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Abstract. Real world applications need to cope with unreliable data
sources that affect negatively the performance of visual systems, adding
error to the whole process. Existing solutions focus their efforts on
decreasing the probability of making errors, but if an error occurs, there
is no mechanism to deal with it. This work focuses in dealing with this
problem by modelling the quality of the segmentation phase in order
to apply control mechanisms to mitigate negative effects in later stages.
Our control mechanism is based on determining the reliability of local
features to discard the less reliables. Local features are characterized
using colour, texture, and an illumination reliability model to quantify
the quality of illumination. The use of local features enables us to deal
with partial occlusion problems by determining the global object posi-
tion via local features consensus. Experiments were performed, showing
promising results in object position estimation under poor illumination
conditions.

Keywords: Multi-target tracking · Feature tracking · Local descrip-
tors · Background subtraction · Surveillance tracking · Reliability mea-
sures · Quality segmentation

1 Introduction

Real problems often lack on the possibility of obtaining manual initialisation for
properly obtaining a reliable first model of an object. Many tracking algorithms
require a robust initial object model to perform tracking, often obtained with
manual procedures [1,2]. These methods often fail in dealing with problems as
severe illumination changes or lack of contrast, or perform expensive procedures
to keep the coherence of tracking in these complex situations. Also, these track-
ing approaches are focused on moving camera applications, so they neglect the
utilisation of background subtraction to determine the regions of interest in the
scene.
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A wide variety of applications can be solved utilising a fixed camera setup
(e.g. video-surveillance, health-care at distance, behaviour analysis, traffic mon-
itoring). This kind of setup allows the consideration of inexpensively utilising
background subtraction approaches to detect potential regions of interest in the
scene. This work focuses on this kind of applications, focusing in solving the
problem of robust tracking of multiple unknown (uninitialised) objects, inde-
pendently of the scene illumination conditions, in real-time. Then, tracking is
performed without manual intervention.

Segmentation is commonly the early stage of any vision system, prior to track-
ing and higher level analysis stages, where regions of interest are extracted from
the video sequence. Background subtraction approaches present several issues
as: low contrast, poor illumination, gradual and sudden illumination changes,
superfluous movement, shadows, among others [3]. Any error emerging from
this stage would be propagated to the subsequent stages. A way to deal with
these issues is to determine the quality of the segmentation process in order to
activate control mechanisms to mitigate those errors on later stages.

Assuming that we do not know the model of objects present in the scene,
we initially use a bounding box representation extracted from segmented blobs
using background subtraction methods. This representation is general enough
to track any object in real-time, and serves as the initial region of interest for
applying more complex object models. Nevertheless, as the segmented blobs are
obtained from background subtraction, they are sensitive to changes in contrast
and illumination. This sensitivity affects the object tracking process incorporat-
ing noise (in terms of false positive and negative) to the system.

In order to control the effect of noisy information in tracking, we propose a
local feature tracking approach, which reinforces the tracking of the bounding
box associated to the object. We extract a contrast map from segmentation, to
obtain reliability measures which allow us to characterise the local features in
terms of illumination and contrast conditions. The local descriptors are obtained
from a multi-criteria approach, considering colour (through HSV histograms),
structural (through a binary descriptor), and segmentation region (through fore-
ground mask and contrast maps) features. Then, the most reliably tracked local
features are utilised, together with the tracked bounding box and the foreground
information associated to the tracked object in the current frame, to adjust the
estimation of the bounding box in the current frame.

This paper is organised as follows. First, Sect. 2 presents the state-of-the-art
in order to clearly establish the contribution of the proposed approach. Then,
Sect. 3 performs a complete description of the approach. Next, Sect. 4 presents
the results obtained on several benchmark videos. Finally, Sect. 5 presents the
conclusion and future work.

2 State of the Art

In the context of segmentation quality measures, the most recent approach is
presented in [4]. The authors propose a metric to quantify the segmentation
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quality for remote sensing segmentation, in terms of over-segmentation and
under-segmentation. In order to detect under or over-segmentation, they use
a similarity function to evaluate the quality of the segmentation. A good seg-
mentation is obtained if a segment is well separated from its neighbouring seg-
ments. Errors can occur, like splitting a segment in two similar segments (over-
segmentation) or merging two distinct segments (under-segmentation). Using
the similarity function, the authors are able to measure over-segmentation and
under-segmentation for each segment in the image. That information then is
utilised to improve the segmentation applying the corresponding mechanisms to
the erroneous segment (e.g. splitting a segment with under-segmentation prob-
lem).

In [5] the authors make a review of video segmentation quality. They iden-
tify that quality measurements can be object-based (individually) or globally
(as meaning of overall segmentation). These measurements can also be classi-
fied as relative, when the segmentation mask is compared with ground-truth or
as stand-alone, when the evaluation is made without using a reference image.
Other classifications are subjective evaluation using human judgement or objec-
tive evaluation, using a set of a priori expected properties. For our scope, we
are interested on a individual stand-alone objective quality measurement. In the
same article, the features describing this kind of measures are intra-object met-
rics such as shape regularity, spatial uniformity, temporal stability and motion
uniformity; or inter-object metrics like local contrast or neighbouring objects
feature difference. The authors propose measures for each two classes of content,
the stable content and the moving content. The first one is temporally stable
and has regular shape, while the second one has strong and uniform motion.
These measures take into account the characteristics of each content to make an
unique quality value for the object.

In [6] the authors proposed three disparity metrics: local bound contrast, tem-
poral color histogram difference and motion difference along object boundary.
The local bound contrast is focused on determining the quality of the bounds by

Fig. 1. Spatial color contrast along boundary metric from [6]. (a) image: Object
detected, (b) image: Boundary with normal lines, (c) image: A zoom-in of a normal
line where each cross represents a pixel inside (PI) or outside the object (PO).
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comparing internal features (inside of the object) with external features (outside
of the object). The next image depicts this metric:

To determine the quality of the boundary, a pixel PI from the object is com-
pared with a pixel of its neighbourhood PO, both at distance L of the boundary.
The comparison considers the average color in the square of size M , centered in
the pixel P∗ as shown in the Fig. 1(c). In this sense, good quality segmentation
is achieved when there is a high difference between internal and external fea-
tures. Special care must be taken with the meaning of the value, because a good
boundary can be represented by a high quality value, but a high quality value
does not necessarily mean a good quality boundary. The second metric tries
to measure the temporal stability of color histogram distribution by comparing
current object histogram with a smoothed version generated as an average of
k previous histograms. A good temporal color stability is obtained if both his-
tograms are similar. The third metric models the quality of the movement by
estimating how the points P∗ change from one frame to another. The movement
metric considers the difference of motion vectors from both points (Pi and PO)
and a reliability factor defined as the precision of the estimation compare the
measurement and the color consistency of the points in the square. The authors
proposed a combined metric to determine the quality of the object segmenta-
tion. As well, they can determine if a particular segment of the boundary has
poor quality using a combination of local bound contrast and motion metrics. If
the combined value is higher than a predefined threshold, the related segment is
considered as low quality. This threshold is obtained as a factor of the standard
deviation of the mean object quality.

In the context of, local descriptor-based trackers, some similar approaches are
presented in the literature. In [7] a reliable appearance model (RAM) that uses
local descriptor (HOG) to learn the object shape and histogram is proposed.
This appearance model effectively incorporate color and edge information as
discriminative features. However, it is necessary to get a reliable first model to
perform the training of the Adaboost learner, leaving this approach as semi-
automatic, as well as many other approaches [1,2,8–10].

In [8] the authors proposed a weighted histogram that gives a higher weight to
foreground pixel in order to make target features more prominent. The weighted
component is based on the pixel’s degree of belonging to the foreground. The way
of producing the weighted histogram is very similar to our weighted histogram
from Eq. (4), but it does not incorporate the reliability of illumination Ri(y),
that defines how illumination affect color-based features.

The authors in [9] combine a local descriptor (SIFT) with a global represen-
tation (PCA). In contrast to classical PCA, where pixels are weighted uniformly,
they add a higher weight to pixels close to SIFT descriptor’s position. The track-
ing phase depends on how reliable are the descriptors matching. This reliability
is obtained based on how well the descriptor has been matched previously. Also
the amount of reliable descriptors is used to determine if the occlusion is present
in the frame. There are three modes of tracking, (1) if there are enough descriptor
matched and they are reliable, then the tracking is perform by approximating the
affine matrix that described the movement of the previous frame’s descriptors
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with the current descriptors. (2) if there are reliable matched descriptor but they
are scarce, a translation model (position and velocity) is calculated instead. (3)
is there no reliable matches, previous information is used to estimate the object’s
movement. In our case, the reliability of the descriptors comes from the reliability
map, but the idea of use previous information when there is no reliable match of
the descriptors remains. Another tracker that uses reliability is presented in [11].
In this case, the reliability is based on self-incorporated object detector (that is
trained off-line). In order to get a good tracking performance, it is necessary to
weight properly the information of tracking history and the classifier, otherwise
drifting problems may arise.

Fragtrack is proposed in [10]. It uses local patches to avoid partial occlu-
sion problems. If a patch is occluded, other patches can be used to predict the
bounding box position (they assume that at least 25% of patches are visible).
Each of this patches has associated a histogram and the relative position of its
bounding box. The estimation of the bounding box in the next frame is done
by a voting scheme. Each patch’s histogram is searched in a neighbourhood and
votes for a possible position of the bounding box. So, the estimated bounding
box’s position is whose has more votes. As the method rely heavily on the use of
histogram, they use integral matching to perform real time tracking. This also
allows search in different scales at without increasing so much the computational
cost.

We summarise the contributions of the proposed approach as:

– A reliability model for background subtraction methods (or methods with
similar behaviour: background modelling, comparing current frame with back-
ground model and applying a threshold to classify pixels into foreground or
background). This is a pixel-level reliability model, which we refer as reliabil-
ity map.

– An illumination reliability model to quantify the effects of illumination on
color-based features.

– A way to convert a reliability map to attribute-level reliability. The attributes
depend on the object representation. In our case, we will use a 2D bounding
box and local features as object representation.

– A multi-target tracking approach incorporating attribute-level reliability mea-
sures for weighting the contribution of detected local features to the object
model. The idea is to prevent the incorporation of information that could
negatively affect the estimation of the object model, and focus on the most
reliable information to reduce the effect of noise.

3 Reliable Local Feature Tracking

The proposed tracking approach is depicted in Fig. 2.
For each new frame of the video sequence, a background subtraction algo-

rithm is applied for obtaining the foreground mask, the reliability map (see
Sect. 3.1, for details), and the regions of interest (ROI), represented as a set of
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Fig. 2. General schema of the proposed tracking approach.

bounding boxes, using a connected components algorithms. Also, the new frame
is converted to YUV color space.

For the first frame where a new object appears (new bounding box not associ-
ated to any other previously tracked object), a set of tracked patches is initialised,
according to the procedure described in Sect. 3.2.

For the next frames, a ROI (or merge of partial ROIs), determined with a
Multi-Hypothesis Tracking (MHT) algorithm [12], is associated to the object
as input to the robust patch tracking approach, and the following procedure is
applied:

1. If a patch is considered unreliable in terms of positioning. Then, an optimal
association to the patch is searched in the current frame considering the
information of the ROI displacement and dimension change, compared to the
previously associated ROI. This optimal association is determined using a
global reliability measure, which integrates temporal coherence, structural,
colour, and contrast measures (see Sect. 3.4). If a set of patches has been
reliably tracked from previous frames, this information is utilised to determine
the displacement of all the patches for the current frame, according to the
procedure detailed in Sect. 3.3.

2. Then, according to the global reliability measure calculated at the previous
step, the highest reliability patches can be classified as highly reliable, the
patches with low reliability are classified as unreliable and marked for elimi-
nation (see Sect. 3.3, for details).

3. Next, unreliable patches are eliminated and new patches are added in posi-
tions not properly covered by the remaining tracked patches. The construction
of these patches follows the same procedure as the patch initialisation phase
(Sect. 3.2).
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4. If a significant number of patches is classified as reliable, they are utilised for
adjusting the estimation of the object model bounding box for the current
frame. If this number is not significant, the object model bounding box is
obtained from the input ROI and the estimated bounding box from the object
model dynamics (see Sect. 3.5, for details).

5. Finally, the dynamics object model is updated with the current object model
bounding box (see Sect. 3.5, for details). Bottom image of Fig. 3 depicts the
result of the tracking process.

Fig. 3. Top figure shows the current frame. Center figure depicts the reliability map,
with a thermal map, where high reliability is red. Bottom figure shows the result of the
tracking process; red boxes represent the bounding boxes from segmentation, the blue
box represents the estimated bounding box of the tracked object, the dots represent the
tracked patches coloured according to reliability in thermal scale, and blue segments
represent the object trajectory. (Color figure online)

3.1 Reliability Map from Background Subtraction

The key factor for a good tracking is how distinguishable is the object of interest
from its surroundings. If we are working in a background subtraction scheme,
we are going to interpret the surrounding of the object as the background model
and how distinguishable is as the degree of difference between the current image
and the background model. If we have a significant difference, we have certain
margin of error on defining the threshold and the segmentation algorithm will
still be able to perform a good classification. Nevertheless, if that difference is
low, we have to accurately define the threshold value to avoid a misclassification.
In this sense, the last example is less reliable, because it is more prone to make
a wrong classification.

Based on the previous idea, we propose a method that can model the relia-
bility of any background subtraction technique through the following steps:

1. Generate a pixel-level difference value D between current image pixels and
background model pixels.

2. Define a range [inf, sup] for the difference value D. We are interested in gen-
erating a reliability image representation with different degrees of reliability.
If we consider all the range, sometimes it can generate a binary image (just
low and high reliability) that is not useful for our interest. This range can be
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defined as the neighbourhood of the threshold value, for example using the
range [inf = α × Threshold, sup = β × Threshold], with 0 < α < 1 and
1 < β.

3. Apply the scaling function from Eq. (1), to every difference value D generated
in Step 1, to convert difference values into reliability measures:

S(D) =

⎧
⎨

⎩

0% if D < inf
f(x) if inf ≤ D ≤ sup
100% if D > sup

, (1)

where D is the differnece value, inf and sup are values defined in Step 2 and
f(x) is a increasing function (we use a linear function).

At the end of these steps we generate a pixel-level representation of the
reliability which we named as reliability map. This map is internally repre-
sented as a grayscale image, but for proper visualisation we transform it into
thermal scale, as shown in Fig. 4.

Usually, several post-processing functions are applied to the segmentation
mask in order to reduce the noise. This operation also should be applied to
the reliability map to maintain the coherence of its representation with the
foreground mask. Figure 5 is an example of applying morphology operations
to the foreground image and the reliability map (considering gray-scale mor-
phological operators).

Fig. 4. Reliability map visualization. Left image: current image frame, right image:
thermal scale reliability map. Blue color means a low difference between modeled back-
ground and current frame. Red color means a high difference. (Color figure online)

We illustrate how this method works using naive background subtraction [13]:
This model performs difference of current image with a background subtraction
image (image without any object interest). Our implementation uses the sum of
square differences as distance value before applying the classification threshold.



542 C.M. Orellana and M.D. Zuniga

The sum of square difference, shown in the Eq. (2), is a common metric to mea-
sure the distance between current pixel and background pixel in a RGB color
space:

D = (Rbg − Ri)2 + (Gbg − Gi)2 + (Bbg − Bi)2, (2)

where subindex (·)i refers to current image pixel and (·)bg refers to background
pixel.

The classification is performed applying the threshold value as in the Eq. (3):

fgmask =
{

foreground if D > τ2

background if D < τ2 , (3)

where τ is the classification threshold.
Applying the proposed scheme to this method using a range of [0.1 ×

τ2, 2.0 × τ2] with τ = 13 and using a morphology window of size 7 × 7, we can
obtain image shown in Fig. 6.

Fig. 5. Example of applying morphology operations to foreground mask and reliability
map. The top images show the foreground mask and the reliability map with noise.
The bottom images show the results after applying the morphological operation (binary
morphology for foreground mask and gray-scale morphology for reliability map).
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Fig. 6. Reliability map using naive background subtraction. Left image: current image,
right image: reliability map from naive background subtraction.

3.2 Patch Initialisation Phase

The first step is to find patches of size patchSize × patchSize in the contour of
the object (defined by the foreground mask) in such way that any two patches
do not overlap between each other. Then, the strongest point inside of the patch,
obtained by FAST algorithm [14] from the Y-channel of the current frame con-
verted to YUV color space, is added as a new patch position if no other existing
patch is near this position.

Then, each candidate patch stores the following information:

– The central patch position (x, y).
– The 512 bits FREAK descriptor [15], generated using the reliability map,

representing the structural information of the patch.
– A normalised colour histogram, using chroma channels U and V from the YUV

current frame, considering only pixels belonging to the foreground mask in
the analysed patch. Considering HUV (i, j) as the bin of a 2D histogram of the
UV channels, with i, j ∈ [0..BinsNumber], The Eq. (4) represents the way
this histogram is calculated.

HUV (i, j) =

∑

p∈Q

F (p)Rm(p)Ri (Y (p))

∑

p∈P

F (p)Rm(p)Ri (Y (p))
, (4)

with

Q =
{

p ∈ P :
⌊

U(p)
binSize

⌋

= i ∧
⌊

V (p)
binSize

⌋

= j

}

, (5)

where Y (p), U(p), and V (p) correspond to the channel level in [0..255] in pixel
position p of the current frame in YUV color space, P is the set of pixel positions
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inside the analysed patch, and Q is the set of patch positions, where values
U(p) and V (p) fall inside the bin HUV (i, j). For each pixel a weighted value
is added, where: F (p) = 1 if the pixel p corresponds to the foreground, and 0
otherwise; Rm(p) ∈ [0; 1] is the reliability map value in position p, where a value
of 1 corresponds to maximum contrast reliability (see Sect. 3.4, for details); and
Ri(Y (p)) corresponds to the illumination reliability, accounting the pertinence
of colour information given different illumination levels, according to the gray-
scale level in channel Y ∈ [0..255] at pixel position p. The reliability measure Ri

considers maximum reliability near 128 value (medium illumination) and decays
to 0 near the extremes of the interval. Eq. (6) formulates this reliability and
Fig. 7 depicts the reliability function.

Ri(Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if Y ≤ 128 − γ
Y +γ−128

β if 128 − γ < Y < 128 − α

1 if 128 − α ≤ Y ≤ 128 + α
128+γ−Y

β if 128 + α < Y < 128 + γ

0 otherwise

(6)

where α and β are predefined parameters, and γ = α + β.

Fig. 7. Illumination reliability function.

– A colour histogram reliability measure accounting for the reliability of colour
information (Eq. (7)).

Rcolour =

⎛

⎝
∑

p∈P

F (p)Rm(p)Ri(Y (p))

⎞

⎠ /Npix, (7)

where Npix is the number of foreground pixels in the patch.
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– A normalised gray-scale histogram of NumBins bins, accumulating channel
Y of the current image in YUV color space, for those pixels inside the patch
which belong to the foreground.

All this information is utilised to properly characterise the patch, in order
to match with potential patches in future frames. These patches then initialise
patch tracking buffers for future processing.

3.3 Patch Tracking Phase

Given a set of patches S from the previous frame, the patch tracking process
follows the process described bellow:

– Consider SH as the set of tracked patches considered as highly reliable from
the previously processed frame. A reliably tracked frame is a frame of high
reliability, which has a coherent movement with the mobile object and high
contrast, colour, and structural accumulated reliabilities (as described in
Sect. 3.4). Then, these patches are considered able to estimate the behav-
iour of less reliable patches near to them. For this reason, tracking becomes
more exhaustive for these patches, but in a reduced region. Then, the reliable
patches are tracked in the following way:
1. Displacement vector (dx, dy) is determined from the displacement vector

inferred from their associated patch tracking buffer.
2. Search window is determined from the accumulated difference (xd, yd)

between the accumulated object center movement vector with the accu-
mulated movement vector of the patch, considering all the patches in the
tracking buffer. The window is centered in (xW , yW ) = (xp +dx, yp +dy),
where (xp, yp) is the position of the patch in the previous frame.

3. Then, the patch position with minimal global distance Dglobal to the pre-
vious patch is associated to the current reliable patch position, following
the Eq. (8).

(x∗, y∗) = arg max
(x,y)∈WH

Dglobal(pt(x, y), pt−1), (8)

with
WH = {(x, y) : |x − xW | ≤ xd ∧ |y − yW | ≤ yd} , (9)

where pt(x, y) is the current patch at position (x, y), and pt−1 is the
patch at previous frame. The distance measure Dglobal globally calculates
the patch distance, considering the structural, colour, segmentation and
gray-scale information. This measure is described in detail, in Sect. 3.4.

– If the patch buffer has been built just in the previous frame (previous initial-
isation step) or the patch is not highly reliable, the positioning of the patch
is determined in the following way:
1. If set SH size is adequate, the displacement vector (dx, dy) for the patch

is determined from the displacement vectors of highly reliable patches,
each weighted by the position of the highly reliable patch to the analysed
patch in the previous frame and the Rglobal reliability measure.
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2. The window is determined in a similar way as for highly reliable patches,
but, as the patch is less reliable, it would normally have a bigger search
window. For this reason, FAST algorithm is applied to the search window
for candidate positions.

3. Then, maximal reliability patch is determined in a similar way as in
Eq. (8), but from the set of FAST points detected on the window.

– Then, according to the global reliability measure Rglobal, the tracked patches
are classified as highly reliable if they pass a high threshold TH . Patches with
reliability below a low threshold TU are classified as unreliable and eliminated.

– As the object can be represented by less patches, new patches are added in
positions not properly covered by the remaining tracked patches, using the
same procedure described in Sect. 3.2.

3.4 Patch Distance and Reliability Measures

To match two patches, the distance between them in terms of their differ-
ent attributes must be calculated. We propose the distance measure Dglobal,
described in Eq. (10).

Dglobal =
wstDst + wfgDfg + wcoDco + wgsDgs

wst + wfg + wco + wgs
, (10)

with

Dst(p1, p2) =
‖Freak[p1];Freak[p2]‖H

512
, (11)

Dfg(p1, p2) =
|#FG[p1] − #FG[p2]|

max (#FG[p1],#FG[p2])
, (12)

Dco(p1, p2) = Drcol(p1, p2) ‖HUV [p1];HUV [p2]‖B , (13)

Drcol(p1, p2) = |Rcolour(p1) − Rcolour(p2)|, (14)

Dgs(p1, p2) = ‖HY [p1],HY [p2]‖B , (15)

where ‖· ; · ‖H is the distance of Hamming for binary descriptors, and ‖· ; · ‖B

is the Bhattacharyya distance [16] for histograms. Freak[p] corresponds to the
FREAK descriptor, #FG[p] is the number of foreground pixels, HUV [p] is the
colour histogram, and HY [p] is the gray-scale histogram, of patch p. Drcol(· , · )
accounts for the difference in Rcolour, considering that histograms are more com-
parable under similar conditions in terms of illumination and contrast reliability.

It has been previously discussed that we need a measure to account for the
reliability of the tracked patches in the scene, in order to determine the usefulness
of the patch information on contributing to a more robust object tracking. This
reliability measure is Rglobal, described in Eq. (16), considering a tracked patch
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buffer Bp = {p1, .., pN}, where p1 is the current patch, and N is the buffer size,
and the object bounding box buffer BI = {I1, .., IN}, where Ij is the bounding
box in buffer position j.

Rglobal(Bp) =
Rpos(Bp) + Rc(Bp) + Rg(Bp)

3
, (16)

with

Rpos(Bp) =

N−1∑

i=1

(N − i) ‖c[pi] − c[pi+1]; c[Ii] − c[Ii+1]‖M

N−1∑

i=1

(N − i)

, (17)

‖c1; c2‖M = |x[c1] − x[c2]| + |y[c1] − y[c2]|, (18)

Rc(Bp) =

N∑

i=1

(N − i + 1)C(x[pi], y[pi])

N∑

i=1

(N − i + 1)

, (19)

C(xp, yp) =

xp+
L
2∑

x=xp−L
2

yp+
L
2∑

y=yp−L
2

G(x − xp, y − yp)FG(x, y)Rm(x, y)

xp+
L
2∑

x=xp−L
2

yp+
L
2∑

y=yp−L
2

G(x − xp, y − yp)FG(x, y)

, (20)

Rg(Bp) = 1 −

N−1∑

i=1

(N − i)Dglobal(pi, pi+1)

N−1∑

i=1

(N − i)

. (21)

The three components of Rglobal are calculated weighting by the novelty of the
information. Rpos is the position coherence reliability, which takes into account
the displacement coherence between the history of the patch (measured as the
displacement vector of the patch centers c[pi] − c[pi+1]) and the history of the
central position of the object model bounding box (c[Ii] − c[Ii+1]|), using the
Manhattan distance between displacement vectors at the different frames. Rc

accumulates the contrast reliability measure C(x, y), which accumulates the val-
ues of the reliability map Rm, weighted by a Gaussian function G centred at
(x, y) and only accumulating foreground pixels (considering FG(x, y) as the
foreground image, with value 1 for foreground pixels and 0 for background). Rg

accumulates the reliability on the similarity of the patches in the buffer.
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3.5 Adjustment of Object Model

Finally, if the current input bounding box is significantly different in dimen-
sions compared to the previous frame or several reliable patches present a low
contrast reliability for the current frame and a relevant change on patch mean
illumination from previous frame (inferred from Y channel), the bounding box is
recalculated based on the information provided by the remaining reliable patches.
The displacement of each bound of the bounding box (Left, Right, Bottom, Top)
is obtained from the weighted mean of patches displacement from the previous
frame, weighted by the distance to the bound and the reliability of the patches.

If no reliable patches are available, the bounding box projected from the
object dynamics model is considered as input. We utilise a dynamics model
similar to Kalman Filter [12]. If the current input bounding box is similar in size
to the previous frame, this bounding box is considered as the object model for
the current frame. Then, the dynamics model is updated with the current object
model.

4 Experimental Validation

The visual coherence of the estimation has been first tested in three short
sequences of diverse contrast. The results are shown in Fig. 8.

A qualitative test has been performed using a section of the sequence
Light Video032 of dataset Alov-3001. In this sequence a man walks from a good
to a poor illumination region (from left to right). Figure 9 depicts the evolution
of the patches through the last five frames:

As we can see in the Fig. 9, each patch can track its next position even with
structural deformation (e.g. row num. 0) or some changes in color (e.g. row num.
4) due to illumination changes.

The performace of the approach is compared with a reduced version (without
local patches nor reliability measurements). A compacted view of the sequence
is shown in the Fig. 10, considering key frames for the analysis.

Initially both methods perform similar, but when the object enters into the
poor illumination region, our approach outperforms the basic method. However,
at the end of the sequence, when the object is completely immerse in the shadow
region, both methods are unable to keep tracking the object. Neverthless, when
reliable local information is available, our approach is able to correctly infer
the global position of the object and unrealible local features enable the app-
roach to properly characterize regions with poor illumination conditions. This
characterization will allow us in the future to properly handle poor illumina-
tion situations when they are detected. Figure 11 presents the evolution of the
illumiantion conditions for the tested sequence.

To quantify the improvement of the approach, two videos of changing con-
trast situations have been tested. Both videos have ground-truth segmentation,
in order to obtain the ideal track of the analysed objects. The first video consists

1 http://www.alov300.org/.

http://www.alov300.org/
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Fig. 8. Resulting tracking for three soccer player sequences with different levels of
contrast. Figures (a), (b), and (c) show the result for low, medium, and high contrast
situations, respectively. Figure (d) is a control case for ground-truth segmentation.
The segmentation blob bounding boxes are colored red, the merged bounding box
for the object hypothesis colored yellow, and the estimated bounding box from the
dynamics model colored cyan. The central object position trajectory is depicted with
blue squares. (Color figure online)

in a single football player sequence (27 frames), where a player goes from a light
to a dark zone of the pitch. This video is a zoomed short sequence extracted
from the Alfheim Stadium dataset2. The second video consists in a sequence (51
frames) where a rodent is exploring a confined space with better illumination in
the center. The sequence is part of a set of sequences provided by the Interdis-
ciplinary Center of Neuroscience of Valparaiso3. This sequences are intended to
study the behavior of the degu, a rodent which commonly presents the Alzheimer
disease.

The experiment consists in performing object tracking using the new dynam-
ics model with and without considering the proposed reliability measures, and
compare the obtained tracks with the ideal tracks obtained from the ground-
truth segmentation. The results were summarised in Table 1.

The results for the first experiment are exemplified in Fig. 12. Figure 12(b)
and (c) show the core motivation of this work: the effect of considering different
measures for tracked attributes allows a finer control of the trade off between

2 Open dataset extracted from Alfheim Stadium, the home arena for TromsøIL
(Norway). Available from: http://home.ifi.uio.no/paalh/dataset/alfheim/.

3 Interdisciplinary Center of Neuroscience of Valparaiso, Chile. http://cinv.uv.cl/en/.

http://home.ifi.uio.no/paalh/dataset/alfheim/
http://cinv.uv.cl/en/
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Fig. 9. The local patches are shown in this figure. The patches are sorted from current
patches in column p, to older patches (columns p− i). (Color figure online)

Fig. 10. Comparison of the approach using local patches and reliabilty measurements.
First row shows the performance without utilisation of local patches nor reliabilty mea-
surements. Second row depicts our approach. In the second row, red circles represent
matched patches and blue circles represent new patches. (Color figure online)
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Table 1. Results for evaluation sequences with respect to ground-truth sequences. The
column Imp.% is the percent of improvement utilising the proposed approach.

Sequence Distance (pixels)

No rel. Patch rel. Imp.%

Football (T = 15) 602.2 579.5 3.8%

Football (T = 20) 640.7 570.8 10.9%

Rodent (T = 10) 600.4 581.6 3.1%

Rodent (T = 15) 506.7 491.4 3.0%

Rodent (T = 20) 1086.8 1011.5 6.9%

Rodent (T = 25) 1071.1 1023.0 4.5%

the estimated state and the measurement in the update process. In the example,
the patch tracking algorithm was able to properly weight unreliable data to not
affect considerably the dynamics model, and the legs of the player were not lost
(Fig. 12(c)).

Fig. 11. Reliability map of the object from video Light Video032. The reliability of
the object is properly related to illumination, thus it can be used to detect bad seg-
mentation in order to activate control mechanisms.

For the second experiment, the challenge is to follow a rodent of quick accel-
eration changes and not homogeneous illumination conditions. Also, poor seg-
mentation occurs due to the sudden changes of speed. The sequence was tested
for different segmentation thresholds (T ∈ {10, 15, 20, 25}). From these results,
we are able to state that a more robust tracking can be achieved utilising the
patch reliability measure, with an improvement higher than a 3% in precision.
Examples of these results are depicted in Fig. 13.

All the results generated by qualitative and quantitative experiments can be
found in: http://profesores.elo.utfsm.cl/∼mzuniga/videos/.

http://profesores.elo.utfsm.cl/~mzuniga/videos/
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Fig. 12. Example of the effect on utilising the patch reliability on the tracking process
(T = 20). Figure (a), from left to right, shows the current, segmentation, and contrast
map images, respectively. Figure (b) shows the tracking result without considering the
patch reliability measures (every reliability is set to 1). Figure (c) shows the result
of using the patch reliability measure. Note the difference in tracking bounding box,
where the feet of the player are more properly incorporated to the object. The boxes
are colored the same way as previous images. The central object position trajectory
is depicted with green squares, the ground-truth positions in cyan squares, and the
distance between them is represented with a yellow line. (Color figure online)

Fig. 13. Example of the effect on utilising the patch reliability on the tracking process
(T = 25). Figure (a), from top to bottom, shows the current, segmentation, and contrast
map images, respectively. Figures (b) and (c) show the tracking result not considering
and considering the patch reliability measures, respectively.

5 Conclusions

For addressing real world applications, computer vision techniques must properly
handle noisy data. In this direction, we have proposed a new tracking schema
considering local features and reliability measures which have shown promis-
ing results for improving the dynamics updating process of the tracking phase.
The reliability measures were utilised to control the uncertainty in the obtained
information, through a direct interpretation of the criteria utilised by the
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segmentation phase to determine the foreground regions. In this sense, this app-
roach can be applied to other segmentation algorithms to improve the tracking
phase in the same way.

In particular, the proposed global patch reliability measure, considering a
diverse range of features, has shown one of the many possible ways of integrating
segmentation phase data to object modelling. In the present work, no a priori
knowledge has been considered about the objects to be tracked. The integration
of the data from the segmentation phase with more complex object models can
also improve the tracking phase, by better determining the objects of interest
for a context or application. At the same time, these reliability measures can
help these object models to better determine their parameters, subject to noisy
measurements.

The preliminary evaluation obtained promising results both in robust track-
ing and quick processing. Nevertheless, extensive testing is required for fully
validating the approach.

This work can be extended in several ways: the approach can be tested for
different types of detectors of interest points and local feature detectors. Also, the
algorithm can be tested for different background subtraction approaches. How-
ever an extensive parameter sensitivity evaluation is still needed. As local fea-
tures are utilised for partial occlusion, this approach could be naturally extended
to deal with dynamic occlusion situations. As previously mentioned, one of the
most important extension of this work will be the development of more sophis-
ticated control mechanisms in case of local patches describing the presence of
poor illumination conditions.
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