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Abstract. This paper presents an extended method of guided image
filtering (GF) for high-dimensional signals and proposes various appli-
cations for it. The important properties of GF include edge-preserving
filtering, local linearity in a filtering kernel region, and the ability of
constant time filtering in any kernel radius. GF can suffer from noise
caused by violations of the local linearity when the kernel radius is large.
Moreover, unexpected noise and complex textures can further degrade
the local linearity. We propose high-dimensional guided image filter-
ing (HGF) and a novel framework named combining guidance filtering
(CGF). Experimental results show that HGF and CGF can work robustly
and efficiently for various applications in image processing.

1 Introduction

Recently, edge-preserving filtering has been attracting increasing attention and
has become as fundamental tool in image processing. The filtering techniques
such as bilateral filtering [33] and guided image filtering (GF) [17] are used for
various applications including image denoising [4], high dynamic range imag-
ing [8], detail enhancement [3,10], flash/no-flash photography [9,27], super res-
olution [23], depth map denosing [14,24], guided feathering [17,22] and haze
removal [19].

One representative formulation of edge-preserving filtering is weighted aver-
aging, i.e., finite impulse response filtering, based on space and color weights
that are computed from distances among neighborhood pixels. When the distance
and weighting function are Euclidean and Gaussian, respectively, the formulation
becomes a bilateral filter [33], which is a representative edge-preserving filter. The
bilateral filter has useful properties, but is known as time-consuming; thus, sev-
eral acceleration methods have been proposed [5,13,26,28,29,31,35,36]. Another
formulation uses geodesic distance, representative examples being domain trans-
form filtering [15], and recursive bilateral filtering [34,37]. These are formulated
as infinite impulse response filtering, represented by a combination of horizontal
and vertical one-dimensional filtering. These methods can, therefore, efficiently
smooth images.
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A guided image filter [17,18], which is an efficient edge-preserving filter, is
based on an assumption different from those of previously introduced filtering
methods. The guided image filter assumes a local linear model in each local
kernel. This property is convenient and essential for several applications in com-
putational photography [8,17,19,23,27]. Furthermore, the guided image filter
can efficiently compute in constant time, with the result that the computational
cost is independent of the size of the filtering kernel. This fact is also useful for
fast visual correspondence problems [20]. However, the local linear model can
be violated by unexpected noise, such as Gaussian noise, and different types of
textures. Such situations often arise when the kernel is large. Then, the resulting
image can contain noise. Figure 1 demonstrates feathering [17], where the result
of GF (Fig.1(c)) contains noise around the border of an object.

For noise-robust implementation, several studies have used patch-wise
processing, such as non-local means filtering [4] and, discrete cosine transform
(DCT) denoising [12,38]. Patch-wise processing gathers intensity or color infor-
mation in each local patch to channels or dimensions of a pixel. In particular,
non-local means filtering obtains filtering weights from the gathered informa-
tion between the target and reference pixels. Since patch-wise processing uti-
lizes richer information, it can work more robustly for noisy information com-
pared to pixel-wise processing. Extension to high-dimensional representations

(a) Guidance (b) Binary mask (c) Guided image filtering

(d) Non-local means (e) 6-D HGF (f) 6-D HGF with CGF

Fig. 1. Guided feathering results. (c¢) contains noise around object boundaries, while
our results (e) and (f) can suppress such noise.
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such as high-dimensional Gaussian filtering has also been discussed [1,2,13,16].
However, these previous filters for high-dimensional signals cannot support GF.
Figure 1(d) shows the result of non-local means filtering extended to joint filter-
ing for feathering. The result has been over-smoothed because of the loose of the
local linearity.

Therefore, we propose a high-dimensional extension of GF to obtain robust-
ness. We call the extension high-dimensional guided image filtering (HGF). We
first extend GF to ensure the filter can handle high-dimensional information.
In this regard, assuming d as the number of dimensions of the guidance image,
the computational complexity of HGF becomes O(d?%°7) as noted in [16].
We then introduce a dimensionality reduction technique for HGF to reduce the
computational cost. Furthermore, we introduce a novel framework for HGF,
called combining guidance filtering (CGF), which builds a new guidance image
by combining the HGF output with the guidance image, and then re-executes
HGF using the combined guidance image. This framework provides more robust
performance to HGF and utilizes the HGF characteristics that can use high-
dimensional information. Figures1(e) and (f) show our results. HGF suppresses
the noise, and HGF with CGF further reduces the noise.

This paper is an extended version of our conference paper [11]. The main
extension part is the section on CGF and the associated experimental results.

2 Related Works

We discuss several acceleration methods for high-dimensional filtering in this
section.

Paris and Durand [26] introduced the bilateral grid [6], which is a high-
dimensional space defined by adding the intensity domain to the spatial domain.
We can obtain edge-preserving results using linear filtering on the bilateral grid.
The bilateral grid is, however, computationally inefficient because the high-
dimensional space is huge. As a result, the bilateral grid requires down-sampling of
the space for efficient filtering. However, the computational resources and memory
footprints are expensive, especially when the dimension of guidance information
is high. Gaussian kd-trees [2] and permutohedral lattice [1] focus on represent-
ing the high-dimensional space with point samples to overcome these problems.
These methods have succeeded in alleviating computational complexity when the
filtering dimension is high. However, since they still require a significant amount
of calculation and memory, they are not sufficient for real-time applications.

Adaptive manifolds [16] provides a slightly different approach. The three
methods described above focus on how to represent and expand each dimension.
In contrast, the adaptive manifolds samples the high-dimensional space at scat-
tered manifolds adapted to the input signal. The method thereby avoids having
pixels are enclosed into cells to perform barycentric interpolation. This property
enables us to efficiently compute a high-dimensional space and reduces the mem-
ory requirement. This is why the use of the adaptive manifolds is more efficient
than that of other high-dimensional filtering methods [1,2,26]. Its accuracy is,



442 S. Fujita and N. Fukushima

however, lower than theirs. The adaptive manifolds causes quantization artifacts
depending on the parameters.

3 High-Dimensional Guided Image Filtering

We introduce our high-dimensional extension techniques for GF [17,18] in this
section. We first extend GF to high-dimensional information. Next, a dimension-
ality reduction technique is introduced to increasing computing efficiency. We
finally present CGF, which is a new framework for HGF, to further suppress
noise caused by violation of the local linearity.

3.1 Definition

The guided image filter assumes a local linear model between an input guidance
image I and an output image ¢. The assumption of the local linear model is
also invariant for our HGF. Let J denote an n-dimensional guidance image. We
assume that J is generated from the guidance image I using a function f:

J = f(I). (1)

The function f constructs a high-dimensional image from the low-dimensional
image signal I'; for example, the function might use a square neighborhood cen-
tered at a focusing pixel, DCT or principle components analysis (PCA) of the
guidance image I.

HGF uses this high-dimensional image J as the guidance image; thus, the
output ¢ is derived from a linear transform of J in a square window wj, centered
at a pixel k. When we let p be an input image, the linear transform is represented
as follows:

¢ = agJi +by. Viewy. (2)

Here, i is a pixel position, and a; and by are linear coefficients. In this regard, J;
and aj, represent n x 1 vectors. Moreover, the linear coefficients can be derived
using the solution used in [17,18]. Let |w| denote the number of pixels in wy, and
U be an n x n identity matrix. The linear coefficients are computed by

1

ap = (Ek + GU)il(m Z Jipi - ll/kpk) (3)
1EWE
_ = T

by, = P, — ay i, (4)

where p and Xy are the n X 1 mean vector and n X n covariance matrix of J in
Wy, € is a regularization parameter, and py (= ﬁ Y icw, Pi) represents the mean
of p in wg.

Finally, we compute the filtering output by applying the local linear model to
all local windows in the entire image. Note that the g; values in all local windows
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including a pixel i are not necessarily the same. Therefore, the filter output is
computed by averaging all possible values of ¢; as follows:

1
g=1= Y (apdi+by) (5)
|w| kiicwy
= _zTJi + Bi, (6)

where a; = ﬁ Zkewi a; and b; = ﬁ Zke% b

The computation time of HGF does not depend on the kernel radius that
provides the inherent ability of GF. HGF consists of many instances of box
filtering and per-pixel small matrix operations. The box filtering can compute
in O(1) time [7], but the number of instances of box filtering linearly depends
on the dimensions of the guidance image. In addition, the order of the matrix
operations exponentially depends on the number of dimensions.

3.2 Dimensionality Reduction

For efficient computing, we use PCA for dimensionality reduction. The dimen-
sionality reduction technique was proposed in [32] for non-local means filtering
or high-dimensional Gaussian filtering. The approach aims for finite impulse
response filtering with Euclidean distance. We extend the dimensionality tech-
nique for HGF.

For HGF, the guidance image J is converted into new guidance information,
which is projected onto the lower-dimensional subspace determined by PCA. Let
2 be a set of all pixel positions in J. To conduct PCA, we must first compute
the n x n covariance matrix X'y, for the set of all guidance image pixels J;. The
covariance matrix X is computed as follows:

So = 1 S U= D= D (7)
1€

where |2| and J are the number of all pixels and the mean of J in the whole
image, respectively. After that, pixel values in the guidance image J are projected
onto d-dimensional PCA subspace by the inner product of the guidance image
pixel J; and the eigenvectors e; (1 < j < d,1 < d < n, where d is a constant
value) of the covariance matrix Y. Let J¢ be a d-dimensional guidance image,
then the projection is performed as:

Ji=J;e;, 1<j<d, (8)

where J{ is the pixel value in the jth dimension of J¢, and J; - e; represents
the inner product of the two vectors. We show an example of the PCA result of
each eigenvector e in Fig. 2.

In this manner, we can obtain the d-dimensional guidance image J¢, which is
used to replace J in Eqgs. (2), (3), (5), and (6). Moreover, each dimension in J?
can be weighted by the eigenvalues A, where is a d x 1 vector, of the covariance
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(c) 2nd dimension

JALN

(d) 3rd dimension (e) 4th dimension (f) 5th dimension

Fig. 2. PCA result. We construct the color original high-dimensional guidance image
from 3 x 3 square neighborhood in each pixel of the input image. We reduce the
dimension 27 = (3 x 3 x 3) to 5. (Color figure online)

matrix Y. Note that the eigenvalue elements from the (d + 1)th to nth are
discarded because HGF uses only d dimensions. Hence, the identity matrix U in
Eq. (3) can be weighted by the eigenvalues A. Then, we take the element-wise
inverse of eigenvalues A:

E; = diag(A\™") (9)
1
A1
= , (10)
1
Ad
where E; represents a d x d diagonal matrix, A" represents the element-wise
inverse eigenvalues, and A, is the xth eigenvalue. Note that we take the log-
arithms of the eigenvalues A depending on the applications and normalize the
eigenvalue based on the first eigenvalue A;. We take the element-wise inverse of A
to use the smallest € for the dimension having the large eigenvalue as compared
to the small eigenvalue, because the elements of A satisfy A1 > Ao > -+ > Ay,

and the eigenvector whose eigenvalue is large is more important. As a result, we
can preserve the characters of the image in the principal dimension.
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Fig. 3. Overview of CGF using our HGF. This figure shows the case of d = 3, i.e., the
initial guidance images are three.

Therefore, we can obtain the final coefficient aj instead of using Eq. (3) in
the high-dimensional case as follows:

1,1 _
ap — (Eg + GEd) 1(m Z szpz - ﬂgpk)v (11)

€Wk
where and p¢ and X¢ are the d x 1 mean vector and the d x d covariance matrix
of J% in wy, respectively.

3.3 Combining Guidance Filtering

Our extension of HGF can utilize high-dimensional signals. In other words, HGF
can use multiple single-channel images as the guidance information by using
the function f as merging multiple image channels. Utilizing this property and
extending HGF, we present the novel framework CGF.

An overview of CGF is shown in Fig. 3. CGF involves three main steps: (1)
computing a filtered result using initial guidance information J(©, (2) generating
new guidance information J® by combining the filtered result ¢ with the
initial guidance information J(©, and (3) re-executing HGF using the combined
guidance image J®). Here, steps (2) and (3) are repeated, and ¢ is the number of
iterations. According to our preliminary experiments, two to three iterations are
sufficient to obtain adequate results. Note that the filtering target image is not
changed from the initial input image to avoid an over-smoothing problem. This
framework works well in recovering edges from additional guidance information
as guided feathering [17]. This is because the additional guidance information is
not discarded and is added to new guidance information. Moreover, the filtered
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guidance image added to the new guidance information plays an important role
to suppress noise.

Our CGF framework is similar to the framework of rolling guidance image
filtering proposed by Zhang et al. [39]. Rolling guidance image filtering is an iter-
ative processing with a fixed input image and updated guidance. This filtering
framework is limited to direct filtering, i.e., the filter does not utilize joint fil-
tering, such as feathering. Thus, their work aims at image smoothing to remove
detailed textures. In contrast, our work can deal with joint filtering and mainly
aims primarily at edge recovery from additional guidance information.

4 Experimental Results

In this section, we evaluate the performance of HGF in terms of efficiency and
verify its characteristics by using several applications. In our experiments, each
pixel of high-dimensional images J has multiple pixel values comprising a fixed-
size square neighborhood around each pixel in the original guidance image I.
The dimensionality is reduced using the PCA approach discussed in Sect. 3.2.

We first reveal the processing time of HGF. Our proposed and compet-
ing methods are implemented in C++ with Visual Studio 2010 on Windows
7 64 bit. The code is parallelized using OpenMP. The CPU for the experiments
is a 3.50 GHz Intel Core i7-3770K. The input images, with resolution of one-
megapixel, i.e., 1024 x 1024, are grayscale or color images.

Figure 4 shows the result of the processing time. The processing time of HGF
increases exponentially as the guidance image dimensionality increases. This cost
increasing result makes the dimensionality reduction essential for HGF. In addi-
tion, the computational cost of PCA is small as compared with the increase in the
filtering time caused by increase in dimensionality. Therefore, although the com-
putational cost becomes high from increasing the dimensionality, the problem is
not significant. Tasdizen [32] remarked that the performance of dimensionality
reduction peaks at approximately six. This fact is also shown in our experiments.

Grayscale —+—
20 Color

Processing time (sec)

5-//*

1 35 10 15 20 25
Guidance image dimension d

Fig. 4. Processing time of high-dimensional guided image filtering with respect to
guidance image dimensions.
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(a) Guidance image (b) Binary mask

(c) 3-D HGF (d) 6-D HGF

&)

(e) 10-D HGF (f) 27-D HGF

Fig. 5. Dimension sensitivity. The color patch size for high-dimensional image is 3 x 3,
i.e., the complete dimension is 27. The parameters are r = 15, e = 107¢. (Color figure
online)

Figure 5 shows the result of the dimension sensitivity of HGF. We obtain the
binary input mask using GrabCut [30]. We can improve the edge-preserving effect
of HGF by increasing the dimension. However, the amount of the improvement is
slight in the case of more than ten dimensions. Thus, we do not need to increase
the dimensionality.

Next, we compare the characteristics of GF and HGF. As mentioned in
Sect. 1, GF can transfer detailed regions such as feathers, but may simultane-
ously cause noise near the object boundary (see Fig. 1(c)). In contrast, HGF can
suppress noise while the detailed regions are transferred, as shown in Fig. 1(e).
This noise suppression ability can be further improved by using CGF, as shown
in Fig. 1(f). We use two iterations for CGF, i.e., we set t = 2. Therefore, we can
apply CGF if we desire better results.

We also show the detailed results of guided feathering and alpha matting in
Fig.6. All guidance images and initial masks used in this experiment are the
same as those in Fig.5. The result of GF causes noise and color mixtures near
the object boundary. HGF can alleviate these problems and suppress noise and
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(a) GF

(b) 6-D HGF

(c) 6-D HGF with CGF

Fig. 6. Guided feathering and matting results using different methods. The parameters
are the same as Fig. 5.

color mixtures. However, some noise and blurs remain near the object boundary.
These problems can be improved by using CGF. The use of HGF with CGF
further suppresses noise and results in clear boundaries compared to the other
methods, as shown in Fig. 6(c).

Figure 7 shows the image abstraction results. The result requires three iter-
ations of filtering. As shown in Figs. 7(b) and (d), since the local linear model
is often violated in filtering with large kernels, the pixel values are scattered. In
contrast, HGF can smooth the image without such problems (see Figs. 7(c) and
(e)).

HGF also shows excellent performance for haze removal [19]. The haze
removal results and the transition maps are shown in Fig. 8. In the case of GF, the
transition map preserves major textures, while there are over-smoothed regions
near the detailed regions or object boundaries, e.g., between trees or branches.
The over-smoothing effect affects haze removal in such regions. In our case, the
transition map of HGF preserves such detailed textures; thus, HGF can remove



Extending Guided Image Filtering for High-Dimensional Signals 449

(c) 6-D HGF ‘ (d) Detail of (b)  (e) Detail of (c)

Fig. 7. Image abstraction. The local patch size for the high-dimensional image is 3 x 3.
The parameters for GF and HGF are r = 25, ¢ = 0.04%.

L

(f) Detail of (b)

Fig. 8. Haze removal. The bottom row images represent transition maps of (b) and
(c). The local patch size for high-dimensional image is 5 x 5. The parameters for GF
and HGF are r = 20, e = 10~ %.
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the haze more effectively than GF in the detailed regions. These results show
that HGF is effective for preserving detailed areas or textures.

An other application for HGF is image classification with a hyperspectral
image. A hyperspectral image contains considerable wavelength information,
which is useful for distinguishing different objects. Although we can obtain good
results using support vector machine classifiers [25], Kang et al. improved the
accuracy of image classification by applying GF [21]. They created a guidance
image using PCA from a hyperspectral image; however, most of the information
was unused because GF cannot utilize high-dimensional data. Our extension has
an advantage in such cases. Since HGF can utilize high-dimensional data, we can
further improve classification accuracy by adding the remaining information.

Figure9 and Table 1 show the result of classifying the Indian Pines dataset,
which was acquired using an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor. We objectively evaluate the classification accuracy by using
three metrics: the overall accuracy (OA), the average accuracy (AA), and the
kappa coefficient, which are widely used for evaluating classification. OA is the
ratio of correctly classified pixels, AA is the average ratio of correctly classified
pixels in each class, and the kappa coefficient denotes the ratio of correctly

. Corn-no till . Grass/trees

. Corn-min till D Grass/pasture-mowed
D Corn . Hay-windowed

D Soybeans-no till D Oats

. Soybeans-min till D Wheat

. Soybeans-clean till D ‘Woods

. Alfalfa . Bldg-Grass-Tree-Drives

. Grass/pasture . Stone-steel towers
(a) Example of spectral im- (c) Labels
age

]
(d) SVM result [25] (e) GF [21] (f) 6-D HGF

Fig. 9. Classification result of Indian Pines image. The image of (a) represents a spec-
tral image that the wavelength is 0.7 wm. The parameters for GF and HGF are r = 4,
€=0.15%
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classified pixels corrected by the number of pure agreements. We can confirm
that HGF achieves a better result than GF. In particular, the detailed regions
are improved using our method. The accuracy is further improved objectively,
as shown in Table 1.

Table 1. Classification accuracy [%)] of the classification results shown in Fig. 9.

Method | OA | AA | Kappa
SVM 81.0 | 79.1 | 78.3
GF 92.7 193.9 |91.6
HGF 92.8 94.1 | 91.8

5 Conclusion

We proposed high-dimensional guided image filtering (HGF) by extending guided
image filtering [17,18]. The extension allows the guided image filter to utilize
high-dimensional signals, e.g., local square patches and hyperspectral images,
and suppress unexpected noise that is a limitation of guided image filtering.
Our high-dimensional extension has a limitation that the computational cost
increases as the number of dimensions increases. To alleviate this limitation,
we simultaneously introduce a dimensionality reduction technique for efficient
computing. Furthermore, we presented a novel framework named as combining
guidance filtering (CGF) in this study, to further exploit the HGF characteris-
tics that can utilize high-dimensional information. As a result, HGF with CGF
obtains robustness and can further suppress noise caused by violation of the local
linear model. Experimental results showed that HGF can work robustly in noisy
regions and transfer detailed regions. In addition, HGF can compute efficiently
by using the dimensionality reduction technique.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
15K16023.
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