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and Thomas Vetter

Department of Mathematics and Computer Science,
University of Basel, Basel, Switzerland

{bernhard.egger,dinu.kaufmann,sandro.schoenborn,volker.roth,
thomas.vetter}@unibas.ch

Abstract. Principal component analysis is a ubiquitous method in
parametric appearance modeling for describing dependency and variance
in datasets. The method requires the observed data to be Gaussian-
distributed. We show that this requirement is not fulfilled in the con-
text of analysis and synthesis of facial appearance. The model mismatch
leads to unnatural artifacts which are severe to human perception. As a
remedy, we use a semiparametric Gaussian copula model, where depen-
dency and variance are modeled separately. This model enables us to use
arbitrary Gaussian and non-Gaussian marginal distributions. Moreover,
facial color, shape and continuous or categorical attributes can be ana-
lyzed in an unified way. Accounting for the joint dependency between all
modalities leads to a more specific face model. In practice, the proposed
model can enhance performance of principal component analysis in exist-
ing pipelines: The steps for analysis and synthesis can be implemented
as convenient pre- and post-processing steps.

Keywords: Copula Component Analysis · Gaussian copula · Principal
component analysis · Parametric Appearance Models · 3D Morphable
Model · Face modeling · Face synthesis · Attributes

1 Introduction

Parametric Appearance Models (PAM) describe objects in an image in terms of
pixel intensities. In the context of faces, Active Appearance Models [1] and 3D
Morphable Models [2] are established PAMs to model appearance and shape. The
dominant method for learning the parameters of a PAM is principal component
analysis (PCA) [3]. PCA is used to describe the variance and dependency in the
data. Due to the sensitivity of PCA to space and scaling, seperate models are
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Fig. 1. This figure shows the pre- and post-processing steps necessary to use a Gaussian
copula before calculating PCA.

learned for shape and appearance. Usually, PAMs are generative models that
can synthesize new random instances.

Using PCA to model facial appearance leads to models which are able to
synthesize instances which appear unnaturally. This is due to the assumption
that the color intensities or, in other words, the marginals at a pixel are Gaussian-
distributed. We show that this is a severe simplification: The pixel intensities of
new samples will follow a joint Gaussian distribution. This approximation is far
from the actual observed distribution of the training data and leads to unnatural
artifacts in appearance.

The ability to synthesize random and natural instances is important when
generating new face instances [4] and in face manipulation [5]. This is because
human perception is very sensitive to unnatural variability in a face. On the
other hand, PCA face models are used as a strong prior in probabilistic facial
image interpretation algorithms [6]. Hence, such applications require a prior
which follows the underlying distribution as closely as possible and, which is
therefore, highly specific to faces.

In order to enhance the specificity of a PCA-based model, an obvious
improvement would be the extension to a Gaussian mixture model [7]. Here,
each color channel at a pixel is modeled with an (infinite) mixture of Gaussians.
However, we skip this step and propose to use a semiparametric copula model
directly.

A copula model provides the decomposition of the dependency and the mar-
ginal distributions such that the copula contains the dependency structure only.
This separate modeling allows us to drop the parametric Gaussian assumption
on the color channels and to replace them with nonparametric empirical distrib-
utions. In general, seperating all marginals from the dependency structure leads
to a scale invariant description of the underlying dependency. This is desired
when working with data from different modalities, living in different spaces.
Scale invariance enables us to learn a combined dependency structure of shape,
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color and attributes. We keep the parametric dependency structure; in particu-
lar, we use a Gaussian copula because of its inherent Gaussian latent space. PCA
can then be applied in the latent Gaussian space and is used to learn the depen-
dencies of the data independently from the marginal distribution. The method is
analytically analyzed in [8] and is called Copula Component Analysis (COCA).
Samples drawn from a COCA model follow the empirical marginal distribution
of the training data and are, therefore, more specific to the modeled object.

The additional steps for using COCA can be implemented as simple pre- and
post-processing before applying PCA. The data is mapped into a space where it
is Gaussian-distributed. This mapping is obtained by first ranking the data and
then transforming it by the standard normal distribution. We perform PCA on
the transformed data to learn its underlying dependency structure. All necessary
steps are visualized in Fig. 1.

A semiparametric Gaussian copula model also provides additional benefits:
First, learning is invariant to monotonic transformations of all marginals, includ-
ing invariance to scaling. We explore this advantage by learning a combined color
and shape model, even including attributes. Second, the implementation can be
done as simple pre- and post-processing steps. Third, the model also allows
changing the color space. For facial-appearance modeling, the HSV color space
is more appropriate than RGB. The HSV color space is motivated by the sepa-
ration of the hue and saturation components and brightness value. On the other
hand, without adaptions, PCA is not applicable to facial appearance in the HSV
color space because of its sensitivity to differently-scaled color channels.

In summary, methods building on PCA can easily benefit from these advan-
tages to improve their learned model. By learning a combined shape, color
and attribute model we explore scale invariance and therefore the possibility
to include diverse modalities of the data in a common model.

1.1 Related Work

The Eigenfaces approach [9,10] uses PCA on aligned facial images to analyze
and synthesize faces. Active Appearance Models [1] add a shape component
which allows to model the shape independently from the appearance. The 3D
Morphable Model [2] uses a dense registration, extends the shape model to 3D
and adds camera and illumination parameters. The 3D Morphable Model allows
handling appearance independently from pose, illumination and shape. These
methods have a common core: They focus on analysis and synthesis of faces and
all of them use a PCA model for color representation and can, therefore, benefit
from COCA.

Photo-realistic face synthesis methods like Visio-lization [4] use PCA as a
basis for example-based photo-realistic appearance modeling.

1.2 Outline

The remainder of the paper is organized as follows: The methods section explains
the copula extension for PCA and presents the theoretical background for
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learning and inference. We also indicate, how to include discrete distributed data
in the copula framework. Additionally, practical information for an implemen-
tation is provided. In the experiments and results section we demonstrate that
facial appearance should be modeled using the copula extension. We qualitatively
and quantitatively show that the proposed model leads to a facial appearance
model which is more specific to faces.

2 Methods

2.1 PCA for Facial Appearance Modeling

Let x ∈ R
3n describe a zero-mean vector representing 3 color channels of an

image with n pixels. In an RGB image, the color channels and the pixels are
stacked such that x = (r1, g1, b1, r2, b2, b3, . . . , rn, gn, bn)T . We assume that the
mean of every dimension is already subtracted. The training set of m images is
arranged as the data matrix X ∈ R

3n×m.
PCA [3] aims at diagonalizing the sample covariance Σ = 1

mXXT , such that

Σ = 1
mUS2UT (1)

where S is a diagonal matrix and U contains the transformation to the new
basis. The columns of matrix U are the eigenvectors of Σ and the corresponding
eigenvalues are on the diagonal of S.

PCA is usually computed by a singular value decomposition (SVD). In case
of a rank-deficient sample covariance with rank m < n we cannot calculate U−1.
Therefore, SVD leads to a compressed representation with a maximum of m
dimensions. The eigenvectors in the transformation matrix U are ordered by the
magnitude of the corresponding eigenvalues.

When computing PCA, the principal components are guided by the variance
as well as the covariance in the data. While the variance captures the scattering
of the intensity value of a pixel, the covariance describes which regions contain
similar color. This mingling of factors leads to results which are sensitive to
different scales and to outliers in the training set. Regions with large variance
and outliers could influence the direction of the resulting principal components
in an undesired manner.

We uncouple variance and dependency structure such that PCA is only influ-
enced by the dependency in the data. Our approach for uncoupling is a copula
model which provides an analytical decomposition of the aforementioned factors.

2.2 Copula Extension

Copulas [11,12] allow a detached analysis of the marginals and the dependency
pattern for facial appearance models. We consider a relaxation to a semiparamet-
ric Gaussian copula model [13,14]. We keep the Gaussian copula for describing
the dependency pattern, but we allow nonparametric marginals.
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Let x ∈ R
3n describe the same zero-mean vector as used for PCA, repre-

senting 3 color channels of an image with n pixels. Sklar’s theorem allows the
decomposition of every continuous and multivariate cumulative probability dis-
tribution (cdf) into its marginals Fi(Xi), i = 1, . . . , 3n and a copula C. The
copula comprises the dependency structure, such that

F (X1, · · · ,X3n) = C (W1, . . . ,W3n) (2)

where Wi = Fi(Xi). Wi are uniformly distributed and generated by the proba-
bility integral transformation1.

For our application, we consider the Gaussian copula because of its inherently
implied latent space

X̃i = Φ−1 (Wi) , i = 1, . . . , 3n (3)

where Φ is the standard normal cdf. The multivariate latent space is standard
normal-distributed and fully parametrized by the sample correlation matrix
Σ̃ = 1

mX̃X̃T only. PCA is then applied on the sample correlation in the latent
space X̃.

The separation of dependency pattern and marginals provides multiple ben-
efits: First, the Gaussian copula captures the dependency pattern invariant to
the variance of the color space2. Second, whilst PCA is distorted by outliers and
is generally inconsistent in high dimensions, the semiparametric copula exten-
sion solves this problem [8]. Third, the nonparametric marginals maintain the
non-Gaussian nature of the color distribution. Especially when generating new
samples from the trained distribution, the samples do not exceed the color space
of the training set.

2.3 Inference

We learn the latent sample correlation matrix Σ̃ = 1
mX̃X̃T in a semiparametric

fashion using nonparametric marginals and a parametric Gaussian copula. We
compute ŵij = F̂emp,i(xij) = rij(xij)

m+1 using empirical marginals F̂emp,i, where
rij(xij) is the rank of the data xij within the set {xi•}. Then, Σ̃ is simply the
sample covariance of the normal scores

x̃ij = Φ−1

(
rij(xij)
m + 1

)
, i = 1, . . . , 3n, j = 1, . . . , m. (4)

Equation (4) contains the nonparametric part, since Σ̃ is computed from the
ranks rij(xij) solely and contains no information about the marginal distribu-
tion of the x’s. Note, x̃ ∼ N (0, Σ̃) is standard normal distributed with corre-
lation matrix Σ̃. Subsequently, an eigendecomposition is applied on the latent
correlation matrix Σ̃.
1 The copula literature uses U instead of W . We changed this convention due to the

singular value decomposition which uses X = USV T .
2 More general, a copula model is invariant against all monotonic transformations of

the marginals.
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Generating a sample using PCA then simply requires a sample from the
model parameters

h ∼ N (0, I) (5)

which is projected to the latent space

x̃ = Ũ
S̃√
m

h (6)

and further projected component-wise to

wi = Φ (x̃i) , i = 1, . . . , 3n. (7)

Finally, the projection to the color space requires the empirical marginals

xi = F̂emp,i(wi), i = 1, . . . , 3n. (8)

All necessary steps are summarized in Algorithms 1 and 2 and visualized in
Fig. 1.

It is possible to smoothen the empirical marginals with a kernel k and replace
(8) by xi = k(wi,Xi•), i = 1, . . . , 3n.

Algorithm 1. Learning.

Input: Training set {X}
Output: Projection matrices U , S
for all dimensions do

for all samples do

x̃ij = Φ−1
(

rij(xij)

m+1

)

find Ũ , S̃ such that Σ̃ = 1
m

Ũ S̃2ŨT (via SVD)

Algorithm 2. Sampling.

Output: Random sample x
h ∼ N (0, I)

x̃ = Ũ S̃√
m

h

for all dimensions i do
wi = Φ (x̃i)
xi = F̂emp,i(wi)

2.4 Implementation

The additional steps for using COCA can be implemented as simple pre- and
post-processing before applying PCA. Basically the data is mapped into a latent
space where it is Gaussian-distributed. The mapping is performed in two steps.
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First, the data is transformed to an uniform distribution by ranking the inten-
sity values. Then it is transformed to a standard normal distribution. On the
transformed data, we perform PCA to learn the dependency structure in the
data.

To generate new instances from the model, all steps have to be reversed.
Figure 1 gives an overview of all necessary transformations. The following steps
have to be performed, e.g. in MATLAB, to calculate COCA:

% calculate empirical cdf
[empCDFs, indexX] = sort(X, 2);

% transform emp. cdf to uniform
[~, rank] = sort(indexX, 2);
uniformCDFs = rank / (size(rank, 2)+1);

% transform uni. cdf to std. normal cdf
normCDFs = norminv(uniformCDFs',0,1)';

% calculate PCA
[U,S,V] = svd(normCDFs, 'econ');

Listing 1.1. Learning.

To generate an image from model parameters, the following steps are
necessary:

% random sample
m = size(normCDFs, 2);
h = random('norm' ,0 ,1 ,m ,1);
sample = U * S / sqrt(m) * h;

% std. normal to uniform
uniformSample = normcdf(sample, 0, 1) * (m - 1) + 1;

% uniform to emp. cdf
empSample = empCDFs(sub2ind(size(empCDFs), 1:size(data, 1), ...

round(uniformSample')))';

Listing 1.2. Sampling.

These are the additional steps which have to be performed as pre- and post-
processing for the analysis of the data and the synthesis of new random samples.
In terms of computing resources we have to consider the following: The empirical
marginal distributions Femp are now part of the model and have to be kept in
memory. In the learning part, the complexity of sorting the input data is added.
In the sampling part, we have to transform the data back by looking up their
values in the empirical distribution.
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The copula extension comes with low additional effort: it is easy to imple-
ment and has only slightly higher computing costs. We encourage the reader to
implement these few steps since the increased flexibility in the modeling provides
a valuable extension.

2.5 Discrete Ordinal Marginals

The formulation of the coupla framework as above works with arbitrary continu-
ous marginals. We extend the copula model for attributes, which follow discrete
ordinal marginals. With this extension, we can even augment our model with
attributes following binary distribution, such as gender. The underlying genera-
tive model assumes a continuous latent space, which is identified with the latent
space X̃ of the copula. From this space, we observe the measurements via a
discretization, which is related to the marginal distribution containing discon-
tinuities. Using the cdfs of these marginals, for infering the latent space as in
the previous sections, causes problems. This is because the cdf transformations
Φ−1 ◦ F̂emp,i : Xi → X̃i do not change the marginal data distribution to uniform
and hence do not recover the continuous latent space. Instead, these cdf trans-
formations only change the sample space. This leads to an invalid distribution
of the copula and subsequently also of the latent space.

In order to resolve this problem, we follow the approach of the extended
rank likelihood [15]. This provides us with an association-preserving mapping
between measurement xij and latent observation x̃ij . The essential idea behind
this approach is, that the rank relation from the observations are preserved in
the latent space. The latent variables are then recovered by a Gibbs sampler,
which obeys these rank relations while respecting the Gaussian copula. From
this sampler, we are able to generate (continuous) latent pseudo observations x̃,
which subsequently can be included in our model. Using this Gibbs sampler, we
are able to include discrete ordinal distributed attributes with arbitrary many
categories.

However, the above described Gibbs sampler causes problems in our set-
ting, since sampling in such high dimensions is just infeasible. In our case, we
want to include a binary variable (sex). Note, that a binary variable can always
be considered as an ordinal variable, since the ordering of the encoding does
not matter. Instead of resampling from the conditional posterior distribution
p(x̃sex|x̃−sex, xsex) in the latent space, we replace the label xsex with logistic
regression in a preprocessing step. Specifically, logistic regression provides us a
(continuous) score x′

sex = E(xsex|x−sex), which is the conditional expectation
over (a low rank approximation of) the remaining variables x−sex. Since the
score constitutes of the conditional expectation, it relates to an approximation
of the conditional posterior distribution in the latent space. The variable can
then be treated as a continuous variable.
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3 Experiments and Results

For all our experiments, we used the texture of 200 face scans used for building
the Basel Face Model (BFM) [16]. The scans are in dense correspondence and
were captured under an identical illumination setting. We work on texture images
and use a resolution of 1024× 512 pixels. Our experiments are based on the
appearance information only, the last experiment merging the appearance and
shape to a combined model. We used the empirical data directly as marginal
distribution. The results are rendered with an ambient illumination on the mean
face shape of the BFM.

3.1 Facial Appearance Distribution

In a first experiment we investigate if the color intensities in our face data set
are Gaussian-distributed. We followed the protocol of the Kolmogorov-Smirnov
Test [17]. We estimate a Gaussian distribution for every color channel per pixel
and compare it to the observed data. The null hypothesis of the test is that the
observed data is drawn by the estimated Gaussian distribution. The test mea-
sures the maximum distance of the cumulative density function of the estimated
Gaussian Φμ̂,σ̂2 and the empirical marginal distribution Femp of the observed
data:

d = sup
x

∥∥Femp(x) − Φμ̂,σ̂2(x)
∥∥ (9)

Here, μ̂ and σ̂2 are maximum-likelihood estimates for the mean and variance
of a Gaussian distribution respectively. In Fig. 2(a) we visualize the maximal
distance value over all color channels per point on the surface.

We assume a significance level of 1 − α = 0.05. The critical value dα is
approximated using the following formula [18]:

dα =

√
ln( 2

α )
√

2n
(10)

With n = 200 training samples we get a critical value of 0.096. Non-Gaussian
marginal distributions of color intensities are present in the region of the eye-
brows, eyes, chin and hair, where multi-modal appearance is present. In total for
49% of the pixels over all color channels, the null hypothesis has to be rejected.
In simple monotonic regions, like the cheek, the marginal distributions are close
to a Gaussian distribution. In more structured regions like the eye, eyebrow or
the temple region, the appearance is highly non-Gaussian. This leads to strong
artifacts when modeling facial color appearance using PCA (see Figs. 3 and 4).
Since those more structured regions are fundamental components of a face, it is
important to model them properly.

We also applied the Kolmogorov-Smirnov Test to the shape coordinates of our
training data (see Fig. 2(b)). We observe that the observed marginal distributions
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(a)

(b)

Fig. 2. The result of the Kolmogorov-Smirnov Test to compare the empirical marginal
distributions of color values (a) and shape coordinates (b) from our 200 face scans
with a Gaussian-reference probability distribution. We plot the highest value of the
three color channels respectively dimensions per pixel, because the values for the indi-
vidual components are very similar. Whilst the marginals for the shape coordinates
are similar to a Gaussian distribution, the Gaussian assumption does not hold for the
color marginals. We show two exemplary marginal distributions in the eye and temple
region. They are not only non-Gaussian but also not similar. (Color figure online)
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Fig. 3. PCA and COCA are compared by visualizing the first two eigenvectors with 3
standard deviations on the mean. The components look very similar, except that the
PCA artifacts on the temple (arrows) in the second eigenvector do not appear using
COCA. (Color figure online)

in the data are close to a Gaussian distribution. The registration of the data was
performed using a nonrigid ICP algorithm by Amberg et al. [19]. The algorithm
uses strong regularization techniques, therefore the Gaussian property of the
shape coordinates can also be a registration artifact.

3.2 Appearance Modeling

We evaluate our facial appearance model by its capability to synthesize new
instances. We measured this capability by comparing the major eigenmodes,
random model instances, the sample marginal distributions and the specificity
of both models. The specificity is measured qualitatively by visual examples and
quantitatively by a model metric.

Model Parameters. The first few principal components store the strongest
dependencies. We visualize the first two components by setting their value hi to
σ = 3 standard deviations and show the result in Fig. 3. The first parameters of
PCA and COCA appear very similar in the variation of the data they model.
The second principal component of PCA causes artifacts in the temple region.
These artifacts are caused by the linearity of PCA. COCA is a nonlinear method
and therefore, the artifacts are not present.

Random Samples. The ability to generate new instances is a key feature for
generative models. A model which can produce more realistic samples is desirable
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Fig. 4. The first and second row show random samples projected by PCA and COCA
respectively. Using PCA, we can observe strong artifacts in the regions where the
marginal distribution is not Gaussian (see Fig. 2). The improvement of COCA can be
observed in the temple region, on the eyebrows, around the nostrils, the eyelids and
at the border of the pupil. We chose representative samples for both methods. (Color
figure online)

for various applications. For example, the Visio-lization method to generate high
resolution appearances is based on a prototype generated with PCA [4].

Another field of application for the generative part of models are Analysis-by-
Synthesis methods based on Active Appearance Models (AAM) or 3D Morphable
Models (3DMM). They can profit from a stronger prior which is more specific
to faces and reduces the search space [6].

Generating a random parameter vector leads to a random face from our
PCA or COCA model. We sample h according to (5) independently for all 199
parameters and project them via PCA or COCA on the color space following
(6). Random samples using COCA contain fewer artifacts and, therefore, appear
much more natural (see Fig. 4). These artifacts are caused by the linearity of
PCA. For non-Gaussian-distributed marginals, PCA does not only interpolate
within the trained color distribution but also extrapolates to color intensities
not supported by the training data.

The most obvious problem is the limited domain of the color channels: using
PCA, color channels have to be clamped. The linearity constraint of PCA leads
to much brighter or darker color appearance than those present in the training
data in regions which are not Gaussian-distributed. In the next experiment, we
show that the higher specificity is not only a qualitative result but can also be
measured by a model metric.
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(a) Empirical marginal distri-
bution

(b) PCA sample marginal dis-
tribution

(c) COCA sample marginal
distribution

Fig. 5. The marginal distribution of the red color intensity of a single point in the
eye region. (a) shows the distribution observed in the training data, (b) shows the
distribution of samples drawn from a PCA model and (c) from a COCA model. (Color
figure online)

Few samples od COCA contain artifacts arising from outliers in the training
data which appear at the borders of the empirical cdfs. Those artifacts can be
removed by slightly cropping the marginal distributions (removing the outliers)
or by applying COCA in the HSV color space.

3.3 Appearance Marginal Distribution

We analyze the marginal distributions of our random faces at a single point
at the border between the pupil and the sclera of the eye. In this region the
Kolmogorov-Smirnov Test rejected the null hypothesis. We analyze the empirical
intensity distribution of a single color channel at this point (Fig. 5(a)). The
sample marginal distributions drawn from 1000 random instances generated by
PCA and COCA are shown in Fig. 5(b) and (c) respectively. Whilst COCA is able
to generate samples distributed similar to our input data, PCA is approximating
a Gaussian distribution, which is inaccurate in a lot of facial regions.

Specificity and Generalization. To measure the quality of the PCA and
COCA models, we use model metrics motivated by the shape modeling com-
munity [20]. The first metric is specificity: Instances generated by the model
should be similar to instances in the training set. Therefore, we draw 1000 ran-
dom samples from our model and compare each one to its nearest neighbor in
the training data. We measure the distance using the mean absolute error over
all pixels and color channels in the RGB-color space. The COCA model is more
specific to facial appearance (see Fig. 6(a)). This corresponds to our observation
of a more realistic facial appearance (Fig. 4).

Specificity should always be used in combination with the generalization
model metric [20]. The generalization measures how exactly the model can rep-
resent unseen instances. We measure the generalization ability of both models
using a test set and use the same distance measure as for specificity. The test
data consists of 25 additional face scans not contained in the training data.
We observe that both models generalize well to unseen data. PCA generalizes
slightly better, see Fig. 6(b).
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(a) Specifity (b) Generalization

Fig. 6. (a) The specificity shows how close generated instances are to instances in
the training data. The average distance of 1000 random samples to the training set
(mean squared error per pixel and color channel) is shown. A model is more specific if
the distance of the generated samples to the training set is smaller. We observe that
COCA is more specific to faces (lower is better). (b) The generalization ability shows
how exactly unseen instances can be represented by a model. The lower the error, the
better a model generalizes. As a baseline, we present the generalization ability of the
average face. We observe that PCA generalizes slightly better (lower is better). (Color
figure online)

The third model metric is compactness - the ability to use a minimal set of
parameters [20]. The compactness can be measured directly by the number of
used parameters. In our experiments, the number of parameters is always the
same for both models.

There is always a tradeoff between specificity and generalization. Whilst PCA
performs slightly better in generalization, COCA performs better in terms of
specificity. The better generalization ability of PCA comes at the price of a
lower specificity and clearly visible artifacts.

3.4 Combined Shape, Color and Attribute Model

Color appearance and shape are modeled independently in AAMs and 3DMMs.
Recently, it was demonstrated that facial shape and appearance are correlated
[21] and those correlations were investigated using Canonical Correlation Analy-
sis on separate shape and appearance PCA models. Attributes like age, weight,
height, gender are often added to the PCA models as additional linear vectors
[16] or with limitations to Gaussian marginal distributions [22].

The main reason to build separate models is a practical one – shape and
color values do not live in the same space and are not scaled in the same range.
Attributes are even not always continuous. Some methods approach this issue
by normalization [23]. However, this approach is highly sensitive to outliers and
not suitable to compare those different modalities. Since Copula Component
Analysis is scale invariant and allows to include categorical data, we can directly
apply it to a set of combined data.



Copula Eigenfaces with Attributes: Semiparametric PCA 109

Fig. 7. We learned a common shape, color and attribute model using COCA. We
visualize the first eigenvectors with 2 standard deviations, which show the strongest
dependencies in our training data. Whilst the first parameter is strongly dominated by
color the latter parameters are targeting shape, color and attributes (compare Fig. 8).
Since the model is built from 100 females and 100 males, the first components are
strongly connected to sex. The small range in age is caused by the training data which
mainly consists of people with similar age. (Color figure online)

We learned a COCA model combining the color, shape and attributes infor-
mation (see Figs. 7 and 9). Shape, color and attributes are combined by simply
concatenating them. Age weight and height are continuous attributes and can
therefore directly by integrated in the COCA model. We added gender as a
binary attribute and used the strategy presented in Sect. 2.5, where we replaced
the binary labels with scores, which were learned with logistic regression on
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Fig. 8. The influence of the first principal components on the different modalities of
our model is shown. The variation is shown as the RMS distance of the normalized
attributes in the latent space (covariance matrix). Whilst the first parameter is strongly
dominated by color the later parameters are targeting shape, color and attributes
(compare Fig. 7). We observe strong correlations between the different modalities and
attributes. (Color figure online)

Fig. 9. Random samples projected by a common shape, color and attribute model
using COCA. Our model leads to samples with consistent appearance and attributes.
(Color figure online)

the covariates. The combined model allows us to generate random samples with
consistent and correlated facial features. In Fig. 8 we present how the different
modalities are correlated in the first parameters. By integrating this additional
dependency information, the model becomes more specific [23].

4 Conclusions

We showed that the marginals of facial color are not Gaussian-distributed for
large parts of the face and that PCA is not able to model facial appearance prop-
erly. In a statistical appearance model, this leads to unnatural artifacts which
are easily detected by human perception. To avoid such artifacts, we propose to
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use PCA in a semiparametric Gaussian copula model (COCA) which allows to
model the marginal color distribution separately from the dependency structure.
In this model, the parametric Gaussian copula describes the dependency pat-
tern in the data and the nonparametric marginals relax the restrictive Gaussian
requirement of the data distribution.

The separation of marginals and dependency pattern enhances the model
flexibility. We showed qualitatively that facial appearance is modeled better
using COCA than by PCA. This finding is also supported by a quantitative eval-
uation using specificity as a model metric. Moreover, COCA provides scale invari-
ance and therefore allows us to include different modalities and attributes in a
unified way. We presented a combined model including shape, color, attributes
like age, weight and height, and even categorical attributes like gender. The scale
invariance is a key feature of COCA, it enables us interesting new applications
and methods when working with statistical models.

Finally, we again want to encourage the reader to replace PCA with a COCA
model, since the additional model flexibility comes with almost no implemen-
tation effort. The computer graphics and vision community is heavily modeling
and working with color intensities. We believe that these intensities are most
often not Gaussian-distributed and, therefore, our findings can be transferred to
a lot of applications.
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