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Abstract. Non-local means (NLM) is a popular image denoising scheme
for reducing additive Gaussian noise. It uses a patch-based approach
to find similar regions within a search neighborhood and estimates the
denoised pixel based on the weighted average of all pixels in the neigh-
borhood. All weights are considered for averaging, irrespective of the
value of the weights. This paper proposes an improved variant of the
original NLM scheme by thresholding the weights of the pixels within
the search neighborhood, where the thresholded weights are used in the
averaging step. The threshold value is adapted based on the noise level
of a given image. The proposed method is used as a two-step approach
for image denoising. In the first step the proposed method is applied
to generate a basic estimate of the denoised image. The second step
applies the proposed method once more but with different smoothing
strength. Experiments show that the denoising performance of the pro-
posed method is better than that of the original NLM scheme, and its
variants. It also outperforms the state-of-the-art image denoising scheme,
BM3D, but only at low noise levels (σ ≤ 80).

1 Introduction

Image denoising is the process of reducing noise artifacts from a digital image
and it is one of the most fundamental problems in image processing. Noise is a
random signal which affects the signal from the actual source by adding unwanted
information to the signal. In digital image, noise causes random variation of
brightness or color. It is usually produced during the image acquisition phase,
caused by the sensors of digital cameras or scanners. Modern digital cameras
have come a long way in using high quality sensors which have significantly
reduced the presence of noise during image acquisition, but still noise can affect
an image especially in low light conditions.

Noise in digital images can be categorized either as additive or multiplicative
noise. Additive noise gets added with the image signal. It is modeled as:

v(i) = u(i) + η(i) (1)

where v(i) is the observed intensity value at pixel i, u(i) is the actual raw inten-
sity value and η(i) is the random noise affecting pixel i. Multiplicative noise
signal gets multiplied in the original image source. It is modeled as:
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v(i) = u(i) × η(i) (2)

The main challenge of a denoising model is to reduce noise while preserv-
ing the texture, fine details and edges of an image. A model which is able to
reduce significant noise artifacts but completely blurs the entire image, to a
point where only minimal visual information can be extracted, is not ideal. Sim-
ilarly, a denoising method which preserves the textures in the image but fails to
reduce the noise to a satisfactory level is not an effective model as well.

The denoising methods can be generally categorized as either spatial domain
approaches or transform domain approaches. The term spatial domain refers to
the image plane itself [8] and the methods under this domain uses the raw inten-
sity of the pixels to generate a denoised image. In transform domain approaches,
the image is transformed to another domain, e.g., frequency domain using, for
example, Fourier transform or wavelet transform. The transform domain decom-
poses smooth regions in an image into low frequencies, while edges and subtle
information into high frequencies, thus making it easier to target and enhance
certain regions in an image.

Among the various noise types, additive white Gaussian noise has attracted
significant interest among researchers in the past few decades. Our work will
focus only on this type of noise reduction. Additive white Gaussian noise is
referred to noise signals with a zero-mean Gaussian distribution, having uni-
form power across the frequency band. Initial approaches to reduce the additive
Gaussian noise included the use of basic linear filters, namely mean filter, median
filter and Gaussian smoothing [8]. These filtering approaches use only the raw
pixel values in a small local neighborhood around each pixels to determine the
denoised image. These methods does not take into account the extent to which
the neighborhood overlaps with smooth or textured regions. Thus the use of
such linear filters are detrimental for edge and texture preservation, resulting in
blurry denoised images. To address this problem, Perona and Malik proposed an
iterative edge preserving method called Anisotropic Diffusion [16]. It attempts
to determine whether a pixel is part of a smooth or a textured region and applies
different degree of smoothing based on the characteristics of its locality.

Most of the earlier spatial domain denoising methods used pixel intensities
within a defined local neighborhood around each pixel for estimating a denoised
version of a noisy image. In recent years, Buades et al. proposed a non-local,
patch based approach called Non-local Means (NLM) [3,4]. It takes advantage
of the fact that similar local regions can be spread through out the entire image.
Each of the pixels are denoised using a weighted average of all the pixels within a
defined search area. The weights are assigned based on the local characteristics
of the pixels used in the weighted averaging step. It uses weighted euclidean
distance of the local region around the pixel being denoised, also referred to as
the reference patch, and the local regions around each of the pixels within the
search area. The patches with smaller euclidean distance, i.e., patches similar to
the reference patch are assigned higher weights.

The concept of non-local based approach has also been applied to denoising
methods in frequency domain. Dabov et al. proposed Block Matching and 3D
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Filtering (BM3D) [6,7], using patch based concept for image denoising. It is a
two-step process, where the first step groups similar patches into blocks, followed
by a transform operation and hard thresholding of the transform coefficients to
generate a basic estimate of the denoised image. The basic estimate is used in
the second step to generate the actual denoised image. BM3D is one of the
state-of-the-art approaches for denoising additive Gaussian noise.

In the field of spatial domain denoising, non-local means demonstrated sig-
nificant improvement in denoising images affected with additive Gaussian noise
and researchers have continued further work on the method and have proposed
improvements for it. The exhaustive search nature of non-local means makes it
computationally expensive. To improve the computation cost, several methods
have been proposed. Tasdizen used principal component analysis (PCA) in con-
junction with non-local means [19]. The image neighborhoods are projects to a
lower dimension space using PCA and the reduced subspace is used for comput-
ing similarities. A similar dimension reduction approach has also been proposed
by Maruf and El-Sakka [13], where the image neighborhood are projected to a
lower dimension by using t-test.

Along with the research focused on improving the computation performance
of non-local means, work has also been done on improving the denoising per-
formance as well. Rehman and Wang proposed SSIM-based non-local means
[17], utilizing structural similarity instead of euclidean distance when compar-
ing local characteristics between patches. Chaudhury and Singer proposed Non-
Local Euclidean Medians [5], replacing the use of mean with median. Zhu et al.
proposed a two-stage non-local means approach with adaptive smoothing para-
meters [25]. It generates a basic denoised image by applying NLM in the first
stage and the basic image is refined one more time in the second stage by using
NLM but with smaller smoothing strength.

Non-local means and its variants have been used in various imaging appli-
cations such as medical imaging, including MRI brain images [10], CT scan
imaging [11] and 3D ultrasound imaging [9]. It is also used in video denoising
[1,22], surface salinity detection [24] and metal artifact detection [14].

Although much work has been done to improve non-local means, there are
still possibilities for further improvements. In the weighted averaging step, non-
local means considers all the pixels within a defined search area. The pixel
patches having significantly different details than the patch of the reference pixel
being denoised are likely to deviate the estimated denoised value of the reference
pixel from its true noise-free pixel intensity, even with their smaller weights. In
our proposed method we have thresholded the pixel weights and only the pixels
with weight higher than the cut-off weight are considered for weighted averaging.
The threshold is adapted based on the noise level of the given noisy image. The
proposed method is applied in a two-step approach, where the first step applies
the proposed method to generate a basic denoised image and in the second step
the image generated from the first step is again denoised, using a smaller smooth-
ing parameter. Experiments have illustrated better denoising performance of the
proposed method compared to existing methods, e.g., the original NLM, a vari-
ant of NLM and BM3D, both in terms of objective measurements and visual
image quality.
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2 Background

2.1 Non-local Means (NLM)

Buades et al. proposed a non-local based approach for image denoising [3,4].
Images have redundant or similar patterns in them and the Non-Local Means
(NLM) approach attempts to take advantage of such self-similarities to estimate
the denoised gray level value of each pixel. Instead of using only a local region
around each pixel for estimating the actual intensity of the pixel, NLM uses
a non-local approach by searching for similar patches, within a certain search-
bound, in the image. The center pixel of each patch contributes to a weighted
averaging based on the similarity between the reference and search patches.

When comparing the reference patch to a search patch, a variation of the
euclidean distance is measured. The euclidean distance measures the sum of
squared difference between each pixel in a patch. To give more importance to
pixels near the center of the patch, a Gaussian weight distribution is used, thus
resulting in the final measurement being the weighted euclidean distance, ‖N(i)−
N(j)‖22,a, where a is the standard deviation of the Gaussian kernel and N(i) and
N(j) are the patches around pixel i and j, respectively. The weight associated
with each of the search patches is based on the similarity with the reference
patch. After calculating the euclidean distance between the patches, the weight
is assigned using Eq. (3),

w(i, j) =
1

Z(i)
e− ‖v(Ni)−v(Nj)‖2

2,a
h2 , (3)

where v(Ni) and v(Nj) are the gray values of the pixels in the patch centered
on i and j respectively. Z(i) is the normalizing constant as defined in Eq. (4),

Z(i) =
∑

j

e− ‖v(Ni)−v(Nj)‖2
2,a

h2 (4)

The constant, h, controls the decay rate of the exponential weight function.
Given a noisy image, the estimated value NL[v](i), for pixel i, is computed as a
weighted average of the center pixels of the patches in a certain search area, see
Eq. (5),

NL[v](i) =
∑

j∈I

w(i, j)v(j), (5)

where w(i, j) is the weight calculated based on the similarity of neighborhood
around pixel i and j.

2.2 Two-Stage Non-local Means with Adaptive Smoothing
Parameters

Zhu et al. [25] proposed a two-stage non-local means method with adaptive
smoothing parameters. Based on the noise estimation of a given noisy image,
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smoothing parameter hbasic for the first stage is selected automatically and the
basic denoised image is computed, as shown:

ŷi,basic =
∑

j

wij,basicyj , (6)

where wij,basic is the weight depending on the similarity between patches i and
j and satisfies the usual conditions 0 ≤ wij,basic ≤ 1 and

∑
j wij,basic = 1. The

weight is calculated as show in Eq. (7)

wij,basic = exp(− 1
h2

basic

‖Pi − Pj‖2) (7)

where Pi and Pj are the patches centered on pixel i and j and hbasic is the
smoothing parameter which controls the decay rate of the exponential function.
For the first stage the smoothing parameter is set as hij,basic = 0.75 × σ.

Most of the image noise is removed after the first stage but for high noise
levels some noise artifacts still remain in the image, thus the basic image is refined
one more time. The resulting ŷbasic image of the first stage is again denoised using
the non-local means method but using different smoothing parameters hfinal.
The final image is computed as shown in Eq. (8)

ŷi,final =
∑

j

wij,finalŷi,basic (8)

Similar to the first stage, the weights between patch i and j are calculated as:

wij,final = exp(− 1
h2

final

‖Pi − Pj‖2) (9)

In the second step of the process, the smoothing parameter is defined as:

hfinal =
{

σ2

100 , σ < 30
0.5σ, σ ≥ 30

.

2.3 Non-local Euclidean Median

Chaudhury and Singer [5] proposed the Non-Local Euclidean Median, extending
the concept of the original Non-Local Means scheme. The method is derived
from the observation that the median is more robust to outliers than the mean.
In the presence of noise in the image, the weights averaged over all possible
patches, especially in a search-bound defined around image edges and lines, will
move the resulting mean towards the outliers. The mean is the minimizer of∑

j wj‖P − Pj‖2 over all patches P . Non-Local Euclidean Median proposed the
select the patch, P , which minimizes

∑
j wj‖P −Pj‖ and replace the noisy pixel

value at position (x, y) in the image with the pixel value of the center of patch P .
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2.4 Iterative Non-local Means

Brox and Cremers [2] proposed an iterative non-local means approach. The non-
local means method is applied on an image in iterative mode. In each iteration,
the similarity between patches are calculated based on the result of the previous
iteration. After calculating the weights, the weighted averaging is done by mul-
tiplying the weights of a patch with it’s center gray value in the noisy version of
the image. The proposed method did well on regular textured image but in non-
regular textured image the resulting denoising image lost texture and significant
blurring is observed.

2.5 Block Matching and 3D Filtering (BM3D)

In the field of image denoising, specifically for white Gaussian noise, a popu-
lar method has emerged for tackling the problem of image noise called Block
Matching and 3D Filter (BM3D). It was proposed by Dabov et al. [6,7]. BM3D
demonstrated superior denoising performance compared to the existing methods
and have attracted the attention of researchers working in the image of image
enhancement and restoration.

BM3D is a 2-step process and has been inspired by the non-local concept first
introduced in Non-Local Means (NLM). In the first step, the process starts by
defining a local neighborhood, also referred to as the reference patch and searches
for similar patches inside a search window, usually defined as a bounded area
around the reference patch. The similarity between the search patch and the
reference patch is decided based on a certain threshold. If the similarity is above
the threshold, the search patch is marked as one of the similar patches. After
calculating the similarity between the patches inside the bounded search area, all
the similar patches are stacked together, building a 3D block. BM3D applies some
3D transformations on the block to transform from spatial domain to frequency
domain. After the 3D transformation, the resulting coefficients are thresholded,
called hard thresholding, where coefficients below a certain threshold are reduced
to zero. The block coefficients are transformed back to the spatial domain, using
inverse 3D transform. Next, BM3D generates a basic estimate of the denoised
image from the block which has been inverse transformed. For estimating the
values of the reference patch, all the patches in the 3D block are aggregated and
it works by assigning different weights while estimating the pixel values in the
reference patch.

In the second step of BM3D another grouping of patches are carried out, sim-
ilar to that of the first step. This time however the grouping of patches into 3D
blocks are done based on the basic estimate obtained from the first step. After
3D blocks are generated by selecting similar patches around the reference patch,
the block is transformed using a 3D transformation. Based on the transformed
coefficients the restored image coefficients are estimated using the restoration
concept used in Wiener filter [21]. The Wiener shrinkage coefficients are cal-
culated for the 3D blocks, followed by inverse transform to revert back to the
spatial representation of the 3D block. Finally the Wiener shrinkage coefficients
are multiplied by the 3D block to get the denoised representation of the block.
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3 Non-local Means Using Adaptive Weight Thresholding

Non-local means method defines a search area of size S × S centered on the
pixel, i, being denoised. The similarity of all the patches defined around each
of the pixels within the search area is considered during the weighted averaging
process, where higher weights are assigned to patches which are more similar, as
determined by lower euclidean distance to the reference patch. The goal of the
weighted averaging process is to estimate the true noise-free intensity value of
pixel i, based on the similarity of the patches within the defined search area of
the given noisy image. The inclusion of the center pixels of patches which are
not very similar to the reference patch is likely to move the resulting estimate
further from the true pixel intensity value of the noise-free image.

In our proposed method, only a subset of the available patch centers are con-
sidered for the final estimation of the denoised pixel. The patches are selected
based on the similarity measure compared to the reference patch. Effectively, a
cut-off weight, wthresh is selected using a defined percentile position, wpercentile

among the available patch weights within the bounded search area and the
weights of the patches are thresholded against wthresh. All weights above wthresh

are unchanged and weights below wthresh are reduced to zero, thus removing
their pixel centers from the weighted averaging process. The selected percentile
position is determined based on the noise level in a given image. In real systems,
the actual amount of noise in a noisy image cannot be known beforehand. The
noise can be estimated in digital image using fuzzy processing [18], image filters
[15] and local variance estimate [12] methods.

For low noise levels, a higher cut-off weight, wthresh, is selected for threshold-
ing the patch weights and as the noise level of a given image increases, wthresh is
lowered to include more patch centers for averaging. For lower noise levels, only
the patches with high similarity measure to a reference patch can be used to
estimate a denoised image. The remaining patches can be considered as outliers.
So, a higher cut-off threshold is selected for low noise levels. In high noise, the
euclidean distance measurement may not give a true measure of patch similarity
as it will end up comparing, to some extent, the noise between patches along
with the structures of the patches. So, considering only the higher weighted patch
centers, by keeping the threshold value high, can in fact deviate the denoised
estimation from the true value. To mitigate this effect, the threshold value is
lowered so that more pixels are averaged for attenuating the noise. The denoised
image is calculated as shown in Eq. (10),

NL[v](i) =
∑

jEI

ŵ(i, j)v(j), (10)

where ŵ(i, j) is the thresholded weight between patch at pixel i and patch at
pixel j as shown in Eq. (11),

ŵ(i, j) =

{
w(i, j), if w(i, j) > wthresh

0, otherwise
(11)
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The proposed method is applied in two-step approach. In the first step, pro-
posed method is used to generate a basic estimate of the denoised image. In
the basic estimate, most of the noise is reduced but still some visible noise arti-
facts remain, especially for stronger noise levels and it is necessary to further
denoise the basic image for better denoising [23]. As most of the noise is reduced
in the basic image, similar regions can be identified more easily which helps
to generate better denoised images in the second step. In the second step, the
basic image is denoised using similar method used in the first step, but with
a smaller smoothing parameters. To verify that the two-step approach is good
enough, we conducted experiments to measure the improvement in the denois-
ing performance with further steps and found the amount of improvements to
be negligible, and even less in some cases.

Non-local means has two key parameters, namely the patch size and the
search size. In our proposed method we have attempted to select the optimal
patch and search window sizes based on the noise level in the image. We have
empirically defined a model for selecting the patch size and the corresponding
search window size for a noise level, σ, see Sect. 4.1.

4 Experimental Results

In this section we will report the experimental results of our proposed method.
All the experiments were carried out on the standard Kodak gray-scale image set.
It comprises of 24 gray-scale images of dimensions 768× 512 and 512× 768. The
Kodak image set is shown in Fig. 1. For the purpose of our experimentation,
the standard noise free image were contaminated by additive Gaussian white
noise, randomly distributed throughout the image. The final intensity values
were kept within the maximum intensity value of gray-scale images. The noise
levels, determined by σ, ranges from 10 to 100, with a step size equals 10. The
performance of our proposed method is compared with the original non-local
means (NLM) [3,4], the two-stage non-local means (TS-NLM) [25] and the Block
Matching and 3D Filtering (BM3D) [6,7] methods.

4.1 Parameter Selection

The primary parameters in the proposed method are:

1. Cut-off weight for thresholding
2. Patch size
3. Search window size

The parameters are determined empirically, based on experiments conducted on
a set of test images. The performance measure of tuning each of the parameters
are used to define the models for the parameters. The set of test of images
is shown in Fig. 2. The training images are selected to address common image
characteristics, including smooth regions, textured regions and fine details. The
Lena and Peppers images have smooth regions, while Barbara, Boats and Baboon
images has lot more texture and fine details. All the PSNR values reported are
averaged after repeating each of the experiments 10 times.
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(a) Boat2 (b) Light-
house

(c) Woman (d) Sail (e) Statue (f) Model

(g) Beach (h) Bike (i) Bridge (j) Cottage

(k) Door (l) Flower (m) Raft (n) Girl

(o) Hats (p) House2 (q) Houses (r) Windows

(s) Island (t) Lake (u) Landscape (v) Lighthouse2

(w) Parrot (x) Plane

Fig. 1. Test image set (Kodak image set).
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(a) Lena (b) Barbara (c) Baboon

(d) Boats (e) Peppers

Fig. 2. Train image set.

4.2 Cut-Off Weight for Thresholding

The patch size and search window size are fixed and the weights are thresholded
based on the cut-off weight percentile, wpercentile, determined by the model. For
the purpose of determining the suitable thresholding model, the patch size is
fixed at 7 × 7 and the search window size fixed at 11 × 11. Two different models
are analyzed, the linear model and the exponential model.

Linear Model. The linear model for determining the cut-off weight percentile
is defined as:

wpercentile = ceil(100 − aσ), (12)

where ceil() rounds a decimal value to the smallest following integer, coefficient
a is a constant and σ is the standard deviation of Gaussian noise.

Different linear models are defined by changing the value of coefficient a.
The PSNR comparison of using different linear models for weight thresholding
is tabulated in Table 1. For noise levels σ ≤ 50, a coefficient value of a = 1
generate better results and for σ > 50, the coefficient value a = 0.5 demonstrate
better performance.

Exponential Model. The exponential model for determining the cut-off weight
percentile is defined as:

wpercentile = ceil(100 × e−0.01aσ), (13)
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Table 1. PSNR comparison of linear models for different coefficient a.

Noise (σ) a = 0.25 a = 0.5 a = 1

10 33.43 33.75 33.87

20 31.85 32.12 32.25

30 28.74 29.06 29.15

40 26.63 26.91 26.98

50 24.71 24.96 25.07

60 24.00 24.28 23.95

70 23.08 23.33 22.75

80 22.75 23.14 22.57

90 21.87 22.28 21.64

100 21.48 21.71 21.22

Average 25.85 26.15 25.94

where ceil() rounds a decimal value to the smallest following integer, coefficient
a is a constant and σ is the standard deviation of Gaussian noise.

The result of using the exponential model for determining the cut-off weight
is shown is Table 2. For the exponential model, the coefficient value of a = 1
demonstrate better results for all noise levels. The average performance, as well
as the noise-wise performance, of the exponential model, with coefficient a =
1, has better denoising performance compared to the linear models. So, the
exponential model, with coefficient a = 1 is selected for determining the cut-off
weight percentile for any given noise level, σ.

Table 2. PSNR comparison between exponential models for different coefficient a.

Noise (σ) a = 0.5 a = 1 a = 2 a = 4

10 33.77 33.89 33.68 33.34

20 32.09 32.22 31.96 31.62

30 29.13 29.36 29.09 28.8

40 26.94 27.11 26.86 26.57

50 24.90 25.13 24.79 24.68

60 24.16 24.35 24.06 23.85

70 23.28 23.48 23.15 23.01

80 23.06 23.24 22.87 22.66

90 22.21 22.34 21.92 21.74

100 21.89 22.05 21.68 21.42

Average 26.14 26.32 26.01 25.77
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4.3 Patch Size and Search Window Size

For varying the search window size, the patch size is fixed at 7 × 7. The weights
are thresholded using the exponential model, selected in previous section. The
result of varying the search window is shown in Table 3. The table shows that
for σ < 50 the search window size 11 × 11 perform optimally and for σ ≥ 50
the search size 21 × 21 performs best. To help determine a model for selecting
the search window size, the denoising performance on the test images are again
measured by varying the search window size, but this time using odd-integer
window sizes only between 11 × 11 and 21 × 21, while using more noise levels.

Table 3. PSNR comparison by changing the search window size.

Noise (σ) 5 × 5 11 × 11 21 × 21 35 × 35

10 33.26 34.19 33.94 33.40

20 31.44 32.48 31.66 31.28

30 28.83 29.35 28.68 28.27

40 27.44 28.12 28.06 27.44

50 23.79 24.56 25.05 24.40

60 22.84 23.70 24.27 23.91

70 22.15 23.09 23.73 23.48

80 21.66 22.56 23.41 23.19

90 20.73 21.57 22.88 22.42

100 20.35 21.06 22.52 22.15

Average 25.25 26.07 26.42 25.99

The patch size and search window size for a given noise level are determined
empirically, using an iterative learning approach on a training image set. At first,
the patch size is fixed and the search window size is varied, for each noise levels,
to select the best search window size. The noise levels, σ, ranges from 10 to 100,
with a step size equals 5. Next, the patch size is varied for each noise levels, while
using the best search window size for each noise as determined in the previous
step. The best patch size for each noise level is used to find the corresponding
optimal search window sizes one more time. This process is repeated until an
iteration is reached where updating the optimal search window size for a noise
level did not change the corresponding best patch size and vice versa.

To determine the patch and search window size models, the patch size is
initially fixed at 7 × 7 and the search window size is varied. The average PSNR
comparison of the various search window size is shown in Table 4.

For the next step of determining the patch size to be used in our proposed
method, the patch size is varied while using the optimal search window for a
given noise level, as shown in Table 3. The result of changing the patch size is
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Table 4. PSNR comparison for fine tuning the search window size.

Noise (σ) 11 × 11 15 × 15 19 × 19 21 × 21

10 34.16 33.84 33.61 33.43

20 32.50 32.23 31.88 31.65

30 29.32 29.38 28.87 28.73

40 27.12 27.79 27.15 27.07

50 24.52 25.03 25.15 25.02

60 23.78 24.28 24.39 24.27

70 23.12 23.77 23.88 23.65

80 22.55 23.00 23.62 23.45

90 21.23 21.75 22.27 22.56

100 20.64 21.15 21.66 22.02

Average 25.89 26.21 26.25 26.19

shown in Table 5. The results indicated that the patch size 7×7 works optimally
for noise level σ < 85 and for noise level σ ≥ 85 the patch size 9 × 9 is optimal.

From our experiments, we have selected a patch size of 7 × 7 when the noise
strength is, σ ≤ 80 and for σ > 80 the patch size is increased to 9 × 9. For high
noise levels, the larger patch size is needed to reduce the effect of noise in patch
similarity measurement.

From our experiments, we also determined a model for selecting the search
window size for a noise level, σ. The model used to select the search size S × S
for a given noise, σ, is shown in Eq. (14),

Table 5. PSNR comparison by changing the patch size.

Noise (σ) 3 × 3 5 × 5 7 × 7 9 × 9

10 33.64 33.86 34.12 33.96

20 31.92 32.22 32.45 32.36

30 29.07 29.43 29.61 29.47

40 27.21 27.50 27.74 27.59

50 24.99 25.29 25.46 25.35

60 24.13 24.42 24.60 24.46

70 23.48 23.81 24.02 23.95

80 23.09 23.37 23.55 23.52

90 22.08 22.45 22.63 22.82

100 21.35 21.78 21.97 22.41

Average 26.10 26.41 26.61 26.59
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S = roundodd(0.117σ + 9.758), (14)

where, roundodd() rounds a decimal value to its nearest odd integer. As the
search window is centered on pixel, i, being denoised, the search window size
needs to be an odd integer.

4.4 The Two-Step Approach

Using the patch and search window size models along with the exponential weight
thresholding model, the proposed method was applied on the training image set
as a multiple step approach. In each step, the proposed method was applied
on the output image of the previous step. After each iteration, the PSNR of
the resulting denoised image was measured. The change in the PSNR measure-
ment, compared to the previous iteration, was used to determine the number
of iterations which demonstrated satisfactory performance improvement due to
the extra iteration. The PSNR comparison of multiple iterations of the proposed
method is shown in Table 6. The 2-step has the optimal performance compared
to the other multi-step approaches.

Table 6. PSNR comparison of proposed method for multiple steps for various noise
levels.

Noise Level 1 step 2 step 3 step 4 step

10 34.11 34.16 33.71 33.56

20 32.43 32.70 32.31 32.23

30 29.55 29.86 29.47 29.34

40 27.78 28.29 27.92 27.83

50 25.44 26.10 25.77 25.69

60 24.66 25.42 25.18 25.08

70 23.99 24.88 24.73 24.66

80 23.61 24.62 24.48 24.30

90 22.79 23.96 23.99 23.85

100 22.48 23.76 23.80 23.68

Average 26.68 27.37 27.14 27.02

4.5 Performance Measure

To measure the performance of our proposed method in comparison to other
existing denoising methods, we have used the Peak Signal to Noise Ratio (PSNR)
and the Mean Structural SIMilarity (MSSIM) measure [20]. These measures are
generally used for objective evaluation and measurement of various denoising
methods. We also evaluated subject comparison between our proposed method
and existing denoising methods.
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Peak Signal to Noise Ratio (PSNR). The Peak Signal to Noise Ratio
measures the ratio between the maximum possible power of a signal to the
power of the noise which affects the quality of the original signal. The PSNR
is usually expressed as the logarithmic decibel scale. A higher value in PSNR
represents better reconstructed or denoised image. The PSNR is measured using
Eq. (15),

PSNR = 10 log10(
MAX2

I

MSE
), (15)

where MAXI represents the maximum intensity of the image (255, for grayscale
image) and MSE measures the mean squared error between the original image
and the degraded image, as defined in Eq. (16),

MSE =
1

M × N

M∑

i=0

N∑

j=0

(uij − vij)2, (16)

where uij is the original image, vij is the degraded image and the size of the
images is M × N .

Mean Structural Similarity (MSSIM). One of the drawbacks of the PSNR
measure is that it relies on the mean square error for calculating the ratio. Mean
squared error considers only the differences between isolated data points. To
evaluate the performance of a denoising method based on the degree of struc-
tural similarity between the original and the reconstructed image, the Structural
SIMilarity (SSIM) measure is used. The SSIM measure provides a better assess-
ment of an image restoration or denoising method. The SSIM between two blocks
is defined in Eq. (17),

SSIM =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (17)

where, x and y are two identical sized window or patch, μx and μy are the
averages of x and y, σ2

x and σ2
y are the variance of x and y and σxy is the co-

variance. The mean SSIM (MSSIM), averaged over all SSIM, is used as for the
quality measurement of a denoising method.

4.6 Performance Evaluation Using PSNR

Table 7 shows the PSNR comparison of the proposed method, the original non-
local means, the variant of non-local means and BM3D, on the Girl image.
Table 8 shows the average PSNR values over all images in the Kodak image
set, for various noise levels. The performance of the proposed method is better
than the original non-local means method and its variant for all noise levels.
Yet, when compared to BM3D, our proposed method managed to produce bet-
ter results only when σ ≤ 80. The proposed method also demonstrated better
performance than existing methods on the average of all the noise levels used in
our experiments (Tables 7 and 8).
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Table 7. PSNR comparison of the Girl image for the proposed method and existing
methods.

Noise NLM TS-NLM BM3D Proposed

10 33.92 33.93 35.42 35.61

20 31.83 32.01 33.46 33.60

30 29.43 29.70 31.03 31.12

40 28.47 28.96 29.88 30.04

50 26.64 27.20 28.21 28.27

60 25.12 25.77 26.53 26.60

70 24.78 25.24 25.88 26.03

80 23.69 24.46 25.33 25.50

90 23.15 24.04 24.95 24.81

100 22.91 23.88 24.43 24.28

Average 26.99 27.52 28.51 28.59

Table 8. PSNR comparison of the proposed method with existing methods.

Noise NLM TS-NLM BM3D Proposed

10 32.61 32.63 34.05 34.27

20 30.77 30.94 32.25 32.43

30 28.58 28.83 29.80 29.95

40 27.02 27.47 28.19 28.33

50 24.88 25.54 26.07 26.09

60 23.93 24.66 25.38 25.46

70 23.24 24.02 24.74 24.91

80 22.90 23.56 24.46 24.65

90 22.21 23.18 24.25 24.13

100 21.98 22.83 23.97 23.84

Average 25.81 26.36 27.36 27.41

4.7 Performance Evaluation Using MSSIM

Table 9 shows the MSSIM comparison of the proposed method, the original non-
local means, the variant of non-local means and BM3D, on the Girl image.
Table 10 shows the MSSIM comparison over all images in the Kodak image set,
for various noise levels. In terms of MSSIM, the performance of the proposed
method is consistent with PSNR, which means it is better than the original
non-local means and its variant for all noise levels. When compared to BM3D,
our proposed method managed to produce better results only when σ ≤ 80. On
average across all noise levels, the performance of proposed method has been
found to be better than existing methods.
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Table 9. MSSIM comparison of the Girl image for the proposed methods with existing
methods.

Noise NLM TS-NLM BM3D Proposed

10 0.919 0.922 0.927 0.936

20 0.875 0.882 0.889 0.897

30 0.849 0.855 0.857 0.862

40 0.818 0.822 0.832 0.834

50 0.790 0.797 0.811 0.813

60 0.761 0.767 0.780 0.784

70 0.728 0.731 0.747 0.750

80 0.713 0.717 0.738 0.741

90 0.692 0.694 0.724 0.720

100 0.678 0.683 0.713 0.708

Average 0.782 0.787 0.802 0.804

Table 10. MSSIM comparison of the proposed methods with existing methods.

Noise NLM TS-NLM BM3D Proposed

10 0.916 0.918 0.921 0.932

20 0.871 0.876 0.882 0.891

30 0.843 0.847 0.851 0.857

40 0.815 0.817 0.826 0.829

50 0.786 0.792 0.801 0.806

60 0.755 0.760 0.772 0.778

70 0.724 0.726 0.742 0.744

80 0.709 0.714 0.734 0.735

90 0.689 0.691 0.712 0.709

100 0.672 0.678 0.708 0.704

Average 0.777 0.782 0.795 0.798

4.8 Visual Quality

Figures 3 and 4 shows the visual comparison of the proposed method with the
original non-local means (NLM), the two-stage non-local means (TS-NLM) and
the Block Matching and 3D Filtering (BM3D) methods for noise level, σ =
20 and σ = 70 respectively. Figures 5 and 6 shows the visual comparison by
zooming in on a particular region, the face. From Fig. 6, it can be noticed that the
denoised output from the proposed method has fewer noise artifacts remaining
when compared to the other methods. The blurring is also less in the denoised
output of the proposed method compared to NLM, TS-NLM and BM3D.
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(a) Noise Free (b) Noise (c) NLM

(d) TS-NLM (e) BM3D (f) Proposed

Fig. 3. Visual comparison of proposed method with existing method (σ = 20).

(a) Noise Free (b) Noise (c) NLM

(d) TS-NLM (e) BM3D (f) Proposed

Fig. 4. Visual comparison of proposed method with existing method (σ = 70).

(a) Noise Free (b) Noise (c) NLM

(d) TS-NLM (e) BM3D (f) Proposed

Fig. 5. Visual comparison (zoomed) of proposed method with existing method (σ =
20).
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(a) Noise Free (b) Noise (c) NLM

(d) TS-NLM (e) BM3D (f) Proposed

Fig. 6. Visual comparison (zoomed) of proposed method with existing method (σ =
70).

Fig. 7. Row number 100 of Girl image used for generating intensity profile. Scan line
shown as a black line.

4.9 Intensity Profile

The image intensity profile can help analyze how similar the profile of a denoised
image is to that of the original noise-free image. Figure 7 shows the chosen hori-
zontal scan line 100 from the Girl image. Figure 8 shows the intensity profiles of
the true image, the noisy image at noise level, σ = 70 and the profiles of denoised
images produced by the original NLM scheme, the variant of NLM, BM3D and
the proposed method. The Pearson correlation coefficient between the original
intensity profile and the profile of the noisy and each of the denoised images is
shown in Table 11 (for σ = 70).
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(a) Original (b) Noise

(c) NLM (d) TS-NLM

(e) BM3D (f) Proposed

Fig. 8. Intensity profile comparison for the Girl image at scan line 100 (σ = 70).

The intensity profile of the proposed method shows better preservation of
edges and textures, represented as sharp changes in profile graph. The original
non-local means method and its variant have more noise artifacts remaining, as
represented by the more jagged lines in the profile graph, closer to the origin.



Adaptive Non-local Means Using Weight Thresholding 513

Table 11. Pearson correlation coefficient comparison of the proposed method, the
noisy image, the NLM method, variant of NLM and BM3D denoising scheme for noise
σ = 70.

Noise NLM TS-NLM BM3D Proposed

0.680 0.975 0.980 0.988 0.990

When comparing the Pearson correlation coefficient, the correlation between
the intensity profile of the original image and the proposed method is higher
compared to those of the other existing methods. It shows that the proposed
method has the closest resemblance to the intensity profile of the original image.

5 Conclusion

This paper proposed an improvement over the non-local means method, the
patch-based approach for denoising additive Gaussian noise in the spatial
domain. The proposed method thresholds the weights of the pixels defined
around a search area of the pixel being denoised. The thresholded weights are
used for weighted averaging, whereby pixels below a defined cut-off weight are
ignored. The cut-off weight is determined based on the noise level estimation of
an image. For a noise level, the patch and search window size are determined
by a model, which is empirically defined through a learning approach. The pro-
posed method is applied in a two-step approach for image denoising. The pro-
posed method has demonstrated better objective and subjective denoising per-
formance, compared to the original non-local means algorithm and its variant.
When compared to BM3D, the state-of-the-art approach for image denoising,
the proposed method demonstrated better results when σ ≤ 80.
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