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Abstract. Automatic analysis of human behavior in social environment
is a key topic for the computer vision community, with applications in
security and video surveillance. While human behavior at an individual
(single person) level has been widely studied in the past years, analysis of
groups and crowd behavior, is still at a preliminary stage, with room for
new approaches to emerge. Recently, there has been significant research
effort dedicated to the development of automated computer vision tech-
niques, intended to enhance safety of our societies by monitoring human
behaviors and their actions in groups and crowd level. In particular,
groups are usually formed by number of people who gathered for private
meeting, birthday party, or wedding, while we consider crowd as huge
number of people are gathered together to participate for a national or
religious event, or protest due to some dissatisfaction. In this chapter,
we will provide a broad overview on proposed approaches on human
behavior analysis in group and crowd level, as well as, a detailed of some
most recent state-of-the-art methods along with extensive experiments
and comparison.

1 Introduction

Analyzing the visual content of scenes in videos is increasingly becoming an
active research area in computer vision, due to its growing demand in security
and surveillance applications. The content of a video captured by surveillance
cameras can be potentially monitored by expert personnel for retaining public
safety and reducing social crimes in crowded places such as airports, stadiums
and malls. However, this is drastically limited by the scarcity of trained personnel
and the natural limitation of human attention capabilities to monitor a huge
amount of videos simultaneously filmed by multiple surveillance cameras [21].
This hurdle has motivated vision communities to develop methods for automated
analysis of crowd scenes recorded by surveillance cameras.
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Hitherto, numerous computer vision techniques have been successfully devel-
oped to detect and understand human activities in video data [45]. These tech-
niques could be divided in two fundamental types: those which understand the
social dynamics occurring in the scene by lying on the fine analysis of each sin-
gle individual in terms of fine-grained cues (gestures, head pose orientation, feet
orientation etc.), and those that operate on more crowded scenarios, where the
number of individuals is so high that a per-pedestrian robust analysis cannot be
envisaged. In the first case, one of the most intriguing analysis is the number of
people who formed the groups within a scene and their activities. Detection of
groups of interacting people is a very interesting and useful task in many modern
technologies, with application fields spanning from video-surveillance to social
robotics.

In the case that per-person fine analysis cannot be carried out, another branch
of approaches should be taken into account. For example, in the case of highly
crowded scenarios (more than 30 people), person detection, tracking, gesture
recognition and other techniques for fine-grained analysis are often degraded
by the presence of severe occlusions, cluttered background, low quality of sur-
veillance data and, most importantly, by the complex interplays among people
involved in crowd [28].

That has opened up a new broad research line which is generally referred to
as crowd scene analysis in the computer vision literature [33,64].

In this chapter, we analyze the very last state of the art related to the group
analysis, together with the latest results in terms of crowd scene analysis.

A group can be broadly understood as a social unit comprising several mem-
bers who stand in status and relationships with one another [5]. However, there
are many kinds of groups, that differ in dimension (small groups or crowds), dura-
bility (ephemeral, ad hoc or stable groups), in/formality of organization, degree
of sense of belonging, level of physical dispersion, etc. [6] (see the literature
review in the next section). In this article, we build from the concepts of soci-
ological analysis and we focus on free-standing conversational groups (FCGs),
or small ensembles of co-present persons engaged in ad hoc focused encounters
[6–8]. FCGs represent crucial social situations, and one of the most fundamental
bases of dynamic sociality: these facts make them a crucial target for the modern
automated monitoring and profiling strategies which have started to appear in
the literature in the last three years [3,9–14]. FCGs emerge during many and
diverse social occasions, such as a party, a social dinner, a coffee break, a visit
in a museum, a day at the seaside, a walk in the city plaza or at the mall; more
generally, when people spontaneously decide to be in each others immediate
presence to interact with one another. For these reasons, FCGs are fundamental
social entities, whose automated analysis may bring to a novel level of activity
and behavior analysis.

In a FCG, people communicate to the other participants, among and above
all the rest, what they think they are doing together, what they regard as the
activity at hand. And they do so not only, and perhaps not so much, by talking,
but also, and as much, by exploiting non-verbal modalities of expression, also
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called social signals [23], among which positional and orientational forms play
a crucial role (cf. also [7], p. 11). In fact, the spatial position and orientation
of people define one of the most important proxemic notions which describe an
FCG, that is, Adam Kendons Facing Formation, mostly known as F-formation.

Detecting free-standing conversational groups is useful in many contexts.
In video-surveillance, automatically understanding the network of social rela-
tionships observed in an ecological scenario may result beneficial for advanced
suspect profiling, improving and automatizing SPOT (Screening Passengers by
Observation Technique) protocols [26], which nowadays are performed uniquely
by human operators. In this chapter we analyze one of the latest technique for
group detection, acting on single images acquired by a monocular camera, which
operates on positional and orientational information of the individuals in the
scene. Unlike previous approaches, the methodology is a direct formulation of
the sociological principles (proximity, orientation and ease of access) concerning
F-formations.

However, the aforementioned approaches is useful for moderate crowd scenar-
ios, where the people are segmentable, and we can track them within a frame of
video. Whilst, this is not a case for crowd scenes. Therefore, crowd scene analysis
has recently attracted intense attention from the vision community. In particu-
lar, proposed method in this area can be categorized into three topics, including
(1) crowd density estimation and people counting, (2) tracking in crowd, and
(3) modeling crowd behaviors [21]. Estimating the number of people in a crowd
is the foremost stage for several real-world applications such as safety control,
monitoring public transportation, crowd rendering for animation and crowd sim-
ulation for urban planning. Despite many significant works in this area [13,17],
automated crowd density estimation still remains an open problem in computer
vision due to extreme occlusions and visual ambiguities of human appearance in
crowd images [50]. Tracking individuals (or objects) in crowd scenes is another
challenging task [48,56]: other than severe occlusions, cluttered background and
pattern deformations, which are common difficulties in visual object tracking, the
efficiency of crowd trackers is largely dependent on crowd density and dynamics,
people social interactions as well as the crowd’s psychological characteristics [2]1.

The primary goal of modeling crowd behaviors is to identify abnormal events
such as riot, panic and violence in crowd scenes [29]. Despite recent success in
this research field, detecting crowd abnormalities still remain an open and very
challenging problem. The biggest issue of crowd anomaly detection lies in the
definition of abnormality as it is strongly context dependent [25,37]. For example,
riding a bike in a street is a normal action, whereas it is considered abnormal
in another scene with a different context such as a park or sidewalk. Similarly,
people gathering for a social event is a normal event, while same gathering at the
same place to “protest against a law” is an abnormal event. Another challenge
stems from the lack of adequate training samples to learn a well-generalized
crowd model. This drastically degrades the generalization power of current crowd

1 Readers are referred to [33,50] for a full treatment on the tasks of crowd tracking
and density estimation.
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models, since they are not capable of capturing the large intra-class variations
of crowd behaviors [21].

Concerning the crowd scene analysis, in this chapter we will overview some
leading techniques in the computer vision literature designed for detecting abnor-
mal behaviors in crowd, with a focus on existing motion and model based
approaches. Then, we will give a general overview on the most recent approaches.
Finally, we will extensively evaluate their performance on various challenging
imaging and crowding conditions.

The rest of the paper will be organized as follows: the first part is related
to the analysis of the group, in the case single individuals can be captured and
modeled. In the second part we will consider the approaches of crowd scene
analysis.

2 Groups: Related Work

In computer vision, the analysis of groups has occurred historically in two broad
contexts: video-surveillance and meeting analysis.

Within the scope of video-surveillance, the definition of a group is generally
simplified to two or more people of similar velocity, spatially and temporally
close to one another [15]. This simplified definition arises from the difficulty of
inferring persistent social structure from short video clips. In this case, most of
the vision-based approaches perform group tracking, i.e. capturing individuals
in movement and maintaining their identity across video frames, understanding
how they are partitioned in groups [4,15–19].

In meeting analysis, typified by classroom behavior [1], people usually sit
around a table and remain near a fixed location for most of the time, predomi-
nantly interacting through speech and gesture. In such a scenario, activities can
be finely monitored using a variety of audiovisual features, captured by pervasive
sensors like portable devices, microphone arrays, etc. [20–22].

From a sociological point of view, meetings are examples of social organiza-
tion that employs focused interaction, which occurs when persons openly coop-
erate to sustain a single focus of attention [6,7]. This broad definition covers
other collaborative situated systems of activity that entail a more or less static
spatial and proxemic organization such as playing a board or sport game, having
dinner, doing a puzzle together, pitching a tent, or free conversation [6], whether
sitting on the couch at a friends place, standing in the foyer and discussing the
movie, or leaning on the balcony and smoking a cigarette during work-break.

Free-standing conversational groups (FCGs) [8] are another example of
focused encounters. FCGs emerge during many and diverse social occasions,
such as a party, a social dinner, a coffee break, a visit in a museum, a day at
the seaside, a walk in the city plaza or at the mall; more generally, when people
spontaneously decide to be in each others immediate presence to interact with
one another. For these reasons, FCGs are fundamental social entities, whose
automated analysis may bring to a novel level of activity and behavior analysis.
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A robust FCG detector may also impact the social robotics field, where the
approaches so far implemented work on few number of people, usually focusing
on a single F-formation [27–29].

Efficient identification of FCGs could be of use in multimedia applications like
mobile visual search [30,31], and especially in semantic tagging [32,33], where
groups of people are currently inferred by the proximity of their faces in the
image plane. Adopting systems for 3D pose estimation from 2D images [34] plus
an FCG detector could in principle lead to more robust estimations. In this
scenario, the extraction of social relationships could help in inferring personality
traits [35,36] and triggering friendship invitation mechanisms [37].

In computer-supported cooperative work (CSCW), being capable of automat-
ically detecting FCGs could be a step ahead in understanding how computer
systems can support socialization and collaborative activities: e.g., [38–41]; in
this case, FCGs are usually found by hand, or employing wearable sensors.

Manual detection of FCGs occurs also in human computer interaction, for
the design of devices reacting to a situational change [42,43]: here the benefit of
the automation of the detection process may lead to a genuine systematic study
of how proxemic factors shape the usability of the device.

The last three years have seen works that automatically detect F-formations:
Bazzani et al. [9] first proposed the use of positional and orientational informa-
tion to capture Steady Conversational Groups (SCG); Cristani et al. [3] designed
a sampling technique to seek F-formations centres by performing a greedy max-
imization in a Hough voting space; Hung and Kröse [10] detected F-formations
by finding distinct maximal cliques in weighted graphs via graph-theoretic clus-
tering; both the techniques were compared by Setti et al. [12]. A multi-scale
extension of the Hough-based approach [3] was proposed by Setti et al. [13].
This improved on previous works, by explicitly modeling F-formations of dif-
ferent cardinalities. Tran et al. [14] followed the graph based approach of [10],
extending it to deal with video-sequences and recognizing five kinds of activities.
Vascon et al. [60] employed a games-theoretic approach to deal with dominant
sets in order to detect stati F-formations. Lastly, in [53] Setti et al. proposed a
graph-cut technique that outperformed all the previous methods. In the following
sections we will detail this method and present experimental results comparing
all the above mentioned algorithms.

3 Graph-Cuts for F-Formation

GCFF method is strongly based on the formal definition of F-formation given by
Kendon [27] (page 209 ):

An F-formation arises whenever two or more people sustain a spatial and
orientational relationship in which the space between them is one to which
they have equal, direct, and exclusive access.

According to this definition, an F-formation is the proper organisation of
three social spaces: o-space, p-space and r-space (see Fig. 1a). The o-space is a
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Fig. 1. Structure of an F-formation and examples of F-formation arrangements. (a)
Schematization of the three spaces of an F-formation: starting from the centre, o-space,
p-space and r-space. (b–d) Three examples of F-formation arrangements: for each one
of them, one picture highlights the head and shoulder pose, the other shows the lower
body posture.

convex empty space surrounded by the people involved in a social interaction,
where every participant is oriented inward into it, and no external people are
allowed to lie. More in the detail, the o-space is determined by the overlap of
those regions dubbed transactional segments, where as transactional segment we
refer to the area in front of the body that can be reached easily, and where hearing
and sight are most effective [15]. In practice, in a F-formation, the transactional
segment of a person coincides with the o-space, and this fact has been exploited in
our algorithm. The p-space is the belt of space enveloping the o-space, where only
the bodies of the F-formation participants (as well as some of their belongings)
are placed. People in the p-space participate to an F-formation using the o-space
to transmit their messages. The r-space is the space enveloping o- and p-spaces,
and is also monitored by the F-formation participants. People joining or leaving
a given F-formation mark their arrival as well as their departure by engaging
in special behaviours displayed in a special order in special portions of r-space,
depending on several factors (context, culture, personality among the others);
therefore, here we prefer to avoid the analysis of such complex dynamics, leaving
their computational analysis as future work.

F-formations can be organised in different arrangements, that is, spatial and
orientational layouts (see Fig. 1a–d) [16,18,27]. In F-formations of two individ-
uals, usually we have a vis-a-vis arrangement, in which the two participants
stand and face one another directly; another situation is the L-arrangement,
when two people lie in a right angle to each other. As studied by Kendon [27],
vis-a-vis configurations are preferred for competitive interactions, whereas L-
shaped configurations are associated with cooperative interactions. In a side-by-
side arrangement, people stand close together, both facing the same way; this
situation occurs frequently when people stand at the edges of a setting against
walls. Circular arrangements, finally, hold when F-formations are composed by
more than two people; other than being circular, they can assume an approxi-
mately linear, semicircular, or rectangular shape.

Graph-Cuts for F-Formation finds the o-space of an F-formation, assign-
ing to it those individuals whose transactional segments do overlap, without
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focusing on a particular arrangement. Given the position of an individual, to
identify the transactional segment we exploit orientational information, which
may come from the head orientation, the shoulder orientation or the feet layout,
in increasing order of reliability [27]. The idea is that the feet layout of a sub-
ject indicates the mean direction along which his messages should be delivered,
while he is still free to rotate his head and to some extent his shoulders through
a considerable arc, before he must begin to turn his lower body as well. The
problem is that feet are almost impossible to detect in an automatic fashion,
due to the frequent (auto) occlusions; shoulder orientation is also complicated,
since most of the approaches of body pose estimation work on 2D data and do
not manage auto-occlusions. However, since any sustained head orientation in a
given direction is usually associated with a reorientation of the lower body (so
that the direction of the transactional segment again coincides with the direction
in which the face is oriented [27]), head orientation should be considered proper
for detecting transactional segments and, as a consequence, the o-space of an F-
formation. In this work, we assume to have as input both positional information
and head orientation; this assumption is reasonable due to the massive presence
of robust tracking technologies [6] and head orientation algorithms [3,14,55].

In addition to this, we consider soft exclusion constraints: in an o-space, F-
formation participants should have equal, direct and exclusive access. In other
words, if person i stands between another person j, and an o-space centre Og of
the F-formation g, this should prevent j from focusing on the o-space, and, as a
consequence, from being part of the related F-formation.

In what follows, we formally define the objective function accounting for
positional, orientational and exclusion constraints aspects, and show how it can
be optimised. Figure 2 gives a graphical idea of the problem formulation.

Fig. 2. Schematic representation of the problem formulation. Two individuals facing
each other, the gray dot representing the transitional segment centre, the red cross
being the o-space centre and the red area the o-space of the F-formation. (Color figure
online)
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3.1 Objective Function

We use Pi = [xi, yi, θi] to represent the position xi, yi and head orienta-
tion θi of the individual i ∈ {1, . . . , n} in the scene. Let TSi be the a pri-
ori distribution which models the transactional segment of individual i. As
we explained in the previous section, this segment is coherent with the posi-
tion and orientation of the head, so we can assume TSi ∼ N (μi,Σi), where
μi = [xμi

, yμi
] = [xi + D cos θi, yi + D sin θi], Σi = σ · I with I the 2D identity

matrix, and D is the distance between the individual i and the centre of its
transactional segment (hereafter called stride). The stride parameter D can be
learned by cross-validation, or fixed a priori accounting for social facts. In prac-
tice, we assume the transactional segment of a person having a circular shape,
which can be thought as superimposed to the o-space of the F-formation she
may be part of.

Og = [ug, vg] indicates the position of a candidate o-space centre for F-
formation g ∈ {1,M}, while we use Gi to refer to the F-formation containing
individual i, considering the F-formation assignment Gi = g for some g. The
assignment assumes that each individual i may belong to a single F-formation g
only at any given time, and this is reasonable when we are focusing one a single
time, that is, an image. It follows naturally the definition of OGi

= [uGi
, vGi

],
which represents the position of a candidate o-space centre for an unknown
F-formation Gi = g containing i. For the sake of mathematical simplicity, we
assume that each lone individual not belonging to a gathering can be considered
as a spurious F-formation.

At this point, we define the likelihood probability of an individual i’s transi-
tional segment centre Ci = [ui, vi] given the a priori variable TSi.

Pr(Ci|TSi) ∝ exp
(

−||Ci − μi||22
σ2

)
(1)

= exp
(

− (ui − xμi
)2 + (vi − yμi

)2

σ2

)
(2)

Hence, the probability that an individual i shares an o-space centre OGi
is

given by

Pr(Ci = OGi
|TSi) ∝ exp

(
− (uGi

− xμi
)2 + (vGi

− yμi
)2

σ2

)
(3)

and the posterior probability of any overall assignment is given by

Pr(C = OG|TS) ∝
∏

i∈[1,n]

exp
(

− (uGi
− xμi

)2 + (vGi
− yμi

)2

σ2

)
(4)

with C the random variable which models a possible joint location of all the
o-space centres, OG is one instance of this joint location, and TS is the position
of all the transitional segments of the individuals in the scene.
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Clearly, if the number of o-space centres is unconstrained, the maximum a
posteriori probability (MAP) occurs when each individual has his own separate
o-space centre, generating a spurious F-formation formed by a single individ-
ual, that is, OGi

= TSi. To prevent this from happening, we associate a mini-
mum description length prior (MDL) over the number of o-space centres used.
This prior takes the same form as dictated by the Akaike Information Criterion
(AIC) [10], linearly penalising the log-likelihood for the number of models used.

Pr(C = OG|TS) ∝
∏

i∈[1,n]

exp

(
− (uGi − xµi)

2 + (vGi − yµi)
2

σ2

)
· exp(−|OG|) (5)

where |OG| is the number of distinct F-formations.
To find the MAP solution, we take the negative log-likelihood and discarding

normalising constants, we have the following objective J(·) in standard form:

J(OG|TS) =
∑

i∈[1,n]

(uGi
− xμi

)2 + (vGi
− yμi

)2 + σ−2|OG| (6)

As such, this can be seen as optimizing a least-squares error combined with an
MDL prior. In principle this could be optimised using a standard technique such
as k-means clustering combined with a brute force search over all possible choices
of k to optimise the MDL cost. In practice, k-means frequently gets stuck in local
optima and, in fact, using the technique described the least squares component
of the error frequently increases, instead of decreasing, as k increases. Instead
we make use of the graph-cut based optimisation described in [30], and widely
used in computer vision [9,11,35,63].

In short, we start from an abundance of possible o-space centres, and then
we use a hill-climbing optimisation that alternates between assigning individu-
als to o-space centres using the efficient graph-cut based optimisation [30] that
directly minimises the cost (6), and then minimising the least squares compo-
nent by updating o-space centres to the mean of Og, for all the individuals {i}
currently assigned to the F-formation. The whole process is iterated until con-
vergence. This approach is similar to the standard k-means algorithm, sharing
both the assignment, and averaging step. However, as the graph-cut algorithm
selects the number of clusters, we can avoid local minima by initialising with an
excess of model proposals. In practice, we start from the previously mentioned
trivial solution in which each individual is associated with its own o-space centre,
centred on his position.

3.2 Visibility Constraints

Finally, we add the natural constraint that people can only join an F-formation if
they can see the o-space centres. By allowing other people to occlude the o-space
centre, we are able to capture more subtle nuances such as people being crowded
out of F-formations or deliberately ostracised. Broadly speaking, an individual
is excluded from an F-formation when another individual stands between him
and the group centre. Taking θg

i,j as the angle between two individuals about a
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Algorithm 1. Finding shared focal centres.

Initialise with OGi = TSi ∀i ∈ [1, ..., n]
old cost= ∞
while J(OG, TS) <old cost do

old cost ← J(OG, TS)
run graph cuts to minimise cost (6)
for ∀g ∈ [1, ..., M ] do

if g is not empty then

update OG ←
∑

i∈g TSi

|g|
end if

end for
end while

given o-space centre Og for which is assumed Gi = Gj = g and dg
i , dg

j as the
distance of i, or j, respectively from the o-space centre Og, the following cost
captures this property:

Ri,j(g) =

{
0 if θg

i,j ≤ θ̂, or dg
i < dg

j

exp
(
K cos(θg

i,j)
) dg

i −dg
j

dg
j

otherwise.
(7)

and use the new cost function:

J ′(OG|TS) = J(OG|TS) +
∑

i,j∈P

Ri,j(Gi) (8)

Ri,j(gi) acts as a visibility constraint on i regardless of the group person j is
assigned to, as such it can be treated as a unary cost or data-term and included
in the graph-cut based part of the optimisation. Now we turn to other half of
the optimisation - updating the o-space centres. Although, given an assignment
of people to a o-space centre, a local minima can be found using any off the shelf
non-convex optimisation, we take a different approach. There are two points to
be aware of: first, the difference between J ′ and J is sharply peaked and close
to zero in most locations, and can generally be safely ignored; second and more
importantly, we may often want to move out of a local minima. If updating
an o-space centre results in a very high repulsion cost to one individual, this
can often be dealt with by assigning the individual to a new group, and this
will result in a lower overall cost, and more accurate labelling. As such, when
optimising the o-space centres, we pass two proposals for each currently active
model to graph-cuts – the previous proposal generated, and a new proposal based
on the current mean of the F-formation. As the graph-cut based optimisation
starts from the previous solution, and only moves to lower cost labellings, the
cost always decreases and the procedure is guaranteed to converge to a local
optimum.
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3.3 An Explicative Example

Figure 3 gives a visual insight of our graph-cuts process. Given the position and
orientation of each individual Pi, the algorithm starts by computing the transi-
tional segments Ci. At the first iteration 0, the candidate o-space centres Oi are
initialized, and are coincident with the transitional segments Ci; in this example
are present 11 individuals, so 11 candidate o-space centres are generated. After
iteration 1, the proposed segmentation process provides 1 singleton (P11) and 5
FCGs of two individuals each. We can appreciate different configurations such
as vis-a-vis (O1,2), L-shape (O3,4) and side-by-side (O5,6). Still, the grouping in
the bottom part of the image is wrong (P7 to P10), since it violates the exclusion
principle. In iteration 2, the previous candidate o-space centres is considered
as initialization, and a new graph is built. In this new configuration, the group
O7,10 is recognized as violating the visibility constraint and thus the related edge
is penalized; a new run of graph-cuts minimization allows to correctly cluster
the FCGs in a singleton (P10) and a FCG formed by three individuals (O7,8,9),
which corresponds to the ground truth (visualized as the dashed circles).

Fig. 3. An explicative example. Iteration 0: initialization with the candidate o-space
centres {O} coincident with the transitional segment of each individual {C}. Iteration
1: first graph-cuts run; easy groups are correctly clustered while the most complex
still present errors (the FCG formed by P7 and P20 violates the visibility constraint).
Iteration 2: the second graph-cuts run correctly detects the O7,8,9 F-formation.

4 Groups: Experiments

In this section we present experimental results on five publicly available datasets
employed as benchmark, and eight state of the art methods. Here we will show
that GCFF definitely outperforms all the competitors, setting in all the cases
new state-of-the-art scores. To conclude, we present an extended analysis of how
the methods perform in terms of their ability of detecting groups of various
cardinality and to test the robustness to noise, further promoting our technique.

Five publicly available datasets are used for the experiments: two from [19]
(Synthetic and Coffee Break), one from [24] (IDIAP Poster Data), one from [52]
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Table 1. Summary of the features of the datasets used for experiments.

Dataset Data type Detection Detection

quality

# of

frames

# of

people

# of people for groups’ cardinality

1 2 3 4 5 6

Synthetic data Synthetic – Perfect 100 900 300 360 240 – – –

IDIAP poster Real Manual Very high 82 1,695 429 910 339 12 5 –

Cocktail party Real Automatic High 320 1,915 174 162 246 176 275 882

Coffee break Real Automatic Low 119 1,299 376 464 459 – – –

GDet Real Automatic Very low 403 1,474 367 394 372 88 175 78

(Cocktail Party), and one from [5] (GDet). A summary of the dataset features
is in Table 1, while a detailed presentation of each dataset follows.

Synthetic Data. A psychologist generated a set of 10 diverse situations, each
one repeated with minor variations for 10 times, resulting in 100 frames repre-
senting different social situations, with the aim to span as many configurations as
possible for F-formations. An average of 9 individuals and 3 groups are present
in the scene, together with some singletons. Proxemic information is noiseless
in the sense that there is no clutter in the position and orientation state of each
individual.

IDIAP Poster Data. Over 3 h of aerial videos (resolution 654 × 439 px) have
been recorded during a poster session of a scientific meeting. Over 50 people
are walking through the scene, forming several groups over time. A total of 82
images were selected with the idea to maximise the crowdedness and variance
of the scenes. Images are unrelated to each other in the sense that there are no
consecutive frames, and the time lag between them prevents to exploit temporal
smoothness. As for the data annotation, a total of 24 annotators were grouped
into 3-person subgroups and they were asked to identify F-formations and their
associates from static images. Each person’s position and body orientation was
manually labelled and recorded as pixel values in the image plane – one pixel
represented approximately 1.5 cm.

Cocktail Party. This dataset contains about 30 min of video recordings of a
cocktail party in a 30m2 lab environment involving 7 subjects. The party was
recorded using four synchronised angled-view cameras (15 Hz, 1024 × 768 px,
jpeg) installed in the corners of the room. Subjects’ positions were logged using
a particle filter-based body tracker [31] while head pose estimation is computed
as in [32]. Groups in one frame every 5 s were manually annotated by an expert,
resulting in a total of 320 labelled frames for evaluation.

Coffee Break. The dataset focuses on a coffee-break scenario of a social event,
with a maximum of 14 individuals organised in groups of 2 or 3 people each.
Images are taken from a single camera with resolution of 1440× 1080 px. People
positions have been estimated by exploiting multi-object tracking on the heads,
and head detection has been performed afterwards with the algorithm of [57],
considering solely 4 possible orientations (front, back, left and right) in the image
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plane. The tracked positions and head orientations were then projected onto the
ground plane. Considering the ground truth data, a psychologist annotated the
videos indicating the groups present in the scenes, for a total of 119 frames split
in two sequences. The annotations were generated by analysing each frame in
combination with questionnaires that the subjects filled in.

GDet. The dataset is composed by 5 subsequences of images acquired by 2
angled-view low resolution cameras (352 × 328 px) with a number of frames
spanning from 17 to 132, for a total of 403 annotated frames. The scenario is a
vending machines area where people meet and chat while they are having coffee.
This is similar to Coffee Break scenario but in this case the scenario is indoor,
which makes occlusions many and severe; moreover, people in this scenario knows
each other in advance. The videos were acquired with two monocular cameras,
located on opposite angles of the room. To ensure the natural behaviour of
people involved, they were not aware of the experiment purposes. For ground
truth generation, people tracking has been carried out with the particle filter
proposed in [31], while head pose estimation is performed afterwards with the
method in [57] considering only 4 orientations (front, back, left and right).

We compare the GCFF algorithm with seven state of the art methods: one
exploiting the concept of view frustum (IRPM), three based on dominant-sets
(DS, IGD and GTCG), three different version of Hough Voting approaches (lin-
ear, entropic and multi-scale HVFF).

Inter-Relation Pattern Matrix (IRPM). Proposed by Bazzani et al. [5],
uses the head direction to infer the 3D view frustum as approximation of the
focus-of-attention of an individual; this is used together with proximity informa-
tion to estimate interactions: the idea is that close-by people whose view frustum
is intersecting are in some way interacting.

Dominant Sets (DS). Presented by Hung and Kröse [24], this algorithm con-
siders an F-formation as a dominant-set cluster [44] of an edge-weighted graph,
where each node in the graph is a person, and the edges between them measure
the affinity between pairs.

Interacting Group Discovery (IGD). Presented by Tran et al. [58], is based
on dominant sets extraction from an undirected graph where nodes are individu-
als and the edges have a weight proportional to how much people are interacting;
the attention of an individual is modeled as an ellipse centred at a fixed offset
in front of him, while the interaction between two individuals is proportional to
the intersection of their attention ellipses.

Game-Theory for Conversational Groups (GTCG). In [59] the authors
develop a game-theoretic framework, supported by a statistical modeling of the
uncertainty associated with the position and orientation of people. Specifically,
they use a representation of the affinity between candidate pairs by expressing
the distance between distributions over the most plausible oriented region of
attention. Additionally, they can integrate temporal information over multiple
frames by using notions from multi-payoff evolutionary game theory.
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Hough Voting for F-Formation (HVFF). Under this caption we consider a
set of methods based on a Hough Voting strategy to build accumulation spaces
and find local maxima of this function to identify F-formations. The general
idea is that each individual is associated with a Gaussian probability density
function which describes the position of the o-space centre he is pointing at.
The pdf is approximated by a set of samples, which basically vote for a given
o-space centre location. The voting space is then quantized and the votes are
aggregated on squared cells, so to form a discrete accumulation space. Local
maxima in this space identify o-space centres, and consequently, F-formations.
Over the years, three versions of these framework have been presented: in [19]
the votes are linearly accumulated by just summing up all the weights of votes
belonging to the same cell, in [51] the votes are aggregated by using the weighted
Boltzmann entropy function, while in [52] a multi-scale approach is used on top
of the entropic version.

As accuracy measures, we adopt the metrics proposed in [19] and then
extended in [53]: we consider a group as correctly estimated if at least �(T · |G|)�
of their members are found by the grouping method and correctly detected by
the tracker, and if no more than 1 − �(T · |G|)� false subjects (of the detected
tracks) are identified, where |G| is the cardinality of the labelled group G, and
T ∈ ]0, 1] is an arbitrary threshold, called tolerance threshold. In particular, we
focus on two interesting values of T : 2/3 and 1.

With this definition of tolerant match, we can determine for each frame the
correctly detected groups (true positives – TP), the miss-detected groups (false
negatives – FN) and the hallucinated groups (false positives – FP). With this,
we compute the standard pattern recognition metrics precision and recall:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(9)

and the F1 score defined as the harmonic mean of precision and recall:

F1 = 2 · precision · recall

precision + recall
(10)

In addition to these metrics, we compute the Global Tolerant Matching score
(GTM), which is the area under the curve (AUC) in the F1 vs. T graph with
T varying from 1/2 to 1. Since in our experiments we only have groups up to 6
individuals, without loss of generality we consider T varying with 3 equal steps
in the range stated above.

Moreover, we will discuss results also in terms of group cardinality, by com-
puting the F1 score for each cardinality separately and then computing mean
and standard deviation.

4.1 Best Results Analysis

Given the metrics explained above, the first test analyses the best performances
for each method on each dataset; in practice, a tuning phase has been carried
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out for each method/dataset combination in order to get the best performances.
Note, we did not have code for Dominant Sets [24] and thus we used results
provided directly from the authors of the method for a subset of data. For this
reason, average results over all the datasets are only averaged over 3 datasets,
and cannot be taken into account for a fair comparison. Best parameters are
found on half of one sequence by cross-validation, and kept unchanged for the
remaining part of the dataset. Please note, finding the right parameters can also
fixed by hand, since the stride D depends on the social context under analysis
(formal meetings will have higher D, the presence of tables and similar items
may also increase the diameter of the FCGs): with a given D, for example, it
is assumed that circular F-formations will have diameter of 2D. The parameter
σ indicates how much we are permissive in accepting deviations from such a
diameter. Moreover, D depends also on the different measure units (pixels/cm)
which characterize the proxemic information associated to each individual in the
scene.

Table 2 shows best results by considering the threshold T = 2/3, which cor-
responds to find at least 2/3 of the members of a group, no more than 1/3 of
false subjects; while Table 3 presents results with T = 1, considering a group as
correct if all and only its members are detected. The proposed method outper-
forms all the competitors, on all the datasets. With T = 2/3, three observations
can be made: the first is that our approach GCFF improves substantially the
precision (of 13% in average) and even more definitely the recall scores (of 17%
in average) of the state of the art approaches. The second is that our approach
produces the same score for both the precision and the recall; this is very con-
venient and convincing, since so far all the approaches of FCG detections have
shown to be weak in the recall dimension. The third observation is that GCFF
performs well both in the case where no errors in the position or orientation of
the people are present (as the Synthetic dataset) and in the cases where strong
noise of position and orientation is present (Coffee Break, GDet).

When moving to tolerance threshold equal to 1 (all the people in a group
have to be individuated, and no false positive are allowed) the performance is
reasonably lower, but the increment is even stronger w.r.t. to the state of the
art, in general on all the datasets: in particular, on the Cocktail Party dataset,
the results are more than twice the scores of the competitors. Finally, even in
this case, GCFF produces a very similar score for precision and recall.

A performance analysis is also provided by changing the tolerance thresh-
old T . Figure 4 shows the average F1 scores for each method computed over
all the frames and datasets. From the curves we can appreciate how the pro-
posed method is consistently best performing for each T -value. In the legend
of Fig. 4 the Global Tolerant Matching score is also reported. Again, GCFF is
outperforming the state of the art, independently from the choice of T .

The reason why our approach does better than the competitors has been
explained in the state of the art section, here briefly summarized: the Dominant
Set-based approaches DS and IGD, even if they are based on an elegant opti-
mization procedure, tend to find circular groups, and are weaker in individuating
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Table 2. Average precision, recall and F1 scores for all the methods and all the datasets
(T = 2/3).

Synthetic IDIAP poster Cocktail party Coffee break GDet Total

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

IRPM [5] 0.85 0.80 0.82 0.82 0.74 0.78 0.56 0.43 0.49 0.68 0.50 0.57 0.77 0.47 0.58 0.70 0.49 0.56

DS [24] 0.85 0.97 0.90 0.91 0.92 0.91 – – – 0.69 0.65 0.67 – – – 0.81 0.83 0.82

IGD [58] 0.95 0.71 0.81 0.80 0.68 0.73 0.81 0.61 0.70 0.81 0.78 0.79 0.83 0.36 0.50 0.68 0.76 0.70

CTCG [59] 1.00 1.00 1.00 0.92 0.96 0.94 0.86 0.82 0.84 0.83 0.89 0.86 0.76 0.76 0.76 0.83 0.83 0.83

HVFF lin [19] 0.75 0.86 0.80 0.90 0.95 0.92 0.59 0.74 0.65 0.73 0.86 0.79 0.66 0.68 0.67 0.75 0.79 0.76

HVFF ent [51] 0.79 0.86 0.82 0.86 0.89 0.87 0.78 0.83 0.80 0.76 0.86 0.81 0.69 0.71 0.70 0.78 0.78 0.77

HVFF ms [52] 0.90 0.94 0.92 0.87 0.91 0.89 0.81 0.81 0.81 0.83 0.76 0.79 0.71 0.73 0.72 0.84 0.66 0.74

GCFF 0.97 0.98 0.97 0.94 0.96 0.95 0.84 0.86 0.85 0.85 0.91 0.88 0.92 0.88 0.90 0.89 0.89 0.89

Table 3. Average precision, recall and F1 scores for all the methods and all the datasets
(T = 1).

Synthetic IDIAP poster Cocktail party Coffee break GDet Total

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

IRPM [5] 0.53 0.47 0.50 0.71 0.64 0.67 0.28 0.17 0.21 0.27 0.23 0.25 0.59 0.29 0.39 0.46 0.29 0.35

DS [24] 0.68 0.80 0.74 0.79 0.82 0.81 – – – 0.40 0.38 0.39 – – – 0.60 0.63 0.62

IGD [58] 0.30 0.22 0.25 0.31 0.27 0.29 0.23 0.10 0.13 0.50 0.50 0.50 0.67 0.20 0.31 0.45 0.21 0.27

CTCG [59] 0.78 0.78 0.78 0.83 0.86 0.85 0.31 0.28 0.30 0.46 0.47 0.47 0.51 0.60 0.55 0.49 0.52 0.51

HVFF lin [19] 0.64 0.73 0.68 0.80 0.86 0.83 0.26 0.27 0.27 0.41 0.47 0.44 0.43 0.45 0.44 0.43 0.46 0.44

HVFF ent [51] 0.47 0.52 0.49 0.72 0.74 0.73 0.28 0.30 0.29 0.47 0.52 0.49 0.44 0.45 0.45 0.42 0.44 0.43

HVFF ms [52] 0.72 0.73 0.73 0.73 0.76 0.74 0.30 0.30 0.30 0.40 0.38 0.39 0.44 0.45 0.45 0.44 0.45 0.45

GCFF 0.91 0.91 0.91 0.85 0.87 0.86 0.63 0.65 0.64 0.61 0.64 0.63 0.73 0.68 0.71 0.71 0.70 0.71

Fig. 4. Global F1 score vs. tolerance threshold T . Between brackets in legend the
Global Tolerant Matching score. Dominant Sets (DS) is averaged over 3 datasets only,
because of results availability. (Best viewed in colour). (Color figure online)

other kinds of F-formations. Hough-based approaches HVFF X (X = lin, ent, ms)
have a good modeling of the F-formation, allowing to find any shape, but rely
on a greedy optimization procedure. Finally, IRPM approach has a rough mod-
eling of the F-formation. Our approach viceversa has a rich modeling of the
F-formation, and a powerful optimization strategy.
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Table 4. Cocktail party – F1 score
vs. cardinality (T = 1).

# groups k = 2k = 3k = 4k = 5k = 6Avg Std
81 82 44 55 147 – –

IRPM [5] 0.26 0.53 0.74 0.42 0.59 0.51 0.18

IGD [58] 0.06 0.52 0.66 0.73 0.85 0.56 0.30

HVFF lin [19] 0.38 0.76 0.57 0.67 0.94 0.66 0.21

HVFF ent [51]0.45 0.75 0.69 0.73 0.96 0.71 0.18

HVFF ms [52] 0.49 0.74 0.70 0.71 0.96 0.72 0.17

GCFF 0.59 0.64 0.80 0.85 0.94 0.760.14

Table 5. GDet – F1 score vs. car-
dinality (T = 1).

# groups k = 2k = 3k = 4k = 5k = 6Avg Std
197 124 22 35 13 – –

IRPM [5] 0.40 0.59 0.45 0.42 0.35 0.44 0.09

IGD [58] 0.15 0.52 0.33 0.54 0.83 0.47 0.25

HVFF lin [19] 0.51 0.76 0.03 0.16 0.13 0.32 0.31

HVFF ent [51]0.57 0.73 0.24 0.23 0.13 0.38 0.26

HVFF ms [52] 0.56 0.78 0.17 0.41 0.67 0.52 0.23

GCFF 0.74 0.87 0.53 0.77 0.88 0.760.14

Cardinality Analysis

As stated in [52], some methods are shown to work better with some group
cardinalities. In this experiment, we systematically check this aspect, evaluating
the performance of all the considered methods in individuating groups with
a particular number of individuals. Since Synthetic, Coffee Break and IDIAP
Poster Session datasets only have groups of cardinality 2 and 3, we only focus
on the remaining 2 datasets, which have a more uniform distribution of groups
cardinalities. Tables 4 and 5 show F1 scores for each method and each group
cardinality respectively for Cocktail Party and GDet datasets. In both cases the
proposed method outperforms the other state of the art methods in terms of
higher average F1 score, with very low standard deviation. In particular, only
IRPM gives in GDet dataset results which are more stable than ours, but they
are definitely poorer.

Noise Analysis

In this experiment, we show how the methods behave against different degrees
of clutter. For this sake, we consider the Synthetic dataset as starting point and
we add to the proxemic state of each individual of each frame some random
values based on a known noise distribution. We assume that the noise follows
a Gaussian distribution with mean 0, and noise on each dimension (position,
orientation) is uncorrelated. For our experiments we used σx = σy = 20 cm and
σθ = 0.1 rad. In our experiments, we consider 11 levels of noise Ln = 0, . . . , 10,
where ⎧⎪⎨

⎪⎩
xn(Ln) = x + randsample(N (0, Ln ∗ σx))
yn(Ln) = y + randsample(N (0, Ln ∗ σy))
θn(Ln) = θ + randsample(N (0, Ln ∗ σθ))

(11)

In particular, we produce results by adding noise on position only (leaving
the orientation at its exact value), on orientation only (leaving the position
of each individual at its exact value) and on both position and orientation.
Figure 5 shows F1 scores for each method while increasing the noise level. In
this case we can appreciate that with high orientation and combined noise IGD
performs comparably or better than GCFF; this is a confirmation of the fact that
methods based on Dominant Sets are performing very well when the orientation
information is not reliable, as already stated in [51].
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Fig. 5. Noise analysis. F1 score vs. noise level on position (left), orientation (centre)
and combined (right). (Best viewed in colour). (Color figure online)

5 Crowd: Related Work

Abnormal crowd behavior analysis has become an active research topic in recent
years, so that several techniques have been proposed to automatically detecting
abnormal behavior in crowds. We broadly divide the existing approach in two
categories. There are two main categories named (i) motion-based, and (ii) model-
based. In the following, we will give a brief overview of these two categories.

5.1 Motion Based Approaches

Motion-based referred to as methods in which motion cues such as optical flow
and trajectories are used as a main source information [1,12,22,29,34,38–41,62].
Particularly, initial works on crowd behavior analysis consider crowd as a number
of objects interacting in a common space, and the crowd behaviors are inferred
according to the motion patterns captured from tracked objects [1,46,47]. How-
ever, detecting and tracking individuals in a crowd scenes is very challenging,
due to imaging condition and density of crowds. In order to tackle this prob-
lem, proposed approaches consider crowd as a single entity instead of individual
objects. For example, [1] used Finite Time Lyapunov Exponent (FTLE) field to
detect and localize anomaly in a frame level from crowd videos by measuring
flow instability in the segmented regions of high density crowd flows. However,
this approach is limited to the structural scene where the boundary of crowd
flow is well determined. To tackle this problem, a chaotic invariant approach is
proposed for structural and nonstructural crowd scenes [61]. Particularly, the
chaotic dynamics of crowd are computed from the crowd flow trajectory. The
main limitation of this method is its computational complexity, since it use all
the previous frames. Moreover, there exist also a significant number of research
focus on identifying specific type of abnormality (e.g., violence, panic). The first
work for detecting violence in videos was proposed in [20], which mainly focused
on two person fight episodes and employed motion trajectory information of
individual limbs for fight modeling and classification. This approach required
limbs segmentation and tracking, which are very challenging tasks in a pres-
ence of occlusion and clutters. In [22] authors exploit the statistics magnitude of
optical flow varying along the time for detecting violence behavior from dense
crowded scenes. However, the effectiveness of this approach is also limited on
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highly dense crowd. In [40] authors quantified abnormality exploiting the sta-
tistic of motion estimated from magnitude and orientation of tracklet (short
portion of trajectory) in terms of two dimensional histogram. Although, their
method show promising performance on a wider ranger of crowd anomaly, choice
of efficient number of bins across the scenes is under the question. In [38] authors
used substantial derivative, a well-known concept in fluid dynamic, for extracting
meaningful motion patterns to identify violence behaviors from video sequences.
Moreover, authors demonstrate the effectiveness of the method on panic scenes.
In the following we will provide brief details on [20,22,38] related to the motion
based approaches.

Acceleration Measure Vector (Jerk). This approach can be considered as
one of the first attempt in detecting human violence in video [20]. To detect vio-
lent behavior authors rely on motion trajectory information and on orientation
information of a persons limbs. Then an Acceleration Measure Vector (AMV)
composed of direction and magnitude of motion and jerk is defined to be the
temporal derivative of AMV.

Violence Flows (ViF). It is specifically designed for classifying violent behav-
iors in crowds from video outbreaks [22]. The main strength of ViF lies in its
ability in encoding meaningful temporal motion patterns. Initially, the magni-
tude of motions are estimated. Next, for each video frame a binary map is created
by discarding motion values less than a predefined threshold. Then, final motion
map is created by computing average along all video frames in a query video.

Substantial Derivative. Substantial Derivative (SD) is an important con-
cept in fluid mechanics which describes the change of fluid elements by physi-
cal properties such as temperature, density, and velocity components of flowing
fluid along its trajectory [4]. Unlike aforementioned approaches that only use
temporal motion patterns as a main source of information [22,36,40], it has a
capability of capturing spatial and temporal information of motion changes in
a single framework [4]. Specifically, SD consists of two terms of accelerations,
namely local and convective accelerations. The local acceleration captures the
change rate of velocity of a certain particle with respect to time and vanishes if
the flow is steady. On the other hands, the convective acceleration captures the
change of velocity flow in the spatial space, therefore, it increases when parti-
cles move through the region of spatially varying velocity field in the temporal
domain (see Fig. 6 for an example). Therefore, the local acceleration, which is
the derivative of velocity with respect to the time, captures the instant change
of flow. Whilst, the convective acceleration captures the spatial evolution of a
particle moving along its trajectory. This is, in particular, useful in the abnormal
crowd scenarios. Considering violence as an example of abnormal scene, where
individual shows aggressive behavior toward other member of crowd, his/her
motion is subject to sudden change of in velocity field with respect to the time
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(local acceleration). Moreover, at the same time, group of individual interact
in a very different way compare with violence (or panic scenes), which lead to
the significant difference in the motion trajectories of individuals compared with
normal scenes in spatial domain (convective acceleration). For video represen-
tation random patch sampling with Bag-of-Word Paradigm applied from each
force independently. Finally, the local and convective forces are concatenated to
shape a single descriptor named total force.

Tables 6 and 7 provide some detail regarding the aforementioned motion
based methods, including their general formula and force estimation from video
sequences.

Fig. 6. An example of local and convective accelerations. The local acceleration mea-
sure instantaneous rate of change of each particle, while convective acceleration mea-
sures the rate of change of the particle moving along its trajectory. Red region indicates
the particles are accelerated as it converge due to the structural change of the environ-
ment. (Color figure online)

Table 6. Summary of motion and model based forces, their general formula and esti-
mation methods from video sequences.

Methods Forces General formula Estimation from videos
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5.2 Model Based Approaches

Model based approaches can be broadly categorized into two categories; (i) The
Social Force Model (SFM), (ii) Behavioral heuristic models.
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Table 7. Summary of notations.

Notations Description formula

vi/O
t
i Velocity of particles/individuals i

〈Oi〉 Average velocity of particles/individuals i

g(i) Body compression subject to the individual i and neighboring
individuals

Wi,j Aggression factor between the individual i and his/her opponent j

θi,j Orientation between individual i and his/her opponents j

di,j Distance between individual i and j j

R Personal space around each examined individual

pi Panic factor

f(i) Model the angle of view of individual i individual

ax Spatial acceleration in x direction

ay Spatial acceleration in y direction

F bc
ij Body contact individual i with its neighboring pedestrians j

F agg
ij Aggression force pedestrian i derived toward its opponent j

F L Local force

F Cv Convective force

F T Total force

The Social Force Model. The SFM originally introduced by Helbing and Mol-
nar [23], is the historical seminal method for modeling crowd behaviors according
to a set of predefined physical rules. More specifically, the SFM aimed at rep-
resenting the interaction force among individuals in crowded scenes using a set
of repulsive and attractive forces, which was shown to be a significant feature
for analyzing crowd behaviors. Motivated by the success of SFM to reproduce
crowd moving patterns, fifteen years later Mehran et al. [36] adopted the SFM
and particle advection scheme to compute for detecting and localizing abnormal
behavior in crowd videos. To this purpose, they considered the entire crowd as a
set of moving particles whose interaction force was computed using SFM. Then,
they mapped the interaction force into the image plane to obtain the force flow
of each particle within frame of videos. This force map was used as the basis for
extracting features which, along with the random spatial-temporal path sam-
pling and BOW strategy, was used to assign either normal or abnormal label to
each frame. Moreover, the force map was also employed to localize the anomaly
region in the detected abnormal frames.

5.3 Behavioral Heuristics

Behavioral heuristic approach can be considered as a new emergent approach
to disclose complex crowd dynamics [42,43], compare to SFM [23], where sin-
gle Newtonian equation used to explain crowd behaviors, it exploits the use
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of physics equations inspired from simple, yet effective behavioral heuristics to
describe the crowd behaviors. This is, in particular useful since it is capable of
capturing wider range of crowd complexities. To this end, Mohammadi et al.
[49], proposed a heuristic based method inspired from [42,43], and successfully
applied for violence detection in crowds [49]. Their method established based on
three heuristic rules:

H1: An individual chooses the direction that allows the most direct path to a
destination point, adopting his/her moving regarding the presence of obstacles.

H2: In crowd situations, the movement of an individual is influenced by his/her
physical body contacts with surrounding persons.

H3: In violent scenes, an individual mainly moves towards his/her opponents to
display violent actions.

Specifically, (H1) describe individual’s internal motivation towards a goal
avoiding obstacles or other individuals. While, the second heuristic rule (H2),
states that individual movements are subject to the unintentional physical body
contacts with his/her surrounding individuals. The third heuristic rule (H3)
defines behavioral patterns within violent scenes, where there are two or more
parties (e.g., police and rioters) fighting and showing violent behaviors to each
other.

Then, each heuristic is formulated with physics equation(see Tables 6 and 7
for details). Next, each force is computed, independently, from video sequences.
Finally, random patch sampling along with Bag-of-Word paradigm used for force
representation, and all the forces are concatenated to construct the final descrip-
tor named Visual Information Processing Signature (VIPS).

6 Crowds: Experiments

We extensively evaluated proposed approach on five benchmarks, consists of two
standard datasets; Violence in Crowds [22], and Behave [8] along with two video
sequences collected from web source (i.e., www.YouTube.com) which we named
Panic1 and Panic2. Moreover, we assembled a new dataset, named “Violent-
Cross” whose videos gathered from Violence in Crowds and CUHK [54] datasets,
to show the ability of proposed approaches in cross scene recognition. Specifically,
it includes 300 videos, equally divided into three classes (100 videos for each
class). Figure 7 shows few samples of the benchmarks. For the Violence in Crowds
we used the standard training/testing split, released along with dataset. While
for Behave, panic1 and panic2, we divide the video frames into block of 10 frames
with one frame overlapping among the blocks, then we labeled them into normal
and abnormal blocks. For Violence-Cross, we equally divide each class into a
test set of 150 videos (50 video sequences for each class) and the rest for testing.
For feature representation we used Bag-of-Word Pardigm. Particularly, first we
perform random 3D patch sampling from the computed force maps, then Bag-
of-Word Paradigm, with fixed number of cluster centers to generate codebook.
Finally, the resulting histogram of visual words are fed into the classifiers. As a

http://www.youtube.com/
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choice of classifier, for Violence in Crowds and Violence-Cross, we used SVM,
since we had access to negative data at the training time. While, for other
datasets, we used Latent Dirichlet Allocation [7] in short LDA since we assumed
that we do not have access to negative data at the training time.

Fig. 7. Sample frames from the evaluated datasets. For first four columns; first row
shows the normal crowd behaviors, while for the second row shows the abnormal behav-
ior, specifically, violent and panic behaviors. For Violence-Cross datasets; samples from
the three classes of “normal”, “crossing” and “violent” behaviors.

6.1 Effect of the Random Patches

Here, we examine the effect of varying number of random patches in the range
of P ∈ {100, 200, 400, 800, 1000} on various datasets by fixing number of clus-
ter center to 500. Figure 8 shows the effect of varying number of patches on
optical flow, SFM [36], SD (FL|FCv) [38], and VIPS [49]. As it is visible, all
the descriptors show improvement in performance by increasing the number
of random patches, however, we did not observe any significant improvement
after reaching 1000 random patches. Moreover, we observed that VIPS shows
very promising performance compare with other methods on Violence in Crowds
and Behave datasets. While, SD shows its superiority in performance on panic
scenes. This is understandable, since VIPS specifically designed for violence
detection and aggression force plays an important role in capturing violence
behavioral patterns. While, experimental results show that in panic scenarios
(Painc1 and Panic2 datasets) combination of temporal and structure informa-
tion in SD descriptor offers more discriminative features compare with other
proposed methods.

6.2 Comparison with the State of the Art

We compared various motion and model based methods for the evaluation pur-
pose. Particularly, for the motion based approaches, we select ViF [22], Jerk [20],
total force inspired from SD [38], and for model based approach we select the
SFM [36], and recently proposed heuristic based model in [49].
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Fig. 8. Effect of varying number of random patches on the effectivness of VIPS [49],
SD [38], SFM [36] and optical flow on Violence in Crowds, Behave, Panic1 and Panic2
datasets.

Table 8 show the comparison of motion and model based approaches. It is
visible that among the compared methods heuristic based method outperform
other competitors especially in Violence in Crowds dataset, this support the
psychology studies [42,43], and highlight the strength of heuristic models in
capturing wider range of crowd complexities in violence scenes which results
in better performance. It is also visible that SD [38] can be considered as a
close competitor to the heuristic method. Indeed, it outperforms the heuristic-
based method with a high margin in Panic datasets. This is understandable
since, VIPS [49] specifically designed for violence detection. In addition, it has a
consist of spatial information (Local and Convective Forces, respectively), which
make it capable in covering wider range of crowd complexity compared with
other methods.

Moreover, we evaluate robustness of our descriptors to distinguish between
acts of violence from crossing behaviors, which is a most similar approach to the
act of violence. In particular, as a motion based descriptor, we select ViF [22],
which is specifically design for violence detection, along with SFM [36], which
is considered as one of the most well-known descriptor to detect abnormality
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Table 8. Comparison of model and motion based approaches.

Descriptors Violence in Crowds Behave Panic1 Panic2

ViF [22] 81.3 93.4 0.716 82.6

AMV (Jerk) [20] 74.8 94.2 90.9 83.6

SD (FL|FCv) [38] 85.4 94.8 98.5 88.4

SFM [36] 74.5 94.23 91.3 84.3

VIPS [49] 86.61 95.73 94.5 85.9

Fig. 9. Average accuracy on Violent-Cross dataset. Class1, Class2, and Class3 are
referred to as violent, cross walk, and normal behaviors, respectively. ViF [22] with
57% overall accuracy; SFM [36] with 69% overall accuracy, and V IPS with 92% overall
accuracy.

in crowds. Figure 9 shows the confusion matrices of two state-of-the-art meth-
ods and elements of the proposed method. We observe that ViF shows a good
performance on detecting acts of violence compared to the SFM, however, its
overall accuracy is low since it is incapable of distinguishing violent from normal
and crossing behaviors. On the other hand, we observe that VIPS shows very
promising performance compared with other approaches.

Table 9. Average AUCs on Panic1, Panic2 and Behave datasets sequences with 1000
random patches and 500 cluster centers.

Generative model Datasets

Panic1 Panic2 BEHAVE

LDA [7] 0.718 0.826 0.943

2D-CG [26] 0.833 0.86 0.951

3D-CG [37] 0.851 0.865 0.958

6.3 Choice of Generative Model

In general, there exist two methods for evaluating the effectiveness of descriptors
for violence detection; Discriminative (e.g., SVM) and Generative (e.g., LDA [7],
Counting Grids [26]) methods. Although, discriminative approaches are consid-
ered as more powerful approach for detecting abnormalities, it requires negative
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Fig. 10. Comparison effect of random patches of average AUCs (y-axis) on Panic1,
Panic2, and Behave datasets, using LDA, 2D-CG and 3D-CGs.

examples at the training time. While, the definition of abnormality is still context
dependent, therefore gathering huge amount of negative data is very challenging
problem. To this end, one common practice to face this problem, is to learn what
normality is and then abnormality considered motion patterns which deviated
from learned distribution of normal behavior [36,37]. However, apart from effec-
tiveness of descriptors in capturing crowd complexities, capability of generative
models on modeling the distribution of normal data plays an important roles in
detecting abnormal behaviors. To this end, we show comparison on Generative
models. Particularly, we select the optical flow as a baseline, and we compared
LDA with two dimensional Counting Grid (2D-CG) [26] and three dimensional
Counting Grid (3D-CGs) [37] on Panic1, Panic2 and Behave datasets. Table 9
shows that 3D-CG outperform two competitors. This is understandable, since
3D-CG is able to capture spatial-temporal relationship among the bags in the
feature space, while CG is only consider spatial information and LDA totally
ignore intra relationship among the bags (Fig. 10).

7 Conclusions

In this chapter, we provide a broad overview along with extensive experiments
of most recent state of the art methods in group detection and crowd behaviors
understanding. The experimental results demonstrate that pure computer vision
techniques may not be sufficient to uncover wide range of group and crowds’
behaviors/dynamics, and sociological-inspired methodologies outperform other
state-of-art approaches. To this end, we believe that proposing an universal app-
roach for human behavior understanding in group and crowd levels is still can be
considered as open problems, and further investigations are required to introduce
new methodologies in computer vision community.
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