia has been presented.

10.2 Molecular Phylogenetic Analysis

Molecular phylogenetic analysis is the study of relationship among organisms using

molecular markers such as DNA or protein sequences. The dissimilarity between

two sequences has been caused by mutations during the course of time. The

methods in molecular phylogenetic analysis make assumptions about the processes

of molecular evolution over time and the accuracy of predicted evolutionary events

are tested using in silico simulations. The results of these methods are hypothetical

evolutionary trees or phylogenetic trees. Phylogenetic trees are dendograms repre-

senting evolutionary divergence between two sequences. There are several types of

evolutionary trees such as rooted trees also called cladograms, unrooted trees, or

phenogram. The process of generation of a hypothetical phylogenetic tree is called

phylogenetic reconstruction. Phylogenetic reconstruction is a probability-based

statistical model to make assumptions about the process of nucleotide or amino

acid substitution during the timeline in question. There are several types of prob-

abilistic models also which are known as evolutionary models. Evolutionary

models describe the different probabilities of the change from one nucleotide or

amino acid to other, with the aim of correcting for unseen changes along the

phylogeny. The most common models of DNA evolution are Jukes–Cantor (JC or

JC69) (Jukes and Cantor 1969), Kimura2 Parameters (K2P or K80) (Kimura 1980),

Felsenstien (F81) (Felsenstein 1981) and Hasegawa, Kishino, Yano (HKY85)

(Hasegawa et al. 1985), T92 (Tamura 1992), TN93 model (Tamura and Nei

1993), GTR: Generalised time-reversible (Tavaré 1986), etc. The common amino

acid replacement models are point accepted mutation (PAM) (Dayhoff et al. 1978),

mtREV, JTT, WAG, BLOSUM62 (BLOck SUbstitution Matrix), Yang, etc. Apart
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from evolutionary models, alignment of the sequences is also a prerequisite for

phylogenetic tree construction. There are several multiple sequence alignment

methods available such as ClustalW, Muscle, and NAST. A phylogenetic tree is

constructed using distance matrix by examining the closeness of sequences in order

to combine them. There are several methods used in literature for constructing

phylogenetic trees such as UPGMA, neighbour-joining, maximum parsimony,

maximum likelihood, and Baysian analysis.

10.3 Basics of Phylogeny

A phylogeny is a graphical representation that provides a hypothesis of how

organisms are related at evolutionary level. The relationships are not expressed as

per cent sequence similarity, but time since they share a common ancestor. Phylo-

genetic trees are a primary tool used in evolutionary biology and are used to inter-

pret the timing and order of evolutionary events. Charles Darwin has used tree for

the first time to represent phylogeny. Figure 10.1 is the only figure in Charles

Darwin’s book Origin of Species by Natural Selection (1859) depicting evolution-

ary history. Some modern applications of phylogeny include analysis of changes

that have occurred during the evolution in order to create tree of life of for various

organisms, phylogenetic relationships among genes predicting similar functions in

order to detect orthologues, detecting changes in rapidly changing sequences, etc.

Fig. 10.1 First use of phylogenetic tree to show the evolutionary history of an organism (Origin of

Species by Natural Selection 1859)
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To display phylogenetic trees, two fundamental forms are used such as rooted

trees and unrooted trees. The root of a tree represents the common ancestor of all

depicted organisms. All trees need not to be rooted, but rooting does help to inter-

pret tree. Trees are rooted with the inclusion of an outgroup, a taxon known a priori

to be the most distant taxon to the group under study. The tips of a tree are referred

to as external nodes which typically represent living or extant taxa and ancestors are

represented by internal (ancestral) nodes. The phylogenetic topology is the patterns

of branch length and splitting depict evolution, diversification, and relatedness.

Topology illustrates the history of cladogenesis (splitting of branches as a result of

diversification) and anagenesis (change within lineages such as mutation or substi-

tution). In general, diversification events should be dichotomous (one lineage splits

into two); however, trees may not be completely dichotomous. Polytomies are

common when one computes a consensus tree (a topology that agrees with those

found in several trees). These are trees that are generated from bootstrap analysis

with many replicates (the fusion of multiple high scoring trees that should be

considered as candidates). Lengths illustrate divergence in the characters used to

construct the phylogeny (substitutions in DNA sequence). To infer the evolutionary

history of an organism, different molecular markers such as DNA, RNA, and

protein sequences are used. DNA or protein sequences from homologous

(orthologous) genes or proteins from different organisms have been aligned using

sequence alignment algorithms. Sequence alignments are arrangements of multiple

DNA or protein sequences that tend to minimize the number of gaps and mis-

matches if an alignment is done judiciously. Hence, sequence alignment is a major

tool in construction of a phylogenetic tree. There are three methods for constructing

phylogenetic trees: maximum parsimony, distance measure, and maximum likeli-

hood. Maximum parsimony is employed when the evolutionary distances between

taxa are relatively short and assumes the rate of mutation among all sequences are

equal. Maximum parsimony is based on Fitch’s algorithm which is a bottom-up

dynamic programming framework for evaluating the parsimony of a given tree and

treats each sequence locus as independent of the rest.

Maximum likelihood is often used to construct trees for publication, with the

cost of time-consuming processing and is most sensitive when working sequences

spanning large evolutionary distances. Maximum likelihood is a robust method that

outperforms alternative methods such as parsimony and distance methods

(UPGMA) but it is computationally very intensive; therefore, it is slow on

most computers. The popular phylogenetic maximum likelihood algorithms are

PHYLIP, RAxML, genetic algorithm for rapid likelihood inference (GARLI),

PHYML, etc. Statistical support for a phylogenetic tree has performed by a boot-

strap analysis. Distance methods are often used to generate a starting tree for the

maximum likelihood method and are important to understand the functionality of

these three methods in detail in order to construct an approximate real tree of evol-

ution. Distance methods aim to identify the tree that minimizes sequence diver-

gence. The idea behind this approach is that the minimum sequence divergence

minimizes evolution. These methods do not utilize an alignment during the tree
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search; instead they use a pairwise distance matrix. Distance matrix can be com-

puted by determining the proportion of nucleotides that differ between all pairs.

Distance method is a stepwise process which includes five basic steps—align-

ment of sequences, computation of pairwise distances between sequences, applying

evolutionary correction, construction of tree (Hierarchical Clustering) and evaluat-

ing tree, and selecting the best one. There are several sequence alignment tools

available such as ClustalW, Muscle, and NAST. The simplest method to find

pairwise dissimilarity is Hamming distance which can find number of mismatches.

Hamming distance does not take into account the likelihood of one amino acid to

other. These problems can be addressed by assigning these sequences a number in

order to associate with each possible alignment. The scoring scheme is a set of rules

which assigns the alignment score to any given alignment of two sequences. The

scoring scheme is residue based: it consists of residue substitution scores, minus

penalties for gaps. The alignment score is the sum of substitution scores and gap

penalties. Point accepted mutation (PAM matrices) and Blocks Substitution Matrix

(BLOSUM) are substitution matrices for amino acid alignment. Different versions

of PAM and BLOSUM Substitution Matrix are given in Table 10.1 (Source NCBI).

Given the computed distance matrix from above, we could construct a tree.

However, how do we know that multiple mutations haven’t occurred at the same

locus? Multiple substitutions can be caused by enough evolutionary time, high

mutation rates, action of positive natural selection. It is quite possible homologous

nucleotide positions have undergone multiple substitutions. To generate distance

values that correct for multiple hits, one can perform the Jukes–Cantor correction or

the Kimura 2-paramter model. Jukes–Cantor correction assumes that all types of

mutations/substitutions occur at the same rate. Kimura two-parameter model cor-

rects for multiple hits, giving differential weight to transitions and transversions. In

the next step, we can construct tree using hierarchical clustering. UPGMA is the

most popular hierarchical clustering algorithm used in the research to construct a

single rooted phylogenetic tree. The basic assumption of UPGMA is that distance

from any node to leaf will be the same for all common descendants and there is a

constant rate of evolution. Two sequences with shortest evolutionary distance

between them are assumed to have been the last to diverge. UPGMA is very com-

putationally efficient and provides a good starting point for more sophisticated

phylogenetic analysis. However, some issues with UPGMA are that it is very sensi-

tive to unequal evolutionary rates and clustering only works if data is ultrametric

(the evolutionary rate is the same for all branches).

Table 10.1 Different

versions of PAM and

BLOSUM substitution matrix

Query length Substitution matrix Gap cost

<35 PAM-30 (9,1)

35–50 PAM-70 (10,1)

50–85 BLOSUM -80 (10,1)

85 BLOSUM-62 (10,1)

Source: https://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html
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10.4 Phylogenetic Tree Construction Using Hierarchical

Clustering Algorithms and Tools

When talking about phylogenetic analysis, hierarchical clustering algorithms are

unignorable. Given a set of sequences, hierarchical clustering algorithms, cluster

these sequences and seek to build a hierarchy of clusters based on the differences.

These algorithms work behind the construction of phylogenetic tree (Fig. 10.2).

Two different types of hierarchical algorithms are available in literature—agglom-

erative and divisive strategies. Agglomerative hierarchical clustering is a bottom-up

approach where each sequence is considered as a cluster in its own. These singleton

clusters merge with other clusters when onemoves up in hierarchy. On the other hand,

divisive hierarchical clustering algorithm is a top-down approach in which all

sequences start in one cluster and splits are performed as one moves down in hier-

archy. The results of both these hierarchical clustering are dendrograms representing

phylogenetic trees.

10.5 Hierarchical Clustering Algorithms

UPGMA (Unweighted Pair-Group Method using arithmetic Averages) is probably

the most popular hierarchical algorithm for computational biology. D’haeseleer
has used UPGMA for gene expression analysis and Liu and Rost have used it for

protein sequence clustering. UPGMA was used for gene ontology (GO) by

Ashburner et al. and classifies genes into hierarchies of biological processes and

molecular functions. ProtoNet was used to build a hierarchy of protein sequences

Choosing an appropriate marker for the
phylogenetic analysis

Multiple Sequence Alignments

Selection for Evolutionary Model

Phylogenetic Reconstruction

Evaluation of the Phylogenetic Tree

Fig. 10.2 The construction

of a phylogenetic tree
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from sequence similarities. This way UPGMA can be used for a variety of phylo-

genetic analysis. UPGMA has been used as a phylogenetic tree construction tool

for rhizobia number of researches (Blažinkov et al. 2007; Abdel-Aziz et al. 2008;

Faisal et al. 2009; Dourado et al. 2009; Jurelevicius et al. 2010; Lyra et al. 2013;

Jia et al. 2015; Hassen et al. 2014; Baginsky et al. 2015). The other algorithms for

hierarchical clustering that are not very popular such as AGNES, DIANA,

BIRCH, ROCK, Chameleon, and CURE but have also been referred in this

chapter.

10.6 Hierarchical Clustering Tools

Besides hierarchical algorithms, other hierarchical clustering tools for evolutionary

study of rhizobia are also available in literature. R package is a statistical tool

having a variety of functions related to sequence analysis (Bontemps et al. 2005;

Vercruysse et al. 2011; Knief et al. 2011; Tian et al. 2012; McGinn et al. 2016).

Another tool is SPSS that is basically a statistical tool but have some plugins avail-

able for phlogenetic study. SPSS was used by Ba et al. (2002) for phygenetic study

of rhizobia. Similarly, GeneSpring 7.3.1 was used by Koch et al. (2010). Other tools

and packages that are available for phylogenetic tree construction are Cluster 3.0,

ELKI, Octave, Orange, SCaVis, Scikit-learn, Weka, and CrimeStat. There are sev-

eral evidences of using hierarchical clustering for phylogenetic tree creation in

literature but the name of the algorithm has not been authors (Mathur and Tuli

1990; Frédéric Ampe et al. 2003; Korner et al. 2003; Bontemps et al. 2005;

Capoen et al. 2007; Brechenmacher et al. 2008; Schuller et al. 2012; Choi and

Yun 2016).

10.7 Phylogenetic Tools Used for Rhizobial Research

(1990–1999)

Phylogenetic analysis of rhizobia and agrobacteria was performed by Willems and

Collins (1993) using 16s RNA gene sequences obtained from EMBL Data Library.

Tools used for pairwise sequence analysis and phylogenetic tree construction have

been discussed in Table 10.2. Results of phylogenetic analysis suggested that the

genera Bradyrhizobium and Azorhizobium belong to distinct phylogenetic lineages,

and there is evidence of intermixing of Rhizobium and Agrobacterium species in

subgroups. Phylogenetic relationships among Rhizobium species for nodulating the

common bean (Phaseolus vulgaris L.) was determined by Berkum et al. in 1996. A

direct sequencing of amplified 16s ribosomal DNA genes was performed. Tools

used for alignment of sequences, creation, and analysis of phylogenetic trees have

been discussed in Table 10.2. As a result, four clusters were formed—cluster 1 with
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Rhizobium leguminosarum bv. trifolii, R. leguminosarum bv. viciae, and

R. leguminosarum bv. phaseoli. Cluster 2 and cluster 3 which comprises Rhizobium
etli and Rhizobium tropici, and cluster 4 contained a single bean-nodulating strain

(Berkum et al. 1996). Genetic and phylogenetic study of four Rhizobium genera was

performed by Young and Haukka (1996). Phylogenietic tree of rhizobia and some

related bacteria was created by the neighbour-joining method from SSU rRNA

sequences and subdivided rhizobia into three genera: Rhizobium, Bradyrhizobium,
and Azorhizobium that lie in distinct branches of subdivision of the Proteohacteria
that contains many non-rhizobial bacterial species. Results revealed that the com-

mon rhizobial ancestor does not contain genes for legume nodules but procured by

phylogenetically distinct bacteria in course of evolution. In essence, nitrogen

fixation genes are often linked to nodulation genes, but it need not to have the

same evolutionary history. Tan and colleagues have studied the phylogenetic rela-

tionships of Mesorhizobium tianshanense with other related rhizobia (Tan et al.

1997). The details of phylogenetic tools used for the study have been given in

Table 10.2. A clear difference was appeared between M. tianshanense cluster and
Rhizobium cluster for SDS-PAGE.

The DNA–DNA relatedness between type strain ofM. Tianshanense and type or
reference strain of Mesorhizobium loti, M. huakuii, M. ciceri, and

M. Mediterraneum ranged from 4.4 to 43.8%. Phylogenetic analysis based on the

16s rRNA gene sequences showed that M. tianshunense was closely related to the

Mesorhizobium but distinguished from the other four species in this branch. These

results further confirmed that these bacteria constitute a distinct rhizobial species

(Tan et al. 1997). The characterization of R. etli and other Rhizobium spp. was

performed by Sessitsch et al. (1997) using PCR analysis with repititive primers that

nodulate P. vulgaris in Australian soil. The plasmid profiles, nifH profiles, PCR-

RFLP analysis of 16s rRNA gene, and of the 16s rRNA–23s rRNA intergenic

spacer and nodulation phenotypes were analysed. Dendograms were generated

using SAHN and results suggested that Phaselous vulgaris strain found in Austria

were derived from rhizobia obtaining in Mesoamerica (Sessitsch et al. 1997). The

genetic diversity and phylogeny of 40 rhizobia that nodulating four Acacia species

viz. A. Gummifera, A. Raddiana, A. Cyanophylla, and A. Horrid from Morocco

were analysed by Khbaya et al. (1998) using rRNA and 16S–23S rRNA spacer by

PCR with RFLP analysis. Tools used for phylogenetic analysis are discussed in

Table 10.2. 16s RNA analysis identified three clusters out of which two belonging

to Sinorhizobium meliloti and Sinorhizobium fredii. The third cluster was Rhizo-
bium galegae that is closely related to the Agrobacterium tumefaciens species

whose phylogenetic position was determined with respect to other rhizobia and

agrobacteria using PCR-RFLP with nine restriction enzymes of 23s rRNA genes of

42 rhizobial and agrobacterial strains retrieved from the EMBL database. As a

result, 27 and 32 different restriction patterns were found for 16s and 23s RNA

which were aligned using PILEUP and a phylogenetic tree was constructed using

CLUSTALW. The 16S analysis of R. galegae formed a sub-group on the Agro-
bacterium branch, but in the 23s analysis, they are part of the Rhizobium branch

(Khbaya et al. 1998).
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The nod gene of the Mesorhizobium huakuii and R. galegae was studied by a,

b-unsaturated N-acyl substitutions (Yang et al. 1999). The in silico tools used for

this analysis are discussed in Table 10.2. The benchmarking of the evolutionary

dynamics of symbiotic and housekeeping loci of the genetic coherence of rhizobial

lineages was performed by isolating 47 rhizobial strains from nodules of 13 genera

of the temperate herbaceous Papilionoideae across several continents. Analysis

showed that each locus subdivides strains into genera Rhizobium, Sinorhizobium,
and Mesorhizobium. In contrast to the previous study, results indicate a lack of

lateral transfer across major chromosomal subdivisions and a significant incongru-

ence of nod and GSII phylogenies within rhizobial subdivisions which strongly

suggests horizontal transfer of nod genes among congenerics (Yang et al. 1999).

10.8 Phylogenetic Tools Used for Rhizobial Research

(2000–2010)

A study of nitrogen-fixing nodules of Ensifer adhaerens harbouring R. tropici
symbiotic plasmids was performed (Rogel et al. 2001). The ribosomal fingerprint-

ing was performed digesting PCR products with 16S rRNA gene restriction enzyme

HinfI, MspI, RsaI, HhaI, Sau3A1, and DdeI with primers fD1 and rD1 from

E. adhaerens transconjugants. The details of in silico analysis are given in

Table 10.3. Results indicated that E. adhaerens is related to Sinorhizobium spp.

E. Adhaerens did not nodulate P. vulgaris (bean) or Leucaena leucocephala, but
with symbiotic plasmids from R. tropici, it formed nitrogen-fixing nodules on both

hosts. A close relationship among P. vulgaris symbionts was revealed on classify-

ing a collection of 83 rhizobial strains based on nodC and nifH genes in 23 recog-

nized species distributed in the genera Rhizobium, Sinorhizobium, Mesorhizobium
and Bradyrhizobium, as well as unclassified rhizobia from various host legumes.

Irrespective of 16S rRNA-based classification, phylogenetic trees revealed that

nodC and nifH were similar but incongruence in some cases suggested that genetic

rearrangements have occurred in course of evolution. This is an indication of lateral

genetic transfer across Rhizobium and Sinorhizobium genera that played a role in

diversification and in structuring of population of rhizobia (Rogel et al. 2001).

Velázquez et al. (2005) worked on the coexistence of symbiosis and

pathogenicity-determining genes in Rhizobium rhizogenes strains that enabled

them to induce nodules and tumours or hairy roots in plants. The in silico tools

are discussed in Table 10.3. Rhizobium sequence analysis of 12 rhizobial species

was performed using 16S rRNA and dnaK genes (Table 10.3) (Eardly et al. 2005).

The discordance between 16S rRNA and dnaK phylogenies was tested with the

incongruence length difference (ILD) test. As a result, two groups of related species

were identified by neighbour-joining and maximum parsimony analysis. One group

consisted of M. loti and Mesorhizobium ciceri, and the other group consisted of

Agrobacterium rhizogenes, R. tropici, R. etli, and R. leguminosarum. Although
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bootstrap support for the placement of the remaining six species varied,

A. tumefaciens, A. rubi, and A. vitis were consistently associated in the same

sub-cluster. The three other species included were R. galegae, S. meliloti, and
Brucella ovis. The placement of R. galegae was the least consistent in this study.

It was placed flanking the A. rhizogenes-Rhizobium cluster in the dnaK nucleotide

sequence trees. On the other hand, it was placed with the other three Agrobacterium
species in the 16S rRNA and the DnaK amino acid trees. An effort to explain the

inconsistent placement of R. Galegae was performed by examining the poly-

morphic site distribution patterns among the various species. The similarity in

localized runs of nucleotide sequence was an evident and suggesting that the

R. galegae genes are chimeric. These results provide a tenable explanation for the

phylogenetic placement of R. galegae, and they also illustrate a potential pitfall in

the use of partial sequences for species identification (Eardly et al. 2005).

An attempt was performed for monophyletic clustering and characterization of

protein families ofM. tuberculosis, Rhizobium sp., E. coli, H. pylori, Synechocystis
sp., M. thermoautotrophicum, A. aeolicus, B. burgdorferi, P. horikoshii,
T. pallidum, B. subtilis, M. jannaschii, H. influenzae, and A. fulgidus was made

(Zhang et al. 2007) (Table 10.3). A polyphasic characterization of Brazilian

R. tropici strains effective in fixing N2 with common bean (P. vulgaris L.) was

done (Pinto et al. 2007). Phylogenetic analysis was performed using tools indicated

in Table 10.3. The results have shown that the trend of a group of monophyletic

proteins might be characterized by a normal distribution, while the strength and

variability of this trend can be described by the sample mean and variance of the

observed correlation coefficients after a suitable transformation. Genotypic char-

acterisation of indigenous R. leguminosarum was performed (Blažinkov et al.

2007). Thirteen R. leguminosarum bv. viciae strains were isolated from continental

part of Croatia and were analysed using two DNA fingerprinting methods, Ran-

domly Amplified Polymorphic DNA (RAPD-PCR) and Repetitive Extragenomic

Palindromic-PCR (REP-PCR). The UPGMA algorithm was used to perform hier-

archical cluster analysis and to construct a dendrogram. An evolution and func-

tional characterization of the RH50 gene from the ammonia-oxidizing bacterium

Nitrosomonas europaea was performed. For phylogenetic analysis, various tools

are used that are discussed in Table 10.3. Analysis with nonparametric bootstrap

analysis and an approximate likelihood ratio test, both methods resulted in similar

grouping of strains. Cluster analysis of REP and RAPD-PCR profiles showed

significant differences among R. leguminosarum bv. viciae isolates. These results

suggested the presence of adapted indigenous R. leguminosarum bv. viciae strains,
probably with higher competitive ability, whose symbiotic properties were evalu-

ated (Blažinkov et al. 2007).

Phylogenetic analysis of nitrogen-fixing and quorum-sensing bacteria was per-

formed (Chaphalkar and Salunkhe 2010). Protein sequences of NifH (nitrogenase

reductase), LuxA (Luciferase alpha subunit), and LuxS (Sribosyl homocysteine

lyase) from 30, 17, and 25 species of bacteria were aligned, respectively. Phylo-

genetic analyses on the basis of 16S rRNA was performed using GeneBee,

ClustalW, and PHYLIP. Further details are given in Table 10.3. Phylogenetic
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trees were constructed in the form of cladograms, phylograms, and unrooted radial

trees. According to the results obtained, the most highly evolved group of organ-

isms with respect to their nitrogenase reductase protein is that of Desulfovibrio
vulgaris and Chlorobium phaeobacteriodes. Bacillus thuringiensis and Bacillus
subtilis hold the most highly evolved forms of LuxS protein. The motif pattern

analysis between Bradyrhizobium japonicum and R. leguminosarum NifH protein

sequence shows that there may be quorum-sensing mediated gene regulation in

host bacterium interaction (Chaphalkar and Salunkhe 2010).

10.9 Phylogenetic Tools Used for Rhizobial Research

(2011–2016)

The genetic diversity of rhizobia-nodulating lentil (Lens culinaris) in Bangladesh

was performed by phylogenetic analysis of housekeeping genes (16S rRNA, recA,
atpD, and glnII) and nodulation genes (nodC, nodD, and nodA) of 36 bacterial

isolates from 25 localities across the country (Rashid et al. 2012). BioEdit, Mega,

and MrBayes were used for alignment and tree construction and analysis

(Table 10.4). Results indicated that most of the isolates (30 out of 36) were related

to R. etli and R. leguminosarum. Only 30 isolates were able to re-nodulate lentil

under laboratory conditions. The protein-coding housekeeping genes of the lentil-

nodulating isolates showed 89.1–94.8% genetic similarity to the corresponding

genes of R. etli and R. leguminosarum. The same analyses showed that they split

into three distinct phylogenetic clades (Rashid et al. 2012).

A characterization of rhizobia-nodulating Galega officinalis and Hedysarum
coronarium was performed (Liu et al. 2012). The study indicated that these species

of New Zealand form effective nodules with R. galegae and R. Sullae only. The

sequence analysis of 16S rRNA and housekeeping genes and plant nodulation tests

were carried out. Only R. galegae strains were isolated from G. officinalis and

selected strains induced effective nodules when re-inoculated onto the host plant.

Agrobacterium vitis, R. galegae, and R. sullae strains were isolated from nodules of

H. coronarium, but only R. sullae induced effective nodules on this plant. For

phylogenetic analyses, DNA sequences were aligned and Maximum Likelihood

(ML) trees were constructed with 1000 bootstrap replications using MEGA5

software (Table 10.4). Model test was performed and the best model was selected

for each gene. The models of evolution used for 16S rRNA, atpD, and recA were

T92+G+I, T92+I, and T92+G, respectively. Results from this study concur with

previous reports on their high degree of specificity in relation to their rhizobial

symbionts. Mesorhizobium spp. known to nodulate New Zealand native legumes

were not found in the nodules ofG. officinalis andH. coronarium. However, further
work, which included cross-nodulation tests with native rhizobia and sampling of

both legumes at various sites, would confirm the specificity of these legumes in

New Zealand (Liu et al. 2012). A discovery of a new beta-proteobacterial
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Rhizobium strains was performed in (Taulé et al. 2012), which was able to effi-

ciently nodulate Parapiptadenia rigida (Benth.) Brenan.
A collection of Angico-nodulating isolates was obtained and 47 isolates were

selected for genetic studies. According to entero-bacterial repetitive intergenic

consensus PCR patterns and RFLP analysis of their nifH and 16S rRNA genes,

the isolates could be grouped into seven genotypes, including the genera Burkhol-
deria, Cupriavidus, and Rhizobium, among which the Burkholderia genotypes were
the predominant group. Details of the tools used for this study was given in

Table 10.4. The bootstrap consensus tree inferred from 1000 replicates is taken to

represent the evolutionary history of the amino acid sequences analysed. Branches

corresponding to partitions reproduced in <50% bootstrap replicates are collapsed.

The percentage of replicate trees in which the associated taxa clustered together in

the bootstrap test (1000 replicates) has been shown next to the branches. The tree is

drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. The evolutionary distances were

computed using the Poisson correction method and are in the units of the number

of amino acid substitutions per site. All positions containing alignment gaps and

missing data were eliminated in pairwise sequence comparisons. Phylogenetic stud-

ies of nifH, nodA, and nodC sequences from the Burkholderia and the Cupriavidus
isolates indicated a close relationship of these genes with those from beta-

proteobacterial rhizobia (beta-rhizobia) rather than from alpha-proteobacterial

rhizobia (alpha-rhizobia). In addition, nodulation assays with representative iso-

lates showed that while the Cupriavidus isolates were able to effectively nodulate

Mimosa pudica, the Burkholderia isolates produced white and ineffective nodules

on this host (Taulé et al. 2012). Rhizobium pongamiae sp. from root nodules of
Pongamia pinnata was studied in (Kesari et al. 2013). Phylogenetic analysis of

sequences of 16S rRNA, recA, and atpD genes was performed using tools discussed

in Table 10.4. Phenotypic and molecular study of rhizobia isolated from nodules of

peanut (Arachis hypogaea L.) grown in Brazilian Spodosols (Pernambuco State)

was performed (Lyra et al. 2013). A total of 22 bacterial strains were isolated from

nodules of seven peanut varieties. Refer Table 10.4 for details. The genome

sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain

TA1 was analysed (Table 10.4) (Reeve et al. 2013). A little information about

the phylogeny of the isolates was found by the analysis of the phenotypic

characteristics-colony morphology and IAR. A great diversity of these rhizobia

and the presence of new species were revealed by using compilation of phenotypic

and molecular characteristics.

The genome sequence and transfer properties of Rhizobium grahamii was

studied (Althabegoiti et al. 2014). The Genome sequence was obtained from

R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. It

comprises one chromosome and two extrachromosomal replicons (ERs),

pRgrCCGE502a and pRgrCCGE502b, and a plasmid integrated in the CCGE502

chromosome. Several analysis tools were used for phylogenetic study. Details of

these tools are presented in Table 10.4. The analysis showed variable degrees of

nucleotide identity and gene content conservation in R. grahamii CCGE502
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replicons as compared to R. mesoamericanum genomes. The extrachromosomal

replicons from R. grahamii were similar to those found in other related Rhizobium
species. A limited similarity was observed in R. grahamii CCGE502 symbiotic

plasmid and megaplasmid in distant Rhizobium species. The set of conserved genes

in R. grahamii are highly expressed in R. phaseoli on plant roots. This was an

indication of its role in root colonization. The diversity and nitrogen fixation

efficiency of rhizobia isolated from nodules of Centrolobium paraense was studied
(Baraúna et al. 2014). Soil samples were collected from four sites of the Roraima

Cerrado, Brazil and used to cultivate C. paraense in order to obtain nodules. The

results revealed that C. paraense is able to nodulate with different Rhizobium
species and Bradyrhizobium isolates had the highest symbiotic efficiency on

C. Paraense and showed a contribution similar to the nitrogen treatment, some of

which have not yet been described. The nitrogen-fixing rhizobial strains were

isolated from non-inoculated bean plants. Total nine isolates were obtained which

belong to the Rhizobium and Sinorhizobium groups. The strains showed several

large plasmids, except for a Sinorhizobium americanum isolate (Table 10.4) (Mora

et al. 2014). Fourteen narrow-host-range bacteriophages that infect R. etli were
isolated from rhizosphere soil of bean plants from agricultural lands in Mexico

using an enrichment method (Santamarı́a et al. 2014). The complete genome of nine

phages of size varied from 43 to 115 kb was obtained. Four phages were resistant to

several restriction enzymes. A large proportion of open reading frames of these

phage genomes (65–70%) consisted of hypothetical and orphan genes. Refer

Table 10.4 for details of in silico tools used in this study. Authors have classified

these phages into four genomic types on the basis of their genomic similarity,

gene content, and host range and proposed that these bacteriophages correspond to

novel species (Santamarı́a et al. 2014).

Twenty rhizobial strains isolated from the root nodules of soybean (Glycine max
L.) were collected from diverse agro-climatic and soil conditions in Egypt (Youseif

et al. 2014). The strains were characterized using a polyphasic approach, including

nodulation pattern, phenotypic characterization, 16S rDNA sequencing, nifH and

nodA symbiotic genes sequencing, and REP-PCR fingerprinting. Please refer

Table 10.4 for details. The complete sequencing of 16S rRNA demonstrated that

native soybean-nodulating rhizobia are phylogenetically related to Brady-
rhizobium, Ensifer, and Rhizobium (syn. Agrobacterium) genera. The study of toler-
ance ability to environmental stresses revealed that local strains survived in a wide

pH ranges (pH 5–11) and a few of them tolerated high acidic conditions (pH 4).

Agrobacterium strains were identified as the highest salt tolerant and were survived

under 6% NaCl; however Ensifer strains were the uppermost heat tolerant and can

grow at 42oC. The DNA and the 16S rRNA gene of 14 isolates of rhizobia-

nodulating Phaseolus lunatus from Brazil were extracted and sequenced using

primers fD1 and rD1 (Araujo et al. 2015). Phylogenetic study was performed

using tools discussed in Table 10.4. More than 50% of strains studied were

positioned in the Bradyrhizobium clade and one strain was positioned in the

R. etli/Rhizobium phaseoli clade. Two strains were grouped within the R. tropici
group and three strains, ISOL16, ISOL21, and ISOL27 represent new lineages. This
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is a clear indication of that there is a high species diversity of rhizobia-nodulating

P. lunatus in Northeast Brazil, including potential new species. To study the genetic

diversity of Rhizobium from nodulating beans grown in a Mediterranean climate

soils of Chile, the genetic similarity among the PCR-RFLP patterns was performed

(Baginsky et al. 2015). The phylogenetic analysis tools used in this study have been

presented in Table 10.4. The bayesian phylogenetic analysis of rhizobia of the

genus Sulla was performed on three Tunisian wild legume species (Chriki-Adeeb

and Chriki 2015). The phylogenetic relatedness and substitution rates of 16S rRNA

gene and ITS region sequences were analysed by using a relaxed-clock program

(Multidivtime) (Table 10.4). The results indicate that Bayesian inferred trees were

congruent and showed a clear split between Agrobacterium and Rhizobium species.

The ITS region evolutionary rate was 15-fold higher than the 16S rRNA gene rate,

suggesting that the ITS region represented an appropriate molecular marker for

inferring phylogenies and divergence times in bacteria. Phylogeny of genospecies

of R. leguminosarum that are not ecologically coherent was studied by (Kumar et al.

2015). Phylogenetic trees were constructed using either neighbour-net or maximum

likelihood (ML) methods. A molecular phylogenetic analysis of Rhizobium sullae
isolated from Algerian Hedysarum flexuosum was performed by (Aliliche et al.

2016) using 16S rRNA, recA, nodD, and nifH genes (Table 10.4). Choi and Yun

have analysed transcriptional profiles of Rhizobium vitis. Complete linkage hier-

archical clustering based on the Euclidean distances of samples was performed using

the normalized significant genes. The patterns of expressed changes were analysed

for groups using the Avadis Prophetic Ver. 3.3 software (Choi and Yun 2016).

10.10 Conclusion

A number of hierarchical clustering-based algorithms and in silico techniques have

been used by researchers for phylogenetic analysis of rhizobia. These popular tools

include Blast, Blastn, and BioEdit for pairwise sequence alignment; Muscle,

TCofee, ClustalW, and ClustalX for multiple sequence alignment; Phylip tools

for phylogenetic inference such as Drawgram to plot rooted tree, DrawTree to draw

unrooted tree, consensus to compute consensus tree; MrBayes for Bayesian infer-

ence of phylogeny of Rhizobium; Mega—a complete package for sequence align-

ment and phylogenetic inference and UPGMA—a hierarchical algorithm for

creating evolutionary tree. We hope the information content from this chapter

will help emerging researchers to perform further empirical study to understand

rhizobial phylogeny in more details.
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