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Abstract. Estimating 3D structure of the scene from a single image
remains a challenging problem in computer vision. This paper proposes
a novel approach to obtain a global depth order of objects by incorporat-
ing monocular perceptual cues such as T-junctions and object boundary
convexity, which are local indicators of occlusions, together with physical
cues, namely ground contact points. The proposed combination of these
local cues complement each other and creates a more thorough partial
depth order relationship. The different partial orders are then robustly
aggregated using a Markov random chain approximation to obtain the
most plausible global depth order. Experiments show that the proposed
method excels in comparison to state of the art methods.
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1 Introduction

Depth perception in humans enables a robust 3D vision even in the presence
of a single view stimulus. Such a system is desirable in computer vision mainly
due to its many applications and the abundance of monocular cameras. Human
vision harnesses monocular cues to resolve inherent ambiguity caused by 3D to
2D projection in the image formation process and creates a sensible 3D percep-
tion. Monocular depth perception cues consist of dynamic cues and static cues.
Dynamic cues, such as motion occlusion and motion parallax require multiple
frames and motions in the scene as stimuli which are out of scope of this work.
In this proposal, the focus is on static cues, namely, convexity and T-junctions;
other cues in this category are perspective, relative dimensions, lighting and
shadow.

While physiological aspects of these cues have been widely studied in the
literature of psychophysics and vision, there is only a handful of research works
that test these theories in a practical scenario using computer vision methods.
Most of the work related to depth estimation in computer vision focuses on stereo
disparity or motion parallax, both of which use triangulation to compute depth.
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While triangulation-based methods provide absolute depth, which is desirable
in many applications, they require two or more views. Monocular static cues on
the other hand, can be combined to create a depth perception in the absence of
binocular and dynamic monocular cues or as a complement to improve existing
depth perception in a much wider domain.

The goal of this paper is, given a single image from an uncalibrated camera
and its decomposition in shapes (that are assumed to represent the projection
of the 3D objects on the image plane; e.g., a segmentation), to create a globally
consistent depth order of these shapes that constitute the image scene. For this
purpose, occlusion cues between objects, namely T-junctions and convexities are
used. Additionally, we use physical cues such as ground contact points. Following
the underlying assumption for extracting depth from occlusion cues, we assume
that the image is composed of objects that are fronto-parallel to the camera.
This is also referred to as the dead leaves model, a term coined by Matheron
[1], which constitutes a model for image formation where the image is made by
objects falling on top of each others and partially occluding them. The reason
for making such assumption is that in the presence of non fronto-parallel objects
in the image, e.g. floor, occlusion does not translate to depth order (see Fig. 1).

Fig. 1. Dead leaves model (DLM) and correctness of convexity cues. The left image
follows the DLM while the right one doesn’t. Arrows indicate the occluding object
suggested by convexity cues. Bright arrows indicate a correct depth order while dark
arrows indicate a wrong one.

Given an image that satisfies the dead leaves model, the occlusion cues pro-
vide a depth order among neighbouring regions. However, we require a global
order to establish a rough 3D model of the scene, which is understood here as
obtaining a consistent global order from a number of partial orders, which may
contain some discrepancies. This problem is in general referred to as rank aggre-
gation and it has been dealt with in several fields of computer science [2,3]. This
ordering problem appears whenever there are multiple operators providing par-
tial orders with transitive relations. The goal is to use the transitivity to obtain
a global robust order as consistent as possible with the partial orders. Transitiv-
ity between orders can be stated as the following property: if we have a partial
order indicating A<B and another one indicating B< C, thus we can infer the
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global order A< B < C. Our approach stems from the fact that transitivity of
local orders can be utilized to obtain a global order using rank aggregation.

Our main contributions in this paper are (i) a depth ordering system based
on monocular perceptual cues that allows reasoning without need for camera
calibration, multiple frames, or motion, (ii) a novel general convexity cue detector
that assigns a local depth order based on convexity and which is based on the
convex hull of a shape, and (iii) the extraction of a global depth order by a
robust integration of the partial orders.

2 Related Work

3D modeling has received a significant attention from the computer vision com-
munity, with studies focusing on various aspects of 3D perception. Due to the
vastness of the literature in this field, we will focus on studies conducted on
monocular static cues. Computational methods for depth extraction from a sin-
gle image can be categorized into supervised methods and Gestalt-based meth-
ods. Alternatively, other approaches have been suggested in the literature that
use human perception and vision as the basis from which to attempt to infer a
computational model simulating the known processes of human vision. Our work
falls in the latter category. Thus, we focus on the use of T-junctions and convexity
cues for establishing a depth order. The role of T-junctions as a cue for recover-
ing surface occlusion geometry was introduced by [4], and later stressed by [5,6].
Moreover, through the Gestalt school of thought in psychology, T-junctions were
described as a basis of monocular depth perception by the work of Kanizsa [7].
Later on, more computational works demonstrated the capability of T-junctions
for depth estimation; to the best of our knowledge, one of the first attempts
at depth ordering methods using T-junctions was performed by [8]. Later on,
an inspiring work of Nitzberg et al. [9,10] proposed the so-called 2.1D sketch
through a joint segmentation and depth estimation model. More recently, stud-
ies have been conducted using energy minimization approaches which use either
explicit [11,12] or implicit [13] junction detection algorithms.

In addition to T-junctions, convexity is considered to be one of the most dom-
inant cues for figure-ground organization [7]. A computational model for utilizing
convexity has been developed for figure-ground organization in the recent past
[14]. Moreover, works on occlusion reasoning using Gestalt-based methods have
used convexity as a complementary cue to T-junctions for a more robust rela-
tive depth estimation [15–17]. While it has been suggested that convexity affects
human depth perception and is coded explicitly in the brain [18], the litera-
ture in computational models that use convexity is divided in this sense. In the
works [15,17], convexity is explicitly detected and coded, while in [16] this is
done implicitly. The proposed approach shares with [15–17] the use of convexity
and T-junctions cues. In order to integrate the partial depth orders suggested
by the monocular depth cues we use a graph-based approach. Previous works
[17,19] also use a graph representation but need to reduce it to an acyclic graph
and remove conflicts among different cues. In contrast, our work can directly
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handle conflicting transitive orders in the graph by using a rank-aggregation-
based method [3], and obtain a globally consistent depth order. Here, transi-
tive order is the order established by a path in the graph involving more than
two nodes using the transitivity property mentioned in Sect. 1. A very recent
work on depth layering using occlusion cues is the work of [20] where convexity,
T-junctions and a ground contact cue is used to obtain a depth order of the
image. An energy minimization scheme is used to find the correct depth order
which makes their method more complex and time consuming than our proposed
method. Moreover, they have to make more restrictive assumptions to obtain the
correct ground contact cue which limits their method to a smaller domain. As
the method proposed by [20] shows promising results and performs superior to
other similar methods [17,21], it has been used as a benchmark for evaluation of
our proposed method. A comparative evaluation using the experimental setup
in [20] is presented in Sect. 4.

3 Proposed Method

We propose a method to extract a global depth order from a single image from
an uncalibrated camera. The idea is motivated by studies showing human vision
capability to integrate monocular depth cues to create a sensible depth percep-
tion. Given an input image, let us consider the set of its (segmented) shapes -
the notion of shape used in this paper will be clarified in Sect. 3.1. Then, a global
depth order can be obtained following the steps below:

1. Determine a local depth order between each pair of adjacent shapes by
analysing the convexity of their common boundaries.

2. Detect T-junctions and use a multi-scale feature to determine a local depth
order between the shapes that meet at each T-junction.

3. Establish a global depth order by rank aggregation of the previous partial
local orders.

4. Refine the order using ground contact cue.

Each step of the proposed method is detailed in the following sections.
Figure 2 illustrates the different steps of the algorithm.

3.1 Local Depth Cues Detection

Local depth cues are extracted to establish a local depth order between neigh-
bouring objects. In this work, convexities (L-junctions) and T-junctions are used
for this purpose. We use a segmentation of the image as an input to the cue detec-
tion mechanism. In order to compute a local depth order in a manner that follows
the human perception based on psychophysics studies [7,18,22], T-junctions and
convexities must be treated in a different manner. Thus, an explicit detection
of such depth cues is required. In the following, we explain how we detect both
kind of junctions.
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Fig. 2. Diagram of the proposed method. From left to right: The segmented image;
detected convexities cues (above) and T-junctions cues (below) and the local depth
order from each cue inferred by the local cues (green areas are in front of red ones,
whereas yellow indicates an inconclusive cue); global depth order extraction by rank
aggregation on a graph whose nodes represent the different shapes and the directed
edges indicate local depth orders; final result with global depth order illustrated as a
depth map, where warmer color values indicate closer objects to the camera. (Color
figure online)

Convexity Cue. In this paper we propose a global convexity decision about
each connected boundary between any two adjacent (segmented) regions in the
image. The aim of this step is to determine which side of the boundary is the
occluder and which side is the occluded, thus establishing a local depth order.
Given the dead leaves model assumption, this cue can be used to infer the local
depth order of the shapes that share a boundary.

To find the occluding region, we propose a method to determine which side of
the boundary is closer to a convex shape. Figure 3 illustrates this process. Initially
the segmented image is used to obtain the set of all the common boundaries

Fig. 3. Illustration of the main steps of the convexity cue detector and the estimated
local order where green areas are estimated to be in front of red areas. (Color figure
online)
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between any two regions or objects in the image (Fig. 3, left image). For each
connected common boundary, we consider its bounding box (shown in Fig. 3,
middle-up). A connected common boundary divides the bounding box into two
shapes (denoted by S and S′ in Fig. 3). The shape whose area is closer to the
area of its convex hull (i.e. smaller red area in Fig. 3, middle-down) is considered
more convex and assigned as the occluder (S in the example of Fig. 3). On the
other hand, the complement shape (S′ in Fig. 3) is assigned as the occluded.

Let us notice that there is the possibility that a given boundary does not pro-
vide a conclusive depth cue. In other words, the convexity cue does not provide
enough information to clarify which side is the occluder and which side is the
occluded. This phenomenon appears, for instance, when the common boundary
is either a straight line or a sinusoidal curve. To deal with such cases we define
a criteria based on a threshold on our proposed global convexity measure of
the connected boundary between two adjacent regions. This criteria is derived
from the absolute difference between the convexity defect areas (red areas in
Fig. 3) of the shapes (S and S′). If this value is not significant enough (i.e. it is
lower than a prescribed threshold thrCX) then these boundaries are considered
inconclusive and will have no effect on the result. We define this threshold as
thrCX = L · π · thr, where L is the length of the boundary and thr is a tuning
parameter that controls the sensitivity of the criteria and is independent of the
length of the boundary. Examples of such inconclusive boundaries for different
values of thr can be found in Fig. 4; namely, the figure displays examples for a
smaller value of thr = 0.0 and a bigger value of thr = 0.6. In order to study the
effect of this parameter, both on the local and global depth ordering, we present
in Sect. 4 some experiments where the threshold thr is modified in the range of
[0.0, 0.6] with step size of 0.05.

Fig. 4. Illustration of modifying the value of thrCX through the parameter thr. Top
row, thr = 0.5; bottom row, thr = 0.15. Decreasing thr leads to accepting more
conclusive boundaries (less inconclusive boundaries in yellow). (Color figure online)
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T-Junctions Cue. One of the pivotal depth cues used in this paper are T-
junctions. T-junctions appear at the meeting points of three shapes boundaries
and are related to occlusion configurations (see Fig. 2). Two of the three regions
present in the T-junction are separated by the stem of the T; these two regions
are perceived to be partly occluded by the region which presents a larger section
or angle. The latter region is then in front of the other two. Moreover, the angle
of each object forming the junction must satisfy some criteria to be classified as
a T-junction.

In this paper, we compute T-junctions using the method in [23] where the
authors gave a definition of T-junction which overcomes the difficulty of com-
puting angles in a discrete image. They proposed an efficient algorithm which
is mainly based on thresholding and computes junctions directly on the image
without previous preprocessing or smoothing. The segmented image is used as
an input to this method and the output is the locations of T-junctions.

The definition is based on the topographic map of an image u : Ω ∈ R
2 → R

(in our case, the segmented image), that is, the family of the connected compo-
nents of the so-called, level sets of u, [u ≥ λ] := {x ∈ Ω : u(x) ≥ λ}, and on its
boundaries, the so-called level lines. Here, λ represents the gray level of the seg-
mented image u. The set of level sets is invariant to monotonic non-decreasing
illumination changes, a classical requirement in image processing and computer
vision [24], and the level lines contain the boundaries of the parts of the physical
objects projected on the image plane. In practice, the algorithm computes the
T-junctions as all the pixels p where two level lines meet and such that the area
of the connected component of each of the bi-level sets [u ≤ α], [α < u < β],
[u ≥ β], with α < β, meeting at p is big enough.

After detecting the location of T-junctions, for establishing a local depth
ordering one could use some angle or area of the regions meeting at the T-
junction, both of which have been used in the literature [17,25]. Problems arise
when certain configurations of the cue lead to an inaccurate computation. One
of the problems is related to the scale at which the depth cue is obtained.

Noise in the image can also lead to incorrect cues, so one could use larger
scales but they are less discriminative in depth. To avoid these issues, we stem
from the work by [16] to create a reliable multi-scale measure to establish a
local depth order (according to human vision) at the located cues. To this end,
features are formulated using the curvature of the level lines of the distance
function of each connected component in the segmented image at different scales.
The features are computed for each scale s by adding the contribution from each
connected component using the following formula:

Es(x) =
nc∑

c=1

(eβs|Kc,s(x)|γs − 1), (1)

where Kc,s is the curvature of the level lines of the distance function to the
connected component c at scale s, nc is the number of connected components
at scale s, γs and βs are scale-related parameters which are fixed as proposed
in [16]. In order to keep these features local and avoid overlapping with other
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boundaries, the distance function is clipped at a distance 5. In order to generate
a multi-scale local feature we combine the local features according to (1) by
computing an average of the normalized features at several scales, as in [16]. In
this work, we integrate the features from scales 1 to 5. Figure 5 illustrates with
an example the behaviour of this multi-scale features. As it can be seen in Fig. 5
right, the part of the cue that is perceptually closer to the observer has a higher
multi-scale feature value.

Fig. 5. Multi-scale features obtained after averaging the features Es (1) of the first five
scales.

Finally, to estimate the local depth order induced by a certain T-junction,
first a representative value of the multi-scale depth features is computed for each
region (e.g. R1, R2, and R3 in Fig. 5 right) in the neighborhood of the T-junction
given by a disk of radius 5. The representative value is computed by applying
either the median or max operators on the features of the respective region
(i.e. R1, R2, R3). In Sect. 4 we compare the performance of both operators. The
region with a higher representative local feature value is assigned to be in front
of the other two neighboring regions (R3 in front of R1 and R2 in the example
of Fig. 5).

Ground Contact Cue. The physical restriction of the real world imposes that
every non-flying, non-wall-mounted, object should be connected to the ground.
A reasonable extension of this phenomena suggests that every object in the scene
is either directly connected to the ground or is occluded by other objects, and
at least one of which is connected to the ground. Making reasonable assumption
that the ground plane can be estimated, or manually segmented, the lowest point
of contact of each object to the ground can be easily used as an extra cue for
depth order. As ground contact cues can establish an order between non-adjacent
objects they can complement the occlusion relations computed from T-junction
and convexity. This kind of cue was previously used in [20].
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3.2 From Local to Global Depth

In order to establish a global depth order given by the local cues we use an
approximation of rank aggregation [2] similar to the one used in [3] for photo-
sequencing. To do so, we construct a weighted graph G(U,E) to represent the
partial order between pairs of shapes (objects), which are represented in the
graph by the nodes in U . The graph is constructed by placing a directional edge
e(i, j) ∈ E connecting the node i to node j if the local cues relating the objects
suggest that object i is in front of object j (represented here by i >> j). The
weight of the edge gathers up the local depth order cues. Each convexity cue
indicates a depth order relation between two nodes (e.g. i << j) and each T-
junctions indicates a relation between three nodes using two edges (e.g. i << j,
i << k). The weight of the edge e(i, j) between nodes i and j is proportional to
the number of local cues indicating the local order i >> j, which can be inter-
preted as proportional to the number of votes for the local order i >> j. This
weight corresponds to the probability that i >> j. In such a graph, a random
walk after a sufficient time (in the steady state) will reach the sink of the graph
(or of a sub-graph) which represents the object (or objects) perceptually fur-
thest from the viewer. Repeating this process iteratively while in each iteration
removing the sink node (or nodes) from the previous iteration will provide us
with the global depth order. In particular the iteration number in which a set of
nodes is removed reveals the global order of this set of nodes. For illustration of
this process see Fig. 2 – step 3.

The steady state can be computed using an eigenvector analysis of M , the
transition state matrix associated to the graph. The elements of M are the
probabilities of moving from one state (node) to another. To construct the matrix
M with non-negative entries, we initially form a matrix V collecting the votes,
where the rows and columns indices correspond to the index of each associated
connected component. Thus, an image with N shapes will produce an N × N
matrix V . The i, j-th element of matrix V , V (i, j), collects the number of votes
(local cues) that agree with the partial ordering i >> j.

Once the matrix V is filled, we compute the matrix M which specifies the
probability that i >> j. Firstly, the cycles of length two which may have been
introduced by conflicting cues are removed. We follow the method proposed in
[3] to resolve these conflicts. In particular, M(i, j) = 1 − V (j,i)

V (i,j) , and M(j, i) = 0
if V (i, j) > V (j, i). The rest of the cycles do not need to be removed since the
rank aggregation method automatically solves them. Finally, the rows of M are
normalized to 1 in order to get transition probabilities.

After an initial depth order is computed from occlusion cues, it is possible
to refine the depth for those segments which are assigned the same depth level
due to lack of occlusion relations. To this end, a ground contact cue is used. For
each set of objects placed at the same depth, the lowest ground contact point is
computed as the point with lowest y-coordinate of common boundary between
objects and the ground plane (which has been pre-segmented). Subsequently,
the order is refined so that objects whose ground contact is closer to the lower
border of the image are assigned a higher (i.e. closer) depth level.
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4 Experimental Results

This section presents three different experiments with different kind of data
designed to evaluate and illustrate various aspects of the proposed method.
An initial experiment is first presented as a proof of concept using synthetic
images with the following parameters: thr = 0.15 for convexity cue detection,
and median as T-junction feature operator. The goal of the second experiment
is twofold: first, to present an experimental study of different parameter settings
to find the best performance and fix the parameter values for the rest of the
experiments and, second, to provide a quantitative comparison of the proposed
method and the most recent state-of-the-art methods [17,20,21]. This experi-
ment is done using a dataset of 52 images proposed by [20]. For both the first
and second experiments the ground truth segmentation is available, whereas in
the third experiment the segmentation is done using an interactive tool [26].

Figure 6 illustrates the results of applying the proposed method to a small
set of synthetic images. The first row shows the input images and the second
row shows the global depth order images with convexity and T-junctions cues
superimposed on them, respectively. The local depth order is illustrated in each
cue, where green indicates the section perceived to be closer to the observer. As
for global depth order, the grey values indicate global depth order, particularly
the brighter areas are closer to the observer. As it can be seen all T-junction
cues indicate a correct local depth order, whereas some of the convexity cues
are incorrect or inconclusive (marked as yellow). However, the T-junctions cues
are able to compensate these errors and create a globally consistent depth order
that complies with human depth perception.

In the first part of the second experiment the proposed method is evaluated
under different parameter settings with the dataset proposed by [20]. Figures 7
and 8 illustrate these results. The horizontal axis denotes the parameter thr

Fig. 6. Experiments with synthetic images: estimated global depth ordering (brighter
gray levels indicate closer objects). The automatically detected local depth cues, con-
vexities and T-junctions establish a local depth order (green areas are estimated to be
in front of red areas). Inconclusive convexity cues are marked in yellow. (Color figure
online)
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Fig. 7. Accuracy of local depth order between adjacent pairs of shapes.
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that defines the threshold thrCX = L · π · thr applied to the difference of defect
areas. Then, as the values in the horizontal axis increase the threshold thrCX

increases and more boundaries become inconclusive, meaning that the sensitivity
for detecting global convex boundaries decreases (see also Fig. 4). In Fig. 7 the
vertical axis indicates the accuracy as the percentage of pairs of adjacent shapes
which have been assigned a correct local depth order. Whereas in Fig. 8 the
vertical axis indicates the accuracy as the percentage of pairs of all shapes which
have been assigned a correct global depth order. These accuracy measures are
identical to the measures of performance evaluation in [20]. The legend of Figs. 7
and 8 indicate the operator for the T-junction (median or max), the type of local
cue (T-junction (TJ), convexity (CX), ground contact cue (GC) or combination
of these), and whether or not a global rank aggregation was used (“GRA” or
“No GRA”). Both Figs. 7 and 8 indicate that the best performance is achieved
when the depth order induced by the T-junction cues is computed using the
median operator and is combined with the depth order induced by the convexity
cue using rank aggregation, denoted as “Med TJ+CX+GRA”. Thus, achieving
a performance of 91.49% accuracy in local depth order estimation and 69.94%
in global depth order estimation. On the other hand, using the max operator
slightly decreases the performance to 89% and 67.8% for local and global depth
estimation, respectively. The decrease in accuracy of the global order with respect
to the local order can be explained by the fact that the proposed method can only
infer depth relations between objects connected by a path in the graph. It should
also be noted that the performance of the max operator is slightly less stable.
Further, it can be seen that the contribution of T-junctions is significant for both
global and local depth estimation as they improve the performance compared to
when only convexities are used (16% increase for local depth estimation and 19%
increase in accuracy of global depth estimation). The red square and diamond
in the Figs. 7 and 8 highlight the performance of using only T-junctions (the
parameter thr does not affect this computation). As expected, T-junctions seem
to be a more reliable cue than convexities as they consistently achieve a higher
accuracy. Figure 7 illustrates how the global integration of convexity cues using
rank aggregation improves the performance of local depth estimation between
adjacent pairs of shapes, namely, the performance increases from 59% to 75%.
Further, both Figs. 7 and 8 indicate that using the ground contact point to refine
the depth order improves the accuracy of depth estimation, particularly among
all pairs (see Fig. 8).

Finally, observing the two lower curves the in Fig. 7 we can see that, while
the accuracy of “CX + No GRA” decreases as the threshold increases, the
accuracy of “CX + GRA” remains relatively stable. This indicates that most
of the convexity cues in the dataset are conclusive (i.e. comply with human
depth perception) and increasing the threshold will lead to less cues and thus
less accuracy. However, it is interesting to note that the global integration is
able to compensate for the removal of cues that did not satisfy the threshold
and stabilize the performance. It can be seen that the best operation point for
the threshold of the global convexity is the mid-range value thr = 0.25, where
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the average of the two accuracy measures is the highest. While the effect of thr
is not significant it leads to a slight increase in the performance of the global
depth estimation (see Fig. 8).

In the second part of the second experiment, the proposed method is com-
pared with the state-of-the-art [17,20,21] with the accuracy measures presented
in [20]. According to the results obtained in the previous analysis, we fix the
parameters to the following values: thr = 0.25 and median as the operator in
the depth order estimated from the T-junctions. To this end, we follow the exper-
imental setup suggested by [20] on their proposed depth ordering dataset. The
results in Table 1 show that using a combination of T-junction, convexity and
ground contact (GC) cues achieves the highest performance. As it can be seen,
the proposed method, both with and without the ground contact cue, outper-
forms all of the state-of-the-art methods in the adjacent pairs case and, in the

Fig. 9. Depth ordering results using the proposed method (using occlusion cues
only and both occlusion and ground contact cues) on near-view scenes from the dataset
by [20].
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all pairs case, the proposed method performs superior to [17,21] and very close
to [20]. If we do not use the ground contact cue, our methods falls short of [20]
in the all pairs case. This is mainly due, as previously noticed, to the fact that
our proposed method cannot infer depth relations between objects that are not
connected with a path in our graph i.e. there are no transitive relations to be
used to infer a global depth order. In contrast, when we add the ground con-
tact cue, as in [20], as a post-processing of the depth order it helps to infer new
depth relations when the other cues (T-junction, convexity) are not present. The
improvement is illustrated in Table 1 where the accuracy increases from 69.94
to 82.59 in the all pairs case. A qualitative comparison of the best performance
of the proposed method can bee seen in Fig. 9. The improvements of the depth
refinement step using the ground contact point are evident in here.

Table 1. Depth order accuracy.

Adj. pairs All pairs

Jia et al. [21] 79.84 29.88

Palou and Salembier [17] 43.85 43.56

Zeng et al. [20] 82.66 84.60

Our method: CX+ GRA 74.83 59.21

Our method: TJ+ GRA 84.39 65.3

Our method: TJ+ CX+ GRA 91.49 69.94

Our method: TJ+ CX+ GRA + GC 92.11 82.59

Finally, to show how the proposed method may be used as a real world
application, the interactive segmentation tool [26] has been used to segment
some images from the Berkeley dataset [27] and the global depth order of the
segmented objects is estimated with the proposed method. As it can be seen in
Fig. 10 the order of the segmented objects is correct in most of the cases.

Fig. 10. Using interactive segmentation [26] and the proposed method to create a depth
ordering of objects in the scene.
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5 Limitations and Assumptions

Estimating depth from a single image is a very challenging and under-determined
problem. It is necessary to make suitable assumptions to make the problem
tractable. Our first assumption is that a good segmentation is available where the
boundaries of the segmentation regions coincide with the actual object bound-
aries. As the method is based on a convexity cue defined on boundaries and
T-junctions (which are points at the intersection of boundaries), a deficient seg-
mentation leads to significant depth artifacts in the estimated depth order. A
second limitation may be noticed in one of the examples in Fig. 11: the one in box

Fig. 11. Due to some limitations of the proposed approach, the violation of certain
assumptions leads to errors in the estimated depth order which have been delimited
with red boxes (see Sect. 5 for a detailed explanation of these problems). (Color figure
online)
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1 of the left image. The T-junction and convexity cues that are detected on the
ground contact of the object indicate incorrect depth order. In some cases, there
exist other cues that compensate for these mistakes, either directly or indirectly
using the transitivity property of the graph. However, this is not the case in
the aforementioned example. Another limitation is inaccuracies in our convexity
detector which can be seen in Fig. 11 box 2, a misinterpretation of convexities
in cases where a long narrow shape is next to two concavities. Figure 11 box 3
shows the bias of the proposed method to interpret small convex objects to be
in front of their neighbouring shapes (this may happen also in visual holes, such
as windows or arch bridges). A more general limitation is that objects in the
scene should be approximated with fronto-parallel planes to the camera. When
this assumption does not hold it may lead to misinterpretation of local cues and
thus misestimation in the order of objects. An example of this can be found in
Fig. 11 right, box 4. In this case, since the two objects sharing the same border
cannot be approximated with fronto-parallel planes, the algorithm misestimates
the depth order. Another limitation marked in the box 5, illustrating that, if
the ground cue is not used or is not available, the non-adjacent objects can be
placed in the same depth level.

Fortunately, in some cases there are solutions to deal with the aforementioned
limitations. The problem illustrated in box 5 can be resolved using the ground
contact point as shown in the third row right column of Fig. 11. The non-fronto
parallel problem can be resolved by ground separation in simple cases. In cases
where there are more than one non-fronto parallel planes in the image, a geo-
metric context method, based for instance on surface normal extraction, may be
used to guide the depth estimation. The problem related to visual holes can be
addressed using a semantic labelling method that is able to identify the visual
hole; for example by classifying areas like the sky which are always in the back.

6 Discussion and Conclusion

Inspired by the human vision capability to perceive depth using monocular cues,
we proposed a method for the detection and integration of T-junction and con-
vexity cues that is able to obtain a globally consistent depth order. The pro-
posed method computes partial depth orders using multi-scale features, then,
integrates them using a rank aggregation method that resolves conflict. This
allows to simultaneously compensate for incorrect partial depth orders intro-
duced by invalid cues and also harnesses the transitivity between the cues to
obtain a global order from partial orders. The proposed method is applicable to
any scene that complies with the dead leaves model and does not require training.
In the presense of a segmented ground plane, the contact point with the ground
can be used as an additional cue to refine the depth order estimated using occlu-
sion cues. For future work we propose to extend the method to images containing
non fronto-parallel objects using other monocular and binocular cues that may
be integrated in the rank aggregation step as additional votes for partial depth
orders.
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