
Sketching 2D Character Animation Using
a Data-Assisted Interface

Priyanka Patel, Heena Gupta, and Parag Chaudhuri(B)

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay, Mumbai, India
{priyapatel,heenagupta,paragc}@cse.iitb.ac.in

https://www.cse.iitb.ac.in

Abstract. This paper presents a system to assist novice animators
in creating 2D, hand-drawn, character animation. This system, called
TraceMove, helps the user to sketch the character and to animate it.
Frames from recorded videos of human performers are stored in a data-
base. This is subsequently used to provide a static pose hint to the users,
in the form of silhouette suggestions, as they sketch the character. The
desired pose of the character is thus easy to sketch for the user as they
can trace and draw over the generated pose hint. The system then pre-
dicts the next frame of the animation as a moving pose hint. This is done
with the help of a user marked skeleton on a single sketched pose and
a motion capture database. The sketch predicted by the system can be
edited by the animator as desired. The moving and static pose hints used
together, let novice artists and animators easily generate hand-drawn, 2D
animated characters.

Keywords: Hand-drawn character animation · Sketch-based system ·
Data-assisted

1 Introduction

Hand-drawn 2D character animation is a difficult skill to master. It requires
years of practice to acquire the necessary expertise required to capture fluent
motion in a sequence of 2D sketches. Novice artists struggle to master the subtle
concepts required to convey a certain mood or idea through their animation. The
significant amount of effort required to successfully create an illusion of life [16]
from sketches, often detracts and frustrates novice animators.

Our system, called TraceMove, provides hints to the animator as they draw
the sketch of the character for every frame of the animation, thereby making the
creation of the animation easier. Two kinds of hints are provided. The first hint is

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-64870-5 7) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
J. Braz et al. (Eds.): VISIGRAPP 2016, CCIS 693, pp. 135–152, 2017.
DOI: 10.1007/978-3-319-64870-5 7

http://dx.doi.org/10.1007/978-3-319-64870-5_7
http://dx.doi.org/10.1007/978-3-319-64870-5_7


136 P. Patel et al.

background silhouette image of the pose that the animator is trying to sketch at
the current frame. This hint is a prediction generated by the system based on the
sketch strokes that the animator has drawn on the frame so far and a database
of images containing humans in various poses. The choice of following the hints
provided by the system is entirely up to the animator. They can disregard the
hint and sketch freely if so desired. The second hint is a prediction of the sketched
pose in the next frame of the animation, once the sketch of the current frame is
finished. Sketching characters in motion requires a sense of timing and rhythm
of the movement [19], which is very hard to get for novice artists. We take the
help of motion capture data to predict the next sketched frame for the animator.
They can draw over this prediction, modify it as they wish, and proceed (see
Fig. 1). These two hints can be interleaved and used as desired on the same or
different frames of the animation, thereby giving the animator a lot of flexibility
and complete control during the creation process.

We discuss the current literature available in this area in the next section.
We follow this up with an overview of our system in Sect. 3. Subsequently, we
present details of the static pose and moving pose hints, in Sects. 3 and 4. Our
system was used by numerous novice animators. Their experience and feedback
is discussed in the Sect. 5. We present some sketch sequences generated using
our system in Sect. 6. Finally, we conclude with a discussion of the limitations
of the system and directions for future work in Sect. 7.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. (a) The animator starts a sketch, (b) the static pose hint updates the silhouette
depending on the sketch, (c) the animator can trace over it to complete the sketch,
(d)–(e) the moving pose hint predicts the sketch for the next frame from the current
drawn sketch, (f)–(g) the animator can continue the process and easily complete the
animation.

2 Related Work

Sketching is an art form that is ubiquitous in animation, painting and design.
There have been many systems developed to make sketching accessible to novice
users. The iCanDraw interface [6] helps the user by providing step by step guid-
ance to draw the human face using a reference image and written instruction.
Other systems try to match sketch strokes with images [3,9] and then these can
be used to guide the sketching. ShadowDraw [11] is a sketching system that
presents a shadow image that is a blend of matching object images from a data-
base. The user can use the shadow as a draw-over guide to create a sketch of



Sketching 2D Character Animation Using a Data-Assisted Interface 137

that object. A part of our system is based on ShadowDraw, in which we generate
the static pose hint using methods from that paper. A gesture based rapid 3D
sketching system is presented in [1] which allows novice users to sketch designs
for complex objects.

Sketch-based interfaces for modelling and animation are also an active topic
of research in computer graphics. Sketches have been used for modelling 3D
objects from sketches by novice users [8], from design sketches [20] or for creating
layered additions to exiting 3D models [5]. Sketches have also been used to pose
3D character models [14].

Sketches have also been used to drive 3D animation. The input to algorithm
described in [10] is a set of hand-drawn frames. The method uses motion capture
data to transfer the 2D animation to 3D, while maintaining the unique style of
the input animation. In an earlier work, [4] takes user drawn stick figures as input,
extracts best matched 3D skeleton poses for the input figures and generates a 3D
animation. Inspired by traditional, hand-drawn animation, silhouette curves are
used to stylize existing 3D animations by [13]. Motion Doodles [17] is a system
that takes a stick figure of character and a motion path as input, and finally
animates the figure on the path. The LifeSketch system [21] also outputs 3D
animation of 2D sketch given as an input by user. However, this work makes an
assumption that object is blobby and all the parts of objects are visible. More
recent work by [12] creates a 3D model of an articulated character from multiple
sketches and then allows animation of the character in 3D.

In other prior work [15] describe a skeleton driven 2d animation technique.
The system is provided with one image and then the user sketches the skeleton
for the subsequent frame. The system deforms the character according to the
new position of the skeleton and creates animations automatically. However, this
is very cumbersome because the user is required to draw the skeleton for all the
frames and no help is provided for sketching the actual poses. Thus, we find
that all prior work to our knowledge, either requires the sketch as input for the
animation or provides no feedback assistance to the novice animator in creating
the animation.

In contrast, our TraceMove system tries to help novice animators in sketching
2D animations. For this we not only help in the static pose sketches at individual

Fig. 2. Overview of the TraceMove system.



138 P. Patel et al.

frames but also predict sketched poses for subsequent frames. These hints allow
the animator to create sketched 2D character animations very quickly.

3 System Overview

An overview of the TraceMove system is shown in Fig. 2. We start by pre-
processing an image database of human poses at various stages of multiple
motions to edge descriptors (Fig. 2(a)). This is done only once for the entire
database. Then the animator can start sketching and the static pose hint is
updated, as required, based on the current sketch available to the system and
the processed image database. The static pose hint is generated by blending the
top ten edge figures from database that best match the sketched pose, in the
edge descriptor space [11]. This is shown in Fig. 2(b)–(c). Once the animator
is satisfied with the sketch (Fig. 2(d)), it is passed on to the moving pose hint
generation module.

We have also pre-processed motion capture data to obtain 2D projected
motion capture data (Fig. 2(e)). Now the animator draws a skeleton on the sketch
by clicking joint positions on the sketch (Fig. 2(f)). This has to be done only for
one pose for the entire animation. The order of clicking is shown to the animator
and automatically establishes joint correspondences to the skeleton hierarchy
used in the motion capture. The skeleton on the sketch is used to identify a
best matching pose from the motion capture data, and the subsequent poses
to the best matching pose, are used to find corresponding subsequent poses for
the skeleton on the sketch, and by consequence of the sketch itself (Fig. 2(g)).
At this point, the animator can choose to manually edit the predicted sketched
pose, again with the help of the static pose hint or without it. This process is
repeated to get sketches for all the frames of the animation.

It should be noted that the animator can choose to ignore the static and
moving pose hints completely at any stage, or use them at any stage in the
creation process. So the system does not stifle the freedom of the animator, but
provides enough help to the novice animator to be able to create convincing
sketched character animations.

The static pose hint generation module of our system is based on Shadow-
Draw [11]. Our static pose hint is like the shadow image generated in that work.
We have implemented our system from scratch and have made some changes to
the original ShadowDraw idea which improve the quality of the generated hint.

The first part of the static pose hint generation module involves processing
a database of figures of human in various poses during a motion. For walking
people, we used the CASIA Gait Database [18]. For other motions, we created
our own database by recording videos of various motions on 6 different users. We
used the frames of these videos as figures in our database, In total the combined
database has 3052 frames for 6 different kinds of motion. Example images from
the database can be seen in Fig. 3. The database is processed offline, in a pre-
processing step to generate a database of patch-features from the edge figures of
the figures in the original database. These descriptors are then used to generate
the static pose hint while the user sketches.



Sketching 2D Character Animation Using a Data-Assisted Interface 139

Fig. 3. Example images from the image database.

3.1 Generating the Database of Patch-Features

The original figures in the database are converted to edge figures, post crop-
ping and size normalization. We use [7] to extract long edges from the figures.
This is important because it is found that while sketching it is natural to draw
the long edges first. So we need an algorithm that can prioritize long edges.
ShadowDraw [11] uses the work presented in [2] for extracting edges. Our imple-
mentation of the same gave either faint or very thick edges, so we used the
different method mentioned above.

This is followed by dividing the edge image into overlapping patches and
computing a BICE descriptor for each patch [22]. We want to match the user’s
sketch to the figures in the database, in descriptor space. However, computing
a match directly on the descriptor is expensive so it is converted to a sequence
of k values, each generated by applying k different min-hash functions to the
descriptor of the patch. Each sequence of these k values is a patch-feature. This is
repeated n times, using a different set k hash functions each time, to get n patch-
features for each patch descriptor. Therefore while matching, a potential input
patch has to match multiple instances of the same descriptor to be considered a
good match. This reduces both false positives and false negatives. We have used
k = 3 and n = 20. We store the patch-features with a reference to the original
image to which they belong, and the patch location coordinates in the original
image in another database.

3.2 Generating the Static Pose Hint

As soon as the animator finishes sketching a stroke, an image of the canvas is
converted to patch-features and only patches containing the strokes are matched
to the database created in the previous section. Top 10 figures from which max-
imum number of patch-features match the patch-features from the input sketch
are aligned and blended. This blended image is then multiplied with its own
blurred version to strengthen edges that match in position between them and
weaken others. This forms the static pose hint image. It is displayed on the draw-
ing area, underlying the animator’s sketch, and can be updated in real-time as
the animator sketches. We have, however, found this to be distracting during



140 P. Patel et al.

Fig. 4. First column shows the drawn sketch overlaid on the static pose hint, second
and third columns show the static pose hint and the drawn sketch separately.

use. So we give the animator an option of updating and displaying the static
pose hint on the canvas at the push of a button, instead of updating it contin-
uously on sketching. The last updated static pose hint is displayed on the side
in a smaller window so that the animator still has a reference for the pose being
sketched but the drawing area is not obstructed by it. An example of the static
pose hint is shown in Fig. 4

4 Moving Pose Hint

After successfully drawing the character in a particular pose, the animator now
wants to sketch the pose in the next frame of the animation. The moving pose
hint is meant to help with this. We start with a database of motion capture
clips. This database currently has 6 different kinds of motions and a total of
625 frames. We project the 3D motion capture data to 2D, using a camera that
projects the root node of the motion capture skeleton to the origin of the image
coordinate system. We fix other camera parameters to give us desired projections
of the motions being processed. It should be noted that we can only generate
moving pose hints if the sketch of the character is from the a viewpoint that is
close to the camera viewpoint used to generate the 2D projections of the motion
capture data. The creation of the 2D projected motion capture database is a
pre-processing step and has to be performed only once.



Sketching 2D Character Animation Using a Data-Assisted Interface 141

4.1 Skeleton Matching

The animator marks the skeleton on the sketch of the current pose by clicking the
joint positions on the sketch. The joints have to be clicked in a particular order
that is shown in the interface during the clicking (as shown in Fig. 5(a)). This
has to be done only once for a single sketched pose of the entire animation and
is very simple to do. The ordered clicking automatically sets up correspondence
between the user marked skeleton and the motion capture skeleton.

Fig. 5. (a) Order in which the skeleton nodes have to marked by the user, (b) Joint
nodes for left arm have to marked even when it is occluded.

The animator has to mark the entire skeleton even if a part of the body is
occluded in the current sketch. For example, as shown in Fig. 5(b), one arm of
the character may be occluded but all the skeleton nodes for that limb have to
marked approximately.

After the skeleton is marked on the sketch, its bones are re-scaled to match
the bone length of the skeleton in the motion capture database. This is necessary
because the bone lengths of the motion capture skeleton are fixed, while bone
lengths of the sketch skeleton can vary with the sketch. Therefore, we determine
scale factors needed to scale the sketched skeleton bones appropriately. If Si is
the scale factor for ith bone, Lsketch

i and Lmocap
i are bone lengths of ith bones of

the skeleton on the sketch and in the motion capture database, respectively.

Si =
Lsketch
i

Lmocap
i



142 P. Patel et al.

We will also calculate the inverse scale factor ISi = 1/Si that is used later
in our calculations. This scale factor is applied to each bone of skeleton on the
sketch.

After scaling the skeleton on the sketch, the system searches for the best
matching frame in the motion capture data such that the pose of the skeleton
in that frame best matches the sketched pose. This is done by minimizing, over
all frames, a distance metric that sums the Euclidean distance between the
corresponding root-centred joint coordinates of the sketch and motion capture
skeleton joints.

Dt = min
t

{
∑

k

dist(Csketch
k , Cmocap, tk)}

Here Dt is the minimum value of distance metric, Csketch
k is the coordinate

of the kth joint of the sketched skeleton with the root of the skeleton as the
origin, and the Cmocap

k is the similar coordinate of the corresponding joint of
the skeleton in the motion capture data and t iterates over all the frames of
the database. Now we can predict the next pose for the sketch from the pose
of the skeleton that follows the best matching skeleton in the motion capture
data. This predicted sketch is the motion pose hint. But before we can do that
we need to be able to deform the sketched pose using the skeleton. This requires
us to rig the sketch with the sketched skeleton.

4.2 Rigging

In order to facilitate rigging, every sketch stroke is internally converted to a
Bézier curve. Rigging is computed automatically by the system on the basis of
distance of the curve points from skeleton bones. Every curve point is associated
with at least one skeleton bone. Curve points near a skeleton joint are associated
to both bones at the joint. Weights are assigned to the curve points by inverse
weighting them by their distance from the bone.

Due to ambiguity of 2D projection, there are cases where automatic rigging
incorrectly associates curves with skeleton bones. This causes erroneous deforma-
tion of the sketch when the skeleton moves. In such cases, animator can correct
this simply by going to manual rig mode and selecting the curve that need to
be re-associated and the bone with which it needs to be associated by clicking
on it. This will detach the curve from its initial bone and re-associate it to the
new bone.

Figure 6(a) shows an incorrect automatic rigging output. Curves associated
with different skeleton bones are of different colour. The curves of the torso get
wrongly associated to an arm and move backwards as the arm swings back in
a subsequent frame in Fig. 6(b), as indicated by the red arrows. Figure 6(c)–(d)
shows the corrected rigging in the initial frame and how it stays in position
correctly in the generated sketch for the following frame, as indicated by the
green arrows.



Sketching 2D Character Animation Using a Data-Assisted Interface 143

(a) (b)

(c) (d)

Fig. 6. (a), (b) Automatic Rigging, (c), (d) Corrected Rigging. (Color figure online)

4.3 Binding Matrix Calculation

The curves are defined in screen space and skeleton joints are defined in their
own local frame. The curve associated with a particular bone need to be defined
in the same frame as that of the bone so that all the transformation that are
applied to joint, when applied to curve will move the curve along with the bone.
To define the curve points in the joint space with which they are associated we
need to find the binding matrix for all the skeleton joints. This binding matrix, B
when multiplied to the curve points, transfer them to the joint local coordinate
frame, with Y -axis along the bone, X- axis perpendicular to the bone and parent
node as the origin. The binding matrix for the kth joint is calculated as



144 P. Patel et al.

Bk =

⎡

⎣
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

⎤

⎦

⎡

⎣
1 0 −Jkx,
0 1 −Jky
0 0 1

⎤

⎦

Here

Lk+1 = Jk+1 − Jk

D = sqrt(Lk+1x ∗ Lk+1x + Lk+1y ∗ Lk+1y)
cosθ = Lk+1y/D

sinθ = Lk+1x/D

(1)

Jk+1 is the coordinate of k + 1th joint and Lk+1 is its coordinates with respect
to its parent, i.e., kth joint. Now, for curve associated with kth joint, the binding
matrix is the product of a rotation matrix and a translation matrix. First, the
translation matrix is applied to the curve which will bring the kth joint to the
origin and then rotation matrix is applied to align the bone with the Y -axis as
shown in Fig. 7.

Fig. 7. (a) A bone and the associated curve, (b) Translated to origin (c) Rotated so
that bone lies along Y -axis

4.4 Generating the Moving Pose Hint

We have found the frame from the motion capture database that best matches
the sketched skeleton. We also know the pose of the skeleton in the frame that
follows the best frame in the motion capture data. The system now finds the
translation difference in coordinates for these two frames in the motion cap-
ture database and applies that difference to the current sketched skeleton, after
inverse scaling it to drawn skeleton. This is done using Algorithm1.

Here Tk is the translation difference for kth joint. J t+1
k and J t

k are the 2D
coordinates of kth joint for next frame and current frame of the motion capture
skeleton respectively. Note that the translation difference is calculated by taking
parent joint node as origin. Similarly in the subsequent step, when applying this
difference to sketched skeleton joint Jk+1, its parent joint Jk is shifted to origin.



Sketching 2D Character Animation Using a Data-Assisted Interface 145

Algorithm 1. Generate Next Sketch Skeleton.
1: for every joint k of the motion capture skeleton in frames t and t + 1 do
2: Tk = (Gt+1

k+1 −Gt+1
k ) − (Gt

k+1 −Gt
k)

3: end for
4: for every bone i of the sketched skeleton between joints Jk+1 and Jk do
5: J t+1

k+1 = (J t
k+1 − J t

k) + ISi · Tk + J t+1
k

6: end for

After applying the difference to the (k + 1)th joint, the kth joint is shifted back
to its new position that is calculated after applying the translation difference
to it. The coordinates given by the J t+1’s are the new predicted position of the
joints of the sketched skeleton in the next frame. An example of the skeleton
generated by our algorithm can be seen in Fig. 8.

Fig. 8. First frame is the drawn skeleton, rest of the frames are generated using
Algorithm 1.

We find the transformation matrix from the current sketch skeleton to the
next generated sketched skeleton for every skeleton joint. We apply this transfor-
mation matrix and the binding matrix to every curve associated with a particular
joint, to generate the moving pose hint. This is illustrated in Fig. 9.

4.5 Depth Adjustment

Since a sketch is 2D, some of the curves that were visible before may go behind
the body and they will still be visible. For correct occlusion handling, these have
to be erased via manual editing. While some new curves that were occluded
before may be visible in the new frame. The animator will have to draw them.
For this purpose, she can take help of the static pose hint again, if required. This



146 P. Patel et al.

Fig. 9. (a) Current frame with skeleton, (b) Current frame without skeleton, (c) Next
Frame with skeleton, (d) Next Frame without skeleton.

Fig. 10. (a) First frame, (b) Next frame without depth adjustment, (c) Next frame
with depth adjustment.

is shown in Fig. 10. The newly drawn curves get automatically attached to the
skeleton via automatic rigging.

5 User Survey

A group of 11 novice animators used the TraceMove system to create an ani-
mation of a running character. Out of these 6 users were female and 5 were
male. When asked whether they like to draw or not, 4 of these users answered
in the negative. Only 2 of these users had ever made a 2D animation before.
In order to give the users an idea of how much effort was needed in creating
a 2D animation, they were asked to sketch a running character on paper with-
out any other assistance. Then they were asked to use TraceMove to create the
animation of a running character. Their animations and the time they required
to create them were recorded. After using our system, all 11 users felt that the
TraceMove system made 2D animation process easier. We asked the users to rate
the TraceMove system on a scale of 1 to 10, with 1 being the least helpful in the
2D animation process and 10 being the most. The user ratings are presented in
Fig. 11.



Sketching 2D Character Animation Using a Data-Assisted Interface 147

Fig. 11. User ratings for the TraceMove system.

Table 1. Time taken (in minutes) by the users to sketch a 2D run animation using
the TraceMove system in 3 attempts and using pencil and paper. The users sketched
17 frames on when using the TraceMove system and 6 frames on paper.

User no. Timing (TraceMove) Timing (paper)

Attempt 1 (min) Attempt 2 (min) Attempt 3 (min)

1 27 22 18

2 22 14 13

3 26 25 20 13

4 20 14 13 6

5 12 12 12 21

6 12 14

7 31

8 35

9 16 16

10 23 16

11 15 18

Table 1 presents the time taken by each user to create an animation on a
computer using our system. Some users also worked with our system multiple
times, each time creating a 17 frame run animation sequence. Users who were
comfortable drawing on paper sketched frames of a similar animation on paper
using a pencil, without any assistance. On paper, all users sketched 6 frames. It
can be seen that with more practice on our TraceMove system, the time taken
by a user to create an animation consistently went down. Also, the number of
frames sketched to complete the animation stayed the same or went down with



148 P. Patel et al.

Fig. 12. Frames from attempt 3 of user 3 are in the top row. Frames drawn on paper
by the same user are in the bottom row.

each attempt. The average time to sketch one frame can be seen to vary from
1 to 2 min. The animations produced on paper took much longer. The time to
sketch one frame on paper varies from 2 to 3 min for most users. Frames from
two of the animations produced using our system and the sequence of sketches
drawn by those users on paper are shown in Figs. 12 and 13.

Fig. 13. Frames from attempt 2 of user 5 are in the top row. Frames drawn on paper
by the same user are in the bottom row.

Though the response from the novice users about the system is in general
positive, they did give us feedback about ways in which we can improve the sys-
tem. One of the features requested was an easy undo option. The system already
allows the user to delete sketched strokes but perhaps the interface to this feature



Sketching 2D Character Animation Using a Data-Assisted Interface 149

is not very intuitive. Also, the automatic rigging should be improved to decrease
user interaction required to correct a sketch. Some of the users commented that
this was the first time they attempted hand drawn animation and the system
helped them in understanding how it is done.

6 Results

We present examples of seven sketched animations generated using our Trace-
Move system for various kinds of motion (Figs. 14, 15, 16, 17, 18, 19 and 20).
These were all created by two novice animators who had no prior experience in
hand-drawn figure animation. The actual animations can be seen in the supple-
mentary video submitted with this paper.

Fig. 14. Frames from walk animation.

Fig. 15. Frames from another walk animation with a different character.

Fig. 16. Frames from a run animation.

Fig. 17. Frames from a skipping animation.



150 P. Patel et al.

Fig. 18. Frames from a jump animation.

Fig. 19. Frames from a different jumping animation.

Fig. 20. Frames from a backward walk animation.

7 Conclusion

This paper has presented a system to assist novice animators in sketching 2D
character animations. The system generates a static pose hint to help in the
sketching of a particular pose of a character in a frame of the animation and
also generates a moving pose hint that helps sketch the subsequent frame of the
animation, given the current frame. These hints are generated with the help of
pre-processed, stored databases of images and motion capture data.

The current system has certain limitations. The sketches for which the mov-
ing hint can be generated must be from a viewpoint that is close to the one used
in generating the 2D projected motion capture database. This can be overcome
by automatic viewpoint detection on the sketch and then using the correspond-
ing view of the 3D motion capture data at runtime. Also, during the entire
sketch animation that can be generated by the system, the camera orientation
relative to the character cannot change much. The hint generation modules can-
not work across view-point changes. A view-dependent hint generation method
can possibly be used to alleviate this problem.

We have performed a user survey with novice animators to gauge the useful-
ness of our system. The feedback has been positive and we feel encouraged by it.
It is unclear though, how TraceMove performs as an animation learning system.
We would like to understand whether using TraceMove also improves the abil-
ity of the user to animate on paper. It would be instructive to test the system
with expert animators, in order to understand the efficacy of our interaction
paradigms. We currently have no way to quantitatively measure the aesthetic
quality of the generated animation, but the novice animators who have used our



Sketching 2D Character Animation Using a Data-Assisted Interface 151

system agree that it made the task of creating the animation easier for them
and gave them a handle on a skill that they would have otherwise struggled to
master.

References

1. Bae, S., Balakrishnan, R., Singh, K.: Everybodylovessketch: 3D sketching for a
broader audience. In: Proceedings of ACM Symposium on User Interface Software
and Technology, pp. 59–68, October 2009

2. Bhat, P., Zitnick, C.L., Cohen, M., Curless, B.: Gradientshop: a gradient-domain
optimization framework for image and video filtering. ACM Trans. Grap. 29(2),
10:1–10:14 (2010)

3. Chen, T., Cheng, M.M., Tan, P., Shamir, A., Hu, S.M.: Sketch2photo: internet
image montage. ACM Trans. Graph. 28(5), 10:1–10:14 (2009)

4. Davis, J., Agrawala, M., Chuang, E., Popović, Z., Salesin, D.: A sketching inter-
face for articulated figure animation. In: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 320–328 (2003)

5. De Paoli, C., Singh, K.: Secondskin: sketch-based construction of layered 3D mod-
els. ACM Trans. Graph. 34(4), 126:1–126:10 (2015)

6. Dixon, D., Prasad, M., Hammond, T.: iCanDraw: using sketch recognition and
corrective feedback to assist a user in drawing human faces. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 897–906 (2010)

7. Dollr, P., Zitnick, C. L.: Structured forests for fast edge detection. In: Proceedings
of the 2013 IEEE International Conference on Computer Vision, ICCV 2013, pp.
1841–1848. IEEE Computer Society (2013)

8. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform
design. In: Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1999, pp. 409–416 (1999)

9. Jacobs, C.E., Finkelstein, A., Salesin, D.H.: Fast multiresolution image querying.
In: Proceedings of the 22nd Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH 1995, pp. 277–286 (1995)

10. Jain, E., Sheikh, Y., Hodgins, J.: Leveraging the talent of hand animators
to create three-dimensional animation. In: Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 93–102 (2009)

11. Lee, Y.J., Zitnick, C.L., Cohen, M.F.: Shadowdraw: Real-time user guidance for
freehand drawing. ACM Trans. Graph. 30(4), 27:1–27:10 (2011)

12. Levi, Z., Gotsman, C.: ArtiSketch: a system for articulated sketch modeling. Com-
put. Graph. Forum 32(2), 235–244 (2013)

13. Li, Y., Gleicher, M., Xu, Y.Q., Shum, H.Y.: Stylizing motion with drawings. In:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA 2003, pp. 309–319 (2003)

14. Öztireli, A.C., Baran, I., Popa, T., Dalstein, B., Sumner, R.W., Gross, M.: Dif-
ferential blending for expressive sketch-based posing. In: Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 155–
164 (2013)

15. Pan, J., Zhang, J.J.: Sketch-based skeleton-driven 2D animation and motion
capture. In: Pan, Z., Cheok, A.D., Müller, W. (eds.) Transactions on Edutain-
ment VI. LNCS, vol. 6758, pp. 164–181. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22639-7 17

http://dx.doi.org/10.1007/978-3-642-22639-7_17
http://dx.doi.org/10.1007/978-3-642-22639-7_17


152 P. Patel et al.

16. Thomas, F., Johnston, O.: The Illusion of Life: Disney Animation. Hyperion, New
York (1995)

17. Thorne, M., Burke, D., van de Panne, M.: Motion doodles: an interface for sketching
character motion. In: Proceedings of ACM SIGGRAPH 2004, pp. 424–431 (2004)

18. Wang, L., Tan, T., Ning, H., Hu, W.: Silhoutte analysis based gait recognition
for human identification. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 25(12),
1505–1518 (2003)

19. Williams, R.: The Animator’s Survival Kit-Revised Edition: A Manual of Methods,
Principles and Formulas for Classical, Computer, Games, Stop Motion and Internet
Animators. Faber & Faber Inc., London (2009)

20. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., Singh, K.: True2Form:
3D curve networks from 2D sketches via selective regularization. ACM Trans.
Graph. 33(4), 131:1–131:13 (2014)

21. Yang, R., Wnsche, B.C.: Life-sketch: a framework for sketch-based modelling and
animation of 3D objects. In: Proceedings of the Eleventh Australasian Conference
on User Interface, vol. 106, pp. 61–70 (2010)

22. Zitnick, C.L.: Binary coherent edge descriptors. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 170–182. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15552-9 13

http://dx.doi.org/10.1007/978-3-642-15552-9_13

	Sketching 2D Character Animation Using a Data-Assisted Interface
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Generating the Database of Patch-Features
	3.2 Generating the Static Pose Hint

	4 Moving Pose Hint
	4.1 Skeleton Matching
	4.2 Rigging
	4.3 Binding Matrix Calculation
	4.4 Generating the Moving Pose Hint
	4.5 Depth Adjustment

	5 User Survey
	6 Results
	7 Conclusion
	References


