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Abstract. Error-diffusion is commonly used as a sampling algorithm
over a single channel of input signal in existing researches. But there are
cases where multiple channels of signal need to be sampled simultane-
ously while keeping their blue-noise property for each individual chan-
nel as well as their superimposition. To solve this problem, we propose
a novel discrete sampling algorithm called Multi-Class Error-Diffusion
(MCED). The algorithm couples multiple processes of error-diffusion
to maintain a sampling output with blue-noise distribution. The cor-
relation among the classes are considered and a threshold displacement
is introduced into each process of error-diffusion for solving the sam-
pling conflicts. To minimize the destruction to the blue-noise property,
an optimization method is used to find a set of optimal key threshold
displacements. Experiments demonstrate that our MCED algorithm is
able to generate satisfactory multi-class sampling output. Several appli-
cation cases including color image halftoning and vectorization are also
explored.

Keywords: Sampling · Error-diffusion · Halftoning · Image
vectorization · Blue-noise

1 Introduction

Error-diffusion (ED) is originally a halftoning technique that quantizes a multi-
level image to a binary one while preserving its visual appearance through dif-
fusing the quantization error of one pixel to its neighborhood [7]. It is widely
used in the industry of printing and displaying, and also an important sampling
algorithm working on discrete domain. Moreover, some researchers extend its
usage into digital geometry processing [1].

Previous research mainly focused on the behavior of error-diffusion sampling
over a single channel of input signal [4,14,18,22]. However, there are cases where
multiple channels of input signal need to be sampled simultaneously, while cer-
tain ideal properties such as blue-noise are also required for all the sampling
output of these channels.

Simply overlapping the output of blue-noise sampling for multiple individual
channels can not guarantee the blue-noise property of their superimposition.
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Hence, we are aiming to propose a novel Multi-Class Error-diffusion (MCED)
algorithm to solve this problem. Here, a class refers to the sampling process
for a single channel of input signal as well as its sampling output. For an ideal
multi-class error-diffusion with blue-noise property, the following requirements
must be satisfied:

1. The sampling point distribution of each individual class should possess blue-
noise property.

2. When the sampling output of all the classes are superimposed, no two sam-
pling points from different classes can occupy the same position.

3. When all the sampling points from all the classes are superimposed and con-
sidered as a whole, their distribution should possess blue-noise property.

The first requirement is naturally guaranteed by the standard ED algorithm.
For the second, we remain only one class with the highest priority and disable
the others when conflict occurs. However, the selection of a certain class may dis-
rupt the point distribution of other classes which violates the first requirement.
To solve this problem, we introduce a threshold displacement into each process
of ED and they are optimized to minimize the destruction to the blue-noise
property. Since the frequency spectrum property of each class and the final out-
put is considered during the threshold displacement optimization, the blue-noise
property is promised after all classes are superimposed (the third requirement).
After meeting these requirements, our MCED algorithm generates satisfactory
multi-class sampling output.

The contributions of our work includes:

1. Proposing a multi-class error-diffusion framework, the validity of which can
be explained by the commonly used Fourier transform [12];

2. Giving a parameter optimization method to ensure the blue-noise property
of the output. Experiment results using these optimal parameters show the
effectiveness of the method;

3. Several applications of the MCED are explored, showing that our algorithm
is generic and applicable in many areas in computer graphics.

2 Related Work

The original ED is an algorithm invented for gray-scale image displaying and
printing [7]. It is also frequently used in many other areas in computer graphics
as a sampling algorithm [1,3,11]. There are a lot of research which aims at
improving its behavior for sampling a single channel of input signal [4,13,23].
Ulichney first proposed the concept of blue-noise [18] and used it as a tool to
measure the quality of ED output. Some of the work also aims at giving a
solid mathematical analysis of the behavior of error diffusion algorithm. These
analyses can explain or predict the results of many techniques originated from
the original error diffusion algorithm [12,21].

Using ED to sample multiple channels of input signals in a coordinated way
is not a novel problem. It traditionally exists in the area of color printing, where
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a limited number of colorants are used to reproduce a continuous-tone color
image [2]. Many studies focus on solving this problem using ED technique, which
is called vector error-diffusion in some literature, because they quantized the
input signals simultaneously by treating them as a vector [6,9,10]. For example,
the vector ED algorithm proposed in [5] uses an optimum matrix-valued error
filter to take into account the correlation among color planes. It can generate
sampling output with blue-noise property for color images, but cannot guarantee
this property for each individual color channel.

Wei extends the traditional Poisson disk sampling for a single channel of
signal into a multi-class blue-noise sampling algorithm [19]. The algorithm is
able to sample a set of input signals in a correlated way while keeping the blue-
noise property of the whole output. It can also precisely control the number or
density of the generated sampling points. Unlike the ED which works directly in
a discrete domain, this algorithm is originally designed in a continuous domain.
Hence it is not suitable to be applied in certain application areas that deal with
discrete domain, such as color image halftoning [20].

3 Multi-Class Error-Diffusion

Our multi-class error diffusion algorithm is built using the state-of-art standard
error diffusion. In this section, we first describe the standard error diffusion
utilized in our algorithm and then give our MCED framework.

3.1 Standard Error Diffusion

The original error diffusion algorithm given by Floyd et al. in [7] is shown inside
the dashed line of Fig. 1. In this algorithm, each pixel p(x, y) ∈ [0, 1] in the input
image p is parsed with a serpentine scan line order and quantized by a quantizer:

Q(p,, u) =

{
1, p, > u

0, otherwise
(1)

After that, the quantization error e(x, y) is calculated and distributed into
multiple unparsed pixels by accumulating to an error buffer b(·, ·), which is used
to compensate the error. Therefore, for pixel p(x, y), the actual input p, to the
quantizer Q(·, ·) is p, = p(x, y) + b(x, y). Here, the error filter ajk is a set of
constant coefficients, and the quantization threshold u in Q(·, ·) is also a fixed
value, e.g. u = 0.5.

Some important improvements to the original ED algorithm include the intro-
duction of a variable error filter [14] and a variable threshold value [22] to ensure
the blue-noise property of the sampling output. In this paper, we use Zhou and
Fang’s threshold modulated ED algorithm to build our MCED framework. Sim-
ilar as in [4], we refer to that algorithm as the standard ED, and its diagram
is given by Fig. 1 as a whole. Unlike the original ED, the threshold u and the
error filter ajk here are not constant, but functions of the input pixel p = p(x, y),
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Fig. 1. The principle of the standard error-diffusion.

that is, u = 0.5 + r(p), and ajk = ajk(p). Here, r(p) = δ(p) · λ(x, y) is a modu-
lated white noise. The modulation strength δ(p) for the white noise λ(x, y), and
the error filter ajk(p) are pre-optimized so that the output of the standard ED
possesses blue-noise property.

3.2 MCED Framework

Our MCED algorithm mainly concerns about simultaneously sampling on multi-
ple channels of input signals and maintaining the blue-noise property for all the
classes as well as their superimposition. If simply performing the standard ED
independently on each channel of input signal, there may be sampling points
from different classes situated at the same sampling position when they are
superimposed, which is called sampling conflict. Hence, the blue-noise property
of the superimposed output cannot be guaranteed.

To solve this problem, we first perform the quantization on each channel of
signal, and produce a set of initial sampling outputs with sampling conflicts.
Then, the conflicts are removed by disabling the outputs of certain classes based
on the inter-class correlation. In this way, the initial outputs are modified to
generate the final sampling points. During the process of quantization and error-
diffusion, a threshold displacement is introduced to decrease the occurrence of
sampling conflict and maintain the blue-noise property.

The framework of our MCED algorithm is illustrated in Fig. 2. It takes n
channels of signals {pi|i = 1, · · · , n} as input, where pi = pi(x, y) is a 2-D
discrete function that satisfies pi(x, y) ∈ [0, 1] and

∑n
i=1 pi(x, y) ≤ 1. In fact,

it defines the density of sampling points to be generated at the spatial position
(x, y). Specially, when pi represents an image, element pi(x, y) is the intensity
of the pixel at position (x, y).

Our framework concerns the processing of individual channels of signals as
well as their correlations, and produces corresponding sampling point sets {ci|i =
1, · · · , n}, where ci(x, y) = 1 indicates a sampling point generated at (x, y) for
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Fig. 2. The framework of our MCED algorithm, where {pi|i = 1, · · · , n} are the input
signals, and p0 =

∑n
i=1 pi is an internal reference signal. After two processing steps

of modified standard ED, Qi and Ei, the framework generates blue-noise sampling
outputs {ci|i = 0, · · · , n}. The pseudo code for the framework can be found in the
Appendix A.
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Fig. 3. Two processing steps of modified ED: Qi (left) performs only the quantization
and Ei (right) complete the final error-diffusion (i = 0, . . . , n).

signal pi, while 0 means no point generated. Therefore, the sampling process
from the input pi to the output ci is referred as a class Ci.

To facilitate the inter-class correlation, we define a special internal signal
p0, whose sampling density is p0(x, y) =

∑n
i=1 pi(x, y). Sampling to p0 with

the standard ED, we can also obtain a blue-noise output, which is used as a
reference for the superimposition of the sampling output of all the classes. That
means the corresponding output of p0, denoted as c0, will be identical to the
superimposition of {ci|i = 1, · · · , n}. Hence, we name C0 as a reference class.

Our framework parses the elements {pi(x, y)|i = 0, · · · , n} in a serpentine
scan line order. All pi(x, y) at the same position (x, y) are processed simulta-
neously, and then the processing moves to the next position. For each group
of {pi(x, y)|i = 0, · · · , n} at (x, y), the processing of each class includes two
steps: Qi and Ei. Qi performs independent sampling and produces initial out-
put c0i (x, y) for each individual class Ci; while Ei modifies the initial output
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according to the correlation between the sampling classes and generate the final
output ci(x, y).

3.3 Quantization and Error-Diffusion

The work flow of the two processing steps, Qi and Ei, are shown in Fig. 3.
Actually, Ei is a modified version of the standard ED given in Fig. 1. It simply
adds one more variable mi to the latter’s quantization threshold. This simple
modification plays an important role in our framework, because mi will be used
to introduce the inter-class correlation into the sampling, and that is the key to
avoid sampling conflict and ensure the blue-noise property of ci.

It is notable that Qi produces only the initial sampling output, hence it
performs only the quantization part of Ei. Although Qi shares the error buffer
bi(·, ·) with Ei, it does not modify bi(·, ·). This is because the output of Qi will
be modified in Ei and thus the quantization error made in the latter step is the
one that is to be distributed for the further processing.

3.4 Removing Sampling Conflicts

In our framework, the input signal pi, i = 0, · · · , n, of each class is firstly
processed by Qi, and generates corresponding uncorrelated blue-noise output c0i .
In order to eliminate the conflict after superimposition, the correlation between
classes are introduced by the reference class C0. Based on that, some classes
with sampling conflicts will be disabled, i.e. they will be prohibited to produce
a sampling point.

As shown in Fig. 4, when Q0 of class C0 does not generate a sampling point
at current position (x, y), the output of all {Ei|i �= 0} should be forced to be
0. In other words, all Ei should be disabled from generating a sampling point
at (x, y), for there is no correspondence in the final superimposition. Similarly,
when Q0 generates sampling point but none of {Qi|i �= 0} does, E0 should also be
disabled because no Ei will provide sampling point to form this superimposition.
The third case, in which {Qi|i �= 0} generate sampling points without conflicts, is
the ideal case that we are expecting and no modification to {c0i |i �= 0} is needed.
Finally, when sampling conflicts occur (

∑
j �=0 c0j > 1), most of the conflicting

classes must be disabled, and only one of them with the highest priority is
allowed to remain. Here, we give the priority to the class Ck with the highest
average sampling density, i.e. k = argmaxj

∑
(x,y) pj(x, y), for j �= 0 and c0j = 1.

Then, a binary selecting signal si (i �= 0) is defined, where si = 0 means Ei

should be disabled:

si =

⎧⎨
⎩

0,
∑

j �=0 c0j > 1 and i �= k;
1,

∑
j �=0 c0j > 1 and i = k;

1,
∑

j �=0 c0j ≤ 1.
(2)

To disable a class, we utilize another disabling signal tomodify the quantization
threshold. It is based on an important fact about the ED: If the threshold u in
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Fig. 4. Eliminating sampling conflicts by disabling some of the classes.

the quantizer Q(p,, u) takes a value larger than any possible value of input p, the
output of Q will be forced to be 0, and the corresponding class will be disabled.
As shown in Fig. 2, the disabling signals are obtained based on the initial outputs
{c0i |i = 0, · · · , n} by the Disable control, where d0 = ¬(c01 ∨ c02 · · · ∨ c0n) and d1 =
¬(c00). Then, combining with the selecting signal si, d1 turns into a d1i = d1 ∧ si
for each Ei (i �= 0). Therefore, if d0/d1i = 1, a large value (+∞) will be added to
the corresponding quantization threshold, and the class will be disabled.

In this way, d0, d1 and si facilitate the correlation described in Fig. 4. For
example, when c00 = 1 and c0i = 1 (i �= 0), we have d0 = 0 and d1 = 0, and
the output of Ei will be decided by its priority: if si = 0, Ei will be disabled.
After the class disabling, sampling conflicts can be removed and no more than
one sampling point will be generated at each position.

3.5 Maintaining Blue-Noise Property

Modifying the output of certain Qi to remove the sampling conflicts may cause
the destruction of the blue-noise property of the initial outputs. To solve this
problem, we make use of another important fact for ED: For a given input signal,
a constant variation of the quantization threshold u will change the distribution
of output sampling points, but will not affect the average sampling density, as
long as u is not constantly +∞. This fact can be proofed with the analysis tool
provided in [12], which will be briefly described in Sect. 7. Therefore, adding a
properly chosen threshold displacement ti to the threshold u will help to decrease
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the chance of the sampling conflict occurrence and restore the blue-noise distri-
bution. The detail of ti will be discussed in the next section.

Hence, the disabling signals d0/d1i, along with the threshold displacement
ti, are finally added to the thresholds of Ei via the modification term mi in the
second step. Then, Ei quantizes the input element pi(x, y) at current position
(x, y), and the quantization error is distributed and accumulated to the error
buffer b(j, k). The above processing is repeated during the parsing of the input
elements. When all the elements pi(x, y) are parsed, the final blue-noise MCED
output ci that satisfies all the requirements given in Sect. 1 can be generated.

4 Threshold Displacement

After the first step of the MCED, the output of some of the classes is disabled due
to sampling conflicts. This may disrupt the blue-noise property that originally
existed in the standard ED output. We solve this problem by adding a constant
displacement value ti to the quantization threshold for the input pi, since a shift
of the threshold may change the distribution of sampling points and thus may
decrease the chance of sampling conflicts. Therefore, it is possible to ensure a
better blue-noise output with a properly chosen ti.

4.1 Displacement Optimization

Our goal is to find a set of optimal threshold displacements {ti|i = 0, 1, · · · , n},
to decrease the probability of sampling conflict occurrence. Since the sampling
conflict is a interference among all the classes, the value of the displacement ti is
related to all the input signals {pi|i = 1, · · · , n}. For each class Ci, i = 0, · · · , n,
in a n-class MCED, we treat the influence from all other sampling classes as a
noise, which is characterized by its strength σi =

∑
j �=0∧j �=i pj . We assume that

the same amount of σi for a given pi will result in similar output. Since σi can
be derived from σi = p0 −pi, then ti can be simplified as a function of pi and p0.
As class C0 is designed as a reference for the superimposition of other n classes,
t0 is related with only the sum of other classes inputs, i.e. p0 =

∑n
i=1 pi.

Therefore, given an input combination (p0, pi), i = 1, · · · , n, in a n-class
MCED, we have: {

ti = g(p0, pi), i = 1, · · · , n,

t0 = f(p0).
(3)

Then, optimal ti are calculated by solving an optimization problem. The
optimization target function is defined according to the Fourier power spectrum
of the sampling output. Based on the existing research [18,22], the blue-noise
property of a sampling set can be measured by the anisotropy and the lower
frequency ratio of its spectrum. In this paper, the sampling output of ED are
affected by both the input signal pi and the threshold displacement ti. Therefore,
the anisotropy α(pi, ti) and lower frequency ratio β(pi, ti) for the final output ci
can be modified from their original formulations in [22]:
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{
α(pi, ti) = Corre(P0(pi, ti), P45(pi, ti), P90(pi, ti)),
β(pi, ti) = L(pi, ti),

(4)

where Corre(·) is a cross-correlation function; P0(·), P45(·) and P90(·) are seg-
mented radially averaged power spectrums; L(·) is the lower frequency ratio.

Therefore, our target function T to be minimized in the searching of optimal
threshold displacements ti is defined as:

T = ω1 ·
(

ω0 ·
N∑
i=1

α(pi, ti) + (1 − ω0) ·
N∑
i=1

β(pi, ti)

)

+ (1 − ω1) · (ω0 · α(p0, t0) + (1 − ω0) · β(p0, t0)) ,

(5)

where the weights ω0 = 0.5 and ω1 = 0.7 are taken in our implementation. A
simplex method [15] is adopted to automatically search for the optimal displace-
ment {ti|i = 0, 1, · · · , n}.

Figure 51 demonstrates an example of the displacement optimization. Given
p1 = 32

255 , p2 = 21
255 , p3 = 16

255 , p4 = 12
255 , p5 = 8

255 , p6 = 6
255 , p7 = 5

255 ,
and p0 =

∑
i�=0 pi = 100

255 , the optimized threshold displacements are: t1 = 34
255 ,

t2 = 18
255 , t3 = 52

255 , t4 = 23
255 , t5 = 80

255 , t6 = 46
255 , t7 = 17

255 , and t0 = − 9
255 . The

sampling outputs of classes {Ci|i = 0, · · · , 7}, and their corresponding Fourier
power spectra are given in the figure. Figure 5(h) is the superimposition of the
dots from the 7 classes, which are colored in red, green, blue, yellow, magenta,
cyan and white, respectively. The optimization is performed on 256×256 patches.

4.2 Displacement Interpolation

To decrease computational costs, we perform displacement optimization only on
a set of selected key input combinations, by minimizing the target function T
in Eq. 5. Then, the optimal threshold displacements for other input combina-
tions can be calculated by interpolation, where ti = g(p0, pi), i = 1, · · · , n, is
implemented with a bilinear interpolation, and t0 = f(p0) with a 1-D linear
interpolation.

The key input combinations and their corresponding optimal threshold dis-
placement values are shown in the tables contained in Fig. 6. The key levels are
selected by an interval of 16

255 . For convenience, all the numbers filled into the
table are 255 times of their real values. The right table gives the correspondence
between the threshold displacement t0 and the input p0 of the reference class
C0, as t0 = f(p0). The left table is composed of two parts:

– The values of the threshold displacement ti = g(p0, pi) for the given key
input combinations are enumerated in the lower-left triangle area. They are
obtained by solving the optimization problem of Eq. 5. The indices of p0 and
pi are given in the bottom row and the leftmost column, respectively.

1 Config the PDF reader with 100% scaling ratio and the given DPI for best viewing
of the details, similar for the following figures.
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(a) C1 (b) C2 (c) C3 (d) C4

(e) C5 (f) C6 (g) C7 (h) C0

(i) C1 (j) C2 (k) C3 (l) C4

(m) C5 (n) C6 (o) C7 (p) C0

Fig. 5. Optimization result for a 7-class ED. (a)–(h) Sampling outputs of each classes
Ci. (i)–(p) Corresponding Fourier power spectra. (Image best viewed at 306 DPI).
(Color figure online)

– The corresponding power spectra of the sampling outputs for pi and p0 can
be found in the upper-right triangle area, where the left image is for pi and
the right for p0. The indices of p0 and pi are given in the top row and the
rightmost column. The power spectra show that, for the given input combi-
nations, our optimization successfully converges to threshold displacements
that can produce outputs with ideal blue-noise property.

Hence, the threshold displacement of a key input combination can be read
directly from the table. For example: given p0 = 112

255 and pi = 16
255 , the displace-

ment value ti = g( 112255 , 16
255 ) = 49

255 can be found in the cell at the 8th row and
the 2nd column of the left table, and the corresponding power spectra are in the
cell at the 2nd row and 8th column.
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Then, for arbitrary combination (p0, pi) that is not included in Fig. 6, we
use a bilinear interpolation to obtain their t0 and ti. For example, for an input
(p0, pi) = (122255 , 21

255 ), its ti is interpolated between four key values g(112255 , 16
255 ),

g( 112255 , 32
255 ), g( 128255 , 16

255 ) and g( 128255 , 32
255 ) that exist in the table. The value of t0 is

interpolated in a similar way, but using a 1-d linear interpolation between the
values in the right table. Figures 7 and 8 are two groups of experiment results of
a two-class MCED using our key values and interpolation mechanism. It can be
seen that the sampling results meet the requirement of MCED given in Sect. 1.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255 p0 pi

0 0 0
16 0 0 16
32 0 39 0 32
48 0 49 -3 0 48
64 0 14 51 -23 0 64
80 0 28 35 3 37 0 80
96 0 56 18 43 6 -6 0 96
112 0 49 30 53 96 12 59 0 112
128 0 34 10 11 62 -26 2 93 0 128
144 0 6 26 59 5 -1 12 18 14 0 144
160 0 14 100 106 12 56 44 98 90 22 0 160
176 0 12 43 47 42 48 39 100 52 25 47 0 176
192 0 -46 28 6 0 -7 45 -36 0 25 37 1 0 192
208 0 75 54 -7 71 -33 59 23 -1 13 9 13 0 0 208
224 0 12 18 89 12 -2 75 0 0 0 12 3 0 50 0 224
240 0 16 12 9 9 12 49 -20 -2 14 50 1 9 50 46 0 240
255 0 12 12 20 12 0 29 12 44 50 18 0 50 43 50 86 0 255
p0 pi 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

p0 t0

0 0

16 0

32 65

48 -35

64 -39

80 -90

96 -20

112 -15

128 -79

144 0

160 169

176 13

192 61

208 109

224 168

240 166

255 64

Fig. 6. Threshold displacement t0 and ti with their Fourier analysis results for different
key input combinations (p0, pi). For convenience, the numbers in this table are all 255
times of the value by their definition.

(a)

(b)

(c)

Fig. 7. Two-class ED with density changing horizontally from 255
255

to 0 in opposite
directions, p0 = 255

255
. (a) is the superimposition, (b) and (c) are the sampling points for

the two classes, shown in red and green respectively. The image is best viewed in PDF
reader with 100% scaling ratio at 150 DPI. (Color figure online)
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(a)

(b)

(c)

Fig. 8. Two-class ED with density changing horizontally from 51
255

to 0 in opposite
directions, p0 = 51

255
. (a) is the superimposition, (b) and (c) are the sampling points for

the two classes, shown in red and blue respectively. The image is best viewed in PDF
reader with 100% scaling ratio at 150 DPI. (Color figure online)

5 Experimental Results

We proposed a multi-class ED algorithm that is able to produce blue-noise sam-
pling points on multiple input signals as well as their superimposition. Given k
channel of signals, each with n elements, the time complexity of our algorithm
(Algorithm 1) is O(kn). Some experimental results have been shown in Sect. 4.

In this section, we compare our Multi-class ED with the per-channel stan-
dard ED [22], and our method achieves results significantly better than the
latter. As illustrated in Fig. 9(b)–(g), applying our MCED to three channels of
input signal, three sampling point sets with blue-noise distribution can be pro-
duced (Fig. 9(b)(d)(f), colored with red, green and blue for distinction). The
corresponding Fourier power spectra in Fig. 9(c)(e)(g) demonstrate the perfect
blue-noise property of each class. Figure 9(a) is a colored superimposition of
the three classes. Since no sampling conflicts exist, i.e., none of the sampling
point overlaps with others, there are no color other then red, green and blue in
the image. Figure 9(h)–(i) show that the superimposed point sets also possesses
blue-noise property.

On the contrary, if applying the standard ED to each channel of signal sep-
arately, though each set of sampling points has blue-noise distribution, a large
number of sampling conflicts will occur when the three point sets are super-
imposed. Figure 10(a) is also a colored superimposition of the sampling point
sets, where each color channel correspond to a class. Then, in Fig. 10(b)–(d) are
the sampling points that do not overlap with others, and Fig. 10(e)–(h) show the
conflicting sampling points, generated by the overlapping of points from different
classes (The colors indicate the combination). Consequently, the superimposition
set can not maintain blue-noise property (Fig. 10(i)–(j)).

The sampling conflicts are harmful in certain application areas, such as color
printing. For the per-channel ED, uncontrollable overlapping of sampling points
will affect the controlling of the maximum ink amount at each position, and the
final printing quality. Our MCED method can help to solve this problem and
hence brings an important improvement.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 9. A 3-class MCED sampling result. Each individual class (b–g) and their super-
imposition (h–i) possess perfect blue-noise property. (Best viewed at 150 DPI.) (Color
figure online)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10. A 3-class sampling using standard ED. Large number of conflicting sampling
points exists (e–h), and the superimposition does not possess blue-noise property (i–j).
(Best viewed at 150 DPI). (Color figure online)

6 Applications

6.1 MCED for Color Image Halftoning

ED algorithm is widely used in grayscale image halftoning due to its ideal blue-
noise property [14,22]. For color image halftoning, a commonly used way is to
perform standard ED independently on each color plane, and then superimpose
the results to create a color halftoning. Since halftoning dots for each color plane
are generated independently, the blue-noise property for their superimposition
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can not be guaranteed. This may result in uncontrolled color appearance in the
generated halftone image (Fig. 11(p)).

In this section, we utilize our MCED to generate color halftone images that
meet the requirements: The distribution of the halftone dots with the same color
should possess blue-noise property; The distribution of all the dots contained in
the halftone image as a whole should also possess blue-noise property.

15-Class ED for CMYK Color Halftoning

CMYK Color Images. In the state-of-the-art color printing systems, the
device-independent colors are converted to the densities of the ink dots in four
primary colors: Cyan, Magenta, Yellow and Black. We denote them as well as
their densities as D1, D2, D3, D4, respectively, and they are the input of the
halftoning algorithms. When the output halftoning image is printed using the
four color inks, the dots generated on paper will appear in totally 15 colors,
corresponding to all possible ink overprints.

If
∑4

i=1 Di > 1 within a local area in a CMYK halftone image, there must be
dots with different primary colors placed at the same position, and new colors
will be created. The colors generated by 2 primary colors, namely the 2nd order
colors, are denoted as C12, C13, C14, C23, C24, C34. The subscript indicate the
overprinted primary colors, e.g., C12 is an overprinting of D1 and D2. In the six
colors, C12, C13 and C23 correspond to blue, green and red respectively, and the
remaining are very dark colors because they contain black. Similarly, the 3rd
and the 4th order colors generated by 3 or 4 primary colors are denoted as C123,
C124, C134, C234, C1234. Specially, the subsets of halftone dots generated by only
one primary color are denote as C1, C2, C3, C4.

Without ambiguity, we use the same notations for the dot density and the
sampling class for each color. Hence, there is a total of 15 classes to be sampled
in MCED. Before applying our MCED in CMYK color halftoning, the densities
of the 15 classes need to decided.

Linear Programming for Dot Densities. For a color image pixel with∑4
i=1 Di ≤ 1, the dot densities are simply C1 = D1, C2 = D2, C3 = D3,

C4 = D4, and the densities for higher order colors are 0. While for a pixel with∑4
i=1 Di > 1, the dot densities must satisfy:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 + C2 + C3 + C4

+C12 + C13 + C14 + C23 + C24 + C34

+C123 + C124 + C134 + C234 + C1234 = 1,

C1 + C12 + C13 + C14 + C123 + C124 + C134 + C1234 = D1,

C2 + C12 + C23 + C24 + C123 + C124 + C234 + C1234 = D2,

C3 + C13 + C23 + C34 + C123 + C134 + C234 + C1234 = D3,

C4 + C14 + C24 + C34 + C124 + C134 + C234 + C1234 = D4.

(6)
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(a) C1(C) (b) C2(M) (c) C3(Y) (d) C4(K)

(e) C12(CM) (f) C13(CY) (g) C14(CK) (h) C23(MY)

(i) C24 (MK) (j) C123(CMY) (k) C124(CMK) (l) C234(MYK)

(m) C1234(CMYK) (n) Superimposition (o) Colored (p) Standard ED

Fig. 11. CMYK color image halftoning using our 15-class MCED. Blue-noise dot dis-
tributions are generated for all classes (a)–(m), as well as their superimposition (n).
(o): Colored superimposition. (p): Halftoning result by the standard ED. (Best viewed
at 100% scaling ratio, 600 DPI). (Color figure online)

Eq. 6 is a linear programming problem, which can be solved by specifying one
or more optimization target to be maximized [15]. In our experiments, we define
the optimization target h as:

h = C1 + C2 + C3 + C12 + C13 + C23 + C123. (7)

This target function maximizes the colors created by C, M and Y, and minimizes
those mixed with black, because black always tends to cover the appearance of
other colors. When the densities of each class at each pixel are obtained, they
are sent into our 15-class ED and produce an output halftone image.

Figure 11 shows an example of our 15-class ED color halftoning. It is able
to create blue-noise dot distributions for all of the classes (Fig. 11(a)–(m), some
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Fig. 12. More CMYK color image halftoning results using MCED. (Best viewed at
100% scaling ratio, 300DPI). (Color figure online)

empty classes are omitted), as well as their superimposition (Fig. 11(n)). Com-
paring our result (Fig. 11(o)) with that of the standard ED (Fig. 11(p)), it can
be seen that our result demonstrates better blue-noise property. More CMYK
image halftoning results using our MCED are given in Fig. 12.

Comparison with Vector Error-Diffusion. We also compared the perfor-
mance of our MCED with the vector error diffusion (VED) [5] on color image
halftoning. Both algorithms process multiple channels of signals using ED in a
coordinated way. The VED treats the signals as a vector, and uses an optimum
matrix-valued error filter to introduce the correlation among the color planes,
hence it can generate good color halftoning results. However, it does not eval-
uate the dot distribution on each color planes and the conflict between them.
Thus, the blue-noise property on each individual color plane cannot be promised.
On the contrary, our MCED can generate blue-noise outputs on each individual
channel of input signal, as well as their superimposition. Figure 13 demonstrates
a per-channel comparison of the two algorithms on RGB color image halftoning.
It can be seen that our MCED produce obviously better sampling results with
smoother distribution and less artificial textures.

6.2 Multi-tone Error-Diffusion

Multi-toning, also known as multi-level halftoning [10,16], aims to reproduce
a continuous tone image with dots of a limited number of intensities {ki|i =
1, · · · , n} (ki < kj , if i < j). It is useful in printing with multiple types of inks
or dot sizes. Blue-noise property is also required in multi-tone images for visually
pleasant result, hence our MCED method is also a solution for multi-tone image
generation.

Given a pixel (x, y) in a continuous tone image with intensity p(x, y), if
ki < p(x, y) < ki+1, then p(x, y) can be simulated with a linear combination of
the halftone patterns with intensity ki and ki+1:

p(x, y) = pi(x, y) · ki + pi+1(x, y) · ki+1, (8)
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MCED Vector ED MCED Vector ED

(a) Output

(b) ZoomIn

(c) R

(d) G

(e) B

(f) C

(g) M

(i) Y

Fig. 13. Color image halftoning using our MCED method and the Vector ED [5]. (a)
The superimposed color halftoning image; (b) Zoom-in viewing of the dot distribution
in the red box in (a); (c)–(h) The halftoning output of the corresponding color plane.
(Images best viewed at 100% scaling ratio, 600 DPI). (Color figure online)
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(a) k1 = 0 (b) k2 = 43
255

(c) k3 = 86
255

(d) k4 = 129
255

(e) k5 = 172
255

(f) k6 = 215
255

(g) k7 = 255
255

(h) M-tone image

Fig. 14. An example of 7-tone ED. For an image with intensity ranges from 1 to 0
(from center to border), a multi-tone rendering of the image (h) is generated by our
MCED using 7 intensities (tones) given in the figure. (a)–(g) show the distribution of
the pixels with these intensities respectively. (Images best viewed at 300 DPI). (Color
figure online)

where pi(x, y) and pi+1(x, y) are respectively the densities of the halftone pattern
of pixels with intensity ki and ki+1 at (x, y), and pi(x, y) + pi+1(x, y) = 1. For
j �= i and j �= i + 1, we let pj(x, y) = 0.

Therefore, considering pi(x, y) as the input of class Ci in a n-class ED, a
n-tone image can be generated by our MCED algorithm. Figure 14 shows an
example of 7-tone image generated with our method. The halftone patterns for
the given intensities {ki|i = 1, . . . , 7} can be found in Fig. 14(a)–(g), and all of
them possess ideal blue-noise property.

6.3 Color Image Vectorization

A typical catalog of color image vectorization methods [17] build polygon meshes
on the image plane based on a set of sampling points. Then, by assigning each
polygon node the image color at the same position, the original image can be
converted to a vector form. The colors inside a polygon is calculated by interpo-
lating between the colors of its nodes. Hence, the quality of the sampling point
distribution is crucial for the quality of final vectorization results.

Our MCED method can provide ideal sampling point distribution for such
a vectorization task. Here, the input image is in RGB, and the sampling points
can be generated in the three color planes using our MCED in a similar way as
in Sect. 6.1. After superimposing the sampling points, a planar triangle mesh is
obtained by Delaunay triangulation, which can be used as the foundation of the
vector image.
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To preserve the image features during vectorization, we extract a salience
map from the gradient of the original color image. At each pixel, the salience
is defined as the sum of the absolute value of the gradient components, which
is calculated by a Sobel operator. The salience is separately computed in the
three color planes, and the resulting salience map is also a RGB image. Hence,
sampling on the salience map instead of the original image, we can obtain a
sampling point set that better preserves the features.

7 Analysis and Conclusion

This paper gives an algorithm for multi-class ED. The key technique of this algo-
rithm is to use the optimized threshold displacement to minimize the distortion
to the blue-noise property caused by inter-class correlation in multi-class error-
diffusion. Our experiment shows that this technique can effectively maintain the
blue-noise property that the standard error-diffusion possesses. The reason for
this can be explained by Fourier transform-based analysis [8,12].

7.1 Analysis

According to [12], for the original ED, the power spectrum B(u, v) of the Fourier
transform of the output image can be written as:

B(u, v) = I(u, v) + F (u, v)E(u, v), (9)

where I(·) and E(·) are the Fourier transform of the input image and the error
map e(x, y) generated during error-diffusion; F (·) is a high-pass filter defined
solely by the diffusion filter.

For each class Ci, our algorithm is based on [22] by adding an extra modula-
tion mi to its threshold, and mi includes the displacement ti, which is in nature
a noise from other ED classes. Also according to [12], threshold modulation is
equivalent to sending to the original ED an equivalent image that is the sum of
the original image and a filtered modulation, where the filter F (·) is exactly the
one in Eq. 9. Therefore we have:

B(u, v) = I(u, v) + F (u, v)(Di(u, v) + M(u, v)) + F (u, v)E′(u, v), (10)

where Di(u, v) is the Fourier transform of d1i, M(u, v) is the Fourier transform of
the threshold modulation r(p) defined in Fig. 1, E′(u, v) is the Fourier transform
of the error map e(x, y) for the equivalent image. Note that ti does not appear in
Eq. 10 because it is a DC component and is filtered out by F (·). Hence, threshold
displacements do not have influence on the average density of the output image
of any class.

It is also noted that in Eq. 10, only Di(·) and E′(·) are decided by the thresh-
old displacement {ti}. Considering the fact that ti actually has the effect of
decreasing or increasing the amount of slow response phenomenon at the begin-
ning of the ED, so properly chosen {ti} are able to minimize the amount of
sampling conflict, which in turn can improve the anisotropy and lower frequency
ratio defined in Eq. 4.
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7.2 Limitation and Future Work

In the experiment results of our paper, smear artifacts may appear in the sam-
pling classes with low average sampling density (Fig. 14(g)). This is because we
use si to choose the class with the highest average intensity when sampling con-
flict occurs and this may cause classes with less average intensity to generate
output with lower quality. Hence, the selection of si is a topic to be investigated.

The optimal threshold displacement ti = g(p0, pi) has the effect of reducing
slow response [9], which is also called transient effect in some literature [22]. That
effect in our MCED is shown obliviously in Fig. 15. At the top of the image, our
sampling result (Fig. 15(d)) has very weak slow response than that generated
by the standard ED (Fig. 15(a)). In fact, the amount of slow response directly
affects the lower frequency ratio β(pi, ti) in Eq. 4. Our displacement optimization
automatically guides ti to a proper value to decrease the anisotropy and lower
frequency ratio, and consequently, reduces the slow response. Hence, introducing
threshold displacement into the single-class standard ED to further reduce its
slow response is also a future research topic to be explored.

(a) (b) (c) (d)

Fig. 15. Color image vectorization using our MCED vs. the standard ED. (a) and
(d) are triangulation on points sampled by Standard ED and MCED, (b) and (c) are
corresponding rendering result. The input image is in RGB. (Color figure online)

Acknowledgements. This work is partially supported by NSFC grants #61170206,
#61370112.

A Pseudo Code of MCED

Algorithm 1 is the pseudo-code for the framework of MCED, and the main func-
tions are explained as follows:

GetDisplacement() evaluates ti by accessing the lookup table (Fig. 6) we
described in Sect. 4.2.

GetCoefficient() and GetStandardThreshold() are functions for finding
appropriate diffusion coefficients and threshold for the standard ED.
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Algorithm 1. Multi-Class Error-Diffusion.

1: for each spatial position (x,y) do

2: p0(x, y) ←
n∑

i=1

pi(x, y)

3:
4: for each spatial position (x,y) do
5: � The first step Qi

6: for each class i := 0 to n do
7: ti(x, y) ← GetDisplacement(p0(x, y), pi(x, y))

8: a
(i)
jk ← GetCoefficient(pi(x, y))

9: ui(x, y) ← GetStandardThreshold(pi(x, y))
10: ui(x, y) ← ui(x, y) + ti(x, y)

11: for each class i := 0 to n do
12: c0i ← Q(pi(x, y) + bi(x, y), ui(x, y)) � Eq. 1

13:
14: � The second step Ei

15: if c00(x, y) = 1 then
16: if HaveConflict() then � i.e.:

∑
i�=0 c0i > 1

17: c0(x, y) ← 1
18: e0(x, y) ← p0(x, y) − c0(x, y)
19: minclass ← FindMaxClass()
20: for each class i := 1 to n do
21: if i = minclass then � i.e.:si = TRUE
22: ci(x, y) ← 1
23: else
24: ci(x, y) ← 0

25: ei(x, y) ← pi(x, y) − ci(x, y)

26: else if NoConflict() then � i.e.:
∑

i�=0 c0i = 1
27: for each class i := 0 to n do
28: ci(x, y) ← c0i
29: ei(x, y) ← pi(x, y) − ci(x, y)

30: else � No class sampled:
∑

i�=0 c0i = 0
31: for each class i := 0 to n do
32: ci(x, y) ← 0
33: ei(x, y) ← pi(x, y) − ci(x, y)

34: else � When c00 = 0
35: for each class i := 0 to n do
36: ci(x, y) ← 0
37: ei(x, y) ← pi(x, y) − ci(x, y)

38:
39: for each class i := 0 to n do
40: DistributeError(i, x, y, ei(x, y), a

(i)
jk )
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Quantize() compares pixel value to the threshold and returns 0 if below, 1
otherwise (Eq. 1).

HaveConflict() returns TRUE if more than one sampling points from dif-
ferent classes situate at the current position, and NoConflict() indicates only
one class sampled at the position.

FindMaxClass() finds the class whose sum of densities at all the spatial
positions is the maximum.

DistributeError() distributes the quantization errors to neighboring pixels
according to the error filter.
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