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Selected Applications in Statistics

Data come in many forms. In the broad view, the term “data” embraces all
representations of information or knowledge. There is no single structure that
can efficiently contain all of these representations. Some data are in free-form
text (for example, the Federalist Papers, which was the subject of a famous
statistical analysis), other data are in a hierarchical structure (for example,
political units and subunits), and still other data are encodings of methods
or algorithms. (This broad view is entirely consistent with the concept of a
“stored-program computer”; the program is the data.)

Several of the results in this chapter have already been presented in Chap. 8
or even in previous chapters, for example, the smoothing matrix Hλ that we
discuss in Sect. 9.3.8 has already been encountered on page 364 in Chap. 8.
The purpose of the apparent redundancy is to present the results from a
different perspective. (None of the results are new; all are standard in the
statistical literature.)

9.1 Structure in Data and Statistical Data Analysis

Data often have a logical structure as described in Sect. 8.1.1; that is, a two-
dimensional array in which columns correspond to variables or measurable
attributes and rows correspond to an observation on all attributes taken to-
gether. A matrix is obviously a convenient object for representing numeric
data organized this way. An objective in analyzing data of this form is to un-
cover relationships among the variables, or to characterize the distribution of
the sample over IRm. Interesting relationships and patterns are called “struc-
ture” in the data. This is a different meaning from that of the word used in the
phrase “logical structure” or in the phrase “data structure” used in computer
science.
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400 9 Selected Applications in Statistics

Another type of pattern that may be of interest is a temporal pattern;
that is, a set of relationships among the data and the time or the sequence in
which the data were observed.

The objective of this chapter is to illustrate how some of the properties of
matrices and vectors that were covered in previous chapters relate to statistical
models and to data analysis procedures. The field of statistics is far too large
for a single chapter on “applications” to cover more than just a small part
of the area. Similarly, the topics covered previously are too extensive to give
examples of applications of all of them.

A probability distribution is a specification of the stochastic structure of
random variables, so we begin with a brief discussion of properties of multi-
variate probability distributions. The emphasis is on the multivariate normal
distribution and distributions of linear and quadratic transformations of nor-
mal random variables. We then consider an important structure in multivari-
ate data, a linear model. We discuss some of the computational methods used
in analyzing the linear model. We then describe some computational method
for identifying more general linear structure and patterns in multivariate data.
Next we consider approximation of matrices in the absence of complete data.
Finally, we discuss some models of stochastic processes. The special matrices
discussed in Chap. 8 play an important role in this chapter.

9.2 Multivariate Probability Distributions

Most methods of statistical inference are based on assumptions about some
underlying probability distribution of a random variable. In some cases these
assumptions completely specify the form of the distribution, and in other
cases, especially in nonparametric methods, the assumptions are more general.
Many statistical methods in estimation and hypothesis testing rely on the
properties of various transformations of a random variable.

In this section, we do not attempt to develop a theory of probability dis-
tribution; rather we assume some basic facts and then derive some important
properties that depend on the matrix theory of the previous chapters.

9.2.1 Basic Definitions and Properties

One of the most useful descriptors of a random variable is its probability
density function (PDF), or probability function. Various functionals of the
PDF define standard properties of the random variable, such as the mean and
variance, as we discussed in Sect. 4.5.3.

If X is a random variable over IRd with PDF pX(·) and f(·) is a measurable
function (with respect to a dominating measure of pX(·)) from IRd to IRk, the
expected value of f(X), which is in IRk and is denoted by E(g(X)), is defined by

E(f(X)) =

∫
IRd

f(t)pX(t) dt.
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The mean of X is the d-vector E(X), and the variance or variance-
covariance of X , denoted by V(X), is the d× d matrix

V(X) = E
(
(X − E(X)) (X − E(X))

T
)
.

Given a random variable X , we are often interested in a random variable
defined as a function of X , say Y = g(X). To analyze properties of Y , we
identify g−1, which may involve another random variable. (For example, if
g(x) = x2 and the support of X is IR, then g−1(Y ) = (−1)α

√
Y , where α = 1

with probability Pr(X < 0) and α = 0 otherwise.) Properties of Y can be
evaluated using the Jacobian of g−1(·), as in equation (4.12).

9.2.2 The Multivariate Normal Distribution

The most important multivariate distribution is the multivariate normal,
which we denote as Nd(μ,Σ) for d dimensions; that is, for a random d-vector.
The PDF for the d-variate normal distribution, as we have discussed before, is

pX(x) = (2π)−d/2|Σ|−1/2e−(x−μ)TΣ−1(x−μ)/2, (9.1)

where the normalizing constant is Aitken’s integral given in equation (4.75).
The multivariate normal distribution is a good model for a wide range of
random phenomena.

9.2.3 Derived Distributions and Cochran’s Theorem

If X is a random variable with distribution Nd(μ,Σ), A is a q × d matrix
with rank q (which implies q ≤ d), and Y = AX , then the straightforward
change-of-variables technique yields the distribution of Y as Nd(Aμ, AΣAT).

Useful transformations of the random variable X with distribution
Nd(μ,Σ) are Y1 = Σ−1/2X and Y2 = Σ−1

C X , where ΣC is a Cholesky
factor of Σ. In either case, the variance-covariance matrix of the transformed
variate Y1 or Y2 is Id.

Quadratic forms involving a Y that is distributed as Nd(μ, Id) have useful
properties. For statistical inference it is important to know the distribution
of these quadratic forms. The simplest quadratic form involves the identity
matrix: Sd = Y TY .

We can derive the PDF of Sd by beginning with d = 1 and using induction.
If d = 1, for t > 0, we have

Pr(S1 ≤ t) = Pr(Y ≤
√
t)− Pr(Y ≤ −

√
t),

where Y ∼ N1(μ, 1), and so the PDF of S1 is

pS1(t) =
1

2
√
2πt

(
e−(

√
t−μ)2/2 + e−(−√

t−μ)2/2
)
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=
e−μ2/2e−t/2

2
√
2πt

(
eμ

√
t + e−μ

√
t
)

=
e−μ2/2e−t/2

2
√
2πt

⎛
⎝ ∞∑

j=0

(μ
√
t)j

j!
+

∞∑
j=0

(−μ
√
t)j

j!

⎞
⎠

=
e−μ2/2e−t/2

√
2t

∞∑
j=0

(μ2t)j√
π(2j)!

=
e−μ2/2e−t/2

√
2t

∞∑
j=0

(μ2t)j

j!Γ(j + 1/2)22j
,

in which we use the fact that

Γ(j + 1/2) =

√
π(2j)!

j!22j

(see page 595). This can now be written as

pS1(t) = e−μ2/2
∞∑
j=0

(μ2)j

j!2j
1

Γ(j + 1/2)2j+1/2
tj−1/2e−t/2, (9.2)

in which we recognize the PDF of the central chi-squared distribution with
2j + 1 degrees of freedom,

pχ2
2j+1

(t) =
1

Γ(j + 1/2)2j+1/2
tj−1/2e−t/2. (9.3)

A similar manipulation for d = 2 (that is, for Y ∼ N2(μ, 1), and maybe
d = 3, or as far as you need to go) leads us to a general form for the PDF of
the χ2

d(δ) random variable Sd:

pSd
(t) = e−μ2/2

∞∑
j=0

(μ2/2)j

j!
pχ2

2j+1
(t). (9.4)

We can show that equation (9.4) holds for any d by induction. The distribu-
tion of Sd is called the noncentral chi-squared distribution with d degrees of
freedom and noncentrality parameter δ = μTμ. We denote this distribution
as χ2

d(δ).
The induction method above involves a special case of a more general fact:

if Xi for i = 1, . . . , k are independently distributed as χ2
ni
(δi), then

∑
i Xi is

distributed as χ2
n(δ), where n =

∑
i ni and δ =

∑
i δi. (Compare this with the

result for Wishart distributions in Exercise 4.12b on page 225.)
In applications of linear models, a quadratic form involving Y is often

partitioned into a sum of quadratic forms. Assume that Y is distributed as
Nd(μ, Id), and for i = 1, . . . k, let Ai be a d × d symmetric matrix with rank
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ri such that
∑

iAi = Id. This yields a partition of the total sum of squares
Y TY into k components:

Y TY = Y TA1Y + · · ·+ Y TAkY. (9.5)

One of the most important results in the analysis of linear models states
that the Y TAiY have independent noncentral chi-squared distributions χ2

ri(δi)
with δi = μTAiμ if and only if

∑
i ri = d.

This is called Cochran’s theorem. Beginning on page 355, we discussed a
form of Cochran’s theorem that applies to properties of idempotent matrices.
Those results immediately imply the conclusion above.

9.3 Linear Models

Some of the most important applications of statistics involve the study of the
relationship of one variable, often called a “response variable”, to other vari-
ables. The response variable is usually modeled as a random variable, which
we indicate by using a capital letter. A general model for the relationship of
a variable, Y , to other variables, x (a vector), is

Y ≈ f(x). (9.6)

In this asymmetric model and others like it, we call Y the dependent variable
and the elements of x the independent variables.

It is often reasonable to formulate the model with a systematic component
expressing the relationship and an additive random component or “additive
error”. We write

Y = f(x) + E, (9.7)

where E is a random variable with an expected value of 0; that is,

E(E) = 0.

(Although this is by far the most common type of model used by data analysts,
there are other ways of building a model that incorporates systematic and
random components.) The zero expectation of the random error yields the
relationship

E(Y ) = f(x),

although this expression is not equivalent to the additive error model above
because the random component could just as well be multiplicative (with an
expected value of 1) and the same value of E(Y ) would result.

Because the functional form f of the relationship between Y and x may
contain a parameter, we may write the model as

Y = f(x; θ) + E. (9.8)
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A specific form of this model is

Y = βTx+ E, (9.9)

which expresses the systematic component as a linear combination of the xs
using the vector parameter β.

A model is more than an equation; there may be associated statements
about the distribution of the random variable or about the nature of f or x.
We may assume β (or θ) is a fixed but unknown constant, or we may assume
it is a realization of a random variable. Whatever additional assumptions we
may make, there are some standard assumptions that go with the model.
We assume that Y and x are observable and θ and E are unobservable.

Models such as these that express an asymmetric relationship between
some variables (“dependent variables”) and other variables (“independent
variables”) are called regression models. A model such as equation (9.9) is
called a linear regression model. There are many useful variations of the
model (9.6) that express other kinds of relationships between the response
variable and the other variables.

Notation

In data analysis with regression models, we have a set of observations {yi, xi}
where xi is an m-vector. One of the primary tasks is to determine a reasonable
value of the parameter. That is, in the linear regression model, for example,
we think of β as an unknown variable (rather than as a fixed constant or a
realization of a random variable), and we want to find a value of it such that
the model fits the observations well,

yi = βTxi + εi, (9.10)

where β and xi are m-vectors. (In the expression (9.9), “E” is an uppercase
epsilon. We attempt to use notation consistently; “E” represents a random
variable, and “ε” represents a realization, though an unobservable one, of the
random variable. We will not always follow this convention, however; some-
times it is convenient to use the language more loosely and to speak of εi as a
random variable.) The meaning of the phrase “the model fits the observations
well” may vary depending on other aspects of the model, in particular, on any
assumptions about the distribution of the random component E. If we make
assumptions about the distribution, we have a basis for statistical estimation
of β; otherwise, we can define some purely mathematical criterion for “fitting
well” and proceed to determine a value of β that optimizes that criterion.

For any choice of β, say b, we have yi = bTxi + ri. The ris are determined
by the observations. An approach that does not depend on any assumptions
about the distribution but can nevertheless yield optimal estimators under
many distributions is to choose the estimator so as to minimize some measure
of the set of ris.
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Given the observations {yi, xi}, we can represent the regression model and
the data as

y = Xβ + ε, (9.11)

where X is the n × m matrix whose rows are the xis and ε is the vector of
deviations (“errors”) of the observations from the functional model. Through-
out the rest of this section, we will assume that the number of rows of X (that
is, the number of observations n) is greater than the number of columns of X
(that is, the number of variables m).

We will occasionally refer to submatrices of the basic data matrix X using
notation developed in Chap. 3. For example, X(i1,...,ik)(j1,...,jl) refers to the
k × l matrix formed by retaining only the i1, . . . , ik rows and the j1, . . . , jl
columns of X , and X−(i1,...,ik)(j1,...,jl) refers to the matrix formed by deleting
the i1, . . . , ik rows and the j1, . . . , jl columns of X . We also use the notation
xi∗ to refer to the ith row of X (the row is a vector, a column vector), and x∗j
to refer to the jth column of X . See page 599 for a summary of this notation.

9.3.1 Fitting the Model

In a model for a given dataset as in equation (9.11), although the errors are
no longer random variables (they are realizations of random variables), they
are not observable. To fit the model, we replace the unknowns with variables:
β with b and ε with r. This yields

y = Xb+ r. (9.12)

We then proceed by applying some criterion for fitting.
The criteria generally focus on the “residuals” r = y − Xb. Two general

approaches to fitting are:

• Define a likelihood function of r based on an assumed distribution of E,
and determine a value of b that maximizes that likelihood.

• Decide on an appropriate norm on r, and determine a value of b that
minimizes that norm.

There are other possible approaches, and there are variations on these two
approaches. For the first approach, it must be emphasized that r is not a
realization of the random variable E. Our emphasis will be on the second
approach, that is, on methods that minimize a norm on r.

9.3.1.1 Statistical Estimation

The statistical problem is to estimate β. (Notice the distinction between the
phrases “to estimate β” and “to determine a value of β that minimizes . . . ”.
The mechanical aspects of the two problems may be the same, of course.) The
statistician uses the model and the given observations to explore relationships
between the response and the regressors. Considering ε to be a realization of
a random variable E (a vector) and assumptions about a distribution of the
random variable ε allow us to make statistical inferences about a “true” β.
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9.3.1.2 Ordinary Least Squares

The r vector contains the distances of the observations on y from the values
of the variable y defined by the hyperplane bTx, measured in the direction of
the y axis. The objective is to determine a value of b that minimizes some
norm of r. The use of the L2 norm is called “least squares”. The estimate is
the b that minimizes the dot product

(y −Xb)T(y −Xb) =

n∑
i=1

(yi − xT
i∗b)

2. (9.13)

As we saw in Sect. 6.6 (where we used slightly different notation), using
elementary calculus to determine the minimum of equation (9.13) yields the
“normal equations”

XTXβ̂ = XTy. (9.14)

9.3.1.3 Weighted Least Squares

The elements of the residual vector may be weighted differently. This is ap-
propriate if, for instance, the variance of the residual depends on the value of
x; that is, in the notation of equation (9.7), V(E) = g(x), where g is some
function. If the function is known, we can address the problem almost identi-
cally as in the use of ordinary least squares, as we saw on page 295. Weighted
least squares may also be appropriate if the observations in the sample are
not independent. In this case also, if we know the variance-covariance struc-
ture, after a simple transformation, we can use ordinary least squares. If the
function g or the variance-covariance structure must be estimated, the fitting
problem is still straightforward, but formidable complications are introduced
into other aspects of statistical inference. We discuss weighted least squares
further in Sect. 9.3.6.

9.3.1.4 Variations on the Criteria for Fitting

Rather than minimizing a norm of r, there are many other approaches we could
use to fit the model to the data. Of course, just the choice of the norm yields
different approaches. Some of these approaches may depend on distributional
assumptions, which we will not consider here. The point that we want to
emphasize here, with little additional comment, is that the standard approach
to regression modeling is not the only one. We mentioned some of these other
approaches and the computational methods of dealing with them in Sect. 6.7.
Alternative criteria for fitting regression models are sometimes considered in
the many textbooks and monographs on data analysis using a linear regression
model. This is because the fits may be more “robust” or more resistant to the
effects of various statistical distributions.
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9.3.1.5 Regularized Fits

Some variations on the basic approach of minimizing residuals involve a kind of
regularization that may take the form of an additive penalty on the objective
function. Regularization often results in a shrinkage of the estimator toward 0.
One of the most common types of shrinkage estimator is the ridge regression
estimator, which for the model y = Xβ + ε is the solution of the modified
normal equations (XTX+λI)β = XTy. We discuss this further in Sect. 9.5.4.

9.3.1.6 Orthogonal Distances

Another approach is to define an optimal value of β as one that minimizes a
norm of the distances of the observed values of y from the vector Xβ. This
is sometimes called “orthogonal distance regression”. The use of the L2 norm
on this vector is sometimes called “total least squares”. This is a reasonable
approach when it is assumed that the observations in X are realizations of
some random variable; that is, an “errors-in-variables” model is appropriate.
The model in equation (9.11) is modified to consist of two error terms: one for
the errors in the variables and one for the error in the equation. The methods
discussed in Sect. 6.7.3 can be used to fit a model using a criterion of mini-
mum norm of orthogonal residuals. As we mentioned there, weighting of the
orthogonal residuals can be easily accomplished in the usual way of handling
weights on the different observations.

The weight matrix often is formed as an inverse of a variance-covariance
matrix Σ; hence, the modification is to premultiply the matrix [X |y] in equa-
tion (6.56) by the Cholesky factor Σ−1

C . In the case of errors-in-variables,
however, there may be another variance-covariance structure to account for.
If the variance-covariance matrix of the columns of X (that is, the indepen-
dent variables) together with y is T , then we handle the weighting for vari-
ances and covariances of the columns of X in the same way, except of course
we postmultiply the matrix [X |y] in equation (6.56) by T−1

C . This matrix is
(m+1)× (m+1); however, it may be appropriate to assume any error in y is
already accounted for, and so the last row and column of T may be 0 except
for the (m + 1,m + 1) element, which would be 1. The appropriate model
depends on the nature of the data, of course.

9.3.1.7 Collinearity

A major problem in regression analysis is collinearity (or “multicollinearity”),
by which we mean a “near singularity” of the X matrix. This can be made
more precise in terms of a condition number, as discussed in Sect. 6.1. Ill-
conditioning may not only present computational problems, but also may
result in an estimate with a very large variance.
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9.3.2 Linear Models and Least Squares

The most common estimator of β is one that minimizes the L2 norm of the
vertical distances in equation (9.11); that is, the one that forms a least squares
fit. This criterion leads to the normal equations (9.14), whose solution is

β̂ = (XTX)−XTy. (9.15)

(As we have pointed out many times, we often write formulas that are not
to be used for computing a result; this is the case here.) If X is of full rank,

the generalized inverse in equation (9.15) is, of course, the inverse, and β̂
is the unique least squares estimator. If X is not of full rank, we generally
use the Moore-Penrose inverse, (XTX)+, in equation (9.15).

As we saw in equations (6.43) and (6.44), we also have

β̂ = X+y. (9.16)

On page 293, we derived this least squares solution by use of the QR decom-
position of X . In Exercises 6.5a and 6.5b we mentioned two other ways to
derive this important expression.

Equation (9.16) indicates the appropriate way to compute β̂. As we have
seen many times before, however, we often use an expression without com-
puting the individual terms. Instead of computing X+ in equation (9.16)
explicitly, we use either Householder or Givens transformations to obtain the
orthogonal decomposition

X = QR,

or

X = QRUT

if X is not of full rank. As we have seen, the QR decomposition of X can be
performed row-wise using Givens transformations. This is especially useful if
the data are available only one observation at a time. The equation used for
computing β̂ is

Rβ̂ = QTy, (9.17)

which can be solved by back substitution in the triangular matrix R.
Because

XTX = RTR,

the quantities in XTX or its inverse, which are useful for making inferences
using the regression model, can be obtained from the QR decomposition.

If X is not of full rank, the expression (9.16) not only is a least squares
solution but the one with minimum length (minimum Euclidean norm), as we
saw in equations (6.44) and (6.45).

The vector ŷ = Xβ̂ is the projection of the n-vector y onto a space of di-
mension equal to the (column) rank of X , which we denote by rX . The vector
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of the model, E(Y ) = Xβ, is also in the rX -dimensional space span(X). The
projection matrix I −X(XTX)+XT projects y onto an (n− rX)-dimensional
residual space that is orthogonal to span(X). Figure 9.1 represents these sub-
spaces and the vectors in them.

span(X)

0

span(X)

Xβ?

yy y

y
θ

Figure 9.1. The linear least squares fit of y with X

Recall from page 291 that orthogonality of the residuals to span(X) is
not only a property of a least squares solution, it actually characterizes a
least squares solution; that is, if b̂ is such that XT(y −Xb̂) = 0, then b̂ is a
least squares solution.

In the (rX +1)-order vector space of the variables, the hyperplane defined

by β̂Tx is the estimated model (assuming β̂ �= 0; otherwise, the space is of
order rX).

9.3.2.1 Degrees of Freedom

In general, the vector y can range freely over an n-dimensional space. We say
the degrees of freedom of y, or the total degrees of freedom, is n. If we fix the
mean of y, then the adjusted total degrees of freedom is n− 1.

The model Xβ can range over a space with dimension equal to the (col-
umn) rank of X ; that is, rX . We say that the model degrees of freedom is rX .

Note that the space of Xβ̂ is the same as the space of Xβ.
Finally, the space orthogonal to Xβ̂ (that is, the space of the residuals

y −Xβ̂) has dimension n − rX . We say that the residual (or error) degrees
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of freedom is n − rX . (Note that the error vector ε can range over an n-

dimensional space, but because β̂ is a least squares fit, y−Xβ̂ can only range
over an (n− rX)-dimensional space.)

9.3.2.2 The Hat Matrix and Leverage

The projection matrix H = X(XTX)+XT is sometimes called the “hat ma-
trix” because

ŷ = Xβ̂

= X(XTX)+XTy

= Hy, (9.18)

that is, it projects y onto ŷ in the span of X . Notice that the hat matrix can
be computed without knowledge of the observations in y.

The elements ofH are useful in assessing the effect of the particular pattern
of the regressors on the predicted values of the response. The extent to which
a given point in the row space of X affects the regression fit is called its
“leverage”. The leverage of the ith observation is

hii = xT
i∗(X

TX)+xi∗. (9.19)

This is just the partial derivative of ŷi with respect to yi (Exercise 9.2).
A relatively large value of hii compared with the other diagonal elements of
the hat matrix means that the ith observed response, yi, has a correspondingly
relatively large effect on the regression fit.

9.3.3 Statistical Inference

Fitting a model by least squares or by minimizing some other norm of the
residuals in the data might be a sensible thing to do without any concern for
a probability distribution. “Least squares” per se is not a statistical criterion.
Certain statistical criteria, such as maximum likelihood or minimum variance
estimation among a certain class of unbiased estimators, however, lead to an
estimator that is the solution to a least squares problem for specific probability
distributions.

For statistical inference about the parameters of the model y = Xβ + ε
in equation (9.11), we must add something to the model. As in statistical
inference generally, we must identify the random variables and make some
statements (assumptions) about their distribution. The simplest assumptions
are that ε is a random variable and E(ε) = 0. Whether or not the matrix X is
random, our interest is in making inference conditional on the observed values
of X .
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9.3.3.1 Estimability

One of the most important questions for statistical inference involves esti-
mating or testing some linear combination of the elements of the parameter
β; for example, we may wish to estimate β1 − β2 or to test the hypothesis
that β1 − β2 = c1 for some constant c1. In general, we will consider the linear
combination lTβ. Whether or not it makes sense to estimate such a linear
combination depends on whether there is a function of the observable random
variable Y such that g(E(Y )) = lTβ.

We generally restrict our attention to linear functions of E(Y ) and formally
define a linear combination lTβ to be linearly estimable if there exists a vector
t such that

tTE(Y ) = lTβ (9.20)

for any β.
It is clear that if X is of full column rank, lTβ is linearly estimable for any

l or, more generally, lTβ is linearly estimable for any l ∈ span(XT). (The t
vector is just the normalized coefficients expressing l in terms of the columns
of X .)

Estimability depends only on the simplest distributional assumption about
the model; that is, that E(ε) = 0. Under this assumption, we see that the

estimator β̂ based on the least squares fit of β is unbiased for the linearly
estimable function lTβ. Because l ∈ span(XT) = span(XTX), we can write
l = XTXt̃. Now, we have

E(lTβ̂) = E(lT(XTX)+XTy)

= t̃TXTX(XTX)+XTXβ

= t̃TXTXβ

= lTβ. (9.21)

Although we have been taking β̂ to be (XTX)+XTy, the equations above
follow for other least squares fits, b = (XTX)−XTy, for any generalized in-
verse. In fact, the estimator of lTβ is invariant to the choice of the generalized
inverse. This is because if b = (XTX)−XTy, we have XTXb = XTy, and so

lTβ̂ − lTb = t̃TXTX(β̂ − b) = t̃T(XTy −XTy) = 0. (9.22)

In the context of the linear model, we call an estimator of β a linear
estimator if it can be expressed as Ay for some matrix A, and we call an
estimator of lTβ a linear estimator if it can be expressed as aTy for some
vector a. It is clear that the least squares estimators β̂ and lTβ̂ are linear
estimators.

Other properties of the estimators depend on additional assumptions
about the distribution of ε, and we will consider some of them below.

When X is not of full rank, we often are interested in an orthogonal basis
for span(XT). If X includes a column of 1s, the elements of any vector in
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the basis must sum to 0. Such vectors are called contrasts. The second and
subsequent rows of the Helmert matrix (see Sect. 8.8.1 on page 381) are con-
trasts that are often of interest because of their regular patterns and their
interpretability in applications involving the analysis of levels of factors in
experiments.

9.3.3.2 Testability

We define a linear hypothesis lTβ = c1 as testable if lTβ is estimable. We
generally restrict our attention to testable hypotheses.

It is often of interest to test multiple hypotheses concerning linear combi-
nations of the elements of β. For the model (9.11), the general linear hypoth-
esis is

H0 : LTβ = c,

where L is m× q, of rank q, and such that span(L) ⊆ span(X).
The test for a hypothesis depends on the distributions of the random

variables in the model. If we assume that the elements of ε are i.i.d. normal
with a mean of 0, then the general linear hypothesis is tested using an F
statistic whose numerator is the difference in the residual sum of squares from
fitting the model with the restriction LTβ = c and the residual sum of squares
from fitting the unrestricted model. This reduced sum of squares is

(LTβ̂ − c)T (LT(XTX)∗L)−1 (LTβ̂ − c), (9.23)

where (XTX)∗ is any g2 inverse of XTX . This test is a likelihood ratio test.
(See a text on linear models, such as Searle 1971, for more discussion on this
testing problem.)

To compute the quantity in expression (9.23), first observe

LT(XTX)∗L = (X(XTX)∗L)T (X(XTX)∗L). (9.24)

Now, if X(XTX)∗L, which has rank q, is decomposed as

X(XTX)∗L = P

[
T
0

]
,

where P is an m × m orthogonal matrix and T is a q × q upper triangular
matrix, we can write the reduced sum of squares (9.23) as

(LTβ̂ − c)T (TTT )−1 (LTβ̂ − c)

or (
T−T(LTβ̂ − c)

)T (
T−T(LTβ̂ − c)

)
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or

vTv. (9.25)

To compute v, we solve

TTv = LTβ̂ − c (9.26)

for v, and the reduced sum of squares is then formed as vTv.

9.3.3.3 The Gauss-Markov Theorem

The Gauss-Markov theorem provides a restricted optimality property for es-
timators of estimable functions of β under the condition that E(ε) = 0 and
V(ε) = σ2I; that is, in addition to the assumption of zero expectation, which
we have used above, we also assume that the elements of ε have constant vari-
ance and that their covariances are zero. (We are not assuming independence
or normality, as we did in order to develop tests of hypotheses.)

Given y = Xβ + ε and E(ε) = 0 and V(ε) = σ2I, the Gauss-Markov

theorem states that lTβ̂ is the unique best linear unbiased estimator (BLUE)
of the estimable function lTβ.

“Linear” estimator in this context means a linear combination of y; that
is, an estimator in the form aTy. It is clear that lTβ̂ is linear, and we have
already seen that it is unbiased for lTβ. “Best” in this context means that
its variance is no greater than any other estimator that fits the requirements.
Hence, to prove the theorem, first let aTy be any unbiased estimator of lTβ,
and write l = XTXt̃ as above. Because aTy is unbiased for any β, as we saw
above, it must be the case that aTX = lT. Recalling that XTXβ̂ = XTy, we
have

V(aTy) = V(aTy − lTβ̂ + lTβ̂)

= V(aTy − t̃TXTy + lTβ̂)

= V(aTy − t̃TXTy) + V(lTβ̂) + 2Cov(aTy − t̃TXTy, t̃TXTy).

Now, under the assumptions on the variance-covariance matrix of ε, which is
also the (conditional, given X) variance-covariance matrix of y, we have

Cov(aTy − t̃TXTy, lTβ̂) = (aT − t̃TXT)σ2IXt̃

= (aTX − t̃TXTX)σ2It̃

= (lT − lT)σ2It̃

= 0;

that is,

V(aTy) = V(aTy − t̃TXTy) + V(lTβ̂).
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This implies that

V(aTy) ≥ V(lTβ̂);

that is, lTβ̂ has minimum variance among the linear unbiased estimators of
lTβ. To see that it is unique, we consider the case in which V(aTy) = V(lTβ̂);
that is, V(aTy− t̃TXTy) = 0. For this variance to equal 0, it must be the case

that aT − t̃TXT = 0 or aTy = t̃TXTy = lTβ̂; that is, lTβ̂ is the unique linear
unbiased estimator that achieves the minimum variance.

If we assume further that ε ∼ Nn(0, σ
2I), we can show that lTβ̂ is the

uniformly minimum variance unbiased estimator (UMVUE) for lTβ. This is

because (XTy, (y − Xβ̂)T(y − Xβ̂)) is complete and sufficient for (β, σ2).

This line of reasoning also implies that (y − Xβ̂)T(y − Xβ̂)/(n − r), where
r = rank(X), is UMVUE for σ2. We will not go through the details here. The
interested reader is referred to a text on mathematical statistics, such as Shao
(2003).

9.3.4 The Normal Equations and the Sweep Operator

The coefficient matrix in the normal equations, XTX , or the adjusted version
XT

c Xc, where Xc is the centered matrix as in equation (8.64) on page 366, is
often of interest for reasons other than just to compute the least squares esti-
mators. The condition number of XTX is the square of the condition number
of X , however, and so any ill-conditioning is exacerbated by formation of the
sums of squares and cross products matrix. The adjusted sums of squares and
cross products matrix, XT

c Xc, tends to be better conditioned, so it is usually
the one used in the normal equations, but of course the condition number of
XT

c Xc is the square of the condition number of Xc.
A useful matrix can be formed from the normal equations:

[
XTX XTy
yTX yTy

]
. (9.27)

Applying m elementary operations on this matrix, we can get

[
(XTX)+ X+y
yTX+T yTy − yTX(XTX)+XTy

]
. (9.28)

(If X is not of full rank, in order to get the Moore-Penrose inverse in this
expression, the elementary operations must be applied in a fixed manner;
otherwise, we get a different generalized inverse.)

The matrix in the upper left of the partition (9.28) is related to the es-
timated variance-covariance matrix of the particular solution of the normal
equations, and it can be used to get an estimate of the variance-covariance
matrix of estimates of any independent set of linearly estimable functions of
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β. The vector in the upper right of the partition is the unique minimum-
length solution to the normal equations, β̂. The scalar in the lower right par-
tition, which is the Schur complement of the full inverse (see equations (3.190)
and (3.214)), is the square of the residual norm. The squared residual norm
provides an estimate of the variance of the errors in equation (9.11) after
proper scaling.

The partitioning in expression (9.28) is the same that we encountered on
page 363.

The elementary operations can be grouped into a larger operation, called
the “sweep operation”, which is performed for a given row. The sweep opera-
tion on row i, Si, of the nonnegative definite matrix A to yield the matrix B,
which we denote by

Si(A) = B,

is defined in Algorithm 9.1.

Algorithm 9.1 Sweep of the ith row ’

1. If aii = 0, skip the following operations.
2. Set bii = a−1

ii .
3. For j �= i, set bij = a−1

ii aij .
4. For k �= i, set bkj = akj − akia

−1
ii aij .

Skipping the operations if aii = 0 allows the sweep operator to handle
non-full rank problems. The sweep operator is its own inverse:

Si(Si(A)) = A.

The sweep operator applied to the matrix (9.27) corresponds to adding or
removing the ith variable (column) of the X matrix to the regression equation.

9.3.5 Linear Least Squares Subject to Linear
Equality Constraints

In the regression model (9.11), it may be known that β satisfies certain con-
straints, such as that all the elements be nonnegative. For constraints of the
form g(β) ∈ C, where C is some m-dimensional space, we may estimate β by

the constrained least squares estimator; that is, the vector β̂C that minimizes
the dot product (9.13) among all b that satisfy g(b) ∈ C.

The nature of the constraints may or may not make drastic changes to the
computational problem. (The constraints also change the statistical inference
problem in various ways, but we do not address that here.) If the constraints
are nonlinear, or if the constraints are inequality constraints (such as that all
the elements be nonnegative), there is no general closed-form solution.

It is easy to handle linear equality constraints of the form

g(β) = Lβ

= c,
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where L is a q × m matrix of full rank. The solution is, analogous to equa-
tion (9.15),

β̂C = (XTX)+XTy + (XTX)+LT(L(XTX)+LT)+(c− L(XTX)+XTy).
(9.29)

WhenX is of full rank, this result can be derived by using Lagrangemultipliers
and the derivative of the norm (9.13) (see Exercise 9.4 on page 452). When X
is not of full rank, it is slightly more difficult to show this, but it is still true.
(See a text on linear regression, such as Draper and Smith 1998).

The restricted least squares estimate, β̂C , can be obtained (in the (1, 2)
block) by performing m+ q sweep operations on the matrix,

⎡
⎣XTX XTy LT

yTX yTy cT

L c 0

⎤
⎦ , (9.30)

analogous to matrix (9.27).

9.3.6 Weighted Least Squares

In fitting the regression model y ≈ Xβ, it is often desirable to weight the obser-
vations differently, and so instead of minimizing equation (9.13), we minimize

∑
wi(yi − xT

i∗b)
2,

where wi represents a nonnegative weight to be applied to the ith observation.
One purpose of the weight may be to control the effect of a given observation
on the overall fit. If a model of the form of equation (9.11),

y = Xβ + ε,

is assumed, and ε is taken to be a random variable such that εi has variance σ
2
i ,

an appropriate value of wi may be 1/σ2
i . (Statisticians almost always naturally

assume that ε is a random variable. Although usually it is modeled this way,
here we are allowing for more general interpretations and more general motives
in fitting the model.)

The normal equations can be written as
(
XTdiag((w1, w2, . . . , wn))X

)
β̂ = XTdiag((w1, w2, . . . , wn))y.

More generally, we can consider W to be a weight matrix that is not
necessarily diagonal. We have the same set of normal equations:

(XTWX)β̂W = XTWy. (9.31)

When W is a diagonal matrix, the problem is called “weighted least squares”.
Use of a nondiagonal W is also called weighted least squares but is sometimes
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called “generalized least squares”. The weight matrix is symmetric and gen-
erally positive definite, or at least nonnegative definite. The weighted least
squares estimator is

β̂W = (XTWX)+XTWy.

As we have mentioned many times, an expression such as this is not necessar-
ily a formula for computation. The matrix factorizations discussed above for
the unweighted case can also be used for computing weighted least squares
estimates.

In a model y = Xβ + ε, where ε is taken to be a random variable with
variance-covariance matrix Σ, the choice of W as Σ−1 yields estimators with
certain desirable statistical properties. (Because this is a natural choice for
many models, statisticians sometimes choose the weighting matrix without
fully considering the reasons for the choice.) As we pointed out on page 295,
weighted least squares can be handled by premultiplication of both y and
X by the Cholesky factor of the weight matrix. In the case of an assumed
variance-covariance matrix Σ, we transform each side by Σ−1

C , where ΣC is
the Cholesky factor of Σ. The residuals whose squares are to be minimized
are Σ−1

C (y −Xb). Under the assumptions, the variance-covariance matrix of
the residuals is I.

9.3.7 Updating Linear Regression Statistics

In Sect. 6.6.5 on page 295, we discussed the general problem of updating a
least squares solution to an overdetermined system when either the number
of equations (rows) or the number of variables (columns) is changed. In the
linear regression problem these correspond to adding or deleting observations
and adding or deleting terms in the linear model, respectively.

9.3.7.1 Adding More Variables

Suppose first that more variables are added, so the regression model is

y ≈
[
X X+

]
θ,

where X+ represents the observations on the additional variables. (We use θ
to represent the parameter vector; because the model is different, it is not just
β with some additional elements.)

If XTX has been formed and the sweep operator is being used to perform
the regression computations, it can be used easily to add or delete variables
from the model, as we mentioned above. The Sherman-Morrison-Woodbury
formulas (6.28) and (6.30) and the Hemes formula (6.31) (see page 288) can
also be used to update the solution.

In regression analysis, one of the most important questions is the identifi-
cation of independent variables from a set of potential explanatory variables
that should be in the model. This aspect of the analysis involves adding and
deleting variables. We discuss this further in Sect. 9.5.2.
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9.3.7.2 Adding More Observations

If we have obtained more observations, the regression model is

[
y

y+

]
≈
[
X

X+

]
β,

where y+ and X+ represent the additional observations.
We first note some properties of the new XTX matrix, although we will

make direct use of the new X matrix, as usual. We see that

[
X

X+

]T [
X

X+

]
= XTX +XT

+X+.

The relation of the inverse of XTX +XT
+X+ to the inverse of XTX can be

seen in equation (3.177) on page 119, or in equation (3.185) for the vector
corresponding to a single additional row.

If the QR decomposition of X is available, we simply augment it as in
equation (6.47): ⎡

⎣ R c1
0 c2
X+ y+

⎤
⎦ =

[
QT 0
0 I

] [
X y
X+ y+

]
.

We now apply orthogonal transformations to this to zero out the last rows
and produce [

R∗ c1∗
0 c2∗

]
,

where R∗ is an m × m upper triangular matrix and c1∗ is an m-vector as
before, but c2∗ is an (n − m + k)-vector. We then have an equation of the
form (9.17) and we use back substitution to solve it.

9.3.7.3 Adding More Observations Using Weights

Another way of approaching the problem of adding or deleting observations
is by viewing the problem as weighted least squares. In this approach, we also
have more general results for updating regression statistics. Following Escobar
and Moser (1993), we can consider two weighted least squares problems: one
with weight matrix W and one with weight matrix V . Suppose we have the
solutions β̂W and β̂V . Now let

Δ = V −W,

and use the subscript ∗ on any matrix or vector to denote the subarray that
corresponds only to the nonnull rows of Δ. The symbol Δ∗, for example, is
the square subarray of Δ consisting of all of the nonzero rows and columns of
Δ, and X∗ is the subarray of X consisting of all the columns of X and only
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the rows of X that correspond to Δ∗. From the normal equations (9.31) using

W and V , and with the solutions β̂W and β̂V plugged in, we have

(XTWX)β̂V + (XTΔX)β̂V = XTWy +XTΔy,

and so

β̂V − β̂W = (XTWX)+XT
∗ Δ∗(y −Xβ̂V )∗.

This gives

(y −Xβ̂V )∗ = (I +X(XTWX)+XT
∗ Δ∗)

+(y −Xβ̂W )∗,

and finally

β̂V = β̂W + (XTWX)+XT
∗ Δ∗

(
I +X∗(X

TWX)+XT
∗ Δ∗

)+
(y −Xβ̂W )∗.

If Δ∗ can be written as ±GGT, using this equation and the equa-
tions (3.176) on page 119 (which also apply to pseudoinverses), we have

β̂V = β̂W ± (XTWX)+XT
∗ G(I ±GTX∗(X

TWX)+XT
∗ G)+GT(y −Xβ̂W )∗.

(9.32)

The sign of GGT is positive when observations are added and negative when
they are deleted.

Equation (9.32) is particularly simple in the case where W and V are
identity matrices (of different sizes, of course). Suppose that we have ob-
tained more observations in y+ and X+. (In the following, the reader must
be careful to distinguish “+” as a subscript to represent more data and “+”
as a superscript with its usual meaning of a Moore-Penrose inverse.) Suppose

we already have the least squares solution for y ≈ Xβ, say β̂W . Now β̂W is
the weighted least squares solution to the model with the additional data and
with weight matrix

W =

[
I 0
0 0

]
.

We now seek the solution to the same system with weight matrix V , which is
a larger identity matrix. From equation (9.32), the solution is

β̂ = β̂W + (XTX)+XT
+(I +X+(X

TX)+XT
+)

+(y −Xβ̂W )∗. (9.33)

9.3.8 Linear Smoothing

The interesting reasons for doing regression analysis are to understand rela-
tionships and to predict a value of the dependent value given a value of the
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independent variable. As a side benefit, a model with a smooth equation f(x)

“smoothes” the observed responses; that is, the elements in ŷ = f̂(x) exhibit
less variation than the elements in y. Of course, the important fact for our
purposes is that ‖y − ŷ‖ is smaller than ‖y‖ or ‖y − ȳ‖.

The use of the hat matrix emphasizes the smoothing perspective as a
projection of the original y:

ŷ = Hy.

The concept of a smoothing matrix was discussed in Sect. 8.6.2. From this
perspective, using H , we project y onto a vector in span(H), and that vector
has a smaller variation than y; that is, H has smoothed y. It does not matter
what the specific values in the vector y are so long as they are associated with
the same values of the independent variables.

We can extend this idea to a general n× n smoothing matrix Hλ:

ỹ = Hλy.

The smoothing matrix depends only on the kind and extent of smoothing to
be performed and on the observed values of the independent variables. The
extent of the smoothing may be indicated by the indexing parameter λ. Once
the smoothing matrix is obtained, it does not matter how the independent
variables are related to the model.

In Sect. 6.7.2, we discussed regularized solutions of overdetermined systems
of equations, which in the present case is equivalent to solving

min
b

(
(y −Xb)T(y −Xb) + λbTb

)
.

The solution of this yields the smoothing matrix

Sλ = X(XTX + λI)−1XT,

as we have seen on page 364. This has the effect of shrinking the ŷ toward 0.
(In regression analysis, this is called “ridge regression”.)

We discuss ridge regression and general shrinkage estimation in Sect. 9.5.4.
Loader (2012) provides additional background and discusses more general
issues in smoothing.

9.3.9 Multivariate Linear Models

A simple modification of the model (9.10), yi = βTxi+εi, on page 404, extends
the scalar responses to vector responses; that is, yi is a vector, and of course,
the vector of parameters β must be replaced by a matrix. Let d be the order
of yi. Similarly, εi is a d-vector.

This is a “multivariate” linear model, meaning among other things, that
the error term has a multivariate distribution (it is not a set of i.i.d. scalars).
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A major difference in the multivariate linear model arises from the struc-
ture of the vector εi. It may be appropriate to assume that the εis are indepen-
dent from one observation to another, but it is not likely that the individual
elements within an εi vector are independent from each other or even that
they have zero correlations. A reasonable assumption to complete the model
is that the vectors εis are independently and identically distributed with mean
0 and variance-covariance matrix Σ. It might be reasonable also to assume
that they have a normal distribution.

In statistical applications in which univariate responses are modeled, in-
stead of the model for a single observation, we are more likely to write the
model for a set of observations on y and x in the form of equation (9.11),
y = Xβ + ε, in which y and ε are d-vectors, X is a matrix in which the
rows correspond to the individual xi. Extending this form to the multivariate
model, we write

Y = XB + E, (9.34)

where now Y is an n×d matrix, X is an n×m matrix as before, B is an m×d
matrix and E is an n× d matrix. Under the assumptions on the distribution
of the vector εi above, and including the assumption of normality, E in (9.34)
has a matrix normal distribution (see expression (4.78) on page 221):

E ∼ Nn,d(0, I, Σ), (9.35)

or in the form of (4.79),

vec
(
ET

)
∼ Ndn (0, diag(Σ, . . . , Σ)) .

Note that the variance-covariance matrix in this distribution has Kronecker
structure, since diag(Σ, . . . , Σ) = I ⊗Σ (see also equation (3.102)).

9.3.9.1 Fitting the Model

Fitting multivariate linear models is done in the same way as fitting univariate
linear models. The most common criterion for fitting is least squares, which
as we have pointed out before is the same as a maximum likelihood criterion
if the errors are identically and independently normally distributed (which
follows from the identity matrix I in expression (9.35)). This is the same
fitting problem that we considered in Sect. 9.3.1 in this chapter or, earlier in
Sect. 6.6 on page 289.

In an approach similar to the development in Sect. 6.6, for a given choice
of B, say B̃, we have, corresponding to equation (6.33),

XB̃ = Y −R, (9.36)

where R is an n× d matrix of residuals.
A least squares solution B̂ is one that minimizes the sum of squares of the

residuals (or, equivalently, the square root of the sum of the squares, that is,
‖R‖F). Hence, we have the optimization problem



422 9 Selected Applications in Statistics

min
˜B

∥∥∥Y −XB̃
∥∥∥
F
. (9.37)

As in Sect. 6.6, we rewrite the square of this norm, using equation (3.291)
from page 168, as

tr
(
(Y −XB̃)T(Y −XB̃)

)
. (9.38)

This is similar to equation (6.35), which, as before, we differentiate and set

equal to zero, getting the normal equations in the vector B̂,

XTXB̂ = XTY. (9.39)

(Exercise.)
We note that the columns of the matrices in these equations are each the

same as the univariate normal equations (6.36):

XTX [B̂∗1, . . . , B̂∗d] = XT[Y∗1, . . . , Y∗d].

9.3.9.2 Partitioning the Sum of Squares

On page 363, we discussed the partitioning of the sum of squares of an ob-
served vector of data, yTy. We did this in the context of the Gramian of the
partitioned matrix [X y]. In the multivariate case, first of all, instead of the
sum of squares yTy, we have the matrix of sums of squares and cross products,
Y TY . We now consider the Gramian matrix [X Y ]T[X Y ], and partition it as
in expression (9.27), [

XTX XTY
Y TX Y TY

]
. (9.40)

From this we can get

[
(XTX)+ X+Y
Y TX+T Y TY − Y TX(XTX)+XTY

]
. (9.41)

Note that the term in the lower right side in this partitioning is the Schur
complement of XTX in [X Y ]T [X Y ] (see equation (3.191) on page 122). This
matrix of residual sums of squares and cross products provides a maximum
likelihood estimator of Σ:

Σ̂ =
(
Y TY − Y TX(XTX)+XTY

)
/n. (9.42)

If the normalizing factor is 1/(n−d) instead of 1/n, the estimator is unbiased.
This partitioning breaks the matrix of total sums of squares and cross

products into a sum of a matrix of sums of squares and cross products due
to the fitted relationship between Y and X and a matrix of residual sums
of squares and cross products. The analysis of these two matrices of sums
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of squares and cross products is one of the most fundamental and important
techniques in multivariate statistics.

The matrix in the upper left of the partition (9.41) can be used to get an
estimate of the variance-covariance matrix of estimates of any independent
set of linearly estimable functions of B. The matrix in the upper right of
the partition is the solution to the normal equations, B̂. The matrix in the
lower right partition, which is the Schur complement of the full inverse (see
equations (3.190) and (3.214)), is the matrix of sums of squares and cross
products of the residuals. With proper scaling, it provides an estimate of the
variance-covariance Σ of each row of E in equation (9.34).

9.3.9.3 Statistical Inference

Statistical inference for multivariate linear models is similar to what is de-
scribed in Sect. 9.3.3 with some obvious changes and extensions. First order
properties of distributions of the analogous statistics are almost the same. Sec-
ond order properties (variances), however, are rather different. The solution of

the normal equations B̂ has a matrix normal distribution with expectation B.
The scaled matrix of sums of squares and cross products of the residuals, call
it Σ̂, has a Wishart distribution with parameter Σ.

The basic null hypothesis of interest that the distribution of Y is not
dependent on X is essentially the same as in the univariate case. The F -test
in the corresponding univariate case, which is the ratio of two independent chi-
squared random variables, has an analogue in a comparison of two matrices
of sums of squares and cross products. In the multivariate case, the basis for
statistical inference is Σ̂, and it can be used in various ways. The relevant
fact is that Σ̂ ∼ Wd(Σ,n − d), that is, it has a Wishart distribution with
variance-covariance matrix Σ and parameters d and n− d (see Exercise 4.12
on page 224).

In hypothesis testing, depending on the null hypothesis, there are other
matrices that have Wishart distributions. There are various scalar transfor-
mations of Wishart matrices whose distributions are known (or which have
been approximated). One of the most common ones, and which even has some
of the flavor of an F statistic, is Wilk’s Λ,

Λ =
det

(
Σ̂
)

det
(
Σ̂0

) , (9.43)

where Σ̂0 is a scaled Wishart matrix yielding a maximum of the likelihood
under a null hypothesis. Other related test statistics involving Σ̂ are Pillai’s
trace, the Lawley-Hotelling trace (and Hotelling’s T 2), and Roy’s maximum
root. We will not discuss these here, and the interested reader is referred to a
text on multivariate analysis.
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In multivariate analysis, there are other properties of the model that are
subject to statistical inference. For example, we may wish to estimate or test
the rank of the coefficient matrix, B. Even in the case of a single multivariate
random variable, we may wish to test whether the variance-covariance matrix
is of full rank. If it is not, there are fixed relationships among the elements of
the random variable, and the distribution is said to be singular. We will discuss
the problem of testing the rank of a matrix briefly in Sect. 9.5.5, beginning on
page 433, but for more discussion on issues of statistical inference, we again
refer the reader to a text on multivariate statistical inference.

9.4 Principal Components

The analysis of multivariate data involves various linear transformations that
help in understanding the relationships among the features that the data
represent. The second moments of the data are used to accommodate the
differences in the scales of the individual variables and the covariances among
pairs of variables.

If X is the matrix containing the data stored in the usual way, a useful
statistic is the sums of squares and cross products matrix, XTX , or the “ad-
justed” squares and cross products matrix, XT

c Xc, where Xc is the centered
matrix formed by subtracting from each element of X the mean of the col-
umn containing that element. The sample variance-covariance matrix, as in
equation (8.67), is the Gramian matrix

SX =
1

n− 1
XT

c Xc, (9.44)

where n is the number of observations (the number of rows in X).
In data analysis, the sample variance-covariance matrix SX in equa-

tion (9.44) plays an important role. In more formal statistical inference, it
is a consistent estimator of the population variance-covariance matrix (if it
is positive definite), and under assumptions of independent sampling from a
normal distribution, it has a known distribution. It also has important numer-
ical properties; it is symmetric and positive definite (or, at least, nonnegative
definite; see Sect. 8.6). Other estimates of the variance-covariance matrix or
the correlation matrix of the underlying distribution may not be positive def-
inite, however, and in Sect. 9.5.6 and Exercise 9.15 we describe possible ways
of adjusting a matrix to be positive definite.

9.4.1 Principal Components of a Random Vector

It is often of interest to transform a given random vector into a vector whose el-
ements are independent. We may also be interested in which of those elements
of the transformed random vector have the largest variances. The transformed
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vector may be more useful in making inferences about the population. In more
informal data analysis, it may allow use of smaller observational vectors with-
out much loss in information.

Stating this more formally, if Y is a random d-vector with variance-
covariance matrix Σ, we seek a transformation matrix A such that Ỹ = AY
has a diagonal variance-covariance matrix. We are additionally interested in
a transformation aTY that has maximal variance for a given ‖a‖.

Because the variance of aTY is V(aTY ) = aTΣa, we have already obtained
the solution in equation (3.265). The vector a is the eigenvector corresponding
to the maximum eigenvalue of Σ, and if a is normalized, the variance of aTY
is the maximum eigenvalue.

Because Σ is symmetric, it is orthogonally diagonalizable and the proper-
ties discussed in Sect. 3.8.10 on page 153 not only provide the transformation
immediately but also indicate which elements of Ỹ have the largest variances.
We write the orthogonal diagonalization of Σ as (see equation (3.252))

Σ = ΓΛΓT, (9.45)

where ΓΓT = ΓTΓ = I, and Λ is diagonal with elements λ1 ≥ · · · ≥ λm ≥ 0
(because a variance-covariance matrix is nonnegative definite). Choosing the
transformation as

Ỹ = ΓTY, (9.46)

we have V(Ỹ ) = Λ; that is, the ith element of Ỹ has variance λi, and

Cov(Ỹi, Ỹj) = 0 if i �= j.

The elements of Ỹ are called the principal components of Y . The first principal
component, Ỹ1, which is the signed magnitude of the projection of Y in the
direction of the eigenvector corresponding to the maximum eigenvalue, has
the maximum variance of any of the elements of Ỹ , and V(Ỹ1) = λ1. (It is,
of course, possible that the maximum eigenvalue is not simple. In that case,
there is no one-dimensional first principal component. If m1 is the multiplicity
of λ1, all one-dimensional projections within the m1-dimensional eigenspace
corresponding to λ1 have the same variance, and m1 projections can be chosen
as mutually independent.)

The second and third principal components, and so on, are likewise deter-
mined directly from the spectral decomposition.

9.4.2 Principal Components of Data

The same ideas of principal components in probability models carry over to
observational data. Given an n×d data matrix X , we seek a transformation as
above that will yield the linear combination of the columns that has maximum
sample variance, and other linear combinations that are independent. This
means that we work with the centered matrix Xc (equation (8.64)) and the
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variance-covariance matrix SX , as above, or the centered and scaled matrix
Xcs (equation (8.65)) and the correlation matrix RX (equation (8.69)). See
Section 3.3 in Jolliffe (2002) for discussions of the differences in using the
centered but not scaled matrix and using the centered and scaled matrix.

In the following, we will use SX , which plays a role similar to Σ for the ran-
dom variable. (This role could be stated more formally in terms of statistical
estimation. Additionally, the scaling may require more careful consideration.
The issue of scaling naturally arises from the arbitrariness of units of mea-
surement in data. Random variables discussed in Sect. 9.4.1 have no units of
measurement.)

In data analysis, we seek a normalized transformation vector a to apply
to any centered observation xc, so that the sample variance of aTxc, that is,

aTSXa, (9.47)

is maximized.
From equation (3.265) or the spectral decomposition equation (3.256), we

know that the solution to this maximization problem is the eigenvector, v1,
corresponding to the largest eigenvalue, c1, of SX , and the value of the ex-
pression (9.47); that is, vT1 SXv1 at the maximum is the largest eigenvalue. In
applications, this vector is used to transform the rows of Xc into scalars. If
we think of a generic row of Xc as the vector x, we call v

T
1 x the first principal

component of x. There is some ambiguity about the precise meaning of “prin-
cipal component”. The definition just given is a scalar; that is, a combination
of values of a vector of variables. This is consistent with the definition that
arises in the population model in Sect. 9.4.1. Sometimes, however, the eigen-
vector v1 itself is referred to as the first principal component. More often, the
vector Xcv1 of linear combinations of the columns of Xc is called the first
principal component. We will often use the term in this latter sense.

If the largest eigenvalue, c1, is of algebraic multiplicity m1 > 1, we have
seen that we can choose m1 orthogonal eigenvectors that correspond to c1
(because SX , being symmetric, is simple). Any one of these vectors may be
called a first principal component of X .

The second and third principal components, and so on, are likewise de-
termined directly from the nonzero eigenvalues in the spectral decomposition
of SX . Because the eigenvectors are orthogonal (or can be chosen to be), the
principal components have the property

zTi SXzj = zTi zj = 0, for i �= j.

The full set of principal components of Xc, analogous to equation (9.46)
except that here the random vectors correspond to the rows in Xc, is

Z = XcV, (9.48)

where V has rX columns. (As before, rX is the rank of X .). Figure 9.2 shows
two principal components, z1 and z2, formed from the data represented in x1

and x2.
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9.4.2.1 Principal Components Directly from the Data Matrix

Formation of the SX matrix emphasizes the role that the sample covariances
play in principal component analysis. However, there is no reason to form

x1

x2

z1

z2

Figure 9.2. Principal components

a matrix such as XT
c Xc, and indeed we may introduce significant rounding

errors by doing so. (Recall our previous discussions of the condition numbers
of XTX and X .)

The singular value decomposition of the n×mmatrix Xc yields the square
roots of the eigenvalues of XT

c Xc and the same eigenvectors. (The eigenvalues
of XT

c Xc are (n− 1) times the eigenvalues of SX .) We will assume that there
are more observations than variables (that is, that n > m). In the SVD of the
centered data matrix Xc = UAV T, U is an n × rX matrix with orthogonal
columns, V is an m× rX matrix whose first rX columns are orthogonal and
the rest are 0, and A is an rX × rX diagonal matrix whose entries are the
nonnegative singular values of X−X. (As before, rX is the column rank ofX .)

The spectral decomposition in terms of the singular values and outer prod-
ucts of the columns of the factor matrices is

Xc =

rX∑
i

σiuiv
T
i . (9.49)

The vectors ui are the same as the eigenvectors of SX .
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9.4.2.2 Dimension Reduction

If the columns of a data matrix X are viewed as variables or features that are
measured for each of several observational units, which correspond to rows
in the data matrix, an objective in principal components analysis may be to
determine some small number of linear combinations of the columns of X
that contain almost as much information as the full set of columns. (Here we
are not using “information” in a precise sense; in a general sense, it means
having similar statistical properties.) Instead of a space of dimension equal
to the (column) rank of X (that is, rX), we seek a subspace of span(X) with
rank less than rX that approximates the full space (in some sense). As we
discussed on page 176, the best approximation in terms of the usual norm
(the Frobenius norm) of Xc by a matrix of rank p is

X̃p =

p∑
i

σiuiv
T
i (9.50)

for some p < min(n,m).
Principal components analysis is often used for “dimension reduction” by

using the first few principal components in place of the original data. There
are various ways of choosing the number of principal components (that is, p
in equation (9.50)). There are also other approaches to dimension reduction.
A general reference on this topic is Mizuta (2012).

9.5 Condition of Models and Data

In Sect. 6.1, we describe the concept of “condition” of a matrix for certain
kinds of computations. In Sect. 6.1.3, we discuss how a large condition num-
ber may indicate the level of numerical accuracy in the solution of a system
of linear equations, and on page 292 we extend this discussion to overdeter-
mined systems such as those encountered in regression analysis. (We return
to the topic of condition in Sect. 11.2 with even more emphasis on the numer-
ical computations.) The condition of the X matrices has implications for the
accuracy we can expect in the numerical computations for regression analysis.

There are other connections between the condition of the data and statis-
tical analysis that go beyond just the purely computational issues. Analysis
involves more than just computations. Ill-conditioned data also make inter-
pretation of relationships difficult because we may be concerned with both
conditional and marginal relationships. In ill-conditioned data, the relation-
ships between any two variables may be quite different depending on whether
or not the relationships are conditioned on relationships with other variables
in the dataset.
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9.5.1 Ill-Conditioning in Statistical Applications

We have described ill-conditioning heuristically as a situation in which small
changes in the input data may result in large changes in the solution. Ill-
conditioning in statistical modeling is often the result of high correlations
among the independent variables. When such correlations exist, the compu-
tations may be subject to severe rounding error. This was a problem in using
computer software many years ago, as Longley (1967) pointed out. When there
are large correlations among the independent variables, the model itself must
be examined, as Beaton, Rubin, and Barone (1976) emphasize in reviewing
the analysis performed by Longley. Although the work of Beaton, Rubin, and
Barone was criticized for not paying proper respect to high-accuracy compu-
tations, ultimately it is the utility of the fitted model that counts, not the
accuracy of the computations.

Large correlations are reflected in the condition number of the X matrix.
A large condition number may indicate the possibility of harmful numerical
errors. Some of the techniques for assessing the accuracy of a computed result
may be useful. In particular, the analyst may try the suggestion of Mullet and
Murray (1971) to regress y+dxj on x1, . . . , xm, and compare the results with
the results obtained from just using y.

Other types of ill-conditioning may be more subtle. Large variations in the
leverages may be the cause of ill-conditioning.

Often, numerical problems in regression computations indicate that the
linear model may not be entirely satisfactory for the phenomenon being stud-
ied. Ill-conditioning in statistical data analysis often means that the approach
or the model is not appropriate.

9.5.2 Variable Selection

Starting with a model such as equation (9.9),

Y = βTx+ E,

we are ignoring the most fundamental problem in data analysis: which vari-
ables are really related to Y , and how are they related?

We often begin with the premise that a linear relationship is at least a good
approximation locally; that is, with restricted ranges of the variables. This
leaves us with one of the most important tasks in linear regression analysis:
selection of the variables to include in the model. There are many statistical
issues that must be taken into consideration. We will not discuss these issues
here; rather we refer the reader to a comprehensive text on regression analy-
sis, such as Draper and Smith (1998), or to a text specifically on this topic,
such as Miller (2002). Some aspects of the statistical analysis involve tests of
linear hypotheses, such as discussed in Sect. 9.3.3. There is a major difference,
however; those tests were based on knowledge of the correct model. The basic
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problem in variable selection is that we do not know the correct model. Most
reasonable procedures to determine the correct model yield biased statistics.
Some people attempt to circumvent this problem by recasting the problem in
terms of a “full” model; that is, one that includes all independent variables
that the data analyst has looked at. (Looking at a variable and then making
a decision to exclude that variable from the model can bias further analyses.)

We generally approach the variable selection problem by writing the model
with the data as

y = Xiβi +Xoβo + ε, (9.51)

where Xi and Xo are matrices that form some permutation of the columns of
X , Xi|Xo = X , and βi and βo are vectors consisting of corresponding elements
from β. (The i and o are “in” and “out”.) We then consider the model

y = Xiβi + εi. (9.52)

It is interesting to note that the least squares estimate of βi in the
model (9.52) is the same as the least squares estimate in the model

ŷio = Xiβi + εi,

where ŷio is the vector of predicted values obtained by fitting the full
model (9.51). An interpretation of this fact is that fitting the model (9.52)
that includes only a subset of the variables is the same as using that subset
to approximate the predictions of the full model. The fact itself can be seen
from the normal equations associated with these two models. We have

XT
i X(XTX)−1XT = XT

i . (9.53)

This follows from the fact that X(XTX)−1XT is a projection matrix, and Xi

consists of a set of columns of X (see Sect. 8.5 and Exercise 9.12 on page 455).
As mentioned above, there are many difficult statistical issues in the vari-

able selection problem. The exact methods of statistical inference generally
do not apply (because they are based on a model, and we are trying to choose
a model). In variable selection, as in any statistical analysis that involves the
choice of a model, the effect of the given dataset may be greater than war-
ranted, resulting in overfitting. One way of dealing with this kind of problem is
to use part of the dataset for fitting and part for validation of the fit. There are
many variations on exactly how to do this, but in general, “cross validation”
is an important part of any analysis that involves building a model.

The computations involved in variable selection are the same as those
discussed in Sects. 9.3.3 and 9.3.7.

9.5.3 Principal Components Regression

A somewhat different approach to the problem of variable selection involves
selecting some linear combinations of all of the variables. The first p princi-
pal components of X cover the space of span(X) optimally (in some sense),
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and so these linear combinations themselves may be considered as the “best”
variables to include in a regression model. If Vp is the first p columns from
V in the full set of principal components of X , equation (9.48), we use the
regression model

y ≈ Zpγ, (9.54)

where
Zp = XVp. (9.55)

This is the idea of principal components regression.
In principal components regression, even if p < m (which is the case, of

course; otherwise principal components regression would make no sense), all
of the original variables are included in the model. Any linear combination
forming a principal component may include all of the original variables. The
weighting on the original variables tends to be such that the coefficients of
the original variables that have extreme values in the ordinary least squares
regression are attenuated in the principal components regression using only
the first p principal components.

The principal components do not involve y, so it may not be obvious that a
model using only a set of principal components selected without reference to y
would yield a useful regression model. Indeed, sometimes important indepen-
dent variables do not get sufficient weight in principal components regression.

9.5.4 Shrinkage Estimation

As mentioned in the previous section, instead of selecting specific independent
variables to include in the regression model, we may take the approach of
shrinking the coefficient estimates toward zero. This of course has the effect of
introducing a bias into the estimates (in the case of a true model being used),
but in the process of reducing the inherent instability due to collinearity in
the independent variables, it may also reduce the mean squared error of linear
combinations of the coefficient estimates. This is one approach to the problem
of overfitting.

The shrinkage can also be accomplished by a regularization of the fitting
criterion. If the fitting criterion is minimization of a norm of the residuals, we
add a norm of the coefficient estimates to minimize

‖r(b)‖f + λ‖b‖b, (9.56)

where λ is a tuning parameter that allows control over the relative weight
given to the two components of the objective function. This regularization is
also related to the variable selection problem by the association of superfluous
variables with the individual elements of the optimal b that are close to zero.
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9.5.4.1 Ridge Regression

If the fitting criterion is least squares, we may also choose an L2 norm on b,
and we have the fitting problem

min
b

(
(y −Xb)T(y −Xb) + λbTb

)
. (9.57)

This is called Tikhonov regularization (from A. N. Tikhonov), and it is by far
the most commonly used regularization. This minimization problem yields the
modified normal equations

(XTX + λI)b = XTy, (9.58)

obtained by adding λI to the sums of squares and cross products matrix. This
is the ridge regression we discussed on page 364, and as we saw in Sect. 6.1, the
addition of this positive definite matrix has the effect of reducing numerical
ill-conditioning.

Interestingly, these normal equations correspond to a least squares approx-
imation for ⎛

⎝ y

0

⎞
⎠ ≈

⎡
⎣ X

√
λI

⎤
⎦β. (9.59)

(See Exercise 9.11.) The shrinkage toward 0 is evident in this formulation.
Because of this, we say the “effective” degrees of freedom of a ridge regression
model decreases with increasing λ. In equation (8.61), we formally defined the
effective model degrees of freedom of any linear fit

ŷ = Sλy

as
tr(Sλ),

and we saw in equation (8.62) that indeed it does decrease with increasing λ.

Even if all variables are left in the model, the ridge regression approach
may alleviate some of the deleterious effects of collinearity in the independent
variables.

9.5.4.2 Lasso Regression

The norm for the regularization in expression (9.56) does not have to be
the same as the norm applied to the model residuals. An alternative fitting
criterion, for example, is to use an L1 norm,

min
b

(y −Xb)T(y −Xb) + λ‖b‖1.
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Rather than strictly minimizing this expression, we can formulate a con-
strained optimization problem

min
‖b‖1<t

(y −Xb)T(y −Xb), (9.60)

for some tuning constant t. The solution of this quadratic programming prob-
lem yields a b with some elements identically 0, depending on t. As t de-
creases, more elements of the optimal b are identically 0, and thus this is an
effective method for variable selection. The use of expression (9.60) is called
lasso regression. (“Lasso” stands for “least absolute shrinkage and selection
operator”.)

Lasso regression is computationally expensive if several values of t are
explored. Efron et al. (2004) propose “least angle regression” (LAR), the
steps of which effectively yield the entire lasso regularization path.

9.5.5 Statistical Inference about the Rank of a Matrix

An interesting problem in numerical linear algebra is to approximate the rank
of a given matrix. A related problem in statistical inference is to estimate or to
test an hypothesis concerning the rank of an unknown matrix. For example,
in the multivariate regression model discussed in Sect. 9.3.9 (beginning on
page 420), we may wish to test whether the coefficient matrix B is of full
rank.

In statistical inference, we use observed data to make inferences about a
model, but we do not “estimate” or “test an hypothesis” concerning the rank
of a given matrix of data.

9.5.5.1 Numerical Approximation and Statistical Inference

The rank of a matrix is not a continuous function of the elements of the matrix.
It is often difficult to compute the rank of a given matrix; hence, we often seek
to approximate the rank. We alluded to the problem of approximating the rank
of a matrix on page 252, and indicated that a QR factorization of the given
matrix might be an appropriate approach to the problem. (In Sect. 11.4, we
discuss the rank-revealing QR (or LU) method for approximating the rank of
a matrix.)

The SVD can also be used to approximate the rank of a given n × m
matrix. The approximation would be based on a decision that either the rank
is min(n,m), or that the rank is r because di = 0 for i > r in the decomposition
UDV T given in equation (3.276) on page 161.

Although we sometimes refer to the problem as one of “estimating the
rank of a matrix”, “estimation” in the numerical-analytical sense refers to
“approximation”, rather than to statistical estimation. This is an important
distinction that is often lost. Estimation and testing in a statistical sense do
not apply to a given entity; these methods of inference apply to properties
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of a random variable. We use observed realizations of the random variable to
make inferences about unobserved properties or parameters that describe the
distribution of the random variable.

A statistical test is a decision rule for rejection of an hypothesis about
which empirical evidence is available. The empirical evidence consists of ob-
servations on some random variable, and the hypothesis is a statement about
the distribution of the random variable. In simple cases of hypothesis testing,
the distribution is assumed to be characterized by a parameter, and the hy-
pothesis merely specifies the value of that parameter. The statistical test is
based on the distribution of the underlying random variable if the hypothesis
is true.

9.5.5.2 Statistical Tests of the Rank of a Class of Matrices

Most common statistical tests involve hypotheses concerning a scalar param-
eter. We have encountered two examples that involve tests of hypotheses con-
cerning matrix parameters. One involved tests of the variance-covariance ma-
trix Σ in a multivariate distribution (Exercise 4.12 on page 224), and the
other was for tests of the coefficient matrix B in multivariate linear regres-
sion (see page 423). The tests of the variance-covariance matrix are based
on a Wishart matrix W , but for a specific hypothesis, the test statistic is
a chi-squared statistic. In the multivariate linear regression testing problem,
the least-squares estimator of the coefficient matrix, which has a matrix nor-
mal distribution, is used to form two matrices that have independent Wishart
distributions. The hypotheses of interest are that certain elements of the coef-
ficient matrix are zero, and the test statistics involve functions of the Wishart
matrices, such as Wilk’s Λ, which is the ratio of the determinants.

In multivariate linear regression, given n observations on the vectors y and
x, we use the model for the data given in equation (9.34), on page 421,

Y = XB + E,

where Y is an n×d matrix and X is an n×m matrix of observations, B is an
m× d unknown matrix, E is an n× d matrix of n unobserved realizations of
a d-variate random variable. The canonical problem in statistical applications
is to test whether B = 0, that is, whether there is any linear relationship
between y and x. A related but less encompassing question is whether B is of
full rank. (If B = 0, its rank is zero.) Testing whether B is of full rank is similar
to the familiar univariate statistical problem of testing if some elements of β
in the model y = xTβ+ ε are zero. In the multivariate case, this is sometimes
referred to as the “reduced rank regression” problem. The null hypothesis of
interest is

H0 : rank(B) ≤ min(m, d)− 1.

One approach is to test sequentially the null hypotheses H0i : rank(B) = i
for i = 1, . . .min(m, d)− 1.
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The other problem referred to above is, given n d-vectors y1, . . . yn assumed
to be independent realizations of random vectors distributed as Nd(μ,Σ),
to test whether Σ is of full rank (that is, whether the multivariate normal
distribution is singular; see page 219).

In other applications, in vector stochastic processes, the matrix of interest
is one that specifies the relationship of one time series to another. In such
applications the issue of stationarity is important, and may be one of the
reasons for performing the rank test.

The appropriate statistical models in these settings are different, and the
forms of the models in the different applications affect the distributions of any
test statistics. The nature of the subject of the hypothesis, that is, the rank of
a matrix, poses some difficulty. Much of the statistical theory on hypothesis
testing involves an open parameter space over a dense set of reals, but of course
the rank is an integer. Because of this, even if for no other reason, we would
not expect to be able to work out an exact distribution of any estimator or
test statistic for the rank. At best we would seek an estimator or test statistic
for which we could derive, or at least approximate, an asymptotic distribution.

Problems of testing the rank of a matrix have been addressed in the sta-
tistical literature for some time; see, for example, Anderson (1951), Gill and
Lewbel (1992), and Cragg and Donald (1996). They have also been discussed
frequently in econometric applications; see, for example, Robin and Smith
(2000) and Kleibergen and Paap (2006). In some of the literature, it is not
clear whether or not the authors are describing a test for the rank of a given
matrix, which, as pointed out above, is not a statistical procedure, even if a
“test statistic” and a “null probability distribution” are involved.

My purpose in this section is not to review the various approaches to
statistical inference about the rank of matrices or to discuss the “best” tests
under various scenarios, but rather to describe one test in order to give the
flavor of the approaches.

9.5.5.3 Statistical Tests of the Rank Based on an LDU
Factorization

Gill and Lewbel (1992) and Cragg and Donald (1996) describe tests of the
rank of a matrix that use factors from an LDU factorization. For an m × d
matrix Θ, the tests are of the null hypothesis H0 : rank(Θ) = r, where
r < min(m, d). (There are various ways an alternative hypothesis could be
phrased, but we will not specify one here.)

We first decompose the unknown matrix Θ as in equation (5.32), using
permutation matrices so that the diagonal elements of D are nonincreasing in
absolute value: E(π1)ΘE(π2) = LDU .

The m × d matrix Θ (with m ≥ d without loss of generality) can be
decomposed as
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E(π1)ΘE(π2) = LDU

=

⎡
⎣L11 0 0
L21 L22 0
L31 L32 Im−d

⎤
⎦
⎡
⎣D1 0 0

0 D2 0
0 0 0

⎤
⎦
⎡
⎣U11 U12

0 U22

0 0

⎤
⎦, (9.61)

where the unknown matrices L11, U11, and D1 are r× r, and the elements of
the diagonal submatrices D1 and D2 are arranged in nonincreasing order. If
the rank of Θ is r, D2 = 0, but no diagonal element of D1 is 0.

For a statistical test of the rank of Θ, we need to identify an observable
random variable (random vector) whose distribution depends on Θ. To pro-

ceed, we take a sample of realizations of this random variable. We let Θ̂ be
an estimate of Θ based on n such realizations, and assume the central limit
property, √

k vec(Θ̂ −Θ) →d N(0, V ), (9.62)

where V is nm×nm and positive definite. (For example, if B is the coefficient

matrix in the multivariate linear regression model (9.34) and B̂ is the least-

squares estimator from expression (9.37), then B̂ and B have this property. If
Σ is the variance-covariance matrix in the multivariate normal distribution,
expression (4.74), then we use the sample variance-covariance matrix, equa-
tion (8.67), page 367; but in this case, the analogous asymptotic distribution

relating Σ̂ and Σ is a Wishart distribution.)

Now if D2 = 0 (that is, if Θ has rank r) and Θ̂ is decomposed in the same
way as Θ in equation (9.61), then

√
k diag(D̂2) →d N(0,W )

for some positive definite matrix W , and the quantity

nd̂T2 W
−1d̂2, (9.63)

where

d̂2 = diag(D̂2),

has an asymptotic chi-squared distribution with (m − r) degrees of freedom.

If a consistent and independent estimator of W , say Ŵ , is used in place of W
in the expression (9.63), this would be a test statistic for the hypothesis that
the rank of Θ is r. (Note that W is m− r ×m− r.)

Gill and Lewbel (1992) derive a consistent estimator to use in expres-

sion (9.63) as a test statistic. Following their derivation, first let V̂ be a con-
sistent estimator of V . (It would typically be a sample variance-covariance
matrix.) Then (

Q̂T ⊗ P̂
)
V̂
(
Q̂⊗ P̂T

)

is a consistent estimator of the variance-covariance of vec(P̂ (Θ̂−Θ)Q̂). Next,
define the matrices
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Ĥ =
[
−L̂−1

22 L̂21L̂
−1
11

∣∣∣ L̂−1
22

∣∣∣ 0
]
,

K̂ =

[
−Û−1

11 Û12Û
−1
22

Û−1
22

]
,

and T such that

vec(D̂2) = T d̂2.

The matrix T is (m− r)2 × (m− r), consisting of a stack of square matrices
with 0s in all positions except for a 1 in one diagonal element. The matrix is
orthogonal; that is,

TTT = Im−r.

The matrix

(K̂ ⊗ ĤT)T

transforms vec(P̂ (Θ̂−Θ)Q̂) into d̂2; hence the variance-covariance estimator,

(Q̂T ⊗ P̂ )V̂ (Q̂ ⊗ P̂T), is adjusted by this matrix. The estimator Ŵ therefore
is given by

Ŵ = TT(K̂T ⊗ Ĥ)(Q̂T ⊗ P̂ )V̂ (Q̂⊗ P̂T)(K̂ ⊗ ĤT)T.

The test statistic is
nd̂T2 Ŵ

−1d̂2, (9.64)

with an approximate chi-squared distribution with (m−r) degrees of freedom.
Cragg and Donald (1996), however, have pointed out that the indetermi-

nacy of the LDU decomposition casts doubts on the central limiting distribu-
tion in (9.62). Kleibergen and Paap (2006) proposed a related test for a certain
class of matrices based on the SVD. Because the SVD is unique (within the
limitations mentioned on page 163), it does not suffer from the indeterminacy.

9.5.6 Incomplete Data

Missing values in a dataset can not only result in ill-conditioned problems but
can cause some matrix statistics to lack their standard properties, such as
covariance or correlation matrices formed from the available data not being
positive definite.

In the standard flat data file represented in Fig. 8.1, where a row holds
data from a given observation and a column represents a specific variable or
feature, it is often the case that some values are missing for some observa-
tion/variable combination. This can occur for various reasons, such as a failure
of a measuring device, refusal to answer a question in a survey, or an inde-
terminate or infinite value for a derived variable (for example, a coefficient of
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variation when the mean is 0). This causes problems for our standard storage
of data in a matrix. The values for some cells are not available.

The need to make provisions for missing data is one of the important
differences between statistical numerical processing and ordinary numerical
analysis. First of all, we need a method for representing a “not available”
(NA) value, and then we need a mechanism for avoiding computations with
this NA value. There are various ways of doing this, including the use of
special computer numbers (see pages 464 and 475).

The layout of the data may be of the form

X =

⎡
⎢⎢⎣
X X NA

X NA NA

X NA X

X X X

⎤
⎥⎥⎦ . (9.65)

In the data matrix of equation (9.65), all rows could be used for summary
statistics relating to the first variable, but only two rows could be used for
summary statistics relating to the second and third variables. For summary
statistics such as the mean or variance for any one variable, it would seem to
make sense to use all of the available data.

The picture is not so clear, however, for statistics on two variables, such as
the covariance. If all observations that contain data on both variables are used
for computing the covariance, then the covariance matrix may not be positive
definite. If the correlation matrix is computed using covariances computed in
this way but variances computed on all of the data, some off-diagonal elements
may be larger than 1. If the correlation matrix is computed using covariances
from all available pairs and variances computed only from the data in complete
pairs (that is, the variances used in computing correlations involving a given
variable are different for different variables), then no off-diagonal element can
be larger than 1, but the correlation matrix may not be nonnegative definite.

An alternative, of course, is to use only data in records that are complete.
This is called “casewise deletion”, whereas use of all available data for bivariate
statistics is called “pairwise deletion”. One must be very careful in computing
bivariate statistics from data with missing values; see Exercise 9.14 (and a
solution on page 612).

Estimated or approximate variance-covariance or correlation matrices that
are not positive definite can arise in other ways in applications. For example,
the data analyst may have an estimate of the correlation matrix that was not
based on a single sample.

Various approaches to handling an approximate correlation matrix that
is not positive definite have been considered. Devlin et al. (1975) describe a
method of shrinking the given R toward a chosen positive definite matrix, R1,
which may be an estimator of a correlation matrix computed in other ways
(perhaps a robust estimator) or may just be chosen arbitrarily; for example,
R1 may just be the identity matrix. The method is to choose the largest value
α in [0, 1] such that the matrix



9.5 Condition of Models and Data 439

R̃ = αR+ (1− α)R1 (9.66)

is positive definite. This optimization problem can be solved iteratively start-
ing with α = 1 and decreasing α in small steps while checking whether R̃ is
positive definite. (The checks may require several computations.) A related
method is to use a modified Cholesky decomposition. If the symmetric matrix
S is not positive definite, a diagonal matrix D can be determined so that
S +D is positive definite. Eskow and Schnabel (1991), for example, describe
one way to determine D with values near zero and to compute a Cholesky
decomposition of S +D.

Devlin, Gnanadesikan, and Kettenring (1975) also describe nonlinear
shrinking methods in which all of the off-diagonal elements rij are replaced

iteratively, beginning with r
(0)
ij = rij and proceeding with

r
(k)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f−1
(
f
(
r
(k−1)
ij

)
+ δ

)
if r

(k−1)
ij < −f−1(δ)

0 if
∣∣∣r(k−1)

ij

∣∣∣ ≤ f−1(δ)

f−1
(
f
(
r
(k−1)
ij

)
− δ

)
if r

(k−1)
ij > f−1(δ)

(9.67)

for some invertible positive-valued function f and some small positive con-
stant δ (for example, 0.05). The function f may be chosen in various ways;
one suggested function is the hyperbolic tangent, which makes f−1 Fisher’s
variance-stabilizing function for a correlation coefficient; see Exercise 9.19b.

Rousseeuw and Molenberghs (1993) suggest a method in which some ap-
proximate correlation matrices can be adjusted to a nearby correlation matrix,
where closeness is determined by the Frobenius norm. Their method applies to
pseudo-correlation matrices. Recall that any symmetric nonnegative definite
matrix with ones on the diagonal is a correlation matrix. A pseudo-correlation
matrix is a symmetric matrix R with positive diagonal elements (but not nec-
essarily 1s) and such that r2ij ≤ riirjj . (This is inequality (8.12), which is a
necessary but not sufficient condition for the matrix to be nonnegative defi-
nite.)

The method of Rousseeuw and Molenberghs adjusts an m × m pseudo-
correlation matrix R to the closest correlation matrix R̃, where closeness is
determined by the Frobenius norm; that is, we seek R̃ such that

‖R− R̃‖F (9.68)

is minimum over all choices of R̃ that are correlation matrices (that is, ma-
trices with 1s on the diagonal that are positive definite). The solution to this
optimization problem is not as easy as the solution to the problem we consider
on page 176 of finding the best approximate matrix of a given rank. Rousseeuw
and Molenberghs describe a computational method for finding R̃ to minimize
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expression (9.68). A correlation matrix R̃ can be formed as a Gramian matrix
formed from a matrix U whose columns, u1, . . . , um, are normalized vectors,
where

r̃ij = uT
i uj .

If we choose the vector ui so that only the first i elements are nonzero, then
they form the Cholesky factor elements of R̃ with nonnegative diagonal ele-
ments,

R̃ = UTU,

and each ui can be completely represented in IRi. We can associate the m(m−
1)/2 unknown elements of U with the angles in their spherical coordinates. In
ui, the jth element is 0 if j > i and otherwise is

sin(θi1) · · · sin(θi,i−j) cos(θi,i−j+1),

where θi1, . . . , θi,i−j , θi,i−j+1 are the unknown angles that are the variables in
the optimization problem for the Frobenius norm (9.68). The problem now is
to solve

min

m∑
i=1

i∑
j=1

(rij − sin(θi1) · · · sin(θi,i−j) cos(θi,i−j+1))
2. (9.69)

This optimization problem is well-behaved and can be solved by steepest
descent (see page 201). Rousseeuw and Molenberghs (1993) also mention that
a weighted least squares problem in place of equation (9.69) may be more
appropriate if the elements of the pseudo-correlation matrix R result from
different numbers of observations.

In Exercise 9.15, we describe another way of converting an approximate
correlation matrix that is not positive definite into a correlation matrix by
iteratively replacing negative eigenvalues with positive ones.

9.6 Optimal Design

When an experiment is designed to explore the effects of some variables (usu-
ally called “factors”) on another variable, the settings of the factors (inde-
pendent variables) should be determined so as to yield a maximum amount
of information from a given number of observations. The basic problem is to
determine from a set of candidates the best rows for the data matrix X . For
example, if there are six factors and each can be set at three different levels,
there is a total of 36 = 729 combinations of settings. In many cases, because
of the expense in conducting the experiment, only a relatively small number
of runs can be made. If, in the case of the 729 possible combinations, only 30
or so runs can be made, the scientist must choose the subset of combinations
that will be most informative. A row in X may contain more elements than
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just the number of factors (because of interactions), but the factor settings
completely determine the row.

We may quantify the information in terms of variances of the estimators.
If we assume a linear relationship expressed by

y = β01 +Xβ + ε

and make certain assumptions about the probability distribution of the resid-
uals, the variance-covariance matrix of estimable linear functions of the least
squares solution (9.15) is formed from

(XTX)−σ2.

(The assumptions are that the residuals are independently distributed with
a constant variance, σ2. We will not dwell on the statistical properties here,
however.) If the emphasis is on estimation of β, then X should be of full rank.
In the following, we assume X is of full rank; that is, that (XTX)−1 exists.

An objective is to minimize the variances of estimators of linear combina-
tions of the elements of β. We may identify three types of relevant measures of
the variance of the estimator β̂: the average variance of the elements of β̂, the
maximum variance of any elements, and the “generalized variance” of the vec-
tor β̂. The property of the design resulting from maximizing the information
by reducing these measures of variance is called, respectively, A-optimality,
E-optimality, and D-optimality. They are achieved when X is chosen as fol-
lows:

• A-optimality: minimize tr((XTX)−1).
• E-optimality: minimize ρ((XTX)−1).
• D-optimality: minimize det((XTX)−1).

Using the properties of eigenvalues and determinants that we discussed in
Chap. 3, we see that E-optimality is achieved by maximizing ρ(XTX) and
D-optimality is achieved by maximizing det(XTX).

9.6.1 D-Optimal Designs

The D-optimal criterion is probably used most often. If the residuals have a
normal distribution (and the other distributional assumptions are satisfied),
the D-optimal design results in the smallest volume of confidence ellipsoids
for β. (See Titterington 1975; Nguyen and Miller 1992; and Atkinson and
Donev 1992. Identification of the D-optimal design is related to determina-
tion of a minimum-volume ellipsoid for multivariate data.) The computations
required for the D-optimal criterion are the simplest, and this may be another
reason it is used often.

To construct an optimal X with a given number of rows, n, from a set of
N potential rows, one usually begins with an initial choice of rows, perhaps
random, and then determines the effect on the determinant by exchanging a
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selected row with a different row from the set of potential rows. If the matrix
X has n rows and the row vector xT is appended, the determinant of interest is

det(XTX + xxT)

or its inverse. Using the relationship det(AB) = det(A) det(B), it is easy to
see that

det(XTX + xxT) = det(XTX)(1 + xT(XTX)−1x). (9.70)

Now, if a row xT
+ is exchanged for the row xT

−, the effect on the determinant
is given by

det(XTX + x+x
T
+ − x−x

T
−) = det(XTX) ×(

1 + xT
+(X

TX)−1x+ −

xT
−(X

TX)−1x−(1 + xT
+(X

TX)−1x+) +

(xT
+(X

TX)−1x−)
2
)

(9.71)

(see Exercise 9.8).
Following Miller and Nguyen (1994), writing XTX as RTR from the QR

decomposition of X , and introducing z+ and z− as

Rz+ = x+

and
Rz− = x−,

we have the right-hand side of equation (9.71):

zT+z+ − zT−z−(1 + zT+z+) + (zT−z+)
2. (9.72)

Even though there are n(N − n) possible pairs (x+, x−) to consider for ex-
changing, various quantities in (9.72) need be computed only once. The corre-
sponding (z+, z−) are obtained by back substitution using the triangular ma-
trix R. Miller and Nguyen use the Cauchy-Schwarz inequality (2.26) (page 24)
to show that the quantity (9.72) can be no larger than

zT+z+ − zT−z−; (9.73)

hence, when considering a pair (x+, x−) for exchanging, if the quantity (9.73)
is smaller than the largest value of (9.72) found so far, then the full compu-
tation of (9.72) can be skipped. Miller and Nguyen also suggest not allowing
the last point added to the design to be considered for removal in the next
iteration and not allowing the last point removed to be added in the next
iteration.
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The procedure begins with an initial selection of design points, yielding
the n×m matrix X(0) that is of full rank. At the kth step, each row of X(k)

is considered for exchange with a candidate point, subject to the restrictions
mentioned above. Equations (9.72) and (9.73) are used to determine the best
exchange. If no point is found to improve the determinant, the process termi-
nates. Otherwise, when the optimal exchange is determined, R(k+1) is formed
using the updating methods discussed in the previous sections. (The programs
of Gentleman 1974, referred to in Sect. 6.6.5 can be used.)

9.7 Multivariate Random Number Generation

The need to simulate realizations of random variables arises often in statistical
applications, both in the development of statistical theory and in applied
data analysis. In this section, we will illustrate only a couple of problems
in multivariate random number generation. These make use of some of the
properties we have discussed previously.

Most methods for random number generation assume an underlying source
of realizations of a uniform (0, 1) random variable. If U is a uniform (0, 1)
random variable, and F is the cumulative distribution function of a continuous
random variable, then the random variable

X = F−1(U)

has the cumulative distribution function F . (If the support of X is finite,
F−1(0) and F−1(1) are interpreted as the limits of the support.) This same
idea, the basis of the so-called inverse CDF method, can also be applied to
discrete random variables.

9.7.1 The Multivariate Normal Distribution

If Z has a multivariate normal distribution with the identity as variance-
covariance matrix, then for a given positive definite matrix Σ, both

Y1 = Σ1/2Z (9.74)

and
Y2 = ΣCZ, (9.75)

where ΣC is a Cholesky factor of Σ, have a multivariate normal distribu-
tion with variance-covariance matrix Σ (see page 401). The mean of Y1 is
Σ1/2μ, where μ is the mean of Z, and the mean of Y1 is ΣCμ. If Z has 0

mean, then the distributions are identical, that is, Y1
d
= Y2.

This leads to a very simple method for generating a multivariate normal
random d-vector: generate into a d-vector z d independent N1(0, 1). Then form
a vector from the desired distribution by the transformation in equation (9.74)
or (9.75) together with the addition of a mean vector if necessary.
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9.7.2 Random Correlation Matrices

Occasionally we wish to generate random numbers but do not wish to specify
the distribution fully. We may want a “random”matrix, but we do not know an
exact distribution that we wish to simulate. (There are only a few “standard”
distributions of matrices. The Wishart distribution and the Haar distribution
(page 222) are the only two common ones. We can also, of course, specify the
distributions of the individual elements.)

We may want to simulate random correlation matrices. Although we do
not have a specific distribution, we may want to specify some characteristics,
such as the eigenvalues. (All of the eigenvalues of a correlation matrix, not
just the largest and smallest, determine the condition of data matrices that
are realizations of random variables with the given correlation matrix.)

Any nonnegative definite (symmetric) matrix with 1s on the diagonal is a
correlation matrix. A correlation matrix is diagonalizable, so if the eigenvalues
are c1, . . . , cd, we can represent the matrix as

V diag((c1, . . . , cd))V
T

for an orthogonal matrix V . (For a d×d correlation matrix, we have
∑

ci = d;
see page 368.) Generating a random correlation matrix with given eigenvalues
becomes a problem of generating the random orthogonal eigenvectors and then
forming the matrix V from them. (Recall from page 153 that the eigenvectors
of a symmetric matrix can be chosen to be orthogonal.) In the following, we
let C = diag((c1, . . . , cd)) and begin with E = I (the d×d identity) and k = 1.
The method makes use of deflation in step 6 (see page 310). The underlying
randomness is that of a normal distribution.

Algorithm 9.2 Random correlation matrices with given eigenvalues

1. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,
and compute a = xT(I − C)x.

2. Generate a d-vector z of i.i.d. standard normal deviates, form y = Ez,
and compute b = xT(I − C)y, c = yT(I − C)y, and e2 = b2 − ac.

3. If e2 < 0, then go to step 2.

4. Choose a random sign, s = −1 or s = 1. Set r =
b+ se

a
x− y.

5. Choose another random sign, s = −1 or s = 1, and set vk =
sr

(rTr)
1
2

.

6. Set E = E − vkv
T
k , and set k = k + 1.

7. If k < d, then go to step 1.
8. Generate a d-vector w of i.i.d. standard normal deviates, form x = Ew,

and set vd =
x

(xTx)
1
2

.

9. Construct the matrix V using the vectors vk as its rows. Deliver V CV T

as the random correlation matrix.
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9.8 Stochastic Processes

Many stochastic processes are modeled by a “state vector” and rules for up-
dating the state vector through a sequence of discrete steps. At time t, the
elements of the state vector xt are values of various characteristics of the sys-
tem. A model for the stochastic process is a probabilistic prescription for xta

in terms of xtb , where ta > tb; that is, given observations on the state vec-
tor prior to some point in time, the model gives probabilities for, or predicts
values of, the state vector at later times.

A stochastic process is distinguished in terms of the countability of the
space of states, X , and the index of the state (that is, the parameter space,
T ); either may or may not be countable. If the parameter space is continuous,
the process is called a diffusion process. If the parameter space is countable,
we usually consider it to consist of the nonnegative integers.

If the properties of a stochastic process do not depend on the index, the
process is said to be stationary. If the properties also do not depend on any
initial state, the process is said to be time homogeneous or homogeneous with
respect to the parameter space. (We usually refer to such processes simply as
“homogeneous”.)

9.8.1 Markov Chains

The Markov (or Markovian) property in a stochastic process is the condition in
which the current state does not depend on any states prior to the immediately
previous state; that is, the process is memoryless. If the transitions occur at
discrete intervals, the Markov property is the condition where the probability
distribution of the state at time t+ 1 depends only on the state at time t.

In what follows, we will briefly consider some Markov processes in which
both the set of states is countable and the transitions occur at discrete inter-
vals (discrete times). Such a process is called a Markov chain. (Some authors’
use of the term “Markov chain” allows the state space to be continuous, and
others’ allows time to be continuous; here we are not defining the term. We
will be concerned with only a subclass of Markov chains, whichever way they
are defined. The models for this subclass are easily formulated in terms of
vectors and matrices.)

If the state space is countable, it is equivalent to X = {1, 2, . . .}. If X is a
random variable from some sample space to X , and

πi = Pr(X = i),

then the vector π defines a distribution of X on X . (A vector of nonnegative
numbers that sum to 1 is a distribution.)

Formally, we define a Markov chain (of random variables) X0, X1, . . . in
terms of an initial distribution π and a conditional distribution for Xt+1 given
Xt. Let X0 have distribution π, and given Xt = i, let Xt+1 have distribution
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(pij ; j ∈ X ); that is, pij is the probability of a transition from state i at time
t to state j at time t+ 1. Let

P = (pij).

This square matrix is called the transition matrix of the chain. It is clear that
P is a stochastic matrix (it is nonnegative and the elements in any row sum to
1), and hence ρ(P ) = ‖P‖∞ = 1, and (1, 1) is an eigenpair of P (see page 379).

If P does not depend on the time (and our notation indicates that we are
assuming this), the Markov chain is stationary.

The initial distribution π and the transition matrix P characterize the
chain, which we sometimes denote as Markov(π, P ).

If the set of states is countably infinite, the vectors and matrices have
infinite order; that is, they have “infinite dimension”. (Note that this use of
“dimension” is different from our standard definition that is based on linear
independence.)

We denote the distribution at time t by π(t) and hence often write the
initial distribution as π(0). A distribution at time t can be expressed in terms
of π and P if we extend the definition of (Cayley) matrix multiplication in
equation (3.43) in the obvious way to handle any countable number of elements
so that PP or P 2 is the matrix defined by

(P 2)ij =
∑
k∈X

pikpkj .

We see immediately that
π(t) = (P t)Tπ(0). (9.76)

Because of equation (9.76), P t is often called the t-step transition matrix.
(The somewhat awkward notation with the transpose results from the his-
torical convention in Markov chain theory of expressing distributions as “row
vectors”.)

9.8.1.1 Properties of Markov Chains

The transition matrix determines various relationships among the states of a
Markov chain. State j is said to be accessible from state i if it can be reached
from state i in a finite number of steps. This is equivalent to (P t)ij > 0
for some t. If state j is accessible from state i and state i is accessible from
state j, states j and i are said to communicate. Communication is clearly
an equivalence relation. (A binary relation ∼ is an equivalence relation over
some set S if for x, y, z ∈ S, (1) x ∼ x, (2) x ∼ y ⇒ y ∼ x, and (3)
x ∼ y ∧ y ∼ z ⇒ x ∼ z; that is, it is reflexive, symmetric, and transitive.)
The set of all states that communicate with each other is an equivalence class.
States belonging to different equivalence classes do not communicate, although
a state in one class may be accessible from a state in a different class.
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Identification and analysis of states that communicate can be done by
the reduction of the transition matrix in the manner discussed on page 375
and illustrated in equation (8.76), in which by permutations of the rows and
columns, square 0 submatrices are formed. If the transition matrix is irre-
ducible, that is, if no such 0 submatrices can be formed, then all states in a
Markov chain are in a single equivalence class. In that case the chain is said to
be irreducible. Irreducible matrices are discussed in Sect. 8.7.3, beginning on
page 375, and the implication (8.77) in that section provides a simple charac-
terization of irreducibility. Reducibility of Markov chains is also clearly related
to the reducibility in graphs that we discussed in Sect. 8.1.2. (In graphs, the
connectivity matrix is similar to the transition matrix in Markov chains.)

If the transition matrix is primitive (that is, it is irreducible and its eigen-
value with maximum modulus has algebraic multiplicity of 1, see page 377),
then the Markov chain is said to be primitive.

Primitivity and irreducibility are important concepts in analysis of Markov
chains because they imply interesting limiting behavior of the chains.

9.8.1.2 Limiting Behavior of Markov Chains

The limiting behavior of the Markov chain is of interest. This of course can be
analyzed in terms of limt→∞ P t. Whether or not this limit exists depends on
the properties of P . If P is primitive and irreducible, we can make use of the
results in Sect. 8.7.3. In particular, because 1 is an eigenvalue and the vector
1 is the eigenvector associated with 1, from equation (8.79), we have

lim
t→∞P t = 1πT

s , (9.77)

where πs is the Perron vector of PT.
This also gives us the limiting distribution for an irreducible, primitive

Markov chain,

lim
t→∞π(t) = πs.

The Perron vector has the property πs = PTπs of course, so this distribu-
tion is the invariant distribution of the chain. This invariance is a necessary
condition for most uses of Markov chains in Monte Carlo methods for gener-
ating posterior distributions in Bayesian statistical analysis. These methods
are called Markov chain Monte Carlo (MCMC) methods, and are widely used
in Bayesian analyses.

There are many other interesting properties of Markov chains that follow
from various properties of nonnegative matrices that we discuss in Sect. 8.7,
but rather than continuing the discussion here, we refer the interested reader
to a text on Markov chains, such as Meyn and Tweedie (2009).
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9.8.2 Markovian Population Models

A simple but useful model for population growth measured at discrete points
in time, t, t+ 1, . . ., is constructed as follows. We identify k age groupings for
the members of the population; we determine the number of members in each
age group at time t, calling this p(t),

p(t) =
(
p
(t)
1 , . . . , p

(t)
k

)
;

determine the reproductive rate in each age group, calling this α,

α = (α1, . . . , αk);

and determine the survival rate in each of the first k − 1 age groups, calling
this σ,

σ = (σ1, . . . , σk−1).

It is assumed that the reproductive rate and the survival rate are constant
in time. (There are interesting statistical estimation problems here that are
described in standard texts in demography or in animal population models.)
The survival rate σi is the proportion of members in age group i at time t
who survive to age group i + 1. (It is assumed that the members in the last
age group do not survive from time t to time t + 1.) The total size of the
population at time t is N (t) = 1Tp(t). (The use of the capital letter N for
a scalar variable is consistent with the notation used in the study of finite
populations.)

If the population in each age group is relatively large, then given the sizes
of the population age groups at time t, the approximate sizes at time t + 1
are given by

p(t+1) = Ap(t), (9.78)

where A is a Leslie matrix as in equation (8.85),

A =

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 · · · αm−1 αm

σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
...

. . .
...

0 0 · · · σm−1 0

⎤
⎥⎥⎥⎥⎥⎦
, (9.79)

where 0 ≤ αi and 0 ≤ σi ≤ 1.
The Leslie population model can be useful in studying various species of

plants or animals. The parameters in the model determine the vitality of the
species. For biological realism, at least one αi and all σi must be positive. This
model provides a simple approach to the study and simulation of population
dynamics. The model depends critically on the eigenvalues of A.

As we have seen (Exercise 8.10), the Leslie matrix has a single unique
positive eigenvalue. If that positive eigenvalue is strictly greater in modulus
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than any other eigenvalue, then given some initial population size, p(0), the
model yields a few damping oscillations and then an exponential growth,

p(t0+t) = p(t0)ert, (9.80)

where r is the rate constant. The vector p(t0) (or any scalar multiple) is called
the stable age distribution. (You are asked to show this in Exercise 9.22a.) If 1
is an eigenvalue and all other eigenvalues are strictly less than 1 in modulus,
then the population eventually becomes constant; that is, there is a stable
population. (You are asked to show this in Exercise 9.22b.)

The survival rates and reproductive rates constitute an age-dependent life
table, which is widely used in studying population growth. The age groups
in life tables for higher-order animals are often defined in years, and the pa-
rameters often are defined only for females. The first age group is generally
age 0, and so α1 = 0. The net reproductive rate, r0, is the average number
of (female) offspring born to a given (female) member of the population over
the lifetime of that member; that is,

r0 =

m∑
i=2

αiσi−1. (9.81)

The average generation time, T , is given by

T =
m∑
i=2

iαiσi−1/r0. (9.82)

The net reproductive rate, average generation time, and exponential growth
rate constant are related by

r = log(r0)/T. (9.83)

(You are asked to show this in Exercise 9.22c.)
Because the process being modeled is continuous in time and this model

is discrete, there are certain averaging approximations that must be made.
There are various refinements of this basic model to account for continuous
time. There are also refinements to allow for time-varying parameters and for
the intervention of exogenous events. Of course, from a statistical perspective,
the most interesting questions involve the estimation of the parameters. See
Cullen (1985), for example, for further discussions of this modeling problem.

Various starting age distributions can be used in this model to study the
population dynamics.

9.8.3 Autoregressive Processes

An interesting type of stochastic process is the pth-order autoregressive time
series, defined by the stochastic difference equation
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xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + et, (9.84)

where φp �= 0, the et have constant mean of 0 and constant variance of σ2 > 0,
and any two different es and et have zero correlation. This model is called an
autoregressive model of order p or AR(p).

Comments on the model and notation:

I have implied that et is considered to be a random variable, even
though it is not written in upper case, and of course, if et is a random
variable then xt is also, even though it is not written in upper case
either; likewise, I will sometimes consider xt−1 and the other xt−j to
be random variables.
Stationarity (that is, constancy over time) is an issue. In the simple
model above all of the simple parameters are constant; however, un-
less certain conditions are met, the moments of xt can grow without
bounds. (This is related to the “unit roots” mentioned below. Some
authors require that some other conditions be satisfied in an AR(p)
model so that moments of the process do not grow without bounds.
Also, many authors omit the φ0 term in the AR(p) model.

The most important properties of this process arise from the autocorrela-
tions, Cor(xs, xt). If these autocorrelations depend on s and t only through
|s− t| and if for given h = |s− t| the autocorrelation,

ρh = Cor(xt+h, xt),

is constant, the autoregressive process has some simple, but useful properties.
The model (9.84) is a little more complicated than it appears. This is

because the specification of xt is conditional on xt−1, . . . , xt−p. Presumably,
also, xt−1 is dependent on xt−2, . . . , xt−p−1, and so on. There are no marginal
(unconditional) properties of the xs that are specified in the model; that is,
we have not specified a starting point.

The stationarity of the et (constant mean and constant variance) does not
imply that the xt are stationary. We can make the model more specific by
adding a condition of stationarity on the xt. Let us assume that the xt have
constant and finite means and variances; that is, the {xt} process is (weakly)
stationary.

To continue the analysis, consider the AR(1) model. If the xt have constant
means and variances, then

E(xt) =
φ0

1− φ1
(9.85)

and

V(xt) =
σ2

1− φ2
1

. (9.86)

The first equation indicates that we cannot have φ1 = 1 and the second
equation makes sense only if |φ1| < 1. For AR(p) models in general, similar
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situations can occur. The denominators in the expressions for the mean and
variance involve p-degree polynomials , similar to the first degree polynomials
in the denominators of equations (9.85) and (9.86).

We call f(z) = 1−φ1z
1−· · ·−φpz

p the associated polynomial. If f(z) = 0,
we have situations similar to a 0 in the denominator of equation (9.86). If
a root of f(z) = 0 is 1, the expression for a variance is infinite (which we
see immediately from equation (9.86) for the AR(1) model). This situation is
called a “unit root”. If some root is greater than 1, we have an expression for
a variance that is negative. Hence, in order for the model to make sense in
all respects, all roots of of the associated polynomial must be less than 1 in
modulus. (Note some roots can contain imaginary components.)

Although many of the mechanical manipulations in the analysis of the
model may be unaffected by unit roots, they have serious implications for the
interpretation of the model.

9.8.3.1 Relation of the Autocorrelations to the Autoregressive
Coefficients

From the model (9.84) we can see that ρh = 0 for h > p, and ρ1, . . . ρp are
determined by φ1, . . . φp by the relationship

Rφ = ρ, (9.87)

where φ and ρ are the p-vectors of the φis (i �= 0) and the ρis, and R is the
Toeplitz matrix (see Sect. 8.8.4)

R =

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

...
. . .

...
ρp−1 ρp−2 ρp−3 · · · 1

⎤
⎥⎥⎥⎥⎥⎦
.

This system of equations is called the Yule-Walker equations. Notice the re-
lationship of the Yule-Walker equations to the unit root problem mentioned
above. For example, for p = 1, we have φ1 = ρ1. In order for to be a correla-
tion, it must be the case that |φ1| ≤ 1.

For a given set of ρs, possibly estimated from some observations on the
time series, Algorithm 9.3 can be used to solve the system (9.87).

Algorithm 9.3 Solution of the Yule-Walker system (9.87)

1. Set k = 0; φ
(k)
1 = −ρ1; b

(k) = 1; and a(k) = −ρ1.
2. Set k = k + 1.

3. Set b(k) =
(
1−

(
a(k−1)

)2)
b(k−1).
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4. Set a(k) = −
(
ρk+1 +

∑k
i=1 ρk+1−iφ

(k−1)
1

)
/b(k).

5. For i = 1, 2, . . . , k

set yi = φ
(k−1)
i + a(k)φ

(k−1)
k+1−i.

6. For i = 1, 2, . . . , k

set φ
(k)
i = yi.

7. Set φ
(k)
k+1 = a(k).

8. If k < p− 1, go to step 1; otherwise terminate.

This algorithm is O(p) (see Golub and Van Loan 1996).
The Yule-Walker equations arise in many places in the analysis of stochas-

tic processes. Multivariate versions of the equations are used for a vector time
series (see Fuller 1995; for example).

Exercises

9.1. Let X be an n × m matrix with n > m and with entries sampled
independently from a continuous distribution (of a real-valued random
variable). What is the probability that XTX is positive definite?

9.2. From equation (9.18), we have ŷi = yTX(XTX)+xi∗. Show that hii in
equation (9.19) is ∂ŷi/∂yi.

9.3. Formally prove from the definition that the sweep operator is its own
inverse.

9.4. Consider the regression model

y = Xβ + ε (9.88)

subject to the linear equality constraints

Lβ = c, (9.89)

and assume that X is of full column rank.
a) Let λ be the vector of Lagrange multipliers. Form

(bTLT − cT)λ

and
(y −Xb)T(y −Xb) + (bTLT − cT)λ.

Now differentiate these two expressions with respect to λ and b,
respectively, set the derivatives equal to zero, and solve to obtain

β̂C = (XTX)−1XTy − 1

2
(XTX)−1LTλ̂C

= β̂ − 1

2
(XTX)−1LTλ̂C
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and
λ̂C = −2(L(XTX)−1LT)−1(c− Lβ̂).

Now combine and simplify these expressions to obtain expres-
sion (9.29) (on page 416).

b) Prove that the stationary point obtained in Exercise 9.4a actually
minimizes the residual sum of squares subject to the equality con-
straints.
Hint: First express the residual sum of squares as

(y −Xβ̂)T(y −Xβ̂) + (β̂ − b)TXTX(β̂ − b),

and show that is equal to

(y−Xβ̂)T(y−Xβ̂)+(β̂−β̂C)
TXTX(β̂−β̂C)+(β̂C−b)TXTX(β̂C−b),

which is minimized when b = β̂C .
c) Show that sweep operations applied to the matrix (9.30) on

page 416 yield the restricted least squares estimate in the (1,2)
block.

d) For the weighting matrix W , derive the expression, analogous
to equation (9.29), for the generalized or weighted least squares
estimator for β in equation (9.88) subject to the equality con-
straints (9.89).

9.5. Derive a formula similar to equation (9.33) to update β̂ due to the
deletion of the ith observation.

9.6. When data are used to fit a model such as y = Xβ+ ε, a large leverage
of an observation is generally undesirable. If an observation with large
leverage just happens not to fit the “true” model well, it will cause β̂ to
be farther from β than a similar observation with smaller leverage.
a) Use artificial data to study influence. There are two main aspects

to consider in choosing the data: the pattern of X and the values
of the residuals in ε. The true values of β are not too important,
so β can be chosen as 1. Use 20 observations. First, use just one
independent variable (yi = β0 + β1xi + εi). Generate 20 xis more or
less equally spaced between 0 and 10, generate 20 εis, and form the
corresponding yis. Fit the model, and plot the data and the model.
Now, set x20 = 20, set ε20 to various values, form the yi’s and fit the
model for each value. Notice the influence of x20.
Now, do similar studies with three independent variables. (Do not
plot the data, but perform the computations and observe the effect.)
Carefully write up a clear description of your study with tables and
plots.

b) Heuristically, the leverage of a point arises from the distance from
the point to a fulcrum. In the case of a linear regression model, the
measure of the distance of observation i is
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Δ(xi, X1/n) = ‖xi, X1/n‖.

(This is not the same quantity from the hat matrix that is defined as
the leverage on page 410, but it should be clear that the influence of
a point for which Δ(xi, X1/n) is large is greater than that of a point
for which the quantity is small.) It may be possible to overcome some
of the undesirable effects of differential leverage by using weighted
least squares to fit the model. The weight wi would be a decreasing
function of Δ(xi, X1/n).
Now, using datasets similar to those used in the previous part of this
exercise, study the use of various weighting schemes to control the
influence. Weight functions that may be interesting to try include

wi = e−Δ(xi,X1/n)

and
wi = max(wmax, ‖Δ(xi, X1/n)‖−p)

for some wmax and some p > 0. (Use your imagination!)
Carefully write up a clear description of your study with tables and
plots.

c) Now repeat Exercise 9.6b except use a decreasing function of the
leverage, hii from the hat matrix in equation (9.18) instead of the
function Δ(xi, X1/n).
Carefully write up a clear description of this study, and compare it
with the results from Exercise 9.6b.

9.7. By differentiating expression (9.38), derive the normal equations (9.39)
for the multivariate linear model.

9.8. Formally prove the relationship expressed in equation (9.71) on
page 442.
Hint: Use equation (9.70) twice.

9.9. On page 211, we used Lagrange multipliers to determine the normalized
vector x that maximized xTAx. If A is SX , this is the first principal
component. We also know the principal components from the spectral
decomposition. We could also find them by sequential solutions of La-
grangians. After finding the first principal component, we would seek the
linear combination z such that Xcz has maximum variance among all
normalized z that are orthogonal to the space spanned by the first prin-
cipal component; that is, that are XT

c Xc-conjugate to the first principal
component (see equation (3.93) on page 94). If V1 is the matrix whose
columns are the eigenvectors associated with the largest eigenvector, this
is equivalent to finding z so as to maximize zTSz subject to V T

1 z = 0.
Using the method of Lagrange multipliers as in equation (4.54), we form
the Lagrangian corresponding to equation (4.56) as

zTSz − λ(zTz − 1)− φV T
1 z,
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where λ is the Lagrange multiplier associated with the normalization
requirement zTz = 1, and φ is the Lagrange multiplier associated with
the orthogonality requirement. Solve this for the second principal com-
ponent, and show that it is the same as the eigenvector corresponding
to the second-largest eigenvalue.

9.10. Obtain the “Longley data”. (It is a dataset in R, and it is also available
from statlib.) Each observation is for a year from 1947 to 1962 and
consists of the number of people employed, five other economic variables,
and the year itself. Longley (1967) fitted the number of people employed
to a linear combination of the other variables, including the year.
a) Use a regression program to obtain the fit.
b) Now consider the year variable. The other variables are measured

(estimated) at various times of the year, so replace the year vari-
able with a “midyear” variable (i.e., add 1

2 to each year). Redo the
regression. How do your estimates compare?

c) Compute the L2 condition number of the matrix of independent
variables. Now add a ridge regression diagonal matrix, as in the
matrix (9.90), and compute the condition number of the resulting
matrix. How do the two condition numbers compare?

9.11. Consider the least squares regression estimator (9.15) for full rank n×m
matrix X (n > m):

β̂ = (XTX)−1XTy.

a) Compare this with the ridge estimator

β̂R(d) = (XTX + dIm)−1XTy

for d ≥ 0. Show that
‖β̂R(d)‖ ≤ ‖β̂‖.

b) Show that β̂R(d) is the least squares solution to the regression model
similar to y = Xβ + ε except with some additional artificial data;
that is, y is replaced with (

y
0

)
,

where 0 is an m-vector of 0s, and X is replaced with

[
X
dIm

]
. (9.90)

Now explain why β̂R(d) is shorter than β̂.
9.12. Use the Schur decomposition (equation (3.190), page 122) of the inverse

of (XTX) to prove equation (9.53).
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9.13. Given the matrix

A =

⎡
⎢⎢⎣
2 1 3
1 2 3
1 1 1
1 0 1

⎤
⎥⎥⎦ ,

assume the random 3× 2 matrix X is such that

vec(X −A)

has a N(0, V ) distribution, where V is block diagonal with the matrix

⎡
⎢⎢⎣
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤
⎥⎥⎦

along the diagonal. Generate ten realizations of X matrices, and use
them to test that the rank of A is 2. Use the test statistic (9.64) on
page 437.

9.14. Construct a 9×2 matrixX with some missing values, such that SX com-
puted using all available data for the covariance or correlation matrix is
not nonnegative definite.

9.15. Consider an m×m, symmetric nonsingular matrix, R, with 1s on the di-
agonal and with all off-diagonal elements less than 1 in absolute value.
If this matrix is positive definite, it is a correlation matrix. Suppose,
however, that some of the eigenvalues are negative. Iman and Daven-
port (1982) describe a method of adjusting the matrix to a “near-by”
matrix that is positive definite. (See Ronald L. Iman and James M. Dav-
enport, 1982, An Iterative Algorithm to Produce a Positive Definite
Correlation Matrix from an “Approximate Correlation Matrix”, San-
dia Report SAND81-1376, Sandia National Laboratories, Albuquerque,
New Mexico.) For their method, they assumed the eigenvalues are
unique, but this is not necessary in the algorithm.
Before beginning the algorithm, choose a small positive quantity, ε, to
use in the adjustments, set k = 0, and set R(k) = R.

1. Compute the eigenvalues of R(k),

c1 ≥ c2 ≥ . . . ≥ cm,

and let p be the number of eigenvalues that are negative. If p = 0,
stop. Otherwise, set

c∗i =

{
ε if ci < ε
ci otherwise

for i = p1, . . . ,m− p, (9.91)

where p1 = max(1,m− 2p).
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2. Let ∑
i

civiv
T
i

be the spectral decomposition of R (equation (3.256), page 154),
and form the matrix R∗:

R∗ =

p1∑
i=1

civiv
T
i +

m−p∑
i=p1+1

c∗i viv
T
i +

m∑
i=m−p+1

εviv
T
i .

3. Form R(k) from R∗ by setting all diagonal elements to 1.
4. Set k = k + 1, and go to step 1. (The algorithm iterates on k until

p = 0.)

Write a program to implement this adjustment algorithm. Write your
program to accept any size matrix and a user-chosen value for ε. Test
your program on the correlation matrix from Exercise 9.14.

9.16. Consider some variations of the method in Exercise 9.15. For example,
do not make the adjustments as in equation (9.91), or make different
ones. Consider different adjustments of R∗; for example, adjust any off-
diagonal elements that are greater than 1 in absolute value.
Compare the performance of the variations.

9.17. Investigate the convergence of the method in Exercise 9.15. Note that
there are several ways the method could converge.

9.18. Suppose the method in Exercise 9.15 converges to a positive definite
matrix R(n). Prove that all off-diagonal elements of R(n) are less than
1 in absolute value. (This is true for any positive definite matrix with
1s on the diagonal.)

9.19. Shrinkage adjustments of approximate correlation matrices.
a) Write a program to implement the linear shrinkage adjustment of

equation (9.66). Test your program on the correlation matrix from
Exercise 9.14.

b) Write a program to implement the nonlinear shrinkage adjustment
of equation (9.67). Let δ = 0.05 and

f(x) = tanh(x).

Test your program on the correlation matrix from Exercise 9.14.
c) Write a program to implement the scaling adjustment of equa-

tion (9.68). Recall that this method applies to an approximate corre-
lation matrix that is a pseudo-correlation matrix. Test your program
on the correlation matrix from Exercise 9.14.

9.20. Show that the matrices generated in Algorithm 9.2 are correlation ma-
trices. (They are clearly nonnegative definite, but how do we know that
they have 1s on the diagonal?)
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9.21. Consider a two-state Markov chain with transition matrix

P =

[
1− α α
β 1− β

]

for 0 < α < 1 and 0 < β < 1. Does an invariant distribution exist, and
if so what is it?

9.22. Recall from Exercise 8.10 that a Leslie matrix has a single unique posi-
tive eigenvalue.
a) What are the conditions on a Leslie matrix A that allow a stable

age distribution? Prove your assertion.
Hint: Review the development of the power method in equa-
tions (7.9) and (7.10).

b) What are the conditions on a Leslie matrix A that allow a stable
population, that is, for some xt, xt+1 = xt?

c) Derive equation (9.83). (Recall that there are approximations that
result from the use of a discrete model of a continuous process.)

9.23. Derive equations (9.85) and (9.86) under the stationarity assumptions
for the model (9.84).

9.24. Derive the Yule-Walker equations (9.87) for the model (9.84).
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