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Chapter 9
Impact of Cytokines in Hepatocellular 
Carcinoma Initiation and Progression

Yeni Ait-Ahmed and Fouad Lafdil

Over the past several decades, numerous studies have shown that inflammatory dis-
eases and infections trigger or promote the development and progression of many 
types of cancers [65], including hepatocellular carcinoma (HCC) which occurs in 
most cases at late stages of chronic liver disease associated with viral hepatitis B 
and C infection, metabolic disorders, and alcohol heavy consumption [41].

Chronic liver diseases, whatever their etiologies, are often associated with a sus-
tained inflammatory response leading to repeated injury, fibrosis and at late stages, 
to cirrhosis. HCC arises in the setting of cirrhotic livers in 80 to 90% of cases and 
progresses in an inflammatory context. Despite significant progress in HCC diagno-
sis and improvement of the curative strategies, its incidence is still increasing in 
western countries and the prognosis of patients with advanced HCC remains in 
general very poor. Recurrence and non-response to the current anti-cancer treatment 
occur frequently. Diverse immune cell types associated with the release of a large 
spectrum of inflammatory cytokines appeared to be a key component in HCC emer-
gence, progression and in therapeutic failures. Many factors produced by infiltrating 
immune cells such as chemokines, growth factors, cytokines and proangiogenic fac-
tors contribute to the promotion of cell survival, proliferation, epithelial-
mesenchymal transition and genomic DNA instability [55].
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Thus, a better characterization of the underlying molecular and cellular mecha-
nisms by which HCC development and resistance occur may open new insights for 
the development of more effective anticancer therapies. In addition to curative strat-
egies for HCC, it is of interest to identify and block the immune cell types and their 
associated cytokines susceptible to trigger tumor initiation and progression.

9.1  �Cytokines in Chronic Liver Diseases: A Risk Factor 
for HCC Initiation

9.1.1  �Chronic Alcohol Consumption is a Risk Factor for HCC 
Emergence

Chronic alcohol consumption is associated with hepatic inflammation leading to 
cirrhosis development, and constitute a risk factor for HCC initiation. Chronic liver 
diseases are mainly due to recurrent and excessive liver inflammatory processes, as 
observed in alcoholic liver disease (ALD). ALD ranks among the major causes of 
morbidity and mortality worldwide, with a mortality rate in the USA and in Western 
Europe estimated to be approximately 5–6%. In USA, ALD is responsible for up to 
100,000 deaths per year. ALD can present as steatosis (fatty liver, i.e. accumulation 
of triglycerides in hepatocytes), the prevalent lesion found in excessive drinkers that 
is now recognized as harbinger of worse disease to follow when liver insult is sus-
tained. Indeed, steatosis may progress towards alcoholic steatohepatitis (ASH), 
when accompanied with liver inflammation and hepatocyte injury, that promotes 
liver fibrogenesis with a 20% risk of cirrhosis after 10–20 years. Severe alcoholic 
hepatitis (AH) is a specific clinical form characterized by a prolonged and intense 
inflammatory reaction despite alcohol withdrawal, and associated with a sponta-
neous 50% mortality rate after 6 months. Current management of steatosis and mild 
to moderate forms of AH relies upon abstinence. In severe AH, corticosteroids 
reduce the mortality rate to 15–20% after 6 months. Nevertheless, outcome after 
1 year remains grim with survival rates ranging between 50 to 60%. Overall, these 
figures underscore the urgent need for novel therapeutic approaches targeting 
inflammation in the management of ALD.

9.1.1.1  �Role of Innate Immune Cytokines

Activation of hepatic innate immune cells is the first step that triggers inflammation 
in alcoholic patients. Indeed, dysregulated cytokine signaling, particularly of those 
released by the resident macrophages of the liver (Kupffer cells), plays a pivotal role 
in the pathogenesis of ALD. In particular, several clinical and experimental studies 
have shown that overproduction of TNF-α by activated Kupffer cells is central to 
the inflammatory process associated with ALD [95, 121, 126]. The mechanism 
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leading to increased TNF-α production in response to ethanol involves enhanced 
intra-hepatic oxidative stress and altered gut permeability, thereby allowing 
enhanced translocation of endotoxin (LPS) into the portal blood, and activation of 
Kupffer cells following binding of LPS to its receptor Toll Like Receptor 4 (TLR4). 
TNF-α [141] induces hepatocyte cell death and inflammatory cell infiltration [12]. 
Furthermore, liver regeneration has also been shown to be impaired in ALD [60]. In 
addition, clinical treatments of patients with severe AH based on TNF-α neutraliza-
tion with pentoxifilin (PTX) [1] or monoconal antibodies like infliximab [104] or 
etanercept [13] have been shown to prevent inflammation but were associated with 
severe side effects including a higher susceptibility to infection leading to increased 
mortality rate. In addition, above and beyond its detrimental role in liver inflamma-
tion, TNF-α is not only critical for the host defence, but it also induces IL-6 synthe-
sis to initiate hepatocyte proliferation and liver regeneration. IL-6 and TNF-α are 
two cytokines mainly produced by Kupffer cells in the liver and markedly induced 
after partial hepatectomy. TNF-α is a major regulator of the initiation of liver regen-
eration. It is known that IL-6 and TNF-α can stimulate hepatocyte proliferation by 
activating intracellular signalling pathways such as signal transducer and activator 
of transcription 3 (STAT-3) and CCAAT/enhancer-binding protein B (C/EBP). 
Altogether, these data point out the importance of controlling the balance between 
the inflammatory immune response required for pathogen elimination and liver 
regeneration, and the exacerbated inflammatory processes leading to hepatocyte 
cell death.

The molecular mechanisms associated with Kupffer cell activation are linked to 
acquisition of an M1 phenotype characterized by the production of a storm of 
inflammatory cytokines including TNF-α, IL-6, IL-12 and IFN-γ, which supports 
resistance to extracellular bacterial infection. However, overwhelming production 
of those cytokines by Kupffer cells is responsible for the development of 
AH.  Contrastingly, M2-polarized macrophages are defined by production of 
IL-10, IL-4, and IL-13. Although those macrophages cannot control bacterial infec-
tion, they are critical for tempering the triggered inflammatory process, and in pro-
moting tissue repair. And recently an atypical M2 profile has been reported that 
combines M1 and M2 characteristics [11] producing IL-6, TGF-β and the chemo-
kine CXCL8 (also known as IL-8) susceptible to promote liver fibrosis.

Dendritic cells (DCs) are professional antigen presenting cells. They have the 
unique capacity to catch, process and load all kinds of antigens and prime effectors 
immune cells namely CD4+ and CD8+ T cells. Basically, two types of DCs are 
described. The first DC type conventional DCs respond to lipopolysaccharide and 
lipoteichoic acid via TLR4 and TLR2, respectively, and produce TNF-α, IL-6, 
IL-12. The second DC type known as plasmacitoid DCs respond to TLR7 and TLR9 
activation by producing IFN-α [102]. Impaired DC functions highly contribute to 
tumor escape from immune-surveillance in patients with cancer [44].
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9.1.1.2  �Impact of Adaptive Immune Response

Indeed, in addition to the crucial role of macrophages, increasing evidence also 
points out the crucial role of T lymphocytes in mediating hepatitis in ALD [8, 17, 
77]. The decrease in peripheral lymphocyte number is associated with an increase 
in the ratio of T helper cells to suppressor cells in the liver. Today, four major dis-
tinct CD4+ T cell subtypes have been described: the Th1, Th2, T regulatory (Treg) 
and more recently, the Th17 phenotype.

Th1 cells that mainly produce IFN-γ, mediate immune response against intracellu-
lar pathogens, and are also involved in some autoimmune diseases [99, 107].

Th2 cells that produce principally IL-4, IL-10 and IL-13 are involved in host 
defence against extracellular parasites [99, 107] and suppress Th1 cell prolifera-
tion [38].

Th17 cells defined as producer of IL-17, IL-21 and IL-22, play a major role in 
immune response against bacteria and fungi and participate also to the induction 
of several autoimmune diseases [133], but could also protect hepatocytes in 
acute hepatitis through IL-22 production [142]. Recently, the deleterious role of 
T helper lymphocytes secreting IL-17 (Th17 cells) in recruiting neutrophils has 
been reported in ALD [88]. In addition, persistent IL-17 production has been 
identified in numerous other chronic liver diseases with deleterious functions 
leading to cirrhosis and HCC development [52, 84]. These findings strongly sup-
port the potent role of T cells in the progression of AH. Indeed, T helper differ-
entiation into a specific phenotype is mainly controlled by innate immune cells 
that in turn could respond to the variety of produced cytokines by those differen-
tiated T cells.

Treg cells regulate immune response by maintaining the self-tolerance and are ben-
eficial for treating autoimmune diseases [118]. First described as suppressive T 
cells, [118] Treg lymphocytes are involved in immunosuppression and mainly 
contribute to tumor immune escape. CD4+ CD25high FoxP3+ Treg cells are 
induced by several microenvironmental factors including IL-10, TGF-β and 
VEGF which are overexpressed in HCC [10, 50, 140]. However, studies have 
reported a negative correlation between an increase in Treg infiltrating cells and 
clinical outcome in HCC patients [58]. In addition, it has been shown that in 
many types of liver disorders including chronic viral hepatitis, liver cirrhosis and 
HCC, Treg cell number increase favored HCC appearance and growth [74]. 
IL-10 mainly produced by Treg is the most studied anti-inflammatory cytokine 
regarding HCC. It has been shown that IL-10 is overexpressed in patients with 
HCC with less optimistic prognosis compared [10, 21]. Consistent with the pre-
vious studies, these reports strongly suggest that through IL-10 production, Treg 
lymphocytes promote HCC progression.
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9.1.1.3  �Inflammation-Associated Reactive Oxygen and Nitrogen Species 
(ROS and RNS)

Notable discoveries in mechanisms involved in ALD demonstrated the critical role 
of Kupffer cells in mediating AH through TNF-α overproduction, and led scientists 
to propose therapeutic strategies neutralizing TNF-α-mediated inflammation. In 
association with TNF-α, over-production of IL-6 was pointed out as driving factor 
of liver carcinogenesis [106]. The major mechanism that has been highlighted is the 
IL-6-induced reactive oxygen species (ROS) production and epigenetic changes 
triggering HCC development [123].

Due to ethanol oxidization by the cytochrome CYP2E1, acetaldehyde and reac-
tive oxygen species (ROS) accumulate in the liver. This ROS accumulation pro-
motes lipid peroxidation, DNA damage, chromosome instability and epigenetic 
disturbance. In an inflammatory context, epithelial and immune cell activation 
induce the production of reactive oxygen and nitrogen species (RONS) by NADPH 
oxidase, and nitric oxide synthase (NOS). Studies on chronic inflammatory diseases 
including inflammatory bowel diseases (IBD) and Helicobacter pylori-induced gas-
tritis have reported increased level of RONS, suggesting a link between RONS pro-
duction and cancer risk [111, 116]. RONS production induces cell damages 
including oxidative stress, lipids, proteins and DNA abnormalities through 8-oxodG 
and 8-nitrodeoxyguanosine accumulation [101] and therefore promote tumor initia-
tion and malignancy. The discovery of RONS-induced DNA damages in chronic 
inflammatory responses including hepatitis is consistent with the involvement of 
RONS in diseases characterized by a higher cancer risk [101]. Furthermore, 
8-oxodG and 8-nitrodeoxyguanine reactivity plays an important role in hepatitis C 
virus-induced chronic hepatitis [61]. All together these observations enhance the 
link between inflammation-induced RONS and carcinogenesis. Therapeutical use 
of antioxidants (e.g., S-adenosyl-l-methionine, polyunsaturated phosphatidylcho-
line) to restore alcohol-induced methionine and oxidative balance disruption, has 
shown promising effects but still needs to be further studied [115].

9.1.2  �Cytokines in Fibrosis and Increased Risk of HCC 
Initiation

Tissue damage due to sustained inflammation leads in most cases to fibrosis devel-
opment. Liver fibrosis is caused by a large variety of chronic liver diseases and 
represents an important cause of mortality in the world. The immune system pro-
tects the host from foreign pathogens without disrupting tolerance toward self-
antigens but during fibrogenesis, inflammation contribute to the deposition and 
accumulation of collagen leading to an important modification of the physiological 
liver architecture.
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Hepatic stellate cells represent the major cell population responsible for increased 
deposition of extracellular matrix proteins including collagen molecules. Collagens 
can also be produced to a lesser extent by other cell types including progenitor cells, 
portal fibroblasts, and cholangiocytes. Many immune cells including Kupffer cells, 
natural killer cells and dendritic cells have been shown to participate to liver fibro-
genesis by releasing pro-inflammatory cytokines. These cytokines such as IFN-α 
and IFN-β, IL-6 and IL-22, activate the JAK-STAT signaling pathways by binding 
to their respective receptors.

9.1.2.1  �Antifibrotic Cytokines

Interferon type 1, 2 and 3 were identified as cytokines that in general inhibit liver 
fibrosis development. For instance, IFN-α treatment significantly reduces the 
hepatic fibrosis in mice by blocking collagen gene transcription via the interaction 
of p300 transcription factor and phosphorylated STAT1 [66]. Similarly, IFN-γ defi-
cient mice are more susceptible to develop liver fibrosis induced by CCl4 adminis-
tration or under a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet [67, 112]. 
The anti-fibrotic function of IFN-γ are more likely mediated through the induction 
of hepatic stellate cell-growth arrest and apoptosis [112].

It has been recently demonstrated that triple knockout mice for IL-10, IL-12/23 
and IL-13Ra2 are more susceptible to many pathologies related to liver including S. 
mansoni-induced liver fibrosis model. Levels of liver enzymes, hepatosplenomeg-
aly and ascites were increased, suggesting that IL-10, IL-12p40, and IL-13Rα2 con-
tribute cooperatively to reduce liver fibrosis in this model of S. mansoni infected 
mice [97].

In the liver, IL-6 and IL-22 are mainly responsible for the activation of STAT3.
IL-6 knock-out mice seems more susceptible to liver injury and fibrosis after 

CCl4 treatment [79]. Furthermore, the lack of gp130/STAT3-mediated signaling in 
hepatocytes leads to worsened DDC diet feeding related chronic cholestatic liver 
injury and fibrosis progression [109]. Similarly, hepatocyte-specific STAT3 knock-
out mice displays a higher degree of liver fibrosis compared with wild-type mice in 
various models of liver fibrosis induced by CCl4 administration, feeding with a 
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet [109], feeding with a 
choline-deficient, ethionine-supplemented (CDE) diet [80].

In hepatocytes, STAT5 activation is mainly induced by growth hormone (GH). 
Using the hepatocyte-specific STAT5 knockout mice developed in Dr. Lothar 
Hennighausen’s laboratory [26], STAT5 loss in hepatocytes has been shown to pro-
mote increased TGF-β levels and enhanced STAT3 activity induced by GH in the 
liver after CCl4 administration [6, 62]. Moreover, STAT5 deletion in the liver pro-
moted hepatic tumorigenesis induced by CCl4 injection in wild-type mice [62] and 
was responsible for the development of spontaneous liver cancer in liver-specific 
glucocorticoid receptor knockout mice [100] or in GH transgenic mice [43]. 
Although the effects of STAT5 in hepatocytes have been widely investigated, little 
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is known about the potential functions of STAT5 in the fibrogenic hepatic stellate 
cells (HSC).

9.1.2.2  �Pro-fibrotic Cytokines

It is also known that IFN-α/β and IL-12 can activate STAT4 in immune cells and 
promote inflammation. In several animal models, treatment with IL-12 has been 
shown to induce liver inflammation and reduce liver tumor growth [18, 57]. This 
inflammatory response is characterized by the activation of NK and NKT cells 
which in turn produce IFN-γ [124]. Via the activation of STAT4 in immune cells, 
IL-12 seems to act as a pro-inflammatory cytokine promoting fibrosis and liver 
injury.

Th2 cytokines such as IL-4 and IL-13 are considered to be pro-inflammatory. 
Studies have shown that administration of IL-13 inhibitors or IL-13 gene blockage 
results in a significant reduction of liver fibrosis in the S. mansoni infection model. 
In humans, a correlation has been established between elevated levels of IL-13 and 
liver fibrosis in patients with chronic HBV or HCV infection, suggesting that IL-13 
promotes liver fibrosis in an infection dependent or independent context [135]. 
These pro-fibrogenic effects can be explained by the fact that IL-13 induces HSC 
activation and promotes the production of fibrotic proteins by HSCs in a STAT6 
dependent manner. Indeed, STAT6 blockage with siRNA inhibits HSC activation 
in vitro [3, 122]. Moreover, STAT6-deficient mice present smaller amounts of col-
lagen deposition in the liver compared with wild- type mice after infection with S. 
mansoni [71]. Like TGF-β, IL-4 is known to have pro-fibrotic properties as it con-
tributes to HSC activation and collagen production [3, 69]. Furthermore, IL-4 
expression levels are higher in fibrotic liver from S. mansoni-infected baboons [37]. 
Although the role of IL-13 in liver fibrosis is reported in the S. mansoni infection 
model, studies to come need to clarify to what extent STAT6 in HSC is implicated 
in liver fibrogenesis in patients with chronic liver diseases.

IL-6 is a major pro-regenerative factor and induces the acute phase in the liver by 
stimulating hepatocytes to produce acute phase proteins such as C-reactive protein, 
serum amyloid A and complement C3 [114]. Clinical studies showed that IL-6 
hepatic expression is increased and positively correlated with the degree of liver 
fibrosis [32, 136]. As IL-6 receptors are widely expressed on all types of cells in the 
liver, it can explain how IL-6 may have distinct roles in all these types of cells by 
regulating positively and negatively liver fibrosis. It has been shown that IL-6 can 
directly promote HSC survival and proliferation resulting in enhanced liver fibrosis. 
Collectively, the major effect of IL-6 on liver fibrosis is the result of the balance 
between on the one hand the inhibitory effect through STAT3 activation in hepato-
cytes and the stimulatory effects enhancing HSC survival, which depend on liver 
fibrosis stage and etiology.
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9.1.3  �Influence of Cytokines in Liver Progenitor/Stem Cell 
Activation: A Potent Mechanism of HCC Initiation

Liver progenitor cell (LPC) proliferation is reported in ductular reaction, often 
observed, in cirrhotic livers, hepatitis B and C viral infections, alcoholic or non-
alcoholic steatohepatitis. Their appearance is associated with increased incidence of 
HCC. An interest in LPC biology emerged because of their stem-cell-like capacities 
to promote liver regeneration and to generate liver cancer. LPCs can differentiate 
into mature hepatocytes and biliary cells. Their capacity to restore injured hepatic 
tissue has been well documented [36]. However, LPCs were also defined as precur-
sors for HCC and described as potent Cancer Stem Cells (CSCs) when they undergo 
“transformation” and generate heterogeneous lineage of cancer cells [29, 73, 94, 
117]. Many transcription factors such as NANOG, cMYC, KLF-4, OCT4, SOX2 
are stemness markers which have been reported to be increased in cancers [131].

The signaling pathways identified in HCC are also observed in isolated liver 
CSCs (eg, Wnt, Notch, TGF-β, Hedgehog, and PI3K/AKT/mTOR [86, 87]. Liver 
CSCs can be identified based on the expression of several cell markers such as 
CD90, CD44, CD24, CD13, epithelial cell adhesion molecule (EpCAM), CD133 
(prominin-1), and oval cell marker OV6 as well as Hoechst dye efflux or aldehyde 
dehydrogenase expression and activities [86, 87]. Among those markers, double 
positive CD133+ and EpCAM+ cells display higher expression of stem-cell related 
genes and appearance of drug-resistance to chemotherapeutics. CSCs can initiate 
tumor in xenograft transplantation experiments. Moreover, the high capacity of 
resistance of CSC to sorafenib therapy suggests that CSCs could contribute to the 
poor prognosis [54] and participate to HCC recurrence. Several lines of evidence 
suggest a potential role of inflammatory microenvironment in CSC-initiation and 
progression towards HCC.

Recently, a correlation between IGF-1R and the expression of stemness markers 
in HBV-related HCC has been reported and suggests that inflammatory cytokines 
are involved in CSC development. The hepatic microenvironment is markedly dis-
rupted in chronic liver diseases and characterized by infiltration of lymphocytes, 
activation of stellate cells and expansion of hepatic progenitor cells. One of the 
main axis involved in liver inflammation is IL-6/STAT3 signaling that in collabora-
tion with TGF-β potentially promotes CSC survival and proliferation in the liver 
[98, 125].
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9.2  �Mechanisms of Cytokine Contribution to Tumor Growth

9.2.1  �Role of Inflammation Related micro-RNA in HCC 
Development

In addition to its ability to modulate liver immune response, alcohol can also lead to 
epigenetic changes in inflammatory-associated genes via the multiple mechanisms 
[27]. These include (i) DNA-methyl transferases increasing methylation on gene 
promoters, (ii) an alteration of the physiological interaction between the transcrip-
tional proteins to the DNA due to inappropriate methylation, acetylation phosphory-
lation and/or ubiquitination, and (iii) more recently, a transcriptional regulation 
mediated by micro-RNAs (miRNA) [102]. Epigenetic regulation of DNA methyla-
tion, phosphorylation, and ubiquitination by alcohol has been extensively reviewed 
in many previous articles. Here we mainly discuss the role of miRNAs in pathogen-
esis of HCC.

MiRNA are single-stranded non-coding RNAs composed of 20 nucleotides 
approximately. They are mostly responsible for the post-transcriptional epigenetic 
regulation of targeted gene expression. The interest for the miRNA raised when 
evidence of aberrant expression of several miRNAs was reported in many types of 
cancers [15]. Many pathways such as p53, RAS/MAPK, PI3K/ AKT/mTOR, WNT/
β-catenin, and TGF-β are involved in HCC development. Abnormal expression of 
some miRNA has been observed in HCC compared to normal liver tissue [105]. It 
has been shown that miRNA-199a and miRNA-122 are highly expressed in healthy 
liver. Interestingly, the expression of these two miRNAs is markedly disrupted in 
HCC [63]. MiR-199 has been shown to stop cell cycle at G1 phase. A correlation 
has been reported between the downregulation of miR-199a (a member of miR-199 
family) and increased recurrence rate with reduced laps before recurrence of HCC 
[68].

MiR-122 is only expressed in adult normal liver and seems to be a key factor in 
the regulation of hepatocyte differentiation by inhibiting genes not exclusive to the 
liver [139] which makes it a particular miRNA in liver physiopathology. Consistent 
with these findings, in up to 70% of HCC, miR-122 is downregulated indicating that 
this miRNA should have an antitumor activity. Furthermore, miR-122 is known to 
promote apoptosis, block the tumor cell cycle, reduce in vivo cancer cell malig-
nancy and increase efficacy of drugs such as Sorafenib and also doxorubicin by 
inhibiting p53 activity [5, 40]. Interestingly, in liver cancer patients, miR-122 loss is 
correlated with the development of metastasis and a reduced period before recur-
rence [25, 127]. Thanks to a miR-122 KO mouse model, the role of this miR is now 
better defined [64, 128]. MiR-122KO developed chronic liver inflammation, fibrosis 
and HCC like spontaneous tumors comforting the antitumor potential of miR-122. 
Indeed, miR122 targets CULT-1 and reduces its activity which explain the undif-
ferentiated phenotype of HCC cells. Similar to miR-199, miR-122 inhibits cyclin 
G1 leading to an upregulation of p53 which is increased in HCC [51]. The link 
between miRNA and the inflammatory response seems very strong suggesting that 
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some cytokines could be involved in miRNA regulation. This mechanism by which 
cytokines could induce some miRNA targeting antitumor genes and thus promote 
tumor growth seems to be a very promising axis to explore in carcinogenesis.

In a study, up to 80% of HCC analyses showed a significant increase of miR-221 
expression. This upregulation of miR-221 leads to increased tumor growth and can-
cer cell proliferation [47, 96]. Consistent with these observations, in transgenic 
mice overexpressing miR-221 in the liver, higher HCC tumorigenicity was reported 
and could be inhibited by administrating anti-miR-221 nucleotides, called antago-
miR [16].

9.2.2  �Cytokine-Induced Oncogenic Intracellular Pathways

Raf/MAPK/ERK  signaling pathway is involved in cell growth and differentiation. 
The extracellular signal is translated from tyrosine kinase receptors including 
VEGFR, IGFR, PDGFR, EGFR and MET, triggering a cascade of intracellular 
phosphorylations [4]. RAS, a GTPase protein, and Raf, a serine/threonine kinase 
regulate the signal transduction in this pathway [75]. A study has shown that in HCC 
Raf kinase inhibitor is down-regulated leading to an over-activity of the Raf/MAPK/
ERK pathway [85]. New therapeutic approaches including Sorafenib aimed to tar-
get and inhibit Raf kinase, and consequently to limit tumor growth [137].

PI3K/Akt/mTOR  like the Raf/MAPK/ERK signaling pathway, controls prolifera-
tion, growth, motility and cell survival. HCC patients present an over-activation of 
this pathway. Indeed, it has been reported that in over 40% of HCC patients, Akt 
signaling and mTOR effector (p70s6k) were activated leading to increased cell sur-
vival and growth through an inhibition of TGF-β induced apoptosis [20]. These 
observations highlighted this signaling pathway as a potential target for therapeutic 
perspectives. Some strategies have been developed to block this pathway such as 
PI-103 inhibiting the phosphoinositide 3 Kinase (PI3K) and mTOR activation. 
These treatments showed efficacy in blocking Raf/MAP/ERK and PI3K/Akt/mTOR 
pathways leading to the reduction of EGF-induced proliferation of tumor cells [48].

Wnt/β-catenin  targets many processes including cell determination, stemness but 
also intercellular adhesion by interacting with E-cadherin and proliferative signal 
transmission through β-catenin activity [110]. Aberrant Beta-catenin activation is 
found in almost 40% of human HCC.  B-catenin degradation is regulated by 
Adenomatous Polyposis Coli (APC) protein [22, 23]. Growth factors from the 
extracellular microenvironment bind to the Frizzled (Fzd) receptors expressed on 
the cell surface and activate this pathway. In murine and human HCC, an abnormal 
activity of this pathway has been reported [30, 56]. In absence of Wnt, the destruc-
tion complex formed by AXIN1, adenomatous polyposis coli (APC), glycogen syn-
thase kinase-3β (GSK-3β), and casein kinase 1 (CK1) proteins drive the proteolysis 
of β-catenin through the ubiquitin/proteasome mechanism by phosphorylating the 
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protein. Another protein has been reported to be increased in HCC; PRC1 controls 
cytoskeleton organization and increase Wnt signaling by contributing to the 
sequestration of the complex at the membrane, promoting tumorigenesis and metas-
tasis development [19]. The role of Wnt/β-catenin in tumor growth is an attractive 
field to explore for paving the way to new therapeutic options. Indeed, antibody 
based therapies have already been developed. Blocking the β-catenin signaling 
reduced HCC tumor growth and increased apoptosis through the administration of 
anti-Wnt-1 antibodies [134].

NF-κB  plays a central role in liver injury, fibrosis and HCC development [91]. Its 
activation in macrophages lead to a large production of cytokines shaping an inflam-
matory tumor microenvironment of HCC [72]. In a DEN induced HCC murine 
model, Kupffer cell and hepatocyte specific blockade of IKK-β which is a major 
activator of NF-κB, leads to decrease tumor size and reduced the production of 
inflammatory cytokines including TNF-α and IL-6. However, an increase of hepato-
tumorigenesis was reported with a deletion of IKK-β only in hepatocytes [92]. 
These paradoxical results highlight the double-edged sword role and complexity of 
NF-κB signaling but clearly show the key role played by immune cells in shaping a 
favorable pro-tumor microenvironment.

9.2.3  �Cytokine Gene Polymorphisms Contribute to Altered 
Immune Response

In addition to the environmental factors responsible for cytokine release during 
chronic liver diseases, alteration in cytokine or cytokine receptor gene expressions 
can occur and chronically dysregulate the inflammatory response leading to cancer 
development. Such alteration results from single nucleotide polymorphisms (SNPs) 
in coding or non-coding regions of the genes. Several cytokine gene polymorphisms 
have been recently reported, including IL-1β [34], resulting in increased cytokine 
release. Furthermore, genetic polymorphisms of IL-6 are associated with fibrosis 
progression in chronic HCV infected patients [28]. Polymorphisms were identified 
in virtually all other cytokines such as TNF-α, IL-6, IL-10, TGF-β1 and IFN-γ [33].

9.3  �Cytokines in HCC Progression with Metastasis

Tumor microenvironment is shaped by myeloid and lymphoid cells including tumor 
infiltrating lymphocytes (TILs) responsible for the control of tumor growth 
(Fig. 9.1). According to their phenotypes myeloid and lymphoid cells will inhibit or 
promote tumor growth. Myeloid cells basically play a major role in the immune 
response against tumor by recognizing these tumor antigens and generating humoral 
and cellular specific immune responses. However, their ability in tumor-associated 
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antigen recognition is often altered and lead to pro-tumoral properties of those cells. 
Among lymphoid cells, two types of TILs can be distinguished: anti-tumoral effec-
tor cells such as CD8+ lymphocytes which are associated with a better prognosis 
when they are highly present in the tumor, that are opposed to pro-tumoral cells 
such as regulatory T cells (Treg) which are associated with a poor prognosis.

9.3.1  �Myeloid Immune Response in HCC Progression

Tumor Associated Macrophages (TAMs)  also play a key regulatory role in 
tumor-related inflammation and angiogenesis. TAMs are also involved in tumor 
relapse by facilitating tumor regrowth, revascularization, and spread after anti-can-
cer therapies. TAMs are associated to tumor growth through the production of 
growth factors such as EGF, VEGF and bFGF. They contribute to the invasiveness 
of tumor cells and metastasis by favoring extracellular matrix remodeling via the 
release of metalloproteases 2 and 9 (MMP2 and MMP9). They also contribute to 
vascularize the tumor by increasing angiogenesis and lymphangiogenesis via 
MMP9, VEGF and PDGF synthesis [45].

Tumor-associated neutrophils (TAN)  similarly to TAMs, have been described 
[93] CXCL8 chemokine production by tumoral cells in HCC are responsible for the 
chemotaxis of neutrophils in the stroma surrounding the nodules [83]. More recently, 
an analysis of 919 HCC identified an overexpression of the CXCL5 chemokine that 
correlated with an increase in neutrophil-infiltrating cells in the liver and a poor 
prognosis of the diseases [144]. Those recruited neutrophils favors tumoral progres-
sion in part by increase in ROS production (as mentioned earlier in this chapter) 
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[55]. Interestingly, neutrophil-derived ROS was associated with mutations and 
DNA damage [53] and activation of proteolytic enzymes including MMP-2, 7, 8, 9 
and inactivation of the Tissue inhibitor metalloprotease-1 (TIMP-1) which conse-
quently favour tumor invasiveness [31].

Myeloid Derived-Suppressor Cells (MDSCs)  represent a heterogeneous popula-
tion of cells sharing similarities with TAMs and TANs. They are often observed in 
HCC and their presence is associated with a poor prognosis. This population of cells 
is basically composed of main sub-types: monocytic MDSCs and granulocytic 
MDSCs. Under certain conditions they can adopt several phenotypes that control 
their ability to promote or restrain tumor progression. For instance, in hypoxic con-
ditions or in presence of tumor -derived factions, MDSC can differentiate into 
immunosuppressive TAMs [24]. Furthermore studies reported in vitro their capacity 
to differentiate in a macrophage, DC or granulocyte phenotype [103]. However, in 
general, MDSCs are described as suppressor of T cell activation and therefore can 
alter T-cell mediated anti-tumor function and favour tumor progression [130].

9.3.2  �Lymphoid Immune Response in HCC Progression

9.3.2.1  �Infiltrating CD8+ T Cells and Their Associated Cytokines

CD8+ T cells are major actors in antitumor immunity through their antigen specific 
cytotoxicity capacities targeting tumor antigens. These latter are ingested by host 
antigen presenting cell such as dendritic cells and processed into peptides which are 
presented via class I and class II MHC molecules respectively to CD8+ and CD4+T 
cells. In many cancer including colorectal and ovarian cancers, an increased number 
of tumor infiltrating CD8+ T lymphocytes (TIL) predicts a favorable prognosis. 
Regarding HCC, a correlation has also been reported between the presence of TIL 
and patient prognosis [46]. Indeed, the penetration of CD8+ T cells is correlated to 
an improved recurrence-free survival after liver resection [59]. These beneficial 
effects are explained by the inflammatory microenvironment generated by CD8+ 
effector T cells within the tumor leading to the establishment of an anti-tumor 
response. Studies have shown in murine models that through IL-12 stimulation, 
CD8+ T cells were activated which induce IFN-γ release leading to increased hepa-
toma cell apoptosis [76].

Recent findings [39] have highlighted CD8+ T specific responses targeting tumor-
associated antigens (TAA) in HCC. It has been shown that TAA-specific CD8+ T 
cell immune response was visible in more than 1 out of 2 HCC patients and already 
detectable in early stages of the disease. Consistent with the correlation between 
improved progression-free survival TAA-specific CD8+ T responses these results 
comfort the major role played by these cells in anti-tumor immunity.

However, in some patients with HCC, impaired functions of CD8+ T cells have 
been reported [49]. Indeed, tumors develop mechanisms to escape to immune 
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surveillance; one of them is the up-regulation of the ligand for PD-1 (PD-L1) 
responsible for addressing an inhibitory signal to PD-1 expressing cells namely 
CD8+ and CD4+ T cells [42]. This PD1/PD-L1 interaction leads to T cell inactiva-
tion and consequently, to the inhibition of their anti-tumor function and ultimately 
to the promotion of tumor aggressiveness. PD-L1 expression in HCC has recently 
been characterized and its crucial role in HCC progression has been strongly sug-
gested [14].

Interestingly, it has been observed in HCC patient cohort that even with increased 
peripheral and intratumor PD-1 expression on CD8+ T cells, tumor cells were also 
rich in PD-L1 expression. These findings thus showed a correlation between a high 
PD-L1 expression within the tumor and a poorer outcome with early HCC recur-
rence after liver resection because of the induction of CD8+ T cell apoptosis [120]. 
The challenges of next studies will be to determine the mechanisms by which 
tumors promote PD-L1 expression on tumor cells and to find strategies to bypass 
the inhibitory signal delivered to PD-1 expressing cells including CD8+ T 
lymphocytes.

9.3.2.2  �IL-17-producing Cells

IL-17 is in majority produced by Th17 lymphocytes and targets a large variety of 
cells through its ubiquitously expressed receptor IL-17RA. However, other IL-17-
producing cell types have been identified including γδ T cells or neutrophils [113]. 
It has been reported that in HCC IL-17 levels were increased compared to non-
tumor tissues [89]. Furthermore, a positive correlation has been established between 
high expression of IL-17 and microvessel density in tissues and poor survival in 
patients with HCC [143] suggesting that IL-17 may promote HCC growth by pro-
moting angiogenesis.

In addition, neutrophils detected inside HCC tumors are associated with a poor 
recurrence-free survival for patients with HCC after liver resection. Peritumoral 
neutrophils promote angiogenesis leading therefore to stimulate tumor growth [81, 
82]. More surprisingly, a study has shown that IL-17 can recruit neutrophils. 
Peritumoral tissue was also found enriched in Th17 lymphocytes which number is 
correlated with tumor activated monocytes that have been reported to induce IL-17 
producing cells proliferation [81, 82]. Despite the positive correlation between 
IL-17 producing cells and poor survival in HCC patients, the underlying mecha-
nisms by which these cells lead to HCC progression remain poorly defined.

9.3.2.3  �Inflammation-Induced Epithelial Mesenchymal Transition (EMT)

Physiologically, EMT is a key step during embryogenesis, pathological events, 
inflammation but it can also trigger metastasis development in cancer context [9, 
70]. During this process, morphological modifications occurs in epithelial cells 
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which adopt a fibroblast-like phenotype. Through a complex cytoskeleton reorgani-
zation, many intercellular junctions characterizing epithelial cells are lost such as 
desmosomes, adherent junctions, tight junctions and gap junctions. EMT thus pro-
motes epithelial markers loss including E-cadherin in favor of an induction of fibro-
blast markers such as fibronectin, matrix metalloproteinase. Such transformation 
allows those transformed cells to leave the original tissue and colonize other tissue 
through the blood circulation. TGF-β is one of the most relevant inflammatory 
mediator involved in EMT. It is considered as a key factor in embryogenesis but also 
in fibrosis and cancer development in many models [35, 138] through SMAD2, 
SMAD3 and SMAD4 [119, 129]. Studies have brought evidence that inflammation 
promotes EMT via the induction of pro-inflammatory cytokines. It has been shown 
that together TNF-α and IL-6 enhance TGF-β signaling pathways which stimulate 
EMT [7]. These two cytokines are known to trigger NF-κB which induces many 
factors implicated in EMT. Lastly, ROS synthesis has also been shown to induce 
EMT [131]. Exploring more deeply the involvement of cytokines in EMT in a con-
text of CHC could open new therapeutic options.

9.4  �HCC Therapeutic Failure and Cytokine-Based Therapy

At late stage, patients are not eligible for surgical resection of the tumor or for liver 
transplant, and the efficacy of classical radiotherapy and chimiotherapy is very poor. 
Since 2008, the SHARP (Sorafenib HCC Assessment Randomised Protocol) trials 
combining multikinase inhibitory and anti-angiogenic properties is considered as a 
standard for advanced HCC and showed an improved overall survival in Child–
Pugh class A patients with advanced HCC upon treatment. HCC-patients given 
Sorafenib have a longer progression-free survival (PFS) with a median overall sur-
vival reaching 10.7 months in sorafenib treated patients vs 7.9 months in the pla-
cebo patients [90] Moreover, the high capacity of resistance of CSC to sorafenib 
therapy suggests that CSCs may contribute to the poor prognosis.

In HCC many cytokine levels are deregulated leading to promote or inhibit car-
cinogenesis. The development of combined therapy like IFN-α with ribavirin has 
markedly reduced HCC incidence. However antiviral therapies only help to delay 
the development of HCC. More and more anti-tumor therapeutic options use strate-
gies to regulate cytokines levels or modulate immune cell activity. Loco-regional 
immune-chemotherapy based on lymphokine-activated killer cells (LAK) is a rele-
vant approach in HCC treatment. LAKs release many cytokines including IFN-γ, 
IL-2 and IL-12 promoting cytolytic activity against tumor cells [78]. Many studies 
also proposed to enhance cytokine responses and more specifically to the liver. A 
murine HCC model was developed with adenoviral vector carrying IL-12 leading to 
reduce tumor growth and induce immune infiltration potentially responsible for the 
inhibition of angiogenesis [2]. Consistently, IL-12 intrahepatic administration in 
BALB/c has shown early infiltration of lymphocytes and macrophages resulting in 
a reduction of tumor progression [108]. Furthermore, combined immunotherapy in 
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a murine model of HCC based on IL-12 and GM-CSF triggered a powerful antitu-
mor response and avoid the side-effect of IL-12 treatment alone [132].

9.5  �Conclusion

Although liver inflammation is critical for protection against infections and for trig-
gering liver regeneration mechanisms, it must be finely tuned and “turned off” right 
after the clearance of the pathogens and the achievement of tissue repair. Indeed, 
excessive and recurrent liver inflammation is a common process observed in livers 
of alcoholic patients and in non-alcoholic steatohepatitis, in drug and chemical 
intoxication, during viral and bacterial infection, as well as in certain idiopathic 
liver pathologies such as autoimmune hepatitis. A high variety of immune cells can 
infiltrate the liver tissue (Fig. 9.2). Their quantity and their activity defined by their 
ability to produce a large spectrum of cytokines, depend on the underlying chronic 
liver disease. One of the major challenges in the liver field is to understand the cel-
lular and molecular mechanisms underlying the chronic inflammatory processes 
associated with acute and chronic injury. The recent advances in immunology field 
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sheds some light on the important role of cytokine milieu in which tumoral cells can 
emerge and proliferate. This also demonstrates how complex and heterogeneous is 
the liver inflammatory response according to the etiology leading to HCC.  This 
strongly suggests that a better characterization of the inflammatory process would 
allow developing a personalized medicine for patients, and would constitute a 
promising strategy in HCC prevention and cure.
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