
7

Evaluation of Eigenvalues and Eigenvectors

Before we discuss methods for computing eigenvalues, we recall a remark made
in Chap. 5. A given nth-degree polynomial p(c) is the characteristic polynomial
of some matrix. The companion matrix of equation (3.225) is one such matrix.
Thus, given a general polynomial p, we can form a matrix A whose eigenvalues
are the roots of the polynomial; and likewise, given a square matrix, we can
write a polynomial in its eigenvalues. It is a well-known fact in the theory
of equations that there is no general formula for the roots of a polynomial
of degree greater than 4. This means that we cannot expect to have a direct
method for calculating eigenvalues of any given matrix.

The eigenvalues of some matrices, of course, can be evaluated directly.
The eigenvalues of a diagonal matrix, for example, are merely the diagonal
elements. In that case, the characteristic polynomial is of the factored form∏
(aii − c), whose roots are immediately obtainable. For general eigenvalue

computations, however, we must use an iterative method.
In statistical applications, the matrices whose eigenvalues are of interest

are often symmetric. Symmetric matrices are diagonalizable and have only
real eigenvalues. (As usual, we will assume the matrices themselves are real.)
The problem of determining the eigenvalues of a symmetric matrix therefore
is simpler than the corresponding problem for a general matrix. In many
statistical applications, the symmetric matrices of interest are nonnegative
definite, and this can allow use of simpler methods for computing eigenvalues
and eigenvectors. In addition, nonsymmetric matrices of interest in statistical
applications are often irreducible nonnegative matrices, and computations for
eigenvalues and eigenvectors for matrices of this type are also often simpler.
(We will discuss such matrices in Sect. 8.7.3.)

In this chapter, we describe various methods for computing eigenvalues.
A given method may have some desirable property for particular applica-
tions, and in some cases, the methods may be used in combination. Some
of the methods rely on sequences that converge to a particular eigenvalue or
eigenvector. The power method, discussed in Sect. 7.2, is of this type; one

© Springer International Publishing AG 2017
J.E. Gentle, Matrix Algebra, Springer Texts in Statistics,
DOI 10.1007/978-3-319-64867-5 7

307

308 7 Evaluation of Eigenvalues

eigenpair at a time is computed. Other methods are based on sequences of
orthogonally similar matrices that converge to a diagonal matrix. An example
of such a method is called the LR method. This method, which we will not
consider in detail, is based on a factorization of A into left and right factors,
FL and FR, and the fact that if c is an eigenvalue of FLFR, then it is also an
eigenvalue of FRFL (property 8, page 136). If A = L(0)U (0) is an LU decom-
position of A with 1s on the diagonal of either L(0) or U (0), iterations of LU
decompositions of the similar matrices

L(k+1)U (k+1) = U (k)L(k),

under some conditions, will converge to a similar diagonal matrix. The suffi-
cient conditions for convergence include nonnegative definiteness.

7.1 General Computational Methods

For whatever approach is taken for finding eigenpairs, there are some general
methods that may speed up the process or that may help in achieving higher
numerical accuracy. Before describing some of the techniques, we consider a
bound on the sensitivity of eigenvalues to perturbations of the matrix.

7.1.1 Numerical Condition of an Eigenvalue Problem

The upper bounds on the largest eigenvalue, given in inequalities (3.235)
and (3.236) on page 142, provide a simple indication of the region in the
complex plane in which the eigenvalues lie.

The Gershgorin disks (inequalities (3.239) and (3.240), page 145) pro-
vide additional information about the regions of the complex plane in which
the eigenvalues lie. The Gershgorin disks can be extended to define separate
regions that contain eigenvalues, but we will not consider those refinements
here. The spectral radius and/or Gershgorin disks can be used to obtain ap-
proximate values to use in some iterative approximation methods; see equa-
tion (7.13) below, for example.

In any computational problem, it is of interest to know what is the effect
on the solution when there are small changes in the problem itself. This leads
to the concept of a condition number, as we discussed in Sect. 6.1.1 beginning
on page 267. The objective is to quantify or at least determine bounds on the
rate of change in the “output” relative to changes in the “input”.

In the eigenvalue problem, we begin with a square matrix A. We assume
that A is diagonalizable. (All symmetric matrices are diagonalizable, and equa-
tion (3.248) on page 149 gives necessary and sufficient conditions which many
other matrices encountered in statistical applications also satisfy.) We form
V −1AV = C = diag((c1, . . . , cn)), where the ci are the eigenvalues of A.

7.1 General Computational Methods 309

The approach, as in Sect. 6.1.1, is to perturb the problem slightly by
adding a small amount δA to A. Let Ã = A + δA. (Notice that δA does not
necessarily represent a scalar multiple of the matrix.)

If A is well-conditioned for the eigenvalue problem, then if ‖δA‖ is small

relative to ‖A‖, the differences in the eigenvalues of A and of Ã are likewise

small. Let d be any eigenvalue of Ã that is not an eigenvalue of A. (If all

eigenvalues of Ã are eigenvalues of A, then the perturbation has had no effect,
and the question we are addressing is not of interest.) Our interest will be in

min
c∈σ(A)

|c− d|.

If d is an eigenvalue of Ã, then A + δA − dI is singular and so V −1(A +
δA − dI)V is also singular. Simplifying this latter expression, we have that
C − dI + V −1δAV is singular. Since d is not an eigenvalue of A, however,
C − dI must be nonsingular, and so (C − dI)−1 exists. Multiplying the two
expressions we have that I + (C − dI)−1V −1δAV is also singular; hence −1
is an eigenvalue of (C − dI)−1V −1δAV , and so by property 16 on page 140,
we have

1 ≤ ‖(C − dI)−1V −1δAV ‖,
for any consistent norm. (Recall that all matrix norms are consistent in my
definition.) Furthermore, again using the consistency property multiple times,

‖(C − dI)−1V −1δAV ‖ ≤ ‖(C − dI)−1‖ ‖V −1‖ ‖δA‖ ‖V ‖.

In equation (6.7) on page 269, we defined “the” condition number for a non-
singular matrix V as κ(V) = ‖V ‖ ‖V −1‖. Now, since C − dI is a diagonal
matrix, we can rewrite the two inequalities above as

min
c∈σ(A)

|c− d| ≤ κ(V)‖δA‖; (7.1)

that is, the eigenvalues of the perturbed matrix are within given bounds from
the eigenvalues of the original matrix.

This fact is called the Bauer-Fike theorem, and it has several variations
and ramifications. It is closely related to Gershgorin disks. Our interest here is
just to provide a perturbation bound that conveniently relates to the condition
number of the diagonalizing matrix.

If A is symmetric, it is orthogonally diagonalizable, and the V above is an
orthogonal matrix. Hence, if A is a symmetric matrix, Ã = A+ δA, and d is
an eigenvalue of Ã = A+ δA, then

min
c∈σ(A)

|c− d| ≤ ‖δA‖.

310 7 Evaluation of Eigenvalues

7.1.2 Eigenvalues from Eigenvectors and Vice Versa

Some methods for eigenanalysis yield the eigenvalues, and other methods yield
the eigenvectors. Given one member of an eigenpair, we usually want to find
the other member.

If we are given an eigenvector v of the matrix A, there must be some
element vj that is not zero. For any nonzero element of the eigenvector, the
eigenvalue corresponding to v is

(Av)j/vj . (7.2)

Likewise, if the eigenvalue c is known, a corresponding eigenvector is any
solution to the singular system

(A− cI)v = 0. (7.3)

(It is relevant to note that the system is singular because many standard
software packages will refuse to solve singular systems whether or not they
are consistent!)

An eigenvector associated with the eigenvalue c can be found using equa-
tion (7.3) if we know the position of any nonzero element in the vector. Sup-
pose, for example, it is known that v1 �= 0. We can set v1 = 1 and form
another system to solve for the remaining elements of v by writing

[
a11 − 1 aT1

a2 A22 − cIn−1

] [
1
v2

]

=

[
0
0

]

, (7.4)

where v2 is an (n − 1)-vector and aT1 and a2 are the remaining elements in
the first row and first column, respectively, of A. Rearranging this, we get the
(n− 1)× (n− 1) system

(A22 − cIn−1)v2 = −a2. (7.5)

The locations of any zero elements in the eigenvector are critical for using
this method. To form a system as in equation (7.4), the position of some
nonzero element must be known. Another problem in using this method arises
when the geometric multiplicity of the eigenvalue is greater than 1. In that
case, the system in equation (7.5) is also singular, and the process must be
repeated to form an (n−2)×(n−2) system. If the multiplicity of the eigenvalue
is k, the first full rank system encountered while continuing in this way is
the one that is (n− k)× (n− k).

7.1.3 Deflation

Whenever an eigenvalue together with its associated left and right eigenvectors
for a real matrix A are available, another matrix can be formed for which all
the other nonzero eigenvalues and corresponding eigenvectors are the same

7.1 General Computational Methods 311

as for A. (Of course the left and right eigenvalues for many matrices are
the same.)

Suppose ci is an eigenvalue of A with associated right and left eigenvectors
vi and wi, respectively. Now, suppose that cj is a nonzero eigenvalue of A
such that cj �= ci. Let vj and wj be, respectively, right and left eigenvectors
associated with cj . Now,

〈Avi, wj〉 = 〈civi, wj〉 = ci〈vi, wj〉,

but also
〈Avi, wj〉 = 〈vi, ATwj〉 = 〈vi, cjwj〉 = cj〈vi, wj〉.

But if
ci〈vi, wj〉 = cj〈vi, wj〉

and cj �= ci, then 〈vi, wj〉 = 0. Consider the matrix

B = A− civiw
H
i . (7.6)

We see that

Bwj = Awj − civiw
H
i wj

= Awj

= cjwj ,

so cj and wj are, respectively, an eigenvalue and an eigenvector of B.
The matrix B has some of the flavor of the sum of some terms in a spectral

decomposition of A. (Recall that the spectral decomposition is guaranteed to
exist only for matrices with certain properties. In Chap. 3, we stated the exis-
tence for diagonalizable matrices but derived it only for symmetric matrices.)

The ideas above lead to a useful method for finding eigenpairs of a diag-
onalizable matrix. (The method also works if we begin with a simple eigen-
value.) We will show the details only for a real symmetric matrix.

7.1.3.1 Deflation of Symmetric Matrices

Let A be an n× n symmetric matrix. A therefore is diagonalizable, its eigen-
values and eigenvectors are real, and the left and right eigenvalues are the
same.

Let (c, v), with vTv = 1, be an eigenpair of A. Now let X be an n× n− 1
matrix whose columns form an orthogonal basis for V(A−vvT). One easy way
of doing this is to choose n− 1 of the n unit vectors of order n such that none
are equal to v and then, beginning with v, use Gram-Schmidt transformations
to orthogonalize the vectors, using Algorithm 2.1 on page 39. (Assuming v is
not a unit vector, we merely choose e1, . . . , en−1 together with v as the starting
set of linearly independent vectors.) Now let P = [v|X]. We have

312 7 Evaluation of Eigenvalues

P−1 =

[
vT

XT(I − vvT)

]

,

as we see by direct multiplication, and

P−1AP =

[
c 0
0 B

]

, (7.7)

where B is the (n− 1)× (n− 1) matrix XTAX.
Clearly, B is symmetric and the eigenvalues of B are the same as the other

n− 1 eigenvalues of A. The important point is that B is (n− 1)× (n− 1).

7.1.4 Preconditioning

The convergence of iterative methods applied to a linear system Ax = b
can often be speeded up by replacing the system by an equivalent system
M−1Ax = M−1b. The iterations then depend on the properties, such as the
relative magnitudes of the eigenvalues, of M−1A rather than A. The replace-
ment of the system Ax = b by M−1Ax = M−1b is called preconditioning.
(It is also sometimes called left preconditioning, and the use of the system
AM−1y = b with y = Mx is called right preconditioning. Either or both kinds
of preconditioning may be used in a given iterative algorithm.) The matrix
M is called a preconditioner.

Determining an effective preconditioner matrixM−1 for eigenvalue compu-
tations is not straightforward. In general, the objective would be to determine
M−1A so that it is “close” to I, because then the eigenvalues might be easier
to obtain by whatever method we may use. The salient properties of I are
that it is normal (see Sect. 8.2.3 beginning on page 345) and its eigenvalues
are clustered.

There are various kinds of preconditioning. We have considered precondi-
tioning in the context of an iterative algorithm for solving linear systems on
page 284. Some preconditioning methods work better as an adjunct to one
algorithm, and others work better in conjunction with some other algorithm.
Obviously, the efficacy depends on the nature of the data input to the prob-
lem. In the case of a sparse matrix A, for example an incomplete factorization
A ≈ L̃Ũ where both L̃ and Ũ are sparse, M = L̃Ũ may be a good precondi-
tioner. We will not consider any of the details here. Benzi (2002) provides a
good survey of techniques, but it is difficult to identify general methods that
work well.

7.1.5 Shifting

If c is an eigenvalue of A, then c − d is an eigenvalue of A − dI, and the
associated eigenvectors are the same. (This is property 7 on page 136.) Hence,
instead of seeking an eigenvalue of A, we might compute (or approximate) an

7.2 Power Method 313

eigenvalue of A− dI. (We recall also, from equation (6.11) on page 272, that,
for appropriate signs of d and the eigenvalues, the condition number of A−dI
is better than the condition number of A.)

Use of A−dI amounts to a “shift” in the eigenvalue. This can often improve
the convergence rate in an algorithm to compute an eigenvalue. (Remember
that all general algorithms to compute eigenvalues are iterative.)

The best value of d in the shift depends on both the algorithm and the
characteristics of the matrix. Various shifts have been suggested. One common
value of the shift is based on the Rayleigh quotient shift; another common
value is called the “Wilkinson shift”, after James Wilkinson. We will not
discuss any of the particular shift values here.

7.2 Power Method

The power method is a straightforward method that can be used for a real
diagonalizable matrix with a simple dominant eigenvalue. A symmetric matrix
is diagonalizable, of course, but it may not have a simple dominant eigenvalue.

The power method finds the dominant eigenvalue. In some applications,
only the dominant eigenvalue is of interest. If other eigenvalues are needed,
however, we can find them one at a time by deflation.

Let A be a real n×n diagonalizable matrix with a simple dominant eigen-
value. Index the eigenvalues ci so that |c1| > |c2| ≥ · · · |cn|, with corresponding
normalized eigenvectors vi. Note that the requirement for the dominant eigen-
value that c1 > c2 implies that c1 and the dominant eigenvector v1 are unique
and that c1 is real (because otherwise c̄1 would also be an eigenvalue, and
that would violate the requirement).

Now let x be an n-vector that is not orthogonal to v1. Because A is assumed
to be diagonalizable, the eigenvectors are linearly independent and so x can
be represented as a linear combination of the eigenvectors,

x = b1v1 + · · ·+ bnvn. (7.8)

Because x is not orthogonal to v1, b1 �= 0. The power method is based on a
sequence

x, Ax, A2x,

(This sequence is a finite Krylov space generating set; see equation (6.26).)
From the relationships above and the definition of eigenvalues and eigenvec-
tors, we have

Ax = b1Av1 + · · ·+ bnAvn

= b1c1v1 + · · ·+ bncnvn

A2x = b1c
2
1v1 + · · ·+ bnc

2
nvn

· · · = · · ·

314 7 Evaluation of Eigenvalues

Ajx = b1c
j
1v1 + · · ·+ bnc

j
nvn

= cj1

(

b1v1 + · · ·+ bn

(
cn
c1

)j

vn

)

. (7.9)

To simplify the notation, let

u(j) = Ajx/cj1 (7.10)

(or, equivalently, u(j) = Au(j−1)/c1). From equations (7.9) and the fact that
|c1| > |ci| for i > 1, we see that u(j) → b1v1, which is the nonnormalized
dominant eigenvector.

We have the bound

∥
∥u(j) − b1v1

∥
∥ =

∥
∥
∥
∥
∥
b2

(
c2
c1

)j

v2 + · · ·

· · ·+ bn

(
cn
c1

)j

vn

∥
∥
∥
∥
∥

≤ |b2|
∣
∣
∣
∣
c2
c1

∣
∣
∣
∣

j

‖v2‖ + · · ·

· · ·+ |bn|
∣
∣
∣
∣
cn
c1

∣
∣
∣
∣

j

‖vn‖

≤ (|b2|+ · · ·+ |bn|)
∣
∣
∣
∣
c2
c1

∣
∣
∣
∣

j

. (7.11)

The last expression results from the fact that |c2| ≥ |ci| for i > 2 and that the
vi are unit vectors.

From equation (7.11), we see that the norm of the difference of u(j) and
b1v1 decreases by a factor of approximately |c2/c1| with each iteration; hence,
this ratio is an important indicator of the rate of convergence of u(j) to the
dominant eigenvector.

If |c1| > |c2| > |c3|, b2 �= 0, and b1 �= 0, the power method converges
linearly (see page 511); that is,

0 < lim
j→∞

‖u(j+1) − b1v1‖
‖u(j) − b1v1‖ < 1 (7.12)

(see Exercise 7.1c, page 324). Shifting the matrix to form A − dI results in
a matrix with eigenvalues with different relative sizes, and may be useful in
speeding up the convergence.

If an approximate value of the eigenvector v1 is available and x is taken to
be that approximate value, the convergence will be faster. If an approximate
value of the dominant eigenvalue, ĉ1, is available, starting with any y(0), a few
iterations on

7.3 Jacobi Method 315

(A− ĉ1I)y
(k) = y(k−1) (7.13)

may yield a better starting value for x. Once the eigenvector associated with
the dominant eigenvalue is determined, the eigenvalue c1 can easily be deter-
mined, as described above.

7.2.1 Inverse Power Method

If A is nonsingular, we can also use the power method on A−1 to determine
the smallest eigenvalue of A. This is called the “inverse power method”.

The rate of convergence may be very different from that of the power
method applied to A. Shifting is also generally important in the inverse power
method. Of course this method only determines the eigenvalue with the small-
est absolute value. If other eigenvalues are needed, we can find them one at a
time by deflation.

7.3 Jacobi Method

The Jacobi method for determining the eigenvalues of a simple symmetric ma-
trix A uses a sequence of orthogonal similarity transformations that eventually
results in the transformation

A = PCP−1

(see equation (3.247) on page 149) or

C = P−1AP,

where C is diagonal. Recall that similar matrices have the same eigenvalues.
The matrices for the similarity transforms are the Givens rotation or Ja-

cobi rotation matrices discussed on page 238. The general form of one of these
orthogonal matrices, Gpq(θ), given in equation (5.12) on page 239, is the iden-
tity matrix with cos θ in the (p, p)th and (q, q)th positions, sin θ in the (p, q)th

position, and − sin θ in the (q, p)th position:

Gpq(θ) =

p q
I 0 0 0 0

p 0 cos θ 0 sin θ 0
0 0 I 0 0

q 0 − sin θ 0 cos θ 0
0 0 0 0 I

.

The Jacobi iteration is

A(k) = GT
pkqk

(θk)A
(k−1)Gpkqk(θk),

316 7 Evaluation of Eigenvalues

where pk, qk, and θk are chosen so that the A(k) is “more diagonal” than
A(k−1). Specifically, the iterations will be chosen so as to reduce the sum of
the squares of the off-diagonal elements, which for any square matrix A is

‖A‖2F −
∑

i

a2ii.

The orthogonal similarity transformations preserve the Frobenius norm

∥
∥
∥A(k)

∥
∥
∥
F
=

∥
∥
∥A(k−1)

∥
∥
∥
F
.

Because the rotation matrices change only the elements in the (p, p)th, (q, q)th,
and (p, q)th positions (and also the (q, p)th position since both matrices are
symmetric), we have

(
a(k)pp

)2

+
(
a(k)qq

)2

+ 2
(
a(k)pq

)2

=
(
a(k−1)
pp

)2

+
(
a(k−1)
qq

)2

+ 2
(
a(k−1)
pq

)2

.

The off-diagonal sum of squares at the kth stage in terms of that at the (k−1)th

stage is

∥
∥
∥A(k)

∥
∥
∥
2

F
−
∑

i

(
a
(k)
ii

)2

=
∥
∥
∥A(k)

∥
∥
∥
2

F
−

∑

i�=p,q

(
a
(k)
ii

)2

−
((

a(k)pp

)2

+
(
a(k)qq

)2
)

=
∥
∥
∥A(k−1)

∥
∥
∥
2

F
−
∑

i

(
a
(k−1)
ii

)2

− 2
(
a(k−1)
pq

)2

+ 2
(
a(k)pq

)2

.

(7.14)

Hence, for a given index pair, (p, q), at the kth iteration, the sum of the squares
of the off-diagonal elements is minimized by choosing the rotation matrix so
that

a(k)pq = 0. (7.15)

As we saw on page 239, it is easy to determine the angle θ so as to intro-
duce a zero in a single Givens rotation. Here, we are using the rotations in a
similarity transformation, so it is a little more complicated.

The requirement that a
(k)
pq = 0 implies

a(k−1)
pq

(
cos2 θ − sin2 θ

)
+
(
a(k−1)
pp − a(k−1)

qq

)
cos θ sin θ = 0. (7.16)

Using the trigonometric identities

cos(2θ) = cos2 θ − sin2 θ

sin(2θ) = 2 cos θ sin θ,

7.3 Jacobi Method 317

in equation (7.16), we have

tan(2θ) =
2a

(k−1)
pq

a
(k−1)
pp − a

(k−1)
qq

,

which yields a unique angle in [−π/4, π/4]. Of course, the quantities we need
are cos θ and sin θ, not the angle itself. First, using the identity

tan θ =
tan(2θ)

1 +
√

1 + tan2(2θ)
,

we get tan θ from tan(2θ); and then from tan θ we can compute the quantities
required for the rotation matrix Gpq(θ):

cos θ =
1√

1 + tan2 θ
,

sin θ = cos θ tan θ.

Convergence occurs when the off-diagonal elements are sufficiently small.
The quantity (7.14) using the Frobenius norm is the usual value to compare
with a convergence criterion, ε.

From equation (7.15), we see that the best index pair, (p, q), is such that
∣
∣
∣a(k−1)

pq

∣
∣
∣= max

i<j

∣
∣
∣a

(k−1)
ij

∣
∣
∣.

If this choice is made, the Jacobi method can be shown to converge (see
Watkins 2002). The method with this choice is called the classical Jacobi
method.

For an n × n matrix, the number of operations to identify the maximum
off-diagonal is O(n2). The computations for the similarity transform itself are
only O(n) because of the sparsity of the rotators. Of course, the computations
for the similarity transformations are more involved than those to identify the
maximum off-diagonal, so, for small n, the classical Jacobi method should
be used. If n is large, however, it may be better not to spend time look-
ing for the maximum off-diagonal. Various cyclic Jacobi methods have been
proposed in which the pairs (p, q) are chosen systematically without regard
to the magnitude of the off-diagonal being zeroed. Depending on the nature
of the cyclic Jacobi method, it may or may not be guaranteed to converge.
For certain schemes, quadratic convergence has been proven; for at least one
other scheme, an example showing failure of convergence has been given. See
Watkins (2002) for a discussion of the convergence issues.

The Jacobi method is one of the oldest algorithms for computing eigenval-
ues, and has recently become important again because it lends itself to easy
implementation on parallel processors (see Zhou and Brent 2003).

Notice that at the kth iteration, only two rows and two columns of A(k) are
modified. This is what allows the Jacobi method to be performed in parallel.

318 7 Evaluation of Eigenvalues

We can form �n/2� pairs and do �n/2� rotations simultaneously. Thus, each
parallel iteration consists of a choice of a set of index pairs and then a batch
of rotations. Although, as we have indicated, the convergence may depend on
which rows are chosen for the rotations, if we are to achieve much efficiency by
performing the operations in parallel, we cannot spend much time in deciding
how to form the pairs for the rotations. Various schemes have been suggested
for forming the pairs for a parallel iteration. A simple scheme, called “mobile
Jacobi” (see Watkins 2002), is:

1. Perform �n/2� rotations using the pairs

(1, 2), (3, 4), (5, 6),

2. Interchange all rows and columns that were rotated.
3. Perform �(n− 1)/2� rotations using the pairs

(2, 3), (4, 5), (6, 7),

4. Interchange all rows and columns that were rotated.
5. If convergence has not been achieved, go to 1.

The notation above that specifies the pairs refers to the rows and columns
at the current state; that is, after the interchanges up to that point. The
interchange operation is a similarity transformation using an elementary per-
mutation matrix (see page 81), and hence the eigenvalues are left unchanged
by this operation. The method described above is a good one, but there are
other ways of forming pairs. Some of the issues to consider are discussed by
Luk and Park (1989), who analyzed and compared some proposed schemes.

7.4 QR Method

The most common algorithm for extracting eigenvalues is the QR method.
While the power method and the Jacobi method require diagonalizable matri-
ces, which restricts their practical use to symmetric matrices, the QR method
can be used for nonsymmetric matrices. It is simpler for symmetric matrices,
of course, because the eigenvalues are real. Also, for symmetric matrices the
computer storage is less, the computations are fewer, and some transforma-
tions are particularly simple. In the following description, we will assume that
the matrix is symmetric.

The basic idea behind the use of the QR method is that for a symmetric
matrix A, the simple iterations beginning with A(0) = A, for k = 1, 2, . . .,

Q(k)R(k) = A(k−1)

A(k) = R(k)Q(k)

lead to an orthogonal triangularization of A.

7.4 QR Method 319

These iterations by themselves would be slow and would only work for
certain matrices, so the QR method requires that the matrix first be trans-
formed into upper Hessenberg form (see page 59). A matrix can be reduced to
Hessenberg form in a finite number of similarity transformations using either
Householder reflections or Givens rotations.

The Hessenberg form for a symmetric matrix is tridiagonal. The Hessen-
berg form allows a large savings in the subsequent computations, even for
nonsymmetric matrices.

Even in the Hessenberg form, the matrices A(k) are shifted by c(k)I, where
c(k)I is an approximation of an eigenvalue, which can be obtained in various
ways (see Trefethen and Bau 1997; pages 219 and following).

After the matrix has been transformed into a similar Hessenberg matrix,
a sequence of similar Hessenberg matrices that converge to triangular matrix
is formed. The QR method for determining the eigenvalues is iterative and
produces a sequence of Hessenberg matrices that converge to a triangular ma-
trix. An upper Hessenberg matrix is formed and its eigenvalues are extracted
by a process called “chasing”, which consists of steps that alternate between
creating nonzero entries in positions (i+ 2, i), (i+ 3, i), and (i+ 3, i+ 1) and
restoring these entries to zero, as the nonzero entries are moved farther down
the matrix. For example,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X X X X X X

X X X X X X X

0 X X X X X X

0 Y X X X X X

0 Y Y X X X X

0 0 0 0 X X X

0 0 0 0 0 X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X X X X X X

X X X X X X X

0 X X X X X X

0 0 X X X X X

0 0 Y X X X X

0 0 Y Y X X X

0 0 0 0 0 X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the jth step of the QR method, a bulge is created and is chased down the
matrix by similarity transformations, usually Givens transformations,

G−1
k A(j−1,k)Gk.

The transformations are based on the eigenvalues of 2 × 2 matrices in the
lower right-hand part of the matrix.

There are some variations on the way the chasing occurs. Haag and
Watkins (1993) describe an efficient modified QR algorithm that uses both
Givens transformations and Gaussian elimination transformations, with or
without pivoting. For the n×n Hessenberg matrix A(0,0), the first step of the
Haag-Watkins procedure begins with a 3 × 3 Householder reflection matrix,
G̃0, whose first column is

(A(0,0) − σ1I)(A
(0,0) − σ2I)e1,

320 7 Evaluation of Eigenvalues

where σ1 and σ2 are the eigenvalues of the 2×2 matrix

[
an−1,n−1 an−1,n

an−1,n an,n

]

,

and e1 is the first unit vector of length n. The n×n matrix G0 is diag(G̃0, I).
The initial transformation G−1

0 A(0,0)G0 creates a bulge with nonzero elements

a
(0,1)
31 , a

(0,1)
41 , and a

(0,1)
42 .

After the initial transformation, the Haag-Watkins procedure makes n− 3
transformations

A(0,k+1) = G−1
k A(0,k)Gk,

for k = 1, 2, . . . , n−3, that chase the bulge diagonally down the matrix, so that

A(0,k+1) differs from Hessenberg form only by the nonzero elements a
(0,k+1)
k+3,k+1,

a
(0,k+1)
k+4,k+1, and a

(0,k+1)
k+4,k+2. To accomplish this, the matrix Gk differs from the

identity only in rows and columns k+1, k+2, and k+3. The transformation

G−1
k A(0,k)

annihilates the entries a
(0,k)
k+2,k and a

(0,k)
k+3,k, and the transformation

(G−1
k A(0,k))Gk

produces A(0,k+1) with two new nonzero elements, a
(0,k+1)
k+4,k+1 and a

(0,k+1)
k+4,k+2. The

final transformation in the first step, for k = n − 2, annihilates a
(0,k)
n,n−2. The

transformation matrix Gn−2 differs from the identity only in rows and columns
n − 1 and n. These steps are iterated until the matrix becomes triangular.
As the subdiagonal elements converge to zero, the shifts for use in the first
transformation of a step (corresponding to σ1 and σ2) are determined by
2×2 submatrices higher on the diagonal. Special consideration must be given
to situations in which these submatrices contain zero elements. For this, the
reader is referred to Watkins (2002) or Golub and Van Loan (1996).

This description has just indicated the general flavor of the QR method.
There are different variations on the overall procedure and then many com-
putational details that must be observed. In the Haag-Watkins procedure, for
example, the Gks are not unique, and their form can affect the efficiency and
the stability of the algorithm. Haag and Watkins (1993) describe criteria for
the selection of the Gks. They also discuss some of the details of programming
the algorithm. A very careful description of the basic algorithm and various
modifications is provided in Trefethen and Bau (1997), pages 196 through 224.

7.6 Generalized Eigenvalues 321

7.5 Krylov Methods

In the power method, we encountered the sequence

x, Ax, A2x,

This sequence is a finite Krylov space generating set. As we mentioned on
page 284, several methods for computing eigenvalues are often based on a
Krylov space,

Kk = V({v,Av,A2v, . . . , Ak−1v}).
(Aleksei Krylov used these vectors to construct the characteristic polynomial.)

The two most important Krylov methods are the Lanczos tridiagonal-
ization algorithm and the Arnoldi orthogonalization algorithm. We will not
discuss these methods here but rather refer the interested reader to Golub
and Van Loan (1996).

7.6 Generalized Eigenvalues

In Sect. 3.8.12, we defined the generalized eigenvalues and eigenvectors by
replacing the identity in the definition of ordinary eigenvalues and eigenvectors
by a general (square) matrix B:

|A− cB| = 0. (7.17)

If there exists a finite c such that this determinant is zero, then there is some
nonzero, finite vector v such that

Av = cBv. (7.18)

As we have seen in the case of ordinary eigenvalues, symmetry of the
matrix, because of diagonalizability, allows for simpler methods to evaluate
the eigenvalues. In the case of generalized eigenvalues, symmetry together
with positive definiteness allows us to reformulate the problem to be much
simpler. If A and B are symmetric and B is positive definite, we refer to the
pair (A,B) as symmetric.

If A and B are a symmetric pair, B has a Cholesky decomposition, B =
TTT , where T is an upper triangular matrix with positive diagonal elements.
We can therefore rewrite equation (7.18) as

T−TAT−1u = cu, (7.19)

where u = Tv. Note that because A is symmetric, T−TAT−1 is symmetric,
and since c is an eigenvalue of this matrix, it is real. Its associated eigenvector
(with respect to T−TAT−1) is likewise real, and therefore so is the generalized
eigenvector v. Because T−TAT−1 is symmetric, the ordinary eigenvectors can

322 7 Evaluation of Eigenvalues

be chosen to be orthogonal. (Recall from page 153 that eigenvectors corre-
sponding to distinct eigenvalues are orthogonal, and those corresponding to
a multiple eigenvalue can be chosen to be orthogonal.) This implies that the
generalized eigenvectors of the symmetric pair (A,B) can be chosen to be
B-conjugate.

Because of the equivalence of a generalized eigenproblem for a symmetric
pair to an ordinary eigenproblem for a symmetric matrix, any of the methods
discussed in this chapter can be used to evaluate the generalized eigenpairs
of a symmetric pair. The matrices in statistical applications for which the
generalized eigenvalues are required are often symmetric pairs. For example,
Roy’s maximum root statistic, which is used in multivariate analysis, is a
generalized eigenvalue of two Wishart matrices.

The generalized eigenvalues of a pair that is not symmetric are more dif-
ficult to evaluate. The approach of forming upper Hessenberg matrices, as
in the QR method, is also used for generalized eigenvalues. We will not dis-
cuss this method here but instead refer the reader to Watkins (2002) for a
description of the method, which is called the QZ algorithm.

7.7 Singular Value Decomposition

The standard algorithm for computing the singular value decomposition

A = UDV T

is due to Golub and Reinsch (1970) and is built on ideas of Golub and Kahan
(1965). The first step in the Golub-Reinsch algorithm for the singular value
decomposition of the n×m matrix A is to reduce A to upper bidiagonal form:

A(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X 0 · · · 0 0

0 X X · · · 0 0

0 0 X · · · 0 0

. . .
. . .

0 0 0 · · · X X

0 0 0 · · · 0 X

0 0 0 · · · 0 0
...
...
... · · · ...

...
0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We assume n ≥ m. (If this is not the case, we merely use AT.) This algorithm is
basically a factored form of the QR algorithm for the eigenvalues of A(0)TA(0),
which would be symmetric and tridiagonal.

The Golub-Reinsch method produces a sequence of upper bidiagonal ma-
trices, A(0), A(1), A(2), . . ., which converges to the diagonal matrix D. (Each
of these has a zero submatrix below the square submatrix.) Similar to the QR
method for eigenvalues, the transformation from A(j) to A(j+1) is effected by
a sequence of orthogonal transformations,

7.7 Singular Value Decomposition 323

A(j+1) = RT
m−2R

T
m−3 · · ·RT

0 A
(j)T0T1 · · ·Tm−2

= RTA(j)T,

which first introduces a nonzero entry below the diagonal (T0 does this) and
then chases it down the diagonal. After T0 introduces a nonzero entry in the
(2, 1) position, RT

0 annihilates it and produces a nonzero entry in the (1, 3)
position; T1 annihilates the (1, 3) entry and produces a nonzero entry in the
(3, 2) position, which RT

1 annihilates, and so on. Each of the Rks and Tks are
Givens transformations, and, except for T0, it should be clear how to form
them.

If none of the elements along the main diagonal or the diagonal above the
main diagonal is zero, then T0 is chosen as the Givens transformation such
that TT

0 will annihilate the second element in the vector

(a211 − σ1, a11a12, 0, · · · , 0),

where σ1 is the eigenvalue of the lower right-hand 2×2 submatrix of A(0)TA(0)

that is closest in value to the (m,m) element of A(0)TA(0). This is easy to
compute (see Exercise 7.6).

If an element along the main diagonal or the diagonal above the main diag-
onal is zero, we must proceed slightly differently. (Remember that for purposes
of computations “zero” generally means “near zero”; that is, to within some
set tolerance.)

If an element above the main diagonal is zero, the bidiagonal matrix is
separated at that value into a block diagonal matrix, and each block (which
is bidiagonal) is treated separately.

If an element on the main diagonal, say akk, is zero, then a singular value
is zero. In this case, we apply a set of Givens transformations from the left.
We first use G1, which differs from the identity only in rows and columns k
and k + 1, to annihilate the (k, k + 1) entry and introduce a nonzero in the
(k, k + 2) position. We then use G2, which differs from the identity only in
rows and columns k and k+2, to annihilate the (k, k+2) entry and introduce
a nonzero in the (k, k+3) position. Continuing this process, we form a matrix
of the form ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X X 0 0 0 0 0 0

0 X X 0 0 0 0 0

0 0 X Y 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 X X 0 0

0 0 0 0 0 X X 0

0 0 0 0 0 0 X X

0 0 0 0 0 0 0 X
...
...
... · · · ...

...
...
...

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

324 7 Evaluation of Eigenvalues

The Y in this matrix (in position (k−1, k)) is then chased up the upper block
consisting of the first k rows and columns of the original matrix by using
Givens transformations applied from the right. This then yields two block
bidiagonal matrices (and a 1 × 1 0 matrix). We operate on the individual
blocks as before.

After the steps have converged to yield a diagonal matrix, D̃, all of the
Givens matrices applied from the left are accumulated into a single matrix and
all from the right are accumulated into a single matrix to yield a decomposition

A = ŨD̃Ṽ T.

There is one last thing to do. The elements of D̃ may not be nonnegative.
This is easily remedied by postmultiplying by a diagonal matrix G that is the
same as the identity except for having a −1 in any position corresponding
to a negative value in D̃. In addition, we generally form the singular value
decomposition is such a way that the elements in D are nonincreasing. The
entries in D̃ can be rearranged by a permutation matrix E(π) so they are in
nonincreasing order. So we have

D = ET
(π)D̃GE(π),

and the final decomposition is

A = ŨE(π)GDET
(π)Ṽ

T

= UDV T.

If n ≥ 5
3m, a modification of this algorithm by Chan (1982a,b) is more

efficient than the standard Golub-Reinsch method.

Exercises

7.1. Simple matrices and the power method.
a) Let A be an n × n matrix whose elements are generated indepen-

dently (but not necessarily identically) from real-valued continuous
distributions. What is the probability that A is simple?

b) Under the same conditions as in Exercise 7.1a, and with n ≥ 3, what
is the probability that |cn−2| < |cn−1| < |cn|, where cn−2, cn−1, and
cn are the three eigenvalues with the largest absolute values?

c) Prove that the power method converges linearly if |cn−2| < |cn−1| <
|cn|, bn−1 �= 0, and bn �= 0. (The bs are the coefficients in the expan-
sion of x(0).)
Hint: Substitute the expansion in equation (7.11) on page 314 into
the expression for the convergence ratio in equation (7.12).

Exercises 325

d) Suppose A is simple and the elements of x(0) are generated indepen-
dently (but not necessarily identically) from continuous distributions.
What is the probability that the power method will converge linearly?

7.2. Consider the matrix ⎡

⎢
⎢
⎣

4 1 2 3
1 5 3 2
2 3 6 1
3 2 1 7

⎤

⎥
⎥
⎦ .

a) Use the power method to determine the largest eigenvalue and an
associated eigenvector of this matrix.

b) Find a 3×3 matrix, as in equation (7.7), that has the same eigenvalues
as the remaining eigenvalues of the matrix above.

c) Using Givens transformations, reduce the matrix to upper Hessenberg
form.

7.3. In the matrix ⎡

⎢
⎢
⎣

2 1 0 0
1 5 2 0
3 2 6 1
0 0 1 8

⎤

⎥
⎥
⎦ ,

determine the Givens transformations to chase the 3 in the (3, 1) position
out of the matrix.

7.4. In the matrix ⎡

⎢
⎢
⎢
⎢
⎣

2 1 0 0
3 5 2 0
0 0 6 1
0 0 0 8
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
,

determine the Givens transformations to chase the 3 in the (2, 1) position
out of the matrix.

7.5. In the QR methods for eigenvectors and singular values, why can we
not just use additional orthogonal transformations to triangularize the
given matrix (instead of just forming a similar Hessenberg matrix, as in
Sect. 7.4) or to diagonalize the given matrix (instead of just forming the
bidiagonal matrix, as in Sect. 7.7)?

7.6. Determine the eigenvalue σ1 (on page 323) used in forming the matrix
T0 for initiating the chase in the algorithm for the singular value decom-
position. Express it in terms of am,m, am−1,m−1, am−1,m, and am−1,m−2.

	7 Evaluation of Eigenvalues and Eigenvectors
	7.1 General Computational Methods
	7.1.1 Numerical Condition of an Eigenvalue Problem
	7.1.2 Eigenvalues from Eigenvectors and Vice Versa
	7.1.3 Deflation
	7.1.3.1 Deflation of Symmetric Matrices

	7.1.4 Preconditioning
	7.1.5 Shifting

	7.2 Power Method
	7.2.1 Inverse Power Method

	7.3 Jacobi Method
	7.4 QR Method
	7.5 Krylov Methods
	7.6 Generalized Eigenvalues
	7.7 Singular Value Decomposition
	Exercises

