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Abstract. Object affordances have moved into the focus of researchers
in computer vision and have been shown to augment the performance
of object recognition approaches. In this work we address the problem
of visual affordance detection in home environments with an explicitly
defined agent model. In our case, the agent is modeled as an anthro-
pomorphic body. We model affordances hierarchically to allow for dis-
crimination on a fine-grained scale. The anthropomorphic agent model
is unfolded into the environment and iteratively transformed according
to the defined affordance hierarchy. A scoring function is computed to
evaluate the quality of the predicted affordance. This approach enables
us to distinguish object functionality on a finer-grained scale, thus more
closely resembling the different purposes of similar objects. For instance,
traditional methods suggest that a stool, chair and armchair all afford
sitting. However, we additionally distinguish sitting without backrest,
with backrest and with armrests. This fine-grained affordance definition
closely resembles individual types of sitting and better reflects the pur-
poses of different chairs. We report evaluation results of our approach on
publicly available data as well as on real sensor data.

Keywords: Affordance · Affordance prediction · Visual affordances ·
Affordance hierarchies · Object recognition

1 Introduction

Since Gibson’s work on affordances [1] a lot of effort was put into the theo-
retical investigation of affordances [2,3] and their applications in other fields.
When it comes to classification in computer vision, many approaches struggle
with large intraclass appearance variations. The reason is at hand: classes are
defined by the functionality of objects, rather than their visual appearance. By
describing action possibilities between an agent and an object, affordances allow
to detect similarities on a functional level, rather than solely rely on the object’s
appearance. Thus, approaches exploiting affordances were shown to augment the
classification process [4,5].
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This is why reasoning about an object’s purpose has become an important
area in today’s research in robotics. While shape features are often acquired
locally (i.e. around salient points) and might therefore be misleading, detecting
a functionality of an object facilitates categorization. Additionally, predicting
affordances of objects instead of the object classes allows objects and tools to be
applied even without the precise knowledge of the class the object belongs to.
Even objects of different classes can be applied according to a certain affordance
required by the agent. For example, if an agent (e.g. a robot) needs to hammer, it
would pick a heavy object providing enough space for grasping and a hard surface
to hit on another object. This works without knowing the category hammer or
having a hammer available by e.g. using a stone instead.

While in robotics humans play an active role in teaching affordances to
robots, e.g. by interaction [6,7] or by imitation [8–10], the vision community fol-
lows other approaches. Some approaches completely omit the interacting agent
and propose to derive object descriptors by physical simulation [4], by data from
additional sensors (e.g. kinematic data [11]) or purely from visual sensors [12].
Other approaches create or “imagine” human models in the environment [13].
These human models are exploited to propose comfortable poses for sitting [5],
to learn human-relative placement of objects [13] or to explore action possibili-
ties in human workspaces [14]. In contrast to approaches in robotics we do not
record kinematic data of an agent, neither do we detect affordances by interac-
tion. Nowadays, it can be expected that visual perception is mostly common in
robots and it is thus plausible to rely on that data. Thus, the approach proposed
in this paper relies on visual data only.

In our approach we employ the observer ’s view on affordances as introduced
by Şahin et al. [15]. While the environment is being observed by a robot equipped
with certain sensors, the system is looking for affordances that afford actions to
a predefined model. In our case this predefined model is an anthropomorphic
agent representing a humanoid. In recent work [5,13] this observer’s view is
often referred to as hallucinating interactions.

In the proposed method we focus on the complementary nature of a humanoid
agent and its environment. In our previous work we proposed detecting fine-
grained or hierarchical sitting affordances with a simulated anthropomorphic
agent [16]. Given an agent and an affordance model, the agent’s joints are trans-
formed from a start to a goal pose. Figuratively speaking, the agent model is
unfolded from an initial pose to a functional pose that corresponds to predicted
affordances (Fig. 1). The final state of the individual joints determines the pre-
dicted fine-grained affordances in the hierarchical affordance model.

We use indoor or home environments that are considered as environments
specifically designed to suit the needs of humans. Therefore, the complementary
agent to the investigated environment is an anthropomorphic, i.e. human, body.
Thus, for the purpose of this work affordances shall be informally defined as
action possibilities that the environment offers to an anthropomorphic agent.

In this work we extend our previous work by refining our affordance model
and including more action possibilities: sitting and lying. The refined model
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Fig. 1. Unfolding the agent model for the sitting affordance hierarchy.

allows to handle complex scenes in contrast to individual objects of our pre-
vious approach. We further provide a formal model for hierarchical affordance
prediction and show its applicability on large datasets of furniture objects.

Related approaches in the literature [4,17,18] distinguish affordances on a
coarse scale. The considered affordances often include sitting (chairs), support
for objects (tables) and liquid containment (cups). We propose looking closely
at the individual affordances and distinguishing their functional differences an a
fine-grained scale. We already introduced the concept of fine-grained affordances
in [19] to closely resemble the functional differences of related objects. Although
good results could be obtained, our previous work was a proof-of-concept with
several limitations.

In the presented work, we concentrate on fine-grained affordances derived
from the affordance sitting and lying. We present a new algorithm for fine-
grained affordance prediction that differentiates between 4 typical functionality
characteristics of the sitting affordance. We divide the coarse affordance sitting
into the fine-grained affordances sitting without backrest, sitting with backrest,
sitting with armrest and sitting with headrest, whenever the sitting functionality
is supported by additional environmental properties that can be exploited by
the considered agent. Further, we give an outlook on different subaffordances of
the course affordance lying.

A system that is able to find affordances either encounters only those objects
that were specifically designed to support the affordance in question or environ-
mental constellations that afford the desired action. Our algorithm takes point
clouds e.g. from a RGB-D camera as input. The input data is directly searched
for affordances (and thus functionalities) without prior object segmentation. In
the core of the algorithm, the agent model is unfolded and checked for collisions
with the environment. Specific goal configurations of the agent model represent
different types of fine-grained affordances. The encountered affordances are seg-
mented from the input point cloud. This segmentation can serve as an initial
segmentation for a subsequent object classification step (not further explored in
this work). Since the found affordances (especially on a fine-grained scale) pro-
vide many hints on the possible object class, categorization can be performed
with fewer training objects or simpler object models. The presented fine-grained
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Fig. 2. Example furniture objects corresponding to the different fine-grained affor-
dances predicted by the presented approach. From left to right: stool (sitting without
backrest), two chairs (sitting with backrest) and three armchairs (sitting with backrest
and sitting with armrest). Additionally, the rightmost chair also supports the sitting
with headrest affordance.

affordances correspond to objects such as a stool, chair, armchair and a chair
with head support (Fig. 2). Specifically, an affordance-based categorization sys-
tem can be exploited as outlined in the following. Affordances enable the detec-
tion of sittable objects even without knowing object classes as stool, chair or
couch. Following the idea of fine-grained affordances, a stool standing close to
a wall can even provide both affordances: sitting with and without backrest (in
the former case the back is supported by the wall). This intuitively corresponds
to the way a human would utilize an object to obtain different functionalities.

The remainder of this work is structured as follows. Related work on affor-
dances in robotics is presented in Sect. 2. Section 3 introduces the model defini-
tions applied in our algorithm and Sect. 4 explains our approach for fine-grained
affordance prediction in detail. The proposed algorithm is evaluated in Sect. 5.
Finally, a discussion is given in Sect. 6 and Sect. 7 concludes the paper and gives
an outlook to our future work.

2 Related Work

Hierarchies in affordances have been explored mainly in design theory to rea-
son about functional parts of objects [20,21]. Their goal is to divide objects
into different functional parts that represent different affordances. This allows a
designer to identify desired and undesired affordances in early stages of product
design. Note however that this hierarchical affordance modeling is conceptually
different from the fine-grained affordances applied in this paper. We do not sep-
arate objects in different parts with different affordances. Rather, our object
independent approach separates an affordance (in this case the sitting and lying
affordances) into different subaffordances on a fine-grained scale.

Other approaches like the work of Hinkle and Olson [4] use physical simu-
lation to predict object functionality. The simulation consists of spheres falling
onto an object from above. A feature vector is extracted from each object depend-
ing on where and how the spheres come to rest. The objects are classified as
cup-like, table-like or sitable.



Affordance Origami: Unfolding Agent Models 559

Research especially focusing on sitting affordances has been conducted over
the past years. Office furniture recognition (chairs and tables) is presented by
Wünstel and Moratz [12]. Affordances are used to derive the spatial arrangement
of the object’s components. Objects are modeled as graphs, where nodes repre-
sent the object’s parts and edges the spatial distances of those parts. The 3D
data is cut into three horizontal slices and within each slice 2D segmentation is
performed. The segmentation results are classified as object parts and matched
to the object models. Wünstel and Moratz’ approach detects sitting possibilities
also on objects that do not belong to the class chair, but intuitively would serve
a human for sitting. Unlike the approach of Wünstel and Moratz, we encode
the spatial information needed for affordance prediction in an anthropomorphic
agent model and affordance models, rather than creating explicit object models.

Hierarchical classification of object parts has been explored in [22]. Complex
object models were proposed to identify object parts and thus infer the subcat-
egory of an object type. Affordances were not mentioned explicitly, though. In
[23] a human agent model is used to classify objects. Again, affordances were not
explicitly mentioned here. Contrary to our approach they needed a segmented
object as input for classification.

Our algorithm takes 3D data and detects affordances inside these data. In
our approach, individual objects exposing these affordances are subsequently
segmented based on the detection result. We propose a hierarchical affordance
model and the detection of fine-grained affordances by unfolding an anthropo-
morphic agent model and fitting the agent to functional object parts. By apply-
ing our agent and affordance models we do not need to create complex object
models as opposed to [22] and do not have any constraints on the environment
(e.g. segmented objects) as in [23]. In our case, the segmented part of the scene
is a result of the detected affordances on the input data.

More recently, Grabner et al. [5] proposed a method that learns sitting poses
of a human agent to detect sitting affordances in scenes to classify objects.
For training, key poses of a sitting person need to be placed manually on each
example training object. In detecting chairs, their approach achieves superior
results over methods that use shape features only. However, as pointed out by
Grabner et al. their approach has difficulties in detecting stools, since they were
not present in the training data. Consequently, the approach of Grabner et al.
does not allow to find affordances per se, but rather affordances of trained object
class examples.

In the present paper we follow a different approach. Our goal is to directly
predict sitting affordances in input data, independently of any possibly present
object classes. Further, if a sitting affordance is hypothesized, it will be catego-
rized on a fine-grained scale according to the characteristics of the input data
at the position where the affordance is assumed. Our approach does not rely on
examples of sitting furniture, but only on the agent and affordance models. Our
fuzzy function formulation encodes expert knowledge to connect the input data
with the desired functionality with respect to the given agent model. Still, our
models remain simple and also work even if important parameters are changed.
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We show this generality by varying the size of the applied agent model during
our evaluation (Sect. 5). Additionally and similar to Grabner et al., our approach
suggests a pose how the detected object can be used by the agent.

Note that our approach is ignorant of any object categories. However, our
fine-grained affordance formulation allows for a more precise object categoriza-
tion as a consequence of affordance prediction. Due to the fine-grained scale on
which affordances are predicted, object categories can be easily linked to the
prediction result (e.g. if a backrest could be detected or not). Our approach
thus suggest as which kind of object the detected object exhibiting the affor-
dance can be used. However, the detailed analysis of detected objects and their
classification is left for future work.

3 Affordance Modeling

Usually, affordances are defined as relations between an agent and its environ-
ment [1,15,24]. Since these two entities are crucial for affordances, we start with
their definitions. Then, a definition of fine-grained affordances is provided.

3.1 Environment and Agent

Contrary to our previous work [19], we do not need an explicit environment
model. Our algorithm is designed to work on point clouds (e.g. from an RGB-D
camera). Thus, a point cloud P = {pi},pi ∈ R

3 defines the environment in this
setting. There are no further models or assumptions involved in our environment
definition except the two necessary constraints when working with affordances.
Firstly, the environment must correspond to the body-scale metrics of the agent.
Secondly, the agent and environment must share a common coordinate frame (i.e.
common ground plane and up-vector).

The affordances applied in this approach correspond to functional properties
offered to humanoid agents. The agent H is modeled as a directed rooted tree
H = (VH , EH) with vertices VH and edges EH ⊆ VH × VH representing a scene
graph. In this graph, nodes represent joints in a human body and edges repre-
sent parameterized spatial relations between these joints. The spatial relations
correspond to average human body proportions. The nodes contain information
on how the joints can be revolved while maintaining an anatomically plausible
state (i.e. without harming a real human if the same state would be applied).

In the refined approach that we present here, the agent H is modeled accord-
ing to average human body size and proportions as reported in a statistical
investigation [25] and in [26]. Each edge e ∈ EH in the graph H represents para-
meterized body parts of the agent and is attributed with a length l = ‖e‖ to
reflect the dimensions of the human body. When fitting the agent into the envi-
ronment during affordance prediction, the edges of the graph are approximated
by cylinders for collision detection. Further, each vertex v ∈ VH represents mov-
able joints in the broader sense and is attributed with an angle θ. This angle θ
defines the current state of the joint and describes the rotation relative to the
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parent joint in the graph around the lateral axis. Note that this simple model
does not reflect all possible degrees of freedom of a human body. However, this
simplified human model is sufficient for our purposes.

3.2 Affordances and Affordance Hierarchy

An affordance is an action opportunity offered to an agent by its environment.
We suggest to consider affordances on a fine-grained scale. This means that an
affordance is a generalization of similar action opportunities and thus can be
divided into fine-grained affordances or subaffordances. For instance, the affor-
dance sitting is a generalization of more precise relations that an agent and its
environment can take. We demonstrate our ideas by distinguishing between the
fine-grained affordances sitting without backrest, sitting with backrest, sitting with
armrest and sitting with headrest. Further, we give an outlook on the lying affor-
dance which can be seen as a generalization of lying with elongated or raised body
and lying with stretched or raised legs. As is obvious from the specializations of
the lying affordance, subaffordances can be mutually exclusive.

In the context of this paper we define an affordance A as a set A = {F0 . . . Fj}
of fine-grained affordances Fi. For a given environment P , affordance A and ini-
tial agent configuration HA the function Aff : HA × P × A → {(F,p,Hg)i}
determines a set of tuples. Each tuple contains F ⊆ A, a set of fine-grained
affordances present at position p in the environment with a goal agent configu-
ration Hg. The algorithm described in the next Section is an implementation of
the above function Aff.

For each affordance A, an initial pose HA of the agent needs to be defined.
Thus, every fine-grained affordance Fi specializing the same affordance A has
the same initial pose. In this work we use a separate initial pose for sitting and
one for lying. The initial pose refers to the joint states of the simulated agent
prior to any transformations and collision tests.

The fine-grained affordances Fi of each affordance A are organized in an
affordance hierarchy (Fig. 3). In this work we examine two affordance hierarchies:
Asitting for sitting affordances and Alying for lying affordances.

An affordance hierarchy is defined as a directed rooted tree A. Each node
F ∈ A corresponds to a fine-grained affordance and is a tuple F = (JF , EF ).
Here, JF = {(θ1, θ2, θd,x, v)i} defines constraints on valid angles θ1 ≤ θ ≤ θ2 for
a vertex v ∈ VH around axis x ∈ R

3. The angle θd defines a default pose that
is used for stability checks (see Sect. 4). These angle constraints are chosen to
reflect a broad range of valid poses for the corresponding affordance. Further,
EF ⊆ EH define affordance specific edges in the agent model H. The agent
model edges EF are checked for collision while the agent is unfolded and the
corresponding vertices are transformed from θ1 to θ2.

After processing a node F ∈ A either a collision occurred or not (i.e. the fine-
grained affordance Fi was found or not). The edges in the affordance hierarchy
graph A are annotated with a constraint c ∈ {true, false}. The constraint c
indicates whether child nodes of Fi are processed in case the affordance was
found (true) or not (false). An affordance A is found if each subtree of the root
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Fig. 3. The presented affordance hierarchies specialize the sitting and the lying affor-
dance into fine-grained affordances. The arrows indicate the dependencies between the
fine-grained affordances.

node in the affordance hierarchy A has at least one valid subaffordance F (i.e. at
least one subaffordance where the agent H has contact with the environment).

Note that some of the fine-grained affordances inside an affordance hierarchy
A depend on others. For example, if the environment affords sitting with backrest
to the agent it must necessarily afford sitting without backrest as well, because
the agent can choose not to use the backrest while seated. The dependencies as
defined in our models are depicted in Fig. 3.

4 Predicting Fine-Grained Affordances

The algorithm for fine-grained affordance detection is essentially based on drop-
ping an agent model in its default pose into the scene at appropriate positions.
These positions need to be found beforehand. The joints of the model are then
transformed to achieve maximum contact with the point cloud. Only joints rele-
vant for a certain affordance are considered. The initial pose of the agent, as well
as the joint transformations are determined by the affordance models. Further,
only the agent model and the affordance models determine the current function-
ality of the detected object. This means that the presented approach also finds
objects that might not have been designed to fulfill a certain functionality. How-
ever, based on visual information and their position in the scene they afford the
desired actions. We confined the evaluation to an agent representing an average
human adult and to fine-grained affordances derived from the affordance sitting
and lying.

4.1 Extracting Positions of Interest

Before unfolding the agent into the scene, the search space needs to be reduced
to the most promising positions. We therefore create a height map of the scene
(Fig. 4(b)). The point cloud is subdivided into cells. In our experiments a size
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of 0.05 m provided a good balance between precision and calculation time. The
highest point per cell determines the cell height. We decided in favor of the
highest point instead of the average to avoid implausible values at borders of
objects, where a cell may contain parts of the object and e.g. the floor.

Subsequently, a circular template, approximating the agent’s torso, is moved
over the height map to test whether a cell is well suited to provide support
for the agent. The diameter of this template corresponds to the width of the
agent as defined in the model. The decision for each cell is based on fuzzy sets
as introduced by Zadeh [27]. We define 3 membership functions: discontinuity,
roughness and height (Fig. 5). Discontinuity is a measure defined in percent
of invalid cells or holes within the current position of the circular template.
Roughness is the standard deviation of the height of all cells within the circular
template. Finally, the membership function height is used to include only cells
in a certain height that allow comfortable sitting with bent knees, while the
feet still touch the ground. Note that we use the same height function for lying,
since in home environments positions where a person would lie down also afford
sitting. However, this function can be disabled in the algorithm configuration to
allow for valid positions on the ground or on higher planes like tables.

One single rule is enough to decide whether a position is a valid hypothesis
for further processing. We use the intersection of these membership functions to
obtain the following rule: IF roughness is low AND discontinuity is low AND height
is comfortable THEN the position is a valid hypothesis. Of course, with more affor-
dances, more rules will be needed. The fuzzy value obtained from these functions is
defuzzyfied on the function depicted in Fig. 5(d) using the first of maximum rule.
The test is performed for both fuzzy sets of this rule, obtaining a crisp value for
available and not available and deciding in favor of the fuzzy set with the higher
crisp value. For each position, a possible agent orientation is obtained by consid-
ering the height gradient descent in the height map. The orientation for sitting
affordances is parallel to the gradient vector, while the orientation for lying affor-
dances is orthogonal to this vector. The positions obtained in this manner are used
as possible positions in further algorithm steps (Fig. 4(c)).

4.2 Initial Agent Fitting

In the next step, each hypothesis position is checked to provide enough space for
the agent model. We test several agent model orientations in this step since the
initial circular template was an approximation of the agent’s torso. However, in
this step also the corresponding rotation needs to be found to provide enough
room for e.g. the agent’s legs in case of the sitting affordance. To reduce the
amount of tested orientations we use the hypothesis orientation obtained in the
previous step (Sect. 4.1) and test a few rotations in a certain range around that
orientation.

For this tests, the agent is put into a default pose (defined by the angles θd)
and is positioned above the hypothesis position. We use the FCL library [28] for
collision detection between the scene P and the agent H. FCL detects collisions
between 2 objects and returns the exact position at which the collision occurred.



564 V. Seib et al.

(a) input scene (b) height map

(c) possible positions (d) segmented object

Fig. 4. Illustration of different algorithm steps. The input scene is shown in (a) and
the corresponding height map in (b). Image (c) shows the possible positions for sitting
affordances found by our fuzzy set formulation. The length of the red arrows corre-
sponds to the defuzzyfied value from the availability function. The final agent pose as
well as the object segmentation is shown in (d) for the fine-grained affordances sitting
with backrest and sitting with armrest.

(a) discontinuity (b) roughness

(d) availability(c) height

Fig. 5. Membership functions used to find valid positions for sitting and lying affor-
dances. The functions in (a), (b) and (c) are used to evaluate the rule, while the function
in (d) is used for defuzzyfication to determine the possible presence of the affordance.
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As input for FCL we convert the point cloud of the scene to the OctoMap
representation [29] and approximate the individual body parts of the agent by
cylinders.

If a collision occurs before any lowering of the model, the current orientation
at that position is discarded. If there is no collision (i.e. the scene provides
enough free space at that position), the agent is lowered until a contact with the
scene occurs. The edges EF belonging to the most general affordance F ∈ A are
subsampled and the distance d of each sample to the scene is determined and a
stability score obtained by using an unnormalized Gaussian

s = exp
(

− ( 1
n

∑
i di)2

2σ2
d

)
, (1)

where σd is a threshold and n the number of sampled distances d. This score
ensures a stable positioning of the agent and avoids that only a small part of
the agent collides with the scene. The orientation with the best stability score s
at a hypothesis position is kept for further steps. All stable positions qualify for
the next algorithm step.

4.3 Unfolding the Agent Model

The affordance hierarchy A is iterated from the root node. Each node F corre-
sponds to a fine-grained affordances and is checked at the given position. The
agent is transformed to its initial pose, defined by the θ1 parameters in each
agent node v ∈ VH . Subsequently, all vertices in the set JF of F are iteratively
transformed from θ1 to θ2, while the edges e ∈ EF are checked for contacts with
the scene P .

For instance, the fine-grained affordance sitting with backrest is detected dur-
ing the transformation of the agent’s torso, comparable to the agent’s movement
of leaning backwards against a backrest. The affordance is detected if a contact
with the scene is encountered during the transformation. If a joint reaches its
maximum goal pose without a collision the algorithms assumes that the current
fine-grained affordance is not present.

The subaffordance F is detected if a collision occurs at an angle θc ∈ [θ1, θ2]
during this transformation. The resulting angle θ of the vertex v is then deter-
mined as

θ =

{
θc, if a collision occurs,
θd, otherwise.

(2)

In the next step, all child nodes of F in A are processed if the associated
constraint c of the outgoing edge of F matches the collision state in F .

Note that in contrast to normal affordances, a fine-grained affordances might
depend on the existence of another fine-grained affordance (Fig. 3). Taking the
sitting affordance as an example, the sitting without backrest subaffordance is
checked first, as other affordances depend on it. Sitting with backrest and sitting
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with armrests are checked subsequently. The sitting with headrest affordance is
checked as the last one, since it depends on the presence of a backrest. The
output of this step is the final pose of the agent (position p and joint states Hg),
as well as a set of predicted fine-grained affordances F . The resulting joint states
represent the suggested body pose of the agent H, specifying how a hypothetical
object could be used exhibiting the predicted affordance at the given position.

4.4 Combining Evidence for Affordance Presence

In our previous approach [16] the score for a detected affordance was determined
by the number of detected contacts over all processed edges e ∈ ⋃

i EHi,∀Fi ∈ A.
However, this score did not produce meaningful results in some situations.

Our goal here is to compute the score for each affordance F ∈ A and to
combine each individual score in a meaningful way. To achieve this, we follow
the approach proposed in [22]. It is important to distinguish between a local score
for all transformed edges e ∈ EF defined by the transformation of v in JF and
the accumulated score over all processed F ∈ A. The local score is determined
by all edges e ∈ EF . If the processing of an edge e results in a lower score
than the local score so far, the total local score should be lowered accordingly.
On the other hand, when combining local scores over different affordances Fi

the total accumulated score should increase, whenever there is evidence for a
present fine-grained affordance Fi. The T-norm and T-conorm operators [30]
have been shown to work best for the desired properties of local and accumulated
scores [31].

The local score r for one transformed edge e ∈ EF is determined as

r =

{
exp

(
− (θd−θc)

2

2σ2
θ

)
, if a collision occurs,

ε, otherwise
(3)

where σθ is a threshold value and ε > 0 is a low default score. We use the T-norm
operator

T (r, q) = rq (4)

to combine local scores r and q over all e ∈ EF of an affordance F . At initial-
ization, r = 1, however, at later steps r is the previously computed local score,
whereas q is the next local score computed to be combined with r. Further, the
T-conorm operator

S(r, q) = r + q − rq (5)

is used to accumulate all local scores of all detected affordances F ∈ A. For
this operator, r = 0 at initialization, or, at later steps, the accumulated score,
whereas q is the next score to be accumulated.

4.5 Object Hypothesis Segmentation

We select the pose with the best score according to Eq. 5 for each hypothesis
position. All neighboring hypothesis positions around the selected pose that lie
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within the agent model radius are omitted, since we do not want to obtain
intersecting agent goal poses Hg.

After obtaining the affordances and highest rated poses, the partition of the
scene exhibiting that affordance is segmented. We use a region growing algorithm
where the position of the detected affordance serves as seed point. Each point
below a certain Euclidean distance is added to the segmented scene part. A low
value is well suited to close small gaps in the point cloud, but at the same time
limit the segmentation result to one object. Further, points close to the floor are
ignored. The segmentation result is shown in Fig. 4(d).

5 Evaluation

This section describes the different datasets used for the evaluation of our app-
roach. Further, we present the experiments and the obtained results in this
section.

5.1 Datasets

Our approach was evaluation on 3 datasets. These datasets are described in the
following.

Real-world Dataset. These data was acquired in our lab. Data acquisition was
performed with an RGB-D camera (Kinect version 1) that was moved around
an object and roughly pointed at that object’s center. In total, we acquired data
from 17 different chairs and 3 stools to represent the fine-grained affordances.
From these data, we extracted 248 different views of the chairs and 47 different
views of the stools. Example views of these objects are shown in Fig. 2. Addi-
tionally, negative data (i.e. data without the fine-grained affordances) from 9
different furniture objects was obtained and 109 views of these objects extracted.
Negative data includes objects like desks, tables, dressers and a heating element.
Example views of negative data are presented in Fig. 6. The whole dataset con-
tains 404 scene views with 295 positive and 109 negative data examples. This
data is provided online1.

Warehouse Dataset. We collected 3D models from Google Warehouse with
431 objects in total. This dataset contains 323 models with sitting affordances
(stools, chairs, benches, sofas) and 108 negative examples (other furniture models
without sitting affordances).

Grabner Dataset. This dataset is used for comparison with other approaches.
It was used in [5] to augment chair recognition by adding affordance cues. This
dataset consists of 890 objects, 110 chairs, 720 non-chairs and 60 other sittable
objects.

1 Real-World dataset available at http://agas.uni-koblenz.de/data/datasets/furniture
affordances/uni-koblenz kinect v1.tar.gz.

http://agas.uni-koblenz.de/data/datasets/furniture_affordances/uni-koblenz_kinect_v1.tar.gz
http://agas.uni-koblenz.de/data/datasets/furniture_affordances/uni-koblenz_kinect_v1.tar.gz
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Fig. 6. Example scenes without sitting affordances in the evaluation dataset.

5.2 Experiments and Results

All models in the datasets were annotated with fine-grained affordances. Object
points representing sitting surfaces, backrests, armrests and headrests were
assigned different labels corresponding to fine-grained affordances of the sitting
affordance hierarchy Asitting. We evaluate the ability of our algorithm to distin-
guish sittable objects and also to detect fine-grained affordances as defined in
Asitting. Similar to [5] we split the evaluation with their dataset in 2 parts. In the
first part only the chair and non-chair objects are used, whereas the second part
uses the sittable objects to test the generalization of the approach. To further
show the general validity of our approach, we perform each evaluation using 3
differently parameterized agent models corresponding to humans with the body
sizes of 1.85 m, 1.75 m and 1.65 m.

Examples of affordance predictions on the Real-World dataset are shown in
Fig. 7 and some sample poses of the agent on artificial data in Fig. 8. Additionally
to the evaluated affordance hierarchy Asitting we modeled a hierarchy Alying for
lying. The different fine-grained affordances here are lying with or without raised
back and with or without raised legs. Examples for this affordances are shown
in Fig. 8 (right).

Table 1 presents the results on the Real-World dataset. The evaluation results
for the Warehouse dataset can be found in Table 2. Finally, the results on the
Grabner dataset are reported in Table 3 (chairs vs. non-chairs) and in Table 4
(other sittable objects). Note that these results were achieved without any train-
ing. All the knowledge required for detection is encoded in the simple agent and
affordance models.

Fig. 7. Resulting agent poses for some scenes from the Real-World dataset.
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Fig. 8. Sample poses of predicted affordances for sitting on chairs (left), sitting on
other furniture (center) and lying (right) on artificial data from the Warehouse and
the Grabner datasets.

Table 1. Prediction results of fine-grained affordances on the Real-World dataset.

Agent size 1.85m 1.75m 1.65m

Metric f-score Precision Recall f-score Precision Recall f-score Precision Recall

Sitting 0.95 1 0.90 0.95 1 0.91 0.95 1 0.91

Backrest 0.86 0.98 0.77 0.86 0.97 0.77 0.86 0.98 0.77

Armrest 0.72 0.66 0.79 0.71 0.64 0.79 0.69 0.64 0.76

Headrest 0.41 0.80 0.28 0.44 0.63 0.34 0.60 0.71 0.52

Table 2. Prediction results of fine-grained affordances on the warehouse dataset.

Agent size 1.85m 1.75m 1.65m

Metric f-score Precision Recall f-score Precision Recall f-score Precision Recall

Sitting 0.95 1 0.90 0.95 1 0.91 0.95 1 0.91

Backrest 0.86 0.98 0.77 0.86 0.97 0.77 0.86 0.98 0.77

Armrest 0.72 0.66 0.79 0.71 0.64 0.79 0.69 0.64 0.76

Headrest 0.41 0.80 0.28 0.44 0.63 0.34 0.60 0.71 0.52

The results on the Real-World dataset are promising. Our algorithm is able
to find almost all sitting possibilities, while making only little mistakes, as indi-
cated by the results for the sitting without backrest and the sitting with backrest
affordance. The ability of our algorithm to detect these two specialized affor-
dances at the presented high rates speaks in favor of the presented approach.
Further, there is almost no difference between the 3 agent model body sizes that
were tested.

The results for the fine-grained affordances involving an armrest and a head-
rest are below the aforementioned ones. F-scores of armrests and headrests indi-
cate that our algorithm successfully differentiates between closely related object
functionalities and is able to detect the corresponding fine-grained affordances
in RGB-D data. However, the low values indicate that the agent model might
need more degrees of freedom during collision detection to better find differently
shaped chairs.
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Table 3. Prediction results of fine-grained affordances on the Grabner dataset (chairs
vs. non-chairs).

Metric f-score Precision Recall Grabner et al. [5] (f-score)

Sitting 0.88 1 0.78 0.53

Backrest 0.75 1 0.60 -

Armrest 0.53 0.54 0.52 -

Table 4. Prediction results of fine-grained affordances on the Grabner dataset (other
sittable objects).

Metric f-score Precision Recall Grabner et al. [5] (f-score)

Sitting 0.88 1 0.78 0.53

Backrest 0.75 1 0.60 -

Armrest 0.53 0.54 0.52 -

In contrast to the Real-World dataset, the Warehouse dataset contains full
3D models. According to the results in Table 2 our approach is again able to dis-
tinguish sitting and non-sitting objects on a fine-grained scale. This is supported
by the high f-score for sitting and backrest affordances.

The armrest affordance has lower f-score which we attribute to the limited
degrees of freedom in the agent model. This drawback will be addressed in future
work. The results for most fine-grained affordances are similar along the different
agent model sizes, confirming the validity of our approach. However, the headrest
affordance has significant deviations. We attribute this to the large ambiguity of
the presence of a headrest. Depending on where the agent is seated when leaning
back (closer or farther away from the backrest) a normal backrest can also serve
as a headrest. Additionally, the significantly higher f-score for the smallest agent
model indicates that the objects in the dataset are of small size.

The results for the Grabner dataset were very similar across different agent
sizes. We therefore report their average in Table 3 and in Table 4. Further, we
omit the evaluation of the headrest affordance, since only very few objects with
this affordance were present in the dataset. For the comparison with [5], we report
their f-score corresponding to the same recall that we obtained. Considering the
results reported in Table 3, our approach seems to fail. However, in [5] sitting
affordances were used as a cue for object recognition, where the main goal was to
tell apart chairs from other objects. For a fair evaluation, Grabner et al. scaled
these other objects to the typical size of chairs, which was completely justified
for their evaluation. However, since our approach is detecting sitting affordances
independently of underlying object categories, many of the non-chair objects are
recognized as sittable (low precision in Table 3). Indeed, e.g. a huge object with
a flat and stable surface would also be considered as sittable by real humans.
Still, if all objects were true to scale many of the non-chair objects would have
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been identified as not providing a sitting affordance by our approach. Although
only trained to recognize chairs, the approach of Grabner et al. was shown to
generalize well for other sitting objects due to the additional affordance cues.
Our algorithm outperforms [5] on other sittable objects, since it detects sitting
affordances per se (Table 4).

6 Discussion

We have shown in this paper that our algorithm is able to differentiate affor-
dances on a fine-grained scale without prior object or plane segmentation. Thus,
the presented approach is more general and can be applied to the input data
directly. To our best knowledge, no similar approaches exist in the literature that
are able to differentiate affordances on a fine-grained scale. This makes it hard (if
not impossible) to assess the quality of our approach and compare it to related
work. The comparison made with the work of Grabner et al. [5] can only serve
as an approximate comparison, since their work and ours had a different goal.
We therefore want to give a discussion on certain properties of our algorithm
and give a detailed outlook to our ongoing work in that field.

Apart from introducing the notion of fine-grained affordances the biggest
difference to related work is that we detect affordances directly. In contrast, e.g.
in [5] affordances are learned as properties of objects which allows to augment
the classification ability of object recognition. However, our approach is ignorant
of any object categories.

While we believe that our approach will also benefit from machine-learning
techniques (e.g. by learning the membership functions for the fuzzy sets), at
this point we have completely omitted the learning step. This comes at the
cost of manually defining “reasonable” values for the fuzzy sets (low effort)
and a deformable human model (medium effort). Additionally, this raises the
question on the extensibility of the approach. An initial agent pose needs to be
provided for any new affordance that is included. However, if an agent model is
already available (as for sitting affordance) new poses can be added by simply
transforming joint values in the corresponding configuration file. As a second
step, the joints of interest that are involved in the new affordance description,
need to be provided with a minimum and maximum angle for transformation.
In total, a new affordance model can be added to the algorithm with moderate
effort as we have shown with the lying affordance hierarchy.

A more complex extension of the algorithm would be to include a different
agent, e.g. a hand for grasping. While the hand itself can be modeled again
as an directed rooted tree of joints, the initial hypotheses selection step must
be changed completely. Instead of finding potential sitting or lying positions in
the height map, for a hand a different hypotheses selection needs to be applied
(e.g. finding small salient point blobs). However, as soon as these hypotheses are
found, the rest of the algorithm is the same: unfolding joints of the agent and
evaluating a cost function that reflects the quality of the predicted affordance.
We thus believe that the presented approach is generalizable and well suited for
extension.
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7 Conclusion and Outlook

In this paper we have refined the term fine-grained affordances to better distin-
guish similar object functionalities. We have presented a novel algorithm that is
based on fuzzy sets to detect these affordances modeled in hierarchies of subaf-
fordances. The algorithm has been evaluated on 4 specializations of the sitting
affordance and examples for predicting 4 specializations of the lying affordance
were given. We have thus shown that the presented approach is able to differen-
tiate affordances on a fine-grained scale. Since this approach detects affordances
independently of underlying object categories it can be regarded as complemen-
tary to current state of the art approaches which mostly use affordances only as
an additional cue for object recognition.

We believe that an object independent affordance detector could be benefi-
cial in existing object recognition pipelines. The segmented object that results
from the affordance prediction is constrained to object classes that provide the
detected affordance. Where algorithms for 3D object recognition tend to detect
false positive objects, these objects could be discarded due to missing affordances
that the recognized object classes should posses. If this object needs to be classi-
fied, it does not have to be matched against the whole dataset, but only against
object classes exhibiting the found affordance. Thus, we are currently working
on combining our 3D object recognition pipeline with the presented approach
for affordance detection.

The presented algorithm is ignorant of any object classes, since our goal is to
detect affordances. This is evident from the leftmost image in Fig. 7, where the
agent is sitting with a backrest although the object it is sitting on does not have
one. Clearly, here the environmental constellation (object and wall) provided the
detected affordance. This demonstrates a strength of the concept of fine-grained
affordances that we will further explore in our future work.

Further, we will investigate how an anthropomorphic agent model can be
exploited to detect more fine-grained affordances from other body poses. Fine-
grained affordances can also be defined for other agents, e.g. a hand. In that
case, grasping with the whole hand and grasping with two fingers could be dis-
tinguished, e.g. for grasp planning for robotic arms. Additionally, fine-grained
affordances for grasping actions can include drawers and doors that can be pulled
open or pulled open while rotating (about the hinge). We are currently looking
for more examples for fine-grained affordances for different agents, to generalize
our approach of fine-grained affordances.
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