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Abstract. Constructing discriminative features is an essential issue in
developing face recognition algorithms. There are two schools in how fea-
tures are constructed: hand-crafted features and learned features from
data. A clear trend in the face recognition community is to use learned
features to replace hand-crafted ones for face recognition, due to the
superb performance achieved by learned features through Deep Learning
networks. Given the negative aspects of database-dependent solutions,
we consider an alternative and demonstrate that, for good generaliza-
tion performance, developing face recognition algorithms by using hand-
crafted features is surprisingly promising when the training dataset is
small or medium sized. We show how to build such a face identifier with
our Block Matching method which leverages the power of the Gabor
phase in face images. Although no learning process is involved, empirical
results show that the performance of this “designed” identifier is com-
parable (superior) to state-of-the-art identifiers and even close to Deep
Learning approaches.

Keywords: Face recognition · Controlled scenario · HD Gabor Phase ·
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1 Introduction

Automatic human face recognition is a well-defined research problem in the
fields of computer vision and pattern recognition. The technical core is to define
a distance to measure the similarity between two given face images X and Y .
The simplest way to define the distance is using the l2 metric on the whole raw
images as:

d = ‖X − Y ‖2 . (1)

Besides l2 form, other forms like l0, l1, etc., are also widely used. A distance
metric is believed good if d is small when both X and Y are from the same
person and large when they are from two different persons (so-called small intra-
personal variations and large inter-personal variations). Unfortunately, it is hard
to directly employ the raw face images for similarity measurement in practice.
This is because human face images exhibit significant appearance variations in
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scale, pose, lighting, background, hairstyle, clothing, expression, color saturation,
image resolution, focus, etc., as they occur in real world applications.

To distinguish persons from their faces, a more effective and efficient way is
to represent face images using visual features so face images can be projected
into a feature space and classified. Then the similarity between two images X
and Y is measured with the following distance metric:

d =
∑

i

‖xi − yi‖2 , (2)

where xi and yi are features extracted from two face images X and Y .
The power of using features for face recognition comes from, not only the

construction of visual features, but importantly from the flexibility and possibil-
ity of weighting visual features for classification. With weighting, the similarity
is measured by calculating the distance metric:

d =
∑

i

wi ‖xi − yi‖2 , (3)

where wi is the weight received by feature i. The intuition of giving weights is
that for each face image point (in a high-dimension space) such a metric should
make face image points from the same person closer than points from different
persons.

In face recognition, one of the most technically challenging issues is how to
construct suitable facial features for face classification. The facial features con-
structed by conventional approaches are so-called “hand-crafted features”, i.e.
features are constructed mathematically or engineered. Commonly used math-
ematical tools include Wavelet and Gabor filtering. The two most remarkable
engineering features used in face recognition are SIFT [28] and LBP [1]. An
entirely different way to construct facial features is through learning from face
image data, i.e. learning to extract facial representations from training sets. The
classical Eigenface approach is about how to extract principal facial components
from training data sets for classification. Since the principal components are
learned from training sets, the extracted facial features are called learned fea-
tures. Another well-known algorithm for feature learning is Linear Discriminant
Analysis (LDA). Today, with the rise of Deep Learning networks, almost all
facial features used in face recognition are learned features.

Although it is easy to see that hand-crafted features and learned features
are two different approaches, few realize that they are from two different facial
feature constructing schools and there is consequently little debate around this
topic. Successful stories of deep neural networks have led us to believe that
learning is king! The unspoken assumption is: hand-crafted features are out of
date, and only approaches using learned features are viable. The consequence
is that we have become blind to their inherent problems. Solutions that (over)
learn from training sets (particularly Deep Learning) are becoming increasingly
database-dependent, even worse, it is hard to distinguish cases where general
progress is made in face recognition from just good solutions to particular prob-
lems defined over specific databases.
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In this paper, we argue that in the interest of making fundamental progress
in face recognition, we ought to adequately study how to develop database-
independent face recognition algorithms. We are interested in how good a mod-
ern face recognition system can be without learning. We consider face identifi-
cation mainly due to two reasons: the problem itself is more challenging than
face verification; it has been a research topic for quite some time and there are
extensive experimental results available for comparison. The scientific method-
ology we employ here is to construct a face identifier and test and compare with
state-of-the-art identifiers to explore empirically the question of how good a face
identifier can be without learning.

We propose a method that merely leverages the power of the Gabor phase
to address the problem of face identification in controlled scenarios. A slim filter
bank of only two Gabor filters is applied to extract the Gabor phase information
and explicit phase code matching is performed on the quantized phase map via
our Block Matching scheme [55]. Different from other elastic matching schemes,
the Block Matching scheme not only cancels the patch-wise spatial shift in the
phase map but also simultaneously evaluates the patch-wise utility during the
learning-free matching process. Combining the matching scheme with phase
codewords enables the employment of high-definition phase information (4 times
higher than [47]) from the 2 utilized Gabor filters. Thus, the proposed approach
can significantly bring up the algorithmic efficiency without sacrificing the recog-
nition accuracy. Furthermore, it is totally comparable to state-of-the-art Gabor
solutions and even Deep Learning based solutions.

The disposition of our paper is as follows: we first briefly review related Gabor
based approaches in Sect. 2; our approach is then described in Sect. 3 followed
by comparative experiments presented in Sect. 4 where we also compare the
performance between our approach and Deep Learning solutions. Finally, we
discuss our work as a whole and offer our conclusions.

2 Related Work

Gabor filtering enables the employment of rich low-level, multi-scale features
by transforming images from the pixel domain to the complex Gabor space. A
Gabor face is obtained by filtering a face image with the Gabor filter function,
which is defined as:

ψu,v(z) =
‖ku,v‖2

σ2
e(−‖ku,v‖2‖z‖2/2σ2)[eiku,vz − e−σ2/2], (4)

where u and v define the orientation and scale of the Gabor kernels respectively,
and the wave vector is defined as:

ku,v = kveiφu , (5)

where kv = kmax/fv, φu = uπ/8; kmax is the maximum frequency, σ is the
relative width of the Gaussian envelop, and f is the spacing factor between
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kernels in the frequency domain [27]. The discrete filter bank of 5 different spatial
frequencies (v ∈ [0, · · · , 4]) and 8 orientations (u ∈ [0, · · · , 7]) is mostly exploited
to filter face images to facilitate multi-scale analysis for face recognition.

In the complex Gabor transformed space, most state-of-the-art face recogni-
tion approaches utilize the amplitude of Gabor filtered image for face represen-
tation and facial feature construction. As in [51], the LGBP feature is extracted
from the amplitude spectrum. One of the motivations is because the amplitude
varies slowly with spatial shifts, making it robust to texture variations caused
by dynamic expressions and imprecise alignment.

By constructing LBP type features from the amplitude and adopting dif-
ferent learning techniques, many Gabor filtering based approaches have shown
remarkable advantages over pixel feature based methods: the identification rate
in benchmark evaluations has been improved by more than 20% (reaching around
90%) thanks to the so-called “blessing of dimensionality” [17] (but with a high
cost of less computational efficiency [8,29]).

The Gabor phase is robust to light change. It has been well-known that phase
is more important than amplitude for signal representation and reconstruction
[30]. It is reasonable to believe that the Gabor phase should have played a more
important role in face identification. However, the use of the Gabor phase in face
recognition is far from common and it has often been unsuccessful with worse
or nearly the same performance as the amplitude in comparative experiments
[6,16,47,53].

This is largely due to two challenging issues: (1) the Gabor phase is a periodic
function and a hard quantization occurs for every period; (2) the Gabor phase is
very sensitive to spatial shifts [45,53], which imposes a rigid requirement on face
image alignment. The first issue was partly solved by introducing the phase-
quadrant demodulation technique [14], but the second issue is still far from
being solved. The state-of-the-art Gabor phase approach (LGXP in [47]) extracts
varied LBP from the phase spectrum. Since the combination of phase and LBP
is also sensitive to spatial shifts, the power of the Gabor phase has not been
demonstrated in face identification.

Fusing other features that are independent of the local Gabor features can
also lead to better performance: [38,42,52] fuse the global (holistic) features with
local ones at feature level; [47] proposes a fusion of the Gabor phase and ampli-
tude on score and feature levels; [8] fuses real, imaginary, amplitude and phase
data. Alternatively, attaching an illumination normalization step and weighting
the local Gabor features is shown to be helpful as well [6].

3 Our Learning-Free Face Matching Approach

In this section, we first introduce the philosophy of our proposed approach in
Sect. 3.1, and then demonstrate how it is used in face identification to achieve
competitive performance with respect to the state-of-the-art.
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3.1 Overview

Repeatable features extracted from small face portions are known as good dis-
criminative traits for identifying persons. In addition, such local features are
less likely to be influenced than the holistic features by pose changes and facial
expressions. Thus, it is natural to divide face images into blocks and perform sim-
ilarity measurements between them. Practically, in most face recognition meth-
ods, the matching process compares spatially corresponding patches after face
alignment.

But such a matching process implies that the spatially corresponding features
are the best match. This implication is hardly true even after face alignment.
Because of the movement of facial components, head pose variability and impre-
cise alignment, the spatially corresponding patches easily become dislocated (see
Fig. 2 in [58]). It is nearly impossible to achieve reasonable face alignment by
using similarity transformations applied holistically to images.

In our approach, facial components are aligned individually by our Block
Matching algorithm. Our Block Matching segments a face image into non-
overlapping blocks and treats individual blocks as features explicitly. Given a
pair of face images X and Y , the core of the algorithm is to use a given block
(feature) xi of image X to search for the corresponding block yi in image Y .
Then we measure the distance of two blocks as ‖xi − yi‖2, which is used to form
the similarity between two face images as in Eq. 2. This is a direct application
of the Elastic Matching concept [45] in face recognition.

Moreover, since not all blocks contribute to face identity equally, it is natural
to weight the face blocks during the matching process as shown in Eq. 3. By
computing proper weight factors, we can expect larger distance values for patches
from different persons and smaller distances for patches from the same persons.
The key is how to acquire the weight factor wi.

Without doubt, we can learn weights from the training sets using metric
learning techniques as in [12,18], but the developed algorithm will be data-
base dependent. To have good generalization performance, we developed an effi-
cient on-line learning step to calculate the weight factor wi during matching the
face pair at hand in our Block Matching approach, which is introduced in the
following.

3.2 Algorithm

We designed the algorithm based on the observation that a face can be distin-
guished by its unique feature(s) which is more informative than its surrounding
one(s), e.g. scars, moles, nasolabial folds, etc. This means that in an Elastic
Matching context, if a segmented patch is discriminative, it gives very small
distance when a good match is found and the distance varies dramatically if it
is matched to surrounding locations. By considering both the minimum match-
ing distance and the variation of the matching distance, we can evaluate the
discrimination power of the local patches.
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Specifically, given a face-matching pair, a probe image P (denoted by pb)
and a gallery image G (denoted by gl), we first segment the probe image into
N non-overlapping patches that are denoted by {f

(pb)
n }N−1

0 . (The local features
are simply formed by the corresponding patches, e.g. by pixels from a patch for
gray-scale images.)

For each probe patch f
(pb)
n centered at image coordinate (xn, yn) (denoted by

f (pb)(xn, yn)), it searches its best matching block within the corresponding search
window and yields a patch-wise distance vector dn where:

dn = {di
n}, i ∈ [0, L − 1] (6)

where L is the number of candidate gallery patches within the (2R+1)×(2C+1)
search window, i.e. L = (2R+1) ·(2C +1) when applying an “exhaustive” search
method, R and C stand for the search offset in vertical and horizontal directions
respectively. Each element in dn is computed as:

di
n =

∥∥∥(f (pb)(xn, yn) − f (gl)(xi, yi))
∥∥∥
2
, (7)

where the patch-wise distance metric is the l2-norm of element wise distance
of local features (patches) and f (gl)(xi, yi) denotes the patch that centered at
image coordinate (xi, yi) within the search window on the gallery face image so
that

xi = xn + Δx,Δx ∈ [−C,C], yi = yn + Δy,Δy ∈ [−R,R]. (8)

We then calculate the slope kn of the linear fitting of the first 5 ascendingly
sorted values of dn for normalization of the patch wise distance for each patch,
such that the weight factors for each local feature wn is calculated as:

w∗
n = kn/d∗

n, (9)

where d∗
n = min(dn). w∗

n is then normalized by its l1-norm as:

wn = w∗
n/

N−1∑

n=0

w∗
n. (10)

Finally, the distance between a matching pair of probe and gallery face images
is the weighted sum of d∗

n as:

dist(pb,gl) =
N−1∑

n=0

wn · d∗
n. (11)

More details of our Block Matching approach are given in [55].

3.3 Gabor Phase Block Matching (GPBM)

It is known that the features constructed from pixels are vulnerable to lighting
and pose variations. To further improve the recognition performance, one way is
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to construct more robust features. Another effective way is increasing the dimen-
sionality of features to raise recognition rate dramatically thanks to the “blessing
of dimensionality”. Traditionally, the most popular way is to exploit the Gabor
features via Gabor transformation, which normally increases dimensionality of
image representations by 40 times [27].

The Gabor transformation enables the employment of rich low-level multi-
scale features by transforming images from the pixel domain to the complex
Gabor space. Different strategies of using either Gabor magnitude or Gabor
phase, or a hybrid of both magnitude and phase have been proposed to construct
features. One reasonable option for many state-of-the-art approaches has been
to utilize Gabor amplitude for face representation and feature construction.

But high dimensional features lead to high cost and create difficulties for
training, computation, and storage (as pointed out in [8,29]). To build a practi-
cal solution, patch-based approaches and dimensional reduction techniques, such
as PCA or LDA, and rotated sparse regression, are commonly used to learn a
subspace to reduce intra-class variation and expand inter-class variations. Since
the learning process has to be involved and training datasets are needed (e.g.
for LDA, the leading eigenvectors of the covariance matrix are needed to calcu-
late over training image pairs), the advantage of using hand-crafted features to
achieve generalization performance is diminished.

Can we remain learning-free (to promise generalization) in our face matching
approach and also further improve the recognition performance without suffer-
ing from heavy computational load brought about by high-dimension represen-
tations? We focus on the Gabor Phase, since it better reconstructs signals than
amplitude [30]. We combine the Gabor Phase face representation with our Block
Matching approach introduced in Sect. 3.2, and demonstrate that increasing the
signal dimension is not the only way to boost the recognition performance.

Specifically, we filter faces with only a single-scale Gabor filter pair and cal-
culate the phase of the filtered face. That is, for each face image, only two
demodulated Gabor phase spectra are used as in the input of our Block Match-
ing method, see Fig. 1. We first segment the probe phase spectrum into N

Fig. 1. The matching process of our Gabor Phase Block Matching (GPBM) approach.
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non-overlapping patches and the patches {f
(pb)
n }N−1

0 are simply formed by the
raw phase codes of the patches. Then the Block Matching approach is utilized
to calculate the distance of the two faces. The only difference is that when cal-
culating the phase distance, each element in dn is computed by performing an
explicit matching over the raw demodulated phase as:

di
n =

∥∥∥XOR(f (pb)(xn, yn), f (gl)(xi, yi))decimal

∥∥∥
2
, (12)

where the patch-wise distance metric is the l2-norm of element wise Hamming
distance in decimal. More technical details are provided in [56].

4 Experiment

4.1 Database Selection

There are a variety of large-scale datasets available for benchmark evaluation
of different face recognition approaches, such as the FERET [33], FRGC2.0 [32]
and the LFW [21] datasets. Since we focus on face recognition in controlled
scenarios in this paper, the FERET database—the most commonly used face
identification benchmark—is selected to evaluate and compare our method with
state-of-the-art face identification approaches. In addition, the CMU-PIE [36]
dataset is selected to evaluate our GPBM against variations of pose, expression
and illumination.

4.2 Experimental Setup

Face images were first normalized (aligned) based on the positions of both eyes
as in [47]. A central facial area of 150 × 136, which maintained the same aspect
ratio (1.1:1) as in [47,54], was segmented from the face image and used for our
experiments.

Due to our Block Matching scheme, the Gabor phase information with a
higher definition can be utilized in our approach. We found that a single-scale
Gabor filter pair with two orientations is sufficient for face identification. In our
implementation, the selected Gabor filters had the following parameters: v = 0,
u ∈ {2, 6}, f =

√
2, kmax = π/2, σ = 2π.

One can see that the chosen Gabor filters have broad high-frequency cov-
erage. These high-frequency components correspond to facial texture variations
and are insensitive to the factors of lighting, pose, and aging. Accordingly, to
retain high phase definition and to be tolerant to potential phase change caused
by texture shift, a Gray-coded 16-PSK demodulator was used for phase demod-
ulation and the constellation is shown in Fig. 2. Compared to the quadrature
phase demodulation used in [47,52], 4 times the phase information can be uti-
lized thanks to the employment of our Block Matching approach.

To provide a thorough answer to “How good can a face identifier be without
learning”, we compare our Block Matching approach [55] and our GPBM to other
methods on both image domain and Gabor transformed space in the following.
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Fig. 2. 16-PSK demodulator constellation.

4.3 Evaluations on the CMU-PIE Database

The CMU-PIE database contains 41368 images of 68 subjects. Images with pose
labels 05, 07, 09, 27, and 29 under 21 illuminations (Flash 2 to 22) of all the 68
persons are selected as the probe set.

When applying the Block Matching method, the most important parameters
are the block size (H and W ) and searching offset (R and C). Our empirical
tests on other datasets indicate that it makes sense to divide a central facial
area into 5× 7 patches, which semantically correspond to components of human
faces, like eyes, nose, etc. Thus, for a facial area of 150 × 136, a reasonable
size of a block is 30 × 20. In our implementation, our block size was 29 × 19
(we prefer odd block sides) in the block search. To have a good coverage while
keeping low computational complexity, the search offset was set to around a
quarter of the block size and we selected the search offset of R = 7, C = 6
pixels in our experiments. To test how sensitive the performance was to the
selected parameters, we selected the first 2000 probe images on the CMU-PIE
to evaluate the performance with the chosen parameters and other parameters
randomly selected around them. The evaluation results in Fig. 3 show that the
recognition performance is rather insensitive to parameter selections.

Fig. 3. Recognition rates under different parameters on the CMU-PIE dataset.
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We then conducted experiments on the CMU-PIE probe set and compared
our GPBM with G LBP and G LDP [54]. The G LBP is the Gabor version LBP
and the G LDP is a type of improved Gabor amplitude Local Binary Pattern.
The G LDP achieved equivalent performance as LGXP (Gabor Phase pattern)
on the FERET evaluations so it is a good reference for comparison. Since the
Gabor phase is inadequate to handle the non-monotopic illumination variations,
we employed the Difference of Gaussian (DoG) image to equalize the illumina-
tion on the face. The corresponding results is denoted by GPBM + DoG. The
comparative rank-1 recognition rates are listed in Table 1. It can be seen that
even with use of the raw pixels without any photometric processing for face
matching, the Block Matching approach performs comparably to the LBP and
LDP approaches where hand-crafted features were employed. Similarly, for our
GPBM, it is slightly better than the G LDP, even though LDP extracts much
more complicated Gabor amplitude patterns. The results indicate that with the
environment of dramatic illumination and pose variation, our Block Matching
approaches have equal recognition power to the hand-crafted features.

Table 1. Comparative rank-1 recognition rates on the CMU-PIE database.

Method Accuracy

Unweighted LBP∗ 58%

Best of LDP, 3rd order∗ 61%

Block Matching [55] 60%

G LBP∗ 71%

Best of G LDP, 3rd-order∗ 79%

GPBM 82%

GPBM + DoG 85%
∗ The recognition rates are estimated
from Fig. 12a in [54].

4.4 Evaluations on the FERET Database

The FERET database is the most commonly used face identification benchmark.
It contains variations in illumination, expression and aging. The gallery set “Fa”
contains 1196 frontal face images and the easiest probe set “Fb” contains 1195
images with variations mainly in expression. The probe set “Fc” has 194 images
with illumination variations. The “Dup1” set contains 722 images taken later in
time than the “Fa”. 234 images in the “Dup1” taken at least 1 year after the
“Fa” session were selected to form the hardest “Dup2” set. We faithfully followed
the evaluation protocol of the FERET dataset and compare with other feature
based methods in Table 2.

It is easy to observe that when recognizing faces in the image domain,
the Block Matching approach outperforms the LBP and LDP (first 3 rows in
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Table 2. Comparative rank-1 recognition rates on the FERET database.

Method Fb Fc Dup1 Dup2

Unweighted LBP [2] 93% 51% 61% 50%

LDP 3rd-order [54] 90% 88% 63% 61%

Block Matching [55] 93% 83% 66% 64%

LGBP Pha [53] 93% 92% 65% 59%

HGPP [52] 97.5% 99.5% 79.5% 77.8%

LGXP [47] 98% 100% 82% 83%

LGXP+BFLD [47] 99% 100% 92% 91%

S[LGBP+LGXP] [47] 99% 100% 94% 93%

LN+LGXP [6] 99.9% 100% 94.7% 91.9%

PCANet-2 [9] 99.6% 100% 95.4% 94%

GPBM 99.4% 100% 95.3% 94.9%

Table 2). If Gabor transformation is employed, in a fair comparison (non-learning
component was involved and only Gabor phase was utilized for face matching),
our GPBM is almost 12% better than LGXP on the hardest “Dup2”. Even
in unfavorable comparisons, where pre-processing, training, and fusion meth-
ods were exploited by LN+LGXP and S[LGBP Mag+LGXP], our GPBM still
excels. To our best knowledge, the method S[LGBP Mag+LGXP]—aided by
the Gabor amplitude and training procedures—was the state-of-the-art Gabor
phase based method in terms of performance on the hardest FERET “Dup2”,
and our GPBM is entirely comparable.

Our approach also has comparable performance to the Deep Learning based
PCANet-2 [9]. It firmly confirms again that in a controlled scenario by weighting
the image-wise distance via our Block Matching process, we can achieve equally
effective face identification as the state-of-the-art. Our results indicate that fea-
ture design and high-dimensional signal representation might be less important
than commonly believed.

We further compare our GPBM with other state-of-the-art approaches based
on other techniques on the FERET in Table 3. From the table one can see that
all these approaches are based on Gabor features, which indicates that the Gabor
filter is a very effective tool for signal representation. Our GPBM method outper-
forms all the other approaches on the hardest “Dup2” set and it features three
advantages: (1) it enables high definition Gabor phase to be utilized for face
identification; (2) a single-scale Gabor filter with two orientations is sufficient to
generate an effective face image representation, with 1/20 of the computational
complexity of other methods that utilized 40 Gabor filters; (3) further to this, it
is not a learning-based face identification method and, therefore, promises good
generalization.

We also evaluated our approach under pose variations using the pose probe
sets “bd”, “be”, “bf”, “bg” and gallery set “ba” on the FERET dataset. These
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Table 3. Comparative summary of recent state-of-the-art face identification
approaches.

Methods Image size Gabor feature space
Gabor filter bank

Training data
independent

Rank-1 Rate on
FERET Dup2

LGXPa 88× 80 Phase 5× 8 No 83%

LGBP+LGXPb 88× 80 Amplitude + Phase 5× 8 No 93%

GOMc 160× 128 Amplitude + Phase 5× 8 No 93.1%

LN+LGXPd 251× 203 Phase 5× 8 No 91.9%

LN+LGBPe 251× 203 Amplitude 5× 8 No 93.6%

SLF-RKR l2f 150× 130 Amplitude 5× 8 No 94.4%

GPBM, ours 150× 136 Phase (explicit matching) 1× 2 Yes 94.9%
a[47], b[47], c[8], d[6], e[6], f[48]

sets correspond to pose angles of +25◦, +15◦, −15◦, −25◦, and 0◦ to the cam-
era, and each of these sets contains 200 persons. The comparative performance
of our GPBM is listed in Table 4. It can be observed that our GPBM approach
is significantly more accurate than the non-learning feature-based approaches
(LGBP and LGXP) when probe faces have relatively large pose angles. In addi-
tion, it outperforms the learning-based methods on all probe sets and is even
comparable to the recent Deep Learning approach SPAE on “be” and “bf” sets.

Table 4. Comparative rank-1 recognition rates on the FERET dataset with the posed
probe sets.

Method bd be bf bg

Pose angle −25◦ −15◦ +15◦ +25◦

LGBP [6] 86.5% 98% 97.5% 88.5%

LGXP [6] 73.5% 95.5% 96% 65.5%

StackFlow [3] 89% 96% 94% 92%

DAE [4] 93% 96% 96% 94%

LN//LGXP [6] 97.5% 99% 99.5% 96%

SPAE [23] 98% 99% 99% 99%

GPBM 96% 100% 100% 95%

The computational complexity is always a big concern. As in Table 4 of [29],
under the image size of 128 × 128 with a 5 × 8 Gabor filter bank, the histogram
extraction of LGBP takes around 0.45 s, S[LGBP Mag+LGXP] takes 0.99 s.
Extracting GOM feature takes 0.7 s [8]. However, the “feature extraction” time
in our method is 0 s since only the raw phase is used for matching; the demod-
ulation is the only on-line computation of the probe face, thus, it is extremely
fast. Our Matlab implementation executes the matching of a face pair in 0.05 s



How Good Can a Face Identifier Be Without Learning? 527

on average (Gabor filtering included) on a 3.4 GHz Intel CPU. We can there-
fore safely conclude that our GPBM outperforms the best Gabor-phase based
approach (S[LGBP Mag+LGXP]) in efficiency with a big margin. We can also
infer that the other methods in Table 3 could hardly be more efficient than our
GPBM due to higher image resolution, Gabor face dimensions, and additional
photometric processing. Here we should mention that our GPBM needs to run
block matching. Right now, we used an “exhaustive search” strategy. Since we
have just a few blocks per probe image, matching is still fast. In future work, we
could also incorporate fast-search strategies from the video compression field to
speed up face matching.

4.5 Deep Learning for Face Recognition in Controlled Scenarios

Before we conclude this paper, it would be interesting to investigate how good
Deep Learning can be for face recognition in controlled scenarios. To answer this,
we trained several CNNs with well-known architectures of AlexNet [24], VGG-
net [37], Google’s InceptionNet [40] and FaceNet [35]), and evaluated them on
the most difficult probe set “Dup2” of the FERET database.

For fair comparisons between different architectures, layers after the last spa-
tial pooling in our implementation of the InceptionNet and the FaceNet were
replaced by two concatenated Fully Connected (FC) layers, and Softmax was
selected as the lost function. We used the WebFace dataset [50] to train our net-
works. WebFace is a face image collection with half a million instances of around
10000 celebrities. Since the FERET dataset was formed with non-celebrity peo-
ple, all the trained nets were fine-tuned carefully with the FERET gallery images.

To illustrate how architecture choice affects the recognition performance, we
investigated how rank-1 accuracy varies under different sizes of the FC layers.
The results are listed in Table 5. We can see that the architecture (length of FC)
does influence the recognition accuracy. Explicitly inherit network architectures
designed for one image classification task (e.g. networks with FC − 4096 layers
work well on the ImageNet) may not perform well in a novel face recognition task.
Investigations on suitable deep feature representations must be made correspond-
ingly and here we found that FC − 1024 is a good choice which is also verified in
[31]. On the other hand, the performance strongly correlates to architecture in
general: even with FC − 1024, the InceptionNet outperformed others.

Table 5. Rank-1 accuracy of several well-known CNN architectures on FERET Dup2
(input image size to CNNs was 120 × 120).

Architectures Length of the FC-4096 Last 2 FCs FC-1024

AlexNet 91.9% 94.4%

VGG-13 layers 93.6% 94.9%

VGG-16 layers 93.2% 97.0%

InceptionNet 95.3% 98.7%

FaceNet 94.9% 98.3%
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Apparently, CNNs can outperform the proposed approach for around 4%, but
such advantage is not statistically significant for the test: the best CNN correctly
identified 9 more probe faces than our proposed approach which made 222 correct
answers out of 234 probes on the “Dup2” set. We can see that even with the most
advanced CNNs and trained with a massive face dataset, deep-learning doesn’t
solve the face identification problem defined over the FERET set significantly
better than our non-learning approach. At least, one can conclude that for an
unseen face identification task, the approach developed without learning could
be a promising solution.

5 Discussion

Although without learning, we have shown that a combination of Block Matching
with Gabor phase could work as a very good identifier. Unlike in most state-
of-the-art face identifiers where a highly engineered design of facial features
or high dimensional features (“blessing of dimensionality”) are “must-have”,
the proposed face identifier has no designed features. It just uses the blocks
of raw face images, two orientation channels of a single scale Gabor filter to
construct the phase features for face recognition. Our experimental results show
that the form and dimensionality of features are of course important, but not
the key in building a good identifier. The key lies in how to handle the factors
causing unlimited variations of facial textures. The crucial issue in constructing
features is knowing how the features affect the relationship between within-
class variability and between-class variability. Face recognition can be performed
reliably only when the between-class variability is larger than the within-class
variability. Why does the proposed identifier work? It is due to that spatial shift
caused by camera, pose, expression, scale, and aging between two face images is
effectively tackled by our Block Matching approach. In addition, the 2D Gabor
filtering family uniquely achieves the theoretical lower bound on joint uncertainty
over spatial position and frequency. These properties are particularly useful in
characterizing facial textures. Leveraged by our Block Matching technique, the
Gabor phase demonstrates its power in handling lighting factors and detailing
of local facial texture changes.

Just like others, the performance of our face identifier was also tested with
standard database sets. However, there is a clear difference between the evalu-
ations. Since it is not learned from the training data, our identifier is of good
generalization. One can expect a similar performance when applying to other
databases. Of course, according to the No Free Lunch Theorem, if we are inter-
ested solely in the generalization performance, there is no reason to prefer one
identifier over another. Certain prior knowledge about the problem or a con-
crete application is always used explicitly or implicitly, for example, choice of
operating parameters in our case. In fact, our identifier itself is of a good tech-
nical platform where learning can be well integrated. For example, instead of
being computed on-line, the weights can be learned from database sets. Thus,
our approach is becoming the so-called metric learning:
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d = (x − y)T W (x − y), (13)

where x and y are the feature representations of X and Y , W is a weight
matrix, typically a symmetric positive definite matrix. A typical example is
the Mahalanobis metric. The weight matrix can be learned from either sets of
labeled image pairs or just sets of labeled images with an objective of finding a
matrix such that positive pairs have smaller distances than negative pairs. Of
course, once learning is involved the developed identifier will be more database-
dependent and less apt for generalization.

Face recognition has been developed for over more than three decades and
three-order of magnitude improvement in recognition rate has been achieved.
One has to realize that such an achieved performance increase was only on the
selected databases.

Due to the popularity of machine learning, we don’t know how to measure the
real progress that has been made in face recognition. Taking the “LFW bench-
mark” as an example, so many advanced CNN networks have been trained to do
face recognition and some of the best can achieve 99.5% recognition accuracy in
benchmark evaluations. But when such networks were practically deployed in a
real-world application, it was found that they were still far from usable mostly
due to the divergence between the training dataset and the real-world data [57].
Though Deep Learning made a big stride in solving challenging face recognition
tasks, it is still early to confirm that it is the only right way to go. It is wise to
include diverse solutions using “hand-crafted” features and/or features learned
from data. This is why in this paper we take on a radical approach to see how
far face recognition can go without learning.

6 Conclusions

In this paper we argue strongly that it makes sense to study how good a face
identifier can be without learning, particularly today when Deep Learning is
very commonly used. We have shown how to construct such an identifier that
simply uses Block Matching technique over Gabor phase codes to achieve state-
of-the-art performance. We have demonstrated that engineered feature designs
or those adhering to the slogan “blessing of dimensionality” are not essential
ingredients for building a good identifier. The key issue in constructing features
is to achieve between-class variability larger than within-class variability. Since
it is not learned from the training data, our identifier lends itself well for general-
ization. One can expect similar performance when applying it to other databases.
This is very important for developing algorithms that constitute real progress in
face recognition.
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